TITLE 35: ENVIRONMENTAL PROTECTION SUBTITLE C: WATER POLLUTION CHAPTER I: POLLUTION CONTROL BOARD

PART 302 WATER QUALITY STANDARDS

SUBPART A: GENERAL WATER QUALITY PROVISIONS

Section	
302.100	Definitions
302.101	Scope and Applicability
302.102	Allowed Mixing, Mixing Zones and ZIDs
302.103	Stream Flows
302.104	Main River Temperatures
302.105	Antidegradation
S	SUBPART B: GENERAL USE WATER QUALITY STANDARDS
Section	
302.201	Scope and Applicability
302.202	Purpose
302.203	Offensive Conditions
302.204	pH
302.205	Phosphorus
302.206	Dissolved Oxygen
302.207	Radioactivity
302.208	Numeric Standards for Chemical Constituents
302.209	Fecal Coliform
302.210	Other Toxic Substances
302.211	Temperature
302.212	Total Ammonia Nitrogen
302.213	Effluent Modified Waters (Ammonia)(Repealed)
SUBPART	C: PUBLIC AND FOOD PROCESSING WATER SUPPLY STANDARDS
Section	
302.301	Scope and Applicability
302.302	Algicide Permits
302.303	Finished Water Standards
302.304	Chemical Constituents
302.305	Other Contaminants
302.306	Fecal Coliform

302.307

Radium 226 and 228

SUBPART D: SECONDARY CONTACT AND INDIGENOUS AQUATIC LIFE STANDARDS

Section	
302.401	Scope and Applicability
302.402	Purpose
302.403	Unnatural Sludge
302.404	pH
302.405	Dissolved Oxygen
302.406	Fecal Coliform (Repealed)
302.407	Chemical Constituents
302.408	Temperature
302.409	Cyanide
302.410	Substances Toxic to Aquatic Life

SUBPART E: LAKE MICHIGAN BASIN WATER QUALITY STANDARDS

Section	
302.501	Scope, Applicability, and Definitions
302.502	Dissolved Oxygen
302.503	pH
302.504	Chemical Constituents
302.505	Fecal Coliform
302.506	Temperature
302.507	Thermal Standards for Existing Sources on January 1, 1971
302.508	Thermal Standards for Sources Under Construction But Not In Operation
	on January 1, 1971
302.509	Other Sources
302.510	Incorporations by Reference
302.515	Offensive Conditions
302.520	Regulation and Designation of Bioaccumulative Chemicals of Concern
(BCCs)	
302.521	Supplemental Antidegradation Provisions for Bioaccumulative Chemicals
	of Concern (BCCs)
302.525	Radioactivity
302.530	Supplemental Mixing Provisions for Bioaccumulative Chemicals of
	Concern (BCCs)
302.535	Ammonia Nitrogen
302.540	Other Toxic Substances
302.545	Data Requirements
302.550	Analytical Testing
302.553	Determining the Lake Michigan Aquatic Toxicity Criteria or Values -
	General Procedures

302.555	Determining the Tier I Lake Michigan Acute Aquatic Toxicity Criterion (LMAATC): Independent of Water Chemistry
302.560	Determining the Tier I Lake Michigan Basin Acute Aquatic Life Toxicity Criterion (LMAATC): Dependent on Water Chemistry
302.563	Determining the Tier II Lake Michigan Basin Acute Aquatic Life Toxicity Value (LMAATV)
302.565	Determining the Lake Michigan Basin Chronic Aquatic Life Toxicity Criterion (LMCATC) or the Lake Michigan Basin Chronic Aquatic Life Toxicity Value (LMCATV)
302.570	Procedures for Deriving Bioaccumulation Factors for the Lake Michigan
Basin	
302.575	Procedures for Deriving Tier I Water Quality Criteria and Values in the Lake Michigan Basin to Protect Wildlife
302.580	Procedures for Deriving Water Quality Criteria and Values in the Lake Michigan Basin to Protect Human Health – General
302.585	Procedures for Determining the Lake Michigan Basin Human Health Threshold Criterion (LMHHTC) and the Lake Michigan Basin Human Health Threshold Value (LMHHTV)
302.590	Procedures for Determining the Lake Michigan Basin Human Health Nonthreshold Criterion (LMHHNC) or the Lake Michigan Basin Human Health Nonthreshold Value (LMHHNV)
302.595 Values	Listing of Bioaccumulative Chemicals of Concern, Derived Criteria and

SUBPART F: PROCEDURES FOR DETERMINING WATER QUALITY CRITERIA

Section	
302.601	Scope and Applicability
302.603	Definitions
302.604	Mathematical Abbreviations
302.606	Data Requirements
302.612	Determining the Acute Aquatic Toxicity Criterion for an Individual Substance – General Procedures
302.615	Determining the Acute Aquatic Toxicity Criterion - Toxicity Independent of Water Chemistry
302.618	Determining the Acute Aquatic Toxicity Criterion - Toxicity Dependent on Water Chemistry
302.621	Determining the Acute Aquatic Toxicity Criterion - Procedure for Combinations of Substances
302.627	Determining the Chronic Aquatic Toxicity Criterion for an Individual Substance - General Procedures
302.630	Determining the Chronic Aquatic Toxicity Criterion - Procedure for Combinations of Substances
302.633	The Wild and Domestic Animal Protection Criterion
302.642	The Human Threshold Criterion

302.645	Determining the Acceptable Daily Intake				
302.648	Detern	nining the Human Threshold Criterion			
302.651	The H	uman Nonthreshold Criterion			
302.654	Detern	nining the Risk Associated Intake			
302.657	Detern	nining the Human Nonthreshold Criterion			
302.658	Stream	r Flow for Application of Human Nonthreshold Criterion			
302.660	Biocor	ncentration Factor			
302.663	Detern	nination of Bioconcentration Factor			
302.666	Utilizi	ng the Bioconcentration Factor			
302.669	Listing	g of Derived Criteria			
302.APPEND	IX A	References to Previous Rules			
302.APPEND	IX B	Sources of Codified Sections			
302.APPENDIX C		Maximum total ammonia nitrogen concentrations allowable for			
202 TABLE A		certain combinations of pH and temperature			
302.TABLE A		pH-Dependent Values of the AS (Acute Standard)			
302.TABLE B		Temperature and pH-Dependent Values of the CS (Chronic			
Standard) for					
		Fish Early Life Stages Absent			
302.TABLE C		Temperature and pH-Dependent Values of the CS (Chronic			
Standard) for					
		Fish Early Life Stages Present			
302.APPENDIX D		Section 302.206(d): Stream Segments for Enhanced Dissolved			
		Oxygen Protection			

AUTHORITY: Implementing Section 13 and authorized by Sections 11(b) and 27 of the Environmental Protection Act [415 ILCS 5/13, 11(b), and 27]

SOURCE: Filed with the Secretary of State January 1, 1978; amended at 2 Ill. Reg. 44, p. 151, effective November 2, 1978; amended at 3 Ill. Reg. 20, p. 95, effective May 17, 1979; amended at 3 Ill. Reg. 25, p. 190, effective June 21, 1979; codified at 6 Ill. Reg. 7818; amended at 6 Ill. Reg. 11161, effective September 7, 1982; amended at 6 Ill. Reg. 13750, effective October 26, 1982; amended at 8 Ill. Reg. 1629, effective January 18, 1984; peremptory amendments at 10 Ill. Reg. 461, effective December 23, 1985; amended at R87-27 at 12 III. Reg. 9911, effective May 27, 1988; amended at R85-29 at 12 Ill. Reg. 12082, effective July 11, 1988; amended in R88-1 at 13 Ill. Reg. 5998, effective April 18, 1989; amended in R88-21(A) at 14 Ill. Reg. 2899, effective February 13, 1990; amended in R88-21(B) at 14 Ill. Reg. 11974, effective July 9, 1990; amended in R94-1(A) at 20 Ill. Reg. 7682, effective May 24, 1996; amended in R94-1(B) at 21 Ill. Reg. 370, effective December 23, 1996; expedited correction at 21 Ill. Reg. 6273, effective December 23, 1996; amended in R97-25 at 22 Ill. Reg. 1356, effective December 24, 1997; amended in R99-8 at 23 III. Reg. 11249, effective August 26, 1999; amended in R01-13 at 26 Ill. Reg. 3505, effective February 22, 2002; amended in R02-19 at 26 Ill. Reg. 16931, effective November 8, 2002; amended in R02-11 at 27 Ill. Reg. 166, effective December 20, 2002; amended in R04-21 at 30 Ill. Reg. 4919, effective March 1,

2006; amended in R04-25 at 32 III. Reg. 2254, effective January 28, 2008; amended in R07-9 at 32 III. Reg. 14978, effective September 8, 2008; amended in R11-18 at 36 III. Reg. 18871, effective December 12, 2012.; amended in R11-18(B) at 37 III. Reg. 7493 effective May 16, 2013.

SUBPART A: GENERAL WATER QUALITY PROVISIONS

Section 302.100 Definitions

Unless otherwise specified, the definitions of the Environmental Protection Act (Act) [415 ILCS 5] and 35 Ill. Adm. Code 301 apply to this Part. As used in this Part, each of the following definitions has the specified meaning.

"Acute Toxicity" means the capacity of any substance or combination of substances to cause mortality or other adverse effects in an organism resulting from a single or short-term exposure to the substance.

"Adverse Effect" means any gross or overt effect on an organism, including but not limited to reversible histopathological damage, severe convulsions, irreversible functional impairment and lethality, as well as any non-overt effect on an organism resulting in functional impairment or pathological lesions which may affect the performance of the whole organism, or which reduces an organism's ability to respond to an additional challenge.

"Chronic Toxicity" means the capacity of any substance or combination of substances to cause injurious or debilitating effects in an organism which result from exposure for a time period representing a substantial portion of the natural life cycle of that organism, including but not limited to the growth phase, the reproductive phases or such critical portions of the natural life cycle of that organism.

"Criterion" means the numerical concentration of one or more toxic substances derived in accordance with the procedures in Subpart F of this Part which, if not exceeded, would assure compliance with the narrative toxicity standard of Section 302.210 of this Part.

"Early Life Stages" of fish means the pre-hatch embryonic period, the post-hatch free embryo or yolk-sac fry, and the larval period, during which the organism feeds. Juvenile fish, which are anatomically similar to adults, are not considered an early life stage.

"Hardness" means a water quality parameter or characteristic consisting of the sum of calcium and magnesium concentrations expressed in terms of equivalent milligrams per liter as calcium carbonate. Hardness is measured in accordance with methods specified in 40 CFR 136, incorporated by reference in 35 Ill. Adm. Code 301.106.

"Mixing Zone" means a portion of the waters of the State identified as a region within which mixing is allowed pursuant to Section 302.102(d) of this Part.

"Thermocline" means the plane of maximum rate of decrease of temperature with respect to depth in a thermally stratified body of water.

"Total Residual Chlorine" or "TRC" means those substances which include combined and uncombined forms of both chlorine and bromine and which are expressed, by convention, as an equivalent concentration of molecular chlorine. TRC is measured in accordance with methods specified in 40 CFR 136, incorporated by reference in 35 Ill. Adm. Code 301.106.

"Toxic Substance" means a chemical substance that causes adverse effects in humans, or in aquatic or terrestrial animal or plant life. Toxic substances include, but are not limited to, those substances listed in 40 CFR 302.4, incorporated by reference in 35 Ill. Adm. Code 301.106, or any "chemical substance" as defined by the Illinois Chemical Safety Act [430 ILCS 45]

"ZID" or "Zone of Initial Dilution" means a portion of a mixing zone, identified pursuant to Section 302.102(e) of this Part, within which acute toxicity standards need not be met.

(Source: Amended at 32 Ill. Reg. 2254, effective January 28, 2008)

Section 302.101 Scope and Applicability

- a) This Part contains schedules of water quality standards which are applicable throughout the State as designated in 35 Ill. Adm. Code 303. Site specific water quality standards are found with the water use designations in 35 Ill. Adm. Code 303.
- b) Subpart B contains general use water quality standards which must be met in waters of the State for which there is no specific designation (35 Ill. Adm. Code 303.201).
- c) Subpart C contains the public and food processing water supply standards. These are cumulative with Subpart B and must be met by all designated

- waters at the point at which water is drawn for treatment and distribution as a potable supply or for food processing (35 Ill. Adm. Code 303.202).
- d) Subpart D contains the secondary contact and indigenous aquatic life standards. These standards must be met only by certain waters designated in 35 Ill. Adm. Code 303.204 and 303.441.
- e) Subpart E contains the Lake Michigan Basin water quality standards. These must be met in the waters of the Lake Michigan Basin as designated in 35 Ill. Adm. Code 303.443.
- f) Subpart F contains the procedures for determining each of the criteria designated in Section 302.210.
- g) Unless the contrary is clearly indicated, all references to "Parts" or "Sections" are to Ill. Adm. Code, Title 35: Environmental Protection. For example, "Part 309" is 35 Ill. Adm. Code 309, and "Section 309.101" is 35 Ill. Adm. Code 309.101.

(Source: Amended at 23 Ill. Reg. 11249, effective August 26, 1999)

Section 302.102 Allowed Mixing, Mixing Zones and ZIDs

- a) Whenever a water quality standard is more restrictive than its corresponding effluent standard, or where there is no corresponding effluent standard specified at 35 Ill. Adm. Code 304, an opportunity shall be allowed for compliance with 35 Ill. Adm. Code 304.105 by mixture of an effluent with its receiving waters, provided the discharger has made every effort to comply with the requirements of 35 Ill. Adm. Code 304.102.
- b) The portion, volume and area of any receiving waters within which mixing is allowed pursuant to subsection (a) shall be limited by the following:
 - 1) Mixing must be confined in an area or volume of the receiving water no larger than the area or volume which would result after incorporation of outfall design measures to attain optimal mixing efficiency of effluent and receiving waters. Such measures may include, but are not limited to, use of diffusers and engineered location and configuration of discharge points.
 - 2) Mixing is not allowed in waters which include a tributary stream entrance if such mixing occludes the tributary mouth or otherwise restricts the movement of aquatic life into or out of the tributary.

- 3) Mixing is not allowed in water adjacent to bathing beaches, bank fishing areas, boat ramps or dockages or any other public access area.
- 4) Mixing is not allowed in waters containing mussel beds, endangered species habitat, fish spawning areas, areas of important aquatic life habitat, or any other natural features vital to the well being of aquatic life in such a manner that the maintenance of aquatic life in the body of water as a whole would be adversely affected.
- 5) Mixing is not allowed in waters which contain intake structures of public or food processing water supplies, points of withdrawal of water for irrigation, or watering areas accessed by wild or domestic animals.
- 6) Mixing must allow for a zone of passage for aquatic life in which water quality standards are met. However, a zone of passage is not required in receiving streams that have zero flow for at least seven consecutive days recurring on average in nine years out of ten.
- 7) The area and volume in which mixing occurs, alone or in combination with other areas and volumes of mixing, must not intersect any area of any body of water in such a manner that the maintenance of aquatic life in the body of water as a whole would be adversely affected.
- 8) The area and volume in which mixing occurs, alone or in combination with other areas and volumes of mixing must not contain more than 25% of the cross-sectional area or volume of flow of a stream except for those streams where the dilution ratio is less than 3:1. In streams where the dilution ratio is less than 3:1, the volume in which mixing occurs, alone or in combination with other volumes of mixing, must not contain more than 50 % of the volume flow unless an applicant for an NPDES permit demonstrates, pursuant to subsection (d) of this section, that an adequate zone of passage is provided for pursuant to Section 302.102(b)(6).
- 9) No mixing is allowed where the water quality standard for the constituent in question is already violated in the receiving water.

- 10) No body of water may be used totally for mixing of single outfall or combination of outfalls, except as provided in Section 302.102(b)(6).
- 11) Single sources of effluents which have more than one outfall shall be limited to a total area and volume of mixing no larger than that allowable if a single outfall were used.
- 12) The area and volume in which mixing occurs must be as small as is practicable under the limitations prescribed in this subsection, and in no circumstances may the mixing encompass a surface area larger than 26 acres.
- c) All water quality standards of this Part must be met at every point outside of the area and volume of the receiving water within which mixing is allowed. The acute toxicity standards of Sections 302.208 and 302.210 must be met within the area and volume within which mixing is allowed, except as provided in subsection (e).
- d) Pursuant to the procedures of Section 39 of the Act and 35 Ill. Adm. Code 309, a person may apply to the Agency to include as a condition in an NPDES permit formal definition of the area and volume of the waters of the State within which mixing is allowed for the NPDES discharge in question. Such formally defined area and volume of allowed mixing shall constitute a "mixing zone" for the purposes of 35 Ill. Adm. Code: Subtitle C. Upon proof by the applicant that a proposed mixing zone conforms with the requirements of Section 39 of the Act, this section and any additional limitations as may be imposed by the Clean Water Act (CWA) (33 USC 1251 et seq.), the Act or Board regulations, the Agency shall, pursuant to Section 39(b) of the Act, include within the NPDES permit a condition defining the mixing zone.
- e) Pursuant to the procedures of Section 39 of the Act and 35 Ill. Adm. Code 309, a person may apply to the Agency to include as a condition in an NPDES permit a ZID as a component portion of a mixing zone. Such ZID shall, at a minimum, be limited to waters within which effluent dispersion is immediate and rapid. For the purposes of this subsection, "immediate" dispersion means an effluent's merging with receiving waters without delay in time after its discharge and within close proximity of the end of the discharge pipe, so as to minimize the length of exposure time of aquatic life to undiluted effluent, and "rapid" dispersion means an effluent's merging with receiving waters so as to minimize the length of exposure time of aquatic life to undiluted effluent. Upon proof by the applicant that a proposed ZID conforms with the requirements of Section

- 39 of the Act and this Section, the Agency shall, pursuant to Section 39(b) of the Act, include within the NPDES permit a condition defining the ZID.
- f) Pursuant to Section 39 of the Act and 35 Ill. Adm. Code 309.103, an applicant for an NPDES permit shall submit data to allow the Agency to determine that the nature of any mixing zone or mixing zone in combination with a ZID conforms with the requirements of Section 39 of the Act and of this Section. A permittee may appeal Agency determinations concerning a mixing zone or ZID pursuant to the procedures of Section 40 of the Act and 35 Ill. Adm. Code 309.181.
- g) Where a mixing zone is defined in an NPDES permit, the waters within that mixing zone, for the duration of that NPDES permit, shall constitute the sole waters within which mixing is allowed for the permitted discharge. It shall not be a defense in any action brought pursuant to 35 Ill. Adm. Code 304.105 that the area and volume of waters within which mixing may be allowed pursuant to subsection (b) is less restrictive than the area or volume or waters encompassed in the mixing zone.
- h) Where a mixing zone is explicitly denied in a NPDES permit, no waters may be used for mixing by the discharge to which the NPDES permit applies, all other provisions of this Section notwithstanding.
- i) Where an NPDES permit is silent on the matter of a mixing zone, or where no NPDES permit is in effect, the burden of proof shall be on the discharger to demonstrate compliance with this Section in any action brought pursuant to 35 Ill. Adm. Code 304.105.

(Source: Amended at 32 Ill. Reg. 14978, effective September 8, 2008)

Section 302.103 Stream Flows

Except as otherwise provided in this Chapter, the water quality standards in this Part shall apply at all times except during periods when flows are less than the average minimum seven day low flow which occurs once in ten years.

(Source: Amended at 14 Ill. Reg. 2899, effective February 13, 1990)

Section 302.104 Main River Temperatures

Main river temperatures are temperatures of those portions of a river essentially similar to and following the same thermal regime as the temperatures of the main flow of the river.

Section 302.105 Antidegradation

The purpose of this Section is to protect existing uses of all waters of the State of Illinois, maintain the quality of waters with quality that is better than water quality standards, and prevent unnecessary deterioration of waters of the State.

a) Existing Uses

Uses actually attained in a surface water body or water body segment on or after November 28, 1975, whether or not they are included in the water quality standards, must be maintained and protected. Examples of degradation of existing uses of the waters of the State include:

- an action that would result in the deterioration of the existing aquatic community, such as a shift from a community of predominantly pollutant-sensitive species to pollutant-tolerant species or a loss of species diversity;
- 2) an action that would result in a loss of a resident or indigenous species whose presence is necessary to sustain commercial or recreational activities; or
- an action that would preclude continued use of a surface water body or water body segment for a public water supply or for recreational or commercial fishing, swimming, paddling or boating.

b) Outstanding Resource Waters

- 1) Waters that are designated as Outstanding Resource Waters (ORWs) pursuant to 35 Ill. Adm. Code 303.205 and listed in 35 Ill. Adm. Code 303.206 must not be lowered in quality except as provided below:
 - A) Activities that result in short-term, temporary (i.e., weeks or months) lowering of water quality in an ORW; or
 - B) Existing site stormwater discharges that comply with applicable federal and State stormwater management regulations and do not result in a violation of any water quality standards.
- 2) Any activity in subsection (b)(1)(A) or (b)(1)(B) that requires a National Pollutant Discharge Elimination System (NPDES) or a Clean Water Act (CWA) Section 401 certification must also comply with subsection (c)(2).

- 3) Any activity listed in subsection (b)(1) or any other proposed increase in pollutant loading to an ORW must also meet the following requirements:
 - A) All existing uses of the water will be fully protected; and
 - B) Except for activities falling under one of the exceptions provided in subsection (b)(1)(A) or (B) above:
 - i) The proposed increase in pollutant loading is necessary for an activity that will improve water quality in the ORW; and
 - ii) The improvement could not be practicably achieved without the proposed increase in pollutant loading.
- 4) Any proposed increase in pollutant loading requiring an NPDES permit or a CWA 401 certification for an ORW must be assessed pursuant to subsection (f) to determine compliance with this Section.

c) High Quality Waters

- 1) Except as otherwise provided in subsection (d) of this Section, waters of the State whose existing quality is better than any of the established standards of this Part must be maintained in their present high quality, unless the lowering of water quality is necessary to accommodate important economic or social development.
- The Agency must assess any proposed increase in pollutant loading that necessitates a new, renewed or modified NPDES permit or any activity requiring a CWA Section 401 certification to determine compliance with this Section. The assessment to determine compliance with this Section must be made on a case-by-case basis. In making this assessment, the Agency must:
 - A) Consider the fate and effect of any parameters proposed for an increased pollutant loading.
 - B) Assure the following:

- i) The applicable numeric or narrative water quality standard will not be exceeded as a result of the proposed activity;
- ii) All existing uses will be fully protected;
- iii) All technically and economically reasonable measures to avoid or minimize the extent of the proposed increase in pollutant loading have been incorporated into the proposed activity; and
- iv) The activity that results in an increased pollutant loading will benefit the community at large.
- C) Utilize the following information sources, when available:
 - i) Information, data or reports available to the Agency from its own sources;
 - ii) Information, data or reports supplied by the applicant;
 - iii) Agency experience with factually similar permitting scenarios; and
 - iv) Any other valid information available to the Agency.
- d) Activities Not Subject to a Further Antidegradation Assessment

The following activities will not be subject to a further antidegradation assessment pursuant to subsection (c) of this Section.

- 1) Short-term, temporary (i.e., weeks or months) lowering of water quality;
- 2) Bypasses that are not prohibited at 40 CFR 122.41(m);
- Response actions pursuant to the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA), as amended, corrective actions, pursuant to the Resource Conservation and Recovery Act (RCRA), as amended, or similar federal or State authority, taken to alleviate a release into the environment of hazardous substances, pollutants or contaminants which may pose a danger to public health or welfare;

- 4) Thermal discharges that have been approved through a CWA Section 316(a) demonstration;
- 5) New or increased discharges of a non-contact cooling water:
 - A) without additives, except as provided in subsection (d)(5)(B), returned to the same body of water from which it was taken, as defined by 35 Ill. Adm. Code 352.104, provided that the discharge complies with applicable Illinois thermal standards; or
 - B) containing chlorine when the non-contact cooling water is treated to remove residual chlorine, and returned to the same body of water from which it was taken, as defined in 35 Ill. Adm. Code 352.104, provided that the discharge complies with applicable Illinois thermal and effluent standards at 35 Ill. Adm. Code 302, 303, and 304;
- Discharges permitted under a current general NPDES permit as provided by 415 ILCS 5/39(b) or a nationwide or regional CWA Section 404 permit are not subject to facility-specific antidegradation review; however, the Agency must assure that individual permits or certifications are required prior to all new pollutant loadings or hydrological modifications that necessitate a new, renewed or modified NPDES permit or CWA Section 401 certification that affects waters of particular biological significance may include streams listed in a 1991 publication by the Illinois Department of Conservation entitled "Biologically Significant Illinois Streams"; or
- 7) Changes to or inclusion of a new permit limitation that does not result in an actual increase of a pollutant loading, such as those stemming from improved monitoring data, new analytical testing methods, new or revised technology or water quality based effluent limits.

e) Lake Michigan Basin

Waters in the Lake Michigan basin as identified in 35 Ill. Adm. Code 303.443 are also subject to the requirements applicable to bioaccumulative chemicals of concern found at Section 302.521 of this Part.

f) Antidegradation Assessments

In conducting an antidegradation assessment pursuant to this Section, the Agency must comply with the following procedures.

- 1) A permit application for any proposed increase in pollutant loading that necessitates the issuance of a new, renewed, or modified NPDES permit or a CWA Section 401 certification must include, to the extent necessary for the Agency to determine that the permit application meets the requirements of this Section, the following information:
 - A) Identification and characterization of the water body affected by the proposed load increase or proposed activity and the existing water body's uses. Characterization must address physical, biological and chemical conditions of the water body.
 - B) Identification and quantification of the proposed load increases for the applicable parameters and of the potential impacts of the proposed activity on the affected waters.
 - C) The purpose and anticipated benefits of the proposed activity. Such benefits may include:
 - Providing a centralized wastewater collection and treatment system for a previously unsewered community;
 - ii) Expansion to provide service for anticipated residential or industrial growth consistent with a community's long range urban planning;
 - iii) Addition of a new product line or production increase or modification at an industrial facility; or
 - iv) An increase or the retention of current employment levels at a facility.
 - D) Assessments of alternatives to proposed increases in pollutant loading or activities subject to Agency certification pursuant to Section 401 of the CWA that result in less of a load increase, no load increase or minimal environmental degradation. Such alternatives may include:
 - i) Additional treatment levels, including no discharge alternatives;

- ii) Discharge of waste to alternate locations, including publicly-owned treatment works and streams with greater assimilative capacity; or
- iii) Manufacturing practices that incorporate pollution prevention techniques.
- E) Any additional information the Agency may request.
- F) Proof that a copy of the application has been provided to the Illinois Department of Natural Resources.
- 2) The Agency must complete an antidegradation assessment in accordance with the provisions of this Section on a case-by-case basis.
 - A) The Agency must consider the criteria stated in Section 302.105(c)(2).
 - B) The Agency must consider the information provided by the applicant pursuant to subsection (f)(1).
 - C) After its assessment, the Agency must produce a written analysis addressing the requirements of this Section and provide a decision yielding one of the following results:
 - i) If the proposed activity meets the requirements of this Section, then the Agency must proceed with public notice of the NPDES permit or CWA Section 401 certification and include the written analysis as a part of the fact sheet accompanying the public notice;
 - ii) If the proposed activity does not meet the requirements of this Section, then the Agency must provide a written analysis to the applicant and must be available to discuss the deficiencies that led to the disapproval. The Agency may suggest methods to remedy the conflicts with the requirements of this Section;
 - iii) If the proposed activity does not meet the requirements of this Section, but some lowering of

water quality is allowable, then the Agency will contact the applicant with the results of the review. If the reduced loading increase is acceptable to the applicant, upon the receipt of an amended application, the Agency will proceed to public notice; or if the reduced loading increase is not acceptable to the applicant, the Agency will transmit its written review to the applicant in the context of an NPDES permit denial or a CWA Section 401 certification denial.

3) The Agency will conduct public notice and public participation through

the public notice procedures found in 35 Ill. Adm. Code 309.109 or CWA Section 401 certifications. The Agency must incorporate the following information into a fact sheet accompanying the public notice:

- A) A description of the activity, including identification of water quality parameters for which there will be an increased pollutant loading;
- B) Identification of the affected surface water body or water body segment, any downstream surface water body or water body segment also expected to experience a lowering of water quality, characterization of the designated and current uses of the affected surface water body or water body segment and identification of which uses are most sensitive to the proposed load increase;
- C) A summary of any review comments and recommendations provided by Illinois Department of Natural Resources, local or regional planning commissions, zoning boards and any other entities the Agency consults regarding the proposal;
- D) An overview of alternatives considered by the applicant and identification of any provisions or alternatives imposed to lessen the load increase associated with the proposed activity; and
- E) The name and telephone number of a contact person at the Agency who can provide additional information.

(Amended at 27 Ill. Reg. 166, effective December 20, 2002)

SUBPART B: GENERAL USE WATER QUALITY STANDARDS

Section 302.201 Scope and Applicability

Subpart B contains general use water quality standards which must be met in waters of the State for which there is no specific designation (Section 303.201).

Section 302.202 Purpose

The General Use standards will protect the State's water for aquatic life (except as provided in Section 302.213), wildlife, agricultural use, secondary contact use and most industrial uses and ensure the aesthetic quality of the State's aquatic environment. Primary contact uses are protected for all General Use waters whose physical configuration permits such use.

(Source: Amended at 21 Ill. Reg. 370, effective December 23, 1996)

Section 302.203 Offensive Conditions

Waters of the State shall be free from sludge or bottom deposits, floating debris, visible oil, odor, plant or algal growth, color or turbidity of other than natural origin. The allowed mixing provisions of Section 302.102 shall not be used to comply with the provisions of this Section.

(Source: Amended at 14 Ill. Reg. 2899, effective February 13, 1990)

Section 302.204 pH

pH(STORET number 00400) shall be within the range of 6.5 to 9.0 except for natural causes.

Section 302.205 Phosphorus

Phosphorus (STORET number 00665): After December 31, 1983, Phosphorus as P shall not exceed 0.05 mg/l in any reservoir or lake with a surface area of 8.1 hectares (20 acres) or more, or in any stream at the point where it enters any such reservoir or lake. For the purposes of this Section, the term "reservoir or lake" shall not include low level pools constructed in free flowing streams or any body of water which is an integral part of an operation which includes the application of sludge on land. Point source discharges which comply with Section 304.123 shall be in compliance with this Section for purposes of application of Section 304.105.

(Source: Amended at 3 Ill. Reg., no. 20, page 95, effective May 17, 1979.)

Section 302.206 Dissolved Oxygen

General use waters must maintain dissolved oxygen concentrations at or above the values contained in subsections (a), (b) and (c) of this Section.

- a) General use waters at all locations must maintain sufficient dissolved oxygen concentrations to prevent offensive conditions as required in Section 302.203 of this Part. Quiescent and isolated sectors of General Use waters including but not limited to wetlands, sloughs, backwaters and waters below the thermocline in lakes and reservoirs must be maintained at sufficient dissolved oxygen concentrations to support their natural ecological functions and resident aquatic communities.
- b) Except in those waters identified in Appendix D of this Part, the dissolved oxygen concentration in the main body of all streams, in the water above the thermocline of thermally stratified lakes and reservoirs, and in the entire water column of unstratified lakes and reservoirs must not be less than the following:
 - 1) During the period of March through July,
 - A) 5.0 mg/L at any time; and
 - B) 6.0 mg/L as a daily mean averaged over 7 days.
 - 2) During the period of August through February,
 - A) 3.5 mg/L at any time;
 - B) 4.0 mg/L as a daily minimum averaged over 7 days; and
 - C) 5.5 mg/L as a daily mean averaged over 30 days.
- c) The dissolved oxygen concentration in all sectors within the main body of all streams identified in Appendix D of this Part must not be less than:
 - 1) During the period of March through July,
 - A) 5.0 mg/L at any time; and
 - B) 6.25 mg/L as a daily mean averaged over 7 days.

- 2) During the period of August through February,
 - A) 4.0 mg/L at any time;
 - B) 4.5 mg/L as a daily minimum averaged over 7 days; and
 - C) 6.0 mg/L as a daily mean averaged over 30 days.
- d) Assessing attainment of dissolved oxygen mean and minimum values.
 - 1) Daily mean is the arithmetic mean of dissolved oxygen concentrations in 24 consecutive hours.
 - 2) Daily minimum is the minimum dissolved oxygen concentration in 24 consecutive hours.
 - 3) The measurements of dissolved oxygen used to determine attainment or lack of attainment with any of the dissolved oxygen standards in this Section must assure daily minima and daily means that represent the true daily minima and daily means.
 - 4) The dissolved oxygen concentrations used to determine a daily mean or daily minimum should not exceed the airequilibrated concentration.
 - 5) "Daily minimum averaged over 7 days" means the arithmetic mean of daily minimum dissolved oxygen concentrations in 7 consecutive 24-hour periods.
 - 6) "Daily mean averaged over 7 days" means the arithmetic mean of daily mean dissolved oxygen concentrations in 7 consecutive 24-hour periods.
 - 7) "Daily mean averaged over 30 days" means the arithmetic mean of daily mean dissolved oxygen concentrations in 30 consecutive 24-hour periods.

(Source: Amended at 32 Ill. Reg. 2254, effective January 28, 2008)

- a) Gross beta (STORET number 03501) concentration shall not exceed 100 picocuries per liter (pCi/L).
- b) Strontium 90 (STORET number 13501) concentration must not exceed 2 picocuries per liter (pCi/L).
- c) The annual average radium 226 and 228 (STORET number 11503) combined concentration must not exceed 3.75 picocuries per liter (pCi/L).

(Source: Amended at 30 III. Reg. 4919, effective March 1, 2006)

Section 302.208 Numeric Standards for Chemical Constituents

- a) The acute standard (AS) for the chemical constituents listed in subsection (e) shall not be exceeded at any time except for those waters for which a zone of initial dilution (ZID) has been approved by the Agency pursuant to Section 302.102.
- b) The chronic standard (CS) for the chemical constituents listed in subsection (e) shall not be exceeded by the arithmetic average of at least four consecutive samples collected over any period of at least four days, except for those waters in which the Agency has approved a mixing zone or in which mixing is allowed pursuant to Section 302.102. The samples used to demonstrate attainment or lack of attainment with a CS must be collected in a manner that assures an average representative of the sampling period. For the chemical constituents that have water quality based standards dependent upon hardness, the chronic water quality standard will be calculated according to subsection (e) using the hardness of the water body at the time the sample was collected. To calculate attainment status of chronic-standards, the concentration of the chemical constituent in each sample is divided by the calculated water quality standard for the sample to determine a quotient. The water quality standard is attained if the mean of the sample quotients is less than or equal to one for the duration of the averaging period.
- c) The human health standard (HHS) for the chemical constituents listed in subsection (f) shall not be exceeded when the stream flow is at or above the harmonic mean flow pursuant to Section 302.658 nor shall an annual average, based on at least eight samples, collected in a manner representative of the sampling period, exceed the HHS except for those waters in which the Agency has approved a mixing zone or in which mixing is allowed pursuant to Section 302.102.
- d) The standard for the chemical constituents of subsections (g) and (h) shall

not be exceeded at any time except for those waters in which the Agency has approved a mixing zone or in which mixing is allowed pursuant to Section 302.102.

e) Numeric Water Quality Standards for the Protection of Aquatic Organisms

Constituent	AS (μg/L)	CS (µg/L)
Arsenic (trivalent, dissolved)	$360 \times 1.0 = 360$	190 × 1.0* = 190
Boron (total)	40,100	7,600
Cadmium (dissolved)	$e^{A+B\ln(H)} \times \left\{ 1.138672 - \left\{ (\ln(H))(0.041838) \right\} \right\} *$	$e^{A+B\ln(H)} \times \left\{ 1.101672 - \left\{ [(\ln(H))(0.041838)] \right\} * \right\}$
	where $A = -2.918$ and $B = 1.128$	where $A = -3.490$ and $B = 0.7852$
Chromium (hexavalent, total)	16	11
Chromium (trivalent,	$e^{A+B\ln(H)}\times 0.316*$	$e^{A+B\ln(H)} \times 0.860$ *
dissolved)	where $A = 3.688$ and $B = 0.8190$	where $A = 1.561$ and $B = 0.8190$
Copper (dissolved)	$e^{A+B\ln(H)} \times 0.960$ *	$e^{A+B\ln(H)} \times 0.960$ *
(dissolved)	where $A = -1.464$ and $B = 0.9422$	where $A = -1.465$ and $B = 0.8545$
Cyanide**	22	5.2
Fluoride (total)	$e^{A+B\ln(H)}$	$e^{A+B\ln(H)}$, but shall not exceed 4.0 mg/L
	where $A = 6.7319$ and $B = 0.5394$	where $A = 6.0445$ and $B = 0.5394$

Lead (dissolved)	$e^{A+B \ln{(H)}} \times \{1.46203 - [(\ln(H))(0.145712)]\}*$	$e^{A+B \ln (H)} \times \{1.46203 - [(\ln(H))(0.145712)]\}*$	
	where $A = -1.301$ and $B = 1.273$	where $A = -2.863$ and $B = 1.273$	
Manganese (dissolved)	$e^{A+B\ln(H)}\times 0.9812*$	$e^{A+B\ln(H)}\times 0.9812*$	
(dissolved)	where $A = 4.9187$ and $B = 0.7467$	where $A = 4.0635$ and $B = 0.7467$	
Mercury (dissolved)	2.6×0.85 * = 2.2	1.3×0.85 * = 1.1	
Nickel (dissolved)	$e^{A+B\ln(H)} \times 0.998$ *	$e^{A+B\ln(H)} \times 0.997$ *	
	where $A = 0.5173$ and $B = 0.8460$	where $A = -2.286$ and $B = 0.8460$	
TRC	19	11	
Zinc (dissolved)	$e^{A+B\ln(H)} \times 0.978$ *	$e^{A+B\ln(H)}\times 0.986*$	
	where $A = 0.9035$ and $B = 0.8473$	where $A = -0.4456$ and $B = 0.8473$	
Benzene	4200	860	
Ethylbenzene	150	14	
Toluene	2000	600	
Xylene(s)	920	360	
where: $\mu g/L = \text{microgram per liter}$ $e^x = \text{base of natural logarithms raised to the x-power}$ $\ln(H) = \text{natural logarithm of Hardness}$ $* = \text{conversion factor multiplier for dissolved metals}$ $** = \text{standard to be evaluated using either of the}$			

following USEPA approved methods, incorporated by reference at 35 Ill. Adm. Code 301.106: Method OIA-1677, DW: Available Cyanide by Flow Injection, Ligand Exchange, and Amperometry, January 2004, Document Number EPA-821-R-04-001 or Cyanide Amenable to Chlorination, Standard Methods 4500-CN-G (40 CFR 136.3)

f) Numeric Water Quality Standard for the Protection of Human Health

Constituent	$(\mu g/L)$
Mercury (total)	0.012
Benzene	310

where:

 $\mu g/L = micrograms per liter$

g) Single-value standards apply at the following concentrations for these substances:

Constituent	Unit		Standard
Barium (total)	mg/L		5.0
Chloride (total)	mg/L		500
Iron (dissolved)	mg/L	01046	1.0
Phenols	mg/L		0.1
Selenium (total)	mg/L		1.0
Silver (total)	μg/L		5.0

where:

mg/L = milligram per liter and $<math>\mu g/L = microgram per liter$

- h) Water quality standards for sulfate are as follows:
 - 1) At any point where water is withdrawn or accessed for purposes of livestock watering, the average of sulfate concentrations must not exceed 2,000 mg/L when measured at a representative frequency over a 30 day period.
 - 2) The results of the following equations provide sulfate water quality standards in mg/L for the specified ranges of hardness (in mg/L as CaCO₃) and chloride (in mg/L) and must be met at all times:
 - A) If the hardness concentration of receiving waters is greater than or equal to 100 mg/L but less than or equal to 500 mg/L, and if the chloride concentration of waters is greater than or equal to 25 mg/L but less than or equal to 500 mg/L, then:

$$C = [1276.7 + 5.508 \text{ (hardness)} - 1.457 \text{ (chloride)}] * 0.65$$

where:

C = sulfate concentration

B) If the hardness concentration of waters is greater than or equal to 100 mg/L but less than or equal to 500 mg/L, and if the chloride concentration of waters is greater than or equal to 5 mg/L but less than 25 mg/L, then:

$$C = [-57.478 + 5.79 \text{ (hardness)} + 54.163 \text{ (chloride)}] * 0.65$$

where:

C = sulfate concentration

- 3) The following sulfate standards must be met at all times when hardness (in mg/L as CaCO₃) and chloride (in mg/L) concentrations other than specified in (h)(2) are present:
 - A) If the hardness concentration of waters is less than 100 mg/L or chloride concentration of waters is less than 5 mg/L, the sulfate standard is 500 mg/L.
 - B) If the hardness concentration of waters is greater than 500 mg/L and the chloride concentration of waters is 5 mg/L or greater, the sulfate standard is 2,000 mg/L.

C) If the combination of hardness and chloride concentrations of existing waters are not reflected in subsection (h)(3)(A) or (B), the sulfate standard may be determined in a site-specific rulemaking pursuant to section 303(c) of the Federal Water Pollution Control Act of 1972 (Clean Water Act), 33 USC 1313, and Federal Regulations at 40 CFR 131.10(j)(2).

(Source: Amended at 37 Ill. Reg. 7493 effective May 16, 2013)

Section 302.209 Fecal Coliform

- a) During the months May through October, based on a minimum of five samples taken over not more than a 30 day period, fecal coliform (STORET number 31616) shall not exceed a geometric mean of 200 per 100 ml, nor shall more than 10% of the samples during any 30 day period exceed 400 per 100 ml in protected waters. Protected waters are defined as waters which, due to natural characteristics, aesthetic value or environmental significance are deserving of protection from pathogenic organisms. Protected waters will meet one or both of the following conditions:
 - 1) presently support or have the physical characteristics to support primary contact;
 - 2 flow through or adjacent to parks or residential areas.
- b) Waters unsuited to support primary contact uses because of physical, hydrologic or geographic configuration and are located in areas unlikely to be frequented by the public on a routine basis as determined by the Agency at 35 Ill. Adm. Code 309.Subpart A, are exempt from this standard.
- c) The Agency shall apply this rule pursuant to 35 Ill. Adm. Code 304.121.

(Source: Amended at 12 Ill. Reg. 12082, effective July 11, 1988)

Section 302.210 Other Toxic Substances

Waters of the State shall be free from any substances or combination of substances in concentrations toxic or harmful to human health, or to animal, plant or aquatic life. Individual chemical substances or parameters for which numeric standards are specified in this Subpart are not subject to this Section.

- a) Any substance or combination of substances shall be deemed to be toxic or harmful to aquatic life if present in concentrations that exceed the following:
 - 1) An Acute Aquatic Toxicity Criterion (AATC) validly derived and correctly applied pursuant to procedures set forth in Sections 302.612 through 302.618 or in Section 302.621; or
 - 2) A Chronic Aquatic Toxicity Criterion (CATC) validly derived and correctly applied pursuant to procedures set forth in Sections 302.627 or 302.630.
- b) Any substance or combination of substances shall be deemed to be toxic or harmful to wild or domestic animal life if present in concentrations that exceed any Wild and Domestic Animal Protection Criterion (WDAPC) validly derived and correctly applied pursuant to Section 302.633.
- c) Any substance or combination of substances shall be deemed to be toxic or harmful to human health if present in concentrations that exceed criteria, validly derived and correctly applied, based on either of the following:
 - 1) Disease or functional impairment due to a physiological mechanism for which there is a threshold dose below which no damage occurs calculated pursuant to Sections 302.642 through 302.648 (Human Threshold Criterion); or
 - 2) Disease or functional impairment due to a physiological mechanism for which any dose may cause some risk of damage calculated pursuant to Sections 302.651 through 302.658 (Human Nonthreshold Criterion).
- d) The most stringent criterion of subsections (a), (b), and (c) shall apply at all points outside of any waters within which, mixing is allowed pursuant to Section 302.102. In addition, the AATC derived pursuant to subsection (a)(1) shall apply in all waters except that it shall not apply within a ZID that is prescribed in accordance with Section 302.102.
- e) The procedures of Subpart F set forth minimum data requirements, appropriate test protocols and data assessment methods for establishing criteria pursuant to subsections (a), (b), and (c). No other procedures may be used to establish such criteria unless approved by the Board in a rulemaking or adjusted standards proceeding pursuant to Title VII of the Act. The validity and applicability of the Subpart F procedures may not be challenged in any proceeding brought pursuant to Titles VIII or X of the Act, although the validity and correctness of application of the numeric

criteria derived pursuant to Subpart F may be challenged in such proceedings pursuant to subsection (f).

- f) A permittee may challenge the validity and correctness of application of a criterion derived by the Agency pursuant to this Section only at the time such criterion is first applied in an NPDES permit pursuant to 35 Ill. Adm. Code 309.152 or in an action pursuant to Title VIII of the Act for violation of the toxicity water quality standard. Failure of a person to challenge the validity of a criterion at the time of its first application shall constitute a waiver of such challenge in any subsequent proceeding involving application of the criterion to that person.
 - 2) Consistent with subsection (f)(1), if a criterion is included as, or is used to derive, a condition of an NPDES discharge permit, a permittee may challenge the criterion in a permit appeal pursuant to Section 40 of the Act and 35 Ill. Adm. Code 309.181. In any such action, the Agency shall include in the record all information upon which it has relied in developing and applying the criterion, whether such information was developed by the Agency or submitted by the Petitioner. THE BURDEN OF PROOF SHALL BE ON THE PETITIONER TO DEMONSTRATE THAT THE CRITERION-BASED CONDITION IS NOT NECESSARY TO ACCOMPLISH THE PURPOSES OF SUBSECTION (a) (Section 40(a)(1) of the Act), but there is no presumption in favor of the general validity and correctness of the application of the criterion as reflected in the challenged condition.
 - 3) Consistent with subsection (f)(1), in an action where alleged violation of the toxicity water quality standard is based on alleged excursion of a criterion, the person bringing such action shall have the burdens of going forward with proof and of persuasion regarding the general validity and correctness of application of the criterion.
- g) Subsections (a) through (e) do not apply to USEPA registered pesticides approved for aquatic application and applied pursuant to the following conditions:
 - 1) Application shall be made in strict accordance with label directions;
 - 2) Applicator shall be properly certified under the provisions of the Federal Insecticide, Fungicide, and Rodenticide Act (7 U.S.C. 135 et seq. (1972));

- Applications of aquatic pesticides must be in accordance with the laws, regulations and guidelines of all state and federal agencies authorized by law to regulate, use or supervise pesticide applications, among which is included the Department of Energy and Natural Resources pursuant to Section 3 of "AN ACT in relation to natural resources, research, data collection and environmental studies", Ill. Rev. Stat. 1987 ch. 96 1/2, par. 7403.
- 4) No aquatic pesticide shall be applied to waters affecting public or food processing water supplies unless a permit to apply the pesticide has been obtained from the Agency. All permits shall be issued so as not to cause a violation of the Act or of any of the Board's rules or regulations. To aid applicators in determining their responsibilities under this subsection, a list of waters affecting public water supplies will be published and maintained by the Agency's Division of Public Water Supplies.

(Source: Amended at 14 Ill. Reg. 2899, effective February 13, 1990)

Section 302.211 Temperature

- a) Temperature has STORET number (F°) 00011 and (C°) 00010.
- b) There shall be no abnormal temperature changes that may adversely affect aquatic life unless caused by natural conditions.
- c) The normal daily and seasonal temperature fluctuations which existed before the addition of heat due to other than natural causes shall be maintained.
- d) The maximum temperature rise above natural temperatures shall not exceed 2.8° C (5° F).
- e) In addition, the water temperature at representative locations in the main river shall not exceed the maximum limits in the following table during more than one percent of the hours in the 12-month period ending with any month. Moreover, at no time shall the water temperature at such locations exceed the maximum limits in the following table by more than 1.7° C (3° F).

	° C	° F		° C	° F
JAN.	16	60	JUL.	32	90

FEB.	16	60	AUG.	32	90
MAR.	16	60	SEPT.	32	90
APR.	32	90	OCT.	32	90
MAY	32	90	NOV.	32	90
JUNE	32	90	DEC.	16	60

- f) The owner or operator of a source of heated effluent which discharges 150 megawatts (0.5 billion British thermal units per hour) or more shall demonstrate in a hearing before this Pollution Control Board (Board) not less than 5 nor more than 6 years after the effective date of these regulations or, in the case of new sources, after the commencement of operation, that discharges from that source have not caused and cannot be reasonably expected to cause significant ecological damage to the receiving waters. If such proof is not made to the satisfaction of the Board appropriate corrective measures shall be ordered to be taken within a reasonable time as determined by the Board.
- g) Permits for heated effluent discharges, whether issued by the Board or the Illinois Environmental Protection Agency (Agency), shall be subject to revision in the event that reasonable future development creates a need for reallocation of the assimilative capacity of the receiving stream as defined in the regulation above.
- h) The owner or operator of a source of heated effluent shall maintain such records and conduct such studies of the effluents from such sources and of their effects as may be required by the Agency or in any permit granted under the Illinois Environmental Protection Act (Act).
- i) Appropriate corrective measures will be required if, upon complaint filed in accordance with Board rules, it is found at any time that any heated effluent causes significant ecological damage to the receiving stream.
- j) All effluents to an artificial cooling lake must comply with the applicable provisions of the thermal water quality standards as set forth in this Section and 35 Ill. Adm. Code 303, except when all of the following requirements are met:
 - 1) All discharges from the artificial cooling lake to other waters of the State comply with the applicable provisions of subsections (b) through (e).
 - 2) The heated effluent discharged to the artificial cooling lake complies with all other applicable provisions of this Chapter, except subsections (b) through (e).

- 3) At an adjudicative hearing the discharger shall satisfactorily demonstrate to the Board that the artificial cooling lake receiving the heated effluent will be environmentally acceptable, and within the intent of the Act, including, but not limited to:
 - A) provision of conditions capable of supporting shellfish, fish and wildlife, and recreational uses consistent with good management practices, and
 - B) control of the thermal component of the discharger's effluent by a technologically feasible and economically reasonable method.
- The required showing in subsection (j)(3) may take the form of an acceptable final environmental impact statement or pertinent provisions of environmental assessments used in the preparation of the final environmental impact statement, or may take the form of showing pursuant to Section 316(a) of the Clean Water Act (CWA) (33 U.S.C. 1251 et seq.), which addresses the requirements of subsection (j)(3).
- 5) If an adequate showing as provided in subsection (j)(3) is found, the Board shall promulgate specific thermal standards to be applied to the discharge to that artificial cooling Lake.

(Source: Amended in R88-1 at 13 Ill. Reg. 5998, effective April 18, 1989)

Section 302.212 Total Ammonia Nitrogen

- a) Total ammonia nitrogen (as N: STORET Number 00610) must in no case exceed 15 mg/L.
- b) The total ammonia nitrogen (as N: STORET Number 00610) acute, chronic, and sub-chronic standards are determined by the equations given in subsections (b)(1) and (b)(2) of this Section. Attainment of each standard must be determined by subsections (c) and (d) of this Section in mg/L.
 - 1) The acute standard (AS) is calculated using the following equation:

$$AS = \begin{array}{ccc} & & & & & & \\ & & 1 + 10^{7.204\text{-pH}} & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{array} \right. + \underbrace{\begin{array}{cccc} & 58.4 \\ & & \\ & & \\ & & \\ \end{array}}_{I + 10^{pH\text{-}7.204}}$$

- 2) The chronic standard (CS) is calculated using the following equations:
 - A) During the Early Life Stage Present period, as defined in subsection (e) of this Section:
 - i) When water temperature is less than or equal to 14.51°C:

$$CS = \left\{ \frac{0.0577}{1 + 10^{7.688 - pH}} + \frac{2.487}{1 + 10^{pH - 7.688}} \right\} (2.85)$$

ii) When water temperature is above 14.51°C:

$$CS = \left\{ \frac{0.0577}{1 + 10^{7.688 - pH}} + \frac{2.487}{1 + 10^{pH - 7.688}} \right\} \left(1.45 * 10^{0.028*(25 - T)} \right)$$

Where T = Water Temperature, degrees Celsius

- B) During the Early Life Stage Absent period, as defined in subsection (e) of this Section:
 - i) When water temperature is less than or equal to 7°C:

$$CS = \left\{ \frac{0.0577}{1 + 10^{7.688 - pH}} + \frac{2.487}{1 + 10^{pH - 7.688}} \right\} (1.45 * 10^{0.504})$$

ii) When water temperature is greater than 7°C:

$$CS = \left\{ \frac{0.0577}{1 + 10^{7.688 - pH}} + \frac{2.487}{1 + 10^{pH - 7.688}} \right\} \left(1.45 * 10^{0.028(25 - T)} \right)$$

Where T = Water Temperature, degrees Celsius

3) The sub-chronic standard is equal to 2.5 times the chronic standard.

- c) Attainment of the Total Ammonia Nitrogen Water Quality Standards
 - 1) The acute standard of total ammonia nitrogen (in mg/L) must not be exceeded at any time except in those waters for which the Agency has approved a ZID pursuant to Section 302.102.
 - 2) The 30-day average concentration of total ammonia nitrogen (in mg/L) must not exceed the chronic standard (CS) except in those waters in which mixing is allowed pursuant to Section 302.102 of this Part. Attainment of the chronic standard (CS) is evaluated pursuant to subsection (d) of this Section by averaging at least four samples collected at weekly intervals or at other sampling intervals that statistically represent a 30-day sampling period. The samples must be collected in a manner that assures a representative sampling period.
 - 3) The 4-day average concentration of total ammonia nitrogen (in mg/L) must not exceed the sub-chronic standard except in those waters in which mixing is allowed pursuant to Section 302.102. Attainment of the sub-chronic standard is evaluated pursuant to subsection (d) of this Section by averaging daily sample results collected over a period of four consecutive days within the 30-day averaging period. The samples must be collected in a manner that assures a representative sampling period.
 - d) The water quality standard for each water body must be calculated based on the temperature and pH of the water body measured at the time of each ammonia sample. The concentration of total ammonia in each sample must be divided by the calculated water quality standard for the sample to determine a quotient. The water quality standard is attained if the mean of the sample quotients is less than or equal to one for the duration of the averaging period.
 - e) The Early Life Stage Present period occurs from March through October. In addition, during any other period when early life stages are present, and where the water quality standard does not provide adequate protection for these organisms, the water body must meet the Early Life Stage Present water quality standard. All other periods are subject to the Early Life Stage Absent period.

BOARD NOTE: Acute and chronic standard concentrations for total ammonia nitrogen (in mg/L) for different combinations of pH and temperature are shown in Appendix C.

(Source: Amended at 26 Ill. Reg. 16931, effective November 8, 2002.)

Section 302.213 Effluent Modified Waters (Ammonia) (Repealed)

(Source: Repealed at 26 Ill. Reg. 16931, effective November 8, 2002)

SUBPART C: PUBLIC AND FOOD PROCESSING WATER SUPPLY STANDARDS

Section 302.301 Scope and Applicability

Subpart C contains the public and food processing water supply standards. These are cumulative with the general use standards of Subpart B and must be met in all waters designated in Part 303 at any point at which water is withdrawn for treatment and distribution as a potable supply or for food processing. Waters of the State are generally designated for public and food processing use (Section 303.202).

Section 302.302 Algicide Permits

The water quality standards of Subparts B and C may be exceeded if such occurrence results from the application of an algicide in accordance with the terms of an algicide permit issued by the Agency pursuant to Part 602.

(Note: Prior to codification, Rules 203 and 204(d) of Ch 6: Public Water Supplies.)

Section 302.303 Finished Water Standards

Water shall be of such quality that with treatment consisting of coagulation, sedimentation, filtration, storage and chlorination, or other equivalent treatment processes, the treated water shall meet in all respects the requirements of Part 611. (Note: Prior to codification, Table I, Rule 304 of Ch 6: Public Water Supplies)

(Source: Amended at 36 Ill. Reg. 18871, effective December 12, 2012)

Section 302.304 Chemical Constituents

The following levels of chemical constituents shall not be exceeded:

CONSTITUENT	CONCENTRATION (mg/1)
Arsenic (total)	0.05
Barium (total)	1.0
Boron (total)	1.0
Cadmium (total)	0.010

Pesticides Chlorinated Hydro- carbon Insecticides 0.001 Aldrin 0.003 DDT 0.05 Dieldrin 0.001 Endrin 0.0002 Heptachlor 0.0001 Heptachlor Expoxide 0.0001 Lindane 0.004 Methoxychlor 0.1 Toxaphene 0.0005 Organophosphate 0.1 Insecticides 0.1 Parathion 0.1 Chlorophenoxy Herbicides 2,4-Dichlorophenoxy-acetic acid (2,4-D) acetic acid (2,4-D) 0.1 2-(2,4,5-Trichloro-
carbon Insecticides 0.001 Aldrin 0.003 Chlordane 0.003 DDT 0.05 Dieldrin 0.001 Endrin 0.0002 Heptachlor 0.0001 Heptachlor Expoxide 0.0001 Lindane 0.004 Methoxychlor 0.1 Toxaphene 0.0005 Organophosphate 0.1 Insecticides 0.1 Parathion 0.1 Chlorophenoxy Herbicides 2,4-Dichlorophenoxy-acetic acid (2,4-D) 0.1 0.1
Aldrin 0.001 Chlordane 0.003 DDT 0.05 Dieldrin 0.001 Endrin 0.0002 Heptachlor 0.0001 Heptachlor Expoxide 0.0001 Lindane 0.004 Methoxychlor 0.1 Toxaphene 0.0005 Organophosphate 0.1 Insecticides 0.1 Parathion 0.1 Chlorophenoxy Herbicides 2,4-Dichlorophenoxy-acetic acid (2,4-D)
Chlordane 0.003 DDT 0.05 Dieldrin 0.001 Endrin 0.0002 Heptachlor 0.0001 Heptachlor Expoxide 0.0001 Lindane 0.004 Methoxychlor 0.1 Toxaphene 0.0005 Organophosphate 0.1 Insecticides 0.1 Chlorophenoxy Herbicides 0.1 Chlorophenoxy Herbicides 0.1 2,4-Dichlorophenoxy-acetic acid (2,4-D) 0.1
DDT 0.05 Dieldrin 0.001 Endrin 0.0002 Heptachlor 0.0001 Heptachlor Expoxide 0.0001 Lindane 0.004 Methoxychlor 0.1 Toxaphene 0.0005 Organophosphate 0.1 Insecticides 0.1 Chlorophenoxy Herbicides 0.1 2,4-Dichlorophenoxy-acetic acid (2,4-D) 0.1
Dieldrin 0.001 Endrin 0.0002 Heptachlor 0.0001 Heptachlor Expoxide 0.0001 Lindane 0.004 Methoxychlor 0.1 Toxaphene 0.0005 Organophosphate 0.1 Insecticides 0.1 Chlorophenoxy Herbicides 0.1 Chlorophenoxy Herbicides 0.1 2,4-Dichlorophenoxy-acetic acid (2,4-D) 0.1
Endrin 0.0002 Heptachlor 0.0001 Heptachlor Expoxide 0.0001 Lindane 0.004 Methoxychlor 0.1 Toxaphene 0.0005 Organophosphate 0.1 Insecticides 0.1 Parathion 0.1 Chlorophenoxy Herbicides 2,4-Dichlorophenoxy-acetic acid (2,4-D) 0.1 0.1
Heptachlor D.0001 Heptachlor Expoxide 0.0001 Lindane 0.004 Methoxychlor 0.1 Toxaphene 0.0005 Organophosphate Insecticides Parathion 0.1 Chlorophenoxy Herbicides 2,4-Dichlorophenoxy-acetic acid (2,4-D) 0.1
Heptachlor Expoxide 0.0001 Lindane 0.004 Methoxychlor 0.1 Toxaphene 0.0005 Organophosphate Insecticides Parathion 0.1 Chlorophenoxy Herbicides 2,4-Dichlorophenoxy- acetic acid (2,4-D) 0.1
Lindane 0.004 Methoxychlor 0.1 Toxaphene 0.0005 Organophosphate Insecticides Parathion 0.1 Chlorophenoxy Herbicides 2,4-Dichlorophenoxy- acetic acid (2,4-D) 0.1
Methoxychlor Toxaphene 0.0005 Organophosphate Insecticides Parathion 0.1 Chlorophenoxy Herbicides 2,4-Dichlorophenoxy- acetic acid (2,4-D) 0.1
Toxaphene 0.0005 Organophosphate Insecticides Parathion 0.1 Chlorophenoxy Herbicides 2,4-Dichlorophenoxy- acetic acid (2,4-D) 0.1
Organophosphate Insecticides Parathion Chlorophenoxy Herbicides 2,4-Dichlorophenoxy- acetic acid (2,4-D) 0.1
Insecticides Parathion O.1 Chlorophenoxy Herbicides 2,4-Dichlorophenoxy- acetic acid (2,4-D) 0.1
Parathion 0.1 Chlorophenoxy Herbicides 2,4-Dichlorophenoxy- acetic acid (2,4-D) 0.1
Chlorophenoxy Herbicides 2,4-Dichlorophenoxy- acetic acid (2,4-D) 0.1
2,4-Dichlorophenoxy- acetic acid (2,4-D) 0.1
acetic acid $(2,4-D)$ 0.1
2-(2, 4 ,5-111cmoro-
phenoxy)-propionic
acid (2,4,5-TP
or Silvex) 0.01
Phenols 0.001
Selenuim (total) 0.01
Sulphates 250
Total Dissolved Solids 500

(Source: Amended at 36 Ill. Reg. 18871, effective December 12, 2012)

Section 302.305 Other Contaminants

Other contaminants which will not be adequately reduced by the treatment processes noted in Section 302.303 shall not be present in concentrations hazardous to human health.

Section 302.306 Fecal Coliform

Notwithstanding the provisions of Section 302.209, at no time shall the geometric mean, based on a minimum of five samples taken over not more than a 30 day period, of fecal coliform (STORET number 31616) exceed 2000 per 100 ml.

(Source: Added at 12 Ill. Reg. 12082, effective July 11, 1988)

Section 302.307 Radium 226 and 228

Radium 226 and 228 (STORET number 11503) combined concentration must not exceed 5 picocuries per liter (pCi/L) at any time.

(Source: Added at 30 Ill. Reg. 4919, effective March 1, 2006)

SUBPART D: SECONDARY CONTACT AND INDIGENOUS AQUATIC LIFE STANDARDS

Section 302.401 Scope and Applicability

Subpart D contains the secondary contact and indigenous aquatic life standards. These must be met only by certain waters specifically designated in Part 303. The general use and public water supply standards do not apply to waters designated for secondary contact and indigenous aquatic life (Section 303.204).

Section 302.402 Purpose

Secondary contact and indigenous aquatic life standards are intended for those waters not suited for general use activities but which will be appropriate for all secondary contact uses and which will be capable of supporting an indigenous aquatic life limited only by the physical configuration of the body of water, characteristics and origin of the water and the presence of contaminants in amounts that do not exceed the water quality standards listed in Subpart D.

(Source: Amended at 3 Ill. Reg. no. 20, page 95, effective May 17, 1979.)

Section 302.403 Unnatural Sludge

Waters subject to this subpart shall be free from unnatural sludge or bottom deposits, floating debris, visible oil, odor, unnatural plant or algal growth, or unnatural color or turbidity.

Section 302.404 pH

pH (STORET number 00400) shall be within the range of 6.0 to 9.0 except for natural causes.

Section 302.405 Dissolved Oxygen

Dissolved oxygen (STORET number 00300) shall not be less than 4.0 mg/l at any time except that the Calumet-Sag Channel shall not be less than 3.0 mg/l at any time.

(Source: Amended at 12 Ill. Reg. 9911, effective May 27, 1988)

Section 302.406 Fecal Coliform (Repealed)

(Source: Repealed at 6 Ill. Reg. 13750, effective October 26, 1982)

Section 302.407 Chemical Constituents

Concentrations of other chemical constituents shall not exceed the following standards:

CONSTITUENTS	STORET NUMBER	CONCENTRATION (mg/L)
Ammonia Un-ionized (as N*)	00612	0.1
Arsenic (total	01002	1.0
Barium (total)	01007	5.0
Cadmium (total)	01027	0.15
Chromium (total hexavalent)	01032	0.3
Chromium (total trivalent)	01033	1.0
Copper (total)	01042	1.0
Cyanide (total)	00720	0.10
Fluoride (total)	00951	15.0
Iron (total)	01045	2.0
Iron (dissolved)	01046	0.5
Lead (total)	01051	0.1
Manganese (total)	01055	1.0
Mercury (total)	71900	0.0005
Nickel (total)	01067	1.0

Oil, fats and grease	00550, 00556 or 00560	15.0**
Phenols	32730	0.3
Selenium (total)	01147	1.0
Silver	01077	1.1
Zinc (total)	01092	1.0
Total Dissolved Solids	70300	1500

^{*}For purposes of this section the concentration of un-ionized ammonia shall be computed according to the following equation:

$$U = \frac{N}{[0.94412(1+10^{x})+0.0559]}$$
 where:

$$X = 0.09018 + \underline{2729.92} - pH$$

(T + 273.16)

U = Concentration of un-ionized ammonia as N in mg/L

N = Concentration of ammonia nitrogen as N in mg/L

T = Temperature in degrees Celsius

(Source: Amended at 20 Ill. Reg. 7682, effective May 24, 1996)

Section 302.408 Temperature

Temperature (STORET number (° F) 00011 and (° C) 00010) shall not exceed 34° C(93° F) more than 5% of the time, or 37.8° C (100° F) at any time.

Section 302.409 Cyanide

Cyanide (total) shall not exceed 0.10 mg/l

(Source: Added at 2 Ill. Reg. no. 44, page 151, effective November 2, 1978.)

Section 302.410 Substances Toxic to Aquatic Life

^{**}Oil shall be analytically separated into polar and non-polar components if the total concentration exceeds 15 mg/L. In no case shall either of the components exceed 15 mg/L (i.e., 15 mg/L polar materials and 15 mg/L non-polar materials).

Any substance toxic to aquatic life not listed in Section 302.407 shall not exceed one half of the 96-hour median tolerance limit (96-hour TL_m) for native fish or essential fish food organisms.

(Source: Added at 3 Ill. Reg. no. 25, page 190, effective June 21, 1979.)

SUBPART E: LAKE MICHIGAN BASIN WATER QUALITY STANDARDS

Section 302.501 Scope, Applicability, and Definitions

- a) Subpart E contains the Lake Michigan Basin water quality standards. These must be met in the waters of the Lake Michigan Basin as designated in 35 Ill. Adm. Code 303.443.
- b) In addition to the definitions provided at 35 Ill. Adm. Code 301.200 through 301.444, and in place of conflicting definitions at Section 302.100, the following terms have the meanings specified for the Lake Michigan Basin:
 - "Acceptable daily exposure" or "ADE" means an estimate of the maximum daily dose of a substance that is not expected to result in adverse noncancer effects to the general human population, including sensitive subgroups.
 - "Acceptable endpoints", for the purpose of wildlife criteria derivation, means acceptable subchronic and chronic endpoints that affect reproductive or developmental success, organismal viability or growth, or any other endpoint that is, or is directly related to, parameters that influence population dynamics.
 - "Acute to chronic ratio" or "ACR" is the standard measure of the acute toxicity of a material divided by an appropriate measure of the chronic toxicity of the same material under comparable conditions.
 - "Acute toxicity" means adverse effects that result from an exposure period that is a small portion of the life span of the organism.
 - "Adverse effect" means any deleterious effect to organisms due to exposure to a substance. This includes effects that are or may become debilitating, harmful or toxic to the normal functions of the organism, but does not include non-harmful effects such as tissue discoloration alone or the induction of enzymes involved in the metabolism of the substance.
 - "Baseline BAF" for organic chemicals, means a BAF that is based on the concentration of freely dissolved chemical in the ambient water and takes

into account the partitioning of the chemical within the organism; for inorganic chemicals, a BAF is based on the wet weight of the tissue.

"Baseline BCF" for organic chemicals, means a BCF that is based on the concentration of freely dissolved chemical in the ambient water and takes into account the partitioning of the chemical within the organism; for inorganic chemicals, a BAF is based on the wet weight of the tissue.

"Bioaccumulative chemical of concern" or "BCC" is any chemical that has the potential to cause adverse effects and that, upon entering the surface waters, by itself or as its toxic transformation product, accumulates in aquatic organisms by a human health bioaccumulation factor greater than 1,000, after considering metabolism and other physiochemical properties that might enhance or inhibit bioaccumulation, in accordance with the methodology in Section 302.570. In addition, the half life of the chemical in the water column, sediment or biota must be greater than eight weeks. BCCs include, but are not limited to, the following substances:

Chlordane

4,4'-DDD; p,p'-DDD; 4,4'-TDE; p,p'-TDE

4,4'-DDE; p,p'-DDE

4,4'-DDT; p,p'-DDT

Dieldrin

Hexachlorobenzene

Hexachlorobutadiene; Hexachloro-1,3-butadiene

Hexachlorocyclohexanes; BHCs

alpha- Hexachlorocyclohexane; alpha-BHC

beta- Hexachlorocyclohexane; beta-BHC

delta- Hexachlorocyclohexane; delta-BHC

Lindane; gamma- Hexachlorocyclohexane; gamma-BHC

Mercury

Mirex

Octachlorostyrene

PCBs; polychlorinated biphenyls

Pentachlorobenzene

Photomirex

2,3,7,8-TCDD; Dioxin

1,2,3,4-Tetrachlorobenzene

1,2,4,5-Tetrachlorobenzene

Toxaphene

"Bioaccumulation" is the net accumulation of a substance by an organism as a result of uptake from all environmental sources.

[&]quot;Bioaccumulation factor" or "BAF" is the ratio (in L/kg) of a substance's

concentration in the tissue of an aquatic organism to its concentration in the ambient water, in situations where both the organism and its food are exposed and the ratio does not change substantially over time.

"Bioconcentration" means the net accumulation of a substance by an aquatic organism as a result of uptake directly from the ambient water through gill membranes or other external body surfaces.

"Bioconcentration Factor" or "BCF" is the ratio (in L/kg) of a substance's concentration in the tissue of an aquatic organism to its concentration in the ambient water, in situations where the organism is exposed through the water only and the ratio does not change substantially over time.

"Biota-sediment accumulation factor" or "BSAF" means the ratio (in kg of organic carbon/kg of lipid) of a substance's lipid-normalized concentration in the tissue of an aquatic organism to its organic carbon-normalized concentration in surface sediment, in situations where the ratio does not change substantially over time, both the organism and its food are exposed, and the surface sediment is representative of average surface sediment in the vicinity of the organism.

"Carcinogen" means a substance that causes an increased incidence of benign or malignant neoplasms, or substantially decreases the time to develop neoplasms, in animals or humans. The classification of carcinogens is determined by the procedures in Section II.A of Appendix C to 40 CFR 132 (1996) incorporated by reference in Section 302.510.

"Chronic effect" means an adverse effect that is measured by assessing an acceptable endpoint, and results from continual exposure over several generations, or at least over a significant part of the test species' projected life span or life stage.

"Chronic toxicity" means adverse effects that result from an exposure period that is a large portion of the life span of the organism.

"Dissolved organic carbon" or "DOC" means organic carbon that passes through a 1 µm pore size filter.

"Dissolved metal" means the concentration of a metal that will pass through a 0.45 µm pore size filter.

"Food chain" means the energy stored by plants is passed along through the ecosystem through trophic levels in a series of steps of eating and being eaten, also known as a food web.

- "Food chain multiplier" or "FCM" means the ratio of a BAF to an appropriate BCF.
- "Linearized multi-stage model" means a mathematical model for cancer risk assessment. This model fits linear dose-response curves to low doses. It is consistent with a no-threshold model of carcinogenesis.
- "Lowest observed adverse effect level" or "LOAEL" means the lowest tested dose or concentration of a substance that results in an observed adverse effect in exposed test organisms when all higher doses or concentrations result in the same or more severe effects.
- "No observed adverse effect level" or "NOAEL" means the highest tested dose or concentration of a substance that results in no observed adverse effect in exposed test organisms where higher doses or concentrations result in an adverse effect.
- "Octanol water partition coefficient" or "Kow" is the ratio of the concentration of a substance in the n-octanol phase to its concentration in the aqueous phase in an equilibrated two-phase octanol water system. For log Kow, the log of the octanol water partition coefficient is a base 10 logarithm.
- "Open Waters of Lake Michigan" means all of the waters within Lake Michigan in Illinois jurisdiction lakeward from a line drawn across the mouth of tributaries to Lake Michigan, but not including waters enclosed by constructed breakwaters.
- "Particulate organic carbon" or "POC" means organic carbon that is retained by a 1 µm pore size filter.
- "Relative source contribution" or "RSC" means the percent of total exposure that can be attributed to surface water through water intake and fish consumption.
- "Resident or indigenous species" means species that currently live a substantial portion of their life cycle, or reproduce, in a given body of water, or that are native species whose historical range includes a given body of water.
- "Risk associated dose" or "RAD" means a dose of a known or presumed carcinogenic substance in mg/kg/day which, over a lifetime of exposure, is estimated to be associated with a plausible upper bound incremental cancer risk equal to one in 100,000.

"Slope factor" or " q_1 *" is the incremental rate of cancer development calculated through use of a linearized multistage model or other appropriate model. It is expressed in mg/kg/day of exposure to the chemical in question.

"Standard Methods" means "Standard Methods for the Examination of Water and Wastewater", available from the American Public Health Association.

"Subchronic effect" means an adverse effect, measured by assessing an acceptable endpoint, resulting from continual exposure for a period of time less than that deemed necessary for a chronic test.

"Target species" is a species to be protected by the criterion.

"Target species value" is the criterion value for the target species.

"Test species" is a species that has test data available to derive a criterion.

"Test dose" or "TD" is a LOAEL or NOAEL for the test species.

"Tier I criteria" are numeric values derived by use of the Tier I methodologies that either have been adopted as numeric criteria into a water quality standard or are used to implement narrative water quality criteria.

"Tier II values" are numeric values derived by use of the Tier II methodologies that are used to implement narrative water quality criteria. They are applied as criteria, have the same effect, and subject to the same appeal rights as criteria.

"Trophic level" means a functional classification of taxa within a community that is based on feeding relationships. For example, aquatic green plants and herbivores comprise the first and second trophic levels in a food chain.

"Toxic unit acute" or "TU_a" is the reciprocal of the effluent concentration that causes 50 percent of the test organisms to die by the end of the acute exposure period, which is 48 hours for invertebrates and 96 hours for vertebrates.

"Toxic unit chronic" or "TU_c" is the reciprocal of the effluent concentration that causes no observable effect on the test organisms by the end of the chronic exposure period, which is at least seven days for Ceriodaphnia, fathead minnow and rainbow trout.

"Uncertainty factor" or "UF" is one of several numeric factors used in deriving criteria from experimental data to account for the quality or quantity of the available data.

"USEPA" means United States Environmental Protection Agency.

(Source: Amended at 23 Ill. Reg	, effective)
---------------------------------	-------------	---

Section 302.502 Dissolved Oxygen

Dissolved oxygen (STORET number 00300) must not be less than 90% of saturation, except due to natural causes, in the Open Waters of Lake Michigan as defined at Section 302.501. The other waters of the Lake Michigan Basin must not be less than 6.0 mg/L during at least 16 hours of any 24 hour period, nor less than 5.0 mg/L at any time.

(Source: Amended at 23 Ill. Reg. 11249, effective August 26, 1999)

Section 302.503 pH

pH (STORET number 00400) must be within the range of 7.0 to 9.0, except for natural causes, in the Open Waters of Lake Michigan as defined at Section 302.501. Other waters of the Basin must be within the range of 6.5 to 9.0, except for natural causes.

(Source: Amended at 23 Ill. Reg. 11249, effective August 26, 1999)

Section 302.504 Chemical Constituents

The following concentrations of chemical constituents must not be exceeded, except as provided in Sections 302.102 and 302.530:

a) The following standards must be met in all waters of the Lake Michigan Basin. Acute aquatic life standards (AS) must not be exceeded at any time except for those waters for which the Agency has approved a zone of initial dilution (ZID) pursuant to Sections 302.102 and 302.530. Chronic aquatic life standards (CS) and human health standards (HHS) must not be exceeded outside of waters in which mixing is allowed pursuant to Sections 302.102 and 302.530 by the arithmetic average of at least four consecutive samples collected over a period of at least four days. The samples used to demonstrate compliance with the CS or HHS must be collected in a manner which assures an average representation of the sampling period.

Constituent Unit AS CS HHS

Arsenic (Trivalent, dissolved)	μg/L	$340 \times 1.0^* = 340$	$340 \times 1.0^* = 148$	NA
Boron (total)	mg/L	40.1	7.6	NA
Cadmium (dissolved)		$\exp[A + B \ln(H)] \times $ {1.138672 - [(\ln H) \tag{0.041838})]}*	$\exp[A + B \ln(H)] \times $ {1.101672 - [(\ln H) \tag{0.041838})]}*	NA
		where $A = -3.6867$ and $B = 1.128$	where $A = -2.715$ and $B = 0.7852$	
Chromium (Hexavalent, total)	μg/L	16	11	NA
Chromium (Trivalent,	μg/L	$\exp[A + B\ln(H)] \times 0.316*$	$\exp[A + B \ln(H)] \times 0.860*$	NA
dissolved)		where $A = 3.7256$ and $B = 0.819$	where $A = 0.6848$ and $B = 0.819$	
Copper (dissolved)	μg/L	$\exp[A + B\ln(H)] \times 0.960*$	$\exp[A + B \ln(H)] \times 0.960*$	NA
		where $A = -1.700$ and $B = 0.9422$	where $A = -1.702$ and $B = 0.8545$	
Cyanide**	μg/L	22	5.2	NA
Fluoride (total)	μg/L	$\exp[A + B \ln(H)]$ where $A = 6.7319$ and $B = 0.5394$	$\exp[A + B \ln(H)],$ but shall not exceed 4.0 mg/L	NA
		und <i>B</i> 0.035 1	where $A = 6.0445$ and $B = 0.5394$	
Lead (dissolved)	μg/L	$\exp[A + B \ln(H)] \times $ {1.46203 - [(\ln H) (0.145712)]}*	$\exp[A + B \ln(H)] \times $ {1.46203 - [(\ln H) (0.145712)]}*	NA
		where $A = -1.055$ and $B = 1.273$	where A = -4.003 and B = 1.273	

Manganese (dissolved)	μg/L	$\exp[A + B\ln(H)] \times 0.9812*$	$\exp[A + B\ln(H)] \times 0.9812 *$	NA
		where $A = 4.9187$ and $B = 0.7467$	where $A = 4.0635$ and $B = 0.7467$	
Nickel (dissolved)	μg/L	$\exp[A + B \ln(H)] \times 0.998*$	$\exp[A + B \ln(H)] \times 0.997*$	NA
		where $A = 2.255$ and $B = 0.846$	where $A = 0.0584$ and $B = 0.846$	
Selenium (dissolved)	μg/L	NA	5.0	NA
TRC	μg/L	19	11	NA
Zinc (dissolved)	μg/L	$\exp[A + B \ln(H)] \times 0.978*$	$\exp[A + B \ln(H)] \times 0.986*$	NA
		where $A = 0.884$ and $B = 0.8473$	where $A = 0.884$ and $B = 0.8473$	
Benzene	u œ/I	2000	800	210
Delizelle	μg/L	3900	800	310
Chlorobenzene	μg/L mg/L		NA	3.2
		NA		
Chlorobenzene	mg/L	NA NA	NA	3.2
Chlorobenzene 2.4-Dimethylphenol	mg/L mg/L	NA NA	NA NA	3.2 8.7
Chlorobenzene 2.4-Dimethylphenol 2,4-Dinitrophenol	mg/L mg/L	NA NA NA 0.086	NA NA NA	3.2 8.7 2.8
Chlorobenzene 2.4-Dimethylphenol 2,4-Dinitrophenol Endrin	mg/L mg/L mg/L μg/L	NA NA NA 0.086 150	NA NA NA 0.036	3.2 8.7 2.8 NA
Chlorobenzene 2.4-Dimethylphenol 2,4-Dinitrophenol Endrin Ethylbenzene	mg/L mg/L mg/L μg/L μg/L	NA NA NA 0.086 150 NA	NA NA NA 0.036	3.2 8.7 2.8 NA
Chlorobenzene 2.4-Dimethylphenol 2,4-Dinitrophenol Endrin Ethylbenzene Hexachloroethane	mg/L mg/L μg/L μg/L μg/L	NA NA NA 0.086 150 NA NA	NA NA NA 0.036 14 NA	3.2 8.7 2.8 NA NA 6.7
Chlorobenzene 2.4-Dimethylphenol 2,4-Dinitrophenol Endrin Ethylbenzene Hexachloroethane Methylene chloride	mg/L mg/L μg/L μg/L μg/L μg/L μg/L	NA NA NA 0.086 150 NA NA 0.065	NA NA NA 0.036 14 NA NA	3.2 8.7 2.8 NA NA 6.7 2.6

		where $A = -4.869$ and $B = 1.005$	where $A = -5.134$ and $B = 1.005$	
Toluene	μg/L	2000	610	51.0
Trichloroethylene	μg/L	NA	NA	370
Xylene(s)	μg/L	1200	490	NA

where:

NA = Not Applied

exp[x] = base of natural logarithms raised to the x-power

ln(H) = natural logarithm of Hardness

* = conversion factor multiplier for dissolved metals

** standard to be evaluated using either of the following USEPA approved methods, incorporated by reference at 35 Ill. Adm. Code 302.510: Method OIA-1677, DW: Available Cyanide by Flow Injection, Ligand Exchange, and Amperometry, January 2004, Document Number EPA-821-R-04-001 or Cyanide Amenable to Chlorination, Standard Methods 4500-CN-G (40 CFR 136.3).

b) The following water quality standards must not be exceeded at any time in any waters of the Lake Michigan Basin, unless a different standard is specified under subsection (c) of this Section.

Constituent		<u>Unit</u>	Water Quality Standard
Barium (total)	01007	mg/L	5.0
Chloride (total)		mg/L	500
		C	
Iron (dissolved)		mg/L	1.0
,		8	
D1 1		/T	0.1
Phenols		mg/L	0.1
Sulfate		mg/L	500
Total Dissolved Solids		mg/L	1000

c) In addition to the standards specified in subsections (a) and (b) of this Section, the following standards must not be exceeded at any time in the Open Waters of Lake Michigan as defined in Section 302.501.

Constituent	<u>Unit</u>	Water Quality Standard
Arsenic (total)	$\mu g/L$	50.0
Boron (total)	mg/L	1.0
Barium (total)	mg/L	1.0
Chloride (total)	mg/L	12.0
Fluoride (total)	mg/L	1.4
Iron (dissolved)	mg/L	0.30
Lead (total)	μg/L	50.0
Manganese (total)	mg/L	0.15
Nitrate-Nitrogen	mg/L	10.0
Phosphorus	μg/L	7.0
Selenium (total)	μg/L	10.0
Sulfate	mg/L	24.0
Total Dissolved Solids	mg/L	180.0
Oil (hexane solubles or equivalent)	mg/L	0.10
Phenols	μg/L	1.0

d) In addition to the standards specified in subsections (a), (b) and (c) of this Section, the following human health standards (HHS) must not be exceeded in the Open Waters of Lake Michigan as defined in Section 302.501 by the arithmetic average of at least four consecutive samples collected over a period of at least four days. The samples used to demonstrate compliance with the HHS must be collected in a manner which assures an average representation of the sampling period.

<u>Constituent</u>	<u>Unit</u>	Water Quality Standard
Benzene	$\mu g/L$	12.0
Chlorobenzene	μg/L	470.0

2,4-Dimethylphenol	μ g/L	450.0
2,4-Dinitrophenol	μg/L	55.0
Hexachloroethane (total)	$\mu g/L$	5.30
Lindane	μ g/L	0.47
Methylene chloride	μg/L	47.0
Trichloroethylene	μg/L	29.0

e) For the following bioaccumulative chemicals of concern (BCCs), acute aquatic life standards (AS) must not be exceeded at any time in any waters of the Lake Michigan Basin and chronic aquatic life standards (CS), human health standards (HHS), and wildlife standards (WS) must not be exceeded in any waters of the Lake Michigan Basin by the arithmetic average of at least four consecutive samples collected over a period of at least four days subject to the limitations of Sections 302.520 and 302.530. The samples used to demonstrate compliance with the HHS and WS must be collected in a manner that assures an average representation of the sampling period.

Constituent	<u>Unit</u>	<u>AS</u>	<u>CS</u>	<u>HHS</u>	$\underline{\text{WS}}$
Mercury (total)	ng/L	1,700	910	3.1	1.3
Chlordane	ng/L	NA	NA	0.25	NA
DDT and metabolites	pg/L	NA	NA	150	11.0
Dieldrin	ng/L	240	56	0.0065	NA
Hexachlorobenzene	ng/L	NA	NA	0.45	NA
Lindane	$\mu g/L$	0.95	NA	0.5	NA
PCBs (class)	pg/L	NA	NA	26	120
2,3,7,8-TCDD	fg/L	NA	NA	8.6	3.1
Toxaphene	pg/L	NA	NA	68	NA

where:

mg/L = milligrams per liter (10⁻³ grams per liter)

 μ g/L = micrograms per liter (10⁻⁶ grams per liter)

ng/L = nanograms per liter (10⁻⁹ grams per liter)

pg/L = picograms per liter (10⁻¹² grams per liter)

fg/L = femtograms per liter (10⁻¹⁵ grams per liter)

NA = Not Applied

(Source: Amended at 36 Ill. Reg. 18871, effective December 12, 2012)

Section 302.505 Fecal Coliform

Based on a minimum of five samples taken over not more than a 30-day period, fecal coliform (STORET number 31616) must not exceed a geometric mean of 20 per 100 ml in the Open Waters of Lake Michigan as defined in Section 302.501. The remaining waters of the Lake Michigan Basin must not exceed a geometric mean of 200 per 100 ml, nor shall more than 10% of the samples during any 30 day period exceed 400 per 100 ml.

(Source: Amended at 21 Ill. Reg. 1356, effective December 24, 1997.)

Section 302.506 Temperature

- a) STORET numbers for temperature are (°F) 00011 and (°C) 00010.
- b) The owner or operator of a source of heated effluent shall maintain such records and conduct such studies of the effluents from such source and of their effects as may be required by the Agency or in any permit granted under the Act.
- c) Backfitting of alternative cooling facilities will be required if, upon complaint filed in accordance with Board rules, it is found at any time that any heated effluent causes significant ecological damage to the Lake.

Section 302.507 Thermal Standards for Existing Sources on January 1, 1971

All sources of heated effluents in existence as of January 1, 1971, shall meet the following restrictions outside of a mixing zone which shall be no greater than a circle with a radius of 305 m (1000 feet) or an equal fixed area of simple form.

- a) There shall be no abnormal temperature changes that may affect aquatic life.
- b) The normal daily and seasonal temperature fluctuations that existed before the addition of heat shall be maintained.

c) The maximum temperature rise at any time above natural temperatures shall not exceed 1.7°C (3°F). In addition, the water temperature shall not exceed the maximum limits indicated in the following table:

	$^{\mathrm{o}}\mathrm{C}$	${}^{\mathrm{o}}\mathrm{F}$		$^{\mathrm{o}}\mathrm{C}$	°F
JAN.	7	45	JUL.	27	80
FEB.	7	45	AUG.	27	80
MAR.	7	45	SEPT.	27	80
APR.	13	55	OCT.	18	65
MAY	16	60	NOV.	16	60
JUN.	21	70	DEC.	10	50

(Source: Amended at 23 Ill. Reg. 11249, effective August 26, 1999)

Section 302.508 Thermal Standards for Sources Under Construction But Not In Operation on January 1, 1971

Any effluent source under construction but not in operation on January 1, 1971 must meet all the requirements of Section 302.507 and in addition must meet the following restrictions:

- a) Neither the bottom, the shore, the hypolimnion, nor the thermocline shall be affected by any heated effluent.
- b) No heated effluent shall affect spawning grounds or fish migration routes.
- c) Discharge structures shall be so designed as to maximize short-term mixing and thus to reduce the area significantly raised in temperature.
- d) No discharge shall exceed ambient temperatures by more than 11°C (20°F).
- e) Heated effluents from more than one source shall not interact.
- f) All reasonable steps shall be taken to reduce the number of organisms drawn into or against the intakes.

(Source: Amended at 21 Ill. Reg. 1356, effective December 24, 1997.)

Section 302.509 Other Sources

a) No source of heated effluent which was not in operation or under construction as of January 1, 1971, shall discharge more than a daily average of 29 megawatts (0.1 billion British thermal units per hour).

b) Sources of heated effluents which discharge less than a daily average of 29 megawatts (0.1 billion British Thermal Units per hour) not in operation or under construction as of January 1, 1971, shall meet all requirements of sections 302.507 and 302.508.

(Source: Amended in R88-1 at 13 Ill. Reg. 5998, effective April 18, 1989)

Section 302.510 Incorporations by Reference

a) The Board incorporates the following publications by reference:

American Public Health Association et al., Standard Methods for the Examination of Water and Wastewater, 21st Edition, 2005. Available from the American Public Health Association, 800 I Street, NW, Washington, D.C. 20001-3710, (202)777-2742.

USEPA. United States Environmental Protection Agency, Office of Health and Environmental Assessment, Washington, D.C. 20460, Method OIA-1677, DW: Available Cyanide by Flow Injection, Ligand Exchange, and Amperometry, January 2004, Document Number EPA-821-R-04-001.

b) The Board incorporates the following federal regulations by reference. Available from the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402, (202) 783-3238:

40 CFR 136 (1996)

40 CFR 141 (1988)

40 CFR 302.4 (1988)

The Sections of 40 CFR 132 (1996) listed below:

Appendix A

Section I A

Section II

Section III C

Section IV D, E, F, G, H, and I

Section V C

Section VI A, B, C, D, E, and F

Section VIII

Section XI

Section XVII

Appendix B

Section III

Section VII B and C

Section VIII

Appendix C

Section II

Section III A (1 through 6 and 8), B (1 and 2)

Appendix D

Section III C, D, and E

Section IV

c) This Section incorporates no future editions or amendments.

(Source: Amended at 36 Ill. Reg. 18871, effective December 12, 2012)

Section 302.515 Offensive Conditions

Waters of the Lake Michigan Basin must be free from sludge or bottom deposits, floating debris, visible oil, odor, plant or algal growth, color or turbidity of other than natural origin. The allowed mixing provisions of Section 302.102 shall not be used to comply with the provisions of this Section.

(Source: Added at 21 Ill. Reg. 1356, effective December 24, 1997.)

Section 302.520 Regulation and Designation of Bioaccumulative Chemicals of Concern (BCCs)

- a) For the purposes of regulating BCCs in accordance with Sections 302.521 and 302.530 of this Part, the following chemicals shall be considered as BCCs:
 - 1) any chemical or class of chemicals listed as a BCC in Section 302.501; and
 - 2) any chemical or class of chemicals that the Agency has determined meets the characteristics of a BCC as defined in Section 302.501 as indicated by:
 - A) publication in the Illinois Register; or
 - B) notification to a permittee or applicant; or
 - C) filing a petition with the Board to verify that the chemical shall be designated a BCC.
- b) Notwithstanding subsections (a)(2)(A) and (B) of this Section, a chemical shall not be regulated as a BCC if the Agency has not filed a petition, within 60 days after such publication or notification, with the Board in accordance with Section 28.2 of the Act to verify that the chemical shall be designated a BCC.
- c) Pursuant to subsection (b) of this Section and Section 302.570 of this Part, if the Board verifies that a chemical has a human health bioaccumulation factor greater than 1,000 and is consistent with the definition of a BCC in Section 302.105, the Board shall designate the chemical as a BCC and list the chemical in Section 302.501. If the Board fails to verify the chemical as a BCC in its final action on the verification petition, the chemical shall not be listed as a BCC and shall not be regulated as a BCC in accordance with Sections 302.521 and 302.530 of this Part.

(Source: Added at 21 Ill. Reg. 1356, effective December 24, 1997.)

Section 302.521 Supplemental Antidegradation Provisions for BCCs

a) Notwithstanding the provisions of Section 302.105, waters within the Lake Michigan Basin must not be lowered in quality due to new or increased loading of substances defined as bioaccumulative chemicals of concern (BCCs) in Section 302.501 from any source or activity subject to the NPDES permitting, Section 401 water quality certification provisions of the Clean Water Act (P.L. 92-100, as amended), or joint permits from the Agency and the Illinois Department of Natural Resources under Section 39(n) of the Act [415 ILCS 5/39(n)] until and unless it can be affirmatively

demonstrated that such change is necessary to accommodate important economic or social development.

- 1) Where ambient concentrations of a BCC are equal to or exceed an applicable water quality criterion, no increase in loading of that BCC is allowed.
- 2) Where ambient concentrations of a BCC are below the applicable water quality criterion, a demonstration to justify increased loading of that BCC must include the following:
 - A) Pollution Prevention Alternatives Analysis. Identify any cost-effective reasonably available pollution prevention alternatives and techniques that would eliminate or significantly reduce the extent of increased loading of the BCC.
 - B) Alternative or Enhanced Treatment Analysis. Identify alternative or enhanced treatment techniques that are cost effective and reasonably available to the entity that would eliminate or significantly reduce the extent of increased loading of the BCC.
 - C) Important Social or Economic Development Analysis. Identify the social or economic development and the benefits that would be forgone if the increased loading of the BCC is not allowed.
- 3) In no case shall increased loading of BCCs result in exceedence of applicable water quality criteria or concentrations exceeding the level of water quality necessary to protect existing uses.
- 4) Changes in loadings of any BCC within the existing capacity and processes of an existing NPDES authorized discharge, certified activity pursuant to Section 401 of the Clean Water Act, or joint permits from the Agency and the Illinois Department of Natural Resources under Section 39(n) of the Act are not subject to the antidegradation review of subsection (a) of this Section. These changes include but are not limited to:
 - A) normal operational variability, including, but not limited to, intermittent increased discharges due to wet weather conditions:
 - B) changes in intake water pollutants;

- C) increasing the production hours of the facility; or
- D) increasing the rate of production.
- Any determination to allow increased loading of a BCC pursuant to a demonstration of important economic or social development need shall satisfy the public participation requirements of 40 CFR 25 prior to final issuance of the NPDES permit, Section 401 water quality certification, or joint permits from the Agency and the Illinois Department of Natural Resources under Section 39(n) of the Act.
- b) The following actions are not subject to the provisions of subsection (a) of this Section, unless the Agency determines the circumstances of an individual situation warrant application of those provisions to adequately protect water quality:
 - 1) Short-term, temporary (i.e., weeks or months) lowering of water quality;
 - 2) Bypasses that are not prohibited at 40 CFR 122.41 (m); or
 - Response actions pursuant to the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA), as amended, or similar federal or State authority, undertaken to alleviate a release into the environment of hazardous substances, pollutants or contaminants that pose danger to public health or welfare.

(Source: Amended at 23 Ill. Reg. 11249, effective August 26, 1999)

Section 302.525 Radioactivity

Except as provided in Section 302.102, all waters of the Lake Michigan Basin must meet the following concentrations:

- a) Gross beta (STORET number 03501) concentrations must not exceed 100 picocuries per liter (pCi/L).
- b) Strontium 90 (STORET number 13501) concentration shall not exceed 2 picocuries per liter (pCi/L).

c) The annual average radium 226 and 228 (STORET number 11503) combined concentration must not exceed 3.75 picocuries per liter (pCi/L).

(Source: Amended at 30 Ill. Reg. 4919, effective March 1, 2006)

Section 302.530 Supplemental Mixing Provisions for Bioaccumulative Chemicals of Concern (BCCs)

The General Provisions of Section 302.102 (Allowed Mixing, Mixing Zones and ZIDs) apply within the Lake Michigan Basin except as otherwise provided herein for substances defined as BCCs in Section 302.501:

- a) No mixing shall be allowed for BCCs for new discharges commencing on or after December 24, 1997.
- b) Discharges of BCCs existing as of December 24, 1997 are eligible for mixing allowance consistent with Section 302.102 until March 23, 2007. After March 23, 2007 mixing for BCCs will not be allowed except as provided in subsections (c) and (d) of this Section.
- c) Mixing allowance for a source in existence on December 24, 1997 may continue beyond March 23, 2007 where it can be demonstrated on a case by case basis that continuation of mixing allowance is necessary to achieve water conservation measures that result in overall reduction of BCC mass loading to the Lake Michigan Basin.
- d) Mixing allowance for a source in existence on December 24, 1997 shall only continue if necessitated by technical and economic factors. Any mixing allowance continued beyond March 23, 2007 based on technical and economic factors shall be limited to not more than one NPDES permit term, and shall reflect the maximum achievable BCC loading reduction within the identified technical and economic considerations necessitating the exception. Such continued mixing allowance shall not be renewed beyond that permit term unless a new determination of technical and economic necessity is made.

(Source: Added at 21 Ill. Reg. 1356, effective December 24, 1997.)

Section 302.535 Ammonia Nitrogen

The Open Waters of Lake Michigan as defined in Section 302.501 must not exceed 0.02 mg/L total ammonia (as N: STORET Number 00610). The remaining waters of the Lake Michigan Basin shall be subject to the following:

- a) Total ammonia nitrogen (as N: STORET Number 00610) must in no case exceed 15 mg/L.
- b) Un-ionized ammonia nitrogen (as N: STORET Number 00612) must not exceed the acute and chronic standards given below subject to the provisions of Sections 302.208(a) and (b) of this Part:
 - 1) From April through October, the Acute Standard (AS) shall be 0.33 mg/L and the chronic standard (CS) shall be 0.057 mg/L.
 - 2) From November through March, the AS shall be 0.14 mg/L and the CS shall be 0.025 mg/L.
- c) For purposes of this Section, the concentration of un-ionized ammonia nitrogen as N and total ammonia as N shall be computed according to the following equations:

U=
$$\frac{N}{[0.94412(1+10^{x})+0.0559]}$$

and N = U[0.94412(1+10^{x})+0.0559]
Where: X = 0.09018 \pm 2729.92 -n

Where:
$$X = 0.09018 + 2729.92 - pH$$

U = Concentration of un-ionized ammonia as N in mg/L

N = Concentration of ammonia nitrogen as N in mg/L

T = Temperature in degrees Celsius.

(Source: Amended at 23 Ill. Reg. 11249, effective August 26, 1999)

Section 302.540 Other Toxic Substances

Waters of the Lake Michigan Basin must be free from any substance or any combination of substances in concentrations toxic or harmful to human health, or to animal, plant or aquatic life. The numeric standards protective of particular uses specified for individual chemical substances in Section 302.504 are not subject to recalculation by this Section, however, where no standard is applied for a category, a numeric value may be calculated herein.

a) Any substance shall be deemed toxic or harmful to aquatic life if present in concentrations that exceed the following:

- 1) A Tier I Lake Michigan Basin Acute Aquatic Life Toxicity Criterion (LMAATC) or Tier II Lake Michigan Basin Acute Aquatic Life Toxicity Value (LMAATV) derived pursuant to procedures set forth in Sections 302.555, 302.560 or 302.563 at any time; or
- 2) A Tier I Lake Michigan Basin Chronic Aquatic Life Toxicity Criterion (LMCATC) or Tier II Lake Michigan Basin Chronic Aquatic Life Toxicity Value (LMCATV) derived pursuant to procedures set forth in Section 302.565 as an average of four samples collected on four different days.
- b) Any combination of substances, including effluents, shall be deemed toxic to aquatic life if present in concentrations that exceed either subsection (b)(1) or (2) of this Section:
 - 1) No sample of water from the Lake Michigan Basin collected outside of a designated zone of initial dilution shall exceed 0.3 TU_a as determined for the most sensitive species tested using acute toxicity testing methods.
 - 2) No sample of water from the Lake Michigan Basin collected outside a designated mixing zone shall exceed 1.0 TU_c as determined for the most sensitive species tested using chronic toxicity testing methods.
 - 3) To demonstrate compliance with subsections (1) and (2) of this subsection (b), at least two resident or indigenous species will be tested. The rainbow trout will be used to represent fishes for the Open Waters of Lake Michigan and the fathead minnow will represent fishes for the other waters of the Lake Michigan Basin. Ceriodaphnia will represent invertebrates for all waters of the Lake Michigan Basin. Other common species shall be used if listed in Table I A of 40 CFR 136, incorporated by reference at Section 302.510, and approved by the Agency.
- c) Any substance shall be deemed toxic or harmful to wildlife if present in concentrations that exceed a Tier I Lake Michigan Basin Wildlife Criterion (LMWLC) derived pursuant to procedures set forth in Section 302.575 as an arithmetic average of four samples collected over four different days.
- d) For any substance that is a threat to human health through drinking water exposure only, the resulting criterion or value shall be applicable to only the Open Waters of Lake Michigan. For any substance that is determined

to be a BCC, the resulting criterion shall apply in the entire Lake Michigan Basin. These substances shall be deemed toxic or harmful to human health if present in concentrations that exceed either of the following:

- 1) A Tier I Lake Michigan Basin Human Health Threshold Criterion (LMHHTC) or Tier II Lake Michigan Basin Human Health Threshold Value (LMHHTV) based on disease or functional impairment due to a physiological mechanism for which there is a threshold dose below which no damage occurs as derived pursuant to procedures set forth in Section 302.585 as an arithmetic average of four samples collected over four different days; or
- 2) A Tier I Lake Michigan Basin Human Health Nonthreshold Criterion (LMHHNC) or Tier II Lake Michigan Basin Human Health Nonthreshold Value (LMHHNV) based on disease or functional impairment due to a physiological mechanism for which any dose may cause some risk of damage as derived pursuant to procedures set forth in Section 302.590 as an arithmetic average of four samples collected over four different days.
- e) The derived criteria and values apply at all points outside of any waters in which mixing is allowed pursuant to Section 302.102 or Section 302.530.
- f) The procedures of this Subpart E set forth minimum data requirements, appropriate test protocols and data assessment methods for establishing criteria or values pursuant to subsections (b), (c), and (d) of this Section. No other procedures may be used to establish such criteria or values unless approved by the Board in a rulemaking or adjusted standards proceeding pursuant to Title VII of the Act. The validity and applicability of these procedures may not be challenged in any proceeding brought pursuant to Title VIII or X of the Act, although the validity and correctness of application of the numeric criteria or values derived pursuant to this Subpart may be challenged in such proceedings pursuant to subsection (g) of this Section.
- g) Challenges to application of criteria and values.
 - 1) A permittee may challenge the validity and correctness of application of a criterion or value derived by the Agency pursuant to this Section only at the time such criterion or value is first applied in its NPDES permit pursuant to 35 Ill. Adm. Code 309.152 or in an action pursuant to Title VIII of the Act for violation of the toxicity water quality standard. Failure of a person to challenge the validity of a criterion or value at the time of its first application to that person's facility shall constitute a waiver of

- such challenge in any subsequent proceeding involving application of the criterion or value to that person.
- 2) Consistent with subsection (g)(1) of this Section, if a criterion or value is included as, or is used to derive, a condition of an NPDES discharge permit, a permittee may challenge the criterion or value in a permit appeal pursuant to 35 Ill. Adm. Code 309.181. In any such action, the Agency shall include in the record all information upon which it has relied in developing and applying the criterion or value, and whether such information was developed by the Agency or submitted by the petitioner. THE BURDEN OF PROOF SHALL BE ON THE PETITIONER pursuant to Section 40(a)(1) of the Act.
- 3) Consistent with subsection (g)(1) of this Section, in an action where alleged violation of the toxicity water quality standard is based on alleged excursion of a criterion or value, the person bringing such action shall have the burdens of going forward with proof and persuasion regarding the general validity and correctness of application of the criterion or value.
- h) Subsections (a) through (e) of this Section do not apply to USEPA registered pesticides approved for aquatic application and applied pursuant to the following conditions:
 - 1) Application shall be made in strict accordance with label directions;
 - 2) Applicator shall be properly certified under the provisions of the Federal Insecticide, Fungicide, and Rodenticide Act (7 U.S.C. 135 et seq. (1972));
 - 3) Applications of aquatic pesticides must be in accordance with the laws, regulations and guidelines of all State and federal agencies authorized by law to regulate, use or supervise pesticide applications;
 - 4) No aquatic pesticide shall be applied to waters affecting public or food processing water supplies unless a permit to apply the pesticide has been obtained from the Agency. All permits shall be issued so as not to cause a violation of the Act or of any of the Board's rules or regulations. To aid applicators in determining their responsibilities under this subsection (h), a list of waters affecting public water supplies will be published and maintained by the Agency's Division of Public Water Supplies.

(Source: Amended at 23 Ill. Reg. 11249, effective August 26, 1999)

Section 302.545 Data Requirements

The Agency shall review, for validity, applicability and completeness the data used in calculating criteria or values. To the extent available, and to the extent not otherwise specified, testing procedures, selection of test species and other aspects of data acquisition must be according to methods published by USEPA or nationally recognized standards of organizations, including, but not limited to, those methods found in Standard Methods, incorporated by reference in Section 302.510, or recommended in 40 CFR 132 and incorporated by reference in Section 302.510.

(Source: Amended at 23 Ill. Reg. 11249, effective August 26, 1999)

Section 302.550 Analytical Testing

All methods of sample collection, preservation, and analysis used in applying any of the requirements of this Subpart shall be consistent with the methods published by USEPA or nationally recognized standards of organizations, including but not limited to those methods found in Standard Methods, incorporated by reference in Section 302.510, or recommended in 40 CFR 132 and incorporated by reference in Section 302.510.

(Source: Added at 21 Ill. Reg. 1356, effective December 24, 1997.)

Section 302.553 Determining the Lake Michigan Aquatic Toxicity Criteria or Values - General Procedures

The Lake Michigan Aquatic Life Criteria and Values are those concentrations or levels of a substance at which aquatic life is protected from adverse effects resulting from short or long term exposure in water.

- a) Tier I criteria and Tier II values to protect against acute effects in aquatic organisms will be calculated according to procedures listed at Sections 302.555, 302.560 and 302.563. The procedures of Section 302.560 shall be used as necessary to allow for interactions with other water quality characteristics such as hardness, pH, temperature, etc. Tier I criteria and Tier II values to protect against chronic effects in aquatic organisms shall be calculated according to the procedures listed at Section 302.565.
- b) Minimum data requirements. In order to derive a Tier I acute or chronic criterion, data must be available for at least one species of freshwater animal in at least eight different families such that the following taxa are included:

- 1) The family Salmonidae in the class Osteichthyes;
- 2) One other family in the class Osteichthyes;
- 3) A third family in the phylum Chordata;
- 4) A planktonic crustacean;
- 5) A benthic crustacean;
- 6) An insect;
- 7) A family in a phylum other than Arthropoda or Chordata; and
- 8) A family from any order of insect or any phylum not already represented.
- c) Data for tests with plants, if available, must be included in the data set.
- d) If data for acute effects are not available for all the eight families listed above, but are available for the family Daphnidae, a Tier II value shall be derived according to procedures in Section 302.563. If data for chronic effects are not available for all the eight families, but there are acute and chronic data available according to Section 302.565(b) so that three acute to chronic ratios (ACRs) can be calculated, then a Tier I chronic criterion can be derived according to procedures in Section 302.565. If three ACRs are not available, then a Tier II chronic value can be derived according to procedures in Section 302.565(b).
- e) Data must be obtained from species that have reproducing wild populations in North America except that data from salt water species can be used in the derivation of an ACR.

(Source: Amended at 36 Ill. Reg. 18871, effective December 12, 2012)

Section 302.555 Determining the Tier I Lake Michigan Acute Aquatic Toxicity Criterion (LMAATC): Independent of Water Chemistry

If the acute toxicity of the chemical has not been shown to be related to a water quality characteristic, including, but not limited to, hardness, pH, or temperature, the Tier I LMAATC is calculated using the procedures below.

a) For each species for which more than one acute value is available, the Species Mean Acute Value (SMAV) is calculated as the geometric mean of the acute values from all tests.

- b) For each genus for which one or more SMAVs are available, the Genus Mean Acute Value (GMAV) is calculated as the geometric mean of the SMAVs available for the genus.
- c) The GMAVs are ordered from high to low in numerical order.
- d) Ranks (R) are assigned to the GMAVs from "1" for the lowest to "N" for the highest. If two or more GMAVs are identical, successive ranks are arbitrarily assigned.
- e) The cumulative probability, P, is calculated for each GMAV as R/(N+1).
- f) The GMAVs to be used in the calculations of subsection (g) of this Section must be those with cumulative probabilities closest to 0.05. If there are fewer than 59 GMAVs in the total data set, the values utilized must be the lowest four obtained through the ranking procedures of subsections (c) and (d) of this Section.
- g) Using the GMAVs identified pursuant to subsection (f) of this Section and the Ps calculated pursuant to subsection (e) of this Section, the Final Acute Value (FAV) and the LMAATC are calculated as:

$$FAV = exp(A)$$
 and $LMAATC = FAV/2$

Where:

$$A = L + 0.2236 S$$

$$L = [\Sigma(\ln GMAV) - S(\Sigma(P^{0.5}))]/4$$

$$S = [[\Sigma((lnGMAV)^{2}) - ((\Sigma(lnGMAV))^{2})/4]/[\Sigma(P) - ((\Sigma(P^{0.5}))^{2})/4]]^{0.5}$$

h) If a resident or indigenous species, whose presence is necessary to sustain commercial or recreational activities, will not be protected by the calculated FAV, then the SMAV for that species is used as the FAV.

(Source: Amended at 23 Ill. Reg. 11249, effective August 26, 1999)

Section 302.560 Determining the Tier I Lake Michigan Basin Acute Aquatic Life Toxicity Criterion (LMAATC): Dependent on Water Chemistry

If data are available to show that a relationship exists between a water quality characteristic (WQC) and acute toxicity to two or more species, a Tier I LMAATC must be calculated using procedures in this Section. Although the relationship between hardness and acute toxicity is typically non-linear, it can be linearized by a logarithmic transformation (i.e., for any variable, K, f(K) = logarithm of K) of the variables and plotting the logarithm of hardness against the logarithm of acute toxicity. Similarly,

relationships between acute toxicity and other water quality characteristics, such as pH or temperature, may require a transformation, including no transformation (i.e., for any variable, K, f(K) = K) for one or both variables to obtain least squares linear regression of the transformed acute toxicity values on the transformed values of the water quality characteristic. An LMAATC is calculated using the following procedures.

- a) For each species for which acute toxicity values are available at two or more different values of the water quality characteristic, a linear least squares regression of the transformed acute toxicity (TAT) values on the transformed water quality characteristic (TWQC) values is performed to obtain the slope of the line describing the relationship.
- b) Each of the slopes determined pursuant to subsection (a) of this Section is evaluated as to whether it is statistically valid, taking into account the range and number of tested values of the water quality characteristic and the degree of agreement within and between species. If slopes are not available for at least one fish and one invertebrate species, or if the available slopes are too dissimilar or if too few data are available to define the relationship between acute toxicity and the water quality characteristic, then the LMAATC must be calculated using the procedures in Section 302.555.
- c) Normalize the TAT values for each species by subtracting W, the arithmetic mean of the TAT values of a species, from each of the TAT values used in the determination of the mean, such that the arithmetic mean of the normalized TAT values for each species individually or for any combination of species is zero (0.0).
- d) Normalize the TWQC values for each species using X, the arithmetic mean of the TWQC values of a species, in the same manner as in subsection (c) of this Section.
- e) Group all the normalized data by treating them as if they were from a single species and perform a least squares linear regression of all the normalized TAT values on the corresponding normalized TWQC values to obtain the pooled acute slope, V.
- f) For each species, the graphical intercept representing the species TAT intercept, f(Y), at a specific selected value, Z, of the WQC is calculated using the equation:

$$f(Y) = W - V(X - g(Z))$$

Where:

f() is the transformation used to convert acute toxicity values to TAT values

Y is the species acute toxicity intercept or species acute intercept

W is the arithmetic mean of the TAT values as specified in subsection (c) of this Section

V is the pooled acute slope as specified in subsection (e) of this Section

X is the arithmetic mean of the TWQC values as specified in subsection (c) of this Section

g() is the transformation used to convert the WQC values to TWQC values

Z is a selected value of the WQC

- g) For each species, determine the species acute intercept, Y, by carrying out an inverse transformation of the species TAT value, f(Y). For example, in the case of a logarithmic transformation, Y = antilogarithm of (f(Y)); or in the case where no transformation is used, Y = f(Y).
- h) The Final Acute Intercept (FAI) is derived by using the species acute intercepts, obtained from subsection (f) of this Section, in accordance with the procedures described in Section 302.555 (b) through (g), with the word "value" replaced by the word "intercept". Note that in this procedure geometric means and natural logarithms are always used.
- i) The Aquatic Acute Intercept (AAI) is obtained by dividing the FAI by two.
 - If, for a commercially or recreationally important species, the geometric mean of the acute values at Z is lower than the FAV at Z, then the geometric mean of that species must be used as the FAV.
- j) The LMAATC at any value of the WQC, denoted by WQCx, is calculated using the terms defined in subsection (f) of this Section and the equation:

$$LMAATC = \exp[V(g(WQCx) - g(Z)) + f(AAI)]$$

(Source: Amended at 23 Ill. Reg. 11249, effective August 26, 1999)

Section 302.563 Determining the Tier II Lake Michigan Basin Acute Aquatic Life Toxicity Value (LMAATV)

If all eight minimum data requirements for calculating a FAV using Tier I procedures are not met, a Tier II LMAATV must be calculated for a substance as follows:

a) The lowest GMAV in the database is divided by the Secondary Acute Factor (SAF) corresponding to the number of satisfied minimum data requirements listed in the Tier I methodology (Section 302.553). In order to calculate a Tier II LMAATV, the data base must contain, at a minimum, a GMAV for one of the following three genera in the family Daphnidae -- Ceriodaphnia sp., Daphnia sp., or Simocephalus sp. The Secondary Acute Factors are:

Number of Minimum data requirements satisfied (required taxa)	Secondary Acute Factor
1	43.8
2	26.0
3	16.0
4	14.0
5	12.2
6	10.4
7	8.6

b) If dependent on a water quality characteristic, the Tier II LMAATV must be calculated according to Section 302.560.

(Source: Amended at 23 Ill. Reg. 11249, effective August 26, 1999)

Section 302.565 Determining the Lake Michigan Basin Chronic Aquatic Life Toxicity Criterion (LMCATC) or the Lake Michigan Basin Chronic Aquatic Life Toxicity Value (LMCATV)

- a) Determining Tier I LMCATC
 - 1) When chronic toxicity data are available for at least eight resident or indigenous species from eight different North American genera of freshwater organisms as specified in Section 302.553, a Tier I LMCATC is derived in the same manner as the FAV in Section 302.555 or 302.560 by substituting LMCATC for FAV or FAI, chronic for acute, SMCV (Species Mean Chronic Value) for SMAV, and GMCV (Genus Mean Chronic Value) for GMAV.
 - 2) If data are not available to meet the requirements of subsection (a) of this Section, a Tier I LMCATC is calculated by dividing the FAV by the geometric mean of the acute-chronic ratios (ACRs) obtained from at least one species of aquatic animal from at least three different families provided that of the three species:
 - A) At least one is a fish;
 - B) At least one is an invertebrate; and
 - C) At least one species is an acutely sensitive freshwater species if the other two are saltwater species.

- 3) The acute-chronic ratio (ACR) for a species equals the acute toxicity concentration from data considered under Section 302.555 or 302.560, divided by the chronic toxicity concentration.
- 4) If a resident or indigenous species whose presence is necessary to sustain commercial or recreational activities will not be protected by the calculated LMCATC, then the SMCV for that species is used as the CATC.
- b) Determining the Tier II LMCATV
 - 1) If all eight minimum data requirements for calculating a FCV using Tier I procedures are not met, or if there are not enough data for all three ACRs, a Tier II Lake Michigan Chronic Aquatic Life Toxicity Value shall be calculated using a secondary acute chronic ratio (SACR) determined as follows:
 - A) If fewer than three valid experimentally determined ACRs are available:
 - i) Use sufficient ACRs of 18 so that the total number of ACRs equals three; and
 - ii) Calculate the Secondary Acute-Chronic Ratio as the geometric mean of the three ACRs; or
 - B) If no experimentally determined ACRs are available, the SACR is 18.
 - 2) Calculate the Tier II LMCATV using one of the following equations:
 - A) Tier II LMCATV = FAV / SACR
 - B) Tier II LMCATV = SAV / FACR
 - C) Tier II LMCATV = SAV / SACR

Where:

the SAV equals 2 times the value of the Tier II LMAATV calculated in Section 302.563

3) If, for a commercially or recreationally important species, the SMCV is lower than the calculated Tier II LMCATV, then the SMCV must be used as the Tier II LMCATV.

(Source: Amended at 23 Ill. Reg. 11249, effective August 26, 1999)

Section 302.570 Procedures for Deriving Bioaccumulation Factors for the Lake Michigan Basin

A bioaccumulation factor (BAF) is used to relate the concentration of a substance in an aquatic organism to the concentration of the substance in the waters in which the organism resides when all routes of exposure (ambient water and food) are included. A BAF is used in the derivation of water quality criteria to protect wildlife and criteria and values to protect human health.

- a) Selection of data. BAFs can be obtained or developed from one of the following methods, listed in order of preference.
 - 1) Field-measured BAF.
 - 2) Field-measured biota-sediment accumulation factor (BSAF).
 - 3) Laboratory-measured bioconcentration factor (BCF).

 The concentration of particulate organic carbon (POC) and dissolved organic carbon (DOC) in the test solution shall be either measured or reliably estimated.
 - 4) Predicted BCF.
 Predicted baseline BCF = Kow.
- b) Calculation of baseline BAFs for organic chemicals.

 The most preferred BAF or BCF from above is used to calculate a baseline BAF which in turn is utilized to derive a human health or wildlife specific BAF.
 - 1) Procedures for determining the necessary elements of baseline calculation.
 - A) Lipid normalization. The lipid-normalized concentration, C₁, of a chemical in tissue is defined using the following equation:

$$C_1 = C_b / f_1$$

Where:

 C_b = concentration of the organic chemical in the tissue of aquatic biota (either whole organism or specified tissue) (μ g/g)

 f_1 = fraction of the tissue that is lipid

B) Bioavailability.

The fraction of the total chemical in the ambient water that is freely dissolved, f_{fd} , shall be calculated using the following equation:

$$f_{fd} = 1 / \{ 1 + [(DOC)(Kow)/10] + [(POC)(Kow)] \}$$

Where:

DOC = concentration of dissolved organic carbon, kg of dissolved organic carbon/L of water

Kow = octanol-water partition coefficient of the chemical POC = concentration of particulate organic carbon, kg of particulate organic carbon/L of water

- C) Food Chain Multiplier (FCM). For an organic chemical, the FCM used shall be taken from Table B-1 in 40 CFR 132, Appendix B (1996) incorporated by reference at Section 302.510.
- 2) Calculation of baseline BAFs.
 - A) From field-measured BAFs:

Baseline BAF = { [measured BAF_{tT} /
$$f_{fd}$$
] - 1 } { 1 / f_l }

Where:

 $BAF_{tT} = BAF \ based \ on \ total \ concentration \ in \ tissue \ and \ water \ of \ study \ organism \ and \ site \ f_l = fraction \ of \ the \ tissue \ of \ study \ organism \ that \ is \ lipid \ f_{fd} = fraction \ of \ the \ total \ chemical \ that \ is \ freely \ dissolved \ in \ the \ ambient \ water$

B) From a field measured biota-sediment accumulation factor (BSAF):

$$(Baseline BAF)_i =$$

Where:

```
(BSAF)<sub>i</sub> = BSAF for chemical "i"
(BSAF)<sub>r</sub> = BSAF for the reference chemical "r"
```

 $(Kow)_i$ = octanol-water partition coefficient for chemical ":"

 $(Kow)_r$ = octanol-water partition coefficient for the reference chemical "r"

i) A BSAF shall be calculated using the following equation:

$$BSAF = C_1 / C_{soc}$$

Where:

 C_1 = the lipid-normalized concentration of the chemical in tissue

 C_{soc} = the organic carbon-normalized concentration of the chemical in sediment

ii) The organic carbon-normalized concentration of a chemical in sediment, C_{soc}, shall be calculated using the following equation:

$$C_{\text{soc}} = C_{\text{s}} / f_{\text{oc}}$$

Where:

 C_s = concentration of chemical in sediment ($\mu g/g$ sediment)

 $f_{\text{oc}} = \text{fraction}$ of the sediment that is organic carbon

C) From a laboratory-measured BCF:

baseline BAF = (FCM) { [measured BCF_tT / f_{fd}] - 1 } { 1 / f_{l} }

Where:

 $BCF_{tT} = BCF$ based on total concentration in tissue and water.

 f_1 = fraction of the tissue that is lipid

 f_{fd} = fraction of the total chemical in the test water that is freely dissolved

FCM = the food-chain multiplier obtained from Table B-1 in 40 CFR 132, Appendix B, incorporated by reference at Section 302.510, by linear interpolation for trophic level 3 or 4, as necessary

D) From a predicted BCF:

baseline BAF = (FCM) (predicted baseline BCF) = (FCM)(Kow)

Where:

FCM = the food-chain multiplier obtained from Table B-1 in 40 CFR 132, Appendix 5, incorporated by reference at Section 302.510, by linear interpolation for trophic level 3 or 4, as necessary

Kow = octanol-water partition coefficient

- c) Human health and wildlife BAFs for organic chemicals:
 - 1) Fraction freely dissolved (f_{fd}). By using the equation in subsection (b)(1)(B) of this Section, the f_{fd} to be used to calculate human health and wildlife BAFs for an organic chemical shall be calculated using a standard POC concentration of 0.00000004 kg/L and a standard DOC concentration of 0.000002 kg/L:

$$f_{fd} = 1 / [1 + (0.00000024 \text{ kg/L})(Kow)]$$

- 2) Human health BAF. The human health BAFs for an organic chemical shall be calculated using the following equations:
 - A) For trophic level 3:

Human Health BAF_{HHTL3} = [(baseline BAF)(0.0182) + 1]
$$(f_{fd})$$

B) For trophic level 4:

Human Health BAF_{HHTL4} = [(baseline BAF)
$$(0.0310) + 1$$
] (f_{fd})

Where:

0.0182 and 0.0310 are the standardized fraction lipid values for trophic levels 3 and 4, respectively, that are used to derive human health criteria and values

3) Wildlife BAF. The wildlife BAFs for an organic chemical shall be calculated using the following equations:

A) For trophic level 3:

Wildlife BAF_{WLTL3} = [(baseline BAF)(0.0646) +1] (f_{fd})

B) For trophic level 4:

Wildlife BAF_{WLTL4} = [(baseline BAF)(0.1031) + 1] (f_{fd})

Where:

0.0646 and 0.1031 are the standardized fraction lipid values for trophic levels 3 and 4, respectively, that are used to derive wildlife criteria

- d) Human health and wildlife BAFs for inorganic chemicals. For inorganic chemicals the baseline BAFs for trophic levels 3 and 4 are both assumed to equal the BCF determined for the chemical with fish.
 - 1) Human health. Measured BAFs and BCFs used to determine human health BAFs for inorganic chemicals shall be based on concentration in edible tissue (e.g., muscle) of freshwater fish.
 - 2) Wildlife. Measured BAFs and BCFs used to determine wildlife BAFs for inorganic chemicals shall be based on concentration in the whole body of freshwater fish and invertebrates.

(Source: Added at 21 Ill. Reg. 1356, effective December 24, 1997.)

Section 302.575 Procedures for Deriving Tier I Water Quality Criteria and Values in the Lake Michigan Basin to Protect Wildlife

The Lake Michigan Basin Wildlife Criterion (LMWC) is the concentration of a substance which if not exceeded protects Illinois wild mammal and bird populations from adverse effects resulting from ingestion of surface waters of the Lake Michigan Basin and from ingestion of aquatic prey organisms taken from surface waters of the Lake Michigan Basin. Wildlife criteria calculated under this Section protect against long-term effects and are therefore considered chronic criteria. The methodology involves utilization of data from test animals to derive criteria to protect representative or target species: bald eagle, herring gull, belted kingfisher, mink and river otter. The lower of the geometric mean of species specific criteria for bird species or mammal species is chosen as the LMWC to protect a broad range of species.

a) This method shall also be used for non-BCCs when appropriately modified to consider the following factors:

- 1) Selection of scientifically justified target species;
- 2) Relevant routes of chemical exposure;
- 3) Pertinent toxicity endpoints.
- b) Minimum data requirements:
 - 1) Test dose (TD). In order to calculate a LMWC the following minimal data base is required:
 - A) There must be at least one data set showing dose-response for oral, subchronic, or chronic exposure of 28 days for one bird species; and
 - B) There must be at least one data set showing dose-response for oral, subchronic, or chronic exposure of 90 days for one mammal species.
 - 2) Bioaccumulation Factor (BAF) data requirements:
 - A) For any chemical with a BAF of less than 125 the BAF may be obtained by any method; and
 - B) For chemicals with a BAF of greater than 125 the BAF must come from a field measured BAF or Biota-Sediment Accumulation Factor (BSAF).
- c) Principles for development of criteria
 - 1) Dose standardization. The data for the test species must be expressed as, or converted to, the form mg/kg/d utilizing the guidelines for drinking and feeding rates and other procedures in 40 CFR 132, incorporated by reference at Section 302.510.
 - 2) Uncertainty factors (UF) for utilizing test dose data in the calculation of the target species value (TSV);
 - A) Correction for intermittent exposure. If the animals used in a study were not exposed to the toxicant each day of the test period, the no observed adverse effect level (NOAEL) must be multiplied by the ratio of days of exposure to the total days in the test period.

- B) Correction from the lowest observed adverse effect level (LOAEL) to NOAEL (UF₁). For those substances for which a LOAEL has been derived, the UF₁ shall not be less than one and should not exceed 10.
- C) Correction for subchronic to chronic extrapolation (UF_s). In instances where only subchronic data are available, the TD may be derived from subchronic data. The value of the UF_s shall not be less than one and should not exceed 10.
- D) Correction for interspecies extrapolations (UF_a). For the derivation of criteria, a UF_a shall not be less than one and should not exceed 100. The UF_a shall be used only for extrapolating toxicity data across species within a taxonomic class. A species specific UF_a shall be selected and applied to each target species, consistent with the equation in subsection (d).
- d) Calculation of TSV. The TSV, measured in milligrams per liter (mg/L), is calculated according to the equation:

$$TSV = \{ [TD x Wt] / [UF_a x UF_s x UF_l] \} / \{ W + \Sigma [F_{TLi} x BAF_{WLTLi}] \}$$

Where:

TSV = target species value in milligrams of substance per liter (mg/L).

TD = test dose that is toxic to the test species, either NOAEL or LOAEL.

 UF_a = the uncertainty factor for extrapolating toxicity data across species (unitless). A species-specific UF_a shall be selected and applied to each target species, consistent with the equation.

 UF_s = the uncertainty factor for extrapolating from subchronic to chronic exposures (unitless).

 UF_1 = the uncertainty factor for extrapolation from LOAEL to NOAEL (unitless)

Wt = average weight in kilograms (kg) of the target species.

W = average daily volume of water in liters consumed per day (L/d) by the target species.

 F_{TLi} = average daily amount of food consumed by the target species in kilograms (kg/d) for trophic level i.

 BAF_{WLTLi} = aquatic life bioaccumulation factor with units of liter per kilogram (L/kg), as derived from Section 302.570 for trophic level i.

e) Calculation of the Lake Michigan Basin Wildlife Criterion. TSVs are obtained for each target species. The geometric mean TSVs of all

mammal species is calculated and also of all bird species. The LMWC is the lower of the bird or mammal geometric mean TSV.

(Source: Amended at 27 Ill. Reg. 166, effective December 20, 2002)

Section 302.580 Procedures for Deriving Water Quality Criteria and Values in the Lake Michigan Basin to Protect Human Health-General

- a) The Lake Michigan Basin human health criteria or values for a substance are those concentrations at which humans are protected from adverse effects resulting from incidental exposure to, or ingestion of, the waters of Lake Michigan and from ingestion of aquatic organisms taken from the waters of Lake Michigan. A Lake Michigan Human Health Threshold Criterion (LMHHTC) or Lake Michigan Human Health Threshold Value (LMHHTV) will be calculated for all substances according to Section 302.585, if data is available. Water quality criteria or values for substances which are, or may be, carcinogenic to humans will also be calculated according to procedures for the Lake Michigan Human Health Nonthreshold Criterion (LMHHNC) or the Lake Michigan Human Health Nonthreshold Value (LMHHNV) in Section 302.590.
- b) Minimum data requirements for BAFs for Lake Michigan Basin human health criteria:
 - 1) Tier I.
 - A) For all organic chemicals, either a field-measured BAF or a BAF derived using the BSAF methodology is required unless the chemical has a BAF less than 125, then a BAF derived by any methodology is required; and
 - B) For all inorganic chemicals, including organometals such as mercury, either a field-measured BAF or a laboratory-measured BCF is required.
 - 2) Tier II. Any bioaccumulation factor method in Section 302.570(a) may be used to derive a Tier II criterion.

(Source: Amended at 23 Ill. Reg. 11249, effective August 26, 1999)

Section 302.585 Procedures for Determining the Lake Michigan Basin Human Health Threshold Criterion (LMHHTC) and the Lake Michigan Basin Human Health Threshold Value (LMHHTV)

The LMHHTC or LMHHTV is derived for all toxic substances from the most sensitive end point for which there exists a dosage or concentration below which no adverse effect or response is likely to occur.

- a) Minimum data requirements:
 - 1) Tier I. The minimum data set sufficient to derive a Tier I LMHHTC shall include at least one epidemiological study or one animal study of greater than 90 days duration; or
 - 2) Tier II. When the minimum data for deriving Tier I criteria are not available, a more limited database consisting of an animal study of greater than 28 days duration shall be used.
- b) Principles for development of Tier I criteria and Tier II values:
 - 1) The experimental exposure level representing the highest level tested at which no adverse effects were demonstrated (NOAEL) shall be used for calculation of a criterion or value. In the absence of a NOAEL, a LOAEL shall be used if it is based on relatively mild and reversible effects;
 - 2) Uncertainty factors (UFs) shall be used to account for the uncertainties in predicting acceptable dose levels for the general human population based upon experimental animal data or limited human data:
 - A) A UF of 10 shall be used when extrapolating from experimental results of studies on prolonged exposure to average healthy humans;
 - B) A UF of 100 shall be used when extrapolating from results of long-term studies on experimental animals;
 - C) A UF of up to 1000 shall be used when extrapolating from animal studies for which the exposure duration is less than chronic, but greater than subchronic;
 - D) A UF of up to 3000 shall be used when extrapolating from animal studies for which the exposure duration is less than subchronic;
 - E) An additional UF of between one and ten shall be used when deriving a criterion from a LOAEL. The level of additional

uncertainty applied shall depend upon the severity and the incidence of the observed adverse effect;

- F) An additional UF of between one and ten shall be applied when there are limited effects data or incomplete sub-acute or chronic toxicity data;
- The total uncertainty (Σ of the uncertainty factors) shall not exceed 10,000 for Tier I criterion and 30,000 for Tier II value; and
- 4) All study results shall be converted to the standard unit for acceptable daily exposure of milligrams of toxicant per kilogram of body weight per day (mg/kg/day). Doses shall be adjusted for continuous exposure.
- c) Tier I criteria and Tier II value derivation.
 - 1) Determining the Acceptable Daily Exposure (ADE)

ADE = test value / Σ of the UFs from subsection (b)(2) of this Section

Where:

acceptable daily exposure is in milligrams toxicant per kilogram body weight per day (mg/kg/day)

2) Determining the Lake Michigan Basin Human Health Threshold Criterion (LMHHTC) or the Lake Michigan Basin Human Health Threshold Value (LMHHTV)

LMHHTC or LMHHTV=

```
 \left\{ \text{ ADE x BW x RSC } \right\} /   \left\{ \text{ WC + [(FC_{TL3} \text{ x } \text{ BAF}_{HHTL3}) + (FC_{TL4} \text{ x } \text{BAF}_{HHTL4})] } \right\}
```

Where:

LMHHTC or LMHHTV is in milligrams per liter (mg/L) ADE = acceptable daily intake in milligrams toxicant per kilogram body weight per day (mg/kg/day)

RSC = relative source contribution factor of 0.8

BW = weight of an average human (BW = 70 kg)

WC = per capita water consumption (both drinking and incidental exposure) for surface waters classified as public water supplies = two liters/day; or per capita incidental daily water ingestion for surface waters not used as human drinking water sources = 0.01 liters/day

 FC_{TL3} = mean consumption of trophic level 3 fish by regional sport fishers of regionally caught freshwater fish = 0.0036 kg/day FC_{TL4} = mean consumption of trophic level 4 fish by regional sport fishers of regionally caught freshwater fish = 0.0114 kg/day BAF_{HHTL3} = human health bioaccumulation factor for edible portion of trophic level 3 fish, as derived using the BAF methodology in Section 302.570 BAF_{HHTL4} = human health bioaccumulation factor for edible

BAF_{HHTL4} = human health bioaccumulation factor for edible portion of trophic level 4 fish, as derived using the BAF methodology in Section 302.570

(Source: Added at 21 Ill. Reg. 1356, effective December 24, 1997.)

Section 302.590 Procedures for Determining the Lake Michigan Basin Human Health Nonthreshold Criterion (LMHHNC) or the Lake Michigan Basin Human Health Nonthreshold Value (LMHHNV)

A LMHHNC or LMHHNV shall be derived for those toxic substances for which any exposure, regardless of extent, carries some risk of damage from cancer or a nonthreshold toxic mechanism. For single or combinations of substances, a risk level of 1 in 100,000 (or 10⁻⁵) shall be used for the purpose of determination of a LMHHNC or LMHHNV.

- a) Minimum data requirements. Minimal experimental or epidemiological data requirements are incorporated in the cancer classification determined by USEPA at Appendix C II A to 40 CFR 132, incorporated by reference at Section 302.510.
- b) Principles for development of criteria or values:
 - 1) Animal data are fitted to a linearized multistage computer model (Global 1986 in "Mutagenicity and Carcinogenicity Assessment for 1, 3-Butadiene" September 1985 EPA/600/8-85/004A, incorporated by reference at Section 301.106 or scientifically justified equivalents). The upper-bound 95 percent confidence limit on risk at the 1 in 100,000 risk level shall be used to calculate a risk associated dose (RAD); and
 - 2) A species scaling factor shall be used to account for differences between test species and humans. Milligrams per surface area per

day is an equivalent dose between species. All doses presented in mg/kg bodyweight will be converted to an equivalent surface area dose by raising the mg/kg dose to the 3/4 power.

c) Determining the risk associated dose (RAD). The RAD shall be calculated using the following equation:

$$RAD = 0.00001 / q_1*$$

Where:

RAD = risk associated dose in milligrams of toxicant or combinations of toxicants per kilogram body weight per day (mg/kg/day) $0.00001 \ (1 \ X \ 10^{-5})$ = incremental risk of developing cancer equal to 1 in 100,000

 q_1 * = slope factor (mg/kg/day)⁻¹

d) Determining the Lake Michigan Basin Human Health Nonthreshold Criterion (LMHHNC) or the Lake Michigan Basin Human Health Nonthreshold Value (LMHHNV):

LMHHNC or LMHHNV=

 $\{RAD \times BW \} / \{WC + [(FC_{TL3} \times BAF_{HHTL3}) + (FC_{TL4} \times BAF_{HHTL4})]\}$

Where:

LMHHNC or LMHHNV is in milligrams per liter (mg/L)

RAD = risk associated dose of a substance or combination of substances in milligrams per day (mg/d) which is associated with a lifetime cancer risk level equal to a ratio of 1 to 100,000

BW = weight of an average human (BW = 70 kg)

WC = per capita water consumption for surface waters classified as public water supplies = 2 liters/day, or per capita incidental daily water ingestion for surface waters not used as human drinking water sources = 0.01 liters/day

 FC_{TL3} = mean consumption of trophic level 3 of regionally caught freshwater fish = 0.0036 kg/day

 FC_{TL4} = mean consumption of trophic level 4 of regionally caught freshwater fish = 0.0114 kg/day

BAF_{HHTL3}, BAF_{HHTL4} = bioaccumulation factor for trophic levels 3 and 4 as derived in Section 302.570

(Source: Added at 21 Ill. Reg. 1356, effective December 24, 1997.)

Section 302.595 Listing of Bioaccumulative Chemicals of Concern, Derived Criteria and Values

- a) The Agency shall maintain a listing of toxicity criteria and values derived pursuant to this Subpart. This list shall be made available to the public and updated whenever a new criterion or value is derived and shall be published when updated in the Illinois Register.
- b) A criterion or value published pursuant to subsection (a) of this Section may be proposed to the Board for adoption as a numeric water quality standard.
- c) The Agency shall maintain for inspection all information including, but not limited to, assumptions, toxicity data and calculations used in the derivation of any toxicity criterion or value listed pursuant to subsection (a) of this Section until adopted by the Board as a numeric water quality standard.

(Source: Amended at 36 Ill. Reg. 18871, effective December 12, 2012)

SUBPART F: PROCEDURES FOR DETERMINING WATER QUALITY CRITERIA

Section 302.601 Scope and Applicability

This Subpart contains the procedures for determining the water quality criteria set forth in Section 302.210(a), (b) and (c).

(Source: Added at 14 Ill. Reg. 2899, effective February 13, 1990)

Section 302.603 Definitions

As used in this Subpart, the following terms shall have the meanings specified.

"Bioconcentration" means an increase in concentration of a chemical and its metabolites in an organism (or specified tissues thereof) relative to the concentration of the chemical in the ambient water acquired through contact with the water alone.

"Carcinogen" means a chemical which causes an increased incidence of benign or malignant neoplasms, or a statistically significant decrease in the latency period between exposure and onset of neoplasms in at least one mammalian species or man through epidemiological or clinical studies.

"EC-50" means the concentration of a substance or effluent which causes a

given effect to 50% of the exposed organisms in a given time period.

"LC-50" means the concentration of a toxic substance or effluent which is lethal to 50% of the exposed organisms in a given time period.

"LOAEL" or "Lowest Observable Adverse Effect Level" means the lowest tested concentration of a chemical or substance which produces a statistically significant increase in frequency or severity of non-overt adverse effects between the exposed population and its appropriate control.

"MATC" or "Maximum Acceptable Toxicant Concentration" means the value obtained by calculating the geometric mean of the lower and upper chronic limits from a chronic test. A lower chronic limit is the highest tested concentration which did not cause the occurrence of a specified adverse effect. An upper chronic limit is the lowest tested concentration which did cause the occurrence of a specified adverse effect and above which all tested concentrations caused such an occurrence.

"NOAEL" or "No Observable Adverse Effect Level" means the highest tested concentration of a chemical or substance which does not produce a statistically significant increase in frequency or severity of non-overt adverse effects between the exposed population and its appropriate control.

"Resident or Indigenous Species" means species which currently live a substantial portion of their lifecycle or reproduce in a given body of water, or which are native species whose historical range includes a given body of water.

(Source: Added at 14 III. Reg. 2899, effective February 13, 1990)

Section 302.604 Mathematical Abbreviations

The following mathematical abbreviations have been used in this Subpart:

exp x base of the natural logarithm, e, raised to x- power

ln x natural logarithm of x

log x logarithm to the base 10 of x A**B A raised to the B-power SUM(x) summation of the values of x

(Source: Added at 14 III. Reg. 2899, effective February 13, 1990)

Section 302.606 Data Requirements

The Agency shall review, for validity, applicability and completeness, data used in calculating criteria. To the extent available, and to the extent not otherwise specified, testing procedures, selection of test species and other aspects of data acquisition must be according to methods published by USEPA or nationally recognized standards organizations, including but not limited to those methods found in "Standard Methods", as incorporated by reference in 35 Ill. Adm. Code 301.106, or approved by the American Society for Testing and Materials as incorporated by reference in 35 Ill. Adm. Code 301.106.

(Source: Added at 14 III. Reg. 2899, effective February 13, 1990)

Section 302.612 Determining the Acute Aquatic Toxicity Criterion for an Individual Substance - General Procedures

- a) A chemical specific Acute Aquatic Toxicity Criterion (AATC) is calculated using procedures specified in Sections 302.615 and 302.681 if acute toxicity data are available for at least five (5) resident or indigenous species from five (5) different North American genera of freshwater organisms including representatives of the following taxa:
 - 1) Representatives of two families in the Class Osteichthyes (Bony Fishes).
 - 2) The family Daphnidae.
 - 3) A benthic aquatic macroinvertebrate.
 - 4) A vascular aquatic plant or a third family in the Phylum Chordata which may be from the Class Osteichthyes.
- b) If data are not available for resident or indigenous species, data for non-resident species may be used if the non-resident species is of the same family or genus and has a similar habitat and environmental tolerance. The procedures of Section 302.615 must be used to obtain an AATC for individual substances whose toxicity is unaffected by ambient water quality characteristics. The procedures of Section 302.618 must be used if the toxicity of a substance is dependent upon some other water quality characteristic.
- c) If data are not available that meet the requirements of subsection (a), an AATC is calculated by obtaining at least one EC-50 or LC-50 value from both a daphnid species and either fathead minnow or bluegill. If there are data available for any other North American freshwater species, they must also be included. An AATC is calculated by dividing the lowest Species

Mean Acute Value (SMAV), as determined according to Section 302.615, by 10.

(Source: Added at 14 Ill. Reg. 2899, effective February 13, 1990)

Section 302.615 Determining the Acute Aquatic Toxicity Criterion - Toxicity Independent of Water Chemistry

If the acute toxicity of the chemical has not been shown to be related to a water quality characteristic, including but not limited to, hardness, pH, temperature, etc., the AATC is calculated by using the procedures below.

- a) For each species for which more than one acute value is available, the Species Mean Acute Value (SMAV) is calculated as the geometric mean of the acute values from all tests.
- b) For each genus for which one or more SMAVs are available, the Genus Mean Acute Value (GMAV) is calculated as the geometric mean of the SMAVs available for the genus.
- c) The GMAVs are ordered from high to low.
- d) Ranks (R) are assigned to the GMAVs from "1" for the lowest to "N" for the highest. If two or more GMAVs are identical, successive ranks are arbitrarily assigned.
- e) The cumulative probability, P, is calculated for each GMAV as R/(N + 1).
- f) The GMAVs to be used in the calculations of subsection (g) must be those with cumulative probabilities closest to 0.05. If there are less than 59 GMAVs in the total data set, the values utilized must be the lowest obtained through the ranking procedures of subsections (c) and (d). "T" is the number of GMAV's which are to be used in the calculations of subsection (g). T is equal to 4 when the data set includes at least one representative from each of the five taxa in Section 302.612 and a representative from each of the three taxa listed below. T is equal to 3 when the data includes at least one representative from each of the five taxa in Section 302.612 and from one or two of the taxa listed below. T is equal to 2 when the data set meets the minimum requirements of Section 302.612 but does not include representatives from any of the three taxa listed below. When toxicity data on any of the three taxa listed below are available, they must be used along with the minimum data required pursuant to Section 302.612.

- 1) A benthic crustacean, unless such was used pursuant to Section 302.612(a)(3), in which case an insect must be utilized.
- 2) A member of a phylum not used in subsections (a), (b) or f(1).
- 3) An insect from an order not already represented.
- g) Using the GMAVs and T-value identified pursuant to subsection (f) and the Ps calculated pursuant to subsection (e), the Final Acute Value (FAV) and the AATC are calculated as:

$$FAV = \exp(A) \text{ and } \\ AATC = FAV/2 \\$$
 Where:
$$A = L + 0.2236 \text{ S};$$

$$L = [SUM(1n \text{ GMAV}) - S(SUM(P^{**}0.5))]/T; \text{ and } \\ S = [[SUM((1n \text{ GMAV})^{**}2) - ((SUM(1n \text{ GMAV}))^{**}2)/T]/[SUM(P) - ((SUM(P^{**}0.5))^{**}2)/T]]^{**}0.5.$$

h) If a resident or indigenous species, whose presence is necessary to sustain commercial or recreational activities, or prevent disruptions of the waterbody's ecosystem, including but not limited to loss of species diversity or a shift to a biotic community dominated by pollution-tolerant species, will not be protected by the calculated FAV, then the EC-50 or LC-50 for that species is used as the FAV.

(Source: Added at 14 Ill. Reg. 2899, effective February 13, 1990)

Section 302.618 Determining the Acute Aquatic Toxicity Criterion - Toxicity Dependent on Water Chemistry

If data are available to show that a relationship exists between a water quality characteristic (WQC) and acute toxicity to two or more species, an Acute Aquatic Toxicity Criterion (AATC) may be calculated. The best documented relationship is that between the water quality characteristic, hardness and acute toxicity of metals. Although this relationship between hardness and acute toxicity is typically non-linear, it can be linearized by a logarithmic transformation (i.e. for any variable, K, f(K) = logarithm of K) of the variables and plotting the logarithm of hardness against the logarithm of acute toxicity. Similarly, relationships between acute toxicity and other water quality characteristics, such as pH or temperature, may require a transformation, including no

transformation (i.e. for any variable, K, f(K) = K) for one or both variables to obtain least squares linear regression of the transformed acute toxicity values on the transformed values of the water quality characteristic. An AATC is calculated using the following procedures:

- a) For each species for which acute toxicity values are available at two or more different values of the water quality characteristic, a linear least squares regression of the transformed acute toxicity (TAT) values on the transformed water quality characteristic (TWQC) values is performed to obtain the slope of the line describing the relationship.
- b) Each of the slopes determined pursuant to subsection (a) is evaluated as to whether or not it is statistically valid, taking into account the range and number of tested values of the water quality characteristic and the degree of agreement within and between species. If slopes are not available for at least one fish and one invertebrate species, or if the available slopes are too dissimilar, or if too few data are available to define the relationship between acute toxicity and the water quality characteristic, then the AATC must be calculated using the procedures in Section 302.615.
- c) Normalize the TAT values for each species by subtracting W, the arithmetic mean of the TAT values of a species from each of the TAT values used in the determination of the mean, such that the arithmetic mean of the normalized TAT values for each species individually or for any combination of species is zero (0.0).
- d) Normalize the TWQC values for each species using X, the arithmetic mean of the TWQC values of a species, in the same manner as in subsection (c).
- e) Group all the normalized data by treating them as if they were from a single species and perform at least squares linear regression of all the normalized TAT values on the corresponding normalized TWQC values to obtain the pooled acute slope, V.
- f) For each species, the graphical intercept representing the species TAT intercept, f(Y), at a specific selected value, Z, of the WQC is calculated using the equation:

$$f(Y) = W - V(X - g(Z))$$

Where:

f () is the transformation used to convert acute toxicity values to TAT values;

Y is the species acute toxicity intercept or species acute intercept;

W is the arithmetic mean of the TAT values as specified in subsection (c);

V is the pooled acute slope as specified in subsection (e);

X is the arithmetic mean of the TWQC values as specified in subsection (d);

g () is the transformation used to convert the WQC values to TWQC values; and

Z is a selected value of the WQC.

- g) For each species, determine the species acute intercept, Y, by carrying out an inverse transformation of the species TAT value, f(Y). For example, in the case of a logarithmic transformation, Y = antilogarithm of (f(Y)); or in the case where no transformation is used, Y = f(Y).
- h) The Final Acute Intercept (FAI) is derived by using the species acute intercepts, obtained from subsection (g), in accordance with the procedures described in Section 302.615(b) through (g), with the word "value" replaced by the word "intercept". Note that in this procedure geometric means and natural logarithms are always used.
- i) The Aquatic Acute Intercept (AAI) is obtained by dividing the FAI by two.
- j) The AATC at any value of the WQC, denoted by WQCx, is calculated using the terms defined in subsection (f) and the equation:

$$AATC = \exp[V(g(WQCx) - g(Z)) + f(AAI)].$$

(Source: Added at 14 Ill. Reg. 2899, effective February 13, 1990)

Section 302.621 Determining the Acute Aquatic Toxicity Criterion - Procedure for Combinations of Substances

An AATC for any combination of substances (including effluent mixtures) must be determined by the following toxicity testing procedures:

a) Not more than 50% of test organisms from the most sentitive species tested may exhibit mortality or immobility after a 48-hour test for invertebrate or a 96-hour test for fishes.

b) Three resident or indigenous species of ecologically diverse taxa must be tested initially. If resident or indigenous species are not available for testing, non-resident species may be used if the non-resident species is of the same family or genus and has a similar habitat and environmental tolerance.

(Source: Added at 14 III. Reg. 2899, effective February 13, 1990)

Section 302.627 Determining the Chronic Aquatic Toxicity Criterion for an Individual Substance - General Procedures

- a) A chemical-specific Chronic Aquatic Toxicity Criterion (CATC) is calculated using procedures specified in subsection (b) when chronic toxicity data are available for at least five species from five different North American genera of freshwater organisms, including representatives from the following taxa:
 - 1) Representatives of two families in the Class Osteichthyes (Bony Fishes).
 - 2) The family Daphnidae.
 - 3) A benthic aquatic macroinvertebrate.
 - 4) An alga (96-hour test) or a vascular aquatic plant.
- b) A CATC is derived in the same manner as the FAV in Sections 302.615 or 302.618 by substituting CATC for FAV or FAI, chronic for acute, MATC for LC-50, SMCV (Species Mean Chronic Value) for SMAV, and GMCV (Genus Mean Chronic Value) for GMAV.
- c) If data are not available to meet the requirements of subsection (a), a CATC is calculated by dividing the FAV by the highest acute-chronic ratio obtained from at least one fish and one invertebrate species. The acute-chronic ratio for a species equals the acute toxicity concentration from data considered under Sections 302.612 through 302.618, divided by the chronic toxicity concentration from data calculated under subsections (a) and (b) subject to the following conditions:
 - 1) If the toxicity of a substance is related to any water quality characteristic (WQC), the acute-chronic ratio must be based on acute and chronic toxicity data obtained from organisms exposed to test water with WQC values that are representative of the WQC values of the waterbody under consideration. Preference under this

subsection must be given to data from acute and chronic tests done by the same author or in the same reference in order to increase the likelihood of comparable test conditions.

- 2) If the toxicity of a substance is unrelated to water quality parameters, the acute-chronic ratio may be derived from any acute and chronic test on a species regardless of the similarity in values of those water quality parameters. Preference under this subsection must be given to data from acute and chronic tests done on the same organisms or their descendants.
- 3) If there is more than one acute-chronic ratio for a species, a geometric mean of the ratio is calculated, corrected for the relationship of toxicity to water quality parameters.
- 4) If the acute and chronic toxicity data indicate that the acute-chronic ratio varies with changes in water quality parameters, the acute-chronic ratio used over specified values of the water quality parameters must be based on the ratios at water quality parameter values closest to those specified.
- 5) If acute and chronic toxicity data are unavailable to determine an acute-chronic ratio for at least two North American freshwater species, a ratio of 25 shall be used.
- d) If a resident or indigenous species whose presence is necessary to sustain commercial or recreational activities, or prevent disruptions of the waterbody's ecosystem, including but not limited to loss of species diversity or a shift to a biotic community dominated by pollution-tolerant species, will not be protected by the calculated CATC, then the MATC for that species is used as the CATC.

(Source: Added at 14 Ill. Reg. 2899, effective February 13, 1990)

Section 302.630 Determining the Chronic Aquatic Toxicity Criterion - Procedure for Combinations of Substances

A CATC for any combination of substances (including effluent mixtures) may be determined by toxicity testing procedures pursuant to the following:

- a) No combination of substances may exceed concentrations greater than a NOAEL as determined for the most sensitive of the species tested.
- b) Three resident or indigenous species of ecologically diverse taxa must be tested initially. If resident or indigenous species are not available for

testing, non-resident species may be used if the non-resident species is of the same family or genus and has a similar habitat and environmental tolerance.

(Source: Added at 14 III. Reg. 2899, effective February 13, 1990)

Section 302.633 The Wild and Domestic Animal Protection Criterion

The Wild and Domestic Animal Protection Criterion (WDAPC) is the concentration of a substance which if not exceeded protects Illinois wild and domestic animals from adverse effects, such as functional impairment or pathological lesions, resulting from ingestion of surface waters of the State and from ingestion of aquatic organisms taken from surface waters of the State.

- a) For those substances for which a NOAEL has been derived from studies of mammalian or avian species exposed to the substance via oral routes including gavage, the lowest NOAEL among species must be used in calculating the WDAPC. Additional considerations in selecting NOAEL include:
 - 1) If the NOAEL is given in milligrams of toxicant per liter of water consumed (mg/L), prior to calculating the WDAPC, the NOAEL must be multiplied by the daily average volume of water consumed by the test animals in liters per day (L/d) and divided by the average weight of the test animals in kilograms (kg).
 - 2) If the NOAEL is given in milligrams of toxicant per kilogram of food consumed (mg/kg), prior to calculating the WDAPC, the NOAEL must be multiplied by the average amount of food in kilograms consumed daily by the test animals (kg/d) and divided by the average weight of the test animals in kilograms (kg).
 - 3) If the animals used in a study were not exposed to the toxicant each day of the test period, the NOAEL must be multiplied by the ratio of days of exposure to the total days in the test period.
 - 4) If more than one NOAEL is available for the same animal species, the geometric mean of the NOAELs must be used to calculate the WDAPC.
- b) For those substances for which a NOAEL is not available but the lowest observed adverse effect level (LOAEL) has been derived from studies of animal species exposed to the substance via oral routes including gavage, one-tenth of the LOAEL shall be substituted for the NOAEL.

- c) The LOAEL must be selected in the same manner as that specified for the NOAEL in subsection (a).
- d) The WDAPC, measured in milligrams per liter (mg/L), is calculated according to the equation:

$$WDAPC = [0.1 \text{ NOAEL x Wt}]/[W + (F \text{ x BCF})]$$

Where:

NOAEL is derived from mammalian or avian studies as specified in subsections (a) and (b), and is measured in units of milligrams of substance per kilogram of body weight per day (mg/kg-d);

Wt = Average weight in kilograms (kg) of the test animals;

W = Average daily volume of water in liters consumed per day (L/d) by the test animals;

F = Average daily amount of food consumed by the test animals in kilograms (kg/d);

BCF = Aquatic life Bioconcentration Factor with units of liter per kilogram (L/kg), as derived in Sections 302.660 through 302.666; and

The 0.1 represents an uncertainty factor to account for species variability.

e) If no studies pertaining to the toxic substance in question can be found by the Agency, no criterion can be determined.

(Source: Added at 14 III. Reg. 2899, effective February 13, 1990)

Section 302.642 The Human Threshold Criterion

The Human Threshold Criterion (HTC) of a substance is that concentration or level of a substance at which humans are protected from adverse effects resulting from incidental exposure to, or ingestion of, surface waters of the State and from ingestion of aquatic organisms taken from surface waters of the State. HTCs are derived for those toxic substances for which there exists a threshold dosage or concentration below which no adverse effect or response is likely to occur.

(Source: Added at 14 Ill. Reg. 2899, effective February 13, 1990)

Section 302.645 Determining the Acceptable Daily Intake

The Acceptable Daily Intake (ADI) is the maximum amount of a substance which, if ingested daily for a lifetime, results in no adverse effects to humans. Subsections (a) through (e) list, in the order of preference, methods for determining the acceptable daily intake.

- a) The lowest of the following ADI values:
 - 1) For those substances which are listed with a maximum contaminant level in 40 CFR 141, incorporated by reference in 35 Ill. Adm. Code 301.106, or in 35 Ill. Adm. Code 611, the ADI equals the product of multiplying the maximum contaminant level given in milligrams per liter (mg/L) by 2 liters per day (L/d).
 - 2) For those substances which are listed with a maximum allowable concentration standard in 35 Ill. Adm. Code: Subtitle F, the acceptable daily intake equals the product of multiplying the public health enforcement standard given in milligrams per liter (mg/L) by 2 liters per day (L/d).
- b) For those substances for which a no observed adverse effect level (NOAEL-H) for humans exposed to the substance in drinking water has been derived, the acceptable daily intake equals the product of multiplying one-tenth of the NOAEL-H given in milligrams of toxicant per liter of water consumed (mg/L) by 2 liters per day (L/d). The lowest NOAEL-H must be used in the calculation of the acceptable daily intake.
- c) For those substances for which the lowest observed adverse effect level (LOAEL-H) for humans exposed to the substance in drinking water has been derived, one-hundredth of the LOAEL-H may be substituted for the NOAEL-H in subsection (b).
- d) For those substances for which a no observed adverse effect level (NOAEL-A) has been derived from studies of mammalian test species exposed to the substance via oral routes including gavage, the acceptable daily intake equals the product of multiplying 1/100 of the NOAEL-A given in milligrams toxicant per day per kilogram of test species weight (mg/kg-d) by the average weight of an adult human of 70 kilograms (kg). The lowest NOAEL-A among animal species must be used in the calculation of the acceptable daily intake. Additional considerations in selecting the NOAEL-A include:

- 1) If the NOAEL-A is given in milligrams of toxicant per liter of water consumed (mg/L) then, prior to calculating the acceptable daily intake, the NOAEL-A must be multiplied by the daily average volume of water consumed by the mammalian test species in liters per day (L/d) and divided by the average weight of the mammalian test species in kilograms (kg).
- 2) If the NOAEL-A is given in milligrams of toxicant per kilogram of food consumed (mg/kg), prior to calculating the acceptable daily intake the NOAEL-A must be multiplied by the average amount in kilograms of food consumed daily by the mammalian test species (kg/d) and divided by the average weight of the mammalian test species in kilograms (kg).
- 3) If the mammalian test species were not exposed to the toxicant each day of the test period, the NOAEL-A must be multiplied by the ratio of days of exposure to the total days of the test period.
- 4) If more than one NOAEL-A is available for the same mammalian test species, the geometric mean of the NOAEL-As must be used.
- e) For those substances for which a NOAEL-A is not available but the lowest observed adverse effect level (LOAEL-A) has been derived from studies of mammalian test species exposed to the substance via oral routes including gavage, one-tenth of the LOAEL-A may be substituted for the NOAEL-A in subsection (d). The LOAEL-A must be selected in the same manner as that specified for the NOAEL-A in subsection (d).
- f) If no studies pertaining to the toxic substance in question can be found by the Agency, no criterion can be determined.

(Source: Added at 14 Ill. Reg. 2899, effective February 13, 1990)

Section 302.648 Determining the Human Threshold Criterion

The HTC is calculated according to the equation:

$$HTC = ADI/[W + (F \times BCF)]$$

where:

HTC = Human health protection criterion in milligrams per liter (mg/L);

ADI = Acceptable daily intake of substance in milligrams per day (mg/d) as specified in Section 302.645;

- W = Per capita daily water consumption equal to 2 liters per day (L/d) for surface waters at the point of intake of a public or food processing water supply, or equal to 0.01 liters per day (L/d) which represents incidental exposure through contact or ingestion of small volumes of water while swimming or during other recreational activities for areas which are determined to be public access areas pursuant to Section 302.102 (b)(3), or 0.001 liters per day (L/d) for other General Use waters;
- F = Assumed daily fish consumption in the United States equal to 0.020 kilograms per day (kg/d); and
- BCF = Aquatic organism Bioconcentration Factor with units of liter per kilogram (L/kg) as derived in Sections 302.660 through 302.666.

(Source: Amended at 36 Ill. Reg. 18871, effective December 12, 2012)

Section 302.651 The Human Nonthreshold Criterion

The Human Nonthreshold Criterion (HNC) of a substance is that concentration or level of a substance at which humans are protected from an unreasonable risk of disease caused by a nonthreshold toxic mechanism as a result of incidental exposure to or ingestion of surface waters of the State and from ingestion of aquatic organisms taken from surface waters of the State. HNCs are derived for those toxic substances for which any exposure, regardless of extent, carries some risk of damage as specified in subsections (a) and (b).

- a) For single substances, a risk level of one in one million (1 in 1,000,000) shall be allowed (i.e, considered acceptable) for the purposes of determination of an HNC.
- b) For mixtures of substances, an additive risk level of one in one hundred thousand (1 in 100,000) shall be allowed (i.e, considered acceptable) for the purposes of determination of an HNC.

(Source: Added at 14 III. Reg. 2899, effective February 13, 1990)

Section 302.654 Determining the Risk Associated Intake

The Risk Associated Intake (RAI) is the maximum amount of a substance which if ingested daily for a lifetime is expected to result in the risk of one additional case of human cancer in a population of one million. Where more than one carcinogenic chemical is present, the RAI shall be based on an allowed additive risk of one additional case of cancer in a population of one hundred thousand. The RAI must be derived as specified in subsections (a) through (c).

- a) For those substances for which a human epidemiologic study has been performed, the RAI equals the product of the dose from exposure in units of milligrams toxicant per kilogram body weight per day (mg/kg-d) that results in a 70-year lifetime cancer probability of one in one million, times the average weight of an adult human of 70 kilograms (kg). The resulting RAI is expressed in milligrams toxicant per day (mg/d). If more than one human epidemiologic study is available, the lowest exposure level resulting in a 70-year lifetime probability of cancer equal to a ratio of one in one hundred thousand must be used in calculating the RAI.
- b) In the absence of an epidemiologic study, for those toxic substances for which a carcinogenic potency factor (CPF) has been derived from studies of mammalian test species the risk associated intake is calculated from the equation:

RAI = K/CPF

Where:

RAI = Risk associated intake in milligrams per day (mg/d);

K = A constant consisting of the product of the average weight of an adult human, assumed to be 70 kg, and the allowed cancer risk level of one in one million (1/1,000,000); and

CPF = Carcinogenic Potency Factor is the risk of one additional cancer per unit dose from exposure. The CPF is expressed in units of inverse milligrams per kilogram-day (1/mg/kg-d) as derived in subsections (b)(1) through (b)(7).

- 1) Only those studies which fulfill the data requirement criteria of Section 302.606 shall be used in calculating the CPF.
- The linear non-threshold dose-response relationship developed in the same manner as in the USEPA document "Mutagenicity and Carcinogenicity Assessment of 1,3-butadiene", incorporated by reference in 35 Ill. Adm. Code 301.106 shall be used in obtaining the unit risk, defined as the 95th percentile upper bound risk of one additional cancer resulting from a life time exposure to a unit concentration of the substance being considered. The CPF shall be estimated from the unit risk in accordance with subsection (b)(7). In calculating a CPF, the Agency must review alternate scientifically valid protocols if so requested.

- 3) If in a study of a single species more than one type of tumor is induced by exposure to the toxic substance, the highest of the CPFs is used.
- 4) If two or more studies vary in either species, strain or sex of the test animal, or in tumor type, the highest CPF is used.
- 5) If more than one tumor of the same type is found in some of the test animals, these should be pooled so that the dose response relationship is dose versus number of tumors per animal. The potency estimate for this dose response relationship is used if it is higher than estimates resulting from other methods.
- 6) If two or more studies are identical regarding species, strain and sex of the test animal, and tumor type, the highest of the CPFs is used.
- 7) Calculation of an equivalent dose between animal species and humans using a surface area conversion, and conversion of units of exposure to dose in milligrams of toxicant per kilogram of body weight per day (mg/kg-d) must be performed as specified in the USEPA document "Mutagenicity and Carcinogenicity Assessment of 1,3-butadiene", incorporated by reference in 35 Ill. Adm. Code 301.106.
- c) If both a human epidemiologic study and a study of mammalian test species are available for use in subsections (a) and (b), the risk associated intake is determined as follows:
 - 1) When the human epidemiologic study provides evidence of a carcinogenic effect on humans, the RAI is calculated from the human epidemiology study as specified in subsection (a).
 - When the mammalian study provides evidence a carcinogenic effect on humans, but the human epidemiologic study does not, a cancer risk to humans is assumed and the risk associated intake is calculated as specified in subsection (b).

(Source: Added at 14 Ill. Reg. 2899, effective February 13, 1990)

Section 302.657 Determining the Human Nonthreshold Criterion

The HNC is calculated according to the equation:

$$HNC = RAI/[W + (F \times BCF)]$$

where:

HNC = Human Nonthreshold Protection Criterion in milligrams per liter (mg/L);

RAI = Risk Associated Intake of a substance in milligrams per day (mg/d) which is associated with a lifetime cancer risk level equal to a ratio of one to 1,000,000 as derived in Section 302.654;

W = Per capita daily water consumption equal to 2 liters per day (L/d) for surface waters at the point of intake of a public or food processing water supply, or equal to 0.01 liters per day (L/d) which represents incidental exposure through contact or ingestion of small volumes of water while swimming or during other recreational activities for areas which are determined to be public access areas pursuant to Section 302.102(b)(3), or 0.001 liters per day (L/d) for other General Use waters;

F = Assumed daily fish consumption in the United States equal to 0.020 kilograms per day (kg/d); and

BCF = Aquatic Life Bioconcentration Factor with units of liter per kilogram (L/kg) as derived in Section 302.663.

(Source: Amended at 36 Ill. Reg. 18871, effective December 12, 2012)

Section 302.658 Stream Flow for Application of Human Nonthreshold Criterion

The HNC shall apply at all times except during periods when flows are less than the harmonic mean flow (Qhm), as determined by:

Qhm = N / SUM(1/Qi)

Where:

Qhm = harmonic mean flow,

N = number of daily values for stream flows, and

Qi = daily streamflow value on day i.

(Source: Added at 14 III. Reg. 2899, effective February 13, 1990)

Section 302.660 Bioconcentration Factor

A Bioconcentration Factor is used to relate substance residue in aquatic organisms to the concentration of the substance in the waters in which the organisms reside.

(Source: Added at 14 Ill. Reg. 2899, effective February 13, 1990)

Section 302.663 Determination of Bioconcentration Factors

- A Bioconcentration Factor equals the concentration of a substance in all or part of an aquatic organism in milligrams per kilogram of wet tissue weight (mg/kg), divided by the concentration of the substance in the water to which the organism is exposed in milligrams of the substance per liter of water (mg/L).
- a) The Bioconcentration Factor is calculated from a field study if the following conditions are met:
 - 1) Data are available to show that the concentration of the substance in the water to which the organism was exposed remained constant over the range of territory inhabited by the organism and for a period of time exceeding 28 days;
 - 2) Competing mechanisms for removal of the substance from solution did not affect the bioavailability of the substance; and
 - 3) The concentration of the substance to which the organism was exposed is less than the lowest concentration causing any adverse effects on the organism.
- b) In the absence of a field-derived Bioconcentration Factor, the Bioconcentration Factor is calculated from a laboratory test if the following conditions are met:
 - 1) The Bioconcentration Factor was calculated from measured concentrations of the toxic substance in the test solution;
 - 2) The laboratory test was of sufficient duration to have reached steady-state which is defined as a less than 10 percent change in the calculated Bioconcentration Factor over a 2-day period or 16 percent of the test duration whichever is longer. In the absence of a laboratory test which has reached steady-state, the Bioconcentration Factor may be calculated from a laboratory test with a duration greater than 28 days if more than one test is available for the same species of organism;

- 3) The concentration of the toxic substance to which the test organism was exposed is less than the lowest concentration causing any adverse effects on the organism;
- 4) If more than one Bioconcentration Factor for the same species is available, the geometric mean of the Bioconcentration Factors is used; and
- 5) The Bioconcentration Factor is calculated on a wet tissue weight basis. A Bioconcentration Factor calculated using dry tissue weight shall be converted to a wet tissue weight basis by multiplying the dry weight bioconcentration value by 0.1 for plankton and by 0.2 for individual species of fishes and invertebrates.
- c) In the absence of any Bioconcentration Factors measured from field studies as specified in subsection (a) or laboratory studies which have reached steady-state as specified in subsection (b), the Bioconcentration Factor is calculated according to the equation:

$$\log BCF = A + B \log Kow$$

Where:

BCF = Bioconcentration Factor;

Kow = The octanol/water partition coefficient measured as specified in ASTM E 1147, incorporated by reference in 35 Ill. Adm. Code 301.106 (If the Kow is not available from laboratory testing, it shall be calculated from structure-activity relationships or available regression equations.); and

The constants A = -0.23 and B = 0.76 shall be used unless a change in the value of the constants is requested (The Agency shall honor requests for changes only if such changes are accompanied by scientifically valid supporting data.).

(Source: Added at 14 III. Reg. 2899, effective February 13, 1990)

Section 302.666 Utilizing the Bioconcentration Factor

The Bioconcentration Factor derived in Section 302.663 is used to calculate water quality criteria for a substance as specified below:

- a) When calculating a WDAPC as described in Section 302.633, the geometric mean of all available steady-state whole body Bioconcentration Factors for fish and shellfish species which constitutes or represents a portion of the diet of indigenous wild and domestic animal species is used. Additional considerations in deriving a Bioconcentration Factor include:
 - 1) An edible portion Bioconcentration Factor is converted to a whole body Bioconcentration Factor for a fish or shellfish species by multiplying the edible portion Bioconcentration Factor by the ratio of the percent lipid in the whole body to the percent lipid in the edible portion of the same species.
 - A Bioconcentration Factor calculated as described in Section 302.663(c) is converted to a whole body Bioconcentration Factor by multiplying the calculated Bioconcentration Factor by the ratio of the percent lipid in the whole body to 7.6.
- b) When calculating either a human threshold criterion or a human nonthreshold criterion as described in Sections 302.642 through 302.648 and Sections 302.651 through 302.657, respectively, the geometric mean of all available edible portion Bioconcentration Factors for fish and shellfish species consumed by humans is used. Additional considerations in deriving a Bioconcentration Factor include:
 - 1) Edible portions include:
 - A) Decapods -- muscle tissue.
 - B) Bivalve molluscs -- total living tissue.
 - C) Scaled fishes -- boneless, scaleless filets including skin except for bloater chubs in which the edible portion is the whole body excluding head, scales and visera.
 - D) Smooth-skinned fishes -- boneless, skinless filets.
 - 2) A whole body Bioconcentration Factor is converted to an edible portion Bioconcentration Factor by multiplying the whole body Bioconcentration Factor of a species by the ratio of the percent lipid in the edible portion to the percent lipid in the whole body of the same species.
 - 3) A Bioconcentration Factor calculated as described in Section 302.663 is converted to an edible portion Bioconcentration Factor

by multiplying the calculated Bioconcentration Factor by the ratio of the percent lipid in the edible portion to 7.6.

(Source: Added at 14 III. Reg. 2899, effective February 13, 1990)

Section 302.669 Listing of Derived Criteria

- a) The Agency shall develop and maintain a listing of toxicity criteria pursuant to this Subpart. This list shall be made available to the public and updated whenever a new criterion is derived and shall be published when updated in the Illinois Register.
- b) A criterion published pursuant to subsection (a) may be proposed to the Board for adoption as a numeric water quality standard.
- c) The Agency shall maintain for inspection all information including, but not limited to, assumptions, toxicity data and calculations used in the derivation of any toxicity criterion listed pursuant to subsection (a) until adopted by the Board as a water quality standard.

(Source: Amended at 36 Ill. Reg. 18871, effective December 12, 2012)

Section 302.APPENDIX A REFERENCES TO PREVIOUS RULES

The following table is provided to aid in referencing old Board rule numbers to section numbers pursuant to codification.

Chapter 3: Water Pollution Part II, Water Quality Standards	35 Ill. Admin. Code Parts 302 and 303
Unnumbered Preamble	Section 302.101
Rule 201	Section 302.102
Rule 202	Section 302.103
Rule 203	Section 302.201,
	Section 302.202,
	Section 303.201
Rule 203(a)	Section 302.203
Rule 203(b)	Section 302.204
Rule 203(c)	Section 302.205
Rule 203(d)	Section 302.206
Rule 203(e)	Section 302.207
Rule 203(f)	Section 302.208
Rule 203(g)	Section 302.209
Rule 203(h)	Section 302.210
Rule 203(i)	Section 302.211(a)

Dula 202(i)(1)	Section 202 211(b)
Rule 203(i)(1)	Section 302.211(b)
Rule 203(i)(2)	Section 302.211(c)
Rule 203(i)(3)	Section 302.211(d)
Rule 204(i)(4)	Section 302.211(e)
	Section 303.311
	Section 303.321
	Section 303.331
	Section 303.341
	Section 303.351
	Section 303.361
Rule 203(i) (Unnumbered	Section 302.104
Paragraph)	
Rule 203(i)(5)	Section 302.211(f)
Rule 203(i)(6)	Section 302.211(g)
Rule 203(i)(7)	Section 302.211(h)
Rule 203(i)(8)	Section 302.211(i)
Rule 203(i)(9)	Deleted
Rule 203(i)(10)	Section 302.211(j), 303.500
Rule 203(i)(11)(bb)	Section 303.502
Rule 203.1(a)	Section 303.312
Rule 203.1(b)	Section 303.352
Rule 204	Section 302.301
11410 20 1	Section 302.302
	Section 303.202
Rule 204(a)	Section 302.303
Rule 204(b)	Section 302.304
Rule 204(c)	Section 302.305
Rule 205	Section 302.401
Rule 205(a)	Section 302.403
Rule 205(b)	Section 302.404
Rule 205(c)	Section 302.405
Rule 205(d)	Section 302.406
Rule 205(e)	Section 302.407
Rule 205(f)	Section 302.408
Rule 205(g)	Section 302.409
(6)	Section 302.410
Rule 205(h) Rule 206	Section 302.410 Section 302.501
Rule 206(a)	Section 302.502
Rule 206(b)	Section 302.503
Rule 206(c)	Section 302.504
Rule 206(d)	Section 302.505
Rule 206(e)	Section 302.506(a)
Rule 206(e)(1)(A)	Section 302.507(a)
Rule 206(e)(1)(B)	Section 302.507(b)
Rule 206(e)(1)(C)	Section 302.506(b)

Rule 206(e)(1)(D)	Section 302.506(c)
Rule 206(e)(2)	Section 302.508
Rule 206(e)(3)	Section 302.509
Rule 207	Section 303.203
Rule 208	Section 302.105

Section 302.APPENDIX B Sources of Codified Sections

35 Ill. Adm. Code	Chapter 3: Water Pollution
Parts 302 and 303	Part II, Water Quality Standards
	Part III, Water Use Designations

Section

302.101	General, Unnumbered preamble to Part II
302.102(a)	Rule 201(a)
302.102(b)	Rule 201(a)
302.102(c)	Rule 201(b)
302.103	Rule 202
302.104	Rule 203(i)
302.105	Rule 208
302.201	General, Rule 203
302.202	Rule 203
302.203	Rule 203(a)
302.204	Rule 203(b)
302.205	Rule 203(c)
302.206	Rule 203(d)
302.207	Rule 203(e)
302.208	Rule 203(f)
302.209	Rule 203(g)
302.210	Rule 203(h)
302.211(a)	Rule 203(i)
302.211(b)	Rule 203(i)(1)
302.211(c)	Rule 203(i)(2)
302.211(d)	Rule 203(i)(3)
302.211(e)	Rule 203(i)(4)
302.211(f)	Rule 203(i)(5)
302.211(g)	Rule 203(i)(6)
302.211(h)	Rule 203(i)(7)
302.211(i)	Rule 203(i)(8)
302.211(j)	Rule 203(i)(10)
302.301	General, Rule 204, Rule 303
302.302	Rule 204
302.303	Rule 204(a)
302.304	Rule 204(b)

302.305	Rule 204(c)
302.401	General, Rule 205, Rule 302
302.402	Rule 302
302.403	Rule 205(a)
302.404	Rule 205(b)
302.405	Rule 205(c)
302.406	Rule 205(d)
302.407	Rule 205(e)
302.408	Rule 205(f)
302.409	Rule 205(g)
302.410	Rule 205(h)
302.501	General, Rule 206
302.502	Rule 206(a)
302.503	Rule 206(b)
302.504	Rule 206(c)
302.505	Rule 206(d)
302.506(a)	Rule 206(e)
302.506(b)	Rule 206(e)(1)(C)
302.506(c)	Rule 206(e)(1)(D)
302.507(a)	Rule 206(e)(1)(A)
302.507(b)	Rule 206(e)(1)(B)
302.508	Rule 206(e)(2)
302.509	Rule 206(e)(3)

Section 302.APPENDIX C Maximum total ammonia nitrogen concentrations allowable for certain combinations of pH and temperature

Section 302.TABLE A pH-Dependent Values of the AS (Acute Standard)

рН	Acute Standard (mg/L)
≤7.6	15.0
7.7	14.4
7.8	12.1
7.9	10.1
8.0	8.41
8.1	6.95
8.2	5.73
8.3	4.71
8.4	3.88
8.5	3.20
8.6	2.65

8.7	2.20
8.8	1.84
8.9	1.56 1.32
9.0	1.32

(Source: Added at 26 Ill. Reg.16931, effective November 8, 2002)

Section 302.TABLE B Temperature and pH-Dependent Values of the CS (Chronic Standard) for Fish Early Life Stages Absent

рН				Tem	perature,	°Celsius	}			
	0-7	8	9	10	11	12	13	14	15	16
6	11.3	10.6	9.92	9.30	8.72	8.17	7.66	7.19	6.74	6.32
6.1	11.2	10.5	9.87	9.25	8.67	8.13	7.62	7.15	6.70	6.28
6.2	11.2	10.5	9.81	9.19	8.62	8.08	7.58	7.10	6.66	6.24
6.3	11.1	10.4	9.73	9.12	8.55	8.02	7.52	7.05	6.61	6.19
6.4	11.0	10.3	9.63	9.03	8.47	7.94	7.44	6.98	6.54	6.13
6.5	10.8	10.1	9.51	8.92	8.36	7.84	7.35	6.89	6.46	6.06
6.6	10.7	9.99	9.37	8.79	8.24	7.72	7.24	6.79	6.36	5.97
6.7	10.5	9.81	9.20	8.62	8.08	7.58	7.11	6.66	6.25	5.86
6.8	10.2	9.58	8.98	8.42	7.90	7.40	6.94	6.51	6.10	5.72
6.9	9.93	9.31	8.73	8.19	7.68	7.20	6.75	6.33	5.93	5.56
7	9.60	9.00	8.43	7.91	7.41	6.95	6.52	6.11	5.73	5.37
7.1	9.20	8.63	8.09	7.58	7.11	6.67	6.25	5.86	5.49	5.15
7.2	8.75	8.20	7.69	7.21	6.76	6.34	5.94	5.57	5.22	4.90
7.3	8.24	7.73	7.25	6.79	6.37	5.97	5.60	5.25	4.92	4.61
7.4	7.69	7.21	6.76	6.33	5.94	5.57	5.22	4.89	4.59	4.30
7.5	7.09	6.64	6.23	5.84	5.48	5.13	4.81	4.51	4.23	3.97
7.6	6.46	6.05	5.67	5.32	4.99	4.68	4.38	4.11	3.85	3.61
7.7	5.81	5.45	5.11	4.79	4.49	4.21	3.95	3.70	3.47	3.25
7.8	5.17	4.84	4.54	4.26	3.99	3.74	3.51	3.29	3.09	2.89
7.9	4.54	4.26	3.99	3.74	3.51	3.29	3.09	2.89	2.71	2.54
8	3.95	3.70	3.47	3.26	3.05	2.86	2.68	2.52	2.36	2.21
8.1	3.41	3.19	2.99	2.81	2.63	2.47	2.31	2.17	2.03	1.91
8.2	2.91	2.73	2.56	2.40	2.25	2.11	1.98	1.85	1.74	1.63
8.3	2.47	2.32	2.18	2.04	1.91	1.79	1.68	1.58	1.48	1.39
8.4	2.09	1.96	1.84	1.73	1.62	1.52	1.42	1.33	1.25	1.17
8.5	1.77	1.66	1.55	1.46	1.37	1.28	1.20	1.13	1.06	0.99
8.6	1.49	1.40	1.31	1.23	1.15	1.08	1.01	0.95	0.89	0.84
8.7	1.26	1.18	1.11	1.04	0.98	0.92	0.86	0.80	0.75	0.71
8.8	1.07	1.01	0.94	0.88	0.83	0.78	0.73	0.68	0.64	0.60
8.9	0.92	0.86	0.81	0.76	0.71	0.66	0.62	0.58	0.55	0.51
9.0	0.79	0.74	0.69	0.65	0.61	0.57	0.54	0.50	0.47	0.44

* At 15 °C and above, the criterion for fish ELS Absent is the same as the criterion for fish ELS Present.

(Source: Added at 26 Ill. Reg. 16931, effective November 8, 2002)

Section 302.TABLE C Temperature and pH-Dependent Values of the CS (Chronic Standard) for Fish Early Life Stages Present

рН				Temper	rature, °(Celsius				
	0	14	16	18	20	22	24	26	28	30
6	6.95	6.95	6.32	5.55	4.88	4.29	3.77	3.31	2.91	2.56
6.1	6.91	6.91	6.28	5.52	4.86	4.27	3.75	3.30	2.90	2.55
6.2	6.87	6.87	6.24	5.49	4.82	4.24	3.73	3.28	2.88	2.53
6.3	6.82	6.82	6.19	5.45	4.79	4.21	3.70	3.25	2.86	2.51
6.4	6.75	6.75	6.13	5.39	4.74	4.17	3.66	3.22	2.83	2.49
6.5	6.67	6.67	6.06	5.33	4.68	4.12	3.62	3.18	2.80	2.46
6.6	6.57	6.57	5.97	5.25	4.61	4.05	3.56	3.13	2.75	2.42
6.7	6.44	6.44	5.86	5.15	4.52	3.98	3.50	3.07	2.70	2.37
6.8	6.29	6.29	5.72	5.03	4.42	3.89	3.42	3.00	2.64	2.32
6.9	6.12	6.12	5.56	4.89	4.30	3.78	3.32	2.92	2.57	2.25
7	5.91	5.91	5.37	4.72	4.15	3.65	3.21	2.82	2.48	2.18
7.1	5.67	5.67	5.15	4.53	3.98	3.50	3.08	2.70	2.38	2.09
7.2	5.39	5.39	4.90	4.31	3.78	3.33	2.92	2.57	2.26	1.99
7.3	5.08	5.08	4.61	4.06	3.57	3.13	2.76	2.42	2.13	1.87
7.4	4.73	4.73	4.30	3.78	3.32	2.92	2.57	2.26	1.98	1.74
7.5	4.36	4.36	3.97	3.49	3.06	2.69	2.37	2.08	1.83	1.61
7.6	3.98	3.98	3.61	3.18	2.79	2.45	2.16	1.90	1.67	1.47
7.7	3.58	3.58	3.25	2.86	2.51	2.21	1.94	1.71	1.50	1.32
7.8	3.18	3.18	2.89	2.54	2.23	1.96	1.73	1.52	1.33	1.17
7.9	2.80	2.80	2.54	2.24	1.96	1.73	1.52	1.33	1.17	1.03
8	2.43	2.43	2.21	1.94	1.71	1.50	1.32	1.16	1.02	0.90
8.1	2.10	2.10	1.91	1.68	1.47	1.29	1.14	1.00	0.88	0.77
8.2	1.79	1.79	1.63	1.43	1.26	1.11	0.97	0.86	0.75	0.66
8.3	1.52	1.52	1.39	1.22	1.07	0.94	0.83	0.73	0.64	0.56
8.4	1.29	1.29	1.17	1.03	0.91	0.80	0.70	0.62	0.54	0.48
8.5	1.09	1.09	0.99	0.87	0.76	0.67	0.59	0.52	0.46	0.40
8.6	0.92	0.92	0.84	0.73	0.65	0.57	0.50	0.44	0.39	0.34
8.7	0.78	0.78	0.71	0.62	0.55	0.48	0.42	0.37	0.33	0.29
8.8	0.66	0.66	0.60	0.53	0.46	0.41	0.36	0.32	0.28	0.24
8.9	0.56	0.56	0.51	0.45	0.40	0.35	0.31	0.27	0.24	0.21
9	0.49	0.49	0.44	0.39	0.34	0.30	0.26	0.23	0.20	0.18

(Source: Added at 26 Ill. Reg. 16931, effective November 8, 2002)

302.Appendix D Section 302.206(d): Stream Segments for Enhanced Dissolved Oxygen Protection

. ,			
BASIN NAME			
Segment Name			
Segment No.			
End Points	Latitude	Longitude	COUNTY
Illinois			
Aux Sable Creek			
239			
start	41.39821258910	33	-88.3307365155966
GRUNDY			
end	41.52216102665	54	-88.3153074461322
KENDALL			
Baker Creek			
123			
start	41.09931594460	94	-87.833779044559
KANKAKEE			
end	41.11874832570	75	-87.7916507082604
KANKAKEE			
Baptist Creek			
160			
start	40.51726438954	06	-90.9781701980636
HANCOCK			
end	40.52177737903	95	-90.9703232423026
HANCOCK			
Barker Creek			
170			
start	40.47301756906	41	-90.3623822544051
FULTON			
	40.45051025313	27	-90.423698306895
FULTON			
Battle Creek			
196			
	41.79146737235	6	-88.6440656199133
DEKALB			
	41.84544350748	-88.6580317835588	
DEKALB			
Big Bureau Creek			
209			
	41.24033034264	43	-89.3778305139628
BUREAU			

end	41.6599418992971	-89.0880711727354 LEE
Big Rock Creek		
275		
	41.6325949399571	-88.5379727020413
KENDALL		
end	41.7542831812644	-88.5621629654129 KANE
Blackberry Creek		
271		
start	41.6432480686252	-88.451129393594
KENDALL		
end	41.7663693677829	-88.3855968808499 KANE
Boone Creek		
284		
start	42.3430701828297	-88.2604646456881
MCHENRY		
end	42.3116813126792	-88.3284649937798
MCHENRY		
Buck Creek		
225		
start	41.4305449377211	-88.7732713228626
LASALLE		
end	41.4508806057478	-88.919966063547
LASALLE		
403		
start	40.6513984442885	-88.8660496976016
MCLEAN		
end	40.6757825960266	-88.8490439132056
MCLEAN		
Camp Creek		
116		
start	41.0119168530464	-89.7317034650143
STARK		
end	41.0202988179758	-89.6817209218761
STARK		

BASIN NAME Segment Name			
Segment No.			
End Points	Latitude	Longitude	COUNTY
168	Latitude	Longitude	COUNT
	40.29361550160	135	-90.7791785207262
MCDONOUGH	40.27301330100	133	-90.7791783207202
	40.39851614192	285	-90.5089903510732
MCDONOUGH	10.57051011172	.05	70.2007703210732
Camp Run			
115			
start	41.01191685304	164	-89.7317034650143
STARK			
end	41.05759448524	179	-89.6822685234528
STARK			
Cantway Slough			
250			
	41.16545212797	15	-87.6179423055771
KANKAKEE	41 100 401 000 60	\C1	05 (010045540010
	41.12049102062	261	-87.6018847740212
KANKAKEE Cedar Creek			
Cedar Creek 164			
	40.41879245039	046	-91.0119249544251
HANCOCK	40.410//24303/	7-10	71.0117247344231
	40.43209897475	314	-90.9816512014458
HANCOCK	10.1320909717011		3000010012011.00
Central Ditch			
17			
start	40.24663451444	131	-89.8605138200519
MASON			
	40.25914689240)7	-89.8331744969958
MASON			
Clear Creek			
70	40.00506017664	127	00 1715114005064
	40.23586317664	136	-89.1715114085864
LOGAN	40.2817523596784 -89.2105606026356		90 2105606026256
MCLEAN	40.2817523596784 -89.2105606026		-89.2103000020330
Coal Creek			
173			
	40.64583162862	298	-90.2773695191768
FULTON			
end	40.69119179758	394	-90.0990104026141
FULTON			

Collins Run		
243		
start	41.4219631544372	-88.3508108111242
GRUNDY		
	41.4172036201222	-88.3955434158999
GRUNDY		
Conover Branch		
184		
	39.8376993452498	-90.1465720267561
MORGAN		
	39.8696939232648	-90.1234898871846
MORGAN		
Coon Creek		
60		
	40.1076562155273	-89.0130117597621
DEWITT	40.1555251200522	00 00 5700 671 5000
	40.1755351290733	-88.8857086715202
DEWITT		
Coop Branch		
31	20 2042070011775	00 0072120701042
ena MACOUPIN	39.2042878811665	-90.0972130791043
	20 1104491626007	00 0070500202740
	39.1194481626997	-89.9878509202749
MACOUPIN	l•	
Coopers Defeat Cree 114	K	
	41.1557502062867	-89.748162019475
STARK	41.1337302002807	-09./401020194/3
	41.1485959333575	-89.6944246708098
STARK	41.1403/3/333313	-07.0744240700070
Copperas Creek		
88		
	40.4856512052475	-89.8867983078194
FULTON	40.4030312032473	07.0007703070174
	40.549513691198	-89.9011907117391
FULTON		07.701170/11/071
Court Creek		
122		

D . 0771 31 3 57			
BASIN NAME			
Segment Name			
Segment No.		·	COLDIMA
End Points	Latitude	Longitude	COUNTY
start	40.91841914036	91	-90.1108008628507 KNOX
end	40.93499193526	38	-90.2673514797552 KNOX
Cox Creek			
177			
start	40.02316742431	57	-90.1158780774246 CASS
end	39.96579570639	14	-90.0180644049351 CASS
Crane Creek			
174			
start	40.13287140382	67	-89.9709414534257
MENARD			
end	40.24663451444	31	-89.8605138200519
MASON			
Crow Creek			
102			
start	40.93232072519	64	-89.4264477600798
MARSHALL			
end	40.96631611808	76	-89.2558617294218
MARSHALL			
Deer Creek			
59			
start	40.11767972377	6	-89.3801215076251
LOGAN			
end	40.19156026271	15	-89.1582023776838
LOGAN			
Dickerson Slough			
421			
start	40.35979687060	68	-88.3225685158141
CHAMPAIGN			
end	40.45683898002	94	-88.3442742579475 FORD
Drummer Creek			
423			
start	40.37389931547	-88.3480753423	386 CHAMPAIGN
end	40.47910148999	3	-88.388698487066 FORD
Dry Fork			
35			
start	39.19897038271	55	-89.9609795725648
MACOUPIN	, -		-
	39.14457569514	12	-89.8876581181152
MACOUPIN			
Du Page River			
268			
200			

	41.4988385272507	-88.2166248594859 WILL
	41.7019525201778	-88.1476209409341 WILL
Eagle Creek		
392	44 42 5004 7440 754	00.000000000000
	41.1360015419764	-88.8528525904771
LASALLE		
end	41.1291172842462	-88.8664977236647
LASALLE		
East Aux Sable Creel	k	
240		
start	41.5221610266554	-88.3153074461322
KENDALL		
end	41.6231669397764	-88.2938779285952
KENDALL	11.0_01000000,,,01	00.25001,75200502
East Branch Big Roc	k Craak	
277	R CICCR	
	41.7542920220271	00 5621622556721 WANTE
	41.7542830239271	-88.5621632556731 KANE
	41.8161922949561	-88.6002917634599 KANE
East Branch Coppera	as Creek	
47		
start	40.549514632509	-89.901189903351
FULTON		

BASIN NAME		
Segment Name		
Segment No. End Points	I atituda — I amaituda	COLINITY
	Latitude Longitude	COUNTY
	40.6583152735498	-89.8516717710553
PEORIA		
East Fork La Moine 167		
	40.3962156185095	-90.9339386121768
HANCOCK		
	40.4506930058171	-90.758703782814
MCDONOUGH		
East Fork Mazon Ri	ver	
256		
	41.1872307009926	-88.2731640461448
GRUNDY		
	41.0815161304671	-88.3093601699244
LIVINGSTON		
East Fork Spoon Riv	ver	
110	44.04.00.00	00.60=00=60=4=60
	41.2158736312898	-89.6870256054763
STARK		00 -0110-110660
	41.2603216291895	-89.7311074496692
BUREAU		
Easterbrook Drain		
410	40.2607222740000	00.5707260055256
start MCLEAN	40.3687232740908	-88.5787269955356
1,1022111		00.5404021270550
	40.3909243275675	-88.5484031360558
MCLEAN Exline Slough		
Exime Slough 252		
_	41.1187483257075	-87.7916507082604
KANKAKEE		-87.7910307082004
	41.3377194296138	-87.674538578544 WILL
Fargo Run	41.33//194290138	-87.074338378344 WILL
rargo Kun 94		
	40.8110626738718	-89.7625906815013
PEORIA		-09.7023900013013
	40.7936211492847	-89.7147157689809
PEORIA		-07.7147137007007
Ferson Creek		
281		
	41.9275380999085	-88.3177738518806 KANE
	41.9518312998438	-88.3965138071814 KANE
Cliu	T1./J10J14//0 T J0	-00.5/051500/1014 KAINL

Fitch Creek 131 start 41.0629732421579 -89.9929808862433 KNOX end 41.1048465021615 -90.0171275726119 KNOX Forked Creek 265 start 41.312634893655 -88.1518349597477 WILL end 41.4208599921871 -87.8221168060732 WILL Forman Creek 129 start 41.0920068762041 -90.1229512077171 KNOX -90.1373931430424 KNOX end 41.061779692349 **Fourmile Grove Creek** 232 start 41.5880621752377 -89.0154533767497 LASALLE end 41.6281572065102 -89.0480036727754 LEE Fox Creek 121 start 41.2158736312898 -89.6870256054763 **STARK** end 41.2178841576744 -89.6378797955943 **BUREAU** Fox River 270 start 41.6177003859476 -88.5558384703467

-88.3100243828453 KANE

KENDALL

end 41.7665361019038

BASIN NAME			
Segment Name			
Segment No. End Points	Latitude	Lamaituda	COUNTY
Friends Creek	Latitude	Longitude	COUNTY
Friends Creek 56			
	39.92968815807	789	-88.7753341828841
MACON	37.7270001300	707	-00.7733341020041
	40.05111506215	524	-88.756810733868
MACON			
Furrer Ditch			
175			
	40.25914689240)7	-89.8331744807195
MASON			
	40.25685626224	18	-89.8235353908665
MASON			
Gooseberry Creek 138			
	41.08151613046	5 7 1	-88.3093601699244
LIVINGSTON	41.00131013040)/1	-00.3093001099244
	41.02291782732	291	-88.3433997610298
LIVINGSTON	.1102251702703	-	00.0 .00037 010230
181			
start	41.22735122633	311	-88.3737634512576
GRUNDY			
	41.15679698210)84	-88.3954921510714
GRUNDY			
Grindstone Creek			
169	40 20261550160)25	00 7701795207262
MCDONOUGH	40.29361550160	133	-90.7791785207262
	40.31289912029	966	-90.6514786739624
MCDONOUGH	10.5120771202	.00	70.0311700737021
Hall Ditch			
176			
start	40.21404306386	56	-89.8947856138658
MASON			
	40.19963960835	582	-89.8430392085184
MASON			
Hallock Creek			
101	40 02202515402	704	90 52202740 <i>6</i> 297
start PEORIA	40.93302515407	/ U 1	-89.523027406387
	40.91624960024	115	-89.5368879858621
PEORIA	10.0102 100002		07.5500017050021
1 Lorm 1			

Haw Creek		
125		
	40.8575772861862	-90.2335091570553 KNOX
end	40.9174343445877	-90.3387634753254 KNOX
Henline Creek		
401		
start	40.5867014223785	-88.6971328093932
MCLEAN	10.000,011,220,00	00.05, 10200, 0502
	40.6247936449316	-88.6315733675586
MCLEAN	10.021/23011/2310	-88.0313733073380
Henry Creek		
100		
start	40.932455717876	-89.5256512687818
PEORIA		
end	40.9472322228041	-89.5711427004422
PEORIA		
Hermon Creek		
126		
	40.7818347201379	-90.2738699961108 KNOX
	40.7628476930817	-90.3372052339614 KNOX
	40./0284/093081/	-90.33/2032339014 KNOA
Hickory Creek		
244		
start	41.5038289458964	-88.0990240076033 WILL
end	41.4935392717868	-87.8108342251738 WILL
Hickory Grove Ditch	l	
87		
start	40.4870721779667	-89.7285827911466
TAZEWELL	10.10,0,21,7,500,	031, 20002, 311100
	40.4136575635669	-89.7349507058786
MASON	TU.T1303/3033007	-67.7377307030700
Hickory Run 93		

BASIN NAME		
Segment Name		
Segment No.		
End Points	Latitude Longitude	COUNTY
start	40.8217198390551	-89.7449749384213
PEORIA		
	40.8581447502391	-89.7622130910013
PEORIA		
Hillsbury Slough		
416	40.2452052420271	00.2025200070522
	40.3453953438371	-88.3035309970523
CHAMPAIGN	40.3928682378873	-88.2265028280313
CHAMPAIGN	40.39280823/88/3	-88.2263028280313
Hodges Creek		
34		
	39.2630316914552	-90.1858200381692
GREENE	29.200 00 1091 1002	301100020001032
end	39.2801974743086	-90.1528766403572
GREENE		
Hurricane Creek		
44		
	39.449376470161	-90.5400508230403
GREENE		
	39.4781872332274	-90.4508986197452
GREENE		
Illinois River		
236	41.3255740245957	-88.9910230492306
LASALLE	41.3233740243937	-88.9910230492300
	41.3986780470527	-88.2686499362959
GRUNDY		00.2000 199302909
Indian Creek		
120		
start	40.988610901184	-89.8221496834014
STARK		
end	41.2003389912185	-89.9349435285117
HENRY		
182		
	39.8785447641605	-90.3782080959549 CASS
	39.8234731084942	-90.103743390331
MORGAN 224		
	41.7480730242898	-88.8741562924388
DEKALB	71./700/30272070	-00.0/ T 1 <i>3</i> 02 <i>32</i> T 300
DEKALD		

end 226	41.7083887626958	-88.9437996894049 LEE
start	41.4400734113231	-88.7627018786422
LASALLE	41 5255240555422	00.0555500044500
	41.7377348577433	-88.8557728844589
DEKALB		
396		
start	40.7701181840118	-88.4858209632899
LIVINGSTON		
end	40.6469799222669	-88.4812665778082
LIVINGSTON		
Iroquois River		
253		
= =	41.0739205590002	-87.8152251833303
KANKAKEE	11.0737203370002	07.0132231033303
	40.9614905075375	-87.8149010739444
	40.9014903073373	-6/.6149010/39444
IROQUOIS		
447		
	40.7817769095357	-87.7532807121524
IROQUOIS		
end	40.8174648935578	-87.5342555764515
IROQUOIS		
Jack Creek		
109		
start	41.1283656948767	-89.7699479168181
STARK		
	41.150467875432	-89.8374616586589
STARK	11.130 107073 132	03.0371010300303
Jackson Creek		
246	41 4225012562552	00 1 73 5(11(33353 WH I
	41.4325013563553	-88.1725611633353 WILL
	41.4638503957577	-87.9160301224816 WILL
Joes Creek		
33		
start	39.2801974743086	-90.1528766403572
GREENE		
end	39.3757180969001	-90.0772968234561
MACOUPIN		

BASIN NAME Segment Name Segment No.			
End Points	Latitude	Longitude	COUNTY
Johnny Run 258			
	41.2826709079	541	-88.3633805819326
GRUNDY			
	41.0807507198	308	-88.5801638050665
LIVINGSTON			
Jordan Creek			
266	41 2044450242	207	00 1270007272220 WH I
	41.3044458242		-88.1279087273328 WILL
	41.3077177643	453	-88.1188984685001 WILL
Judd Creek 106	44.000.64.700.40	4.6	00.404
	41.0896452842	16	-89.1847595119809
MARSHALL	41.0420007674	4.40	00 1220040242164
	41.0429807674	449	-89.1339049242164
MARSHALL			
Kankakee River 248			
GRUNDY	41.3923135096		-88.2590124225285
end KANKAKEE	41.1660752568	715	-87.526360971907
Kickapoo Creek			
57			
start	39.9932216924	528	-88.8083252484687
MACON			
	39.9987405799	186	-88.8205170598483
MACON			
65			
	40.1286520491	088	-89.4532728967436
LOGAN			
	40.4376592310	728	-88.8667409562596
MCLEAN			
92	40.6540006505	105	00 (124(00722157
	40.6548826785	105	-89.6134608723157
TAZEWELL	40 0170471044	011	90 (577202009201
end PEORIA	40.9170471944	911	-89.6577393908301
Kings Mill Creek			
83			
	40.4558745105	979	-89.1642930044364
Start	TU. TJJO / TJ 1 UJ	J 1 7	-07.10 1 27300 11 30 1

MCLEAN end	40.509184986927	-89.0937965002854
MCLEAN		
La Harpe Creek		
159		
start	40.4678428297867	-91.0424167497572
HANCOCK		
end	40.5172643895406	-90.9781701980636
HANCOCK		
La Moine River		
158		
start	40.3320849972693	-90.8997234923388
MCDONOUGH		
end	40.5923258750258	-91.0177293656635
HANCOCK		
Lake Fork		
61		
start	40.0837107988142	-89.3969397975165
LOGAN		
end	39.9367293000733	-89.2343282851812
LOGAN		
Langan Creek		
254		
start	40.9614905075375	-87.8149010739444
IROQUOIS		
end	40.9432018898477	-88.0465558527168
IROQUOIS		
Lime Creek		
214		
start	41.4515003790233	-89.5271752648714
BUREAU		
end	41.4951141474998	-89.456554884734
BUREAU		
Little Indian Creek		
183		
start	39.8355964564522	-90.1231971747256
MORGAN		

BASIN NAME			
Segment Name			
Segment No.			
End Points	Latitude	Longitude	COUNTY
end	39.865817536	7056	-90.0423591294145
MORGAN			
227			
start	41.509129986	3247	-88.7725444056074
LASALLE			
end	41.749433980	972	-88.8141442269697
DEKALB			
Little Kickapoo Cree	ek		
67			
	40.333662507	0255	-88.9736094275975
MCLEAN	40.204705107	41.7	00.0473140400336
	40.394785197	415	-88.9473142490326
MCLEAN			
Little Mackinaw Riv	er		
82	40.442319035	2406	-89.4617848276975
TAZEWELL		2490	-09.401/0402/09/3
	40.448126191	7524	-89.4329939054056
TAZEWELL		1324	-07.4327737034030
Little Rock Creek			
274			
	41.634554876	9785	-88.5384723455853
KENDALL			
end	41.789568861	9816	-88.6981590581244
DEKALB			
Little Sandy Creek			
107			
	41.091263262	2075	-89.2247552498617
MARSHALL			
	41.125352501	365	-89.1758716886846
PUTNAM			
Little Senachwine Cı	reek		
99	40.052214554	0020	00.5202422056021
	40.953314554	0839	-89.5292433956921
PEORIA	41.008443914	5565	-89.5499765139822
MARSHALL		3303	-09.3499/03139022
Little Vermilion Rive			
233	.I		
	41.323760205	0852	-89.0811945323001
LASALLE	.1.525 / 00205	~~ ~	05.0011510020001

end LASALLE	41.5760289435671	-89.0829047126545
Lone Tree Creek		
418		
=	40.2750(02121525	00 2010/00/457720
	40.3750682121535	-88.3819688457729
CHAMPAIGN		
end	40.3145980401842	-88.4738655755984
MCLEAN		
Long Creek		
163		
	40.4466427913955	-91.0499607552846
HANCOCK	40.4400427713733	-71.0477007332040
	40 4207(52042250	01 1507100600400
	40.4297652043359	-91.1507109600489
HANCOCK		
Long Point Creek		
68		
start	40.2755311999445	-89.0786438507327
DEWITT		
22	40.2549604211821	-88.9826285651361
	40.2349004211821	-00.7020203031301
DEWITT		
394		
start	41.038177645276	-88.7908409579793
LIVINGSTON		
end	41.0018214714974	-88.8534349418926
LIVINGSTON		
Mackinaw River		
397		
	40.570(704150524	00 2012445045(2)
	40.5796794158534	-89.2813445945626
TAZEWELL		
end	40.5649627479232	-88.478822725546
MCLEAN		
Macoupin Creek		
32		
=	39.1989703827155	-89.9609795725648
MACOUPIN	57.1707103021133	07.70071731230TO
	20.2121252451497	00 2212004410227
	39.2121253451487	-90.2312084410337
JERSEY		
Madden Creek		
413		

BASIN NAME			
Segment Name			
Segment No.			
End Points	Latitude	Longitude	COUNTY
start	40.09435800020	69	-88.5400649488702 PIATT
end	40.21096359066	58	-88.4943738561926 PIATT
Masters Creek 220			
-	41.497610938333	36	-89.4125473607076
BUREAU			
end	41.543900004934	43	-89.421988392756
BUREAU			
Masters Fork 217			
start BUREAU	41.45310242254	54	-89.4290492805799
end	41.570231045549	98	-89.3821188149649
BUREAU			
Mazon River			
257	41.30867683276	7.6	99 2290945675056
GRUNDY			-88.3389845675056
	41.187230700992	26	-88.2731640461448
GRUNDY			
Mendota Creek			
234	41 70017770000	2.5	00 1041764154672
	41.528166628880	05	-89.1041764154672
LASALLE	41 50002672240	20	00 1224260060500
ena LASALLE	41.528236733492	28	-89.1224368860589
	onnorae Crook		
Middle Branch of Co	pperas Creek		
	40.549514632509	9	-89.901189903351
FULTON	10.57751705250	,	07.701107703331
	40.59808963627	72	-89.9368482699851
FULTON	.0.57000705027	. -	07.7500 102077051
Middle Creek			
165			
	40.395732929414	44	-90.9741776721721
HANCOCK			
end	40.388889403052	26	-91.0072502737366
HANCOCK			
Mill Creek			
494			
start	41.821364902042	21	-88.3222376599138 KANE

	41.9231053361497	-88.4419826012614 KANE
Mole Creek		
390		
start	41.0193910577853	-88.8019375580673
	11.01/3/103/7033	00.0017373300073
LIVINGSTON		
end	40.9109452909954	-88.9263176124884
LIVINGSTON		
Morgan Creek		
S		
272		
start	41.6481172046369	-88.4151168308869
KENDALL		
	41 (520011245(02	99 2621660297476
	41.6530911245692	-88.3631669287476
KENDALL		
Mud Creek		
449		
	40. 60 - 000 400 444	0
start	40.637099482441	-87.5885960450541
IROQUOIS		
~	40.6100172186722	-87.5261312404789
	40.01001/2100/22	-07.3201312404707
IROQUOIS		
Mud Run		
117		
	41.0092425694765	-89.7790957399812
	41.0092423094703	-09.7790937399012
STARK		
end	40.9876287937001	-89.6785472090663
STARK		
Murray Slough		
259		
start	41.2428845425989	-88.3615508333781
GRUNDY	11.2 1200 10 120 00	00.001000000000000000000000000000000000
	44.0-4-44	00. 700.707.70.6000
end	41.054741775769	-88.5825975362008
LIVINGSTON		
Nettle Creek		
237		
start	41.3559056532822	-88.4326806825019
GRUNDY		
SITST ID I		

ASIN NAME Segment Name			
Segment No.			
End Points	Latitude	Longitude	COUNTY
	1 41.3989525138	•	-88.5519708865374
GRUNDY		110	-00.5517700005574
Nippersink Creek	-		
285			
= =	t 42.4034790312	35	-88.1904263022916 LAKE
enc	42.4083215609	69	-88.341299199739
MCHENRY	7		
289			
star	t 42.3885864249	526	-88.3641081665149
MCHENRY	7		
enc	42.4692291197	455	-88.4764236384547
MCHENRY	7		
North Branch Crow	Creek		
103			
	t 40.9663161180	876	-89.2558617294218
MARSHALI			
	1 41.0005549578	781	-89.1943061363378
MARSHALI			
North Branch Nipp	ersink Creek		
286	t 42.4376632559	070	99 2972504217520
MCHENRY		9/9	-88.2872504317539
	: 1 42.4945866793	007	-88.3294075716268
MCHENRY		007	-88.3294073710208
North Creek	-		
119			
	t 40.9486975483	619	-89.7633680090807
PEORIA		· - /	37.7 322 333 37 330 7
	1 40.9421533616	142	-89.7281078793964
PEORIA			
North Fork Lake Fo			
62			
star	t 39.9367293000°	733	-89.2343282851812
LOGAN	1		
enc	40.0523211989	442	-89.0999303242614
DEWIT	Γ		
North Fork Salt Cro	eek		
71			
	t 40.2675598120	912	-88.7867164044023
DEWIT		600	00 500 4000 50000
end	d 40.3620541452	609	-88.7204600533309

40 2161621556014	-90.164317977292
40.2101021330314	-90.104317977292
40 2102022717000	-90.3860609925548
40.3182822/1/998	-90.3800009923348
41 0610670304060	00.255444000254544.4345
	-88.3574449893747 KANE
41.9903303640688	-88.3568570687618 KANE
41.1611802253124	-88.8310854379729
41.1541734588026	-88.7148550047115
40.0231674243157	-90.1158780774246 CASS
	-90.0607356525317 CASS
40.6607941387838	-89.196034413193
.0.00077.1207020	0,01,000
40 8483817762616	-89.0003562591212
10.0103017702010	07.0003302371212
41 6177045975702	-88.8847204360202
41.01//9430/3/92	-88.884/204300202
41 ((20071200710	-88.9144064528509
41.00302/1288/18	-88.9144004328309
44 - 44	00.00.000.00.40.4
41.5121637096396	-89.3366888940457
41.5707857354427	-89.2125163729316
	40.2161621556914 40.3182822717998 41.9619670384069 41.9903303640688 41.1611802253124 41.1541734588026 40.0231674243157 39.9411115612757 40.6607941387838 40.8483817762616 41.6177945875792 41.6630271288718 41.5121637096396 41.5707857354427

BUREAU

BASIN NAME Segment Name			
Segment No.			
End Points	Latitude	Longitude	COUNTY
388		20118100000	0 0 01 1 1
	40.8655185113	965	-88.7090974772719
LIVINGSTON		703	00.7090971772719
	40.7989226101	833	-88.7756316859923
LIVINGSTON			
Pond Creek			
212			
start	41.3494925800	361	-89.5685244208084
BUREAU			
end	41.3541221673	156	-89.6001721270724
BUREAU			
Poplar Creek			
493			
start	42.0127893042	098	-88.2799278350546 KANE
end	42.0604682884	044	-88.151517184544 COOK
Prairie Creek			
69			
start	40.2688606116	755	-89.1209318708141
DEWITT			
	40.3183618654	781	-89.1150133167993
MCLEAN			
79			
	40.1610672222	447	-89.6159697428554
MASON		100	00.4010500251000
	40.3105388304	102	-89.4819788351989
LOGAN			
264	41 2410010205	214	-88.1859963163497 WILL
	41.3410818305		-87.9636949110551 WILL
391	41.4046430210	900	-87.9030949110331 WILL
	41.0691920852	250	-88.8106812576958
LIVINGSTON		336	-88.8100812370938
	41.0162806406	Q11	-89.0122375626521
LASALLE		011	-87.0122373020321
Prairie Creek Ditch			
81			
	40.2429402051	03	-89.5831738921535
LOGAN			33.12.02.2.7.03. 2.10.0
	40.2686033760	62	-89.5902703680441
LOGAN			

Prince Run

118		
start	40.9953442805941	-89.7634490486344
STARK		
end	40.9486975483619	-89.7633680090807
PEORIA		
Rob Roy Creek		
495		
start	41.6340658591268	-88.530902327864
KENDALL		
end	41.7208669225124	-88.4449822691918
KENDALL		
Rock Creek		
180		
start	39.9533586794244	-89.7717217346798
MENARD		
	39.9192042890665	-89.881417605895
MENARD		
251		
	41.2029705333006	-87.9860450524621
KANKAKEE		
	41.2416733683013	-87.9199539652218
KANKAKEE		
Rocky Run		
221		
	41.2966432755716	-89.5031050607007
BUREAU		
	41.2892114895079	-89.5271301009319
BUREAU		
Rooks Creek		
386		
	40.9620056243899	-88.737743684525
LIVINGSTON		
	40.7615433072922	-88.6752675977812
LIVINGSTON		
Salt Creek		
58		

BASIN NAME Segment Name			
Segment No.			
End Points	Latitude	Longitude	COUNTY
	40.12865204910	•	-89.4532728967436
LOGAN	40.12003204710	700	07.4332720707430
	40.14043694828	362	-88.8817439726269
DEWITT	10.11015071020	.02	00.0017 135720205
409			
	40.27936538213	28	-88.6019348286105
DEWITT	.0.2,700000210	_0	00.00192.10200102
	40.36872327409	008	-88.5787269955356
MCLEAN			
Sandy Creek			
105			
start	41.10839471297	'97	-89.3471796913242
PUTNAM			
end	41.08556136977	' 51	-89.0792291942694
MARSHALL			
Sangamon River			
408			
start	40.00563622832	258	-88.6286241506431 PIATT
end	40.42232311539	26	-88.67328493366
MCLEAN			
Senachwine Creek			
96			
	40.92982586038	88	-89.4632928486271
PEORIA			
	41.09003187549	938	-89.5885134178247
MARSHALL			
Short Creek			
162			
	40.46110577193	93	-91.0582083107674
HANCOCK		160	04.0=0.4=0.5=0.
	40.46827359757	69	-91.0704506789577
HANCOCK			
Short Point Creek			
389	40 00020272142	7.1	00.7020000025075
start LIVINGSTON	40.98838272142	. / 1	-88.7830008925065
	40.89513016737	/O1	-88.8749997260932
LIVINGSTON	40.89313010/3/	01	-88.8/4999/200932
Silver Creek			
Sliver Creek 111			
	41.21857621386	i97	-89.6793069447094
Start	71.4103/041300	17.1	-07.0/7300777/077

STARK end 41.2431713087936 -89.6494927441058 **BUREAU South Branch Crow Creek** 104 start 40.9663161180876 -89.2558617294218 MARSHALL end 40.9410075148431 -89.1948285503851 MARSHALL **South Branch Forked Creek** 267 start 41.2631372965881 -88.0315238211836 WILL end 41.292604367733 -87.9621751169561 **KANKAKEE South Fork Lake Fork** 63 start 39.9367293000733 -89.2343282851812 LOGAN end 39.9674631778105 -89.0884701339793 **MACON South Fork Vermilion River** 395 start 40.7701181840118 -88.4858209632899 LIVINGSTON end 40.7234241258087 -88.355790853647 LIVINGSTON **Spoon River** 3 -90.0994555125119 KNOX start 40.883272448156 end 41.2158736312898 -89.6870256054763 STARK **Spring Creek** 161 start 40.5838583294631 -91.0397056763892 HANCOCK

-91.0572149428165

end 40.595079516268

HANCOCK

BASIN NAME			
Segment Name			
Segment No.	·		COLDIENT
End Points	Latitude	Longitude	COUNTY
166			
start	40.45069300581	71	-90.758703782814
MCDONOUGH			
	40.50477020030	196	-90.7202911238868
MCDONOUGH			
223			
start	41.31143420127	759	-89.1969933188526
BUREAU			
end	41.53417749647	'94	-89.1599030581214
LASALLE			
Stevens Creek			
55			
start	39.83317205433	4	-89.008501860042
MACON			
end	39.87251267501	68	-88.9902570309468
MACON			
Sugar Creek			
76			
	40.15059099494	.15	-89.6335239996087
MENARD	10.12027077171		09.0332239990007
	40.35159162529	006	-89.1626966142058
MCLEAN	10.55157102527	00	09.1020900112030
124			
	40.92731486036	195	-90.1168866799652 KNOX
	40.94071508721		-90.126984172004 KNOX
448	T0.7T0/1300/21	.07	-90.1209041/2004 KNOX
	40.78177690953	57	-87.7532807121524
	40.78177090933	137	-67.733260/121324
IROQUOIS	40.65010666447	/1	97 5250225515566
	40.65010666447	1	-87.5259225515566
IROQUOIS			
Sutphens Run			
228	41 5012076727	10	00.010/01/1000/0
	41.58132767276	149	-88.9196815109252
LASALLE			
	41.59407677552	281	-89.0434408697488
LASALLE			
Swab Run			
127			
	40.80438255313		-90.0417502151246 KNOX
	40.80892040463	64	-89.9959890937906 KNOX
Tenmile Creek			

64		
start	40.1166122038468	-89.0605809659338
DEWITT		
	40.1573804135529	-88.9870426654374
DEWITT		
Timber Creek 77		
	40.3499903738803	-89.1633832938062
MCLEAN	10.5 177705750005	07.1033032730002
	40.3824906556377	-89.0653243216353
MCLEAN		
Trim Creek		
249		
	41.1679695055755	-87.6275919071884
KANKAKEE	41 2225/70470505	07 (27224072215 (WH I
	41.3235679470585	-87.6273348723156 WILL
Turkey Creek 172		
	40.5312633037562	-90.2784734138591
FULTON	.0.001200007002	30.270.770.220057
end	40.6100168551688	-90.1683886238592
FULTON		
402		
	40.6346912128201	-88.8256051903746
MCLEAN	40.6626206144042	00 50 400150 40050
end MCLEAN	40.6636296144043	-88.7848217949076
Tyler Creek		
283		
= =	42.057069434075	-88.2869209701875 KANE
	42.0886074301339	-88.3939734393445 KANE
Unnamed Tributary		
230		

BASIN NAME					
Segment Name					
Segment No.					
End Points	Latitude	Longitude	COU	JNTY	
sta	art 41.600835394	40091	-88.9	239309686064	Ļ
LASALL	Æ				
er	nd 41.639380099	96109	-88.9	5237726256	LEE
406					
sta	art 40.848381776	62616	-89.0	003562591212	2
WOODFOR	D				
er	nd 40.844632184	45668	-88.9	879480330159)
WOODFOR	D				
Unnamed Tributar	ry of Big Bureau	ı Creek			
222					
sta	rt 41.292388918	37328	-89.4	849627504116)
BUREA	U				
er	nd 41.274677365	53832	-89.4	967232161933	}
BUREA	U				
Unnamed Tributar	ry of Coopers Do	efeat Creek			
113					
sta	ort 41.148595933	33575	-89.6	944246708098	3
STAR	K				
er	nd 41.143242393	38169	-89.6	549152326434	ļ
STAR	K				
Unnamed Tributar	y of Dickerson	Slough			
422					
	art 40.406821404			388760698826	
	nd 40.428684945		-88.3	118606581845	FORD
Unnamed Tributar	ry of Drummer (Creek			
425					
	art 40.430183509			944923485681	
	nd 40.422819853			420280012069	FORD
	ry of East Branc	h of Copperas Cree	k		
89					
		763 -89.83854989556		PEORIA	
		763 -89.83854989556	585	PEORIA	
Unnamed Tributar	ry of East Fork (of Spoon River			
112		20.451	00.0	0.40000.77	
	ort 41.191173133	39471	-89.6	948993736812	
STAR		((001	00.0	(2512210055	
	nd 41.195877746	00981	-89.6	635132189552	
STAR		-1-			
Unnamed Tributar	y of Indian Cre	ек			

185

start 39.8195431621523

-90.231206997871

MORGAN end 39.7997709298014 -90.2444898890822 MORGAN 229 start 41.5989641246871 -88.913295513256 LASALLE end 41.6212302072922 -88.9971274321449 LASALLE **Unnamed Tributary of Jackson Creek** 247 start 41.4328713295604 -88.0777949404827 WILL end 41.4181859202087 -88.0389954976751 WILL **Unnamed Tributary of Johnny Run** 261 start 41.1315090714299 -88.5704499691513 **GRUNDY** end 41.1211734141418 -88.5813177275807 GRUNDY **Unnamed Tributary of Kickapoo Creek** start 40.4376592310728 -88.8667409562596 MCLEAN end 40.4499435649154 -88.7941853627565 **MCLEAN** 95 start 40.843847234267 -89.6598940056171 PEORIA end 40.8376970553513 -89.655765678658 PEORIA

ASIN NAME Segment Name			
Segment No.			
End Points	Latitude	Longitude	COUNTY
Unnamed Tributary		•	COCIVII
417	of Lone Tite C	ICCK	
	40.3145980401	842	-88.473865575598
MCLEAN	10.5115700101	042	00.473003373370
	40.3084681821	929	-88.472182560340
MCLEAN	70.3007001021))	00.472102500540
419			
	40.3200878690	807	-88.475816978428
MCLEAN	10.5200070070	007	00.173010770120
	40.3246054213	609	-88.502979969789
MCLEAN	10.3210031213	007	00.302717707107
420			
	40.3555955038	811	-88.448686073023
CHAMPAIGN	10.3333733030	011	00.110000075025
0111111111111	40.3553786361	326	-88.489028785738
MCLEAN	10.3333700301	320	00.107020705750
Unnamed Tributary	of Mackinaw R	iver	
398	or mackina wax	1761	
	40.5649627479	232	-88.478822725546
MCLEAN	.0.00.019.027.179		001170022720011
end	40.4956570103	387	-88.510655278707
MCLEAN			
399			
start	40.5587424860	97	-88.544729041844
MCLEAN			
end	40.5324619371	87	-88.555043651201
MCLEAN			
400			
start	40.5536214693	649	-88.615577189406
MCLEAN			
end	40.5386135050	112	-88.615010083431
MCLEAN			
Unnamed Tributary	of Masters Cred	ek	
219			
start	41.5407471962	821	-89.415411062094
BUREAU			
end	41.5452528261	938	-89.413679869074
BUREAU			
Unnamed Tributary	of Masters Forl	ζ.	
218			
start	41.5104305878	81	-89.390050713871

BUREAU	90 20/5290094009 LEE
end 41.6181398940954	-89.2965280984998 LEE
Unnamed Tributary of Nettle Creek 238	
start 41.4088814108094	-88.5216683950888
GRUNDY	-88.3210083930888
end 41.4186133676397	-88.5339604493093
GRUNDY	-88.3339004493093
Unnamed Tributary of Nippersink Creek	
255	
start 42.4692291197455	-88.4764236384547
MCHENRY	-00.4/0423030434/
end 42.4695432978934	-88.5110499918451
MCHENRY	-00.5110477710451
288	
start 42.4176539163554	-88.3444740410368
MCHENRY	00.5444740410500
end 42.4179067763647	-88.3502762821058
MCHENRY	00.5502702021050
290	
start 42.3969278131381	-88.4109784072142
MCHENRY	00.1109701072112
end 42.3875994074602	-88.4491666706176
MCHENRY	00.1191000700170
Unnamed Tributary of North Fork of Salt Creek	
72	
start 40.3598944577027	-88.7302360564635
MCLEAN	00.73 023 002 0 1035
end 40.3817246400667	-88.7481607936989
MCLEAN	00.7 101007,520,00
73	
start 40.3620541452609	-88.7204600533309
MCLEAN	00.72010000233309
end 40.3690272117515	-88.6961244618476
MCLEAN	
75	
start 40.2987649882463	-88.7603546124853
MCLEAN	
end 40.3051172967471	-88.7525145171727
MCLEAN	
Unnamed Tributary of Panther Creek	
-	

BASIN NAME Segment Name			
Segment No.			
End Points	Latitude	Longitude	COUNTY
179		8	
	start 39.941111561	12757	-90.0607356525317 CASS
	end 39.935088752		-90.047762075576 CASS
	ary of Pond Creel		70.01,7020,755,0 01155
211	ary or rond creer		
	start 41.354122167	73156	-89.6001721270724
BURE		3100	03.0001/212/0/21
	end 41.335231341	11595	-89.5875580793812
BURE		110,0	03.2072200732012
	ary of Prairie Cre	ek	
78	ury or remain ore		
	start 40.208660897	70772	-89.6103029312127
MAS			
	end 40.223958551	19289	-89.638616348402
MAS		.,,	0,100,001,001,001
80			
	start 40.310538830	04102	-89.4819788351989
LOG			
	end 40.311485154	15122	-89.4410508250634
LOG		.0122	0,11,1100,00000
Unnamed Tribut	ary of Rooks Cree	ek	
387	, or 1100115 er o		
	start 40.761543307	72922	-88.6752675977812
LIVINGST			
	end 40.734874213	39519	-88.6985073106457
MCLE			
Unnamed Tribut	ary of Salt Creek		
412	J		
S	start 40.309061734	13957	-88.6002511568763
MCLE	AN		
	end 40.316566237	74132	-88.6011454430269
MCLE	AN		
Unnamed Tribut	ary of Sandy Cree	ek	
108			
S	start 41.081654546	55891	-89.0921996326175
MARSHA	ALL		
	end 41.069004484	19354	-89.0872784559417
MARSHA	ALL		
Unnamed Tribut	ary of Sangamon	River	
414	_		
5	start 40.218719855	50443	-88.3726776422252

CHAMPAIGN		
	40.207759150969	-88.3556670563292
CHAMPAIGN		
415	40.0610551040040	00 200 (207110201
	40.2618571248343	-88.3804307110291
CHAMPAIGN		00.4076066006222
end CHAMPAIGN	40.2604569179243	-88.4076966986332
	of Senachwine Creek	
97	of Schachwine Creek	
	41.0729094906046	-89.5194162172506
MARSHALL		
end	41.1005615839111	-89.5247542292286
MARSHALL		
98		
	41.0008160428297	-89.5071527441621
MARSHALL		
	41.0407981005047	-89.5430844273656
MARSHALL		
Unnamed Tributary 130	of Walnut Creek	
	41.0811500581416	-90.0632765005186 KNOX
	41.0847653353348	-90.0680765817376 KNOX
132	11.007/03333370	-90.0000703017370 KNOA
	41.0602585608831	-89.9869046205873 KNOX
	41.0721601609241	-89.9735120056073
STARK		
133		
start	41.0262443553352	-89.9515238620326
STARK		
	41.0340788244836	-89.924721175772
STARK		
•	of West Bureau Creek	
215	41 4606455255006	90.5251264675491
start BUREAU	41.4606455355906	-89.5251264675481
BUKEAU		

BASIN NAME Segment Name				
Segment No.				
End Points	Latitude	Longitude	COL	JNTY
	41.49585228453	•		472802493082
BUREAU	.11.19000220100		0,10	.,2002.90002
Unnamed Tributary 85	of West Fork Su	gar Creek		
start	40.33815069148	73	-89.2	954898975603
TAZEWELL				
	40.36601142217	46	-89.2	448498120596
MCLEAN				
86	40.21051.452265	0.2	00.2	201/252/5525
LOGAN	40.31051453265		-89.3	291625265707
	40.32991827293	66	-89.3	779530037535
TAZEWELL				
Valley Run 241				
start	41.41720362012	22	-88.3	955434158999
GRUNDY				
	41.50397967501	74	-88.5	041976708714
KENDALL				
Vermilion Creek				
235	41 47(02012220	1 4	90 O	571044105271
LASALLE	41.47682913229	14	-89.0	571044195371
	41.53386041030	44	-89 N	473804190906
LASALLE	71.33360071030	77	-07.0	- 7/300 - 1/0/00
Vermilion River				
385				
start LASALLE	41.32027461993	26	-89.0	67686548398
	40.88176743833	66	-88.6	504671722722
LIVINGSTON				
Walnut Creek				
128				
start	40.95975108414	93	-89.9	769499175619
PEORIA				
	41.12653217294	-90.2059192933	585	KNOX
404				
	40.62530408235	61	-89.2	39009045057
WOODFORD	40.76700651006	0.1	00.2	054156022077
end WOODFORD	40.76700651906	U1	-89.3	054156233977

Waubonsie Creek 273	
start 41.6864691774875	-88.3543291766866
KENDALL	
end 41.727653072306	-88.2817226140407 KANE
Waupecan Creek	
262	
start 41.3345412028515	-88.4648617458928
GRUNDY	
end 41.1880870688571	-88.5889392759762
LASALLE	
Welch Creek	
278	
start 41.7390229211455	-88.5133300234389 KANE
end 41.7542282081589	-88.4963865174814 KANE
West Branch Big Rock Creek	
276	
start 41.7542830239271	-88.5621632556731 KANE
end 41.791467372356	-88.6440656199133
DEKALB	
West Branch Drummer Creek	
424	00 202 45 (425 1200 FORD
start 40.4348513301682	-88.3934764271309 FORD
end 40.4490333768479	-88.4056995893214 FORD
West Branch Du Page River	
269	00 147/200400241 WW.1
start 41.7019525201778	-88.1476209409341 WILL

-88.1712650214772

end 41.7799425869794

DUPAGE West Branch of Easterbrook Drain

411

SASIN NAME			
Segment Name			
Segment No.			
End Points	Latitude	Longitude	COUNTY
start	40.363370957	9832	-88.5816306009141
MCLEAN			
end	40.376206493	1712	-88.5843753634505
MCLEAN			
West Branch of Hors	se Creek		
263	,c creen		
	41.249248507	6225	-88.1312055809841 WILL
	41.001913155		-88.1364114459172
KANKAKEE	11.001713133	7321	00.130 111 1135172
West Branch of Lam	arsh Creek		
91	arsh Creek		
	40.561597851	3207	-89.6991824445749
PEORIA	40.501577051	3201	07.077102443747
	40.640281675	1 Q Q	-89.7388615248892
PEORIA		100	-89.7388013248892
West Branch Panthe			
407	r Creek		
	40.752022500	4226	90 1020067249000
	40.752833508	4230	-89.1030067348099
WOODFORD	40.705.406010	50.62	00.1000/00000//0
	40.795406010	5963	-89.1900600098668
WOODFORD			
West Bureau Creek			
213	41 220001074	2502	00.5105016505401
	41.320991074	2583	-89.5195916727401
BUREAU	44 4-00 6-000	4.60	00.71.70011006101
	41.478267808	168	-89.5152211006131
BUREAU			
West Fork Mazon Ri	ver		
260			
	41.253067078	1541	-88.3508667933585
GRUNDY			
end	41.030250235	9071	-88.5226194555857
LIVINGSTON			
West Fork Salt Creek	k		
74			
start	40.317360196	629	-88.7559599297755
MCLEAN			
end	40.337256169	3307	-88.8039670869984
MCLEAN			
West Fork Sugar Cr	eek		
0.4			

start LOGAN	40.2844404292499	-89.332075650855
	40.4558745105979	-89.1642930044364
Wolf Creek		
497		
	41.1540042913791	-88.8612912917747
LASALLE	71.1370072713771	-00.0012712717747
	41.1611802253124	-88.8310854379729
LASALLE	41.1011002233124	00.0310034377727
Kaskaskia		
Bearcat Creek		
37		
- •	39.0121682814832	-89.5317265036074 BOND
	39.0568357269204	-89.4889786056249
MONTGOMERY		
Becks Creek		
45		
start	39.1565938305703	-88.9491156388975
FAYETTE		
end	39.3602481794208	-89.0227919838743
SHELBY		
Brush Creek		
39		
	39.1385354787129	-89.5805305687638
MONTGOMERY		
	39.1539913389194	-89.561368040102
MONTGOMERY		
Cress Creek		
41		
	39.1652709439739	-89.5012992382647
MONTGOMERY	20.10.0251505.02	00.5101044155401
	39.1962551507602	-89.5131844155481
MONTGOMERY		
Dry Fork		

BASIN NAME Segment Name			
Segment No.			
End Points	Latitude	Longitude	COUNTY
43		_	
start	39.03611373888	7	-89.2488135289512
FAYETTE			
	39.10331312625	37	-89.2984242244004
MONTGOMERY			
East Fork Shoal Cree	ek		
23	20.02100222520		00 4000200221020 DOND
	38.83100322530		-89.4990300331039 BOND
Gerhardt Creek	38.92264518808	64	-89.4117554251748 BOND
Gernardi Creek 27			
	38.34455507936	94	-90.0600653224456 ST.
CLAIR	30.34433307730	7 T	70.0000033224430 51.
	38.36785792246	4	-90.0997565611344
MONROE			
Hurricane Creek			
42			
start	38.91803342332	38	-89.2472989134191
FAYETTE			
	39.21679465466	78	-89.2767284135051
MONTGOMERY			
Loop Creek			
21	38.47387917048	0.1	-89.8286629587977 ST.
CLAIR	38.4/38/91/048	91	-89.828002938/9// \$1.
	38.49967596420	82	-89.9058988238884 ST.
CLAIR	30.47707370420	02	-67.703676623666431.
Middle Fork Shoal C	reek		
40			
start	39.08489847325	88	-89.5438724131899
MONTGOMERY			
end	39.18684839925	15	-89.4798528829252
MONTGOMERY			
Mitchell Creek			
48		0.5	
	39.15659383057	03	-88.9491156388975
FAYETTE	20 21015(00742	E E	00 0201021720510
end SHELBY	39.31915690743	33	-88.9291931738519
Mud Creek			
Mud Creek 51			
31			

	39.4078984061571	-88.8964126852371
SHELBY	20.4707712110047	00.0522200046570
ena SHELBY	39.4786612118046	-88.9523280946578
Ninemile Creek		
Ninemile Creek 30		
	38.0441291788376	-89.9112042263573
RANDOLPH	36.0441291766376	-89.9112042203373
	38.0507383485977	-89.8278402421236
RANDOLPH	30.0307303103777	07.0270102121230
Opossum Creek		
46		
	39.2718719283603	-89.006345202583
SHELBY		
end	39.2833737967471	-89.0555186821259
SHELBY		
Prairie du Long Cree	ek	
24		
start	38.2583950460692	-89.9674114204896
MONROE		
end	38.3425597902873	-90.0517323138269 ST.
CLAIR		
Robinson Creek		
50		
	39.3519556417502	-88.8434641389225
SHELBY	20.5015520650502	00 0001 (05505110
	39.5215530679793	-88.8331635597113
SHELBY		
Rockhouse Creek		
25	38.279441694169	-90.0367398173562
MONROE	38.279441094109	-90.030/3981/3302
	38.2999005789932	-90.1039357731424
MONROE	30.2777003107732	70.10 <i>3733113</i> 1 7 2 7
Section Creek		
49		
• /		

BASIN NAME Segment Name			
Segment No.			
End Points	Latitude	Longitude	COUNTY
start	39.18354972808	33	-88.9455894742885
FAYETTE			
end	39.195916004812	26	-88.961892707007
FAYETTE			
Shoal Creek			
22			
start	38.48311065639	82	-89.5775456200079
WASHINGTON			
end	38.55572399811	11	-89.4968640710432
CLINTON			
36			
	38.83100320089		-89.4990300493802 BOND
	39.08487557525	81	-89.5439018081354
MONTGOMERY			
Silver Creek			
20			
	38.33690257079	36	-89.8753691916515 ST.
CLAIR			
	38.55680682044	78	-89.8305698867169 ST.
CLAIR			
Stringtown Branch			
53	20 -12000 1-061		00.66===1001010
	39.71388247964	77	-88.6677549810426
MOULTRIE	20.72.6212.671.45	0.2	00.6044710012546
	39.73631367145	92	-88.6944718913546
MOULTRIE	- f C l l 4 C	-1-	
Unnamed Tributary	oi Gernarat Cree	ек	
26	20 26705702246	4	00 0007565611244
MONROE	38.36785792246	4	-90.0997565611344
	38.37428809664	57	-90.1107074126403
MONROE	38.3/428809004	37	-90.110/0/4120403
	of Olyany Divon		
Unnamed Tributary 54	oi Okaw Kiver		
	39.73424874706	1	-88.6620801587617
MOULTRIE	39./34240/4/00	T	-88.0020801387017
	39.80990395294	-88 69693606/15/	112 PIATT
Walters Creek	37.00770373234	00.07073000+3-	11/11
28			
	38.34255979028	73	-90.0517323138269 ST.
start	50.5 1255717020	, ,	, 0.001 1020100207 D1.

CLAIR

end	38.3445550793694	-90.0600653224456 ST.
CLAIR		
West Fork Shoal Cre	ek	
38		
start	39.1385354787129	-89.5805305687638
MONTGOMERY		
end	39.1877434015581	-89.6041666305308
MONTGOMERY		
West Okaw River		
52		
_	39.6158126349278	-88.7105522558061
MOULTRIE		
	39.7564321977535	-88.630211952428
MOULTRIE	651,661.6215,7,666	00.0000211902.20
Mississippi River		
Apple River		
372		
- · -	42.3210892387922	-90.2520915343109 JO
DAVIESS	12.3210032307322	90.23209133 13109 0
	42.5078007598632	-90.1320538371008 JO
DAVIESS	12.3070007370032	70.132033037100030
Bear Creek		
199		
	40.1421908412793	-91.322057103417
ADAMS	40.1421700412773	71.322037103417
	40.3507607406412	-91.1831593883194
HANCOCK	40.3307007400412	-71.1031373003174
Bigneck Creek		
205		
	40.1189668648562	-91.2247381726013
ADAMS	40.1189008048302	-91.224/381/20013
	40.118891177483	-91.1409739765636
ADAMS	40.1100711//403	-71.1 4 07/37/03030
Burton Creek		
192		

BASIN NAME					
Segment Name					
Segment No.	T	T '. 1	COL	D. LODY A	
End Points		\mathcal{C}		JNTY	
	39.86430917126	17	-91.3	43323220756	
ADAMS					
	39.92393403238	-91.23814827372	218	ADAMS	
Camp Creek 140					
start	41.26076218173	14	-90.5	14303172809	
MERCER					
end	41.31144642746	82	-90.2	476056448033	
HENRY					
142					
start	41.22023802114	65	-90.8	95164796358	
MERCER					
end	41.27879330067	46	-90.6	950345992843	
MERCER					
Carroll Creek					
349					
start	42.10277828145	17	-90.0	265311556732	
CARROLL					
end	42.09063699433	02	-89.8	985337135691	
CARROLL					
Clear Creek					
6					
start	37.48211393047	98	-89.3	77768200259	
UNION					
end	37.53774029774	06	-89.3	31689550578	
UNION					
381					
start	42.44683851010	31	-90.0	472460146999 JO	
DAVIESS					
end	42.47807633917	08	-90.0	35127804618 JO	
DAVIESS					
Coon Creek					
376					
start	42.40355287396	42	-90.1	272819897867 JO	
DAVIESS					
end	42.43470988049	51	-90.1	169407822902 JO	
DAVIESS					
Copperas Creek					
148					
start	41.37172795745	58	-90.9	01871458269 ROCK	
ISLAND					

end	41.3616090539824	-90.7468725613692 ROCK
ISLAND		
Deep Run		
155		
start	40.7779166934519	-90.9639489255706
HENDERSON		
end	40.794076798068	-90.9474772904134
HENDERSON		
Dixson Creek		
154		
	40.7684181600505	-90.9376123103323
HENDERSON	10.7001101000202	30.3370123103323
	40.7650613473293	-90.9262679175808
HENDERSON	40.7030013473273	70.7202077173000
Dutch Creek		
Dutch Creek 4		
-	27.4502002240666	90 2699265027025
	37.4593003249666	-89.3688365937935
UNION	25 41 45 55 22 23 50 6	00.054450050501
	37.4147572383786	-89.2744790735331
UNION		
East Fork Galena Riv	ver	
383		
start	42.450241615252	-90.3876497193745 JO
DAVIESS		
end	42.4876693698893	-90.286894403861 JO
DAVIESS		
Edwards River		
145		
_	41.1459068953479	-90.9832855425151
MERCER	1111 163 000325 173	3 0.3 02 <u>2</u> 02 0 1.2 12 1
	41.2835429634312	-90.1022166001482
HENRY	T1.2033T2703T312	-70.1022100001402
Eliza Creek		
146	41 2754465656770	00 0740105024620
	41.2754465656779	-90.9740195834639
MERCER	41.2040140261561	00.0070757000217
	41.2948140261561	-90.8870757880317
MERCER		
Ellison Creek		

BASIN NAME Segment Name			
Segment No. End Points	Latituda	Lancituda	COLINTY
	Latitude	Longitude	COUNTY
153	40.76158101398	860	-91.0723400800456
HENDERSON	40.70136101396	309	-91.0723400800430
	40.7295594797	542	-90.7480413061409
WARREN			
Galena River			
382			
	42.4502416152	52	-90.3876497193745 JO
DAVIESS			
	42.50687210363	534	-90.390459616835 JO
DAVIESS Green Creek			
Green Creek 5			
_	37.45149437184	152	-89.3379244013686
UNION	37.1311713710	132	03.3373211013000
	37.46663146942	209	-89.3048476846202
UNION			
Hadley Creek			
188			
	39.7025380326		-91.1396851101986 PIKE
	39.7351716794	518	-90.9664567571417 PIKE
Hells Branch			
378	40.0500017055	227	00 10507(440507 10
DAVIESS	42.35823173550	027	-90.185076448587 JO
	42.4166702490	521	-90.1660286242329 JO
DAVIESS	72.7100/027/00	J2 I	-70.100020027232730
Henderson Creek			
134			
start	41.0518601460	692	-90.652709618504
WARREN			
end	41.07289980079	979	-90.3331881878676 KNOX
150			
	40.87885823663	336	-90.9641994146698
HENDERSON	40.0000005030	30	00.00007502226
	40.98988858303	38	-90.8698875032336
HENDERSON Hillowy Greats			
Hillery Creek 144			
	41.26993944053	307	-90.2020116075301
HENRY	.1.2077071100.	- • 1	, 0.20201100/ <i>0</i> 301

	2553101029329	-90.1954503442612
HENRY		
Honey Creek		
157	7000823335975	-91.0347691132118
HENDERSON	/000823333973	-91.034/091132116
	7064734203141	-90.8589436695132
HENDERSON	7004734203141	-70.0307430073132
186		
	4871465283426	-90.7799240715991 PIKE
	5633421986505	-90.8011460205638 PIKE
207		
start 40.1	1052246871151	-91.2149469620062
ADAMS		
end 40.0	0689996865178	-91.2253825583113
ADAMS		
Hutchins Creek		
7		
	5043385818368	-89.3755380391598
UNION		
	58788138261 -89.39175842023	331 UNION
Little Bear Creek		
194	2212002202020	01 2200256040021
	3213003292038	-91.2390256840921
HANCOCK	302753021887	-91.3102530307924
HANCOCK	502/3302188/	-91.3102330307924
Little Creek		
200		
	1807360433073	-91.2803860136891
ADAMS	100/300 1330/3	71.2003000130071
	230127123031	-91.3051461065984
HANCOCK		71.001101000701
McCraney Creek		
v		

BASIN NAME Segment Name Segment No.			
•	Latitude	Longitude	COUNTY
189		_	
start	39.7167396162	723	-91.1729844320811 PIKE
end	39.8572624790	589	-91.0907175471865
ADAMS			
Mill Creek 191			
	39.8643091712	617	-91.343323220756
ADAMS			
	39.9675786362	521	-91.2477003180771
ADAMS			
377	42 2520702250	000	00 1070/00/50100 IO
DAVIESS	42.3539782358	808	-90.1879698650198 JO
	42.4518923573	772	-90.2485882677025 JO
DAVIESS	42.4310923373	112	-90.240300207702330
496			
	38.9472270910	927	-90.2956721236088
JERSEY			
end	38.9871246152	411	-90.3431576290565
JERSEY			
Mississippi River			
2			
	37.1887629940	337	-89.4576720472899
ALEXANDER			
29	20.0664117775	0.41	00.147770(0050(7
	38.8664117755	941	-90.1477786925267
MADISON	38.3277950259	76	-90.3709302644266
MONROE	36.3211930239	70	-90.3709302044200
384			
	42.5079432477	656	-90.6430378486115 JO
DAVIESS			9000 1000 100110 0
end	41.5746193723	759	-90.392321397091 ROCK
ISLAND			
440			
	39.3266892483	02	-90.8243988873681
CALHOUN			
	39.8935238218	567	-91.4437639810547
ADAMS			
Mud Creek 202			

	40.1812148450863	-91.2785060826782
ADAMS		
end	40.1852755387137	-91.2660018265735
ADAMS		
Nichols Run		
156		
start	40.7735451176215	-90.9672827833242
HENDERSON		
end	40.7648298879037	-90.9675416302885
HENDERSON		
North Henderson Cr	eek	
136		
	41.0973619647032	-90.7191141378965
MERCER		, , , , , , , , , , , , , , , , , , , ,
	41.119743833988	-90.4494190524502
MERCER	11.1157 13033700	J0.11J11J0521302
Parker Run		
141		
	41.2623500459087	-90.4891341819923
MERCER	11.2023300437007	-70.4071341017723
	41.2260011828886	-90.4145431241447
HENRY	41.2200011828880	-90.4143431241447
Pigeon Creek 190		
	20.7142204171254	01 2272670411405 DIVE
	39.7143204171354	-91.2372670411405 PIKE
	39.8220301600964	-91.2087922935523
ADAMS		
Pope Creek		
137		00.044.004.000000
	41.1401437091914	-90.8116816399802
MERCER		
	41.1394137238591	-90.2877112230995 KNOX
Sixmile Creek		
187		
	39.4592604039597	-90.8902507134236 PIKE
end	39.5431657559583	-90.8891598316201 PIKE

BASIN NAME			
Segment Name			
Segment No.			
End Points	Latitude	Longitude	COUNTY
Slater Creek			
198			
	40.29160158432	29	-91.2423526162923
HANCOCK		200	0.1.0.0
	40.28228857329	908	-91.2189777154329
HANCOCK			
Smith Creek			
152	40.02070002056	0.40	00.0146222872076
start HENDERSON	40.92979892858	848	-90.9146232873076
	40.92919583848	272	-90.7919464822621
HENDERSON		512	-90./919404822021
South Edwards Rive			
139	er e		
	41.26566451048	253	-90.2611866223557
HENRY		333	70.201100022 <i>333</i> 7
	41.19270713994	134	-90.0393078982573
HENRY		151	70.0373070702373
South Fork Apple R			
380			
	42.44683851010	031	-90.0472460146999 JO
DAVIESS			
end	42.4176188464	167	-89.9845802036023 JO
DAVIESS			
South Fork Bear Cro	eek		
203			
start	40.16779734368	379	-91.2933473698779
ADAMS			
end	40.09503299344	147	-91.0607522810856
ADAMS			
South Henderson Cr	eek		
135			
	41.01884786436	553	-90.4811337762604
WARREN			
	41.01211236090	019	-90.4338464913801 KNOX
151			
	40.87885823663	336	-90.9641994146698
HENDERSON		2.52	00.07070707070
	40.85347643628	333	-90.8707263659685
HENDERSON			
Straddle Creek			

301		
	42.0906369943302	-89.8985337135691
CARROLL		
	42.1316680929413	-89.783599495409
CARROLL		
Thurman Creek		
204	40 1277 ((700 401 0	01 224525010555
	40.1277667094818	-91.234525810555
ADAMS	40.1580795200863	-91.1501036788115
ADAMS	40.1380793200803	-91.1301030/88113
Tournear Creek		
193		
	39.9042285951329	-91.2447718289928
ADAMS	5,5,5,6,12,25	31. 2 1.1,710 2 03320
end	39.8738503674823	-91.1658282439773
ADAMS		
Unnamed Tributary	of Apple River	
375		
	42.3613497834653	-90.1603277978963 JO
DAVIESS		
	42.3651703478401	-90.1182227692179 JO
DAVIESS		
Unnamed Tributary	of Bear Creek	
197	40.21071.0045041	01 2270752572207
start HANCOCK	40.3187160045841	-91.2379753573306
	40.3220475782343	-91.2218711128768
HANCOCK	40.3220473782343	-91.2218/11128/08
201		
	40.2483484763178	-91.2634157983708
HANCOCK	10.2 103 10 17 03 17 0	71.203 113 7703 700
	40.2576281291385	-91.2420554576986
HANCOCK		
Unnamed Tributary	of Copperas Creek	
149	• •	
start	41.3759130587612	-90.8569366994939 ROCK
ISLAND		

BASIN NAME Segment Name Segment No.					
End Points	Latitude L	ongitude	COUNTY		
	41.3735944469795	· ·	-90.829794872711	DOCK	
ISLAND	41.3/33944409/9.	3	-90.029/940/2/11	ROCK	
Unnamed Tributary 373	of Furnace Creek				
	42.3419228115146	6	-90.2583358633166	5 JO	
DAVIESS		-			
end	42.3737126096251	1	-90.2971522307335	5 JO	
DAVIESS					
374					
start	42.3419228115146	6	-90.2583358633166	JO	
DAVIESS					
end	42.3615209718591	1	-90.24931703774	JO	
DAVIESS					
Unnamed Tributary	of South Edwards	River			
143					
	41.2011516193172	2	-90.1850818577344	ļ	
HENRY					
	41.1943841818099	41.1943841818099 -90.18392			
HENRY					
Unnamed Tributary	of South Fork of B	Bear Creek			
206					
	40.0797919556019	9	-91.1461193615862	2	
ADAMS	40.050544455640		04.4.4.5=0.000===0	-	
	40.0587441356106	+0.038/441336106 -91.14		1.1467388825794	
ADAMS	D.				
West Fork of Apple 1	River				
379	40 477752104650	4	00 110250110750	LIO	
	42.4777531846594	4	-90.1103501186504	FJO	
DAVIESS	42 472004221050	7	-90.1321517307332	10	
	42.4739843218597	/	-90.132131/30/332	2.10	
DAVIESS West Fork of Bear C	wools				
195	геек				
	40.3385207135212	2	-91.2203393068898	?	
HANCOCK		2	-91.2203393000090	,	
	40.3592824400704	4	-91.2334357995319)	
HANCOCK	10.557202110070	•) 1.233 133 1 <i>77</i> 331)	•	
Yankee Branch					
147					
	41.2850778212191	1	-90.9379823025264	ļ	

MERCER

end MERCER	41.2926277702981	-90.9335620769218
Ohio		
Big Creek		
16		
start	37.4366764302436	-88.3127424957005
HARDIN		
end	37.5591274535694	-88.3148730216063
HARDIN		
Big Grand Pierre Cr	eek	
13		
start	37.4163002207384	-88.4338876873615 POPE
end	37.5702304746463	-88.4292613661871 POPE
Hayes Creek		
10		
start	37.4452331751972	-88.7114120959417
JOHNSON		
	37.4559134065693	-88.6286228702431 POPE
Hicks Branch		
14		
	37.5432903813926	-88.4245265989312 POPE
	37.5391971894773	-88.4135144509885
HARDIN		
Little Lusk Creek		
12		
	37.4991426291527	-88.5277357332102 POPE
	37.5247950767618	-88.5017934865946 POPE
Little Saline River		
9		
	37.6429893859023	-88.6229273282692
SALINE		

ASIN NAME				
Segment Name				
Segment No.				
End Points	Latitude	Longitude	COUNTY	
end	37.57831250587	77	-88.7169929932876	-)
JOHNSON				
Lusk Creek				
11				
start	37.36859529488	04	-88.4926140087969	POPE
	37.56492324380	96	-88.5644984122843	POPE
Miss River				
2				
start	36.98102798057	12	-89.1311552055554	
ALEXANDER				
Ohio River				
1				
start	36.98102798057	12	-89.1311552055554	
ALEXANDER				
end	37.79954473920	16	-88.0255709974801	
GALLATIN				
Simmons Creek				
15				
start	37.42746813802	08	-88.4392381154217	POPE
end	37.46449210549	99	-88.4850750109356	POPE
South Fork Saline Ri	ver			
8				
start	37.63726461445	82	-88.6447143188352	
SALINE				
end	37.66509920002	87	-88.7471054185807	1
WILLIAMSON				
Unnamed Tributary	of Big Creek			
18				
start	37.48162371089	67	-88.3412279259479)
HARDIN				
end	37.48368436005	81	-88.3434390004066)
HARDIN				
Wabash River				
488				
start	27 70054472020	16	-88.0255709974801	
B con c	37.79954473920	10	00.0200,000,000	
GALLATIN	37.79934473920	10	00.0200,000,0001	
	37.79934473920	10	00.0200,0000,000	
GALLATIN	37.79934473920	10		
GALLATIN ock	37.79934473920	10		
GALLATIN ock Beach Creek 302 start	41.89892152903 41.86377595445	23	-89.121081932608 -89.185844184387	

Beaver Creek 322		
-	42.2551087433884	-88.9247700103803
BOONE		
end	42.4341346635117	-88.7603784300954
BOONE		
Black Walnut Creek		
341		
start	42.1132080942552	-89.2141520188153 OGLE
end	42.061557908797	-89.2316600156935 OGLE
Brown Creek		
335		
start	42.3568412672282	-89.4493817584574
STEPHENSON		
end	42.3697340053709	-89.4802304815634
STEPHENSON		
Buffalo Creek		
358		
start	41.9242552302868	-89.6809355972221
WHITESIDE		
end	41.9752373833258	-89.6243677263482 OGLE
Cedar Creek		
337		
start	42.3709196286357	-89.670256711355
STEPHENSON		
end	42.3896058186609	-89.5870343171161

STEPHENSON

BASIN NAME Segment Name Segment No.				
End Points	Latitude	Longitude	COUNTY	
Coal Creek 208				
	41.39417678731	.98	-89.8287586795479	
BUREAU				
end	41.29308472389	059	-89.6659810678663	
BUREAU				
Coon Creek				
304				
	42.03658710328		-89.489365571257 OGLE	
	42.05505202282	278	-89.4762995939105 OGLE	
326				
	42.25451973497	78	-88.7945563884938	
BOONE			00.50-0-0-0-0-5	
	42.13366770879	089	-88.6039205825106	
DEKALB				
Crane Grove Creek 371				
start	42.26564617489	062	-89.6058461735176	
STEPHENSON				
	42.23172248440)45	-89.5804359629382	
STEPHENSON				
Deer Creek				
307	40 10461056514	50 7	00.70.671.554.514.50	
	42.10461956716	97/	-88.7267155451459	
DEKALB	40 107(5410(50	204	00 ((04575(25500	
DEKALB	42.10765419653	9U 4	-88.6684575625598	
DENALD DENALD				
332				
	42.43221623369	043	-89.0509181181504	
WINNEBAGO	12.13221023309	13	03.0203101101201	
	42.48922117127	754	-88.9789486331688	
WINNEBAGO	,,			
East Branch South B 306	ranch of Kishwa	nukee River		
	42.01080389482	242	-88.7236807475971	
DEKALB		· · -		
	41.98220373585	546	-88.5449399063616 KANE	
East Fork Mill Creek				
343				
start	42.14020530094	142	-89.2945061380348 OGLE	

end 42.1744627607887 -89.268245093523 OGLE Elkhorn Creek 350 start 41.8392614813286 -89.6956810578758 WHITESIDE end 42.0864514128748 -89.636841111792 OGLE Franklin Creek 303 start 41.8885909580789 -89.4120344682789 OGLE end 41.830393186845 -89.3092915487959 LEE Goose Creek 356 start 41.9282951879448 -89.692114617634 WHITESIDE end 41.9476422569681 -89.6849104470831 OGLE **Green River** 359 start 41.6266589513433 -89.5688644755145 LEE end 41.8177589430141 -89.1263088319088 LEE Kilbuck Creek 312 start 42.1838622639314 -89.1301689015062 WINNEBAGO end 41.9181917577798 -88.9212387567239 **DEKALB Kingsbury Creek** 311

BASIN NAME			
Segment Name			
Segment No.			
End Points	Latitude	Longitude	COUNTY
start	42.10777944243	663	-88.8726630666396
DEKALB			
end	42.15793253105	556	-88.8548684690422
BOONE			
Kishwaukee River			
318			
start	42.18663849392	252	-89.1320796977525
WINNEBAGO			
end	42.26666351508	317	-88.5250450377336
MCHENRY			
Kyte River			
295			
start	41.98812504327	'19	-89.3232327202272 OGLE
end	41.92069984705	585	-89.0576692414087 OGLE
Leaf River			
345			
start	42.09367739362	29	-89.3249228482157 OGLE
end	42.15457746260	081	-89.5725820219443 OGLE
Lost Creek			
368			
start	42.24572313204	13	-89.7807765552299
STEPHENSON			
	42.23145002233	394	-89.7709518073782
STEPHENSON			
Middle Creek			
344			
	42.15595840112		-89.2911997709031 OGLE
end	42.17374993064	61	-89.2931763612625 OGLE
Mill Creek			
342			
	42.12068478383		-89.2792143996076 OGLE
	42.20925745965	508	-89.3358557551327
WINNEBAGO			
Mosquito Creek 323			
start	42.30666287985	583	-88.9047855300292
BOONE			
end	42.31000034823	13	-88.9099328193755
BOONE			
327			
start	42.24652174898	35	-88.7802719043895

BOONE end 42.1906300595167 -88.7849304281662 BOONE Mud Creek 325 start 42.2592878387497 -88.7503449689069 BOONE end 42.2805097009077 -88.7381130663589 BOONE 346 start 42.1301628959448 -89.4043328758949 OGLE end 42.1639762007661 -89.4554911246235 OGLE North Branch Kishwaukee River 320 start 42.2655855837644 -88.5514660318739 **MCHENRY** end 42.4163330454161 -88.5232715616737 **MCHENRY North Branch Otter Creek** 292 start 42.4412940471901 -89.3074016078782 WINNEBAGO end 42.4570625094589 -89.356265092275 WINNEBAGO **North Fork Kent Creek** 333 start 42.2621663352674 -89.0944316410734 WINNEBAGO end 42.310438304708 -89.1651357273603 WINNEBAGO Otter Creek

BASIN NAME Segment Name			
Segment No.			
End Points	Latitude	Longitude	COUNTY
291		8	
	42.45654578668	311	-89.2410171137247
WINNEBAGO			
end	42.44129404719	901	-89.3074016078782
WINNEBAGO			
348			
start	42.13452779307	786	-89.411492883497 OGLE
end	42.19116080972	275	-89.4222625773931 OGLE
Owens Creek			
310			
	42.1012605056	104	-88.8850996053184
DEKALB			
	41.99436218630	04	-88.8506687869106
DEKALB			
Pine Creek			
305			
	41.9113031895		-89.452879176459 OGLE
	42.03761465140	025	-89.4909007464322 OGLE
Piscasaw Creek 324			
	42.2618063936	707	-88.8176068924198
BOONE			00 =044000=44640
	42.39168855472	221	-88.7041339551642
MCHENRY			
Raccoon Creek			
328	42.44792888734	122	90 009296102015
WINNEBAGO		+23	-89.098286193015
	42.48297616409	017	-89.1400856130022
WINNEBAGO		71 /	-07.1400030130022
Reid Creek			
353			
	41.86441099210	515	-89.5919014348703 LEE
	41.91351879695		-89.5728723309406 OGLE
Richland Creek 336			
	42.34562752953	301	-89.6832413426115
STEPHENSON			
end	42.50474426875	577	-89.6477619118761
STEPHENSON			

Rock River

294	
start 41.9881250432719	-89.3232327202272 OGLE
end 42.4962174640048	-89.0418910839077
WINNEBAGO	
Rock Run	
490	
start 42.3211872463585	-89.4237342452712
STEPHENSON	
end 42.4281098959774	-89.4483616268915
STEPHENSON	
Rush Creek	
321	00 -001 -000 10-10
start 42.2560676137827	-88.7031592940742
MCHENRY	00.5000606000064
end 42.4031741332744	-88.5930626223964
MCHENRY	
Silver Creek	
338	90 225001029201 OCLE
start 42.0611717976691	-89.335901928201 OGLE
end 42.0866765435436	-89.3839889015445 OGLE
Skunk Creek	
354 start 41.8794703976699	-89.7072621672884
WHITESIDE	-89./0/20210/2884
end 41.897582187238	-89.7290746844729
WHITESIDE	-89.7290740844729
South Branch Kishwaukee River	
308	
start 42.2001609257306	-88.9840657029051
WINNEBAGO	00.70 1003 / 02703 1
THE TELEPTION	

BASIN NAME		
Segment Name		
Segment No.		
End Points	Latitude Longitude	COUNTY
	d 41.9015798699947	-88.7706697182685
DEKAL	В	
315	. 42 2 (27) 27 (77)	00.5(00.500.055.41.5
	rt 42.2627093767756	-88.5609522875415
MCHENR		00 4620442477041 1/4 NIF
	d 42.1066209842679	-88.4620443477841 KANE
South Branch of Ot 280	пет Стеек	
	rt 42.4412940471901	-89.3074016078782
WINNEBAG		-89.30/40100/8/82
	d 42.4343122756071	-89.3600650183381
WINNEBAG		-07.3000030103301
South Fork of Leaf	_	
347	Mivel	
	rt 42.1296104494647	-89.4546456401589 OGLE
	d 42.1085718337046	-89.5037134270228 OGLE
South Kinnikinnick		
330		
sta	rt 42.419961259532	-89.018119476068
WINNEBAG	O	
en	d 42.4190921988888	-88.8710507717794
BOON	E	
Spring Creek		
339		
	rt 42.0709215390383	-89.325546679708 OGLE
en	d 42.0590157098796	-89.3110803788049 OGLE
Spring Run		
313	42.040222004044	
	rt 42.0402370001041	-89.0065478421579 OGLE
	d 42.0507770466662	-88.9858854279893 OGLE
Steward Creek		
297	41 9002672259907	90 10210(4(09422 OCLE
	rt 41.8903673258897 d 41.8259979751563	-89.1021064698423 OGLE
	d 41.8239979731303	-88.9624738458404 LEE
Stillman Creek 340		
	rt 42.1259475370515	-89.2319193482332 OGLE
	d 42.0372051268587	-89.1542573242497 OGLE
Sugar Creek	G 72.03/203120030/	07.13723/327277/ OGLE
352		
	rt 41.8392614813286	-89.6956810578758
Sta	11.0372011013200	07.0750010570750

WHITESIDE

end 41.8644109921615 -89.5919014348703 LEE

Sugar River

293

start 42.4357992567436 -89.1971727593158

WINNEBAGO

end 42.4982890047043 -89.2624235677856

WINNEBAGO

Sumner Creek

334

start 42.3227762010459 -89.3830042631004

WINNEBAGO

end 42.25195988987 -89.3997975146614 STEPHENSON

Turtle Creek

329

start 42.4929910323531 -89.0439958173493

WINNEBAGO

end 42.4961371053418 -89.0246519221989

WINNEBAGO

Unnamed Tributary

361

start 41.6608316904842 -89.4728200038511 LEE

end 41.6425311558513 -89.4137140926471 LEE

365

BASIN NAME		
Segment Name		
Segment No.		
End Points	Latitude Longitude	COUNTY
start	41.7443681625006	-89.168951821186 LEE
end	41.738182745458	-89.1042187039322 LEE
492		
	42.1246069284208	-88.5882544654343
DEKALB		
end	42.1028295788327	-88.5105326912596 KANE
Unnamed Tributary		
357		
	41.9332348110612	-89.6342816030603 OGLE
end	41.93890647032 -89.6092042883	405 OGLE
Unnamed Tributary		
282		
start	42.1336677087989	-88.6039205825106
DEKALB		
	42.0754334787177	-88.5442273447775 KANE
491		
start	42.150113155436	-88.6091713292612
DEKALB		
end	42.1691790844289	-88.5070973943593
MCHENRY		
Unnamed Tributary	of Elkhorn Creek	
355		
start	41.9378871254405	-89.7318712136894
CARROLL	,	
end	41.9525180771018	-89.7332762139612
CARROLL	,	
Unnamed Tributary	of Green River	
360		
start	41.8177589430141	-89.1263088319088 LEE
end	41.8012094828667	-89.0296681468724 LEE
362		
start	41.66455888603 -89.4729486542	104 LEE
end	41.650155479351	-89.4398464027055 LEE
364		
start	41.750735979575	-89.2189268880904 LEE
end	41.7278383993539	-89.1577958588247 LEE
366		
start	41.7304138832457	-89.2547363744761 LEE
end	41.7421804770435	-89.2683034846455 LEE
367		
start	41.7336722733557	-89.2459381167869 LEE

end	41.6996843512729	-89.2025409068097 LEE
489		
start	41.7765356433433	-89.1781811586274 LEE
end	41.791148742648	-89.1782543204659 LEE
Unnamed Tributary	of Kyte River	
298		
start	41.969037423435	-89.2727932207785 OGLE
end	41.9423468128644	-89.2676252361535 OGLE
299		
start	41.9474122868214	-89.1742920304606 OGLE
end	41.9511979792854	-89.1378721025283 OGLE
Unnamed Tributary	of North Branch Kishwaukee Ri	ver
319		
start	42.4163330454161	-88.5232715616737
MCHENRY		
end	42.4218523642031	-88.5063783493938
MCHENRY		
Unnamed Tributary	of Rock River	
331		
	42.3730089457359	-89.0581319432428
WINNEBAGO		

BASIN NAME Segment Name			
Segment No.			
End Points	Latitude	Longitude	COUNTY
	42.38284150348	•	-89.0950184603254
WINNEBAGO	42.36264130346	3	-89.0930184003234
	of Couth Duanah	Vichwaukaa Di	vow.
Unnamed Tributary 309	oi South Dianch	KISHWAUKEE KI	v e i
	42.12199229467	16	-88.9236557341498
DEKALB	42.12133223407	10	-88.9230337341498
	42.11382083889	//3	-88.9372243118963
DEKALB	42.11302003003	43	-88.9372243118903
316			
	42.15656444536	66	-88.4449935784875
MCHENRY	42.13030444330	000	-00.4449933/040/3
	42.15941497925	06	-88.4178533576301
MCHENRY	42.13941497923	00	-88.41/83333/0301
317			
-	42.23401024722	7	-88.5199093723576
MCHENRY	42.23401024722	. [-88.3199093723370
	40 00057000160	02	99 5250266256901
	42.22257932168	03	-88.5259266256801
MCHENRY	- f C : D		
Unnamed Tributary 314	2		
	42.04015658447		-88.9948863767949 OGLE
	42.01168357030		-88.9710672286801 OGLE
Unnamed Tributary	of Steward Cree	k	
296			
	41.84445928408		-89.0070046248547 LEE
end	41.86015895469	13	-88.9714244440014 LEE
300			
	41.87171911654		-89.069434926448 LEE
end	41.87924775455	79	-89.037635229652 LEE
Unnamed Tributary	of Yellow Creek		
369			
start	42.30676152219	91	-89.8535571166391
STEPHENSON			
end	42.34936692685	37	-89.8275355259147
STEPHENSON			
West Fork Elkhorn (Creek		
351			
start	42.08645141287	48	-89.636841111792 OGLE
end	42.09248534394	98	-89.6474944357754 OGLE
Willow Creek			

start	41.7653209616214	-89.1943294683724 LEE
	41.7141851660088	-89.032161004274 LEE
Yellow Creek	41./141031000000	-89.032101004274 LEE
370		
	42 200015660 4427	00.5(0(27(5(2017
	42.2899156684427	-89.5696276563017
STEPHENSON	10.050.01.55.01.60	00.005005050001.10
	42.3796215769162	-89.9350879560031 JO
DAVIESS		
Wabash		
Bean Creek		
437		
start	40.2950579779894	-87.7823902126108
VERMILION		
end	40.3344744135429	-87.7494458762005
VERMILION		
Big Creek		
457		
start	39.3351439545995	-87.5878012286214
CLARK		
start	39.436126036547	-87.7023848396263
CLARK	231.2012000001,	0717,0200.00000200
Bluegrass Creek		
436		
	40.301292752824	-87.7969361668719
VERMILION	TU.JU12/2/J202 T	-07.7707301000717
	40.381268589802	-87.8562389558508
VERMILION	40.301200303002	-01.0302303330300
Brouilletts Creek		

BASIN NAME			
Segment Name			
Segment No. End Points	Latituda	Lancituda	COLINTY
	Latitude	Longitude	COUNTY
450	20.7057(405520	4.5	07.5500(15103010
	39.70576495529	45	-87.5509615193818
EDGAR	20 70744007152	1	07 7170550101462
EDGAR	39.79744997152	4	-87.7178559181463
Brush Creek			
468			
	38.99307271882	6	-88.1273817532169
JASPER	30.77307271002	O	00.1275017552107
	38.96755105376	77	-88.1471375817992
JASPER	30.70733103370		00.11/13/201/992
Brushy Fork			
484			
start	39.71611887455	87	-88.0853294840712
DOUGLAS			
end	39.81112894036	64	-87.8839288887749
EDGAR			
Buck Creek			
435			
	40.31151262343	24	-87.9255710854089
VERMILION			
	40.28626753291	03	-87.9704593374522
CHAMPAIGN			
Cassell Creek			
473	20.40664244226	70	00 200 4070 42 62 54
	39.48664344236	72	-88.2094970436354
COLES	20.40006000542	02	00 207040054172
	39.49096980542	93	-88.207848854172
CoLES			
Catfish Creek 477			
	39.68089126486	1	-87.9341744320393
EDGAR	37.00007120400	-	-07.7541744520575
	39.65813549708	01	-87.8937116601235
EDGAR	37.03013347700	O1	07.0757110001255
Clark Branch			
483			
	39.81112894036	64	-87.8839288887749
EDGAR			
	39.82266100394	89	-87.8513747624001
EDGAR			

Collison Branch 439		
	40.2351860050982	-87.7725365689525
	40.2197161120333	-87.803155121171
Cottonwood Creek		
469		
start CUMBERLAND	39.2033657707304	-88.2765033266093
end	39.3142137713574	-88.229342077034
CUMBERLAND		
Crabapple Creek 452		
start	39.7057649552945	-87.5509615193818
EDGAR		
end	39.8065708276187	-87.6467768455628
EDGAR		
Crooked Creek		
465		
start	38.9817031629594	-88.066438923761
JASPER		
end	39.0356467346919	-88.0923368283887
JASPER		
Deer Creek 485		
start DOUGLAS	39.7053403128076	-88.0850387247647
	39.7025679945443	-88.2058470030399
DOUGLAS	37.10230177743443	-00.2030470030377
Donica Creek		
479		
	39.6453315324326	-87.9892294370803
COLES	37.0733313327320	-07.7072274370003
	39.6172623271272	-87.9782640861296
COLES	57.01/20232/12/2	07.77020 1 0001290
Dudley Branch 475		

BASIN NAME				
Segment Name				
Segment No.	T 1	T 1, 1	COL	TN ICTX Z
End Points	Latitude	Longitude		JNTY
	39.51156422276	27	-88.0	0564563693231
COLES				
	39.50681882981	45	-88.0)43669581567
COLES				
East Crooked Creek				
287				
	39.03564673469	19	-88.0	923368283887
JASPER				
	39.16597298566	15	-88.0	0610310241876
JASPER				
East Fork Big Creek				
458				
start	39.43612603654	7	-87.7	023848396263
CLARK				
end	39.54711037807	13	-87.7	60040304497
EDGAR				
Embarras River				
460				
start	38.91486287624	88	-87.9	834798036322
JASPER				
end	39.71611887455	87	-88.0	0853294840712
DOUGLAS				
Feather Creek				
432				
_	40.11728180421	34	-87.8	342855159987
VERMILION	.0.11,20100.21		07.0	.2 .2000 10000
	40.14165432113	04	-87.8	3399367268356
VERMILION	40.14103432113	O-T	07.0	1377301200330
Greasy Creek				
480				
	39.63259045929	65	88 (0822649850404
COLES	39.03239043929	0.5	-00.0	1622049630404
	39.61822552972	22	00 1	320998047424
	39.01022332972	23	-00.1	.32099604/424
COLES				
Hickory Creek				
464	20.071.4270.41.00	02	07.0	77771454205
	38.97142784180	83	-8/.9	72721454297
JASPER	20.0010115	0= 000======		
	38.99191464315	-87.98929252390)7	JASPER
Hickory Grove Creel	K			
478				

start EDGAR	39.6581354970801	-87.8937116601235
	39.5712873627184	-87.8825676201308
Hurricane Creek		
470		
· ·	39.2889007816578	-88.1544749600653
CUMBERLAND	37.2007007010370	00.1344747000033
end	39.3793118297358	-88.0668208708762
COLES		
Jordan Creek		
433		
	40.0794151192358	-87.7990673709556
VERMILION		
end	40.0588834821927	-87.8360461636444
VERMILION		
443		
start	40.3360527696651	-87.6231745570584
VERMILION		
end	40.3553265493525	-87.5278198412106
VERMILION		
Kickapoo Creek		
471		
	39.4379695819539	-88.1681483569976
COLES		001100110000000000000000000000000000000
	39.4597583113682	-88.2917593820249
COLES		
Knights Branch		
438		
	40.2763499940372	-87.7961879249888
VERMILION	10.27 00 1333 100 12	0,1,7,010,7,2 1,7000
	40.2520446574291	-87.8336356533235
VERMILION	10.2520110571251	07.000000000000000000000000000000000000
Little Embarras Rive	a r	
476	·-	
	39.5736361588448	-88.0726889440362
COLES	23.272.02.012.00110	33.0720007110302
	39.680891264864	-87.9341744320393
EDGAR		2,1,00.1,110200,0
LD of He		

BASIN NAME Segment Name			
Segment No.			
End Points	Latitude	Longitude	COUNTY
Little Vermilion Rive		Longitude	200111
426	CI		
	39.946334527	1443	-87.5536756201362
VERMILION	39.9 1033 1327	1113	07.3330730201302
	39.9593741043	3792	-87.6447473681732
VERMILION	33.30337 110 1.	5,7,5 2	07.01.77.75001752
Middle Branch			
442			
start	40.3096675860	0339	-87.6376716065503
VERMILION			
end	40.417753327	133	-87.5275419211693
VERMILION			
Middle Fork of Vern	nilion River		
428			
start	40.1035656386	6662	-87.7169902321166
VERMILION			
end	40.404334314	7541	-88.0191381621282 FORD
Mill Creek			
487			
start	39.2394256838	8229	-87.6762126527038
CLARK			
	39.3566749194	4214	-87.7425049309309
CLARK			
Muddy Creek			
242			
	39.1821395682	2335	-88.2309155529877
CUMBERLAND	20.202265550	7204	00.0565000066000
	39.203365770	/304	-88.2765033266093
CUMBERLAND	ъ.		
North Fork of Emba	rras River		
461	20.01.40(207(3400	97 0924709026222
start JASPER	38.9148628762	2488	-87.9834798036322
		2725	97 0794020129617
JASPER	39.0924749553	5123	-87.9784039128617
North Fork Vermilio			
441	II IXIVCI		
	40.2360548812	277	-87.6293326109766
VERMILION		-,,	07.0273320107700
	40.5010729612	2407	-87.5261721834388
Cha	.0.0010727012		07.0201721001000

IROQUOIS

Panther Creek 462		
	39.0924749553725	-87.9784039128617
	39.184289386946	-88.0087906828419
Polecat Creek		
474	20 70422024 (7022	00.40.50.60.400.6
start COLES	39.5013303165832	-88.1055006912296
end COLES	39.5162859310237	-88.0338496162262
Riley Creek		
472		
	39.4712869216685	-88.2108945161318
	39.5116227820733	-88.2569469311765
COLES	39.311022/820/33	-00.2303403311/03
Salt Fork 429		
start	40.1035656386662	-87.7169902321166
VERMILION		
end	40.0368232483006	-88.0746580039075
CHAMPAIGN		
455		
	39.7425080214619	-87.572919448772
EDGAR		
	39.8018493662144	-87.5775868051385
EDGAR		
Snake Creek		
454		
_	39.7128111863363	-87.6415954465778
EDGAR	33.7120111003303	07.0112721102770
	39.7066978623237	-87.6543043306751
EDGAR	· · · · · · · · · · · · · · · · · · ·	
South Fork of Brouil	letts Creek	
453		

BASIN NAME			
Segment Name			
Segment No.			
End Points	Latitude	Longitude	COUNTY
start	39.7256495590209		-87.6437626049444
EDGAR			
	39.73194490	05729	-87.6951881181821
EDGAR			
Stony Creek			
431			
start	40.09434541	86494	-87.8170769835194
VERMILION			
	40.15488478	64725	-87.8840063394108
VERMILION			
Sugar Creek			
456			
start	39.48388205	36199	-87.5320762217325
EDGAR			
end	39.62981647	81408	-87.6762882912482
EDGAR			
Unnamed Tributary	of Big Creek		
459	0		
start	39.50479118	35054	-87.7121475341945
EDGAR			
end	39.56927846	93864	-87.7194139533441
EDGAR			
Unnamed Tributary	of Brouilletts	Creek	
451			
start	39.79744997	1524	-87.7178559181463
EDGAR			
end	39.83159269	7221	-87.7758036967074
EDGAR			
Unnamed Tributary	of Brushy Fo	rk	
482			
start	39.73403441	29883	-88.0771406153965
DOUGLAS			
end	39.80258661	6189	-88.0753634663247
DOUGLAS			
Unnamed Tributary	of Deer Creel	k	
486			
start	39.71021848	48625	-88.1385435180688
DOUGLAS			
end	39.67886690	3649	-88.1425332064637
DOUGLAS			
Unnamed Tributary	of Embarras	River	

467		
start	38.9934159067144	-88.129258689394
JASPER		
	39.0034725453128	-88.1210073578163
JASPER		
Unnamed Tributary	of Greasy Creek	
481	of Greasy Creek	
	39.6182255297223	-88.1320998047424
	39.0182233297223	-88.132099804/424
COLES		
end	39.621059195964	-88.1538483534688
COLES		
Unnamed Tributary	of Hickory Creek	
210	•	
start	38.99191464315 -87.989	292523907 JASPER
end	39.0117394234421	-87.9896104862878
JASPER		0,3,0,0,0,0,0,0
Unnamed Tributary	of Middle Fork Vermilie	n Divor
•	of Middle Fork Vermilio	on Marci
434		

start 40.3478602982847 -87.9479087836067

CHAMPAIGN

end 40.3408935605508 -87.9885982351498

CHAMPAIGN

Unnamed Tributary of Stony Creek

430

start 40.1548847864725 -87.8840063394108

VERMILION

end 40.1706704853124 -87.9033972187304

VERMILION

Unnamed Tributary of North Fork of the Vermilion River 444

start 40.3553498759616 -87.6852979017427

VERMILION

end 40.3665727663496 -87.733231992072

VERMILION

445

start 40.483638183168 -87.5751075709757

VERMILION

end 40.4930209841439 -87.5771391859822

IROQUOIS

BASIN NAME			
Segment Name			
Segment No.			
End Points	Latitude	Longitude	COUNTY
446			
start	40.42322371131	1	-87.6788932053507
VERMILION			
end	40.42804619952	299	-87.6895565256772
VERMILION			
Vermilion River			
427			
start	40.01168688055	566	-87.5337540394346
VERMILION			
end	40.10356563866	562	-87.7169902321166
VERMILION			
Wabash River			
488			
end	39.30342662387	732	-87.605592332246
CLARK			
West Crooked Creek			
466			
start	39.03564673469	919	-88.0923368283887
JASPER			
end	39.05457597013	349	-88.1009871944535
JASPER			
West Fork Big Creek			
19			
start	39.43612603654	17	-87.7023848396263
CLARK			
end	39.50123378201	95	-87.8003199656505
EDGAR			
Willow Creek			
463			
start	39.01919520072	294	-87.9402449982878
CRAWFORD			
end	39.05291455077	759	-87.9280073176635
CRAWFORD			

(Source: Added at 32 Ill. Reg. 2254, effective January 28, 2008)