ILLINOIS POLLUTION CONTROL BOARD June 6, 2002

IN THE MATTER OF:)	
PROPOSED AMENDMENTS TO AMMONIA NITROGEN STANDARDS 35 ILL. ADM. CODE 302.100, 302.212, 302.213, AND 304.122)))	R02-19 (Rulemaking - Water)

Proposed Rule. First Notice.

OPINION AND ORDER OF THE BOARD (by R.C. Flemal, G.T. Girard, M.E. Tristano)

This matter comes before the Board on a proposal for rulemaking filed by the Illinois Association of Wastewater Agencies (IAWA) filed on January 17, 2002. IAWA, with support of the Illinois Environmental Protection Agency (Agency), proposes that the Board amend Illinois water quality regulations for ammonia to more closely track recent guidance published by the United States Environmental Protection Agency (USEPA).

The principal features of the proposed amendments are: (1) modification of the acute and chronic general use water quality standards from un-ionized ammonia to total ammonia nitrogen; (2) addition of a sub-chronic general use total ammonia nitrogen water quality standard; and (3) repeal of the rule allowing alternative standards for effluent modified waters. No amendments are proposed for the total ammonia nitrogen ceiling limit of 15 mg/L.

By today's action the Board adopts, with modifications, the IAWA proposal for first notice.

PROCEDURAL HISTORY

The Board has held two hearings in this matter. The first was held in Chicago on March 25, 2002, and the second in Springfield on April 23, 2002. At the first hearing IAWA presented various testimony in support of its proposal. Included was the testimony of Michael Callahan, Executive Director of the Bloomington and Normal Water Reclamation District; Dr. Robert Sheehan, Professor of Fisheries and Zoology, Southern Illinois University, Carbondale; Dr. David Zens, consulting engineer with Consoer Townsend Envirodyne Engineers, Inc.; Tim Bachman, Director of Waste Treatment Operations of the Urbana and Champaign, Illinois Sanitary District; Michael Zima, Director of the DeKalb, Illinois Sanitary District; and James Daughtery, District Manager of the Thorn Creek Basin Sanitary District.

¹ Citations to the transcript for the first hearing will be cited at "Tr.1 at ___." Citations to the transcript for the second hearing will be cited as "Tr.2 at __."

The Agency presented the testimony of Robert Mosher, Acting Manager of the Water Quality Standards Section of the Agency's Division of Water Pollution Control. The Agency offered its support of the proposal. Questions were posed to both IAWA and the Agency regarding various aspects of the proposed rules.

At the second hearing IAWA offered additional testimony, and additional questions were asked of both IAWA and the Agency.

Exhibits admitted at the hearings were: Exh.1: November 8, 2001 Letters From Water Reclamation District to Joel Cross and Glenn Kruse; November 20, 2001 Letter to Keith Shank; January 18, 2002 Letter from Illinois Association of Wastewater Agencies to David Pfeifer; Exh. 2: October 25, 2001 Letter to Toby Frevert from Mary Pat Tyson (and attachment); Exh. 3: Testimony of Robert J. Sheehan; Exh. 4: Table 1. Spawning periods for fishes in Illinois; Exh. 5: 1999 Update of Ambient Water Quality Criteria for Ammonia; Exh. 6: Testimony of David Zenz; Exh. 7: Testimony of Tim Bachman; Exh. 8: Testimony of Michael Zima; Exh. 9: Testimony of Robert Mosher; Exh. 10: Proposal with amended appendices

The Board received four public comments regarding the proposal. The Urbana and Champaign Sanitary District (PC 1), the Environmental Law and Policy Center, Prairie Rivers Network and Sierra Club (Environmental Groups) (PC 2), the IAWA (PC 3), and the Agency (PC 4) all submitted public comments.

PROPOSAL DEVELOPMENT

The Board most recently considered its ammonia water quality regulations in <u>Triennial Water Quality Review Amendments to 35 Ill. Adm. Code 302.202, 302.212, 302.213, 304.122, and 304/301 (Ammonia Nitrogen)</u>, R94-1(B), (Dec. 19, 1996).² The amendments adopted in docket R94-1(B) were primarily based on the USEPA's then current National Criteria Document (NCD) for ammonia.³ The principal features of the R94-1(B) action were the adoption of acute and chronic general use water quality standards for un-ionized ammonia, and the authorization of Effluent Modified Waters (EMW). An EMW is a management tool intended to allow ammonia National Pollutant Discharge Elimination System (NPDES) limits to be driven by effluent rather than water quality standards. *See* R94-1(B) final opinion.

In 1999 USEPA issued a significant update of the ammonia NCD.⁴ In 2000 IAWA, with the support of the Agency, began reviewing the 1999 ammonia NCD towards the goal of

² An expedited correction issued February 20, 1997.

³ Ambient Water Quality Criteria for Ammonia, United States Environmental Protection Agency Document - 1984. United States Environmental Protection Document EPA-440/5-85-001, 1995. National Technical Information Service, Springfield, VA.

⁴ 1999 Update of Ambient Water Quality Criteria for Ammonia. United States Environmental Protection Agency Office of Water Document EPA-822-R-99-104, December 1999. This document is Exh. 5 in the instant docket.

proposing conforming amendments. Tr.1 at 29-31, 95. Today's proposal is the result of that process.

PROPOSAL OVERVIEW

Today's proposed amendments involve changes to four sections of the Board's water quality regulations, plus the addition of an appendix. All proposed changes are to 35 III. Adm. Code 302 and 304.

Section 302.100 – Definitions

Proposed today at 35 Ill. Adm. Code 302.100 is a definition for "Early Life Stages." This definition is intended to support the use of this term in Section 302.212(b)(2) and 302.212(e). The definition is taken from rules adopted by the Ohio River Valley Water Sanitation Commission to conform that agency's rules with the 1999 ammonia NCD. Tr.2 at 9, 18.

Section 302.212 – Ammonia General Use Water Quality Standards

Revision of Numerical Standards

Most of the amendments proposed today occur within 35 Ill. Adm. Code 302.212, which contains the Board's ammonia water quality standards applicable in general use waters of the State. The principal features of the amendments are: (1) replacement of current unionized ammonia nitrogen standards with total ammonia nitrogen standards; (2) recasting of the formulae for calculation of the acute and chronic water quality standards for total ammonia nitrogen; and (3) the addition of a new standard for ammonia, the sub-chronic standard total ammonia standard.

The purpose of today's proposed amendments is to revise Illinois' water quality standards for ammonia with the best current understanding of ammonia toxicity, as reflected in the 1999 ammonia NCD. Tr.1 at 30-31. Modifications of the formulae for calculating total ammonia acute standard (AS) and chronic standard (CS) values, as here proposed, are based on reevaluation of the ammonia toxicity mechanism, as well as the existence of larger and more appropriate toxicity data sets than were available under the 1984 ammonia NCD. Tr.1 at 20-22; 48-52.

Under the 1984 ammonia NCD and the Board's current ammonia regulations, ammonia general use water quality standards are expressed in terms of un-ionized ammonia with corrections for the effects of temperature and pH on ammonia toxicity. However in the 1999 ammonia NCD, USEPA concludes that a definitive, thorough, and theoretical approach for describing pH effects on ammonia toxicity is lacking, and that there is no adequate scientific basis for specifying how temperature adjustments to un-ionized ammonia should be made. Tr.1 at 50. Accordingly, the 1999 ammonia NCD bases criteria for ammonia toxicity on

empirical relationships between toxicity and total ammonia concentrations at various temperatures and pHs. Tr.1 at 50; 62-63. That approach underpins today's proposal.

The proposed formulae for determining the total ammonia nitrogen acute, chronic, and sub-chronic standards at Section 302.212(b) mirror the standards recommended in the 1999 ammonia NCD. However, the proposed attainment requirements at Section 302.212(c)(2) and (c)(3) deviate somewhat from the 1999 ammonia NCD. While the 1999 ammonia NCD recommends using a 30-day average ammonia concentration to show compliance with the ammonia CS, the IAWA's proposal requires a minimum of four consecutive samples collected over a period of at least 30 days. In case of the sub-chronic standard, while the 1999 ammonia NCD recommends that the highest four-day average within the 30-day period be used for demonstrating attainment, proposed Section 302.212(c)(3) requires daily samples collected over a period of any four consecutive days to show compliance.

When questioned at the second hearing, Mosher testified that proposed Section 302.212(c)(2) required at least four samples collected consecutively over a period of at least 30 days. Tr.2 at 32. Mosher explained that such a standard would allow the Agency to use its ambient monitoring network to collect a sample once every six weeks, and then take any four consecutive samples, and average them to assess attainment of the ammonia CS. Tr.2 at 32. Mosher clarified that the language did not mean that four samples would be collected within 30 days. Tr.2 at 30. Mosher maintained that the Agency wanted the proposed requirement to follow the its routine monitoring program, although the federal guidance recommends that the ammonia CS be evaluated on the basis of 30-day average due to its toxicity characteristics. Tr.2 at 31 and 37.

The 1999 ammonia NCD states that the averaging period for ammonia CS needs to be shorter than the length of the laboratory tests upon which it is based, because the concentrations in the field are typically much more variable than concentrations in the laboratory tests, and variable concentrations are more toxic than constant concentrations. Exh. 5 at 81. Further, the 1999 ammonia NCD recommends that the averaging time for showing attainment of the ammonia CS be increased from four days to 30 days. In this regard, the federal guidance states that the longer 30-day averaging period is justified with the restriction that the highest four-day average concentration within that 30-day span not exceed 2.5 times the ammonia CS, i.e. the sub-chronic standard. Exh. 5 at 82. The 1999 ammonia NCD maintains that the 30-day average period without the sub-chronic standard limitation would have substantial effects on certain aquatic species. Exh. 5 at 82. Therefore, the 1999 ammonia NCD recommends a 30-day average concentration of total ammonia be used to show compliance with the chronic ammonia standard with the restriction that the highest four-day average within the 30-day span should not exceed the sub-chronic standard, which is 2.5 times the ammonia CS.

The Board notes that although IAWA's proposal includes both the chronic and subchronic total ammonia standards recommended by the federal guidance, there is no linkage between the averaging periods of the two standards. IAWA's proposed language for Section 302.212(c)(2) requires attainment of the ammonia CS be demonstrated on the basis of four consecutive samples taken over a period of at least 30 days. As explained by Mosher, this will allow the Agency to obtain samples on a 6-week cycle. Under this scenario, the averaging time would be closer to 6 months instead of 30 days, as recommended in the 1999 ammonia document. The Board expressed concern regarding the proposed averaging period for demonstrating attainment at the second hearing in this matter, and asked the proponents and the Agency to provide additional clarification. Tr.2 at 30-33, 38-39. IAWA did not address this issue in its comments; and the Agency's post-hearing comments reiterated its support of IAWA's proposed language. PC 4 at 5.

While the Board recognizes the Agency's desire to fashion an attainment averaging period to fit its routine ambient monitoring network sampling schedule, the Board continues to be concerned by the substantial increase in the averaging period allowed by the IAWA proposal. The Board's concern is based on the fact that the 1999 ammonia NCD very clearly states that even the 30-day averaging period is only justified because of the restriction that the highest four-day average concentration of ammonia be less than or equal to the sub-chronic standard. Further, the Board notes that USEPA's "Water Quality Standards Handbook: Second Edition" defines "averaging period" as:

[t]he period of time over which the receiving water concentrations is averaged for comparison with criteria concentrations. The averaging period limits the duration of concentrations above the criteria.

Because of the Board's concern, today the Board amends IAWA's proposal at Section 302.212(c)(2) to limit the averaging period for showing attainment of the ammonia CS to 30 days.

The instant proposed language at 302.212(c)(2) caps the time in which to take samples for the ammonia CS to 30 days. This proposed language reflects the 1999 ammonia NCD, and does not, as suggested by IAWA, require taking four samples during the 30 days. The Board welcomes comments on the proposed attainment requirements.

In addition to revisions of the AS and ammonia CS standards, the 1999 ammonia NCD also supports a new type of standard, called a sub-chronic standard. The sub-chronic standard limits the magnitude and duration of otherwise allowable excursions above the ammonia CS standard. Tr.1 at 57-60. The proposed sub-chronic standard limits the total ammonia concentration to 2.5 times the ammonia CS. Compliance with the sub-chronic standard is achieved by averaging the four highest sample results collected over a four-day period within the 30 day averaging of the ammonia CS. See 302.212(b)(3) and (c)(3). Again, the Board welcomes comments on the proposed language.

Revision of Seasonal Applicability

Today's proposed amendments retain the provision for seasonally different ammonia standards. This provision is based on the well-accepted principle that ammonia toxicity differs

seasonally due to differences in water temperature that produce differences in the proportion of ammonia that is present in the ionized versus un-ionized ammonia forms.

Today's proposal goes further, however, in also recognizing the toxicity of ammonia based on the presence of sensitive aquatic life stages during different seasons. It is commonly accepted that early life stages of many aquatic organisms are more sensitive to ammonia than are later and adult forms of the same organisms. Tr.1 at 52-53. For this reason it is appropriate to provide a greater level of protection during times in which early life stages are present.

Today's proposal provides that everywhere in Illinois early stage life forms are deemed to be present, for the purpose of this regulation, from March to October, inclusive. See proposed Section 302.212(e). This is conservative in that there will be waters where, during some portion of this period, such forms are not actually present. However, the proponents accept and the Board agrees, that such conservatism is warranted to provide workable protection for the great majority of aquatic species. Tr.1 at 32; 139.

Moreover, today's proposal also provides the Agency with authority to apply early life stages present standards outside the March - October period when such stages are present. See proposed Section 302.212(e). This provision provides an additional element in the ability of Illinois to assure protection against ammonia toxicity.

Section 302.213 – Effluent Modified Waters

IAWA requests repeal of the provisions for EMWs found at 35 Ill. Adm. Code 302.213. The record in this proceeding demonstrates that EMWs have not been a useful construct. Tr.1 at 23-26; 119-120. Due to difficulties unforeseen at the time of promulgation of the EMW provisions, no discharges have applied for EMWs, and the Agency has not established any EMWs. Tr.1 at 26-28; 121. Moreover, IAWA contends convincingly that EMWs are unnecessary if the Board adopts today's proposal. Tr.1 at 28-31.

The public comment received from the Environmental Groups reflects their support for repealing the EMW provisions. PC 2 at 3. The Environmental Groups believe that the EMW provisions cannot be reconciled with the Clean Water Act, unless the provisions are interpreted very restrictively. PC 2 at 5. The Environmental Groups also assert that EMW provisions are not useful. PC 2 at 5.

Section 302.APPENDIX C

Proposed 35 III. Adm. Code Section 302.APPENDIX C presents a table of values for the equations presented in 302.212(b). The purpose is to provide an easy alternative to calculation of values for the equations. There are three tables, one for the AS equation at 302.212(b)(1), and one each for the Early Life Stage Present and Early Life Stage Absent equations for the ammonia CS at 302.212(b)(2).

Section 304.122 - EMW Provisions in the Effluent Regulations

Today's action also includes proposed repeal of the EMW provisions that are found in the effluent portion of the Board's water quality regulations at 35 Ill. Adm. Code 304.122. Repeal of these provisions is a companion action to repeal of the provisions at 302.213.

ECONOMIC CONSIDERATIONS

Impetus for the IAWA's proposal, aside from any considerations of having regulations reflect best available knowledge, is that adoption of the proposed amendments would have beneficial economic impact on many of IAWA's members. Effluent limits driven by the current ammonia water quality standards often result in NPDES permit limits that have pushed the limits of technical attainability of many wastewater treatment plants in Illinois, particularly in the winter season. Tr.1 at 19; 23-24; 70-81. This difficulty has arisen when the current unionized ammonia standard is back-calculated into winter NPDES permit limits. Tr.1 at 23-24. This procedure leads to significantly lower permit limits than the 1999 ammonia NCD procedure would provide, because this procedure assigns all of the ammonia toxicity to unionized ammonia, contrary to the assignment under the 1999 ammonia NCD. Tr.1 at 23. IAWA members believe, and the record provides supporting evidence, that adoption of the instant proposed amendments would maintain environmental integrity and also provide for attainable NPDES winter permit limits for ammonia. Additionally, the Agency believes today's proposal will meet federal requirements and continue to assure protection of state's the water resources. PC 4 at 1.

The record provides some examples of the difference in permit limits that exist under the current regulations, as compared to limits that are anticipated should the proposed amendments be adopted. For example, Michael Zima, District Manager of the DeKalb Sanitary District testified that for December 2000 through December 2003 from April to October, the NPDES permit requires a monthly average of 1.5 mg/L as a monthly ammonianitrogen average and 3.0 mg/L as a daily maximum ammonia nitrogen average. Exh. 8 at 4, Tr.1 at 99. For November through March, the NPDES permit requires a monthly average of 3.6 mg/L and a daily maximum of 7.2 mg/L. Exh. 8 at 4, Tr.1 at 99-100. Zima testified that if the proposal were adopted the permit limits would be: from March – October, a monthly average of 1.5 mg/L and a daily maximum of 6.7 mg/L; from November-February, a monthly average of 3.1 mg/L and a daily maximum of 6.7 mg/L. Exh. 8 at 11, Tr.1 at 108.

Tim Bachman, Director of Waste Treatment Operation at the Urbana and Champaign Sanitary District testified that if the proposal is adopted, the northeast plant for March – October will have a monthly average of 1.23 mg/L instead of a final monthly average of 0.9 mg/L and a daily maximum of 5.40 mg/L instead of a final daily maximum of 3.0 mg/L. From November – February, the monthly average will be 2.71 mg/L instead of a final monthly average of 2.4 mg/L and a daily maximum of 6.07 mg/L instead of a final daily average of 4.8

mg/L. Exh.7 at 2-3, Tr.1 at 87-88. The southwest plant will also have higher monthly averages and daily maximums, if the proposal is adopted. Exh.7 at 2-8; Tr.1 at 88-89.

CONCLUSION

Based on the record developed to date in this matter, the Board finds that adoption of the following amendments, as requested by the IAWA, for the purposes of first notice is warranted. Accordingly, the Board will so order.

ORDER

The Board directs the Clerk to cause the filing of the following with the Secretary of State for first notice publication in the *Illinois Register*.

TITLE 35: ENVIRONMENTAL PROTECTION
SUBTITLE C: WATER POLLUTION
CHAPTER I: POLLUTION CONTROL BOARD
PART 302
WATER QUALITY STANDARDS

SUBPART A: GENERAL WATER QUALITY PROVISIONS

Section	
302.100	Definitions
302.101	Scope and Applicability
302.102	Allowed Mixing, Mixing Zones and ZIDS
302.103	Stream Flows
302.104	Main River Temperatures
302.105	Antidegradation

Castian

SUBPART B: GENERAL USE WATER QUALITY STANDARDS

Section	
302.201	Scope and Applicability
302.202	Purpose
302.203	Offensive Conditions
302.204	рН
302.205	Phosphorus
302.206	Dissolved Oxygen
302.207	Radioactivity
302.208	Numeric Standards for Chemical Constituents
302.209	Fecal Coliform
302.210	Other Toxic Substances
302.211	Temperature

302.212	Ammonia Nitrogen and Un-ionized Ammonia
302.213	Effluent Modified Waters (Ammonia)(Repealed)

SUBPART C: PUBLIC AND FOOD PROCESSING WATER SUPPLY STANDARDS

Section	
302.301	Scope and Applicability
302.302	Algicide Permits
302.303	Finished Water Standards
302.304	Chemical Constituents
302.305	Other Contaminants
302.306	Fecal Coliform

SUBPART D: SECONDARY CONTACT AND INDIGENOUS AQUATIC LIFE STANDARDS

Section	
302.401	Scope and Applicability
302.402	Purpose
302.403	Unnatural Sludge
302.404	pН
302.405	Dissolved Oxygen
302.406	Fecal Coliform (Repealed)
302.407	Chemical Constituents
302.408	Temperature
302.409	Cyanide
302.410	Substances Toxic to Aquatic Life

SUBPART E: LAKE MICHIGAN BASIN WATER QUALITY STANDARDS

Section	
302.501	Scope, Applicability, and Definitions
302.502	Dissolved Oxygen
302.503	pH
302.504	Chemical Constituents
302.505	Fecal Coliform
302.506	Temperature
302.507	Thermal Standards for Existing Sources on January 1, 1971
302.508	Thermal Standards for Sources under Construction But Not in Operation on
	January 1, 1971
302.509	Other Sources
302.510	Incorporations by Reference
302.515	Offensive Conditions
302.520	Regulation and Designation of Bioaccumulative Chemicals of Concern (BCCs)
302.521	Supplemental Antidegradation Provisions for BCCs

302.525	Radioactivity
302.530	Supplemental Mixing Provisions for BCCs
302.535	Ammonia Nitrogen
302.540	Other Toxic Substances
302.545	Data Requirements
302.550	Analytical Testing
302.553	Determining the Lake Michigan Aquatic Toxicity Criteria or Values - General Procedures
302.555	Determining the Tier I Lake Michigan Basin Acute Aquatic Life Toxicity Criterion (LMAATC): Independent of Water Chemistry
302.560	Determining the Tier I Lake Michigan Basin Acute Aquatic Life Toxicity Criterion (LMAATC): Dependent on Water Chemistry
302.563	Determining the Tier II Lake Michigan Basin Acute Aquatic Life Toxicity Value (LMAATV)
302.565	Determining the Lake Michigan Basin Chronic Aquatic Life Toxicity Criterion (LMCATC) or the Lake Michigan Basin Chronic Aquatic Life Toxicity Value (LMCATV)
302.570	Procedures for Deriving Bioaccumulation Factors for the Lake Michigan Basin
302.575	Procedures for Deriving Tier I Water Quality Criteria in the Lake Michigan Basin to Protect Wildlife
302.580	Procedures for Deriving Water Quality Criteria and Values in the Lake Michigan Basin to Protect Human Health – General
302.585	Procedures for Determining the Lake Michigan Basin Human Health Threshold Criterion (LMHHTC) and the Lake Michigan Basin Human Health Threshold Value (LMHHTV)
302.590	Procedures for Determining the Lake Michigan Basin Human Health Nonthreshold Criterion (LMHHNC) or the Lake Michigan Basin Human Health Nonthreshold Value (LMHHNV)
302.595	Listing of Bioaccumulative Chemicals of Concern, Derived Criteria and Values

SUBPART F: PROCEDURES FOR DETERMINING WATER QUALITY CRITERIA

Section	
302.601	Scope and Applicability
302.603	Definitions
302.604	Mathematical Abbreviations
302.606	Data Requirements
302.612	Determining the Acute Aquatic Toxicity Criterion for an Individual Substance –
	General Procedures
302.615	Determining the Acute Aquatic Toxicity Criterion - Toxicity Independent of
	Water Chemistry
302.618	Determining the Acute Aquatic Toxicity Criterion - Toxicity Dependent on
	Water Chemistry
302.621	Determining the Acute Aquatic Toxicity Criterion - Procedures for
	Combinations of Substances

302.627	Determining the Chronic Aquatic Toxicity Criterion for an Individual Substance - General Procedures			
302.630	Determining the Chronic Aquatic Toxicity Criterion - Procedure for			
	Combination of Substances			
302.633	The Wild and Domestic Animal Protection Criterion			
302.642	The Human Threshold Criterion			
302.645	Determining the Acceptable Daily Intake			
302.648	Determining the Human Threshold Criterion			
302.651	The Human Nonthreshold Criterion			
302.654	Determining the Risk Associated Intake			
302.657	Determining the Human Nonthreshold Criterion			
302.658	Stream Flow for Application of Human Nonthreshold Criterion			
302.660	Bioconcentration Factor			
302.663	Determination of Bioconcentration Factor			
302.666	tilizing the Bioconcentration Factor			
302.669	Listing of Derived Criteria			
APPENDIX A				
APPENDIX E				
APPENDIX O				
	combinations of pH and temperature			
TABLE A				
TABLE B	Temperature and pH-Dependent Values of the CS (Chronic Standard)			
	for Fish Early Life Stages Absent			
TABLE C				
	Fish Early Life Stages Present			

AUTHORITY: Implementing Section 13 and authorized by Sections 11(b) and 27 of the Environmental Protection Act [415 ILCS 5/13 11(b), and 27]

SOURCE: Filed with the Secretary of State January 1, 1978; amended at 2 III. Reg. 44, p. 151, effective November 2, 1978; amended at 3 III. Reg. 20, p. 95, effective May 17, 1979; amended at 3 III. Reg. 25, p. 190, effective June 21, 1979; codified at 6 III. Reg. 7818; amended at 6 III. Reg. 11161, effective September 7, 1982; amended at 6 III. Reg. 13750, effective October 26, 1982; amended at 8 III. Reg. 1629, effective January 18, 1984; peremptory amendments at 10 III. Reg. 461, effective December 23, 1985; amended at R87-27 at 12 III. Reg. 9911, effective May 27, 1988; amended at R85-29 at 12 III. Reg. 12082, effective July 11, 1988; amended in R88-1 at 13 III. Reg. 5998, effective April 18, 1989; amended in R88-21(A) at 14 III. Reg. 2899, effective February 13, 1990; amended in R88-21(B) at 14 III. Reg. 11974, effective July 9, 1990; amended in R94-1(A) at 20 III. Reg. 7682, effective May 24, 1996; amended in R94-1(B) at 21 III. Reg. 370, effective December 23, 1996; expedited correction at 21 III. Reg. 6273, effective December 23, 1996; amended in R99-8 at 23 III. Reg. 897-25 at 21 III. Reg. 1356, effective December 24, 1997; amended in R99-8 at 23 III. Reg.

11249,	effective August 26,	1999; amended	in R01-13	at 26 Ill. R	teg. 3505,	effective]	February
22, 200	2; amended in R02-1	19 at 26 Ill. Reg	•	_, effective	e	·	

SUBPART B: GENERAL USE WATER QUALITY STANDARDS

Section 302.100

Unless otherwise specified, the definitions of the Environmental Protection Act (Act) (III. Rev. Stat. 1987, ch. 111 1/2, par. 1001 et seq.) [415 ILCS 5] and 35 III. Adm. Code 301 apply to this Part. As used in this Part, each of the following definitions has the specified meaning.

"Acute Toxicity" means the capacity of any substance or combination of substances to cause mortality or other adverse effects in an organism resulting from a single or short-term exposure to the substance.

"Adverse Effect" means any gross or overt effect on an organism, including but not limited to reversible histopathological damage, severe convulsions, irreversible functional impairment and lethality, as well as any non-overt effect on an organism resulting in functional impairment or pathological lesions which may affect the performance of the whole organism, or which reduces an organism's ability to respond to an additional challenge.

"Chronic Toxicity" means the capacity of any substance or combination of substances to cause injurious or debilitating effects in an organism which result from exposure for a time period representing a substantial portion of the natural life cycle of that organism, including but not limited to the growth phase, the reproductive phases or such critical portions of the natural life cycle of that organism.

"Criterion" means the numerical concentration of one or more toxic substances derived in accordance with the procedures in Subpart F of this Part which, if not exceeded, would assure compliance with the narrative toxicity standard of Section 302.210 of this Part.

"Hardness" means a water quality parameter or characteristic consisting of the sum of calcium and magnesium concentrations expressed in terms of equivalent milligrams per liter as calcium carbonate. Hardness is measured in accordance with methods specified in 40 CFR 136, incorporated by reference in 35 Ill. Adm. Code 301.106.

"Early Life Stages" of fish means the pre-hatch embryonic period, the post hatch free embryo or yolk-sac fry, and the larval period, during which the organism feeds. Juvenile fish, which are anatomically similar

to adults, are not considered an early life stage.

"Mixing Zone" means a portion of the waters of the State identified as a region within which mixing is allowed pursuant to Section 302.102(d) of this Part.

"Total Residual Chlorine" or "TRC" means those substances which include combined and uncombined forms of both chlorine and bromine and which are expressed, by convention, as an equivalent concentration of molecular chlorine. TRC is measured in accordance with methods specified in 40 CFR 136, incorporated by reference in 35 Ill. Adm. Code 301.106.

"Toxic Substance" means a chemical substance which that causes adverse effects in humans, or in aquatic or terrestrial animal or plant life. Toxic substances include, but are not limited to those substances listed in 40 CFR 302.4, incorporated by reference in 35 Ill. Adm. Code 301.106, or any "chemical substance" as defined by the Illinois Chemical Safety Act (Ill. Rev. Stat. 1987, ch. 111 1/2, par. 951 et seq.) [430 ILCS 45 et seq.]

"ZID" or "Zone of Initial Dilution" means a portion of a mixing zone, identified pursuant to Section 302.102(e) of this Part, within which acute toxicity standards need not be met.

(Source: Amended at 26 Ill. Reg. , effective)

Section 302.212 Total Ammonia Nitrogen and Un-ionized Ammonia

- a) Total ammonia nitrogen (as N: STORET Number 00610) shall <u>must</u> in no case exceed 15 mg/L.
- b) The total Un-ionized ammonia nitrogen (as N: STORET Number 0061000612) shall not exceed the acute, and chronic, and sub-chronic standards must be determined by the equations given below subject to the provisions of Section 302.208(a) and (b), and Section 302.213 of this Part. Attainment of each standard must be determined by subsections (c) and (d) of this Section in mg/L.
 - 1) The acute standard (AS) must be calculated using the following equation:

$$AS = \frac{0.411}{1 + 10^{7.204-pH}} + \frac{58.4}{1 + 10^{pH-7.204}}$$

From April through October, the Acute Standard (AS) shall be 0.33 mg/L and the Chronic Standard (CS) shall be 0.057 mg/L.

- 2) The chronic standard (CS) must be calculated using the following equations:
 - A) <u>During the Early Life Stage Present period, as defined in subsection (e) of this Section:</u>
 - i) When water temperature is less than or equal to 14.51°C:

$$CS = \left\{ \frac{0.0577}{1 + 10^{7.688 - pH}} + \frac{2.487}{1 + 10^{pH - 7.688}} \right\} (2.85)$$

ii) When water temperature is above 14.51°C:

$$CS = \left\{ \frac{0.0577}{1 + 10^{7.688 - pH}} + \frac{2.487}{1 + 10^{pH - 7.688}} \right\} \left(1.45 * 10^{0.028*(25 - T)} \right)$$

Where T = Water Temperature, degrees Celsius

- B) During the Early Life Stage Absent period, as defined in subsection (e) of this Section:
 - i) When water temperature is less than or equal to 7°C:

$$CS = \left\{ \frac{0.0577}{1 + 10^{7.688 - pH}} + \frac{2.487}{1 + 10^{pH - 7.688}} \right\} \left(1.45 * 10^{0.504} \right)$$

ii) When water temperature is greater than 7°C:

$$CS = \left\{ \frac{0.0577}{1 + 10^{7.688 - pH}} + \frac{2.487}{1 + 10^{pH - 7.688}} \right\} \left(1.45 * 10^{0.028(25 - T)} \right)$$

Where T = Water Temperature, degrees Celsius

From November through March, the AS shall be $0.14\ mg/L$ and the CS shall be $0.025\ mg/L$.

- 3) The sub-chronic standard must equal 2.5 times the chronic standard.
- c) Attainment of the Total Ammonia Nitrogen Water Quality Standards
 - 1) The acute standard of total ammonia nitrogen (in mg/L) must not be exceeded at any time except in those waters for which the Agency has approved a ZID pursuant to Section 302.102.
 - 2) The total ammonia nitrogen (in mg/L) must not exceed the chronic standard (CS) except in those waters in which mixing is allowed pursuant to Section 302.102 of this Part. Attainment of the chronic standard (CS) must be evaluated pursuant to subsection (d) of this Section using one or more samples collected within 30 days.
 - 3) The total ammonia nitrogen (in mg/L) must not exceed the sub-chronic standard except in those waters in which mixing is allowed pursuant to Section 302.102. Attainment of the sub-chronic standard must be evaluated pursuant to subsection (d) of this Section by averaging the highest sample results collected over four consecutive days within the 30 day period specified in subsection 302.212(c)(2).

For purposes of this Section, the concentration of un-ionized ammonia nitrogen as N and total ammonia nitrogen as N shall be computed according to the following equations:

$$\frac{U = \frac{N}{[0.94412(1+10^*) + 0.0559]}}{\text{and N} = U [0.94412(1+10^*) + 0.0559]}$$

$$\frac{\text{where: } X = 0.09018 + \underbrace{2729.92}_{(T + 273.16)} \text{pH}$$

U = Concentration of un-ionized ammonia as N in mg/L

N = Concentration of ammonia nitrogen as N in mg/L

T = Temperature in degrees Celsius

d) The water quality standard for each water body must be calculated based on the temperature and pH of the water body measured at the time of each ammonia sample. The concentration of total ammonia in each sample must be divided by the calculated water quality standard for the sample to determine a quotient.

The water quality standard is attained if the mean of the sample quotients is less than or equal to one for the duration of the averaging period.

The following tables indicates the maximum total ammonia nitrogen concentrations (mg/L as N) allowable pursuant to subsections (a) and (b) of this Section for certain combinations of pH and temperature:

1) Summer (April through October) Acute un-ionized ammonia 0.33 mg/L

	PH	6.5	7.0	7.5	7.75	8.0	8.25	8.5	9.0
${}^{\circ}\mathbf{F}$	°C								
55	12.8	15.0	15.0	15.0	15.0	13.8	7.9	4.6	1.7
60	15.6	15.0	15.0	15.0	15.0	11.2	6.5	3.8	1.4
65	18.3	15.0	15.0	15.0	15.0	9.8	5.3	3.1	1.2
70	21.1	15.0	15.0	15.0	13.2	7.6	4.4	2.6	1.1
75	23.9	15.0	15.0	15.0	10.9	6.3	3.7	2.2	0.9
80	26.7	15.0	15.0	15.0	9.0	5.2	3.1	1.9	0.8
85	29.4	15.0	15.0	13.1	7.5	4.4	2.6	1.6	0.7
90	32.2	15.0	15.0	10.9	6.3	3.7	2.2	1.4	0.7

2) Summer (April through October) Chronic un-ionized ammonia 0.057 mg/L

	PH	6.5	7.0	7.5	7.75	8.0	8.25	8.5	9.0
<u>∘</u> F	<u>°</u> C								
55	12.8	15.0	15.0	7.4	4.2	2.4	1.4	0.8	0.3
60	15.6	15.0	15.0	7.0	3.4	1.9	1.1	0.7	0.2
65	18.3	15.0	15.0	4.9	2.8	1.6	0.9	0.5	0.2
70	21.1	15.0	12.6	4.0	2.3	1.3	0.8	0.5	0.2
75	23.9	15.0	10.3	3.3	1.9	1.1	0.6	0.4	0.2
80	26.7	15.0	8.6	2.7	1.6	0.9	0.5	0.3	0.1
85	29.4	15.0	7.8	2.3	1.3	0.8	0.4	0.3	0.1
90	32.2	15.0	5.8	1.9	1.1	0.6	0.4	0.2	0.1

3) Winter (November through March) Acute un-ionized ammonia 0.14 mg/L

]	PH	6.5	7.0	7.5	7.75	8.0	8.25	8.5	9.0
<u>∘</u> F	°C								
32	0.0	15.0	15.0	15.0	15.0	15.0	9.2	5.2	1.7
35	1.7	15.0	15.0	15.0	15.0	14.1	8.0	4.5	1.5
40	4.4	15.0	15.0	15.0	15.0	11.3	6.4	3.7	1.3
45	7.2	15.0	15.0	15.0	15.0	9.0	5.1	2.9	1.0
50	10.0	15.0	15.0	15.0	12.8	7.3	4.1	2.4	0.9
55	12.8	15.0	15.0	15.0	10.3	5.9	3.4	$\frac{2.0}{2.0}$	0.7
60	15.6	15.0	15.0	14.8	8.4	4.8	2.7	1.6	0.6

4) Winter (November through March) Chronic un-ionized ammonia 0.025mg/L

-	PH	6.5	7.0	7.5	7.75	8.0	8.25	8.5	9.0
${}^{\circ}\mathbf{F}$	<u>°</u> C								
32	-0.0	15.0	15.0	9.1	5.1	2.9	1.6	0.9	0.3
35	1.7	15.0	15.0	7.9	4.4	2.5	1.4	0.8	0.3
40	4.4	15.0	15.0	6.3	3.6	2.0	1.1	0.7	0.2
45	7.2	15.0	15.0	5.0	2.8	1.6	0.9	0.5	0.2
50	10.0	15.0	12.7	4.0	2.3	1.3	0.7	0.4	0.2
55	12.8	15.0	10.2	3.3	1.8	1.0	0.6	0.3	0.1
60	15.6	15.0	8.3	2.6	1.5	0.9	0.5	0.3	0.1

e) The Early Life Stage Present period must occur from March through October.

In addition, during any other period when early life stages are present, and where the water quality standard does not provide adequate protection for these organisms, the water body must meet the Early Life Stage Present water quality standard. All other periods must be subject to the Early Life Stage Absent period.

BOARD NOTE: Acute and chronic standard concentrations for total ammonia nitrogen (in mg/L) for different combinations of pH and temperature are shown in Appendix C.

(Source: Amended at 26 Ill. Reg.	, effective
----------------------------------	-------------

Section 302.213 Effluent Modified Waters (Ammonia) (Repealed)

- a) Effluent modified waters are those waters or portions of waters that the Agency has determined, pursuant to 35 Ill. Adm. Code 309: Subpart A, to have the potential to exceed, and are therefore not subject to, the chronic ammonia standards of Section 302.212(b) downstream of an effluent outfall and outside of any allowable mixing zone. The Agency shall not identify a waterbody as an effluent modified water if it:
 - 1) has uses known to be adversely impacted by ammonia as designated under 35 Ill. Adm. Code 303.201 outside of any allowable mixing zone;
 - 2) exceeds the acute standard of Section 302.212(b) of this Part.
- b) All effluent discharges to an effluent modified water must meet the requirements of 35 Ill. Adm. Code 304.122(d) prior to dilution with the receiving water.

(Source: Repealed at 20 III. Reg	(Source:	Repealed at 26 Ill. Reg.	. effective	•
----------------------------------	----------	--------------------------	-------------	---

Section 302.APPENDIX C Maximum total ammonia nitrogen concentrations allowable for certain combinations of pH and temperature

Section 302. Table A: pH-Dependent Values of the AS (Acute Standard)

(Source:	Added at 26 Ill. Reg.	, effective

Section 302. Table B: Temperature and pH-Dependent Values of the CS (Chronic Standard) for Fish Early Life Stages Absent

pН				Tem	perature	, Celsius				
	0.7	0	0	10	11	10	12	1.4	1.5	1.6
	0-7	8	9	10	11	12	13	14	15	<u>16</u>
<u>6</u> 6.1	11.3	$\frac{10.6}{10.5}$	$\frac{9.92}{0.05}$	$\frac{9.30}{2.25}$	$\frac{8.72}{2.67}$	8.17	$\frac{7.66}{7.63}$	7.19	$\frac{6.74}{6.70}$	$\frac{6.32}{6.33}$
6.1	11.2	10.5	$\frac{9.87}{9.81}$	$\frac{9.25}{2.13}$	$\frac{8.67}{8.62}$	8.13	7.62	$\frac{7.15}{7.10}$	$\frac{6.70}{6.66}$	$\frac{6.28}{6.28}$
6.2	11.2	10.5	9.81	9.19	8.62	8.08	7.58	$\frac{7.10}{7.05}$	6.66	6.24 6.19 6.13
6.3	11.1	10.4 10.3	9.73	$\frac{9.12}{9.03}$	8.55	8.02 7.94	7.52	7.05	$\frac{6.61}{6.54}$	6.19
6.4	11.0	<u>10.3</u>	9.63	9.03	8.47	<u>7.94</u>	7.44	6.98	6.54	6.13
<u>6.5</u>	10.8	10.1	9.51	8.92	8.36 8.24	7.84	$\frac{7.35}{7.24}$ $\frac{7.11}{7.11}$	6.89	6.46	6.06
6.6	10.7	9.99	<u>9.37</u>	<u>8.79</u>	<u>8.24</u>	<u>7.72</u>	<u>7.24</u>	<u>6.79</u>	6.36	5.97
<u>6.7</u>	10.5	9.81	$\frac{9.37}{9.20}$	8.62	<u>8.08</u>	<u>7.58</u>	<u>7.11</u>	6.66	6.25	<u>5.86</u>
6.8	10.2	9.58 9.31	8.98 8.73	8.42	7.90	<u>7.40</u>	6.94	6.51	$\frac{6.25}{6.10}$	<u>5.72</u>
6.9	9.93	9.31	8.73	8.19	7.68	7.20	6.75	6.33	5.93	5.56
<u>7</u>	10.5 10.2 9.93 9.60	9.00	8.43	$ \begin{array}{r} 8.79 \\ 8.62 \\ \hline 8.42 \\ \hline 8.19 \\ \hline 7.91 \\ \hline 7.58 \\ \end{array} $	<u>7.41</u>	7.72 7.58 7.40 7.20 6.95	6.94 6.75 6.52	6.79 6.66 6.51 6.33 6.11	5.73	<u>5.37</u>
<u>7.1</u>	9.20	8.63	8.09	<u>7.58</u>	8.08 7.90 7.68 7.41 7.11	6.67	6.25	5.86	5.93 5.73 5.49	5.86 5.72 5.56 5.37 5.15
7.2	8.75	8.20	<u>7.69</u>	<u>7.21</u>	<u>6.76</u>	6.34	<u>5.94</u>	<u>5.57</u>	<u>5.22</u>	<u>4.90</u>
7.3	8.24	7.73	7.25	6.79	6.76 6.37	5.97	5.60	5.25	4.92	4.61
7.4	8.24 7.69	$\frac{7.73}{7.21}$	6.76	6.33	5.94	6.34 5.97 5.57	5.22	4.89	5.22 4.92 4.59	4.30
6.4 6.5 6.6 6.7 6.8 6.9 7 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9	7.09 6.46 5.81 5.17 4.54 3.95 3.41	6.64	7.69 7.25 6.76 6.23 5.67	7.21 6.79 6.33 5.84 5.32	5.94 5.48 4.99	5.13 4.68	5.94 5.60 5.22 4.81 4.38	5.57 5.25 4.89 4.51 4.11	$\frac{4.23}{3.85}$	3.97
7.6	6.46	6.05	5.67	5.32	4.99	4.68	4.38	4.11	3.85	3.61
7.7	5.81	5.45	5.11	4.79	4.49	4.21	3.95	3.70	3.47	3.25
7.8	5.17	4.84	4.54	$\overline{4.26}$	3.99	3.74	3.51	3.29	3.09	2.89
7.9	4.54	4.84 4.26	5.11 4.54 3.99 3.47 2.99 2.56	$ \begin{array}{r} 4.79 \\ 4.26 \\ \hline 3.74 \\ \hline 3.26 \\ \hline 2.81 \\ \hline 2.40 \end{array} $	3.99 3.51	3.29	3.95 3.51 3.09	3.70 3.29 2.89 2.52 2.17 1.85 1.58 1.33	$\frac{3.47}{3.09}$ $\frac{2.71}{2.71}$	3.25 2.89 2.54 2.21
8	3.95	3.70	3.47	3.26	3.05	2.86	2.68	2.52	2.36	$\overline{2.21}$
<u>8</u> 8.1	3.41	$ \begin{array}{r} \hline 3.70 \\ \hline 3.19 \\ \hline 2.73 \\ \hline 2.32 \end{array} $	2.99	2.81	$\frac{3.05}{2.63}$ $\frac{2.25}{2.25}$	2.47	$\frac{2.68}{2.31}$ $\frac{1.98}{1.98}$	$\overline{2.17}$	$\frac{2.36}{2.03}$ $\frac{1.74}{1.74}$	1.91
8.2	2.91	2.73	2.56	2.40	2.25	$\overline{2.11}$	1.98	1.85	$\overline{1.74}$	1.63
8.2 8.3	2.47	$\overline{2.32}$	2.18	2.04	1.91	$\overline{1.79}$	1.68	1.58	1.48	1.39
8.4	2.09	1.96	1.84	$\overline{1.73}$	1.62	1.52	$\overline{1.42}$	1.33	1.25	1.17
8.5	1.77	1.66	$\overline{1.55}$	$\overline{1.46}$	$\overline{1.37}$	$\overline{1.28}$	$\overline{1.20}$	1.13	1.06	0.99
8.4 8.5 8.6	2.09 1.77 1.49 1.26 1.07	1.40	1.84 1.55 1.31 1.11 0.94	$ \begin{array}{r} \hline 2.04 \\ \hline 1.73 \\ \hline 1.46 \\ \hline 1.23 \\ \end{array} $	$\frac{1.37}{1.15}$	3.74 3.29 2.86 2.47 2.11 1.79 1.52 1.28 1.08 0.92 0.78	$\frac{1.42}{1.20}$ $\frac{1.01}{1.01}$	0.95	0.89	$\frac{0.99}{0.84}$
8.7	1.26	1.18	$\overline{1.11}$	1.04	0.98	$\overline{0.92}$	0.86	0.80	0.75	$\overline{0.71}$
8.8	1.07	1.01	0.94	0.88	0.83	0.78	0.73	0.68	0.64	0.60
8.9	0.92	0.86	0.81	0.76	$\frac{0.83}{0.71}$	0.66	0.62	0.58	0.55	0.51
9.0	0.79	0.74	0.69	0.65	0.61	$\overline{0.57}$	0.54	$\overline{0.50}$	$\overline{0.47}$	$\overline{0.44}$

 $\frac{*}{\text{At }15}$ C and above, the criterion for fish ELS absent is the same as the criterion for fish ELS present.

(Source: Added at 26 Ill. Reg. _____, effective _____)

Section 302.Table C: Temperature and pH-Dependent Values of the CS (Chronic Standard)for Fish Early Life Stages Present

pН				Temper	rature, (Celsius				
	0	<u>14</u>	<u>16</u>	<u>18</u>	<u>20</u>	<u>22</u>	<u>24</u>	<u>26</u>	<u>28</u>	30
6	6.95	6.95	6.32	5.55	4.88	4.29	3.77	3.31	2.91	2.56
<u>6</u> <u>6.1</u>	6.91	6.91	6.28	5.52	4.86	4.27	3.75	3.30	2.90	2.55
6.2	6.87	6.87	6.24	5.49	4.82	4.24	3.73	3.28	2.88	2.53
6.3	6.82	6.82	6.19	<u>5.45</u>	4.79	4.21	$\frac{3.70}{3.66}$	3.25	2.86	2.51
6.4	6.75	6.75	6.13	5.39	$\frac{4.79}{4.74}$	4.27 4.24 4.21 4.17	3.66	3.22	2.83	2.49
6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 7 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 8 8.1 8.2 8.3 8.4 8.5 8.6	6.67	6.67	6.06	5.39 5.33	4.68	<u>4.12</u>	3.62	$ \begin{array}{r} 3.25 \\ 3.22 \\ 3.18 \\ 3.13 \\ 3.07 \\ 3.00 \\ 2.92 \\ 2.82 \\ 2.70 \end{array} $	2.88 2.86 2.83 2.80 2.75 2.70 2.64 2.57 2.48 2.38	2.46 2.42 2.37 2.32 2.25 2.18
6.6	6.57	6.57	5.97	5.25	4.61	4.05	3.56	3.13	2.75	<u>2.42</u>
6.7	6.44	<u>6.44</u>	<u>5.86</u>	<u>5.15</u>	4.52	3.98	3.50	3.07	2.70	<u>2.37</u>
6.8	6.44 6.29 6.12	6.44 6.29	5.86 5.72 5.56 5.37 5.15	5.25 5.15 5.03 4.89 4.72 4.53	$\frac{4.61}{4.52}$ $\frac{4.42}{4.42}$	3.98 3.89 3.78 3.65	$ \begin{array}{r} \hline 3.50 \\ \hline 3.42 \\ \hline 3.32 \\ \hline 3.21 \\ \hline \end{array} $	3.00	2.64	<u>2.32</u>
6.9	6.12	6.12	5.56	4.89	4.30	3.78	3.32	2.92	2.57	2.25
<u>7</u>	5.91	<u>5.91</u>	<u>5.37</u>	4.72	4.15	3.65	3.21	2.82	2.48	<u>2.18</u>
7.1	5.67	<u>5.67</u>	<u>5.15</u>	4.53	3.98	3.50	3.08	2.70	2.38	<u>2.09</u>
7.2	5.39	5.39	4.90 4.61 4.30	4.31	$\frac{3.78}{3.57}$ $\frac{3.32}{3.32}$	$\frac{3.33}{3.13}$ $\frac{2.92}{2}$	2.92	2.57	2.26	1.99 1.87 1.74
7.3	5.08	5.08 4.73	<u>4.61</u>	$\frac{4.06}{3.78}$	3.57	3.13	<u>2.76</u>	2.42	2.13	<u>1.87</u>
7.4	4.73	4.73	4.30	3.78	3.32	2.92	2.57	2.26	1.98	<u>1.74</u>
7.5	4.36	4.36	3.97	3 49	3.06	2.69	2.92 2.76 2.57 2.37 2.16 1.94	$ \begin{array}{r} 2.57 \\ 2.42 \\ 2.26 \\ 2.08 \\ 1.90 \\ 1.71 \end{array} $	$ \begin{array}{r} \underline{2.26} \\ \underline{2.13} \\ \underline{1.98} \\ \underline{1.83} \\ \underline{1.67} \\ \underline{1.50} \end{array} $	1.61
7.6	3.98	3.98	3.61	3.18 2.86 2.54 2.24 1.94	$\frac{2.79}{2.51}$	2.45	2.16	1.90	1.67	1.47
7.7	3.58	3.58	<u>3.25</u>	<u>2.86</u>	<u>2.51</u>	<u>2.21</u>	1.94	<u>1.71</u>	1.50	1.32
7.8	3.18	3.18	2.89	2.54	2.23	1.96	1.73	$\frac{1.52}{1.33}$ $\frac{1.16}{1.16}$	1.33	1.17
7.9	2.80	2.80	<u>2.54</u>	<u>2.24</u>	1.96	1.73	1.52	1.33	<u>1.17</u>	1.03
<u>8</u>	2.43	2.43	2.21	<u>1.94</u>	2.23 1.96 1.71	<u>1.50</u>	1.32	<u>1.16</u>	1.02	0.90
<u>8.1</u>	2.10	2.10	3.25 2.89 2.54 2.21 1.91	1.68	$\frac{1.47}{1.26}$ $\frac{1.07}{1.07}$	2.69 2.45 2.21 1.96 1.73 1.50 1.29 1.11	1.73 1.52 1.32 1.14	1.00	1.33 1.17 1.02 0.88	0.77
8.2	1.79 1.52	1.79 1.52	1.63 1.39	$\frac{1.43}{1.22}$	<u>1.26</u>	<u>1.11</u>	$\frac{0.97}{0.83}$	0.86	<u>0.75</u>	0.66
8.3	1.52	<u>1.52</u>	1.39	1.22	1.07	0.94	0.83	0.73	0.64	0.56
8.4	1.29	1.29	<u>1.17</u>	1.03	0.91	0.80	0.70	0.62	0.54	0.48
8.5	1.09	1.09	$\frac{0.99}{0.84}$	0.87	0.76	0.67	0.59	0.52	0.46	$\frac{0.40}{0.34}$
8.6	0.92	0.92	0.84	$ \begin{array}{r} \hline 1.03 \\ \hline 0.87 \\ \hline 0.73 \end{array} $	0.91 0.76 0.65	$\frac{0.67}{0.57}$	0.59 0.50 0.42 0.36 0.31	$\frac{0.52}{0.44}$	$\frac{0.46}{0.39}$	<u>0.34</u>
<u>8.7</u>	0.78	0.78	<u>0.71</u>	0.62	0.55	0.48	0.42	0.37	0.33	0.29
8.8	0.66	0.66	$\frac{0.60}{0.51}$	0.53	$\frac{0.46}{0.40}$	$\frac{0.41}{0.35}$	0.36	$\frac{0.32}{0.27}$	0.28	$\frac{0.24}{0.21}$
8.7 8.8 8.9 9	0.56	0.56	<u>0.51</u>	$\frac{0.45}{0.39}$	0.40	0.35	0.31	0.27	$ \begin{array}{r} \hline 0.28 \\ \hline 0.24 \\ \hline 0.20 \end{array} $	<u>0.21</u>
9	0.49	0.49	0.44	0.39	0.34	0.30	0.26	0.23	0.20	0.18

(Source: Added at 26 Ill. Reg. _____, effective _____)

TITLE 35: ENVIRONMENTAL PROTECTION SUBTITLE C: WATER POLLUTION

CHAPTER I: POLLUTION CONTROL BOARD PART 304 EFFLUENT STANDARDS

SUBPART A: GENERAL EFFLUENT STANDARDS

Section	
304.101	Preamble
304.102	Dilution
304.103	Background Concentrations
304.104	Averaging
304.105	Violation of Water Quality Standards
304.106	Offensive Discharges
304.120	Deoxygenating Wastes
304.121	Bacteria
304.122	Total Ammonia Nitrogen (as N: STORET number 00610)
304.123	Phosphorus (STORET number 00665)
304.124	Additional Contaminants
304.125	pH
304.126	Mercury
304.140	Delays in Upgrading (Repealed)
304.141	NPDES Effluent Standards
304.142	New Source Performance Standards (Repealed)

SUBPART B: SITE SPECIFIC RULES AND EXCEPTIONS NOT OF GENERAL APPLICABILITY

Section	
304.201	Wastewater Treatment Plant Discharges of the Metropolitan Water
	Reclamation District of Greater Chicago
304.202	Chlor-alkali Mercury Discharges in St. Clair County
304.203	Copper Discharges by Olin Corporation
304.204	Schoenberger Creek: Groundwater Discharges
304.205	John Deere Foundry Discharges
304.206	Alton Water Company Treatment Plant Discharges
304.207	Galesburg Sanitary District Deoxygenating Wastes Discharges
304.208	City of Lockport Treatment Plant Discharges
304.209	Wood River Station Total Suspended Solids Discharges
304.210	Alton Wastewater Treatment Plant Discharges
304.211	Discharges From Borden Chemicals and Plastics Operating Limited
	Partnership Into an Unnamed Tributary of Long Point Slough
304.212	Sanitary District of Decatur Discharges
304.213	PDV Midwest Refining, L.L.C. Refinery Ammonia Discharge
304.214	Mobil Oil Refinery Ammonia Discharge
304.215	City of Tuscola Wastewater Treatment Facility Discharges

304.216	Newton Station Suspended Solids Discharges
304.218	City of Pana Phosphorus Discharge
304.219	North Shore Sanitary District Phosphorus Discharges
304.220	East St. Louis Treatment Facility, Illinois-American Water Company
304.221	Ringwood Drive Manufacturing Facility in McHenry County
304.222	Intermittent Discharge of TRC

SUBPART C: TEMPORARY EFFLUENT STANDARDS

Section	
304.301	Exception for Ammonia Nitrogen Water Quality Violations (Repealed)
304.302	City of Joliet East Side Wastewater Treatment Plant
304.303	Amerock Corporation, Rockford Facility

Appendix A References to Previous Rules

AUTHORITY: Implementing Section 13 and authorized by Section 27 of the Environmental Protection Act [415 ILCS 5/13 and 27].

SOURCE: Filed with the Secretary of State January 1, 1978; amended at 2 Ill. Reg. 30, p. 343, effective July 27, 1978; amended at 2 Ill. Reg. 44, p. 151, effective November 2, 1978; amended at 3 Ill. Reg. 20, p. 95, effective May 17, 1979; amended at 3 Ill. Reg. 25, p. 190, effective June 21, 1979; amended at 4 Ill. Reg. 20, p. 53 effective May 7, 1980; amended at 6 Ill. Reg. 563, effective December 24, 1981; codified at 6 Ill. Reg. 7818: amended at 6 Ill. Reg. 11161, effective September 7, 1982; amended at 6 Ill. Reg. 13750, effective October 26, 1982; amended at 7 Ill. Reg. 3020, effective March 4, 1983; amended at 7 Ill. Reg. 8111, effective June 23, 1983; amended at 7 Ill. Reg. 14515, effective October 14, 1983; amended at 7 III. Reg. 14910, effective November 14, 1983; amended at 8 III. Reg. 1600, effective January 18, 1984; amended at 8 Ill. Reg. 3687, effective March 14, 1984; amended at 8 Ill. Reg. 8237, effective June 8, 1984; amended at 9 III. Reg. 1379, effective January 21, 1985; amended at 9 Ill. Reg. 4510, effective March 22, 1985; peremptory amendment at 10 Ill. Reg. 456, effective December 23, 1985; amended at 11 Ill. Reg. 3117, effective January 28, 1987; amended in R84-13 at 11 Ill. Reg. 7291 effective April 3, 1987; amended in R86-17(A) at 11 Ill. Reg. 14748, effective August 24, 1987; amended in R84-16 at 12 Ill. Reg. 2445, effective January 15, 1988; amended in R83-23 at 12 Ill. Reg. 8658, effective May 10, 1988; amended in R87-27 at 12 Ill. Reg. 9905, effective May 27, 1988; amended in R82-7 at 12 Ill. Reg. 10712, effective June 9, 1988; amended in R85-29 at 12 III. Reg. 12064, effective July 12, 1988; amended in R87-22 at 12 Ill. Reg. 13966, effective August 23, 1988; amended in R86-3 at 12 Ill. Reg. 20126, effective November 16, 1988; amended in R84-20 at 13 Ill. Reg. 851, effective January 9, 1989; amended in R85-11 at 13 Ill. Reg. 2060, effective February 6, 1989; amended in R88-1 at 13 Ill. Reg. 5976, effective April 18, 1989; amended in R86-17(B) at 13 Ill. Reg. 7754, effective May 4, 1989; amended in R88-22 at 13 Ill. Reg. 8880, effective May 26, 1989; amended in R87-6 at 14 III. Reg. 6777, effective April 24, 1990; amended in R87-36 at 14 III. Reg. 9437, effective May 31, 1990; amended in R88-21(B) at 14 III. Reg. 12538, effective July 18, 1990; amended in R84-44 at 14 III. Reg. 20719, effective December

11, 1990; amended in R86-14 at 15 Ill. Reg. 241, effective December 18, 1990; amended in R93-8 at 18 Ill. Reg. 267, effective December 23, 1993; amended in R87-33 at 18 Ill. Reg. 11574, effective July 7, 1994; amended in R95-14 at 20 Ill. Reg. 3528, effective February 8, 1996; amended in R94-1(B) at 21 Ill. Reg. 364, effective December 23, 1996; expedited correction in R94-1(B) at 21 Ill. Reg. 6269, effective December 23, 1996; amended in R97-25 at 22 Ill. Reg. 1351, effective December 24, 1997; amended in R97-28 at 22 Ill. Reg. 3512, effective February 3, 1998; amended in R98-14 at 22 Ill. Reg.687, effective December 31, 1998; amended in R02-19 at 26 Ill. Reg. , effective

BOARD NOTE: This Part implements the Illinois Environmental Protection Act of July 1, 1994.

SUBPART A: GENERAL EFFLUENT STANDARDS

Section 304.122 Total Ammonia Nitrogen (as N: STORET number 00610)

- a) No effluent from any source which discharges to the Illinois River, the Des Plaines River downstream of its confluence with the Chicago River System or the Calumet River System, and whose untreated waste load is 50,000 or more population equivalents shall contain more than 2.5 mg/L of total ammonia nitrogen as N during the months of April through October, or 4 mg/L at other times.
- b) Sources discharging to any of the above waters and whose untreated waste load cannot be computed on a population equivalent basis comparable to that used for municipal waste treatment plants and whose total ammonia nitrogen as N discharge exceeds 45.4 kg/day (100 pounds per day) shall not discharge an effluent of more than 3.0 mg/L of total ammonia nitrogen as N.
- c) In addition to the effluent standards set forth in subsections (a) and (b) of this Section, all sources are subject to Section 304.105 unless the Agency determines as part of the NPDES Permit Program under 35 III. Adm. Code 309: Subpart A that alternate effluent standards are applicable pursuant to subsection (d) of this Section.
- d) All dischargers to effluent modified waters as defined at 35 Ill. Adm. Code 302.213, except for treatment works qualifying under Section 304.120(c), shall have an effective NPDES permit with monthly average effluent limits of 1.5 mg/L total ammonia as N during the months of April through October, and 4.0 mg/L total ammonia as N at other times, as well as the following restrictions:
 - 1) Dischargers achieving lower ammonia concentrations than given above, yet not meeting the chronic water quality standards of 35 Ill. Adm. Code 302.212(b), shall maintain their existing level of performance consistent

with the facility's expected organic and hydraulic loadings for the duration of their NPDES permit.

2) New or expanded discharges that increase ammonia loading to general use waters and/or create effluent modified waters or portions of waters must demonstrate compliance to the Agency with the nondegradation requirements at 35 Ill. Adm. Code 302.105.

(Source: Amended at 26 Ill. Reg. _____, effective _____)

IT IS SO ORDERED.

I, Dorothy M. Gunn, Clerk of the Illinois Pollution Control Board, hereby certify that the Board adopted the above opinion and order on June 6, 2002, by a vote of 7-0.

Dorothy M. Gunn, Clerk Illinois Pollution Control Board

Dorothy In. Gun