ILLINOIS POLLUTION CONTROL BOARD September 17, 1998

IN THE MATTER OF:)	
ENHANCED VEHICLE INSPECTION)	R98-24
AND MAINTENANCE (I/M))	(Rulemaking - Air)
REGULATIONS: AMENDMENTS)	
TO 35 ILL. ADM. CODE 240)	

Adopted Rule. Expedited Correction.

OPINION AND ORDER OF THE BOARD (by M. McFawn):

On July 8, 1998, the Board adopted a final opinion and order in this matter. The adopted rules were published in the *Illinois Register* at 22 Ill. Reg. 13723 (July 24, 1998). The Joint Committee on Administrative Rules identified several numerical value errors in the published text in Table C entitled "Vehicle Exhaust Emissions Fast-Pass Standards," which it has asked the Board to correct in an expedited manner pursuant to Section 5-85 of the Illinois Administrative Procedure Act (APA) (5 ILCS 100/5-85 (1994)). The Board accordingly adopts this order to expedite publication of the rules containing the intended numerical values in Table C. The intention to correct these numerical values was articulated in the Board's final opinion of July 8, 1998. See In the Matter of: Enhanced Vehicle Inspection and Maintenance (I/M) Regulations: Amendments to 35 Ill. Adm. Code 240 July 8, 1998, R98-24, slip op. at 17-18.

The Board sets forth below in their entirety the rules adopted by the Board in its July 8, 1998 order as amended by today's order, including the correct, intended version of Table C.

ORDER

Pursuant to Section 5-85 of the Illinois APA (5 ILCS 100/5-85 (1994)), the Board directs that the following rules be submitted for review by the Joint Committee on Administrative Rules and to the Secretary of State for publication in the *Illinois Register* for expedited correction of typographical errors:

TITLE 35: ENVIRONMENTAL PROTECTION
SUBTITLE B: AIR POLLUTION
CHAPTER I: POLLUTION CONTROL BOARD
SUBCHAPTER k: EMISSION STANDARDS AND LIMITATIONS FOR MOBILE
SOURCES

PART 240 MOBILE SOURCES

SUBPART A: DEFINITIONS AND GENERAL PROVISIONS

Section	
240.101	Preamble
240.102	Definitions
240.103	Prohibitions
240.104	Inspection
240.105	Penalties
240.106	Determination of Violation
240.107	Incorporations by Reference
	- v

SUBPART B: EMISSIONS

Section	
240.121	Smoke Emissions
240.122	Diesel Engine Emissions Standards for Locomotives
240.123	Liquid Petroleum Gas Fuel Systems
240.124	Vehicle Exhaust Emission Standards
240.125	Compliance Determination

SUBPART C: HEAVY-DUTY DIESEL SMOKE OPACITY STANDARDS AND TEST PROCEDURES

Section	
240.140	Applicability
240.141	Heavy-Duty Diesel Vehicle Smoke Opacity Standards and Test
	Procedures

SUBPART D: STEADY-STATE IDLE MODE TEST EMISSION STANDARDS

Section	
240.151	Applicability
240.152	Steady-State Idle Mode Vehicle Exhaust Emission Standards
240.153	Compliance Determination

SUBPART E: TRANSIENT LOADED MODE TEST EMISSION STANDARDS

Section	
240.161	Applicability
240.162	Vehicle Exhaust Emission Start-Up Standards

240.163 240.164 240.165	Compliance Determination					
	SUBPART F: EVAPORATIVE TEST STANDARDS					
240.171 240.173	Applicability Evaporative System Integrity Test Standards					
SUBPA	ART G: ON-ROAD REMOTE SENSING TEST EMISSION STANDARDS					
240.181 240.182	On-Road Remote Sensing Emission Standards Compliance Determination					
	SUBPART H: ON-BOARD DIAGNOSTIC TEST STANDARDS					
240.192	Applicability					
240.192	Compliance Determination					
240. Appendi	Rule into Section Table x B					
240.Table A	Vehicle Exhaust Emission Start-Up Standards Vehicle Exhaust Emission Final Standards					
240.Table C	Venicle Exhaust Emission Final Standards					
	Y: Implementing Sections 9, 10 and 13 and authorized by Sections 27 and 28.5 nmental Protection Act [415 ILCS 5/9, 10, 13, 27, and 28.5] and Section 13B-20					
P.A. 90-475,	effective August 16, 1997).					
	72; codified at 7 Ill. Reg. 13628; amended in R85-25, at 10 Ill. Reg. 11277, e 16, 1986; amended in R90-20 at 16 Ill. Reg. 6184, effective April 7, 1992;					
•	g. 18228, effective December 20, 1994; amended in R98-24 at 22 Ill. Reg. ive July 13, 1998; expedited correction at 22 Ill. Reg, effective					
BOARD NO	ΓΕ: This part implements the Environmental Protection Act as of July 1, 1994.					

NOTE: Capitalization denotes statutory language.

SUBPART A: DEFINTIONS AND GENERAL PROVISIONS

Section 240.102 Definitions

All terms which appear in this Part have the definitions specified in this Part and 35 Ill. Adm. Code 201 and 211. Where conflicting definitions occur, the definitions of this Section apply in this Part.

- "Agency" means the Illinois Environmental Protection Agency.
- "Diesel engine" means all types of internal-combustion engines in which air is compressed to a temperature sufficiently high to ignite fuel injected directly into the cylinder area.
- "Diesel locomotive" means a diesel engine vehicle designed to move cars on a railway.
- "Evaporative system integrity test" means a test of a vehicle's evaporative system. The test shall either consist of a leak check of a vehicle's fuel cap with a fuel cap pressure decay tester (fuel cap pressure decay test), a fuel cap leak flow tester (fuel cap leak flow test), or a visual functional check, as applicable.
- "Fuel cap" means a device used to seal a vehicle's fuel inlet.
- "Fuel cap leak flow test" means a test which may be performed in accordance with this Part on a vehicle's fuel cap using a fuel cap leak flow tester to determine whether the vehicle complies with the evaporative system emission standards of this Part.
- "Fuel cap leak flow tester" means a device used to determine the leak flow integrity of a vehicle's fuel cap by comparing the measured leak flow of the fuel cap with an established fuel cap leak flow standard.
- "Fuel cap pressure decay test" means the test performed in accordance with this Part on a vehicle's fuel cap using a fuel cap pressure decay tester to determine whether the vehicle complies with the evaporative system emission standards of this Part.
- "Fuel cap pressure decay tester" means a device used to determine the pressure decay integrity of a vehicle's fuel cap by monitoring the pressure behind the fuel cap for a ten second period and comparing the

measured pressure decay of the fuel cap to an established fuel cap pressure decay standard.

"Fuel cap visual functional test" means the test performed in accordance with this Part on a vehicle's fuel cap using visual analysis to determine whether the vehicle complies with the evaporative system emission standards of this Part.

"Full power position" means the throttle position at which the engine fuel delivery is at maximum flow.

"Gross vehicle weight rating (GVWR)" means the value specified by the manufacturer as the maximum design loaded weight of a single vehicle.

"Heavy duty vehicle" means any motor vehicle rated at more than 8500 pounds GVWR or that has a vehicle curb weight of more than 6000 pounds or that has a basic vehicle frontal area in excess of 45 square feet.

"High idle" means a vehicle operating condition with engine disconnected from an external load (placed in either neutral or park) and operating at speed of 2500 + 300 RPM.

"Idle mode" means that portion of a vehicle emission test procedure conducted with the engine disconnected from an external load and operating at minimum throttle.

"Initial idle mode" means the first of up to two idle mode sampling periods during a steady-state idle mode test, during which exhaust emission measurements are made with the vehicle in "as-received" condition.

"Light duty truck 1" means a motor vehicle rated at 6000 pounds maximum GVWR or less and which has a vehicle frontal area of 45 square feet or less, and which is designed primarily for purposes of transportation of property or is a derivation of such a vehicle, or is designed primarily for transportation of persons and has a capacity of more than 12 persons, or is available with special features enabling off-street or off-highway operation and use.

"Light duty truck 2" means a motor vehicle rated between 6001 and 8500 pounds maximum GVWR and which has a vehicle frontal area of 45 square feet or less, and which is designed primarily for purposes of transportation of property or is a derivation of such a vehicle, or is designed primarily for transportation of persons and has a capacity of

more than 12 persons, or is available with special features enabling offstreet or off-highway operation and use.

"Light duty vehicle" means a passenger car or passenger car derivative capable of seating 12 passengers or fewer. "Loaded mode" means that portion of a vehicle emission test procedure conducted with the vehicle positioned and operating under load on a chassis dynamometer.

"Loaded mode" means that portion of a vehicle emission test procedure conducted with the vehicle positioned and operating under load on a chassis dynamometer.

"Loaded vehicle weight (LVW)" means the vehicle curb weight plus 300 pounds.

"Measured values" means five second running averages of exhaust emission concentrations sampled at a minimum rate of twice per second.

"Model year" means the year of manufacture of a motor vehicle based upon the annual production period as designated by the manufacturer and indicated on the title and registration of the vehicle. If the manufacturer does not designate a production period for the vehicle, then "model year" means the calendar year of manufacture.

"Motor vehicle" as used in this Part, shall have the same meaning as in Section 1-146 of the Illinois Vehicle Code [625 ILCS 5/1-146].

"Preconditioning mode" means a period of steady-state loaded mode or high-idle operation conducted to ensure that the engine and emissions control system components are operating at normal operating temperatures, thus minimizing false failures caused by improper or insufficient warm-up.

"Second-chance idle mode" means the second of two idle mode sampling periods during a steady-state idle mode test, preceded by a preconditioning mode and utilized as a second chance to pass idle exhaust emission standards immediately following an initial idle mode failure.

"Smokemeter or opacimeter" means an optical instrument designed to measure the opacity of smoke or diesel exhaust gases using the light extinction method.

"Snap-idle cycle" means rapidly depressing the accelerator pedal from normal idle to the full power position while the vehicle is in neutral,

holding the pedal in the position for no longer than ten seconds or until the engine reaches maximum RPM, and fully releasing the pedal so that the engine decelerates to normal idle.

"Steady-state idle test" means a vehicle emission test procedure consisting of an initial idle mode measurement of exhaust emissions followed, if necessary, by a loaded or high idle preconditioning mode and a second-chance idle mode.

"Transient loaded mode test" means a vehicle emissions test run on an inertial and power absorbing dynamometer using USEPA's IM240 driving cycle consisting of accelerations and decelerations simulating onroad driving conditions.

(Source: Amended at 22 Ill. Reg. 13723, effective July 13, 1998)

Section 240.104 Inspection

- a) All motor vehicles subject to inspection pursuant to Section 13A-104 of the Vehicle Emissions Inspection Law [625 ILCS 5/13A-104] shall comply with the exhaust emission standards for carbon monoxide and hydrocarbons set forth at Section 240.124 of this Part.
- b) All motor vehicles subject to inspection pursuant to Section 13B-15 of the Vehicle Emissions Inspection Law [625 ILCS 5/13B-15] shall comply with applicable vehicle emission standards contained in Sections 240.152, 240.162, 240.163, 240.172, 240.182 and 240.192 of this Part.

(Source: Amended at 22 Ill. Reg. 13723, effective July 13, 1998)

Section 240.105 Penalties

- a) Any violations of Sections 240.103, 240.121, 240.122, and 240.123 of this Part shall be subject to the penalties as set forth in Section 42 of the Act [415 ILCS 5/42].
- b) Any violations of Sections 240.104(a) and 240.124 of this Part shall be subject to the penalties as set forth in Sections 13A-112 and 13A-113 of the Vehicle Emissions Inspection Law [625 ILCS 5/13A-112 and 13A-113].
- c) Any violations of Sections 240.104(b), 240.152, 240.162, 240.163, 240.172, 240.182, and 240.192 of this Part shall be subject to the penalties as set forth in Sections 13B-55 and 13B-60 of the Vehicle Emissions Inspection Law.

(Source: Amended at 22 Ill. Reg. 13723, effective July 13, 1998)

Section 240.106 Determination of Violation

- a) Any violations of Sections 240.103, 240.121, 240.122, and 240.123 of this Part shall be determined by visual observation or by a test procedure employing an opacity measurement system as qualified by 35 Ill. Adm. Code 201, Subpart J.
- b) Any violations of Sections 240.124, 240.152, 240.162, 240.163, 240.172, 240.182, or 240.192 of this Part shall be determined in accordance with test procedures adopted by the Agency in 35 Ill. Adm. Code 276.

(Source: Amended at 22 Ill. Reg. 13723, effective July 13, 1998)

Section 240.107 Incorporations by Reference

The following materials are incorporated by reference and include no later editions or amendments:

- a) Society of Automotive Engineers (SAE), 400 Commonwealth Drive, Warrendale, PA 15096: Report J255a Diesel Engine Smoke Measurement (August 1978).
- b) International Standards Organization (ISO), Case Postale 56, 1211 Geneve 20, Switzerland: ISO 393 (Working Draft, January 1991). Also available from American National Standards Institute (ANSI), 11 West 42nd Street, New York, NY 10036.
- C) United States Environmental Protection Agency (USEPA), "High-Tech I/M Test Procedures, Emission Standards, Quality Control Requirements, and Equipment Specifications: IM240 and Functional Evaporative System Tests, Revised Technical Guidance," Report EPA-AA-RSPD-IM-96-1 (June 1996), 2565 Plymouth Road, Ann Arbor, MI 48105.

(Source: Amended at 22 Ill. Reg. 13723, effective July 13, 1998)

SUBPART E: TRANSIENT LOADED MODE TEST EMISSION STANDARDS

Section 240.162 Vehicle Exhaust Emission Start-Up Standards

Vehicle exhaust emission start-up standards contained in Section 240. Table A of this Part shall apply for all vehicles subject to inspection until two years after the beginning of IM240 testing. All standards are expressed in grams per mile (gpm).

(Source: Amended at 22 Ill. Reg. 13723, effective July 13, 1998)

Section 240.163 Vehicle Exhaust Emission Final Standards

Vehicle exhaust emission final standards contained in Section 240. Table B of this Part shall apply for all vehicles subject to inspection beginning at the conclusion of testing using the start-up vehicle exhaust emissions standards required in Section 240.162. All standards are expressed in grams per mile (gpm).

(Source: Amended at 22 Ill. Reg. 13723 effective July 13, 1998)

Section 240.164 Vehicle Exhaust Emission Fast-Pass Standards

Vehicle exhaust emissions fast-pass standards contained in Section 240. Table C of this Part will apply for all vehicles subject to inspection under Section 240.161 of this Part utilizing the IM240 transient loaded mode exhaust emission test procedures that will be adopted by the Agency in 35 Ill. Adm. Code 276. All standards are expressed as the cumulative grams for each second of the composite and Phase 2 tests.

(Source: Old Section 240.164 renumbered to Section 240.165 and new Section 240.164 added at 22 Ill. Reg. 13723, effective July 13, 1998)

Section 240. 165 Compliance Determination

- a) Vehicle Exhaust Emission Start-Up and Final Standards - Compliance shall be determined based upon the measurement of exhaust emissions while operating the vehicle on a dynamometer and following the driving cycle as specified for the transient IM240 test procedures adopted by the Agency. If the corrected, composite emission rates exceed standards for any pollutant, additional analysis of test results shall review the second phase ("Phase 2") of the driving cycle separately. Phase 2 shall include second 94 through second 239 of the driving cycle. Second-by-second emission rates in grams and composite emission rates in grams per mile for Phase 2 and for the entire composite test shall be recorded for each pollutant. For any given pollutant, if the composite emission level is at or below the composite standard or if the Phase 2 grams per mile emission level is at or below the applicable Phase 2 standard, then the vehicle shall pass the test for that pollutant. Composite and Phase 2 emission rates shall be calculated in accordance with procedures specified in "High-Tech I/M Procedures, Emissions Standards, Quality Control Requirements, and Equipment Specifications: IM240 and Functional Evaporative System Tests, Revised Technical Guidance," incorporated by reference at Section 240.107 of this Part.
- b) Vehicle Exhaust Emission Fast-Pass Standards Compliance will be determined based upon the measurement of exhaust emissions while operating the vehicle on a dynamometer and following the driving cycle as specified for the transient IM240 test procedures adopted by the Agency. Vehicles will be fast-passed using the following algorithm:

- Beginning at second 30 of the driving cycle, cumulative second-bysecond emission levels for each second, calculated from the start of the cycle in grams, will be compared to the cumulative fast-pass emission standards for the second under consideration. Beginning at second 109, fast-pass decisions are based upon analysis of cumulative emissions in Phase 2, the portion of the test beginning at second 94, as well as emission levels accumulated from the beginning of the composite test.
- 2) A vehicle will pass the transient IM240 test for a given pollutant if either of the following conditions occurs:
 - A) cumulative emissions of the pollutant are below the full cycle fast-pass standard for the second under consideration; or
 - B) at second 109 and later, cumulative Phase 2 emissions are below the Phase 2 fast-pass standards for the second under consideration.
- 3) Testing may be terminated when fast-pass criteria are met for all subject pollutants in the same second.
- 4) If a fast-pass determination cannot be made for all subject pollutants before the driving cycle ends, the pass/fail determination for each component will be based on composite or Phase 2 emissions over the full driving cycle according to the procedures in subsection (a) of this Section. In cases where fast-pass standards are not used, composite emission rates in grams per mile for Phase 2 and for the entire composite test will be recorded for each pollutant.
- 5) Composite and Phase 2 emission rates will be calculated in accordance with procedures specified in "High-Tech I/M Procedures, Emissions Standards, Quality Control Requirements, and Equipment Specifications: IM240 and Functional Evaporative System Tests, Revised Technical Guidance" incorporated by reference at Section 240.107 of this Part.

(Source: Renumbered from Section 240.164 and amended at 22 Ill. Reg. 13723, effective July 13, 1998)

SUBPART F: EVAPORATIVE TEST STANDARDS

Section 240.171 Applicability

The standards of Section 240.172 of this Subpart shall apply to all model year 1968 and newer vehicles required at the time of manufacture to be equipped

with evaporative emission control systems.

(Source: Amended at 22 Ill. Reg. 13723, effective July 13, 1998)

Section 240.172 Evaporative System Integrity Test Standards

Vehicles subject to evaporative system integrity testing shall fail the evaporative system integrity test if one of the following occurs:

- a) Fuel Cap Pressure Decay Standards While tested using the fuel cap pressure decay tester, the pressure decays by 6 inches of water or more during a 10 second period after being pressurized to 28+1 inches of water column;
- b) tester, the fuel cap leak flow rate exceeds 60 cc/min at a pressure of 30± inches of water column. Determination will be made by comparing the fuel cap's measured leak flow rate with the flow rate obtained from a calibrated

flow rate which will result in a pass/fail flow rate threshold of 60 cc/min of air at 30_1 inches of water column;

- c) an inspection of the fuel cap reveals one or more of the following:
 - 1)
 - 2) a missing or damaged o-ring, gasket,
 - 3) missing or damaged threads, flanges, prongs, or other parts used to
 - 4) cracks, holes, or other visible forms of tampering or damage.

Section 240.173 Evaporative System Purge Test Standards

SUBPART G: ON-ROAD REMOTE SENSING TEST EMISSION STANDARDS
Section 240.181 Applicability

The standards of this Subpart apply to all vehicles which are inspected utilizing the on-road remote sensing exhaust emission test procedures that will be adopted by the Agency in 35 Ill. Adm. Code 276.

(Source: Added at 22 Ill. Reg. 13723, effective July 13, 1998)

Section 240.182 On-Road Remote Sensing Emission Standards

Exhaust emissions from all subject vehicles and trucks shall not exceed the following limitations:

Model Year	Hydrocarbons (ppm)	Carbon Monoxide (%)		
1992+	400	2.0		
1988-1991	450	3.0		
1981-1987	650	5.0		
1975-1980	1300	7.0		
1968-1974	1700	8.0		

(Source: Added at 22 Ill. Reg. 13723, effective July 13, 1998)

Section 240.183 Compliance Determination

Compliance shall be determined based upon the measurement of exhaust emissions using the on-road remote sensing test procedures adopted by the Agency. If, during the course of on-road inspections, a vehicle is found to exceed the on-road remote sensing emission standards specified in Section 240.182 for the model year and type of vehicle, the Agency shall send a notice to the vehicle owner of the violation, which notice will include the time and location of the reading. The notice of a second on-road remote sensing exceedence shall, in addition to the information contained in the first notice, indicate that the vehicle has been reassigned and is subject to an out-of-cycle follow-up inspection at an official inspection station. In no case shall the Agency send a notice of an on-road exceedence to the owner of a vehicle that was found to exceed the on-road remote sensing emission standards if the vehicle is registered outside the affected counties.

(Source: Added at 22 Ill. Reg. 13723, effective July 13, 1998)

SUBPART H: ON-BOARD DIAGNOSTIC TEST STANDARDS

Section 240.191 Applicability

The standards of this Subpart apply to all 1996 and newer model year light duty vehicles, light duty trucks 1, and light duty trucks 2 that are required to meet the standards contained in 40 C.F.R. § 86.094-17 and which are inspected utilizing the on-board diagnostic test procedures that will be adopted by the Agency in 35 Ill. Adm. Code 276. Vehicles that receive a result of fail do not thereby fail their emissions test until January 1, 2001.

(Source: Added at 22 Ill. Reg. 13723, effective July 13, 1998)

Section 240.192 On-Board Diagnostic Test Standards

Vehicles subject to on-board diagnostic testing shall fail the on-board diagnostic test if one of the following occurs:

- a) the vehicle connector is missing, has been tampered with, or is otherwise inoperable;
- b) the malfunction indicator light is commanded to be illuminated and it is not visually illuminated according to visual inspection; or
- c) the malfunction indicator light is commanded to be illuminated and any of the following on-board diagnostic codes are present (where X refers to any digit):
 - 1) Any PX1XX Fuel and Air Metering codes
 - 2) Any PX2XX Fuel and Air Metering codes
 - 3) Any PX3XX Ignition System or Misfire codes
 - 4) Any PX4XX Auxiliary Emission Controls codes
 - 5) P0500 Vehicle Speed Sensor Malfunction
 - 6) P0501 Vehicle Speed Sensor Range/Malfunction
 - 7) P0502 Vehicle Speed Sensor Circuit Low Input
 - 8) P0503 Vehicle Speed Sensor Intermittent/Erratic/High
 - 9) P0505 Idle Control System Malfunction
 - 10) P0506 Idle Control System RPM Lower Than Expected
 - 11) P0507 Idle Control System RPM Higher Than Expected

- 12) P0510 Closed Throttle Position Switch Malfunction
- 13) P0550 Power Steering Pressure Sensor Circuit Malfunction
- 14) P0551 Power Steering Pressure Sensor Circuit Malfunction
- 15) P0552 Power Steering Pressure Sensor Circuit Low Input
- 16) P0553 Power Steering Pressure Sensor Circuit Intermittent
- 17) P0554 Power Steering Pressure Sensor Circuit Intermittent
- 18) P0560 System Voltage Malfunction
- 19) P0561 System Voltage Unstable
- 20) P0562 System Voltage Low
- 21) P0563 System Voltage High
- 22) Any PX6XX Computer and Output Circuits codes
- 23) P0703 Brake Switch Input
- 24) P0705 Transmission Range Sensor Circuit Malfunction (PRNDL Input)
- 25) P0706 Transmission Range Sensor Circuit Range/Performance
- 26) P0707 Transmission Range Sensor Circuit Low Input
- 27) P0708 Transmission Range Sensor Circuit High Input
- 28) P0709 Transmission Range Sensor Circuit Intermittent
- 29) P0719 Torque Converter/Brake Switch "B" Circuit Low
- 30) P0720 Output Speed Sensor Circuit Malfunction
- 31) P0721 Output Speed Sensor Circuit Range/Performance
- 32) P0722 Output Speed Sensor Circuit No Signal
- 33) P0723 Output Speed Sensor Circuit Intermittent
- 34) P0724 Torque Converter/Brake Switch "B" Circuit High

- 35) P0725 Engine Speed Input Circuit Malfunction
- 36) P0726 Engine Speed Input Circuit Range/Performance
- 37) P0727 Engine Speed Input Circuit No Signal
- 38) P0728 Engine Speed Input Circuit Intermittent
- 39) P0740 Torque Converter Clutch System Malfunction
- 40) P0741 Torque Converter System Performance or Stuck Off
- 41) P0742 Torque Converter System Stuck On
- 42) P0743 Torque Converter System Electrical
- 43) P0744 Torque Converter System Intermittent

(Source: Added at 22 Ill. Reg. 13723, effective July 13, 1998)

Section 240.193 Compliance Determination

Compliance shall be determined based upon the inspection of the on-board diagnostic vehicle connector, malfunction indicator light, and fault codes using the on-board diagnostic test procedures that will be adopted by the Agency in 35 Ill. Adm. Code 276.

(Source: Added at 22 Ill. Reg. 13723, effective July 13, 1998)

Section 240. TABLE A Vehicle Exhaust Emission Start-Up Standards

Light Duty Vehicles:

Model Years Hyd		ocarbons	Carbon Monoxide		Oxides of Nitrogen	
	Composite (gpm)	Phase 2 (gpm)	Composite (gpm)	Phase 2 (gpm)	Composite (gpm)	Phase 2 (gpm)
1996+	0.80	0.50	15.0	12.0	2.0	Reserved
1991-1995	1.20	0.75	20.0	16.0	2.5	Reserved
1983-1990	2.00	1.25	30.0	24.0	3.0	Reserved
1981-1982	2.00	1.25	60.0	48.0	3.0	Reserved

Light Duty Trucks 1:

Model Years Hyd		ocarbons	Carbon Monoxide		Oxides of Nitrogen	
	Composite (gpm)	Phase 2 (gpm)	Composite (gpm)	Phase 2 (gpm)	Composite (gpm)	Phase 2 (gpm)
1996+						
(<u><</u> 3750	0.80	0.50	15.0	12.0	2.0	Reserved
LVW)						
(> 3750	1.00	0.63	20.0	16.0	2.5	Reserved
LVW)						
1991-1995	2.40	1.50	60.0	48.0	3.0	Reserved
1988-1990	3.20	2.00	80.0	64.0	3.5	Reserved
1984-1987	3.20	2.00	80.0	64.0	7.0	Reserved
1981-1983	7.50	5.00	100.0	80.0	7.0	Reserved

Light Duty Trucks 2:

Model Years Hydro		ocarbons Carbon Monoxide		Oxides of Nitrogen		
	Composite (gpm)	Phase 2 (gpm)	Composite (gpm)	Phase 2 (gpm)	Composite (gpm)	Phase 2 (gpm)
1996+						
(< 5750	1.00	0.63	20.0	16.0	2.5	Reserved
$L\overline{V}W)$						
(> 5750	2.40	1.50	60.0	48.0	4.0	Reserved
LVW)						
1991-1995	2.40	1.50	60.0	48.0	4.5	Reserved
1988-1990	3.20	2.00	80.0	64.0	5.0	Reserved
1984-1987	3.20	2.00	80.0	64.0	7.0	Reserved
1981-1983	7.50	5.00	100.0	80.0	7.0	Reserved

(Source: Amended at 22 Ill. Reg. 13723, effective July 13, 1998)

Section 240.TABLE B Vehicle Exhaust Emission Final Standards

Light Duty Vehicles:

Model Years	Hydro	carbons	Carbon Monoxide		Oxides of Nitrogen	
	omposite (gpm)	Phase 2 (gpm)	Composite (gpm)	Phase 2 (gpm)	Composite (gpm)	Phase 2 (gpm)

1996+	0.60	0.40	10.0	8.0	1.5	Reserved
1983-1995	0.80	0.50	15.0	12.0	2.0	Reserved
1981-1982	0.80	0.50	30.0	24.0	2.0	Reserved

Light Duty Trucks 1:

Model Year	rs Hydr	ocarbons	Carbon M	Ionoxide	Oxides of	Nitrogen
	Composite (gpm)	Phase 2 (gpm)	Composite (gpm)	Phase 2 (gpm)	Composite (gpm)	Phase 2 (gpm)
1996+						
(< 3750	0.60	0.40	10.0	8.0	1.5	Reserved
LVW)						
(> 3750	0.80	0.50	13.0	10.0	1.8	Reserved
LVW)						
1988-1995	1.60	1.00	40.0	32.0	2.5	Reserved
1984-1987	1.60	1.00	40.0	32.0	4.5	Reserved
1981-1983	3.40	2.00	70.0	56.0	4.5	Reserved

Light Duty Trucks 2:

Model Years Hy		ocarbons	Carbon M	Carbon Monoxide		Oxides of Nitrogen	
	Composite (gpm)	Phase 2 (gpm)	Composite (gpm)	Phase 2 (gpm)	Composite (gpm)	Phase 2 (gpm)	
1996+							
(< 5750	0.80	0.50	13.0	10.0	1.8	Reserved	
$L\overline{VW}$)							
(> 5750	0.80	0.50	15.0	12.0	2.0	Reserved	
LVW)							
1988-1995	1.60	1.00	40.0	32.0	3.5	Reserved	
1984-1987	1.60	1.00	40.0	32.0	4.5	Reserved	
1981-1983	3.40	2.00	70.0	56.0	4.5	Reserved	

(Source: Amended at 22 Ill. Reg. 13723, effective July 13, 1998)

Section 240.TABLE C Vehicle Exhaust Emission Fast-Pass Standards

a) Vehicles having composite hydrocarbon emission limitations of less than 1.25 grams per mile, and composite carbon monoxide emission limitations of less than 20.0 grams per mile, in Section 240.Table A or Section 240.Table B:

	Hydrocarbons		Carbon Monoxide		
Second	Composite	Phase 2	Composite	Phase 2	
30	0.124	N/A	$0.69\overline{3}$	N/A	
31	0.126	N/A	0.773	N/A	
32	0.129	N/A	0.837	N/A	
33	0.135	N/A	0.851	N/A	
34	0.140	N/A	0.853	N/A	
35	0.146	N/A	0.857	N/A	
36	0.150	N/A	0.900	N/A	
37	0.153	N/A	0.960	N/A	
38	0.156	N/A	1.034	N/A	
39	0.160	N/A	1.070	N/A	
40	0.165	N/A	1.076	N/A	
41	0.169	N/A	1.083	N/A	
42	0.172	N/A	1.102	N/A	
43	0.173	N/A	1.111	N/A	
44	0.177	N/A	1.114	N/A	
45	0.197	N/A	1.157	N/A	
46	0.200	N/A	1.344	N/A	
47	0.208	N/A	1.482	N/A	
48	0.221	N/A	1.530	N/A	
49	0.232	N/A	1.542	N/A	
50	0.235	N/A	1.553	N/A	
51	0.238	N/A	1.571	N/A	
52	0.240	N/A	1.595	N/A	
53	0.242	N/A	1.633	N/A	
54	0.246	N/A	1.685	N/A	
55	0.249	N/A	1.689	N/A	
56	0.252	N/A	1.693	N/A	
57	0.261	N/A	1.700	N/A	
58	0.271	N/A	1.723	N/A	
59	0.276	N/A	1.852	N/A	
60	0.278	N/A	1.872	N/A	
61	0.280	N/A	1.872	N/A	
62	0.282	N/A	1.872	N/A	
63	0.283	N/A	1.900	N/A	
64	0.284	N/A	1.917	N/A	
65	0.285	N/A	1.944	N/A	
66	0.286	N/A	2.000	N/A	
67	0.288	N/A	2.060	N/A	
68	0.291	N/A	2.064	N/A	
69	0.294	N/A	2.076	N/A	
70	0.296	N/A	2.104	N/A	
71	0.298	N/A	2.117	N/A	

72	0.300	N/A	2.125	N/A
73	0.302	N/A	2.130	N/A
74	0.304	N/A	2.138	N/A
75	0.307	N/A	2.152	N/A
76	0.308	N/A	2.170	N/A
77	0.308	N/A	2.188	N/A
78	0.308	N/A	2.200	N/A
79	0.314	N/A	2.212	N/A
80	0.320	N/A	2.212	N/A
81	0.324	N/A	2.221	N/A
82	0.327	N/A	2.222	N/A
83	0.329	N/A	2.227	N/A
84	0.333	N/A	2.236	N/A
85	0.336	N/A	2.243	N/A
86	0.339	N/A	2.262	N/A
87	0.343	N/A	2.271	N/A
88	0.347	N/A	2.284	N/A
89	0.350	N/A	2.299	N/A
90	0.356	N/A	2.308	N/A
91	0.358	N/A	2.326	N/A
92	0.360	N/A	2.330	N/A
93	0.363	N/A	2.331	N/A
94	0.367	N/A	2.344	N/A
95	0.370	N/A	2.347	N/A
96	0.372	N/A	2.355	N/A
97	0.376	N/A	2.395	N/A
98	0.388	N/A	2.451	N/A
99	0.396	N/A	2.508	N/A
100	0.405	N/A	2.590	N/A
101	0.410	N/A	2.660	N/A
102	0.411	N/A	2.749	N/A
103	0.412	N/A	2.913	N/A
104	0.413	N/A	3.162	N/A
105	0.421	N/A	3.170	N/A
106	0.428	N/A	3.197	N/A
107	0.430	N/A	3.288	N/A
108	0.455	N/A	3.419	N/A
109	0.459	0.015	3.587	0.168
110	0.462	0.017	3.595	0.173
111	0.464	0.021	3.640	0.237
112	0.466	0.024	3.740	0.266
113	0.468	0.024	3.868	0.280
114	0.471	0.025	3.877	0.291
115	0.488	0.026	3.934	0.314
116	0.513	0.029	4.015	0.331

117	0.538	0.032	4.061	0.345
118	0.561	0.035	4.063	0.350
119	0.577	0.035	4.079	0.356
120	0.580	0.036	4.140	0.367
121	0.586	0.038	4.185	0.388
122	0.594	0.040	4.199	0.407
123	0.603	0.041	4.205	0.463
124	0.610	0.042	4.212	0.480
125	0.615	0.042	4.232	0.506
126	0.624	0.042	4.298	0.518
127	0.628	0.045	4.344	0.522
128	0.632	0.046	4.361	0.525
129	0.637	0.046	4.366	0.528
130	0.641	0.049	4.369	0.530
131	0.643	0.050	4.372	0.530
132	0.644	0.052	4.435	0.534
133	0.645	0.054	4.523	0.550
134	0.647	0.054	4.524	0.554
135	0.651	0.054	4.525	0.590
136	0.658	0.055	4.531	0.616
137	0.663	0.055	4.534	0.639
138	0.666	0.056	4.542	0.653
139	0.668	0.059	4.553	0.662
140	0.670	0.061	4.554	0.683
141	0.672	0.061	4.554	0.696
142	0.675	0.061	4.554	0.708
143	0.678	0.063	4.554	0.721
144	0.681	0.064	4.554	0.739
145	0.684	0.065	4.554	0.742
146	0.686	0.066	4.554	0.743
147	0.688	0.067	4.554	0.745
148	0.690	0.068	4.554	0.748
149	0.692	0.069	4.554	0.751
150	0.694	0.070	4.554	0.762
151	0.696	0.071	4.556	0.789
152	0.698	0.072	4.556	0.790
153	0.700	0.073	4.565	0.794
154	0.702	0.073	4.612	0.799
155	0.704	0.074	4.834	0.805
156	0.706	0.077	5.702	0.842
157	0.708	0.079	5.841	0.990
158	0.710	0.082	6.170	1.038
159	0.712	0.082	6.670	1.357
160	0.716	0.086	7.425	1.455
161	0.750	0.095	8.379	1.546

100		0.107	0.040	
162	0.007	0.107	9.648	0 710
163	0.805		10.918	2.746
	0.840	0.122		3.073
165		0.127	12.731	
166	0.874		12.831	4.505
	0.903	0.186		4.952
168		0.189	12.932	
169	0.914		13.702	5.730
	0.916	0.220		6.051
171		0.236	14.964	6.333
172	0.931	0.247	15.704	6.490
173	0.948	0.257	16.253	6.796
174	0.983	0.267	16.907	7.205
175	1.018	0.283	17.655	8.151
176	1.027	0.295	18.020	8.230
177	1.035	0.312	18.349	8.584
178	1.051	0.318	18.671	8.800
179	1.074	0.323	18.972	8.847
180	1.084	0.337	19.228	8.913
181	1.099	0.345	20.123	9.122
182	1.121	0.350	20.405	9.532
183	1.132	0.359	20.754	10.256
184	1.152	0.387	21.684	10.862
185	1.161	0.398	21.955	10.996
186	1.168	0.400	22.650	11.206
187	1.175	0.402	22.989	11.514
188	1.181	0.405	23.535	11.894
189	1.188	0.418	23.876	12.019
190	1.203	0.429	24.018	12.170
191	1.219	0.442	24.464	12.517
192	1.233	0.457	24.685	12.598
193	1.251	0.473	24.931	12.625
194	1.255	0.487	25.188	12.653
195	1.258	0.501	25.468	12.777
196	1.265	0.510	25.627	12.906
197	1.280	0.512	25.746	12.989
198	1.293	0.514	25.850	13.060
199	1.301	0.516	25.974	13.165
200	1.313	0.518	26.141	13.242
201	1.324	0.527	26.225	13.412
202	1.332	0.540	26.338	13.662
203	1.341	0.547	26.547	13.773
204	1.357	0.553	26.818	13.942
205	1.375	0.559	27.052	14.090
206	1.392	0.563	27.393	14.224
- 30	1.00%	0.000	2000	- 1,~~ 1

	1.408	0.567		14.426
208		0.571	27.632	
209	1.433		27.803	14.776
	1.443	0.579		14.907
211		0.595	28.205	
212	1.463		28.543	15.014
	1.468	0.614		15.221
214		0.622	29.000	
215	1.474		29.005	15.555
	1.478	0.638	29.081	15.652
217	1.481	0.643	29.281	15.969
218	1.484	0.643	29.483	16.028
219	1.487	0.645	29.734	16.375
220	1.490	0.651	29.803	16.487
221	1.493	0.655	29.821	16.524
222	1.504	0.663	29.847	16.578
223	1.522	0.671	29.862	16.684
224	1.547	0.675	29.873	16.755
225	1.549	0.684	30.008	16.770
226	1.562	0.694	30.126	16.805
227	1.574	0.701	30.127	16.865
228	1.579	0.702	30.127	16.960
229	1.584	0.708	30.208	16.960
230	1.589	0.708	30.314	16.962
231	1.590	0.709	30.323	16.988
232	1.596	0.710	30.325	17.072
233	1.598	0.710	30.368	17.094
234	1.604	0.711	30.411	17.184
235	1.610	0.712	30.416	17.18 9 7
236	1.612	0.712	30.428	17.188
237	1.613	0.712	30.430	17.189
238	1.614	0.713	30.452	17.241
239	1.615	0.716	30.488	17.370

Vehicles having composite hydrocarbon emission limitations of at least 1.25 grams per mile but less than 2.00 grams per mile, and composite carbon monoxide emission limitations of at least 20.0 grams per mile but less than 30.0 grams per mile, in Section 240. Table A or Section 240. Table B:

	Hydr	Hydrocarbons		Carbon Monoxide		
Second	Composite	Phase 2	Composite	Phase 2		
30	0.247	N/A	$1.50\bar{2}$	N/A		
31	0.253	N/A	1.546	N/A		
32	0.258	N/A	1.568	N/A		
33	0.263	N/A	1.582	N/A		

	0.268	N/A		N/A
35		N/A	1.602	
36	0.283		1.621	N/A
	0.293	N/A		N/A
38		N/A	1.702	
39	0.298		1.784	N/A
	0.313	N/A		N/A
41		N/A	2.162	
42	0.327	14/11	2.307	N/A
	0.342	N/A	343	1 1/1 1
44	0.012	N/A	0.10	N/A
• • •	0.376	14/11	2.406	14/11
46	0.070	N/A	2.100	N/A
10	0.408	11/71	2.458	11/11
48	0.400	N/A	2.430	N/A
40	0.434	IN/A	2.774	1 V / / A
50	0.434	N/A	2.114	N/A
30	0.454	IN/A	2 000	IN/A
5 9	0.454	NT/A	2.900	NT/A
52	0.470	N/A	0.100	N/A
F 4	0.472	NT/A	3.133	N.T. / A
54	0.405	N/A	0.407	N/A
50	0.485	B.T. / A	3.407	B.T. / A
56	0 700	N/A		N/A
	0.500	27/4	3.480	37/4
58		N/A		N/A
	0.514		3.560	
60		N/A		N/A
	0.540		3.628	
62		N/A	.641	
63		N/A		N/A
	0.551		3.680	
65		N/A		N/A
	0.567		3.728	
67		N/A		N/A
	0.588		3.894	
69		N/A		N/A
	0.601		3.983	
71		N/A		N/A
	0.610		4.023	
73		N/A		N/A
	0.631		4.053	
75		N/A		N/A
. =	0.651		4.077	- · · - •
77	• • -	N/A	· ·	N/A
- •	0.667		4.243	- · · ·
	0.00.			

79	0.676	N/A	4.260	N/A
80	0.681	N/A	4.282	N/A
81	0.685	N/A	4.322	N/A
82	0.689	N/A	4.398	N/A
83	0.694	N/A	4.482	N/A
84	0.700	N/A	4.515	N/A
85	0.705	N/A	4.518	N/A
86	0.709	N/A	4.520	N/A
87	0.713	N/A	4.522	N/A
88	0.717	N/A	4.522	N/A
89	0.721	N/A	4.523	N/A
90	0.724	N/A	4.526	N/A
91	0.727	N/A	4.527	N/A
92	0.729	N/A	4.527	N/A
93	0.731	N/A	4.528	N/A
94	0.734	N/A	4.528	N/A
95	0.740	N/A	4.528	N/A
96	0.748	N/A	4.529	N/A
97	0.759	N/A	4.575	N/A
98	0.771	N/A	4.703	N/A
99	0.783	N/A	4.805	N/A
100	0.793	N/A	4.886	N/A
101	0.810	N/A	4.957	N/A
102	0.823	N/A	5.104	N/A
103	0.836	N/A	5.340	N/A
104	0.853	N/A	5.496	N/A
105	0.871	N/A	5.625	N/A
106	0.887	N/A	5.815	N/A
107	0.899	N/A	6.473	N/A
108	0.931	N/A	7.037	N/A
109	0.947	0.040	7.419	0.246
110	0.957	0.047	7.643	0.257
111	0.965	0.052	7.759	0.286
112	0.971	0.056	7.824	0.379
113	0.977	0.061	7.889	0.425
114	0.983	0.064	7.960	0.457
115	1.003	0.072	8.024	0.477
116	1.030	0.081	8.076	0.494
117	1.041	0.082	8.111	0.504
118	1.050	0.083	8.130	0.512
119	1.052	0.092	8.148	0.519
120	1.055	0.094	8.211	0.529
121	1.061	0.097	8.478	0.529
122	1.071	0.100	8.548	0.530
123	1.081	0.103	8.561	0.531

124	1.091	0.106	8.568	0.532
125	1.102	0.108	8.572	0.533
126	1.110	0.110	8.584	0.548
127	1.116	0.112	8.592	0.610
128	1.121	0.114	8.596	0.614
129	1.125	0.116	8.597	0.622
130	1.128	0.118	8.601	0.631
131	1.130	0.120	8.605	0.640
132	1.132	0.122	8.608	0.646
133	1.134	0.123	8.626	0.650
134	1.135	0.124	8.650	0.652
135	1.143	0.127	8.660	0.738
136	1.147	0.130	8.767	0.754
137	1.156	0.134	9.029	0.780
138	1.163	0.139	9.238	0.795
139	1.186	0.146	9.389	0.804
140	1.253	0.149	9.493	0.810
141	1.262	0.151	9.583	0.815
142	1.271	0.153	9.626	0.818
143	1.277	0.155	9.669	0.821
144	1.283	0.157	9.716	0.825
145	1.291	0.162	9.763	0.840
146	1.294	0.164	9.809	0.847
147	1.296	0.166	9.852	0.855
148	1.298	0.168	9.885	0.865
149	1.303	0.169	9.932	0.874
150	1.316	0.170	9.986	0.891
151	1.330	0.171	10.039	0.914
152	1.342	0.172	10.072	0.929
153	1.348	0.173	10.090	0.937
154	1.353	0.175	10.105	0.942
155	1.362	0.178	10.146	0.949
156	1.365	0.180	10.245	1.375
157	1.366	0.189	10.397	1.576
158	1.373	0.198	10.923	1.943
159	1.397	0.203	11.970	2.820
160	1.422	0.207	13.421	3.281
161	1.440	0.214	15.289	3.483
162	1.452	0.221	15.912	3.620
163	1.465	0.229	16.530	4.168
164	1.509	0.247	17.622	4.338
165	1.533	0.274	18.366	4.682
166	1.555	0.309	19.869	5.633
167	1.576	0.318	20.711	6.137
168	1.598	0.322	22.319	6.853

169	1.618	0.333	23.751	7.136
170	1.636	0.343	24.842	7.320
171	1.666	0.356	25.410	7.685
172	1.685	0.385	25.798	8.052
173	1.726	0.409	26.122	8.344
174	1.742	0.433	26.353	8.602
175	1.756	0.453	26.638	8.898
176	1.769	0.463	27.219	9.251
177	1.784	0.507	27.279	10.253
178	1.802	0.523	27.320	10.233
179	1.822	0.528	27.352	10.933
180	1.843	0.541	27.822	11.060
181	1.864	0.549	28.763	11.188
182	1.884	0.549	29.402	11.345
183	1.896	0.571	29.971	11.733
184	1.915	0.584	30.276	12.598
185	1.940	0.598	30.988	12.953
186	1.958	0.613	31.095	13.213
187	1.972	0.624	31.314	14.131
188	1.985	0.629	31.833	14.839
189	1.991	0.629	32.239	15.137
190	1.993	0.638	32.547	15.138
191	1.995	0.648	32.855	15.141
192	2.001	0.659	33.153	15.595
193	2.015	0.663	33.444	15.658
194	2.031	0.671	33.482	15.704
195	2.047	0.681	33.516	15.729
196	2.063	0.693	33.549	16.058
197	2.079	0.709	33.653	16.987
198	2.094	0.725	33.973	17.064
199	2.109	0.740	34.159	17.073
200	2.122	0.754	34.191	17.153
201	2.130	0.767	34.250	17.332
202	2.137	0.775	34.469	17.406
203	2.157	0.787	34.716	17.641
204	2.172	0.795	34.969	17.922
205	2.194	0.803	35.144	18.484
206	2.222	0.854	35.418	18.553
207	2.245	0.859	35.766	18.658
208	2.268	0.872	35.949	18.953
209	2.279	0.892	36.010	19.266
210	2.288	0.896	36.548	19.309
211	2.301	0.903	37.179	19.731
212	2.316	0.924	37.651	19.902
213	2.332	0.938	38.041	20.012

214	2.345	0.941	38.591	20.260
215	2.354	0.951	38.852	20.739
216	2.362	0.966	38.861	21.346
217	2.368	0.979	38.926	21.810
218	2.376	0.980	39.194	22.001
219	2.384	0.981	39.474	22.290
220	2.391	1.005	39.668	22.324
221	2.395	1.016	39.781	22.343
222	2.400	1.022	39.890	22.522
223	2.405	1.028	39.954	22.661
224	2.409	1.035	39.984	22.666
225	2.413	1.041	39.989	22.667
226	2.415	1.045	39.990	22.668
227	2.417	1.051	39.990	22.669
228	2.419	1.055	39.990	22.670
229	2.420	1.059	39.991	22.671
230	2.421	1.062	40.012	22.671
231	2.423	1.063	40.061	22.672
232	2.425	1.063	40.116	22.673
233	2.427	1.063	40.249	22.673
234	2.429	1.064	40.253	22.673
235	2.430	1.064	40.290	232.674
236	2.431	1.066	40.385	$2\frac{3}{2}.675$
237	2.432	1.069	40.488	$2\frac{3}{2}.675$
238	2.433	1.072	40.720	$2\frac{3}{2}.675$
239	2.434	1.075	40.763	$23\overline{2}.677$
				_

c) Vehicles having composite hydrocarbon emission limitations of 2.00 grams per mile or greater, and composite carbon monoxide emission limitations of 30.0 grams per mile or greater in Section 240. Table A or Section 240. Table B:

	Hydrocarbons		Carbon Monoxide		
Second	Composite	Phase 2	Composite	Phase 2	
30	0.407	N/A	3.804	N/A	
31	0.415	N/A	3.985	N/A	
32	0.423	N/A	4.215	N/A	
33	0.436	N/A	4.440	N/A	
34	0.451	N/A	4.579	N/A	
35	0.464	N/A	4.688	N/A	
36	0.468	N/A	4.749	N/A	
37	0.475	N/A	4.783	N/A	
38	0.487	N/A	4.813	N/A	
39	0.506	N/A	4.876	N/A	
40	0.530	N/A	5.104	N/A	
41	0.549	N/A	5.217	N/A	

42	0.569	N/A	5.383	N/A
43	0.588	N/A	5.571	N/A
44	0.609	N/A	5.888	N/A
45	0.621	N/A	6.199	N/A
46	0.636	N/A	6.245	N/A
47	0.649	N/A	6.318	N/A
48	0.666	N/A	6.418	N/A
49	0.679	N/A	6.540	N/A
50	0.696	N/A	6.690	N/A
51	0.712	N/A	6.875	N/A
52	0.727	N/A	7.029	N/A
53	0.745	N/A	7.129	N/A
54	0.760	N/A	7.359	N/A
55	0.776	N/A	7.722	N/A
56	0.797	N/A	8.017	N/A
57	0.814	N/A	8.249	N/A
58	0.826	N/A	8.425	N/A
59	0.837	N/A	8.563	N/A
60	0.849	N/A	8.686	N/A
61	0.862	N/A	8.804	N/A
62	0.872	N/A	8.916	N/A
63	0.887	N/A	9.025	N/A
64	0.895	N/A	9.138	N/A
65	0.903	N/A	9.250	N/A
66	0.925	N/A	9.354	N/A
67	0.933	N/A	9.457	N/A
68	0.945	N/A	9.575	N/A
69	0.959	N/A	9.728	N/A
70	0.970	N/A	9.938	N/A
71	0.980	N/A	10.140	N/A
72	0.988	N/A	10.222	N/A
73	0.997	N/A	10.261	N/A
74	1.022	N/A	10.278	N/A
75	1.037	N/A	10.290	N/A
76	1.051	N/A	10.715	N/A
77	1.064	N/A	10.790	N/A
78	1.075	N/A	10.844	N/A
79	1.087	N/A	10.921	N/A
80	1.097	N/A	11.010	N/A
81	1.105	N/A	11.090	N/A
82	1.114	N/A	11.136	N/A
83	1.136	N/A	11.136	N/A
84	1.160	N/A	11.165	N/A
85	1.182	N/A	11.191	N/A
86	1.201	N/A	11.205	N/A

87	1.217		11.211	N/A
	1.233	N/A		N/A
90	1.200		11 911	11/71
89	1 000	N/A	11.211	3.7.4
90	1.262		11.211	N/A
	1.271	N/A		N/A
92		N/A	11.294	
93	1.287		11.332	N/A
	1.295	N/A	11,002	N/A
95	1.200	N/A	11 909	1 1/ / 1
	1 000	IN/A	11.383	
96	1.309		11.410	
97		N/A		N/A
	1.325		11.516	
99		N/A		N/A
	1.356		12.104	
101	1.000	N/A	12.101	N/A
101	1 070	IN/A	10 701	1 V / F A
	1.378		12.781	
103		N/A		N/A
	1.420		14.405	
105		N/A		N/A
	1.470		14.965	
107	1.110	N/A	11.000	N/A
107	1 500	1 V / / A	15 979	11/74
400	1.506	0.454	15.372	4 4 4 0
109		0.151		1.113
	1.528		15.	1.213
	1.542		16.018	
112		0.186		1.399
	1.578	0.200	16.810	
114	1.070	0.207	10.010	1.640
114	1 005	0.207	17 100	1.040
	1.605		17.120	
116		0.229		1.693
	1.625		17.249	
118		0.240		2.007
	1.670		17.509	
120	1.0.0	0.261	177.000	2.179
120	1 705	0.201	17.734	2.175
100	1.705	0.077	17.734	0.000
122		0.277		2.328
	1.732		18.447	
124		0.298		2.437
	1.763		18.657	
126	.779		18.796	
127	.,,,	0.322	10.700	2.641
161	1 010	0.322	10 107	۵.041
100	1.810	0.000	19.137	0.070
129		0.338		2.672
	1.835		19.519	
131		0.354		2.683
		=		

132	1.854	0.356	19.882	2.817
133	1.862	0.357	19.905	2.992
134	1.870	0.359	20.049	3.111
135	1.883	0.362	20.460	3.234
136	1.888	0.364	20.746	3.304
137	1.896	0.368	21.068	3.310
138	1.911	0.378	21.380	3.320
139	1.928	0.391	21.748	3.354
140	1.949	0.402	22.046	3.436
141	1.969	0.408	22.348	3.443
142	1.982	0.422	22.397	3.452
143	1.999	0.428	22.407	3.490
144	2.011	0.432	22.417	3.552
145	2.022	0.434	22.922	3.588
146	2.035	0.439	22.951	3.600
147	2.043	0.450	22.976	3.616
148	2.049	0.460	23.017	3.627
149	2.063	0.467	23.073	3.636
150	2.085	0.472	23.161	3.676
151	2.104	0.480	23.218	3.882
152	2.117	0.491	23.253	4.011
153	2.127	0.503	23.337	4.047
154	2.138	0.505	23.425	4.067
155	2.152	0.515	23.534	4.081
156	2.168	0.522	23.652	4.116
157	2.186	0.527	23.739	4.251
158	2.205	0.537	24.606	5.099
159	2.224	0.549	25.615	5.383
160	2.242	0.568	26.073	6.362
161	2.268	0.586	28.496	7.926
162	2.308	0.610	29.772	8.429
163	2.352	0.648	31.056	9.201
164	2.406	0.677	33.351	10.825
165	2.421	0.699	34.890	12.291
166	2.435	0.720	35.937	13.366
167	2.470	0.738	37.012	14.428
168	2.501	0.767	37.892	15.318
169	2.537	0.828	39.028	15.699
170	2.571	0.855	40.406	16.073
171	2.625	0.869	41.379	16.475
172	2.657	0.885	42.033	17.158
173	2.683	0.900	42.432	17.532
174	2.701	0.941	42.742	17.965
175	2.717	0.979	43.399	18.242
176	2.732	1.002	43.895	18.283

177		1.025	44.227	
178	2.781		44.926	19.576
	2.811	1.065		20.015
180		1.089	45.553	
181	2.898	1.000	45.753	20.433
101	2.946	1.133	40.700	21.025
100	2.940		47 017	21.023
183		1.158	47.017	
184	3.023		48.185	22.204
	3.057	1.209		22.859
186		1.222		23.533
	3.101		50.313	
188		1.239		25.078
100	3.136	1.200	52.076	20.010
190	3.130	1.278	32.070	25 570
190	0.100	1.270	50.070	25.578
	3.163		52.876	
192		1.313		25.985
	3.223		53.777	
194		1.340		26.582
	3.263		54.489	
196		1.387		27.456
100	3.338	1.007	54.912	27.100
198	3.330	1.417	34.312	28.070
190	0.000	1.417	50.000	20.070
	3.390		56.266	
200		1.446		28.914
	3.470		56.863	
202		1.477	7.204	
203		1.492		29.697
	3.522		57.487	
205	0.022	1.510	011101	29.783
200	3.550	1.010	58.097	20.700
207	3.330	1 501	30.037	20.204
207	0.007	1.561	50.004	30.284
	3.607		59.024	
209		1.597		31.287
	3.658		59.715	
211		1.627		31.820
	3.—745		60.453	
213	774	1.656		32.546
~10	3.814	1.000	61.307	02.010
215	5.014	1.669	01.507	33.060
213	2 225	1.005	00 140	33.000
017	3.835	1 005	62.148	00.044
217		1.685		33.341
	3.853		62.546	
219		1.704		33.514
	3.874		62.570	
221		1.709		3 4 3
				_

222	3.928	1.711	63.097	343
223	3.966		63.150	$34^{-}.733$
224		1.718	63.150	$4\overline{3}.770$
	4.010	1.721		$34\overline{3}.796$
	4.012	1.723		$34\overline{3}.810$
227	4.016	1.726	63.150	$34\overline{3}$
228	4.019		63.150	$34\overline{3}.839$
	4.057	1.731		$34\overline{3}.865$
230	4.065	1.733	63.150	$34\overline{3}$
231	4.071		63.150	$34\overline{3}.918$
	4.073		63.150	$34\overline{3}.944$
	4.075	1.749		$34\overline{3}.985$
234	4.077	1.753	63.153	34.014
235	4.079	1.757	63.159	34.032
236	4.081	1.762	63.173	34.051
237	4.083	1.767	63.193	34.067
238	4.084	1.772	63.214	34.079
239	4.085	1.776	63.233	34.085

(Source: Added at 22 Ill. Reg. 13723, effective July 13, 1998; expedited correction at 22 Ill. Reg. _______)

IT IS SO ORDERED.

I, Dorothy M. Gunn, Clerk of the Illinois Pollution Control Board, hereby certify that the above opinion and order was adopted on the 17th day of September 1998 by a vote of 7-0.

Dorothy M. Gunn, Clerk Illinois Pollution Control Board