BEFORE THE ILLINOIS POLLUTION CONTROL BOARD

CLERK'S OFFICE

McDONALD'S CORPORATION,) 007 1 7 2003
Petitioner,) 5TATE OF ILLINOIS Pollution Control Board
) PCB 2004-14
v.) (UST Appeal)
ILLINOIS ENVIRONMENTAL PROTECTION)
AGENCY,)
)
Respondent.)

NOTICE OF FILING AND CERTIFICATE OF SERVICE

The undersigned hereby states on oath that on this 17th day of October, 2003, copies of the JOINT STIPULATION OF FACTS were filed with the Illinois Pollution Control Board and served by First Class Mail, postage pre-paid, upon the parties named on the attached Service List.

McDonald's Corporation

BY:

its attorney

Barbara A. Magel Mark D. Erzen Karaganis, White & Magel Ltd. 414 North Orleans Street, Suite 810 Chicago, Illinois 60610 312/836-1177 Fax 312/836-9083

MDEMCO15.DOC

SERVICE LIST

1 1

;

John J. Kim, Esq. Assistant Counsel Illinois Environmental Protection Agency Division of Legal Counsel 1021 North Grand Avenue East Springfield, Illinois 62794-9276

Bradley P. Halloran Hearing Officer Illinois Pollution Control Board James R. Thompson Center, Suite 11-500 100 West Randolph Street Chicago, Illinois 60601

mdemco15.doc

BEFORE THE ILLINOIS POLLUTION CONTROL BOARD

)

)

)

McDONALD'S CORPORATION,
Petitioner,
v.
ILLINOIS ENVIRONMENTAL PROTECTION AGENCY,

RECEIVEL CLERK'S OFFICE 001 1 7 2003 STATE OF ILLINOIS Pollution Control Board) PCB 2004-14) (UST Appeal)

Respondent.

a k

JOINT STIPULATION OF FACTS

Petitioner McDonald's Corporation ("McDonald's") and Respondent Illinois Environmental Protection Agency ("IEPA") hereby stipulate to the following facts for the purposes of this proceeding only.

THE PARTIES AND THE SITE

- 1. The Petitioner in this proceeding is McDonald's Corporation ("McDonald's"), a corporation headquartered in Oak Brook, Illinois.
- 2. The Respondent in this proceeding is the Illinois Environmental Protection Agency (the "IEPA").
- 3. The site involved in this proceeding is located at 1120 West 22nd Street in Oak Brook, Illinois (the "Site"). The Site occupies the northeast corner of the intersection formed by 22nd Street and Spring Road. That intersection is the first intersection that drivers encounter after exiting I-88 and entering Oak Brook.
- Photographs of the Site are attached as Exhibits 1 and 2, and a map showing the location 4. of the Site is attached as Exhibit 3.

PROCEDURAL BACKGROUND

- 5. This proceeding arises out of a Petition To Appeal which was filed by McDonald's seeking to reverse the IEPA's decision dated June 23, 2003, insofar as that decision denied \$31,515.00 in costs based upon IEPA's determination that "the owner/operator failed to demonstrate [that those costs] were reasonable... ." Ill.Adm.Code Title 35, §105.408(a).
- The Petition To Appeal was filed within thirty-five days of service of the IEPA's June 23, 2003 decision, thus making the Petition To Appeal timely. Ill.Adm.Code Title 35, §105.408(b).

THE FACTS GIVING RISE TO THIS APPEAL

- 7. A number of years ago, the soil at the Site became contaminated with hydrocarbons as a result of spills or leaks that occurred in connection with the operation of a gasoline filling and service station (since demolished) at the Site. Two IEPA Incident Numbers have been assigned to the Site: Incident Number 902922 and Incident Number 952344. McDonald's was not involved in the operation of the gasoline filling and service station.
- 8. McDonald's, which purchased and is the current owner of the Site, has undertaken the remediation of the Site. The Corrective Action Plan for the remediation of the Site was approved by the IEPA in May, 2002.
- 9. The remediation of the Site is now completed, and the IEPA has granted a "no further action" letter to McDonald's. *See, e.g.*, Exhibits 1 and 2 (photographs of the Site).
- 10. Generally speaking, the remediation of the Site involved the removal of contaminated soil from the Site and the replacement of the contaminated soil with clean fill in accordance with the Corrective Action Plan approved by the IEPA.

11. After officials from the Village of Oak Brook ("Oak Brook") became aware of the remediation of the Site and that the remediation required clean fill, Oak Brook requested that McDonald's use backfill soil that Oak Brook owned as clean fill at the Site. That soil (the "backfill soil") was located in a soil pile on 31st Street in Oak Brook and had to be removed from that location.

3 1

- 12. Oak Brook's backfill soil was offered to McDonald's at no cost to McDonald's. Consequently, the only cost to McDonald's relating to the use of the backfill soil as fill at the Site (assuming that the backfill soil was suitable for that purpose) was the cost of removing the backfill soil from the soil pile on 31st Street and transporting it to and properly placing it at the Site on 22nd Street.
- 13. The potential for using the backfill soil as fill was then discussed between Carmen Yung, an employee of McDonald's remediation contractor, MACTEC Engineering and Consulting of Georgia, Inc. ("MACTEC"), and Ms. Valerie Davis of the IEPA in November, 2002. In that conversation, Ms. Davis of the IEPA told Ms. Yung of MACTEC that the IEPA would consider the backfill soil to be acceptable as fill at the Site if assurances could be provided which confirmed that the backfill soil did not come from a contaminated source. In addition, the IEPA also requested that one sample of the backfill soil be collected and tested for priority pollutants. *See* February 22, 2002 Report, attached as Exhibit 4.
- 14. The Village of Oak Brook then confirmed in writing that to the best of its knowledge, the backfill soil did not come from a contaminated source.
- 15. In accordance with the IEPA's request, a sample of the backfill soil was taken and tested. The results of the test of the sample of backfill soil showed that the backfill soil was suitable for use as fill at the Site. See February 22, 2002 Report, attached as Exhibit 4.

- 16. MACTEC had recommended that the backfill soil be continuously screened prior to its use as fill at the Site, and the backfill soil was initially continuously screened before it was used at the Site. That screening did not detect any elevated PID readings or visual or olfactory signs of contamination. MACTEC then contacted Ms. Davis of IEPA concerning the screening. Due to the time and cost of continuous screening, Ms. Davis recommended that additional soil samples be collected and tested in lieu of the continuous screening. See February 22, 2002 Report, attached as Exhibit 4, p. 3.
- 17. Nine additional samples of the backfill soil were therefore taken and tested, and were found (with one exception relating to arsenic concentration) to be within the most stringent TACO Tier 1 soil remediation objectives. MACTEC therefore concluded that the backfill soil was not contaminated.
- The remaining backfill soil was then loaded at the 31st Street location and transported to the Site for use as fill.
- 19. After backfill soil arrived at the Site, the backfill soil was placed in the excavations as fill and then rolled over by a sheepsfoot roller.

Illustration of sheepsfoot roller.

- 20. McDonald's used the sheepsfoot roller to roll over the backfill soil after the backfill soil was placed into excavations at the Site solely to compact the fill sufficiently to prevent voids and severe settlement.
- 21. McDonald's wished to avoid the presence of voids and the possibility of severe settlement because voids and severe settlements would cause the surface of the Site to sink below grade at the Site.
- 22. If the surface of the Site were to sink below grade, it would be necessary to bring additional fill to the Site to once again restore the surface of the Site to grade.
- 23. The use of the sheepsfoot roller on the fill after the placement of the backfill soil at the Site was referred to by McDonald's excavation contractor as "compaction."
- 24. In-place density testing is typically conducted after the compaction of fill whenever fill is compacted for the purpose of readying a site for construction on the compacted fill. The results of the in-place density testing are used to determine if the fill has been compacted to a density that is sufficient to support the anticipated construction.
- 25. No in-place density testing of the backfill soil after it was placed at the Site and rolled over with a sheepsfoot roller has ever been conducted.
- 26. The placement of the backfill soil at the Site, including the thickness of the lifts (i.e., layers) employed during the placement of the backfill soil, was not designed, conducted, intended or engineered for the purpose of insuring that the backfill soil would provide a sufficient base for later construction at the Site.

27. In its submission of LUST Fund reimbursement requests to the IEPA, McDonald's included bills from a subcontractor for the loading, transportation, placement and compaction of the soil at the Site. At the request of IEPA, McDonald's remediation and excavation contractors calculated that the cost of the "compaction" included in those bills – i.e., the cost of rolling the sheepsfoot roller on the backfill soil after it was placed at the Site – was in total \$31,515.00.

THE PARTIAL DENIAL OF McDONALD'S APPLICATION FOR REIMBURSEMENT FROM THE LUST FUND

- 28. McDonald's applied to the Illinois Leaking Underground Storage Tank Fund (the "LUST Fund") for reimbursement of the cost of remediating the Site. That application for reimbursement included what was later calculated to be \$31,515.00 for the cost of the "compaction."
- 29. In a final decision dated May 12, 2003 from IEPA to McDonald's, IEPA deducted from the approved costs of reimbursement the \$31,515.00 cost of the "compaction" of the backfill soil at the Site.
- 30. McDonald's did not appeal the May 12, 2003 final decision.
- 31. In response to the IEPA's May 12, 2003 letter, McDonald's remediation contractor, MACTEC Engineering and Consulting of Georgia, Inc. ("MACTEC"), sent a letter to IEPA dated May 20, 2003. That letter is attached as Exhibit 5.
- 32. MACTEC's May 20, 2003 letter indicated that the purpose of the "compaction" was to "prevent voids [in] and severe settlement" of the backfill soil that was being used as fill, that the "compaction" was therefore properly part of the soil placement process.

- 33. MACTEC's May 20, 2003 letter also indicated that use of crushed stone instead of the backfill soil as fill would have raised the total cost of the remediation by approximately \$50,000 above the total cost which was the basis for McDonald's reimbursement request.
- 34. MACTEC's May 20, 2003 letter also stated that the use of Oak Brook's backfill soil as fill instead of crushed stone "helped the Village of Oak Brook to dispose of their unwanted soil and turned it into use." The letter also stated that McDonald's "should not be penalized by employing cost saving and environmental conservation methods in site remediation when McDonald's could have obtained full reimbursement if crushed stone was used as backfill material."
- 35. MACTEC's May 20, 2003 letter served as a request for reimbursement of \$1,684.19 in costs related to furnishing and installing limestone and \$31,515.00 in costs related to compaction of backfill. The costs and justification for the request for reimbursement are set forth in the May 20, 2003 letter. The letter indicates that those costs are sought for reimbursement.
- 36. In a final decision dated June 23, 2003, IEPA deducted \$31,515.00 in "costs that the owner/operator failed to demonstrate were reasonable (Section 22.18b(d)(4)(C) of the Environmental Protection Act)." The Illinois EPA identified three invoices that formed the bases for the deduction of costs. The Illinois EPA characterized those costs as being "ineligible costs for compaction." See Exhibit 6, attached.
- 37. In arriving at its final decision dated June 23, 2003 and for purposes of this appeal, IEPA did not and does not contest the fact that the compaction of the backfill soil was properly part of the soil placement process.

McDonald's Corporation

i 1

, 1

BY:

their attorney

Barbara A. Magel Mark D. Erzen Karaganis, White & Magel Ltd. 414 North Orleans Street, Suite 810 Chicago, Illinois 60610 312/836-1177 Fax 312/836-9083

Illinois Environmental Protection Agency

BY:

their attorney

John J. Kim, Esq. Assistant Counsel Illinois Environmental Protection Agency Division of Legal Counsel 1021 North Grand Avenue East Springfield, Illinois 62794-9276 217/782-5544 Fax 217/782-9807

MDEMCO15.DOC

EXHIBIT 1: Taken 9/18/2003 Looking West-Southwest from an upper floor of the office building to the east of the Site .

.

EXHIBIT 2: Taken 9/18/2003 Looking southwest from Northeast corner of Site

Exhibit 3: Map showing approximate location of the Site

.

February 10, 2003

Mr.Den Koide McDonald's Corporation 2111 McDonald's Drive Oak Brook, Illinois 60523

Subject: Report of Soil Sampling of the Village of Oak Brook's Soil Pile McDonald's Corporation Property Located at 1120 West 22nd Street, Oak Brook, Illinois IEPA Incident Nos. 902922 & 952344 LAW Proposal No. 52099-0-0000-0499 LAW Project No. 52000-2-2681-09

Dear Mr. Koide:

Mactec Engineering and Consulting of Georgia, Inc., (MACTEC) is pleased to submit this *Report* of Soil Sampling of the Village of Oak Brook's Soil Pile in connection with the soil remediation project at McDonald's Corporation (McDonald's) property located at 1120 West 22nd Street in Oak Brook, Illinois (subject property). Our work was performed in general accordance with the scope of work described in MACTEC's Contract Change Order dated December 2, 2002 and our *Recommendations on Evaluating the Village of Oak Brook's Soil Pile* dated January 3, 2003 and approved by McDonald's. The following report includes the background information, field activities, physical and analytical results, and conclusion and recommendations.

Background Information

The subject property is currently a vacant tract of land owned by McDonald's Corporation undergoing soil remediation under the Illinois Environmental Protection Agency (IEPA)'s leaking underground storage tank (LUST) program. The subject project was formerly developed with a retail petroleum distribution and auto repair facility that subsequently ceased operation and was demolished around 1995. The four USTs at the subject property (one 4,000-gallon gasoline, one 6,000-gallon gasoline, one 8,000-gallon gasoline and one 550-gallon used oil) and associated piping were excavated and removed on November 14, 1995. Two LUST incident numbers associated with the former UST systems were obtained for the subject property.

> MACTEC Engineering and Consulting, Inc. 1200 Jorie Blvd., Suite 230 • Oak Brook, IL 60523 630-571-2162 • Fax: 630-571-0439

February 10, 2003 Report of Soil Sampling of the Village of of Oak Brook's Soil Pile

Subsurface assessments consisting of soil and groundwater sampling at the subject property were performed from 1991 to 2000. Based on the results of the subsurface assessments, it was estimated that approximately 12,000 cubic yards of soils were impacted by releases from the former USTs.

On February 27, 2002, LAW (currently MACTEC) prepared and submitted a Revised Corrective Action Plan (CAP) and Budget Proposal to the Illinois Environmental Protection Agency (IEPA) based on findings of our July 2000 limited subsurface assessment. In the revised CAP, soil excavation and disposal was the recommended method for soil remediation. The IEPA via their May 3, 2002 letter conditionally approved our Revised CAP.

Soil excavation activities began at the subject property on December 5, 2002.

During a site meeting among representatives from R.W. Collins, the soil removal contractor, MACTEC, Village of Oak Brook and McDonald's on November 21, 2002, the use of soil from soil piles owned by the Village of Oak Brook as backfill material at the subject property was discussed. McDonald's has requested MACTEC to conduct soil sampling of the soil piles and to present additional estimated cost associated with using the soil from the Village of Oak Brook instead of the originally proposed crushed stone as backfill material. On November 22, 2002, Ms. Carmen Yung of MACTEC contacted Ms. Valerie Davis, project manager of IEPA, Leaking Underground Storage Tank Program regarding sampling and use of the soil pile as backfill material at the subject site. Ms. Valerie Davis told MACTEC that the IEPA would consider the soil from the Village of Oak Brook as acceptable backfill if assurance can be provided to confirm that the soil did not come from a contaminated source. In addition, the IEPA will also require that one soil sample be collected from the soil piles and tested for total priority pollutants.

The Village of Oak Brook via their November 22, 2002 letter to McDonald's, stated that to the best of their knowledge, the soil pile does not contain any contaminants, that the soil is a temporary stockpile of the soil excavated for the Village of Oak Brook library when it was built about two years ago and the recent Village Hall expansion.

FIELD ACTIVITIES

On November 26, 2002, MACTEC personnel collected one composite soil sample from the Village of Oak Brook's soil pile using a hand auger. The composite soil sample was collected from five different locations from the soil pile. Three soil samples were collected from the east side of the soil pile and two soil samples were collected from the top of the soil pile. Due to the presence of large pieces of stone or concrete at various sampling locations, refusal was encountered at various sampling locations. These sampling locations were subsequently abandoned and new sampling locations were chosen for sampling. The five soil samples were collected at approximately four to five feet below the surface of the soil pile. The hand-auger used for this sampling was washed with Alconox solution and rinsed with distilled water prior to use at each location. The soil samples were then composited into one soil sample (designated as soil pile 1), put into laboratory-provided containers, packed with ice and shipped to Prairie Analytical Systems, Inc. in Springfield, Illinois with the chain-of-custody for laboratory analyses of total priority pollutants.

Due to the size of the soil pile (more than 15,000 cubic yards according to the Village of Oak Brook), that the soil inside the soil piles could not be readily accessible and checked for signs of contamination and that only one soil sample was collected for laboratory analyses, MACTEC recommended that, as a minimum, MACTEC personnel be on-site screening the soil with a Photoionization Hnu detector (PID) and checking the soil for visual and olfactory signs of contamination at the time that the soil is being excavated and loaded to the trucks for transportation to the subject property for use.

On-site screening of the soil pile was subsequently performed from December 30, 2002 to January 3, 2003. Soil was collected from the soil pile into resealable Ziploc bags randomly. Soil collected was allowed to warm up for 5 to 10 minutes. PID headspace readings were then obtained by inserting the PID probe in the Ziploc bags. Based on our on-site screening, no elevated PID readings nor visual and olfactory signs of contamination were reported.

On January 3, 2003, Ms. Carmen Yung of MACTEC contacted Ms. Valerie Davis of the IEPA regarding continuing on-site screening of the soil pile. Due to the length of time and cost involved for continuing on-site screening, Ms. Valerie Davis suggested that additional soil samples from the soil pile be collected and tested instead of continued on-site screening. (Refer to MACTEC's *Recommendations on Evaluating the Village of Oak Brook's Soil Pile*, dated January 3, 2003)

On January 9, 2003, MACTEC personnel collected additional samples from the soil pile. Nine soil samples were collected from nine locations at approximately four to five feet below the surface using a hand auger. The hand-auger used for this sampling was washed with Alconox solution and rinsed with distilled water prior to be used at each location. The soil samples were then composited into three soil samples (designated as soil pile 2 through 4), put into laboratory-provided containers, packed with ice and shipped to Prairie Analytical Systems, Inc. in Springfield, Illinois with the chain-of-custody for laboratory analyses of total priority pollutants.

PHYSICAL AND ANALYTICAL RESULTS

The soil encountered during collection of samples consists of sand and gravel, broken pieces of concrete and brown to grey silty clay.

Analytical results of the soil sample collected from the soil pile are compared to the most stringent IEPA Tier 1 soil remediation objectives promulgated in 35 Illinois Administrative Code Part 742, Tiered Approach to Corrective Action Objectives (TACO).

Various volatile organic compounds (VOCs) including 1,2,3-Trichloropropane at 0.0234 milligrams per kilogram (mg/kg) and toluene at 0.00625 mg/kg were reported in sample 3 and methylene chloride at 0.0083 mg/kg was reported in sample 4. However, their concentrations are all below the most stringent TACO Tier 1 soil remediation objectives. VOCs were not detected in soil sample 1 and 2. Detected VOC concentrations are summarized in Table 1.

Semi-VOCs, PCBs, pesticides, herbicides were not detected above the laboratory detection limits in the four soil samples collected.

Various metals including arsenic, barium, chromium, copper, lead, nickel and zinc were detected above the laboratory detection limits but their concentrations were either below the most stringent Tier 1 soil remediation objectives or the IEPA established background concentrations for inorganic chemicals with the exception of arsenic concentration reported in soil sample 2 at 13.7 mg/kg which slightly exceeded the IEPA established background concentration for arsenic at 13 mg/kg. Metal concentrations detected are summarized in Table 2. Laboratory data sheets are included as Attachment A.

CONCLUSIONS AND RECOMMENDATIONS

Based on our on-site screening results that no elevated PID readings nor visual or olfactory signs of contamination were reported and the analytical results of the four soil samples collected that showed that only one soil sample had arsenic concentration very slightly above the IEPA background concentration, we conclude that the soil at locations where the soil samples were collected was not contaminated.

We appreciate the opportunity to provide continued environmental consulting services to McDonald's. We are committed to providing the expertise you require for the successful completion of this project. Should you have any questions regarding this report, please do not hesitate to contact us.

Sincerely,

MACTEC Engineering and Consulting of Georgia, Inc. F/k/a LAW Engineering and Environmental Services, Inc.

Carmen Y. Yung Senior Environmental Professional

Attachment:

Table 1 Table 2 Attachment A - Laboratory Data Sheets

an M. Dersine / eryn

Principal

McDonald's Corporation, Oak Brook, Illinois LAW Project 52000-2-2681-09

February 10, 2003 Report of Soil Sampling of the Village of of Oak Brook's Soil Pile

TABLES

Table 1: Summary of Detected Volatile Oragnic Compounds in Soil Samples

Sample Identification	Soil Pile 1	Soil Pile 2	Soil Pile 3	Soil Pile 4	Tier 1 Soil Remediation
Sample Date	11/26/02	01/09/03	01/09/03	01/09/03	Objective ¹
Sample Depth (feet)	(4-5)	(4-5)	(4-5)	(4-5)	1
Parameter (mg/kg)					
1,2,3-Trichloropropane	ND	ND	0.0234	ND	NE
Toluene	ND	ND	0.00625	ND	12
Methylene Chloride	ND	ND	ND	0.0083	0.02

Notes:

1

The most conservative Tier 1 soil remediation objective for residential properties as presented in the Tiered Approach to Cleanup Objectives (TACO) in 35 Illinois Administrative Code (IAC) 35 Part 742, Appendix B, Table A

mg/kg: ND: NE: Milligrams per kilogram (ppm) Not Detected Above Method Detection Limit No soil remediation objective established

> Prepared By: Checked By:

~3 ~3

Sample Identification	Soil Pile 1	Soil Pile 2	Soil Pile 3	Soil Pile 4	Background	Ingestion/
Sample Date	11/26/02	01/09/03	01/09/03	01/09/03	Concentrations ²	Inhalation ¹
Sample Depth (feet)	(4-5)	(4-5)	(4-5)	(4-5)		
Parameter (mg/kg)						
Antimony	ND	NA	NA	NA	4.0	31
Arsenic	9.26	13.7	10.9	10.9	13	0.4
Barium	NA	41.7	40.9	55.6	110	5,500
Beryllium	ND	NA	NA	NA	0.59	0
Cadmium	ND	ND	ND	ND	0.6	78
Chromium (total)	7.33	14.5	8.09	9.64	16.2	390
Copper	17.5	NA	NA	NA	19.6	2900
Lead	18.4	24	20.2	23.3	36	400
Mercury	ND	ND	ND	ND	0.06	10
Nickel	20.9	NA	NA	NA	NE	1,600
Selenium	ND	ND	ND	ND	NE	390
Silver	ND	ND	ND	ND	NE	390
Thallium	ND	NA	NA	NA	NE	6.3
Zinc	44.4	NA	NA	NA	NE	23,000

Table 2: Summary of Detected Metal Constituents in Soil Samples

Notes:

1

2

The most conservative cleanup objective for the Ingestion and Inhalation expsoure route as presented in the Tiered Approach to Cleanup Objectives (TACO) in 35 Illinois Administrative Code (IAC) 35 Part 742, Appendix B Table A.

Concentrations of Inorganic Chemicals in Background Soils - Counties Within Metropolitan Statistical Areas, TACO, 35 IAC Part 742, Appendix A, Table G.

mg/kg:	Milligrams per kilogram (ppm)
NA:	Not Analyzed
ND:	Not Detected Above Method Detection Limit
	Indicates concentration above remediation objective but below the background concentration
	Indiantan any second and the second structure to the second structure to a second structure and any second structure to a s

13.7 Indicates concentration above both the remediation objective and the background concentration

Prepared By: <u>CYY12-5-2003</u> Checked By: <u>BMD 12-7-2003</u>

ATTACHMENT A - LABORATORY DATA SHEETS

December 16, 2002 -

1265 Capital Airport Drive Springfield, IL 62707-8490

Systems, INCORPORATED

Phone: 217-753-1148 FAX: 217-753-1152

Ms. Carmen Yung Law Environmental & Engineering Services 5440 N. Cumberland Ave Chicago, IL 60656

RE: McDonald's 52000-2-2681

PAS Of der No.: 02 1123

Dear Ms. Carmen Yung:

Prairie Analytical Systems, Inc. received 1 sample on 11/27/2002 or the analyses presented in the following report.

All applicable quality control procedures met method specific acceptance criteria.

This report shall not be reproduced, except in full, without the prior written consent of Prairie Analytical Systems, Inc.

If you have any questions, please feel free to call me at (217) 753-1148.

Sincerely, PR

J-P Rouanet / Laboratory Director . :

1265 Capital Airport Drive - Springfield, IL 62707-8490 - Phone (217) 753-1148 - Facsimile (217) 753-1152 - E-mail IL100323@aoi.com

.....

• •••••

۰¹...

Client	LAWE	MGINE	GRING		· ·	Client Pro	MCDONA	10'5 52000	-2-2681
Address	54.40		VMBEN	RLAND	AVF.	Project Loc			DAK BROOK, II
City, State Zip Code	CHICA			656		Sampler(s) / P	hone No. CARME		30-328-0420
Phone / Facsimile No.	630-37	28-042	0 1630	1-420-	0913	Tumaround	Time Standard []		DEC4, 2002
Contact Person	CAR		YUNG		_	P.O. # or Inv	OICE TO CARME	N VING	
Sample Description	Sam	pling	Cont	ainer	³ M/ ⁴ P	at	Analysis and / or Method I	Requested	PAS Sample Number
(10 Characters Only)	Date :	Time	Size 🔄	Type/No.	1 Code		If there are any questions,	please call.)	Accepted / Rejected
JOIL DILG	11-26	11:00A		14	SOUL	Total	priority boll	utants .	ALIR
1.			Terra	13	Soll	VOC	\$ SVOLS P	CBS.	AHR
		7		1	1	pestic	ides theopic	ides.	A[]R
- · · · · · · · · · · · · · · · · · · ·		• • •		1	1	R R	CRA metals	(total)	ALIR
				1	· / ·				ATIRI
				· 1	1		<u> </u>		AijRi
		· · ·	ļ	• 1.	l. <u>I</u>				ADR
· · · · · · · · · · · · · · · · · · ·			· · · ·	1	-1	· · · · ·	<u>/1/21</u>	·	AL IRI
· · · · · · · · · · · · · · · · · · ·			·	<i>.</i> .	1	<u> </u>			ALR
	ļ	<u> </u>	ļ	1	1 .	·	······································	· · · · · · · · · · · · · · · · · · ·	AfiR
·	· · ·	: 	<u>. </u>	1	· /	<u> </u>	الأحماد	· · · · · · · · · · · · · · · · · · ·	AUR
					/	<u> </u>			A[]R
¹ Size of Conatiner	4	0 mL ·	12	5 mL	25	i0 mL	500 mL	1000 mL	O - Other (Specify)
² Type of Container	G - Gia	iss (Clear)		iss (Åmber)	·	HDPE	VC - Volatile Core	SC - Soll Core	O - Other (Specify)
³ M = Matrix Code		Aqueous		nking Water		iqueous Liquid	SE - Saline Water	S - Solids	O - Other (Specify)
⁴ P = Preservative Code		- None		HNO ₃	<u> </u>	H ₂ SO ₄	D,-NaOH	E - HCI	O - Other (Specify)
	uished By	<u></u>	1	Time		Receiv	BY //	Date 2	
TARMEN	YUN	6	11-21	4200	┦>	Lyk L	1/11	11-27-02 2:30	FedEX
	1				- <u> </u> 6-				
	<u></u>			<u> </u>	<u> </u>				1
Special Instructions:			· · · · · ·					· · · · · · · · · · · · · · · · · · ·	PAS Project Code
PAS-COC 186.185 (b)					Page	of	Cop	es: White - Client Yellow	- PAS, Inc. Pink - Sample

11

....

Date: 16-Dec-02

	onmental & Engineering s 52000-2-2681	Services		Lab Ord	ler: 0211123
Lab ID: 0211123	B-001		Collection I	Date: 11/26	5/2002
Client Sample ID: Soil Pile	1		Ma	trix: SOLI	D
Analyses	Result	Limit Qu	al Units	DF	Date Analyzed
PRIORITY POLLUTANT MET	ALS ANALYSIS	E200.8	(SW3)	0508)	Analyst: MCI
Antimony	U	2.70	mg/Kg-dry	10	12/3/2002 11:51:00 PM
Arsenic	9,26	2.70	mg/Kg-dry	10	12/3/2002 11:51:00 PN
Beryllium	U	2.70	mg/Kg-dry	10	12/3/2002 11:51:00 PM
Cadmium	Ŭ	2.70	mg/Kg-dry	10	12/3/2002 11:51:00 PM
Chromium	7.33	2.70	mg/Kg-dry	10	12/3/2002 11:51:00 PM
Соррег	17,5	5.40	mg/Kg-dry	10	12/3/2002 11:51:00 PM
Lead	18.4	2.70	mg/Kg-dry	10	12/4/2002 3:30:00 PM
Mercury	U	0.540	mg/Kg-dry	10	12/3/2002-11:51:00 PM
Nicket	20.9	2.70	mg/Kg-dry	10	12/3/2002 11:51:00 PM
Selenium	 U	2.70	mg/Kg-dry	10	12/3/2002 11:51:00 PM
Silver	U	2.70	mg/Kg-dry	10	12/3/2002 11:51:00 PM
Thallium	U U	2.70	mg/Kg-dry	10	12/4/2002 3:30:00 PM
Zinc	44.4	5.40	mg/Kg-dry	10	12/3/2002 11:51:00 PM
EMIVOLATILES ANALYSIS		SW82700	; (SW35	50B)	Analyst: JA
1,2,4-Trichlorobenzene	່ ບ	389	µg/Kg-dry	1 ·	12/4/2002 1:17:00 PM
1,2-Dichlorobenzene	U	389	µg/Kg-dry	1	12/4/2002 1:17:00 PM
1,3-Dichlorobenzene	U	389	µg/Kg-dry	1	12/4/2002 1:17:00 PM
1,4-Dichlorobenzene	U	389	µg/Kg-dry	1	12/4/2002 1:17:00 PM
2,4,5-Trichlorophenol	U	389	µg/Kg-dry	1	12/4/2002 1:17:00 PM
2,4,6-Trichlorophenol	U	389	µg/Kg-dry	1	12/4/2002 1:17:00 PM
2,4-Dichlorophenol	. U	389	µg/Kg-dry	1	12/4/2002 1:17:00 PM
2,4-Dimethylphenol	U	389	µg/Kg-dry	1 .	12/4/2002 1:17:00 PM
2,4-Dinitrophenol	U	1940	µg/Kg-dry	1	12/4/2002 1:17:00 PM
4-Dinitrotoluene	U	777	µg/Kg-dry	1	12/4/2002 1:17:00 PM
.,6-Dinitrotoluene	U	389	µg/Kg-dry	1	12/4/2002 1:17:00 PM
-Chloronaphthalene	U	389	µg/Kg-dry	1	12/4/2002 1:17:00 PM
-Chlorophenol	U	389	µg/Kg-dry	1	12/4/2002 1:17:00 PM
-Methylnaphthalene	U	389	µg/Kg-dry	1	12/4/2002 1:17:00 PM
-Methylphenol	U	389	µg/Kg-dry	1	12/4/2002 1:17:00 PM
Nitroaniline	U	1940	µg/Kg-dry	1	12/4/2002-1:17:00 PM
-Nitrophenol	Ŭ	389	µg/Kg-dry	1	12/4/2002 1:17:00 PM
& 4-Methylphenol	Ū	777	µg/Kg-dry	1	12/4/2002 1:17:00 PM
3'-Dichlorobenzidine	Ū	777	µg/Kg-dry	1	12/4/2002 1:17:00 PM
Nitroaniline	Ŭ	1940	µg/Kg-dry	1	12/4/2002 1:17:00 PM
6-Dinitro-2-methylphenol	Ū ¹	1940	µg/Kg-dry	1	12/4/2002 1:17:00 PM
Bromophenyl phenyl ether	U	389	µg/Kg-dry	1	12/4/2002 1:17:00 PM
Chioro-3-methylphenol	Ű	777	µg/Kg-dry	1	12/4/2002 1:17:00 PM
Chloroaniline	U	777	µg/Kg-dry	1	12/4/2002 1:17:00 PM
U NUTURI MILLE	0	111	µy/ny-uly		1417164V6 1. (1.VV FIX)

Page 6 of 11

Date: 16-Dec-02

-

-

CLIENT: Project:	Law Environmental McDonald's 52000-		Services		Lab Or	der: 0211123
SEMIVOLATILE	S ANALYSIS		SW8270C		550B)	Analyst: JA
4-Nitroaniline		U	777	µg/Kg-dry	1	12/4/2002 1:17:00 PM
4-Nitrophenol		U	1940	µg/Kg-dry	1	12/4/2002 1:17:00 PM
Acenaphthene		U	389	µg/Kg-dry	1	12/4/2002 1:17:00 PN
Acenaphthylene		. U	389	µg/Kg-dry	1	12/4/2002 1:17:00 PN
Anthracene		U	389	µg/Kg-dry	1	12/4/2002 1:17:00 PM
Benzo(a)anthrac	ene	U	389	µg/Kg-dry	1	12/4/2002 1:17:00 PM
Benzo(a)pyrene		U	389	µg/Kg-dry	1	12/4/2002 1:17:00 PN
Benzo(b)fluorant	hene	U	389	µg/Kg-dry	1	12/4/2002 1:17:00 PN
Benzo(g,h,i)pery	lene	ប	389	µg/Kg-dry	1	12/4/2002 1:17:00 PN
Benzo(k)fluorant	hепе	U	389	µg/Kg-dry	1	12/4/2002 1:17:00 PM
Benzoic acid		ប	1940	µg/Kg-dry	1	12/4/2002 1:17:00 PM
Benzyl alcohol		U	777	µg/Kg-dry	1	12/4/2002 1:17:00 PM
Bis(2-chloroetho:	(y)methane	U	389	µg/Kg-dry	1	12/4/2002 1:17:00 PM
Bis(2-chloroethyl)ether	U	389	µg/Kg-dry	1	12/4/2002 1:17:00 PM
Bis(2-chloroisopr	opyi)ether	U	389	µg/Kg-dry	1	12/4/2002 1:17:00 PM
Bis(2-ethylhexyl)	ohthalate	U	389	µg/Kg-dry	1	12/4/2002 1:17:00 PM
Butyl benzyl phth	alate	U	389	µg/Kg-dry	1	12/4/2002 1:17:00 PM
Carbazole		U	389	µg/Kg-dry	1	12/4/2002 1:17:00 PM
Chrysene		U	389	µg/Kg-dry	1	12/4/2002 1:17:00 PM
Di-n-butyl phthala	te	Ū	389	µg/Kg-dry	1	12/4/2002 1:17:00 PM
Di-n-octyl phthala	te	U	389	µg/Kg-dry	1	12/4/2002 1:17:00 PM
Dibenz(a,h)anthra	Icene	U .	389	µg/Kg-dry	1	12/4/2002 1:17:00 PM
Dibenzofuran		U	1940	µg/Kg-dry	1	12/4/2002 1:17:00 PM
Diethyl phthalate		U	389	µg/Kg-dry	1	12/4/2002 1:17:00 PM
Dimethyl phthalat	B	U	389	µg/Kg-dry	1	12/4/2002 1:17:00 PM
luoranthene		ប	38 9	µg/Kg-dry	1	12/4/2002.1:17:00 PM
luorene		U	389	µg/Kg-dry	1	12/4/2002 1:17:00 PM
lexachlorobenze	ne	U	389	µg/Kg-dry	1	12/4/2002 1:17:00 PM
lexachlorobutadio	ene	U	38 9	µg/Kg-dry	1	12/4/2002 1:17:00 PM
lexachiorocyclop	entadiene	U	777	µg/Kg-dry	1	12/4/2002 1:17:00 PM
lexachloroethane		U	389	µg/Kg-dry	1	12/4/2002 1:17:00 PM
ndeno(1,2,3-cd)p	rene	ບ	389	µg/Kg-dry	1	12/4/2002 1:17:00 PM
sophorone		U	389	µg/Kg-dry	1	12/4/2002 1:17:00 PM
l-Nitrosodi-n-prop	ylamine	U	389	µg/Kg-dry	1	12/4/2002 1:17:00 PM
l-Nitrosodiphenyla	amine	U	389	µg/Kg-dry	1	12/4/2002 1:17:00 PM
iaphthalene		υ	389	µg/Kg-dry	1	12/4/2002 1:17:00 PM
litrobenzene		U	389	µg/Kg-dry	1	12/4/2002 1:17:00 PM
entachloropheno		U	1940	µg/Kg-dry	1	12/4/2002 1:17:00 PM
henanthrene		U	389	µg/Kg-dry	1	12/4/2002 1:17:00 PM
henol		U	389	µg/Kg-dry	1	12/4/2002 1:17:00 PM
yrene		U	389	µg/Kg-dry	1	12/4/2002 1:17:00 PM
LATILES ANAI	LYSIS		SW8260B			Analyst: BP
1,1,2-Tetrachloro		U	5.83	µg/Kg-dry	1	12/3/2002 1:15:00 PM
1,1-Trichloroetha		Ū	5.83	µg/Kg-dry	1	12/3/2002 1:15:00 PM

Page 7 of 11

```
Date: 16-Dec-02
```

, 1

CLIENT:	Law Environment		Services		Lab Order	r: 0211123
Project:	McDonald's 52000	-2-2681				
OLATILES A			SW826	10B		Analyst: BP
1,1,2,2-Tetrac	hloroethane	U	5.83	µg/Kg-dry	1	12/3/2002 1:15:00 PM
1,1,2-Trichloro	ethane	U	5.83	µg/Kg-dry	1	12/3/2002 1:15:00 PM
1,1-Dichloroet	hane	U	5.83	µg/Kg-dry	1	12/3/2002 1:15:00 PM
1,1-Dichloroeth	ene	U.	5.83	µg/Kg-dry	1	12/3/2002 1:15:00 PM
1,1-Dichloropro	pene	U	5.83	µg/Kg-dry	1	12/3/2002 1:15:00 PM
1,2,3-Trichloro	benzene	U	5.83	µg/Kg-dry	1	12/3/2002 1:15:00 PM
1,2,3-Trichloro	propane	U	5.83	µg/Kg-dry	1	12/3/2002 1:15:00 PM
1,2,4-Trichloro	benzene	U	5.83	µg/Kg-dry	1	12/3/2002 1:15:00 PM
1,2,4-Trimethyl	benzene	U	5.83	µg/Kg-dry	1	12/3/2002 1:15:00 PM
1,2-Dibromo-3-	chloropropane	U	11.7	µg/Kg-dry	1	12/3/2002 1:15:00 PM
1,2-Dibromoeth	апе	U	11.7	µg/Kg-dry	1	12/3/2002 1:15:00 PM
1,2-Dichlorober	zene	U	5.83	µg/Kg-dry	1	12/3/2002 1:15:00 PM
1,2-Dichloroeth	ane	U	5.83	µg/Kg-dry	1	12/3/2002 1:15:00 PM
,2-Dichloropro	pane	U	5.83	µg/Kg-dry	1	12/3/2002 1:15:00 PM
1,3,5-Trimethyl	benzene	U	5.83	µg/Kg-dry	1	12/3/2002 1:15:00 PM
,3-Dichiorober	zene	U	5,83	µg/Kg-dry	1	12/3/2002 1:15:00 PM
,3-Dichloropro	pane	U	5.83	µg/Kg-dry	1	12/3/2002 1:15:00 PM
,4-Dichloroben	zene	U	5.83	µg/Kg-dry	1	12/3/2002 1:15:00 PM
,2-Dichloropro	pane	U	5.83	µg/Kg-dry	1	12/3/2002 1:15:00 PM
-Butanone		U.	11.7	µg/Kg-dry	· · 1	12/3/2002 1:15:00 PM
-Chloroethyl vi	nyl ether	U	5.83	µg/Kg-dry	1	12/3/2002 1:15:00 PM
-Chlorotoluene	1	U	5.83	µg/Kg-dry	1	12/3/2002 1:15:00 PM
-Нехапопе		U	5.83	µg/Kg-dry	1	12/3/2002 1:15:00 PM
-Chlorotoluene		U	5.83	µg/Kg-dry	1	12/3/2002 1:15:00 PM
-Methyl-2-pent	аполе	U	5.83	µg/Kg-dry	× 1	12/3/2002 1:15:00 PM
cetone		U	58,3	µg/Kg-dry	1	12/3/2002 1:15:00 PM
cetonitrile		U	58.3	µg/Kg-dry	1	12/3/2002 1:15:00 PM
crolein		U	58.3	µg/Kg-dry	1	12/3/2002 1:15:00 PM
cryionitrile		U	58.3	µg/Kg-dry	1	12/3/2002 1:15:00 PM
enzene		U	5.83	µg/Kg-dry	1	12/3/2002 1:15:00 PM
romobenzene		U	5,83	µg/Kg-dry	1	12/3/2002 1:15:00 PM
romochloromet	hane	U	5.83	µg/Kg-dry	1	12/3/2002 1:15:00 PM
omodichiorom	ethane	U	5.83	µg/Kg-dry	1	12/3/2002 1:15:00 PM
romoform		U	5.83	µg/Kg-dry	1	12/3/2002 1:15:00 PM
omomethane		U	11.7	µg/Kg-dry	1	12/3/2002 1:15:00 PM
ıtylbenzene		U	5.83	µg/Kg-dry		12/3/2002 1:15:00 PM
rbon disulfide		U	11.7	µg/Kg-dry	1	12/3/2002 1:15:00 PM
rbon tetrachio	ride	U	5.83	µg/Kg-dry	1	12/3/2002 1:15:00 PM
lorobenzene		U	5.83	µg/Kg-dry	1	12/3/2002.1:15:00 PM
loroethane		U	11.7	µg/Kg-dry	1	12/3/2002 1:15:00 PM
loroform		U	5.83	µg/Kg-dry	1	12/3/2002 1:15:00 PM
loromethane		U	11.7	µg/Kg-dry	· 1	12/3/2002 1:15:00 PM
-1,2-Dichloroe	thene	U	5.83	µg/Kg-dry	1	12/3/2002 1:15:00 PM
-1,3-Dichlorop		Ū	5.83	µg/Kg-dry		12/3/2002 1:15:00 PM
bromochlorome	-	Ŭ	5.83	µg/Kg-dry	-	12/3/2002 1:15:00 PM

Page 8 of 11

Date: 16-Dec-02

-

CLIENT: Project:	Law Environmental & McDonald's 52000-2-		; Services		Lab Orde	er: 0211123
		-2001				<u> </u>
VOLATILES A	NALYSIS		SW826	50B		Analyst: BP
Dibromometha		U	5.83	µg/Kg-dry	- 1	12/3/2002 1:15:00 PN
Dichlorodifluoro	methane	U	11.7	µg/Kg-dry	1	12/3/2002 1:15:00 PM
Ethylbenzene		U	5.83	µg/Kg-dry	1	12/3/2002 1:15:00 PM
Hexachlorobuta	diene	U	11.7	µg/Kg-dry	1	12/3/2002 1:15:00 PM
Isopropylbenze	ne	U	5.83	µg/Kg-dry	1	12/3/2002 1:15:00 PM
Methyl tert-buty	lether	υ	5.83	µg/Kg-dry	1	12/3/2002 1:15:00 PM
Methylene chlor	ide	U	5.83	µg/Kg-dry	1	12/3/2002 1:15:00 PM
Naphthalene		U	14.0	µg/Kg-dry	1	12/3/2002 1:15:00 PM
p-isopropyitolue	ne	U	5.83	µg/Kg-dry	1	12/3/2002 1:15:00 PM
Propylbenzene		U	5.83	µg/Kg-dry	1	12/3/2002 1:15:00 PM
sec-Butylbenzei	ne	U	5.83	µg/Kg-dry	1	12/3/2002 1:15:00 PM
Styrene		U	5.83	µg/Kg-dry	1	12/3/2002 1:15:00 PM
tert-Butylbenzer	e	U	5.83	µg/Kg-dry	1	12/3/2002 1:15:00 PM
Tetrachloroether	ne	U	5.83	µg/Kg-dry	1	12/3/2002 1:15:00 PM
Toluene		U	5.83	µg/Kg-dry	1	12/3/2002 1:15:00 PM
trans-1,2-Dichlor	roethene	U	5.83	µg/Kg-dry	1	12/3/2002 1:15:00 PM
trans-1,3-Dichlor	ropropene	U	5.83	µg/Kg-dry	1	12/3/2002 1:15:00 PM
Trichloroethene		U	5.83	µg/Kg-dry	1	12/3/2002 1:15:00 PM
Trichlorofluorom	ethane	U	11.7	µg/Kg-dry	1	12/3/2002 1:15:00 PM
Vinyl acetate		·U	11.7	µg/Kg-dry	. 1	12/3/2002 1:15:00 PM
Vinyl chloride	•	U	11.7	µg/Kg-dry	1	12/3/2002 1:15:00 PM
Xylenes, Total		ບ	17.5	µg/Kg-dry	1	12/3/2002 1:15:00 PM
	RINE PESTICIDES ANAL		SW8081			Analyst: SUB
4,4 <i>°-</i> DDD		U	0.003	µg/Kg-dry	1	12/5/2002
4,4'-DDE		U	0.003	µg/Kg-dry	1	12/5/2002
4,4"-DDT		U	0.006	µg/Kg-dry	1	12/5/2002
Aldrin		U	0.003	µg/Kg-dry	1	12/5/2002
alpha-BHC		U	0.002	µg/Kg-dry	1	12/5/2002
peta-BHC		υ	0.003	µg/Kg-dry	1	12/5/2002
Chlordane		U .	0.009	µg/Kg-dry	1	12/5/2002
ieita-BHC		U	0.003	µg/Kg-dry	1	12/5/2002
Dieldrin		U	0.003	µg/Kg-dry	1	12/5/2002
Endosulfarı I		U	0.003	µg/Kg-dry	1	12/5/2002
Endosulfan II		U	0.011	µg/Kg-dry	1	12/5/2002
Endosulfan sulfat	9	U	0.005	µg/Kg-dry	1	12/5/2002
Endrin		U	0.004	µg/Kg-dry	1	12/5/2002
Endrin aldehyde		ប	0.004	µg/Kg-dry	1	12/5/2002
amma-BHC		U	0.004	µg/Kg-dry	1	12/5/2002
leptachlor		U	0.003	µg/Kg-dry	1	12/5/2002
leptachlor epoxid	e	U	0.003	µg/Kg-dry	1	12/5/2002
fethoxychior		U	0.007	µg/Kg-dry	1	12/5/2002
oxaphene		U	0.076	µg/Kg-dry	1	12/5/2002
	TED BIPHENYLS ANAL	YSIS	SW8082			Analyst: SUB
roclor 1016		U	0.688	µg/Kg-dry	1	12/5/2002

....

Page 9 of 11

Date: 16-Dec-02

CLIENT: Project:	Law Environmental & Engineering Services McDonald's 52000-2-2681					der: 0211123
POLYCHLORINA	TED BIPHENYLS ANA	ALYSIS	SW808	12		Analyst: SUB
Aroclor 1221		¹ U	0.688	µg/Kg-dry	1	12/5/2002
Aroclor 1232		U	0.688	µg/Kg-dry	1	12/5/2002
Arocior 1242		ប	0.688	µg/Kg-dry	1	12/5/2002
Arocior 1248		U	0.688	µg/Kg-dry	1	12/5/2002
Arocior 1254		U	0.688	µg/Kg-dry	1	12/5/2002
Araclor 1260		U	0.688	µg/Kg-dry	1	12/5/2002
IERBICIDES AN	ALYSIS		SW8151	A		Analyst: SUB
2,4,5-T		Ŭ	23.2	µg/Kg-dry	1	12/5/2002
2,4,5-TP (Silvex)		Ū	23.2	µg/Kg-dry	1	12/5/2002
2,4-D		ប	232	µg/Kg-dry	1	12/5/2002
2,4-DB		U	232	µg/Kg-dry	1	12/5/2002
Dalapon		U	462	µg/Kg-dry	1	12/5/2002
Dicamba		U	23.2	µg/Kg-dry	· 1	12/5/2002
Dichlorprop		U	232	µg/Kg-dry	1	12/5/2002
Dinoseb		U	116	µg/Kg-dry	1	12/5/2002
MCPA ·		U	4620	µg/Kg-dry	1	12/5/2002
MCPP		U	4620	µg/Kg-dry	1	12/5/2002
Pentachiorophenoi		U	23.2	µg/Kg-dry	1	12/5/2002
ERCENT MOIST	URE ANALYSIS		D2216			Analyst: RN
Percent Moisture		14.3	0.01	wt%	1	12/3/2002

Page 10 of 11
Qualifiers:

B - Analyte detected in the associated method blank.

E - Value above quantitation range.

H - Analysis performed past holding time.

HT - Sample received past holding time.

J - Analyte detected between RL and MDL.

R - RPD outside acceptance limits.

S - Spike recovery outside acceptance limits.

U - Analyte not detected (i.e. less than RL or MDL).

Page 11 of 11

Testing Laboratory

IUUE

livtic

Systems, INCORPORATED

1265 Capital Airport Drive Springfield, IL 62707-8490

Phone: 217-753-1148

FAX: 217-753-1152

PAS O der No.: 0301041

January 29, 2003

Ms.Carmen Yung Law Environmental & Engineering Services 5440 N. Cumberland Ave Chicago, IL 60656

RE: McDonalds 52000-2-2681-10

Dear Ms.Carmen Yung:

Prairie Analytical Systems, Inc. received 3 samples on 1/10/2003 for the analyses presented in the following report.

All applicable quality control procedures met method specific acceptance criteria.

This report shall not be reproduced, except in full, without the prior written consent of Prairie Analytical Systems, Inc.

If you have any questions, please feel free to call me at (217) 753-1148.

Sincerely,

Michael D. Broi

Project Manager

1265 Capital Airport Drive - Springfield, IL 62707-8490 - Phone (217) 753-1148 - Facsimile (217) 753-1152 - E-mail IL100323@aoi.com

			•			· .					Oyatoma, inconvenite
Client	IAW	GNGIN	5ERING	,		Client Pr	oject	MEDON	VALD'S &	52000-	2-2681-10
Address	544	ON.	LUMBE	RLAND	AVE	Project Lo	cation	1120 W. DZB & STREE			
City, State Zip Code	CHIC	AGO.	IL 6	0656		Sampler(s) / F	Phone No.	MAT			630-328-040
Phone / Facsimile No.	630-3	28-042	1630	-420-	-0913	Turnaroun	d Time	Standard []	Rush Dat		1-17-2002
Contact Person	CARW	1EN YU	NG			P.O. # or In	voice To	CARK	YEN YU	ING	
Sample Description	San	npling	Cont	ainer	³ M/ ⁴ P	Analysis and / or Method Requested		Requested /		PAS Sample Number	
(10 Characters Only)	Date	Time	¹ Size	² Type / No.	Code		(If there are	any questions	, please call.)	·	Accepted / Rejected
SOIL DILEQ	1-9	9-:00 A	40Z	14	SoliL	VOCS.	SVOC	PCBS	herbicia	des,	A[]R[]
1)		Vials	13	4	Pestic	ides.	8 R	CRA M	etals	A[]R[
SOIL PILE 3		9=30 A		1	·/		,	4.2			A[]R[
Ê.	i			1				11			A[]R[
SOIL PILE 4	V	10=10A	V	1	V	•					A[]R[
				7	1		•				A[]R[
				1	1			- * :			A[]R[
				1	1	·			1		A[]R[
				1	· 1				•		A[]R[
				1				2.1			A[]R[
				· 1	1	·					A[]R[
				1	1						A[]R[
¹ Size of Conatiner	4	0 mL	12	5 mL	25	0 mL	5(00 mL	1000	mL	O - Other (Specify)
² Type of Container	G - Gl	ass (Clear)	AG - Gia	ss (Amber)	P-	HDPE	VC-V	olatile Core	SC - So	il Core	O - Other (Specify)
³ M = Matrix Code	A-/	Aqueous	DW - Drii	nking Water	NA - Non-a	queous Liquid	SE - S	aline Water	S-S	olids	O - Other (Specify)
⁴ P = Preservative Code	A	- None	В-	HNO ₃	C-	H2SO4	D-	NaOH	E-1	HCI	O - Other (Specify)
Relinq	uished By		Date	Time		/ Receiv	ed By	4	Date	Time	Method of Shipment
Carmen Vi	inf		1-9	5:00+	1 27	Xth-1	PL	hl	01410-03	10:15	HEDEX
	8		1				70				/ /
			<u> </u>								
Special Instructions:	•										PAS Project Code

PAS-COC 186.185 (b)

Page of

Copies: White - Client Yellow - PAS, Inc. Pink - Sampler

Date: 29-Jan-03

CLIENT: Law Environmental Project: McDonalds 52000-2		Service		Lab Ord	er: 0301041
Lab ID: 0301041-001 Client Sample ID: soil pile 2			Collection Da Mate	nte: 1/9/20	
Analyses	Result	Limit	Qual Units	DF	Date Analyzed
METALS ANALYSIS		E20	0.8 (SW30	50B)	Analyst: MCL
Arsenic	13.7	2.05	mg/Kg-dry	10	1/14/2003 6:51:00 PM
Barium	41.7	2.05	mg/Kg-dry	10	1/14/2003 6:51:00 PM
Cadmium	U	2.05	mg/Kg-dry	10	1/14/2003 6:51:00 PM
Chromium	14.5	10.2	mg/Kg-dry	50	1/14/2003 8:19:00 PM
Lead	24.0	2.05	mg/Kg-dry	10	1/14/2003 6:51:00 PM
Mercury	U	0.410	mg/Kg-dry	10	1/14/2003 6:51:00 PM
Selenium	U	2.05	mg/Kg-dry	10	1/14/2003 6:51:00 PM
Silver	U	2.05	mg/Kg-dry	10	1/14/2003 6:51:00 PM
EMIVOLATILES ANALYSIS		SW82	70C (SW355	50B)	Analyst: JA
1,2,4-Trichlorobenzene	U	392	µg/Kg-dry	1	1/14/2003 4:59:00 AM
1,2-Dichlorobenzene	U	392	µg/Kg-dry	1	1/14/2003 4:59:00 AM
1,3-Dichlorobenzene	U	392	µg/Kg-dry	1	1/14/2003 4:59:00 AM
1,4-Dichlorobenzene	U	392	µg/Kg-dry	1	1/14/2003 4:59:00 AM
2,4,5-Trichlorophenol	U	392	µg/Kg-dry	1	1/14/2003 4:59:00 AM
2,4,6-Trichlorophenol	U	392	µg/Kg-dry	1	1/14/2003 4:59:00 AM
2,4-Dichlorophenol	U	392	µg/Kg-dry	1	1/14/2003 4:59:00 AM
2,4-Dimethylphenol	U	392	µg/Kg-dry	1	1/14/2003 4:59:00 AM
2,4-Dinitrophenol	U	1960	µg/Kg-dry	1	1/14/2003 4:59:00 AM
2,4-Dinitrotoluene	U	785	µg/Kg-dry	1	1/14/2003 4:59:00 AM
2,6-Dinitrotoluene	U	392	µg/Kg-dry	1	1/14/2003 4:59:00 AM
-Chloronaphthalene	U	392	µg/Kg-dry	1	1/14/2003 4:59:00 AM
-Chlorophenol	U	392	µg/Kg-dry	1	1/14/2003 4:59:00 AM
-Methylnaphthalene	U	392	µg/Kg-dry	1	1/14/2003 4:59:00 AM
-Methylphenol	U	392	µg/Kg-dry	1	1/14/2003 4:59:00 AM
-Nitroaniline	U	1960	µg/Kg-dry	1	1/14/2003 4:59:00 AM
-Nitrophenol	U	392	µg/Kg-dry	1	1/14/2003 4:59:00 AM
& 4-Methylphenol	U	785	µg/Kg-dry	1	1/14/2003 4:59:00 AM
,3'-Dichlorobenzidine	U	785	µg/Kg-dry	1	1/14/2003 4:59:00 AM
-Nitroaniline	U	1960	µg/Kg-dry	1	1/14/2003 4:59:00 AM
6-Dinitro-2-methylphenol	U	1960	µg/Kg-dry	1	1/14/2003 4:59:00 AM
Bromophenyl phenyl ether	U	392	µg/Kg-dry	1	1/14/2003 4:59:00 AM
Chloro-3-methylphenol	U	785	µg/Kg-dry	1	1/14/2003 4:59:00 AM
Chloroaniline	U	785	µg/Kg-dry	1	1/14/2003 4:59:00 AM
Chlorophenyl phenyl ether	U	392	µg/Kg-dry	1	1/14/2003 4:59:00 AM
Nitroaniline	U	785	µg/Kg-dry	1	1/14/2003 4:59:00 AM
Nitrophenol	U	1960	μg/Kg-dry	1	1/14/2003 4:59:00 AM
cenaphthene	U	392	µg/Kg-dry	1	1/14/2003 4:59:00 AM
cenaphthylene	Ū	392	µg/Kg-dry	1	1/14/2003 4:59:00 AM
niline	Ū	392	µg/Kg-dry	1	1/14/2003 4:59:00 AM

Page 1 of 16

CLIENT: Project:	Law Environmental of McDonalds 52000-2-		ervice		Lab Or	der: 0301041
SEMIVOLATILE	S ANALYSIS		SW8270C	: (SW3	550B)	Analyst: JA
Anthracene		U	392	µg/Kg-dry	1	1/14/2003 4:59:00 AM
Benzo(a)anthrace	ene	U	392	µg/Kg-dry	1	1/14/2003 4:59:00 AM
Benzo(a)pyrene		U	392	µg/Kg-dry	1	1/14/2003 4:59:00 AM
Benzo(b)fluoranti	iene	U ·	392	µg/Kg-dry	1	1/14/2003 4:59:00 AM
Benzo(g,h,i)peryl	ene	U	392	µg/Kg-dry	1	1/14/2003 4:59:00 AM
Benzo(k)fluoranth	ene	U	392	µg/Kg-dry	1	1/14/2003 4:59:00 AM
Benzoic acid		U	1960	µg/Kg-dry	1	1/14/2003 4:59:00 AM
Benzyl alcohol		U	785	µg/Kg-dry	1	1/14/2003 4:59:00 AM
Bis(2-chloroethox	y)methane	U	392	µg/Kg-dry	1	1/14/2003 4:59:00 AM
Bis(2-chloroethyl)	ether	U	392	µg/Kg-dry	1	1/14/2003 4:59:00 AM
Bis(2-chloroisopro	pyl)ether	U	392	µg/Kg-dry	1	1/14/2003 4:59:00 AM
Bis(2-ethylhexyl)p	hthalate	U	392	µg/Kg-dry	1	1/14/2003 4:59:00 AM
Butyl benzyl phtha	late	ນ	392	µg/Kg-dry	1	1/14/2003 4:59:00 AM
Carbazole		U	392	µg/Kg-dry	1	1/14/2003 4:59:00 AM
Chrysene		U	392	µg/Kg-dry	1	1/14/2003 4:59:00 AM
Di-n-butyl phthalal	e	u	392	µg/Kg-dry	1	1/14/2003 4:59:00 AM
Di-n-octyl phthalat	e	U	392	µg/Kg-dry	1	1/14/2003 4:59:00 AM
Dibenz(a,h)anthra	cene	U	392	µg/Kg-dry	1	1/14/2003 4:59:00 AM
Dibenzofuran		U	1960	µg/Kg-dry	1	1/14/2003 4:59:00 AM
Diethyl phthalate		U	392	µg/Kg-dry	1	1/14/2003 4:59:00 AM
Dimethyl phthalate	1	U	392	µg/Kg-dry	1	1/14/2003 4:59:00 AM
Fluoranthene		U	392	µg/Kg-dry	1	1/14/2003 4:59:00 AM
Fluorene		U	392	µg/Kg-dry	1	1/14/2003 4:59:00 AM
Hexachiorobenzen	e	U	392	µg/Kg-dry	1	1/14/2003 4:59:00 AM
Hexachlorobutadie	ne	υ	392	µg/Kg-dry	1	1/14/2003 4:59:00 AM
Hexachiorocyclope	ntadiene	U	. 785	µg/Kg-dry	1	1/14/2003 4:59:00 AM
Hexachloroethane		U	392	µg/Kg~dry	1	1/14/2003 4:59:00 AM
ndenc(1,2,3-cd)py	rene	U	392	µg/Kg-dry	1	1/14/2003 4:59:00 AM
sophorone		บ	392	µg/Kg-dry	1	1/14/2003 4:59:00 AM
N-Nitrosodi-n-prop	/lamine	U	392	µg/Kg-dry	1	1/14/2003 4:59:00 AM
N-Nitrosodimethyla	mine	U	392	µg/Kg-dry	1	1/14/2003 4:59:00 AM
N-Nitrosodiphenyla	mine	U	392	µg/Kg-dry	1	1/14/2003 4:59:00 AM
Naphthalene		U	392	µg/Kg-dry	1	1/14/2003 4:59:00 AM
Nitrobenzene		U	392	µg/Kg-dry	1	1/14/2003 4:59:00 AM
Pentachlorophenol		U	1960	µg/Kg-dry	1	1/14/2003 4:59:00 AM
Phenanthrene		U	392	µg/Kg-dry	1	1/14/2003 4:59:00 AM
henol		U	392	µg/Kg-dry	1	1/14/2003 4:59:00 AM
yrene		U	392	µg/Kg-dry	1	1/14/2003 4:59:00 AM
yridine		U	392	µg/Kg-dry	1	1/14/2003 4:59:00 AM
RGANOCHLORI	NE PESTICIDES ANAL	YSIS	SW8270C	(SW355	i0B)	Analyst: JA
4'-000		บ	23.7	µg/Kg-dry	1	1/23/2003 2:40:00 PM
,4'-DDE		υ	41.6	µg/Kg-dry	1	1/23/2003 2:40:00 PM
4'-DDT		U	23.7	µg/Kg-dry	· 1	1/23/2003 2:40:00 PM
Vachlor		U	17.8	µg/Kg-dry	1	1/23/2003 2:40:00 PM

Page 2 of 16

- - ----

```
Date: 29-Jan-03
```

	Law Environmental & Engir McDonalds 52000-2-2681-1	-	Service		Lab Order	-: 0301041	
ORGANOCHLORINE PESTICIDES ANALYSIS		SW8270C		(SW3	550B)	Analyst: JA	
Aldrin		U	23.7	µg/Kg-dry	1	1/23/2003 2:40:00 PM	
alpha-BHC		U	17.8	µg/Kg-dry	1	1/23/2003 2:40:00 PM	
alpha-Chlordane		U	23.7	µg/Kg-dry	1	1/23/2003 2:40:00 PM	
Atrazine		U	17.B	µg/Kg-dry	1	1/23/2003 2:40:00 PM	
beta-BHC		U	17.8	µg/Kg-dry	1	1/23/2003 2:40:00 PM	
Chlorobenzilate		U	23.7	µg/Kg-dry	1	1/23/2003 2:40:00 PM	
DCPA		U	17.8	µg/Kg-dry	1	1/23/2003 2:40:00 PM	
delta-BHC		U	23.7	µg/Kg-dry	1	1/23/2003 2:40:00 PM	
Dieldrin		υ	35.6	µg/Kg-dry	1	1/23/2003 2:40:00 PM	
Endosulfan I		U	47.5	µg/Kg-dry	1	1/23/2003 2:40:00 PM	
Endosulfan II		U	29.7	µg/Kg-dry	1	1/23/2003 2:40:00 PM	
Endosulfan sulfate		U	23.7	µg/Kg-dry	1	1/23/2003 2:40:00 PM	
Endrin		U	41.6	µg/Kg-dry	1	1/23/2003 2:40:00 PM	
Endrin aldehyde		U	35,6	µg/Kg-dry	1	1/23/2003 2:40:00 PM	
Endrin ketone		U	0	µg/Kg-dry	1	1/23/2003 2:40:00 PM	
gamma-BHC		U	23.7	µg/Kg-dry	1	1/23/2003 2:40:00 PM	
gamma-Chlordane		U	23.7	µg/Kg-dry	1	1/23/2003 2:40:00 PM	
Heptachlor		U	17.8	µg/Kg-dry	1	1/23/2003 2:40:00 PM	
Heptachlor epoxide		U	23.7	µg/Kg-dry	1	1/23/2003 2:40:00 PM	
Methoxychlor		U	23.7	µg/Kg-dry	1	1/23/2003 2:40:00 PM	
Permethrin		U	23.7	µg/Kg-dry	1	1/23/2003 2:40:00 PM	
Simazine		υ	23.7	µg/Kg-dry	1	1/23/2003 2:40:00 PM	
Toxaphene		U	59.4	µg/Kg-dry	1	1/23/2003 2:40:00 PM	
trans-Nonachlor		U	23.7	µg/Kg-dry	1	1/23/2003 2:40:00 PM	
OLATILES ANALY	SIS		SW8260B			Analyst: BP	
1,1,1,2-Tetrachloroeth	ane	U	5.90	µg/Kg-dry	1	1/22/2003 1:13:00 PM	
1,1,1-Trichloroethane		U	5,90	µg/Kg-dry	1	1/22/2003 1:13:00 PM	
1,1,2,2-Tetrachloroeth	ane	U	5.90	µg/Kg-dry	1	1/22/2003 1:13:00 PM	
1,1,2-Trichloroethane		บ	5.90	µg/Kg-dry	1	1/22/2003 1:13:00 PM	
1,1-Dichloroethane		U	5.90	µg/Kg-dry	1	1/22/2003 1:13:00 PM	
1,1-Dichloroethene		U	5.90	µg/Kg-dry	1	1/22/2003 1:13:00 PM	
1,1-Dichloropropene		υ	5.90	µg/Kg-dry	1	1/22/2003 1:13:00 PM	
1,2,3-Trichlorobenzend	3	บ	5.90	µg/Kg-dry	1	1/22/2003 1:13:00 PM	
1,2,3-Trichloropropane	•	ប	5.90	µg/Kg-dry	-1	1/22/2003 1:13:00 PM	
1,2,4-Trichlorobenzene	3	U	5.90	µg/Kg-dry	1	1/22/2003 1:13:00 PM	
,2,4-Trimethylbenzen	e	υ	5.90	µg/Kg-dry	1	1/22/2003 1:13:00 PM	
,2-Dibromo-3-chlorop	ropane	บ	11.8	µg/Kg-dry	1	1/22/2003 1:13:00 PM	
,2-Dibromoethane		U	11.8	µg/Kg-dry	1	1/22/2003 1:13:00 PM	
2-Dichlorobenzene		U	5.90	µg/Kg-dry	1	1/22/2003 1:13:00 PM	
,2-Dichioroethane		U	5,90	µg/Kg-dry	1	1/22/2003 1:13:00 PM	
2-Dichloropropane		U		µg/Kg-dry		1/22/2003 1:13:00 PM	
3,5-Trimethylbenzene		Ŭ		µg/Kg-dry		1/22/2003 1:13:00 PM	
3-Dichlorobenzene		บ		µg/Kg-dry		1/22/2003 1:13:00 PM	
,3-Dichloropropane		U		µg/Kg-dry		1/22/2003 1:13:00 PM	

Page 3 of 16

Date:	29-Jan-0	13

CLIENT: Project:	Law Environmental & McDonalds 52000-2-2	0 0	Lab Order:	0301041		
VOLATILES A		υ	SW8260B	ug/Ka-dry	1	Analyst: BP 1/22/2003 1:13:00 PM

1,4-Dichlorobenzene	U	5.90	µg/Kg-dry	1	1/22/2003 1:13:00 PM
2,2-Dichloropropane	U	5.90	µg/Kg-dry	1	1/22/2003 1:13:00 PM
2-Butanone	U	11.8	µg/Kg-dry	1	1/22/2003 1:13:00 PM
2-Chloroethyl vinyl ether	U	5.90	µg/Kg-dry	1	1/22/2003 1:13:00 PM
2-Chlorotoluene	U	5.90	µg/Kg-dry	1	1/22/2003 1:13:00 PM
2-Hexanone	U U	5.90	µg/Kg-dry	1	1/22/2003 1:13:00 PM
4-Chlorotoluene	U	5.90	µg/Kg-dry	1	1/22/2003 1:13:00 PM
4-Methyl-2-pentanone	U	5.90	µg/Kg-dry	1	1/22/2003 1:13:00 PM
Acetone	U	59.0	µg/Kg-dry	1	1/22/2003 1:13:00 PM
Acetonitrile	υ	59.0	µg/Kg-dry	1	1/22/2003 1:13:00 PM
Acrolein	υ	59.0	µg/Kg-dry	1	1/22/2003 1:13:00 PM
Acrylonitrile	U	59.0	µg/Kg-dry	1	1/22/2003 1:13:00 PM
Benzene	U	5.90	µg/Kg-dry	1	1/22/2003 1:13:00 PM
Bromobenzene	U	5.90	µg/Kg-dry	1	1/22/2003 1:13:00 PM
Bromochloromethane	U	5.90	µg/Kg-dry	1	1/22/2003 1:13:00 PM
Bromodichloromethane	U	5.90	µg/Kg-dry	1	1/22/2003 1:13:00 PM
Bromoform	U	5.90	µg/Kg-dry	1	1/22/2003 1:13:00 PM
Bromomethane	U	11.8	µg/Kg-dry	1	1/22/2003 1:13:00 PM
Butylbenzene	υ	5.90	µg/Kg-dry	1	1/22/2003 1:13:00 PM
Carbon disulfide	U	11.8	µg/Kg-dry	1	1/22/2003 1:13:00 PM
Carbon tetrachloride	U	5.90	µg/Kg-dry	1	1/22/2003 1:13:00 PM
Chlorobenzene	U	5.90	µg/Kg-dry	<u></u> 1	1/22/2003 1:13:00 PM
Chloroethane	U	11.8	µg/Kg-dry	1	1/22/2003 1:13:00 PM
Chloroform	U	5.90	µg/Kg-dry	1	1/22/2003 1:13:00 PM
Chloromethane	U	11.8	µg/Kg-dry	1	1/22/2003 1:13:00 PM
cis-1,2-Dichloroethene	U	5.90	µg/Kg-dry	1	1/22/2003 1:13:00 PM
cis-1,3-Dichloropropene	U	5.90	µg/Kg-dry	1	1/22/2003 1:13:00 PM
Dibromochloromethane	U	5.90	µg/Kg-dry	1	1/22/2003 1:13:00 PM
Dibromomethane	U	5.90	µg/Kg-dry	1	1/22/2003 1:13:00 PM
Dichlorodifiuoromethane	U	11.8	µg/Kg-dry	1	1/22/2003 1:13:00 PM
Ethylbenzene	U	5.90	µg/Kg-dry	1	1/22/2003 1:13:00 PM
Hexachlorobutadiene	U	11.8	µg/Kg-dry	1	1/22/2003 1:13:00 PM
Isopropyibenzene	U	5.90	µg/Kg-dry	1	1/22/2003 1:13:00 PM
Methyl tert-butyl ether	ບ	5.90	µg/Kg-dry	1	1/22/2003 1:13:00 PM
Methylene chloride	U	5.90	µg/Kg-dry	1	1/22/2003 1:13:00 PM
Naphthalene	U	14.2	µg/Kg-dry	1	1/22/2003 1:13:00 PM
p-Isopropyltoluene	U	5.90	µg/Kg-dry	1	1/22/2003 1:13:00 PM
Propylbenzene	U	5.90	µg/Kg-dry	1	1/22/2003 1:13:00 PM
sec-Butylbenzene	U	5.90	µg/Kg-dry	1	1/22/2003 1:13:00 PM
Styrene	U	5.90	µg/Kg-dry	1	1/22/2003 1:13:00 PM
tert-Butylbenzene	U	5.90	µg/Kg-dry	1	1/22/2003 1:13:00 PM
Tetrachloroethene	U	5.90	µg/Kg-dry	1	1/22/2003 1:13:00 PM
Toluene	U	5.90	µg/Kg-dry	1	1/22/2003 1:13:00 PM
trans-1,2-Dichloroethene	U	5.90	µg/Kg-dry	1	1/22/2003 1:13:00 PM
	-	-	ru u = 2		

Page 4 of 16

Date: 29-Jan-03

 \mathbf{v}^{j}

CLIENT: Project:	Law Environment McDonalds 52000		Service		Lab Order	: 0301041
VOLATILES A	NALYSIS		SW826	0B		Analyst: BP
Trichloroethen	e	U	5.90	µg/Kg-dry	1	1/22/2003 1:13:00 PM
Trichlorofluoro	methane	U	11.8	µg/Kg-dry	1	1/22/2003 1:13:00 PM
Vinyl acetate		U	11.8	µg/Kg-dry	1	1/22/2003 1:13:00 PM
Vinyl chloride		U	11.8	µg/Kg-dry	1	1/22/2003 1:13:00 PM
Xylenes, Total		U	17.7	µg/Kg-dry	1	1/22/2003 1:13:00 PM
POLYCHLORI	NATED BIPHENYLS A	NALYSIS	SW808	32		Analyst: SUB
Arocior 1016		U	0.590	µg/Kg-dry	1	1/23/2003
Arocior 1221		ប	0.590	µg/Kg-dry	1	1/23/2003
Araclar 1232		U	0.590	µg/Kg-dry	1	1/23/2003
Aroclor 1242		U	0.590	µg/Kg-dry	1	1/23/2003
Aroclor 1248		U	0.590	µg/Kg-dry	1	1/23/2003
Araclor 1254		U	0.590	µg/Kg-dry	1	1/23/2003
Aroclor 1260		U	0.590	µg/Kg-dry	1	1/23/2003
ERBICIDES A	NALYSIS		SW8151			Analyst: SUB
2,4,5-T		U	19.7	µg/Kg-dry	1	1/23/2003
2,4,5-TP (Silver	<)	U	19.7	µg/Kg-dry	1	1/23/2003
2,4-D		U	197	µg/Kg-dry	1	1/23/2003
2,4-DB		U	197	µg/Kg-dry	1	1/23/2003
Dalapon		U	393	µg/Kg-dry	1	1/23/2003
Dicamba		U	19.7	µg/Kg-dry	1	1/23/2003
Dichlorprop		U	197	µg/Kg-dry	1	1/23/2003
Dinoseb		U	98.3	µg/Kg-dry	<u>1</u>	1/23/2003
MCPA		U	3930	µg/Kg-dry	1	1/23/2003
MCPP		U	3930	µg/Kg-dry	1	1/23/2003
Pentachlorophe	nol	U	19.7	µg/Kg-dry	1	1/23/2003

...

Page 5 of 16

Prairie Analytical Systems, Inc.				Date: 29-Jan-03			
CLIENT: Project:	Law Environmental McDonalds 52000-2		Service			Lab Order:	0301041
Lab ID:	0301041-002			(Collection D	ate: 1/9/2003	
Client Sample 1	D: soil pile 3				Mat	rix: SOLID	
Analyses		Result	Limit	Qual	Units	DF	Date Analyzed
METALS ANAL	YSIS		E2	00.8	(SW30	50B)	Analyst: MCL
Amonic		10.0	2 20		malko-dni	10	1/14/2003 6-57-00 PM

METALS ANALYSIS		E200.8	(SW30	50B)	Analyst: MCL
Arsenic	10.9	2.30	mg/Kg-dry	10	1/14/2003 6:57:00 PM
Barium	40.9	2.30	mg/Kg-dry	10	1/14/2003 6:57:00 PM
Cadmium	U	2.30	mg/Kg-dry	10	1/14/2003 6:57:00 PM
Chromium	8.09	2.30	mg/Kg-dry	10	1/14/2003 6:57:00 PM
Lead	20.2	2,30	mg/Kg-dry	10	1/14/2003 6:57:00 PM
Mercury	۰U	0.459	mg/Kg-dry	10	1/14/2003 6:57:00 PM
Selenium	U	2.30	mg/Kg-dry	10	1/14/2003 6:57:00 PM
Silver	U	2.30	mg/Kg-dry	10	1/14/2003 6:57:00 PM
SEMIVOLATILES ANALYSIS		SW8270	C (SW35	50B)	Analyst: JA
1,2,4-Trichlorobenzene	U	405	µg/Kg-dry	1	1/14/2003 5:34:00 AM
1,2-Dichlorobenzene	ប	405	µg/Kg-dry	1	1/14/2003 5:34:00 AM
1,3-Dichlorobenzene	u	405	µg/Kg-dry	1	1/14/2003 5:34:00 AM
1,4-Dichlorobenzene	U	405	µg/Kg-dry	1	1/14/2003 5:34:00 AM
2,4,5-Trichlorophenol	U	405	µg/Kg-dry	1	1/14/2003 5:34:00 AM
2,4,6-Trichlorophenol	U	405	µg/Kg-dry	1	1/14/2003 5:34:00 AM
2,4-Dichlorophenol	U	405	µg/Kg-dry	1	1/14/2003 5:34:00 AM
2,4-Dimethylphenol	U	405	µg/Kg-dry	1	1/14/2003 5:34:00 AM
2,4-Dinltrophenol	U	2030	µg/Kg-dry	1	1/14/2003 5:34:00 AM
2,4-Dinitrotoluene	บ	810	µg/Kg-dry	1	1/14/2003 5:34:00 AM
2,6-Dinitrotoluene	U	405	µg/Kg-dry	1	1/14/2003 5:34:00 AM
2-Chloronaphthalene	υ	405	µg/Kg-dry	1	1/14/2003 5:34:00 AM
2-Chlorophenol	U	405	µg/Kg-dry	1	1/14/2003 5:34:00 AM
2-Methylnaphthalene	บ	405	µg/Kg-dry	1	1/14/2003 5:34:00 AM
2-Methylphenol	υ	405	µg/Kg-dry	1	1/14/2003 5:34:00 AM
2-Nitroaniline	U	2030	µg/Kg-dry	1	1/14/2003 5:34:00 AM
2-Nitrophenol	ប	405	µg/Kg-dry	1	1/14/2003 5:34:00 AM
3 & 4-Methylphenol	U	810	µg/Kg-dry	1	1/14/2003 5:34:00 AM
3,3'-Dichlorobenzidine	ប	810	µg/Kg-dry	1	1/14/2003 5:34:00 AM
3-Nitroaniline	U	2030	µg/Kg-dry	1	1/14/2003 5:34:00 AM
4,6-Dinitro-2-methylphenol	U.	2030	µg/Kg-dry	1	1/14/2003 5:34:00 AM
4-Bromophenyl phenyl ether	υ	405	µg/Kg-dry	1	1/14/2003 5:34:00 AM
4-Chloro-3-methylphenol	U	810	µg/Kg-dry	1	1/14/2003 5:34:00 AM
4-Chloroaniline	U	810	µg/Kg-dry	1	1/14/2003 5:34:00 AM
4-Chloraphenyl phenyl ether	U	405	µg/Kg-dry	1	1/14/2003 5:34:00 AM
4-Nitroaniline	U	810	µg/Kg-dry	1	1/14/2003 5:34:00 AM
4-Nitrophenol	u	2030	µg/Kg-dry	1	1/14/2003 5:34:00 AM
Acenaphthene	ŭ	405	µg/Kg-dry	1	1/14/2003 5:34:00 AM
Acenaphthylene	U	405	µg/Kg-dry	1	1/14/2003 5:34:00 AM
Aniline	U	405	µg/Kg-dry	1	1/14/2003 5:34:00 AM

Page 6 of 16

Date: 29-Jan-03

CLIENT:		**************************************			•
CLIENT:	Law Environmental & Engineering Serv	/ice	Lab Order:	0301041	
Project:	McDonalds 52000-2-2681-10				
		ومقالبها والبالية ويستخص والا			-
SEMIVOLATI	ES ANALYSIS	SW8270C	(SW(3550B)	Analyst IA	

	SEMIVOLATILES ANALYSIS		SW82700	C (SW3	550B)	Analyst: JA
	Anthracene	U	405	µg/Kg-dry	1	1/14/2003 5:34:00 AM
	Benzo(a)anthracene	U	405	µg/Kg-dry	1	1/14/2003 5:34:00 AM
	Benzo(a)pyrene	U	405	µg/Kg-dry	1	1/14/2003 5:34:00 AM
	Benzo(b)fluoranthene	U	405	µg/Kg-dry	1	1/14/2003 5:34:00 AM
	Benzo(g,h,i)perylene	U	405	µg/Kg-dry	1	1/14/2003 5:34:00 AM
	Benzo(k)fluoranthene	U	405	µg/Kg-dry	1	1/14/2003 5:34:00 AM
	Benzoic acid	U	2030	µg/Kg-dry	1	1/14/2003 5:34:00 AM
	Benzyl alcohol	U	810	µg/Kg-dry	1	1/14/2003 5:34:00 AM
	Bis(2-chloroethoxy)methane	U	405	µg/Kg-dry	1	1/14/2003 5:34:00 AM
	Bis(2-chloroethyl)ether	U	405	µg/Kg-dry	1	1/14/2003 5:34:00 AM
	Bis(2-chloroisopropyi)ether	U	405	µg/Kg-dry	1	1/14/2003 5:34:00 AM
	Bis(2-ethylhexyl)phthalate	U	405	µg/Kg-dry	1	1/14/2003 5:34:00 AM
	Butyl benzyl phthalate	U	405	µg/Kg-dry	1	1/14/2003 5:34:00 AM
	Carbazole	U	405	µg/Kg-dry	1	1/14/2003 5:34:00 AM
	Chrysene	U	405	µg/Kg-dry	1	1/14/2003.5:34:00 AM
	Di-n-butyl phthalate	U	405	µg/Kg-dry	1	1/14/2003 5:34:00 AM
	Di-n-octyl phthalate	U	405	µg/Kg-dry	1	1/14/2003 5:34:00 AM
	Dibenz(a,h)anthracene	U	405	µg/Kg-dry	1	1/14/2003 5:34:00 AM
	Dibenzofuran	U	2030	µg/Kg-dry	1	1/14/2003 5:34:00 AM
	Diethyl phthalate	U	405	µg/Kg-dry	1	1/14/2003 5:34:00 AM
	Dimethyl phthalate	U	405	µg/Kg-dry	1	1/14/2003 5:34:00 AM
	Fluoranthene	U	405	µg/Kg-dry	1	1/14/2003 5:34:00 AM
	Fluorene	U	405	µg/Kg-dry	1	1/14/2003 5:34:00 AM
	Hexachlorobenzene	υ	405	µg/Kg-dry	1	1/14/2003 5:34:00 AM
	Hexachlorobutadiene	υ.	405	µg/Kg-dry	1	1/14/2003 5:34:00 AM
	Hexachlorocyclopentadiene	υ	810	µg/Kg-dry	1	1/14/2003 5:34:00 AM
	Hexachioroethane	U	405	µg/Kg-dry	1	1/14/2003 5:34:00 AM
	Indeno(1,2,3-cd)pyrene	ນ	405	µg/Kg-dry	1	1/14/2003 5:34:00 AM
	Isophorone	υ	405	µg/Kg-dry	1	1/14/2003 5:34:00 AM
	N-Nitrosodi-n-propylamine	υ	405	µg/Kg-dry	1	1/14/2003 5:34:00 AM
	N-Nitrosodimethylamine	U	405	µg/Kg-dry	1	1/14/2003 5:34:00 AM
	N-Nitrosodiphenylamine	U	405	µg/Kg-dry	1	1/14/2003 5:34:00 AM
	Naphthalene	U	405	µg/Kg-dry	1	1/14/2003 5:34:00 AM
	Nitrobenzene	U	405	µg/Kg-dry	1	1/14/2003 5:34:00 AM
	Pentachlorophenol	U	2030	µg/Kg-dry	1	1/14/2003 5:34:00 AM
	Phenanthrene	U	405	µg/Kg-dry	1	1/14/2003 5:34:00 AM
	Phenol	U	405	µg/Kg-dry	1	1/14/2003 5:34:00 AM
	Pyrene	U	405	µg/Kg-dry	1	1/14/2003 5:34:00 AM
	Pyridine	U	405	µg/Kg-dry	1	1/14/2003 5:34:00 AM
(ORGANOCHLORINE PESTICIDES ANALYSIS		SW8270C	(SW355	0B)	Analyst: JA
	4,4 ⁻ -DDD	U	24.4	µg/Kg-dry	1	1/23/2003 2:04:00 PM
	4,4°-DDE	U	42.7	µg/Kg-dry	1	1/23/2003 2:04:00 PM
	4,4'-DDT	U	24.4	µg/Kg-dry	1	1/23/2003 2:04:00 PM
	Alachlor	U	18.3	µg/Kg-dry	1	1/23/2003 2:04:00 PM

Page 7 of 16

....

```
Date: 29-Jan-03
```

	aw Environmental & Engin AcDonalds 52000-2-2681-1	Lab Order: 0301041				
ORGANOCHLORIN	E PESTICIDES ANALYSIS		SW8270C (S		550B)	Analyst: JA
Aldrin		ບີ	24.4	µg/Kg-dry	1	1/23/2003 2:04:00 PM
alpha-BHC		U	18.3	µg/Kg-dry	1	1/23/2003 2:04:00 PM
alpha-Chlordane		บ	24.4	µg/Kg-dry	1	1/23/2003 2:04:00 PM
Atrazine		U	18.3	µg/Kg-dry	1	1/23/2003 2:04:00 PM
beta-BHC		U	18.3	µg/Kg-dry	1	1/23/2003 2:04:00 PM
Chlorobenzilate		U	24.4	µg/Kg-dry	1	1/23/2003 2:04:00 PM
DCPA		U	18.3	µg/Kg-dry	1	1/23/2003 2:04:00 PM
delta-BHC		U	24.4	µg/Kg-dry	1	1/23/2003 2:04:00 PM
Dieldrin		υ	36.6	µg/Kg-dry	1	1/23/2003 2:04:00 PM
Endosulfan I		U	48.8	µg/Kg-dry	1	1/23/2003 2:04:00 PM
Endosulfan II		บ	30.5	µg/Kg-dry	1	1/23/2003 2:04:00 PM
Endosulfan sulfate		IJ	24.4	µg/Kg-dry	1	1/23/2003 2:04:00 PM
Endrin		U	42.7	µg/Kg-dry	1	1/23/2003 2:04:00 PM
Endrin aldehyde		U	36.6	µg/Kg-dry	1	1/23/2003 2:04:00 PM
Endrin ketone		IJ	0	µg/Kg-dry	1	1/23/2003 2:04:00 PM
gamma-BHC		U	24.4	µg/Kg-dry	1	1/23/2003 2:04:00 PM
gamma-Chlordane		U	24.4	µg/Kg-dry	1	1/23/2003 2:04:00 PM
Heptachlor		U	18.3	µg/Kg-dry	1	1/23/2003 2:04:00 PM
Heptachlor epoxide		U·	24.4	µg/Kg-dry	1	1/23/2003 2:04:00 PM
Methoxychlor		υ	24.4	µg/Kg-dry	1	1/23/2003 2:04:00 PM
Permethrin		υ	24.4	µg/Kg-dry	1	1/23/2003 2:04:00 PM
Simazine		U	24,4	µg/Kg-dry	1	1/23/2003 2:04:00 PM
Toxaphene		υ	61.0	µg/Kg-dry	1	1/23/2003 2:04:00 PM
trans-Nonachlor		U	24.4	µg/Kg-dry	1	1/23/2003 2:04:00 PM
OLATILES ANALY	sis		SW8260B			Analyst: BP
1,1,1,2-Tetrachloroeth	ane	U	6.11	µg/Kg-dry	1	1/22/2003 2:21:00 PM
1,1,1-Trichloroethane		U	6.11	µg/Kg-dry	1	1/22/2003 2:21:00 PM
1,1,2,2-Tetrachioroeth	ane	U	6.11	µg/Kg-dry	1	1/22/2003 2:21:00 PM
1,1,2-Trichloroethane		U	6.11	µg/Kg-dry	1	1/22/2003 2:21:00 PM
1,1-Dichloroethane		U	6.11	µg/Kg-dry	1	1/22/2003 2:21:00 PM
1,1-Dichloroethene		ប	8.11	µg/Kg-dry	1	1/22/2003 2:21:00 PM
,1-Dichloropropene		U	6.11	µg/Kg-dry	1	1/22/2003 2:21:00 PM
,2,3-Trichlorobenzene		U	6.11	µg/Kg-dry	1	1/22/2003 2:21:00 PM
,2,3-Trichloropropane	23	.4	6.11	µg/Kg-dry	1	1/22/2003 2:21:00 PM
,2,4-Trichlorobenzene		u	6.11	µg/Kg-dry	1	1/22/2003 2:21:00 PM
,2,4-Trimethylbenzene	a	u	6.11	µg/Kg-dry	1	1/22/2003 2:21:00 PM
,2-Dibromo-3-chloropi	ropane	υ	12.2	µg/Kg-dry	1	1/22/2003 2:21:00 PM
,2-Dibromoethane		บ	12.2	µg/Kg-dry	1	1/22/2003 2:21:00 PM
2-Dichlorobenzene		U	6.11	µg/Kg-dry	1	1/22/2003 2:21:00 PM
2-Dichloroethane		ບ	6.11	µg/Kg-dry	1	1/22/2003 2:21:00 PM
2-Dichloropropane		ប		µg/Kg-dry	1	1/22/2003 2:21:00 PM
3,5-Trimethylbenzene	•	U		µg/Kg-dry	1	1/22/2003 2:21:00 PM
3-Dichlorobenzene		U		µg/Kg-dry	1	1/22/2003 2:21:00 PM
,3-Dichloropropane		U		ug/Kg-dry	1	1/22/2003 2:21:00 PM

· •••••• • •

Page 8 of 16

Date: 29-Jan-03

0301041
0201041

VOLATILES ANALYSIS		SW820	60B		Analyst: BP
1,4-Dichlorobenzene	U	6.11	µg/Kg-dry	1	1/22/2003 2:21:00 PM
2,2-Dichloropropane	U	6.11	µg/Kg-dry	1	1/22/2003 2:21:00 PM
2-Butanone	υ	12.2	µg/Kg-dry	1	1/22/2003 2:21:00 PM
2-Chloroethyl vinyl ether	U	6.11	µg/Kg-dry	1	1/22/2003 2:21:00 PM
2-Chlorotoluene	U	6.11	µg/Kg-dry	1	1/22/2003 2:21:00 PM
2-Hexanone	U	6.11	µg/Kg-dry	1	1/22/2003 2:21:00 PM
4-Chlorotoluene	U	6.11	µg/Kg-dry	1	1/22/2003 2:21:00 PM
4-Methyl-2-pentanone	υ	6.11	µg/Kg-dry	1	1/22/2003 2:21:00 PM
Acetone	บ	61.1	µg/Kg-dry	1	1/22/2003 2:21:00 PM
Acetonitrile	U	61.1	µg/Kg-dry	1	1/22/2003 2:21:00 PM
Acrolein	U	61.1	µg/Kg-dry	1	1/22/2003 2:21:00 PM
Acrylonitrile	U	61.1	µg/Kg-dry	1	1/22/2003 2:21:00 PM
Benzene	U	6.11	µg/Kg-dry	1	1/22/2003 2:21:00 PM
Bromobenzene	, U	6.11	μg/Kg-dry	1	1/22/2003 2:21:00 PM
Bromochloromethane	U	6.11	µg/Kg-dry	1	1/22/2003 2:21:00 PM
Bromodichloromethane	U	6.11	µg/Kg-dry	1	1/22/2003 2:21:00 PM
Bromoform	U	6.11	µg/Kg-dry	1	1/22/2003 2:21:00 PM
Bromomethane	U	12.2	µg/Kg-dry	1	1/22/2003 2:21:00 PM
Butylbenzene	U	6.11	µg/Kg-dry	1	1/22/2003 2:21:00 PM
Carbon disulfide	U	12.2	µg/Kg-dry	1	1/22/2003 2:21:00 PM
Carbon tetrachloride	U	6.11	µg/Kg-dry	1	1/22/2003 2:21:00 PM
Chlorobenzene	U	6.11	µg/Kg-dry	1	1/22/2003 2:21:00 PM
Chloroethane	U	12.2	µg/Kg-dry	1	1/22/2003 2:21:00 PM
Chloroform	ប	6.11	µg/Kg-dry	1	1/22/2003 2:21:00 PM
Chloromethane	U	12.2	µg/Kg-dry	1	1/22/2003 2:21:00 PM
sis-1,2-Dichloroethene	ប	6.11	µg/Kg-dry	1	1/22/2003 2:21:00 PM
cis-1,3-Dichloropropene	U	6.11	µg/Kg-dry	1	1/22/2003 2:21:00 PM
Dibromochloromethane	U	6.11	µg/Kg-dry	1	1/22/2003 2:21:00 PM
Dibromomethane	Ū	6.11	µg/Kg-dry	1	1/22/2003 2:21:00 PM
Dichlorodifluoromethane	Ŭ	12.2	µg/Kg-dry	1	1/22/2003 2:21:00 PM
Ethylbenzene	ŭ	6.11	µg/Kg-dry	1	1/22/2003 2:21:00 PM
lexachlorobutadiene	. U	12.2	µg/Kg-dry	1	1/22/2003 2:21:00 PM
sopropylbenzene	Ŭ	6.11	µg/Kg-dry	1	1/22/2003 2:21:00 PM
Methyl tert-butyl ether	Ű	6.11	µg/Kg-dry	1	1/22/2003 2:21:00 PM
Methylene chloride	บ	6.11	ug/Kg-dry	1	1/22/2003 2:21:00 PM
Vaphthalene	U	14.7	µg/Kg-dry	1	1/22/2003 2:21:00 PM
-Isopropyltoluene	U U	6.11	µg/Kg-dry	1	1/22/2003 2:21:00 PM
Propylbenzene	U	6.11	µg/Kg-dry	1	1/22/2003 2:21:00 PM
ec-Butylbenzene	U	6.11	µg/Kg-dry	1	1/22/2003 2:21:00 PM
Styrene	U	6.11	µg/Kg-dry	1	1/22/2003 2:21:00 PM
ert-Butylbenzene	U	6.11	µg/Kg-dry µg/Kg-dry	1	1/22/2003 2:21:00 PM
•	บบบ			1	1/22/2003 2:21:00 PM
Tetrachloroethene	-	6.11	µg/Kg-dry		
Toluene	6.25	6.11	µg/Kg-dry	1	1/22/2003 2:21:00 PM
trans-1,2-Dichloroethene	U	6.11	µg/Kg-dry	1	1/22/2003 2:21:00 PM
trans-1,3-Dichloropropene	U	6.11	µg/Kg-dry	1	1/22/2003 2:21:00 PM

Page 9 of 16

Date: 29-Jan-03

CLIENT: Project:	Law Environmental & McDonalds 52000-2-	Lab Order	: 0301041			
VOLATILES ANA	LYSIS		SW826	0B		Analyst: BP
Trichloroethene		U	6.11	µg/Kg-dry	<u> </u>	1/22/2003 2:21:00 PM
Trichlorofluoromet	hane	U	12.2	µg/Kg-dry	1	1/22/2003 2:21:00 PM
Vinyl acetate		U	12.2	µg/Kg-dry	1	1/22/2003 2:21:00 PM
Vinyl chloride		U	12.2	µg/Kg-dry	1	1/22/2003 2:21:00 PM
Xylenes, Total		U	18.3	µg/Kg-dry	1	1/22/2003 2:21:00 PM
POLYCHLORINA	TED BIPHENYLS ANA	LYSIS	SW808	32		Analyst: SUB
Arocior 1016		U	0.598	µg/Kg-dry	1	1/15/2003
Aroclar 1221		U	0.598	µg/Kg-dry	1	1/15/2003
Aroclor 1232		U	0.598	µg/Kg-dry	1	1/15/2003
Aroclor 1242		U	0.598	µg/Kg-dry	1	1/15/2003
Aroclor 1248		U	0.598	µg/Kg-dry	1	1/15/2003
Aroclor 1254		. U	0.598	µg/Kg-dry	1	1/15/2003
Aroclor 1260		U	0.598	µg/Kg-dry	1	1/15/2003
IERBICIDES ANA	LYSIS		SW8151	A		Analyst: SUB
2,4,5-T		U	28.0	µg/Kg-dry	1	1/15/2003
2,4,5-TP (Silvex)		U	28.0	µg/Kg-dry	1	1/15/2003
2,4-D		υ	280	µg/Kg-dry	1	1/15/2003
2,4-DB		U	280	µg/Kg-dry	1	1/15/2003
Dalapon		ບ	558	µg/Kg-dry	1	1/15/2003
Dicamba		U	28.0	µg/Kg-dry	1	1/15/2003
Dichlorprop		U	280	µg/Kg-dry	1	1/15/2003
Dinoseb		U	139	µg/Kg-dry	1	1/15/2003
MCPA		U	5590	µg/Kg-dry	1	1/15/2003
MCPP		υ	5590	µg/Kg-dry	1	1/15/2003
Pentachlorophenol		U	28.0 .	µg/Kg-dry	1	1/15/2003
ERCENT MOISTU	IRE ANALYSIS		D2216			Analyst: RN
Percent Moisture		18.1	0.01	wt%	1	1/13/2003

Page 10 of 16

	Law Environmental & Engineering Service McDonalds 52000-2-2681-10	Lab Order:	0301041
Lab ID:	0301041-003	Collection Date: 1/9/2003	
Client Sample ID:	soil pile 4	Matrix: SOLID	

Analyses	Result	Limit	Qual Units	DF	Date Analyzed
METALS ANALYSIS		E20	0.8 (SW30	50B)	Analyst: MCL
Arsenic	10.9	2.60	mg/Kg-dry	10	1/14/2003 7:03:00 PM
Barium	55.6	2.60	mg/Kg-dry	10	1/14/2003 7:03:00 PM
Cadmium	ບ	2.60	mg/Kg-dry	10	1/14/2003 7:03:00 PM
Chromium	9.64	2.60	mg/Kg-dry	10	1/14/2003 7:03:00 PM
Lead	23.3	2.60	mg/Kg-dry	10	1/14/2003 7:03:00 PM
Mercury	U	0.520	mg/Kg-dry	10	1/14/2003 7:03:00 PM
Selenium	U	2.60	mg/Kg-dry	10	1/14/2003 7:03:00 PM
Silver	U	2.60	mg/Kg-dry	10	1/14/2003 7:03:00 PM
SEMIVOLATILES ANALYSIS		SW82	.70C (SW35	50B)	Analyst: JA
1,2,4-Trichlorobenzene	U	397	µg/Kg-dry	1	1/14/2003 3:13:00 AM
1,2-Dichlorobenzene	U	397	µg/Kg-dry	1	1/14/2003 3:13:00 AM
1,3-Dichlorobenzene	υ	397	µg/Kg-dry	1	1/14/2003 3:13:00 AM
1,4-Dichlorobenzene	U	397	µg/Kg-dry	1	1/14/2003 3:13:00 AM
2,4,5-Trichlorophenol	U	397	µg/Kg-dry	1	1/14/2003 3:13:00 AM
2,4,6-Trichlorophenol	ប	397	µg/Kg-dry	1	1/14/2003 3;13:00 AM
2,4-Dichlorophenol	U	397	µg/Kg-dry	1	1/14/2003 3:13:00 AM
2,4-Dimethylphenol	U	397	µg/Kg-dry	1	1/14/2003 3:13:00 AM
2,4-Dinitrophenol	U	1980	µg/Kg-dry	1	1/14/2003 3:13:00 AM
2,4-Dinitrotoluene	U	794	µg/Kg-dry	1	1/14/2003 3:13:00 AM
2,6-Dinitrotoluene	υ	397	µg/Kg-dry	1	1/14/2003 3:13:00 AM
2-Chioronaphthalene	U	397	µg/Kg-dry	1	1/14/2003 3:13:00 AM
2-Chlorophenol	υ	397	µg/Kg-dry	1	1/14/2003 3:13:00 AM
2-Methylnaphthalene	U	397	µg/Kg-dry	1	1/14/2003 3:13:00 AM
2-Methylphenol	U	397	µg/Kg-dry	1	1/14/2003 3:13:00 AM
2-Nitroaniline	U	1980	µg/Kg-dry	1	1/14/2003 3:13:00 AM
2-Nitrophenol	U	397	µg/Kg-dry	1	1/14/2003 3:13:00 AM
3 & 4-Methylphenol	ບ	794	µg/Kg-dry	1	1/14/2003 3:13:00 AM
3,3'-Dichlorobenzidine	U	794	µg/Kg-dry	1	1/14/2003 3:13:00 AM
3-Nitroaniline	U	1980	µg/Kg-dry	1	1/14/2003 3:13:00 AM
4,6-Dinitro-2-methylphenol	U	1980	µg/Kg-dry	1	1/14/2003 3:13:00 AM
4-Bromophenyl phenyl ether	ប	397	µg/Kg-dry	1	1/14/2003 3:13:00 AM
4-Chloro-3-methylphenol	υ	794	µg/Kg-dry	1	1/14/2003 3:13:00 AM
4-Chloroaniline	U	794	µg/Kg-dry	1	1/14/2003 3:13:00 AM
4-Chiorophenyl phenyl ether	ប	397	µg/Kg-dry	1	1/14/2003 3:13:00 AM
4-Nitroaniline	U	794	µg/Kg-dry	1	1/14/2003 3:13:00 AM
4-Nitrophenol	υ	1980	µg/Kg-dry	1	1/14/2003 3:13:00 AM
Acenaphthene	Ŭ	397	µg/Kg-dry	1	1/14/2003 3:13:00 AM
Acenaphthylene	U	397	µg/Kg-dry	1	1/14/2003 3:13:00 AM
Aniline	Ű	397	µg/Kg-dry	1	1/14/2003 3:13:00 AM

Date: 29-Jan-03

Page 11 of 16

Date: 29-Jan-03

SEMIVOLATILES ANALYSIS		SW82700	C (SW3:	550B)	Analyst: JA
Anthracene	υ	397	µg/Kg-dry	1	1/14/2003 3:13:00 AM
Benzo(a)anthracene	U	397	µg/Kg-dry	1	1/14/2003 3:13:00 AM
Benzo(a)pyrene	U	397	µg/Kg-dry	1	1/14/2003 3:13:00 AM
Benzo(b)fluoranthene	U	397	µg/Kg-dry	1	1/14/2003 3:13:00 AM
Benzo(g,h,i)perylene	U	397	µg/Kg-dry	1	1/14/2003 3:13:00 AM
Benzo(k)fluoranthene	U	397	µg/Kg-dry	1	1/14/2003 3:13:00 AM
Benzoic acid	ប	1980	µg/Kg-dry	1	1/14/2003 3:13:00 AM
Benzyl alcohol	ប	794	µg/Kg-dry	1	1/14/2003 3:13:00 AM
Bis(2-chloroethoxy)methane	U	397	µg/Kg-dry	1	1/14/2003 3:13:00 AM
Bis(2-chloroethyl)ether	ប	397	µg/Kg-dry	1	1/14/2003 3:13:00 AM
Bis(2-chloraisopropyl)ether	บ	. 397	µg/Kg-dry	1	1/14/2003 3:13:00 AM
Bis(2-ethylhexyl)phthalate	υ	397	µg/Kg-dry	1	1/14/2003 3:13:00 AM
Butyl benzyl phthalate	υ	397	µg/Kg-dry	1	1/14/2003 3:13:00 AM
Carbazole	ປ	397	µg/Kg-dry	1	1/14/2003 3:13:00 AM
Chrysene	U	397	µg/Kg-dry	1	1/14/2003 3:13:00 AM
Di-n-butyl phthalate	U	397	µg/Kg-dry	1	1/14/2003 3:13:00 AM
Di-n-octyl phthalate	υ	397	µg/Kg-dry	1	1/14/2003 3:13:00 AM
Dibenz(a,h)anthracene	U	397	µg/Kg-dry	1	1/14/2003 3:13:00 AM
Dibenzofuran	U	1980	µg/Kg-dry	1	1/14/2003 3:13:00 AM
Diethyl phthalate	U	397	µg/Kg-dry	. 1	1/14/2003 3:13:00 AM
Dimethyl phthalate	U	397	µg/Kg-dry	1	1/14/2003 3:13:00 AM
Fluoranthene	ປ່	397	µg/Kg-dry	1	1/14/2003 3:13:00 AM
Fluorene	U	397	µg/Kg-dry	1	1/14/2003 3:13:00 AM
Hexachlorobenzene	U	397	µg/Kg-dry	1	1/14/2003 3:13:00 AM
Hexachlorobutadiene	U ·	397	µg/Kg-dry	1	1/14/2003 3:13:00 AM
Hexachlorocyclopentadiene	U	794	µg/Kg-dry	1	1/14/2003 3:13:00 AM
Hexachloroethane	IJ	397	µg/Kg-dry	1	1/14/2003 3:13:00 AM
Indeno(1,2,3-cd)pyrene	U	397	µg/Kg-dry	1	1/14/2003 3:13:00 AM
Isophorone	U	397	µg/Kg-dry	1	1/14/2003 3:13:00 AM
N-Nitrosodi-n-propylamine	U	397	µg/Kg-dry	1	1/14/2003 3:13:00 AM
N-Nitrosodimethylamine	U	397	µg/Kg-dry	1	1/14/2003 3:13:00 AM
N-Nitrosodiphenylamine	U	397	µg/Kg-dry	1	1/14/2003 3:13:00 AM
Naphthalene	U	397	µg/Kg-dry	1	1/14/2003 3:13:00 AM
Nitrobenzene	U	397	µg/Kg-dry	1	1/14/2003 3:13:00 AM
Pentachiorophenol	U	1980	µg/Kg-dry	1	1/14/2003 3:13:00 AM
Phenanthrene	U	397	µg/Kg-dry	1	1/14/2003 3:13:00 AM
Phenol	U	397	µg/Kg-dry	1	1/14/2003 3:13:00 AM
Pyrene	U	397	µg/Kg-dry	1	1/14/2003 3:13:00 AM
Pyridine	U	397	µg/Kg-dry	1	1/14/2003 3:13:00 AM
ORGANOCHLORINE PESTICIDES ANALYSIS		SW8270C	(SW355		Analyst: JA
4,4'-DDD	U	23.8	µg/Kg-dry	1	1/23/2003 3:15:00 PM
4,4 -DDE	U	41.6	µg/Kg-dry	1	1/23/2003 3:15:00 PM
4,4'-DDT	ບ	23.8	µg/Kg-dry	1	1/23/2003 3:15:00 PM
Alachlor	U	17.8	µg/Kg-dry	1	1/23/2003 3:15:00 PM

Page 12 of 16

.....

Date: 29-Jan-03

	Law Environmental & Eng McDonalds 52000-2-2681	Lab Order: 0301041				
ORGANOCHLORI	NE PESTICIDES ANALYS	S	SW8270C	: (SW3	550B)	Analyst: JA
Aldrin		U	23.8	µg/Kg-dry	1	1/23/2003 3:15:00 PM
aipha-BHC		U	17.8	µg/Kg-dry	1	1/23/2003 3:15:00 PM
aipha-Chlordane		U	23.8	µg/Kg-dry	1 -	1/23/2003 3:15:00 PM
Atrazine		U	17.8	µg/Kg-dry	1	1/23/2003 3:15:00 PM
beta-BHC		U	17.8	µg/Kg-dry	1	1/23/2003 3:15:00 PM
Chlorobenzilate		U	23.8	µg/Kg-dry	1	1/23/2003 3:15:00 PM
DCPA		U	17.8	µg/Kg-dry	1	1/23/2003 3:15:00 PM
delta-BHC		U	23.8	µg/Kg-dry	1	1/23/2003 3:15:00 PM
Dieldrin		U	35.6	µg/Kg-dry	1	1/23/2003 3:15:00 PM
Endosulfan I		U	47.5	µg/Kg~dry	1	1/23/2003 3:15:00 PM
Endosulfan II		U ·	29.7	µg/Kg-dry	1	1/23/2003 3:15:00 PM
Endosulfan sulfate		U	23.8	µg/Kg-dry	1	1/23/2003 3:15:00 PM
Endrin		U	41.6	µg/Kg-dry	1	1/23/2003 3:15:00 PM
Endrin aldehyde		U	35.6	µg/Kg-dry	1	1/23/2003 3:15:00 PM
Endrin ketone		ប	0	µg/Kg-dry	1	1/23/2003 3:15:00 PM
gamma-BHC		บ	23.8	µg/Kg-dry	1	1/23/2003 3:15:00 PM
gamma-Chlordane		U	23.8	µg/Kg-dry	1	1/23/2003 3:15:00 PM
Heptachlor		U	17.8	µg/Kg-dry	1	1/23/2003 3:15:00 PM
Heptachlor epoxide		U	23.8	µg/Kg-dry	1	1/23/2003 3:15:00 PM
Methoxychior		U	23.8	µg/Kg-dry	1	1/23/2003 3:15:00 PM
Permethrin		υ	23.8	µg/Kg-dry	1	1/23/2003 3:15:00 PM
Simazine		U	23.8	µg/Kg-dry	1	1/23/2003 3:15:00 PM
Toxaphene		U	59.4	µg/Kg-dry	1	1/23/2003 3:15:00 PM
trans-Nonachlor		U	23.8	µg/Kg-dry	1	1/23/2003 3:15:00 PM
OLATILES ANALY	SIS		SW8260B			Analyst: BP
1,1,1,2-Tetrachloroett	nane	ប	5.98	µg/Kg-dry	1	1/22/2003 1:47:00 PM
1,1,1-Trichloroethane		U	5.98	µg/Kg-dry	1	1/22/2003 1:47:00 PM
1,1,2,2-Tetrachloroett	ane	U	5.98	µg/Kg-dry	1	1/22/2003 1:47:00 PM
1,1,2-Trichloroethane		U	5.98	µg/Kg-dry	1	1/22/2003 1:47:00 PM
1,1-Dichloroethane		U	5.98	µg/Kg-dry	1	1/22/2003 1:47:00 PM
1,1-Dichloroethene		ບ	5.98	µg/Kg-dry	1	1/22/2003 1:47:00 PM
,1-Dichloropropene		υ	5.98	µg/Kg-dry	1	1/22/2003 1:47:00 PM
1,2,3-Trichlorobenzen	e	ບ	5.98	µg/Kg-dry	1	1/22/2003 1:47:00 PM
2,3-Trichloropropant	9	U	5.98	µg/Kg-dry	1 `	1/22/2003 1:47:00 PM
,2,4-Trichlorobenzen	e	ບ	5.98	µg/Kg-dry	1	1/22/2003 1:47:00 PM
,2,4-Trimethylbenzen	e	U	5.98	µg/Kg-dry	1	1/22/2003 1:47:00 PM
,2-Dibromo-3-chlorop	ropane	U	12.0	µg/Kg-dry	1	1/22/2003 1:47:00 PM
2-Dibromoethane		U	12.0	µg/Kg-dry	1 .	1/22/2003 1:47:00 PM
2-Dichlorobenzene		บ	5.98	µg/Kg-dry	1 .	(/22/2003 1:47:00 PM
,2-Dichloroethane		U		µg/Kg-dry		1/22/2003 1:47:00 PM
2-Dichloropropane		U		µg/Kg-dry		1/22/2003 1:47:00 PM
3,5-Trimethylbenzen	e	U		µg/Kg-dry		1/22/2003 1:47:00 PM
3-Dichlorobenzene		ŭ		µg/Kg-dry		/22/2003 1:47:00 PM
3-Dichloropropane		Ŭ		µg/Kg-dry		/22/2003 1:47:00 PM

.

Page 13 of 16

·····

Date: 29-Jan-03

CLIENT: Project:	vice		
	SW8260B	······································	Analyst: BR

VOLATILES ANALYSIS		SW826	50B		Analyst: BP
1,4-Dichlorobenzene	U	5.98	µg/Kg-dry	1	1/22/2003 1:47:00 PM
2,2-Dichloropropane	U	5.98	µg/Kg-dry	1	1/22/2003 1:47:00 PM
2-Butanone	U	12.0	µg/Kg-dry	1	1/22/2003 1:47:00 PM
2-Chloroethyl vinyl ether	U	5.98	µg/Kg-dry	1	1/22/2003 1:47:00 PM
2-Chlorotoluene	U	5.98	µg/Kg-dry	1	1/22/2003 1:47:00 PM
2-Hexanone	υ	5.98	µg/Kg-dry	1	1/22/2003 1:47:00 PM
4-Chlorotoluene	· U	5.98	µg/Kg-dry	1	1/22/2003 1:47:00 PM
4-Methyl-2-pentanone	U	5.98	µg/Kg-dry	1	1/22/2003 1:47:00 PM
Acetone	U	59.8	µg/Kg-dry	1	1/22/2003 1:47:00 PM
Acetonitrile	U	59.8	µg/Kg-dry	1	1/22/2003 1:47:00 PM
Acrolein	U	59.8	µg/Kg-dry	1	1/22/2003 1:47:00 PM
Acrylonitrile	υ	59.8	µg/Kg-dry	1	1/22/2003 1:47:00 PM
Benzene	υ	5.98	µg/Kg-dry	1	1/22/2003 1:47:00 PM
Bromobenzene	U	5.98	µg/Kg-dry	1	1/22/2003 1:47:00 PM
Bromochloromethane	U	5.98	µg/Kg-dry	1	1/22/2003 1:47:00 PM
Bromodichloromethane	U	5.98	µg/Kg-dry	1	1/22/2003 1:47:00 PM
Bromoform	U	5.98	µg/Kg-dry	1	1/22/2003 1:47:00 PM
Bromomethane	บ	12.0	µg/Kg-dry	1	1/22/2003 1:47:00 PM
Butylbenzene	U	5.98	µg/Kg-dry	1	1/22/2003 1:47:00 PM
Carbon disulfide	บ	12.0	µg/Kg-dry	1	1/22/2003 1:47:00 PM
Carbon tetrachloride	U	5.98	µg/Kg-dry	1	1/22/2003 1:47:00 PM
Chlorobenzene	U	5.98	µg/Kg-dry	1	1/22/2003 1:47:00 PM
Chloroethane	·U	12.0	µg/Kg-dry	.1	1/22/2003 1:47:00 PM
Chloroform	U	5.98	µg/Kg-dry	1	1/22/2003 1:47:00 PM
Chloromethane	U	12.0	µg/Kg-dry	1	1/22/2003 1:47:00 PM
cis-1,2-Dichloroethene	U	5.98	µg/Kg-dry	1	1/22/2003 1:47:00 PM
cis-1,3-Dichloropropene	U	5.98	µg/Kg-dry	1	1/22/2003 1:47:00 PM
Dibromochloromethane	U	5.98	µg/Kg-dry	1	1/22/2003 1:47:00 PM
Dibromomethane	U	5.98	µg/Kg-dry	1	1/22/2003 1:47:00 PM
Dichlorodifluoromethane	ប :	12.0	µg/Kg-dry	1	1/22/2003 1:47:00 PM
Ethylbenzene	U	5.98	µg/Kg-dry	1	1/22/2003 1:47:00 PM
Hexachlorobutadiene	U	12.0	µg/Kg-dry	1	1/22/2003 1:47:00 PM
Isopropylbenzene	U	5.98	µg/Kg-dry	1	1/22/2003 1:47:00 PM
Methyl tert-butyl ether	U	5.98	µg/Kg-dry	1	1/22/2003 1:47:00 PM
Methylene chloride	8.83	5.98	µg/Kg-dry	1	1/22/2003 1:47:00 PM
Naphthalene	U	14.4	µg/Kg-dry	1	1/22/2003 1:47:00 PM
p-Isopropyitoluene	U	5.98	µg/Kg-dry	1	1/22/2003 1:47:00 PM
Propylbenzene	U	5.98	µg/Kg-dry	1	1/22/2003 1:47:00 PM
sec-Butylbenzene	U	5.98	µg/Kg-dry	1	1/22/2003 1:47:00 PM
Styrene	U	5.98	µg/Kg-dry	1	1/22/2003 1:47:00 PM
tert-Butylbenzene	U	5.98	µg/Kg-dry	1	1/22/2003 1:47:00 PM
Tetrachloroethene	U	5.98	µg/Kg-dry	1	1/22/2003 1:47:00 PM
Toluene	υ	5.98	µg/Kg-dry	1	1/22/2003 1:47:00 PM
trans-1,2-Dichloroethene	U	5.98	µg/Kg-dry	1	1/22/2003 1:47:00 PM
trans-1,3-Dichloropropene	U	5.98	µg/Kg-dry	1	1/22/2003 1:47:00 PM

Page 14 of 16

Date: 29-Jan-03

CLIENT: Project:	Law Environmen McDonalds 5200	tal & Engineering 0-2-2681-10		Lab Order	: 0301041	
VOLATILES A	NALYSIS		SW826	0B		Analyst: BP
Trichloroethene U		U	5.98	µg/Kg-dry	1	1/22/2003 1:47:00 PM
Trichlorofluoror	nethane	U	12.0	µg/Kg-dry	1	1/22/2003 1:47:00 PM
Vinyl acetate		U	12.0	µg/Kg-dry	1	1/22/2003 1:47:00 PM
Vinyl chloride		U	12.0	µg/Kg-dry	1	1/22/2003 1:47:00 PM
Xylenes, Total		U	17.9	µg/Kg-dry	1	1/22/2003 1:47:00 PM
OLYCHLORI	NATED BIPHENYLS	ANALYSIS	SW808	32		Analyst: SUB
Aroclor 1016		U	0.598	µg/Kg-dry	1	1/23/2003
Aroclor 1221		U	0.598	µg/Kg-dry	1	1/23/2003
Aroclor 1232		υ	0.598	µg/Kg-dry	1	1/23/2003
Aroclor 1242		U	0.598	µg/Kg-dry	1	1/23/2003
Arocior 1248		υ	0.598	µg/Kg-dry	1	1/23/2003
Aroclor 1254		U	0.598	µg/Kg-dry	1	1/23/2003
Aroclor 1260		U	0.598	µg/Kg-dry	1	1/23/2003
ERBICIDES A	NALYSIS		SW8151	A		Analyst: SUB
2,4,5-T		U	20.0	µg/Kg-dry	1	1/23/2003
2,4,5-TP (Silvex	>	υ	20.0	µg/Kg-dry	1	1/23/2003
2,4-D		U	200	µg/Kg-dry	1	1/23/2003
2,4-DB		ບ	200	µg/Kg-dry	1	1/23/2003
Dalapon .		U	398	µg/Kg-dry	1	1/23/2003
Dicamba		U	20.0	µg/Kg-dry	1	1/23/2003
Dichlorprop		U	200	µg/Kg-dry	1	1/23/2003
Dinoseb		U	99.6	µg/Kg-dry	1	1/23/2003
MCPA		U	3980	µg/Kg-dry	1	1/23/2003
MCPP		U	3980	µg/Kg-dry	1	1/23/2003
Pentachlorophen	ol	U	20.0	µg/Kg-dry	1	1/23/2003

Page 15 of 16

Qualifiers:

: .

B - Analyte detected in the associated method blank.

....

E - Value above quantitation range.

H - Analysis performed past holding time.

HT - Sample received past holding time.

J - Analyte detected between RL and MDL.

R - RPD outside acceptance limits.

S - Spike recovery outside acceptance limits.

U - Analyte not detected (i.e. less than RL or MDL).

Page 16 of 16

McDonald's Corporation, Oak Brook, Illinois MACTEC's Project No. 5200022681 April 10, 2003 Corrective Action Completion Report

APPENDIX C

Letter from Village of Oak Brook

52000\2\2681 CACR.doc

Village of Oak Brook 1200 Oak Brook Road

Oak Brook, IL 60523-2255 Website www.oak-brook.org

> Administration 630.990.3000 FAX 630.990.0876

Community Development 630.990.3045 FAX 630.990.3985

Engineering Department 630.990.3010 FAX 630.990.3985

Fire Department 630.990.3040 FAX 630.990.2392

Police Department 630.990.2358 FAX 630.990.7484

Public Works Department 630.990.3044 FAX 630.472.0223

Oak Brook Public Library

1112 Oak Brook Road Oak Brook, IL 60523-4623 630.990.2222 FAX 630.990.0170

Oak Brook Sports Core

Bath & Tennis Club 700 Oak Brook Road Oak Brook. IL 60523-4600 630.990.3020 FAX 630.990.1002

Golf Club 2606 York Road Oak Bruok, 1L 60523-4602 630.990.3032 FAX 630.990.0245 November 22, 2002

Mr. Ed Sagan McDonald's Corporation 2915 Jorie Boulevard Oak Brook, IL 60523

RE: Oak Brook Sled Hill Dirt Pile

Dear Ed:

This letter will confirm that, to the best of my knowledge, the soil within the Oak Brook sled hill dirt pile by the Library does not contain any contaminants. The soil is a temporary stockpile of the excavation for the Library when it was built about 2 years ago and for the recent Village Hall Expansion.

If I can be of further service, please call.

Sincerely

Ďale L. Durfey, Jr., P.E., Village Engineer

DLD/etk cc: Michael A. Crotty, Acting Village Manager

sagan sled hill

.

May 20, 2003

Illinois Environmental Protection Agency Bureau of Land - #24 LUST Claims Unit 1021 North Grand Avenue East P.O. Box 19276 Springfield, Illinois 62794-9276

Attention: Mr. Douglas E. Oakley

Subject: Claims for Reimbursement under LUST Fund LPC #0434705070 – DuPage County McDonald's Corporation 1120 West 22nd Street, Oak Brook, Illinois IEPA Incident Nos. 902922 & 952344 MACTEC Project No. 52000-2-2681-08

Dear Mr. Oakley::

Reference is made to the two Illinois Environmental Protection Agency (IEPA)'s letters, both dated May 12, 2003 addressed to McDonald's Corporation (McDonald's) regarding McDonald's requests for reimbursement of corrective action costs from the Illinois Underground Storage Tank Fund for the above-referenced facility. In the Agency's letter, \$1,234.19 associated with furnishing and installing limestone for the property and \$31,965.00 associated with compaction of fill material and transportation of CA-1 crushed stone, were deducted from the costs of reimbursement.

Based on the telephone conversations between Ms. Carmen Yung of Mactec Engineering and Consulting of Georgia, Inc., (MACTEC) and Ms. Lieura Hackman of the IEPA on May 15, 2003 and between Ms. Carmen Yung and Ms. Valerie Davis of the IEPA on May 16, 2003, MACTEC is submitting the following information for your consideration:

<u>\$1,234.19 and \$450 – Cost for Furnishing and Installing Limestone for the Property (R.W. Collins</u> Invoices #113255)

Crushed stone was used to provide temporary paving over the entrance and exit ways of the subject property and the Village of Oak Brook's soil pile located at 31st Street in Oak Brook to facilitate

MACTEC Engineering and Consulting, Inc. 1200 Jorie Blvd., Suite 230 • Oak Brook, IL 60523 630-571-2162 • Fax: 630-571-0439

McDonald's Corporation, Oak Brook, Illinois LAW Project No. 52000-2-2681-08

movement of trucks during excavation and transportation of contaminated soil and backfill soil. The crushed stone was later used as backfill material for part of the excavated areas (to provide support to the asphalt driveway). Since it was used as backfill material, the cost for transportation and placing of the limestone at the Village of Oak Brook's soil pile should be eligible for reimbursement.

\$31,515 - Cost for Compaction

The Village of Oak Brook's soil pile located at 31st Street in Oak Brook was loaded to trucks and transported to and placed at the subject property as backfill material (which was described in R.W. Collin's invoices as "Load clay fill at source pile, haul to 22nd St., place and compact with sheepsfoot roller").

The backfill soils, after being placed in the excavations were rolled over by a sheepsfoot roller a few times in order to prevent voids and severe settlement. The "compaction" performed at the site was part of the soil placement process and should not be treated as compaction according to the industry standard (which would require slower placement in thin lifts, in-place density testing and higher costs). Therefore, we feel that the above cost should be eligible for reimbursement.

Moreover, the cost of using the Village of Oak Brook's soil pile as backfill material including loading, transportation and placement at \$15.00 per cubic yard is substantially lower than the cost of using crushed stone at \$18.00 per cubic yard. In total, McDonald's has saved more than \$50,000 by using the Village of Oak Brook's soil instead of crushed stone. Also, by using the Village of Oak Brook's soil, McDonald's has helped the Village of Oak Brook to dispose of their unwanted soil and turned it into use. McDonald's should not be penalized by employing cost saving and environmental conservation methods in site remediation when McDonald's could have obtained full reimbursement if crushed stone was used as backfill material.

It is therefore requested that the above costs be included for reimbursement.

McDonald's Corporation, Oak Brook, Illinois LAW Project No. 52000-2-2681-08

May 20, 2003 Claims for Reimbursement

Should you have any questions regarding this submittal or require any additional information, please feel free to contact Ms. Carmen Yung at 630-328-0420.

3

Sincerely,

1

MACTEC Engineering and Consulting of Georgia, Inc.

ng

Senior Environmental Professional

Cc: Den Koide, McDonald's

Brian M. Devine, P.E.

Principal

6306237370

07/14 '03 16:24 NO.752 US/U4

Page 2

Dorothy Gunn, Clerk Illinois Pollution Control Board State of Illinois Center 100 West Randolph, Suite 11-500 Chicago, Illinois 60601 312/814-3620

For information regarding the filing of an extension, please contact:

Illinois Environmental Protection Agency Division of Legal Counsel 1021 North Grand Avenue East Springfield, Illinois 62794-9276 217/782-5544

If you have any questions, please contact Lieura Hackman or myself at 217/782-6762.

Sincerely,

Douglas E. Oakley, Manager LUST Claims Unit Planning & Reporting Section Bureau of Land

DEO:LH:ct\031987.doc

cc: MATEC Engineering & Consulting, Inc.

07/14 '03 16:25 NO. /22 04/04

LITIGATION

Attachment A Accounting Deductions

Re: LPC #0434705070 -- DuPage County Oak Brook/McDonald's Corporation 1120 West 22nd Street LUST Incident No. 902922 LUST FISCAL FILE

6306237370

Item # Description of Deductions

1. \$31,515.00, deduction in costs that the owner/operator failed to demonstrate were reasonable (Section 22.18b(d)(4)(C) of the Environmental Protection Act).

A deduction in the amount of \$7,680.00 was made on the R.W. Collins invoice numbered 1132324 for the ineligible costs for compaction.

A deduction in the amount of \$2,025.00 was made on the R.W. Collins invoice numbered 113255 for the ineligible costs for compaction.

A deduction in the amount of \$21,810.00 was made on the R.W. Collins invoice numbered #113293 for the ineligible costs for compaction.

LH:ct\031988.doc

