

ILLINOIS ENVIRONMENTAL PROTECTION AGENCY

1021 NORTH GRAND AVENUE EAST, P.O. BOX 19276, SPRINGFIELD, ILLINOIS 62794-9276 • (217) 782-3397

JB PRITZKER, GOVERNOR

JOHN J. KIM, DIRECTOR

217/785-1705

CONSTRUCTION PERMIT

PERMITTEE

General III, LLC Attn: Jim Kallas

11600 South Burley Avenue Chicago, Illinois 60617

Applicant's Designation: Date Received: September 25, 2019

Subject: Scrap Metal Recycling Facility

Date Issued: June 25, 2020

Location: 11600 South Burley Avenue, Chicago, Cook County, 60617

This permit is hereby granted pursuant to the above-referenced application to the above-designated Permittee to CONSTRUCT a Scrap Metal Recycling Facility consisting of the following emission source(s) and/or air pollution control equipment:

Hammermill Shredder System:

One (1) Hammermill Shredder with Integral Water Injection System equipped with capture hood and Cyclone, and controlled by a Roll-Media Filter, 15.0 mmBtu/hour Natural Gas-Fired Regenerative Thermal Oxidizer (RTO), and Quench/Packed Tower Scrubber with feed and takeaway conveyors;

One (1) Vibratory Conveyor; and

One (1) Shredder Infeed Conveyor

Ferrous Material Separation System:

70 Material Transfer Points including:

Seven (7) Magnetic Separators;

Two (2) Z-Box Separators with Cyclones;

Two (2) Ferrous Metal Stacking Conveyors;

One (1) Auto Shredder Residue (ASR) Stacking Conveyor

- 2 Truck/Rail Loading Area
- 1 Barge Loading Point
- 7 material stockpiles including:
 - 2 Poker Picker Stockpiles
 - 2 Ferrous Metal Stockpiles
 - 1 ASR Stockpile
 - 1 Raw Material Stockpile
 - 1 Fluff Stockpile (bin).

Non-Ferrous Material Separation System:

88 Uncontrolled Transfer Points including:

Fifty-three (53) Conveyors;

Twenty (20) Magnetic Separators:

Fourteen (14) Eddy Current Separators (ECS) located in Enclosures; One (1) Low Speed Shredder for Size Reduction of Clean Non-Ferrous Material;

11 Controlled Transfer Points including:

Nine (9) Conveyors;

One (1) Air Vibe (Air Classifier) with Cyclone;

One (1) Vibratory Batch Feeder;

13 Uncontrolled Screening Points including:

Five (5) Polishers (Air Classifiers) with Cyclone;

One (1) Vibratory Feeder;

Three (3) Tec Screeners;

12 Controlled Screening Points including:

Six (6) Wind Sifters (Air Classifiers) with Cyclones;

Three (3) Tec Screeners;

Six (6) AEI Ecostar Screeners;

2 Truck Loading Points including:

One (1) ASR Feed Hopper with Vibratory Batch Feeder;

13 Stockpile Loading Points

Fines Processing Building - with All Equipment in Building Controlled by Dust Collector DC-01

Miscellaneous Fugitive Sources

Raw Material Unloading/Handling; Intermediate Ferrous Material and Product Stockpiles; Fluff Storage and Loadout; Material Loadout; Roadways-Paved and unpaved; and Parking Areas

This Permit is subject to standard conditions attached hereto and the following special condition(s):

- 1a. This permit is issued based on the emissions of Hazardous Air Pollutants (HAP) as listed in Section 112(b) of the Clean Air Act from the Hammermill Shredder System, Ferrous Material Separation System, and Non-Ferrous Material Separation System being less than 10 tons/year of any single HAP and 25 tons/year of any combination of such HAPs. As a result, this permit is issued based on the emissions of all HAPs from the above-listed equipment not triggering the requirements of Section 112(g) of the Clean Air Act.
- b. This permit is issued based on the construction of the Hammermill Shredder System, Ferrous Material Separation System, and Non-Ferrous Material Separation System not constituting a new major source or major modification pursuant to Title I of the Clean Air Act, specifically 40 CFR 52.21 (Prevention of Significant Deterioration (PSD)). The source has requested that the Illinois EPA establish emission limitations and other appropriate terms and conditions in this permit that limit the emissions of Particulate Matter (PM), Particulate Matter less than 10 microns (PM10), Particulate Matter less than 2.5 microns (PM2.5), and Lead (Pb) from the above-listed equipment below the levels that would trigger the applicability of these rules.
- c. This permit is issued based on the construction of the Hammermill Shredder System not constituting a new major source or major

modification pursuant to Title I of the Clean Air Act, specifically 35 Ill. Adm. Code Part 203 (Major Stationary Sources Construction and Modification). The source has requested that the Illinois EPA establish emission limitations and other appropriate terms and conditions in this permit that limit the emissions of Volatile Organic Material (VOM) from the above-listed equipment below the levels that would trigger the applicability of these rules.

- d. This permit is issued based on the analysis of the data from the dispersion modeling of the source's Lead (Pb) emissions, that relate to the expected emissions from the project to the maximum off-site ambient air impacts not to exceed the primary and secondary National Ambient Air Quality Standards (NAAQS) for Lead, specifically 40 CFR 50.16. Furthermore, this permit is also issued based on the analysis of the data from the dispersion modeling of emissions of Manganese (Mn) and other metal HAPs, that relate the expected emissions from the project to corresponding maximum off-site ambient air impacts not to exceed the Agency for Toxic Substances and Disease Registry (ATSDR) Minimal Risk Levels, hazardous air contaminant air quality standards in the Wisconsin Department of Natural Resources air toxics rule (Wisconsin Administrative Code, Chapter NR 445 - Control of Hazardous Pollutants), and an inhalation risk greater than 1 in 1,000,000 for carcinogenic metals with a unit risk factor established by the United States Environmental Protection Agency (USEPA) or the California Air Resources Board (CARB).
- e. For purposes of this permit, General III, LLC is considered a single source with South Chicago Property Management, Ltd. (I.D. No. 031600GYI, located at 11600 South Burley Ave, Chicago).
- f. Operation of the Scrap Metal Recycling Facility listed above is allowed under this construction permit for a period of twelve (12) months from the date that raw material is first processed through the Hammermill Shredder. This condition supercedes Standard Condition 1 of this construction permit
- g. The operation of the emission units under this Construction Permit shall not begin until construction of the associated air pollution control equipment is complete and reasonable measures short of actual operation have been taken to verify proper operation of the air pollution control equipment.
- Pursuant to 40 CFR 50.16(a), the national primary and secondary ambient air quality standards for Lead (Pb) and its compounds are 0.15 micrograms per cubic meter, arithmetic mean concentration over a 3month period, measured in the ambient air as Pb either by:
 - i. A reference method based on Appendix G of 40 CFR Part 50 and designated in accordance with 40 CFR Part 53;
 - ii. An equivalent method designated in accordance with 40 CFR Part53.

- b. Pursuant to 40 CFR 50.16(b), the national primary and secondary ambient air quality standards for Pb are met when the maximum arithmetic 3-month mean concentration for a 3-year period, as determined in accordance with Appendix R of 40 CFR Part 50, is less than or equal to 0.15 micrograms per cubic meter.
- 3a. The Hammermill Shredder System, Ferrous Material Separation System, Non-Ferrous Material Separation System, and Miscellaneous Fugitive Sources are subject to 35 Ill. Adm. Code Part 212 Subpart B (Visible Emissions). Pursuant to 35 Ill. Adm. Code 212.123(a), no person shall cause or allow the emission of smoke or other particulate matter, with an opacity greater than 30 percent, into the atmosphere from any emission unit other than those emission units subject to 35 Ill. Adm. Code 212.122.
- b. Pursuant to 35 Ill. Adm. Code 212.123(b), the emission of smoke or other particulate matter from any such emission unit may have an opacity greater than 30 percent but not greater than 60 percent for a period or periods aggregating 8 minutes in any 60 minute period provided that such opaque emissions permitted during any 60 minute period shall occur from only one such emission unit located within a 305 m (1000 ft) radius from the center point of any other such emission unit owned or operated by such person, and provided further that such opaque emissions permitted from each such emission unit shall be limited to 3 times in any 24 hour period.
- c. This source is subject to 35 Ill. Adm. Code Part 212 Subpart K (Fugitive Particulate Matter). Pursuant to 35 Ill. Adm. Code 212.301, no person shall cause or allow the emission of fugitive particulate matter from any process, including any material handling or storage activity, that is visible by an observer looking generally toward the zenith at a point beyond the property line of the source.
- d. The Hammermill Shredder System, Ferrous Material Separation System, and Non-Ferrous Material Separation System are subject to 35 III. Adm. Code Part 212 Subpart L (Particulate Matter Emissions from Process Emission Units). Pursuant to 35 III. Adm. Code 212.321(a), except as further provided in 35 III. Adm. Code Part 212, no person shall cause or allow the emission of particulate matter into the atmosphere in any one hour period from any new process emission unit which, either alone or in combination with the emission of particulate matter from all other similar process emission units for which construction or modification commenced on or after April 14, 1972, at a source or premises, exceeds the allowable emission rates specified in 35 III. Adm. Code 212.321(c).
- e. Pursuant to 35 Ill. Adm. Code 212.321(b), interpolated and extrapolated values of the data in 35 Ill. Adm. Code 212.321(c) shall be determined by using the equation:

 $E = A(P)^B$

where:

- P = Process weight rate; and
- E = Allowable emission rate; and,
- i. Up to process weight rates of 408 Mg/hr (450 T/hr):

	Metric	English
P	Mg/hr	T/hr
E	kg/hr	lbs/hr
A	1.214	2.54
В	0.534	0.534

ii. For process weight rate greater than or equal to 408 Mg/hr (450 $^{\mathrm{T/hr}}$):

	Metric	English
P	Mg/hr	T/hr
E ,	kg/hr	lbs/hr
A	11.42	24.8
В	0.16	0.16

f. Pursuant to 35 Ill. Adm. Code 212.321(c), Limits for Process Emission Units for Which Construction or Modification Commenced on or After April 14, 1972:

Metric		English	
P	E	P	E
Mg/hr	kg/hr	T/hr	lbs/hr
0.05	0.25	0.05	0.55
0.1	0.29	0.10	0.77
0.2	0.42	0.20	1.10
0.3	0.64	0.30	1.35
0.4	0.74	0.40	1.58
0.5	0.84	0.50	1.75
0.7	1.00	0.75	2.40
0.9	1.15	1.00	2.60
1.8	1.66	2.00	3.70
2.7	2.1	3.00	4.60
3.6	2.4	4.00	5.35
4.5	2.7	5.00	6.00
9.	3.9	10.00	8.70
13.	4.8	15.00	10.80
18.	5.7	20.00	12.50
23.	6.5	25.00	14.00
27.	7.1	30.00	15.60
32.	7.7	35.00	17.00
36.	8.2	40.00	18.20
41.	8.8	45.00	19.20
45.	9.3	50.00	20.50
90.	13.4	100.00	29.50
140.	17.0	150.00	37.00

Page 6

Metric		English	•
P	E	P	E
Mg/hr	kg/hr	T/hr	lbs/hr
180.	19.4	200.00	43.00
230.	22.	250.00	48.50
270.	24.	300.00	53.00
320.	26.	350.00	58.00
360.	28.	400.00	62.00
408.	30.1	450.00	66.00
454.	30.4	500.00	67.00

where:

- P = Process weight rate in metric or T/hr, and
- E = Allowable emission rate in kg/hr or lbs/hr.
- The Hammermill Shredder System, Ferrous Material Separation System, and Non-Ferrous Material Separation System are subject to 35 Ill. Adm. Code 212.324 (Process Emission Units in Certain Areas). Pursuant to 35 Ill. Adm. Code 212.324(b), except as otherwise provided in 35 Ill. Adm. Code 212.324, no person shall cause or allow the emission into the atmosphere, of PM10 from any process emission unit to exceed 68.7 mg/scm (0.03 gr/scf) during any one-hour period.
- h. This source is subject to 35 Ill. Adm. Code Part 212 Subpart U (Additional Control Measures). Pursuant to 35 Ill. Adm. Code 212.700(a), 35 Ill. Adm. Code 212 Subpart U (Additional Control Measures) shall apply to those sources in the areas designated in and subject to 35 Ill. Adm. Code 212.324(a)(1) or 212.423(a) and that have actual annual source-wide emissions of PM10 of at least fifteen (15) tons per year.
- 4. The RTO associated with Hammermill Shredder System is subject to 35 Ill. Adm. Code Part 214 Subpart K (Process Emission Sources). Pursuant to 35 Ill. Adm. Code 214.301, except as further provided by 35 Ill. Adm. Code Part 214, no person shall cause or allow the emission of sulfur dioxide into the atmosphere from any process emission source to exceed 2000 ppm.
- 5a. The Hammermill Shredder System is subject to 35 Ill. Adm. Code Part 218 Subpart G (Use of Organic Material). Pursuant to 35 Ill. Adm. Code 218.301, no person shall cause or allow the discharge of more than 3.6 kg/hr (8 lbs/hr) of organic material into the atmosphere from any emission unit, except as provided in 35 Ill. Adm. Code 218.302, 218.303, or 218.304 and the following exception: If no odor nuisance exists the limitation of 35 Ill. Adm. Code Part 218 Subpart G shall only apply to photochemically reactive material.
- b. Pursuant to 35 Ill. Adm. Code 218.302(a), emissions of organic material in excess of those permitted by 35 Ill. Adm. Code 218.301 are allowable if such emissions are controlled by one of the following methods:

Flame, thermal or catalytic incineration so as either to reduce such emissions to 10 ppm equivalent methane (molecular weight 16) or less, or to convert 85 percent of the hydrocarbons to carbon dioxide and water.

- c. The Hammermill Shredder System is subject to 35 Ill. Adm. Code Part 218 Subpart TT (Other Emission Units). Pursuant to 35 Ill. Adm. Code 218.980(a):
 - i. A source is subject to 35 Ill. Adm. Code Part 218 Subpart TT if it contains process emission units not regulated by 35 Ill. Adm. Code Part 218 Subparts B, E, F (excluding 35 Ill. Adm. Code 218.204 (1)), H (excluding 35 Ill. Adm. Code 218.405), Q, R, S, T (excluding 35 Ill. Adm. Code 218.486), V, X, Y, Z or BB of this Part, which as a group both:
 - A. Have maximum theoretical emissions of 90.7 Mg (100 tons) or more per calendar year of VOM, and
 - B. Are not limited to less than 90.7 Mg (100 tons) of VOM emissions per calendar year in the absence of air pollution control equipment through production or capacity limitations contained in a federally enforceable permit or a SIP revision.
 - ii. If a source is subject to 35 Ill. Adm. Code Part 218 Subpart TT as provided in 35 Ill. Adm. Code Part 218 Subpart TT, the requirements of 35 Ill. Adm. Code Part 218 Subpart TT shall apply to a source's VOM emission units which are not included within any of the categories specified in 35 Ill. Adm. Code Part 218 Subparts B, E, F, H, Q, R, S, T, V, X, Y, Z, AA, BB, PP, QQ, or RR or which are not exempted from permitting requirements pursuant to 35 Ill. Adm. Code 201.146.
- d. Pursuant to 35 III. Adm. Code 218.986(a), every owner or operator of an emission unit subject to 35 III. Adm. Code 218 Subpart TT shall comply with the requirements of 35 III. Adm. Code 218.986(a), (b), (c), (d), or (e) below.

Emission capture and control equipment which achieves an overall reduction in uncontrolled VOM emissions of at least 81 percent from each emission unit.

- 6. This permit is issued based on the Scrap Metal Recycling Facility not being subject to the New Source Performance Standards (NSPS) for Metallic Mineral Processing Plants, 40 CFR 60 Subpart LL because the Raw Material Receiving and Handling System, Hammermill Shredder System, Ferrous Material Separation System, Non-Ferrous Material Separation System, and Fines Processing System at this source are not used to produce metallic mineral concentrates from ore.
- 7a. This permit is issued based on the Scrap Metal Recycling Facility not being subject to the National Emission Standards for Hazardous Air

Pollutants (NESHAP) from Off-Site Waste and Recovery Operations, 40 CFR 63 Subpart DD, because the plant site is not a major source of HAP emissions as defined in 40 CFR 63.2.

- b. This permit is issued based on the Scrap Metal Recycling Facility not being subject to the NESHAP for Primary Nonferrous Metals Area Sources—Zinc, Cadmium, and Beryllium, 40 CFR 63 Subpart GGGGGG, because the source will not be engaged in primary zinc production or primary beryllium production.
- c. This permit is issued based on the Scrap Metal Recycling Facility not being subject to the NESHAP for Secondary Nonferrous Metals Processing Area Sources, 40 CFR 63 Subpart TTTTTT, because the source will not be engaged in secondary nonferrous metals processing as defined in 40 CFR 63.11472.
- d. This permit is issued based on the Scrap Metal Recycling Facility not being subject to the NESHAP for Nine Metal Fabrication and Finishing Source Categories, 40 CFR 63 Subpart XXXXXX, because the source will not be primarily engaged in the operations in one of the nine source categories listed in 40 CFR 63.11514(a)(1) through (9).
- 8a. Pursuant to 35 Ill. Adm. Code 212.314, 35 Ill. Adm. Code 212.301 shall not apply and spraying pursuant to 35 Ill. Adm. Code 212.304 through 212.310 and 35 Ill. Adm. Code 212.312 shall not be required when the wind speed is greater than 40.2 km/hr (25 mph). Determination of wind speed for the purposes of 35 Ill. Adm. Code 212.314 shall be by a one-hour average or hourly recorded value at the nearest official station of the U.S. Weather Bureau or by wind speed instruments operated on the site. In cases where the duration of operations subject to 35 Ill. Adm. Code 212.314 is less than one hour, wind speed may be averaged over the duration of the operations on the basis of on-site wind speed instrument measurements.
- b. Pursuant to 35 Ill. Adm. Code 212.324(d), the mass emission limits contained in 35 Ill. Adm. Code 212.324(b) and (c) shall not apply to those emission units with no visible emissions other than fugitive particulate matter; however, if a stack test is performed, 35 Ill. Adm. Code 212.324(d) is not a defense finding of a violation of the mass emission limits contained in 35 Ill. Adm. Code 212.324(b) and (c).
- 9a. Pursuant to 35 Ill. Adm. Code 212.324(f), for any process emission unit subject to 35 Ill. Adm. Code 212.324(a), the owner or operator shall maintain and repair all air pollution control equipment in a manner that assures that the emission limits and standards in 35 Ill. Adm. Code 212.324 shall be met at all times. 35 Ill. Adm. Code 212.324(f) shall not affect the applicability of 35 Ill. Adm. Code 201.149. Proper maintenance shall include the following minimum requirements:
 - i. Visual inspections of air pollution control equipment;
 - ii. Maintenance of an adequate inventory of spare parts; and

- iii. Expeditious repairs, unless the emission unit is shutdown.
- b. Pursuant to 35 Ill. Adm. Code 212.701(a), those sources subject to 35 Ill. Adm. Code Part 212 Subpart U shall prepare contingency measure plans reflecting the PM_{10} emission reductions set forth in 35 Ill. Adm. Code 212.703. These plans shall become federally enforceable permit conditions. Such plans shall be submitted to the Illinois EPA by November 15, 1994. Notwithstanding the foregoing, sources that become subject to the provisions of 35 Ill. Adm. Code Part 212 Subpart U after July 1, 1994, shall submit a contingency measure plan to the Illinois EPA for review and approval within ninety (90) days after the date such source or sources became subject to the provisions of 35 Ill. Adm. Code Part 212 Subpart U or by November 15, 1994, whichever is later. The Illinois EPA shall notify those sources requiring contingency measure plans, based on the Illinois EPA's current information; however, the Illinois EPA's failure to notify any source of its requirement to submit contingency measure plans shall not be a defense to a violation of 35 Ill. Adm. Code Part 212 Subpart 'U and shall not relieve the source of its obligation to timely submit a contingency measure plan.
- c. Pursuant to 35 Ill. Adm. Code 212.703(a), all sources subject to 35 Ill. Adm. Code Part 212 Subpart U shall submit a contingency measure plan. The contingency measure plan shall contain two levels of control measures:
 - i. Level I measures are measures that will reduce total actual annual source-wide fugitive emissions of PM_{10} subject to control under 35 Ill. Adm. Code 212.304, 212.305, 212.306, 212.308, 212.316(a) through (e), 212.424 or 212.464 by at least 15%.
 - ii. Level II measures are measures that will reduce total actual annual source-wide fugitive emissions of PM_{10} subject to control under 35 Ill. Adm. Code 212.304, 212.305, 212.306, 212.308, 212.316(a) through (e), 212.424 or 212.464 by at least 25%.
- d. Pursuant to 35 Ill. Adm. Code 212.703(b), a source may comply with 35 Ill. Adm. Code Part 212 Subpart U through an alternative compliance plan that provides for reductions in emissions equal to the level of reduction of fugitive emissions as required at 35 Ill. Adm. Code 212.703(a) and which has been approved by the Illinois EPA and USEPA as federally enforceable permit conditions. If a source elects to include controls on process emission units, fuel combustion emission units, or other fugitive emissions of PM₁₀ not subject to 35 Ill. Adm. Code 212.304, 212.305, 212.306, 212.308, 212.316(a) through (e), 212.424 or 212.464 at the source in its alternative control plan, the plan must include a reasonable schedule for implementation of such controls, not to exceed two (2) years. This implementation schedule is subject to Illinois EPA review and approval.
- e. Pursuant to 35 Ill. Adm. Code 212.704(b), if there is a violation of the ambient air quality standard for PM_{10} as determined in accordance with 40 CFR Part 50, Appendix K, the Illinois EPA shall notify the source or sources the Illinois EPA has identified as likely to be

causing or contributing to one or more of the exceedances leading to such violation, and such source or sources shall implement Level I or Level II measures, as determined pursuant to 35 Ill. Adm. Code 212.704(e). The source or sources so identified shall implement such measures corresponding to fugitive emissions within ninety (90) days after receipt of a notification and shall implement such measures corresponding to any nonfugitive emissions according to the approved schedule set forth in such source's alternative control plan. Any source identified as causing or contributing to a violation of the ambient air quality standard for PM_{10} may appeal any finding of culpability by the Illinois EPA to the Illinois Pollution Control Board pursuant to 35 Ill. Adm. Code 106 Subpart J.

- f. Pursuant to 35 Ill. Adm. Code 212.704(e), the Illinois EPA shall require that sources comply with the Level I or Level II measures of their contingency measure plans, pursuant 35 Ill. Adm. Code 212.704(b), as follows:
 - i. Level I measures shall be required when the design value of a violation of the 24-hour ambient air quality standard, as computed pursuant to 40 CFR 50, Appendix K, is less than or equal to $170~\rm ug/m^3$.
 - ii. Level II measures shall be required when the design value of a violation of the 24-hour ambient air quality standard, as computed pursuant to 40 CFR 50, Appendix K, exceeds 170 ug/m^3 .
- 10a. The Scrap Metal Recycling Facility shall be operated under the provisions of a Fugitive Emissions Operating Program. This operating program was submitted by the Permittee and designed to limit fugitive particulate matter emissions to ensure compliance with 35 Ill. Adm. Code 212.301.
 - b. The Fugitive Emissions Operating Program, as submitted by the Permittee pursuant to Condition 10(a) dated June 25, 2020, is incorporated herein by reference. The source shall comply with the provisions of this Program and any amendments to the Program submitted pursuant to Condition 10(c).
 - c. The Fugitive Emissions Operating Program shall be amended from time to time by the Permittee so that the operating Program is current. Such amendments shall be consistent with Condition 10(a) and shall be submitted to the Illinois EPA within thirty (30) days of amendment. Any future revision to the Program made by the Permittee during the permit term is automatically incorporated by reference unless expressly disapproved by the Illinois EPA within thirty (30) days of submission. In the event that the Illinois EPA notifies the Permittee that further information regarding the revision to the Program is needed, the Permittee shall respond to the notice within thirty (30) days of receipt of notification.
 - d. The Hammermill Shredder System shall be operated under the provisions of a Feedstock Management Plan. This plan shall be submitted to the

Illinois EPA for review and approval at least ninety (90) days prior to initially receiving recycling materials at the facility. At a minimum, this plan must contain the following:

- i. Incoming material restrictions;
- ii. Load inspection procedures;
- iii. List of materials accepted requiring special handling;
- iv. Procedures for each of the materials requiring special handling;
- v. Personnel training procedures.
- 11a. The Roll-Media Filter, RTO, Quench/Packed Tower Scrubber, and Dust Collectors (DC-01 through DC-04) shall be in operation at all times when the associated emission units are in operation and emitting air contaminants.
 - b. The RTO combustion chambers shall be preheated to at least the manufacturer's recommended temperature, but no less than the temperature at which compliance was demonstrated in the most recent compliance test, or 1,400°F in the absence of a compliance test. This temperature shall be maintained during operation of the Metal Shredder System and calculated as a three-hour block average.
 - c. The RTO shall only be operated with natural gas as the fuel. The use of any other fuel in the RTO may require that the Permittee first obtain a construction permit from the Illinois EPA and then perform stack testing to verify compliance with all applicable requirements.
 - d. The RTO associated with the Hammermill Shredder System shall be equipped with a temperature monitoring device that is installed, calibrated, operated, and maintained, in accordance with vendor/manufacturer specifications and 35 Ill. Adm. Code 218.105(d)(2).
 - e. The Quench/Packed Tower Scrubber associated with the Hammermill Shredder System shall be equipped with a monitoring device for pressure differential, scrubbant liquid flow rate, and pH of the scrubbant liquid. These monitoring devices shall be installed, calibrated, operated, and maintained, in accordance with vendor/manufacturer specifications. The data measured by this device shall be automatically recorded on at least a 15 block minute averages basis and on an hourly average in an electronic database.
 - f. The Roll-Media Filter associated with the Hammermill Shredder System shall be equipped with a monitoring device for pressure differential. This monitoring device shall be installed, calibrated, operated and maintained, in accordance with vendor/manufacturer specifications. The data measured by this device shall be automatically recorded on at least a 15-block minute average basis and on an hourly average in an electronic database.

- g. The Dust Collector (DC-01) associated with the Fines Processing Building shall be equipped with a monitoring device for pressure differential. This monitoring device shall be installed, calibrated, operated, and maintained, in accordance with vendor/manufacturer specifications. The data measured by this device shall be automatically recorded on at least an hourly basis in an electronic database.
- h. The monitoring devices required in conditions 11(e)-(h) shall be installed and fully operational at prior to first processing material through the Hammermill Shredder System.
- i. The Permittee shall operate the capture system, Roll-Media Filter, RTO and the Quench/Packed Tower Scrubber associated with the Hammermill Shredder System, Dust Collectors (DC-01 through DC-04) and equipment used for the control of fugitive dust identified in the Fugitive Emissions Operating Program under the provisions of an Operation and Maintenance Plan. At least thirty (30) days prior to first processing material through the Hammermill Shredder System, the Permittee shall submit to the Illinois EPA for review and approval an Operation and Maintenance Plan for the capture system, Roll-Media Filter, RTO and the Quench/Packed Tower Scrubber associated with the Hammermill Shredder System, Dust Collectors (DC-01 through DC-04) and equipment used for the control of fugitive dust identified in the Fugitive Emissions Operating Program. This plan shall provide specific operating parameters and inspection, and maintenance practices and procedures for the for each system or control device identified in this condition, including frequencies of such specific activities and actions and associated recordkeeping procedures.
- j. The Permittee shall install, operate, and maintain a continuous gas' flammability monitoring device for the shredder exhaust gas stream. This device shall measure the percent of the Lower Explosive Limit (% LEL) or percent of the Lower Flammability Limit (% LFL) of the shredder exhaust gas. This monitoring device shall have an accuracy of at least +/-3 percent of full scale. Values measured by this device shall be automatically recorded at least once per second and stored in an electronic data base.
- k. The Permittee shall install, operate and maintain a continuous monitoring device for the control train for the Hammermill Shredder System for one of the following operational parameters. This monitoring device shall make measurements at least every minute and have an accuracy of at least ± 5 percent. The data measured by this device shall be automatically recorded on at least a minute by minute basis and on an hourly average in an electronic database. The Permittee shall determine the gas flow rate to be used to calculate VOM emissions from a Bypass Event using data collected by this monitoring system.
 - i. The amperage or usage of electrical power by the motor for the Roll Media Filter fan;

- ii. The shredder exhaust gas flow rate; or.
- iii. Other operational parameter(s) approved by the Illinois EPA.
- 1. The Permittee shall install, operate, and maintain a continuous monitoring device for the status of the emergency bypass damper for the RTO in the control train for the Hammermill Shredder System, i.e., whether this damper is closed or open. The data collected by this device shall be automatically recorded in an electronic database.
- m. The Permittee shall operate the continuous monitoring devices required by Condition 11(j), (k) and (l) at all times that the Hammermill Shredder System is in operation.
- 12a. Operation of the source's emission units and activities shall not exceed the following limits:
 - i. Hours of operation:

Site Operation	Monday t	o Friday	Saturday		
Ferrous System Operation		,			
(includes Hammermill					
Shredder RTO/Scrubber Stack	7:00 AM -		7:00 AM -		
and Rail and Truck Loading)	7:00 PM	12 hrs/day	5:00 PM	10 hrs/day	
Barge, Loading	7:00 AM -		7:00 AM -		
	3:00 PM	8 hrs/day	3:00 PM	8 hrs/day	
Non-Ferrous System Operation	5:00 AM -		5:00 AM -		
Volume as a second	11:00 PM	18 hrs/day	11:00 PM	18 hrs/day	
Roadway Fugitive Emissions	5:00 AM -		5:00 AM -		
(Facility Vehicle Traffic)*	7:00 PM	14 hrs/day	5:00 PM	12 hrs/day	

- * The roadway fugitive emissions (Facility Vehicle Traffic) operation limitations in the table above is only intended to reflect haul truck traffic (semi-trailers) on specified road segments accompanying deliveries of metal scrap and removal of waste material.
- ii. The limitations on hours of operation for the source are based upon the meteorological hours modeled for each operation as specified on Table 1 of the modeling analysis and page 1 of supplement No. 1 to the Air Dispersion Modeling Report, dated January 24, 2020, for assessment of metal emission impacts.
- b. Emissions from and operation of the Hammermill Shredder System shall not exceed the following limits:

i. VOM emissions:

			Emission		
	Proces	s Rate	Factor	VOM Emission	
Emission Unit	(Tons/Mo)	(Tons/Yr)	(lb/Ton)	(Tons/Mo)	(Tons/Yr)
Hammermill Shredder RTO/Scrubber Stack	100,000	1,000,000	0.5119	0.51	5.12
VIO/Scrapper Stack	100,000	1,000,000	0.5115	0.51	J.12

These limits are based on maximum shredder material throughput, an uncontrolled emission factor derived from a stack test at the inlet of the RTO in November 2019 at GII, LLC (I.D. # 031600BTB), and 98% removal efficiency by the RTO/Scrubber. All measured total hydrocarbon (THC) emissions are assumed to be VOM.

ii. HAP emissions:

•						Hydroc	hloric		•
		Lead	(Pb)	Manganes	se (Mn)	Acid	(HCl)	Combine	d HAPs ¹
Emission Unit .		(T/Mo)	(T/Yr)	(T/Mo)	(T/Yr)	(T/Mo)	(T/Yr)	<u>(T/Mo)</u>	(T/Yr)
Metal Shredder								0.10	1 22
RTO/Scrubber	Stack	0.000138	0.00138	0.000199	0.00199	0.08	0.77	0.13	1.33

Combined HAPs means the total of all individual HAPs (as defined in Section 112(b) of the Clean Air Act) that are emitted from the Hammermill Shredder System.

These limits are based on the maximum shredder material throughput in Condition 12(b)(i) above and measured emission rates from the November 2019 stack test at GII, LLC (I.D. # 031600BTB) adjusted by safety factor of 2.0.

iii. PM, PM_{10} , and $PM_{2.5}$ emissions:

	Proces	s Rate	Emission Factor		and PM _{2.5} . sions
Emission Unit	(Tons/Mo)	(Tons/Yr)	(lb/Ton)	(Tons/Mo)	(Tons/Yr)
Metal Shredder RTO/Scrubber Stack	100,000	1,000,000	0.0047	0.47	4.70

These limits are based on maximum shredder material throughput in Condition 12(b)(i) above, emission factors derived from the May/June 2018 stack test at GII, LLC (I.D. # 031600BTB) adjusted by a safety factor of 2.0, and all measured filterable PM assumed to be PM₁₀ and PM_{2.5}.

- c. Emissions from fuel combustion in the RTO associated with the Hammermill Shredding System shall not exceed the following limits:
 - i. Natural gas usage: 6.57 mmscf/month, 51.47 mmscf/year

Page 15

ii. Emissions from the combustion of natural gas:

	Emission Factor	Emissions .		
<u>Pollutant</u>	(lbs/mmscf)	(Tons/Mo)	(Tons/Yr)	
Carbon Monoxide (CO)	583.55	1.50	15.02	
Nitrogen Oxides (NOx)	100.0	0.26	2.57	
Particulate Matter (PM, PM ₁₀ ,				
and PM _{2.5})	7.6	0.02	0.20	
Sulfur Dioxide (SO ₂)	0.6	0.01	0.09	

These limits are based on the maximum firing rate of the RTO burner (15.0 mmBtu/hour), maximum natural gas usage, 12.86 tons/year of CO emissions and 0.05 tons/year of SO_2 emissions based on data from the November 2019 stack test at GII, LLC (I.D. # 031600BTB), and standard emission factors (Tables 1.4-1 and 1.4-2, AP-42, Fifth Edition, Volume I, Supplement D, July 1998).

- d. Emissions from and operation of the Ferrous Material Separation Process shall not exceed the following limits:
 - i. Material process rates and Particulate Matter (PM) Emissions:

	Proce:	ss Rate	Emission Factor	PM Emis	sions
Emission Unit	(Tons/Mo)	(Tons/Yr)	(lb/Ton)	(Tons/Mo)	(Tons/Yr)
70 Conveyor Transfer Points 2 Rail/Truck Loading areas	1,444,050	14,440,500	0.00014	0.10	0.96
and 1 Barge loading point	137,600	1,376,000	0.000204	0.01	0.14
7 Stockpile Loading Points	300,000	3,000,000	0.00122	0.18 Total:	$\frac{1.83}{2.93}$

ii. PM_{10} and $PM_{2.5}$ Emissions:

	PM ₁₀ Emission Factor	PM ₁₀ Em	issions	PM _{2.5} Emission Factor	PMas Em	issions
Emission Units	(lb/Ton)	(Tons/Mo)	(Tons/Yr)	(lb/Ton)	(Tons/Mo)	(Tons/Yr)
70 Conveyor Transfer Points 2 Rail/Truck Loading areas and 1 Barge	0.000046	0.03	0.31	0.000013	0.01	0.09
loading point	0.00010	0.01	0.07	0.000015	0.01	0.01
7 Stockpile Loading Points	0.00058	0.09 Totals:	$\frac{0.87}{1.25}$	0.000087	0.01	$\frac{0.13}{0.23}$

iii. HAP emissions:

	Lead (Pb)	Emissions	Mangane Emis:	se (Mn) sions	Combined HAP Emissions ²	
Emission Unit	(Tons/Mo)	(Tons/Yr)	(Tons/Mo)	(Tons/Yr)	(Tons/Mo)	(Tons/Yr)
Ferrous Material Separation Process	0.0007	0.0069	0.0004	0.0042	0.0015	0.0143

- Combined HAPs means the total of all individual HAPs (as defined in Section 112(b) of the Clean Air Act) that are emitted from the Ferrous Material Separation Process.
- The above limits for PM, PM_{10} , and $PM_{2.5}$ are based on the maximum iv. material throughput, standard emission factors from AP-42 (Table 11.19.2-2, Fifth Edition, Volume I, Update 2004, August 2004) for conveyors transfer points and Truck/Barge Loading, stockpile loadings emission factor derived using AP-42, Section 13.2.4.3 (Table 13.2.4, AP-42, Fifth Edition, Volume I, November 2006) using coefficients of K=0.74 (PM), K=0.35 (PM $_{10}$), and K=0.053 $(PM_{2.5})$; U (mean windspeed) = 9.0 mph, and M (minimum moisture content) = 1.5% applied to light material stockpile, 5.4% applied to raw scrap metal handling, 10% applied to ASR stockpile loading. The above limits for HAP emissions limits are based upon total metal HAPs being 0.49% of the estimated total PM emissions based on metal HAP analyses performed on a sitespecific sample of material at GII representing anticipated characteristics of Ferrous Material Processing.
- e. Emissions from and operation of the Non-Ferrous Material Separation Process and Fines Processing System shall not exceed the following limits:
 - i. PM, PM₁₀, and PM_{2.5} emissions for Fines Separation System emission units and activities inside a building controlled by Dust Collector DC-01 shall not exceed 0.15 tons/month and 1.44 tons/year. This limit is based on PM, PM₁₀, and PM_{2.5} emissions being calculated by using the stack flow rate (12,000 cfm) and grain loading of 0.005 gr/dscf and hours of operation.
 - ii. Emissions from and operation of other Non-Ferrous Separation System emission units shall not exceed the following limits:
 - A. Material process rates and Particulate Matter (PM) Emissions:

Page 17

	Process Rate		Emission Factor	PM Emission	
Emission Units	(Tons/Mo)	(Tons/Yr)	(lb/Ton)	(Tons/Mo)	(Tons/Yr)
88 Conveyor Transfer Points					
(Uncontrolled)	333,876	3,338,757	0.00300	0.43	4.34
11 Conveyor Transfer Points					
(Controlled)	57,210	572,103	0.00014	0.01	0.04
13 Screening Points					
(Uncontrolled)	13,670	136,702	0.02500	0.17	1.71
12 Screening Points					
(Controlled)	42,209	422,085	0.00220	0.04	0.41
2 Truck Loading Points	45,847	458,466	0.00020	0.01	0.05
13 Stockpile Loading Points	23,338	233,378	0.00737	0.09	0.86
•	•	,		Total:	7.40

B. PM_{10} and $PM_{2.5}$ emissions from outdoor emission units:

	PM ₁₀ Emission	PM _{2.5} Emission					
	Factor	PM ₁₀ Emissions		Factor	PM _{2.5} Emission		
Emission Units	(lb/Ton)	(Tons/Mo)	(Tons/Yr)	(lb/Ton)	(Tons/Mo)	(Tons/Yr)	
88 Conveyor Transfer							
Points (Uncontrolled)	0.0011	0.16	1.59	0.000167	0.02	0.24	
11 Conveyor Transfer							
Points (Controlled)	0.000046	0.01	0.01	0.000013	0.01	0.01	
13 Screening Points							
(Uncontrolled)	0.0087	0.06	0.59	0.001317	0.01	0.09	
12 Screening Points							
(Controlled)	0.00074	0.01	0.14	0.00005	0.01	0.01	
2 Truck Loading Points	0.0001	0.01	0.02	0.000015	0.01	0.01	
13 Stockpile Loading							
Points	0.00351	0.04	0.41	0.00051	0.01	0.06	
		Totals:	2.76			0.41	

- C. The above limits for PM, PM₁₀, and PM_{2.5} are based on the maximum material throughput, Standard emission factors from AP-42 (Table 11.19.2-2, Fifth Edition, Volume I, Update 2004, August 2004) for conveyors transfer points screening and Truck Loading, stockpile loading emission factor derived using AP-42, Section 13.2.4.3 (Table 13.2.4, AP-42, Fifth Edition, Volume I, November 2006) using coefficients of K=0.74 (PM), K=0.35 (PM₁₀), and PM_{2.5} U (mean windspeed) = 9.0 mph, and M (minimum moisture content) = 1.5% applied to light material stockpile loading.
- iii. HAP emissions from Non-Ferrous Material Separation Process shall not exceed the following limits:

	Lead (Pb) Emissions		Manganese (Mn) Emissions		Combined HAP Emissions ³	
Emission Unit	(Tons/Mo)	(Tons/Yr)	(Tons/Mo)	(Tons/Yr)	(Tons/Mo)	(Tons/Yr)
Non-Ferrous Material Separation Process	0.0042	0.0417	0.0016	0.0156	0.01	0.07

Combined HAPs means the total of all individual HAPs (as defined in Section 112(b) of the Clean Air Act) that are emitted from the Non-Ferrous Material Separation Process.

These limits are based on total metal HAPs being 0.83% of the estimated total PM emissions based on metal HAP analyses performed on a site-specific sample of material at GII representing anticipated characteristics of Non-Ferrous Material Processing.

- f. Compliance with the annual limits of this permit shall be determined on a monthly basis from the sum of the data for the current month plus the preceding 11 months (running 12-month total).
- 13a. Pursuant to 35 Ill. Adm. Code 201.282, every emission source or air pollution control equipment shall be subject to the following testing requirements for the purpose of determining the nature and quantities of specified air contaminant emissions and for the purpose of determining ground level and ambient air concentrations of such air contaminants:
 - Testing by Owner or Operator. The Illinois EPA may require the i. owner or operator of the emission source or air pollution control equipment to conduct such tests in accordance with procedures adopted by the Illinois EPA, at such reasonable times as may be specified by the Illinois EPA and at the expense of the owner or operator of the emission source or air pollution control equipment. The Illinois EPA may adopt procedures detailing methods of testing and formats for reporting results of testing. Such procedures and revisions thereto, shall not become effective until filed with the Secretary of State, as required by the APA Act. All such tests shall be made by or under the direction of a person qualified by training and/or experience in the field of The Illinois EPA shall have the right to air pollution testing. observe all aspects of such tests.
 - ii. Testing by the Illinois EPA. The Illinois EPA shall have the right to conduct such tests at any time at its own expense. Upon request of the Illinois EPA, the owner or operator of the emission source or air pollution control equipment shall provide, without charge to the Illinois EPA, necessary holes in stacks or ducts and other safe and proper testing facilities, including scaffolding, but excluding instruments and sensing devices, as may be necessary.

- 14a. Pursuant to 35 Ill. Adm. Code 212.107, for both fugitive and nonfugitive particulate matter emissions, a determination as to the presence or absence of visible emissions from emission units shall be conducted in accordance with Method 22, 40 CFR Part 60, Appendix A, except that the length of the observing period shall be at the discretion of the observer, but not less than one minute. 35 Ill. Adm. Code 212 Subpart A shall not apply to 35 Ill. Adm. Code 212.301.
 - b. Pursuant to 35 Ill. Adm. Code 212.109, except as otherwise provided in 35 Ill. Adm. Code Part 212, and except for the methods of data reduction when applied to 35 Ill. Adm. Code 212.122 and 212.123, measurements of opacity shall be conducted in accordance with Method 9, 40 CFR Part 60, Appendix A, and the procedures in 40 CFR 60.675(c) and (d), if applicable, except that for roadways and parking areas the number of readings required for each vehicle pass will be three taken at 5-second intervals. The first reading shall be at the point of maximum opacity and second and third readings shall be made at the same point, the observer standing at right angles to the plume at least 15 feet away from the plume and observing 4 feet above the surface of the roadway or parking area. After four vehicles have passed, the 12 readings will be averaged.
 - c. Pursuant to 35 Ill. Adm. Code 212.110(a), measurement of particulate matter emissions from stationary emission units subject to 35 Ill. Adm. Code Part 212 shall be conducted in accordance with 40 CFR Part 60, Appendix A, Methods 5, 5A, 5D, or 5E.
 - d. Pursuant to 35 Ill. Adm. Code 212.110(b), the volumetric flow rate and gas velocity shall be determined in accordance with 40 CFR Part 60, Appendix A, Methods 1, 1A, 2, 2A, 2C, 2D, 3, and 4.
 - e. Pursuant to 35 Ill. Adm. Code 212.110(c), upon a written notification by the Illinois EPA, the owner or operator of a particulate matter emission unit subject to 35 Ill. Adm. Code Part 212 shall conduct the applicable testing for opacity or visible emissions at such person's own expense, to demonstrate compliance. Such test results shall be submitted to the Illinois EPA within thirty (30) days after conducting the test unless an alternative time for submittal is agreed to by the Illinois EPA.
- 15. Pursuant to 35 Ill. Adm. Code 218.988(a), when in the opinion of the Illinois EPA it is necessary to conduct testing to demonstrate compliance with 35 Ill. Adm. Code 218.986, the owner or operator of a VOM emission unit subject to the requirements of 35 Ill. Adm. Code Part 218 Subpart TT shall, at his own expense, conduct such tests in accordance with the applicable test methods and procedures specified in 35 Ill. Adm. Code 218.105.
- 16a. Within sixty (60) days after the date raw material is first processed through the Hammermill Shredder, the Permittee shall:
 - i. Conduct opacity observations from the Hammermill Shredder System stack, each emission unit in the Ferrous Material Separation

System, Fines Processing Building (DC-01), each emission unit in the Non-Ferrous Material Separation System, and Miscellaneous Fugitive Sources during conditions which are representative of maximum emissions in order to demonstrate compliance with 35 Ill. Adm. Code 212.123 and Condition 3(a) of this permit. Thereafter, this testing shall be conducted once every five (5) years from the preceding testing date.

- ii. Measure and quantify (gr/dscf and lb/hr) the emissions of PM, PM₁₀, and PM_{2.5} from the Fines Processing Building (DC-01) during conditions which are representative of maximum emissions in order to demonstrate compliance with 35 Ill. Adm. Code 212.321, 35 Ill. Adm. Code 212.324(b), and Conditions 3(d)-(g), and 12(e)(i) of this permit. Thereafter, this testing shall be conducted once every five (5) years from the preceding testing date.
- iii. Measure and quantify the emissions of PM (gr/dscf and lb/hr), PM₁₀ (gr/dscf and lb/hr), PM_{2.5} (gr/dscf and lb/hr), SO₂ (ppmv and lb/hr), CO (ppmv and lb/hr), HCl (ppmv and lb/hr), and Metals (ppmv and lb/hr) emissions from the Hammermill Shredder System during conditions which are representative of maximum emissions in order to demonstrate compliance with 35 Ill. Adm. Code 212.321, and Conditions 3(d)-(g), 12(b)(ii), (b)(iii) and (c) of this permit.
- iv. Measure (ppmv) and quantify (lb/hr) from the inlet and outlet emissions of VOM from the RTO, measure VOM capture efficiency of capture system, determine the destruction efficiency of the RTO, and calculate overall VOM control efficiency for the capture system and RTO, during conditions which are representative of maximum emissions in order to demonstrate compliance with 35 Ill. Adm. Code 218.986(a), and Condition 12(b)(i) of this permit. If VOM capture efficiency meets the criteria of a PTE as determined by USEPA Method 204 or an alternate method adopted by the USEPA to demonstrate capture efficiency, testing under this condition shall be conducted once every five (5) years from the preceding testing date. However, if the VOM capture efficiency does not meet the criteria of a PTE, subsequent testing shall be conducted within twelve (12) months from the preceding testing.
- b. The following methods and procedures shall be used for testing of emissions, unless another method is approved by the Illinois EPA: (refer to 40 CFR 51, Appendix M and 40 CFR 60, Appendix A for USEPA test methods).

Sample and Velocity Traverses for Stationary Sources

Sample and Velocity Traverses for Stationary Sources

With Small Stacks or Ducts

USEPA Method 1

USEPA Method 1

Determination of Stack Gas Velocity and Volumetric Flow USEPA Method 2 Rate (Type S Pitot Tube)

Direct Measurement of Gas Volume through Pipes and Small USEPA Method 2A Ducts

Determination of Gas Velocity and Volumetric Flow Rate in Small Stacks or Ducts (Standard Pitot Tube)	USEPA	Method	2C
Measurement of Gas Volume Flow Rates in Small Pipes and Ducts	USEPA	Method	2D
Gas Analysis for the Determination of Dry Molecular Weight	USEPA	Method	3
Gas Analysis for the Determination of Dry Molecular Weight-Instrumental Method	USEPA	Me Lhod	3A
Determination of Moisture Content in Stack Gases	USEPA	Method	4
Determination of Particulate Matter from Stationary Sources	USEPA	Method	5
Determination of Sulfur Dioxide from Stationary Sources	USEPA	Method	6
Determination of Sulfur Dioxide Emissions from Stationary Sources (Instrumental Analyzer Procedure)	USEPA	Method	6C
Visual Determination of the Opacity of Emissions from Stationary Sources	USEPA	Method	9
Determination of Carbon Monoxide from Stationary Sources	USEPA	Method	10
Determination of Inorganic Lead Emissions from Stationary Sources	USEPA	Method	12 '
Visual Determination of Fugitive Emissions from Material Sources	USEPA	Method	22
Determination of Total Gaseous Nonmethane Organic Emissions as Carbon	USEPA	Method	25
Determination of Total Gaseous Organic Concentration Using a Flame Ionization Analyzer	USEPA	Method	25A*
Determination of Hydrogen Halide and Halogen Emissions from Stationary Sources-Isokinetic Method	USEPA	Method	26A
Determination of Metals Emissions from Stationary Sources	USEPA	Method	29**
Determination of PM_{10} and $PM_{2.5}$ Emissions from Stationary Sources (Constant Sampling Rate Procedure)	USEPA	Method	201A
Dry Impinger Method for Determining Condensable Particulate Emissions from Stationary Sources	USEPA	Method	202
Criteria for and Verification of a Permanent or Temporary Total Enclosure		Method (A-F)	204,

- * USEPA Method 25A may only be used if outlet VOM concentration is less than 50 ppm as carbon (non-methane).
- ** USEPA Method 29 may be used as an alternate to USEPA Method 12 for lead emissions.
- c. Within sixty (60) days prior to the actual date of testing, the Permittee shall submit a written test plan to the Illinois EPA, Bureau of Air, Compliance Section Manager. This plan shall include at a minimum:
 - The name (or other identification) of the emission unit(s) to be tested and the name and address of the facility at which they are located;
 - ii. The name and address of the independent testing service(s) performing the tests, with the names of the individuals who may

- be performing sampling and analysis and their experience with similar tests;
- iii. The specific determinations of emissions and/or performance which are intended to be made, including the site(s) in the ductwork or stack at which sampling will occur;
- iv. The specific conditions under which testing will be performed, including a discussion of why these conditions will be representative of the maximum emissions, maximum operating rate, minimum control performance, the levels of operating parameters for the emission unit, including associated control equipment, at or within which compliance is intended to be shown, and the means by which the operating parameters will be determined;
- v. The test method(s) which will be used, with the specific analysis method, if the method can be used with different analysis methods. The specific sampling, analytical and quality control procedures which will be used, with an identification of the standard methods upon which they are based;
- vi. Any minor changes in standard methodology proposed to accommodate the specific circumstances of testing, with justification;
- vii. Any proposed use of an alternative test method, with detailed justification; and
- viii. The format and content of the Source Test Report.
- d. The Permittee shall provide the Illinois EPA with written notification of testing at least thirty (30) days prior to testing and again five (5) days prior to the testing to enable the Illinois EPA to have an observer present. This notification shall include the name of emission unit(s) to be tested, scheduled date and time, and contact person with telephone number.
- e. If testing is delayed, the Permittee shall promptly notify the Illinois EPA by e-mail or facsimile, at least five (5) days prior to the scheduled date of testing or immediately, if the delay occurs in the five (5) days prior to the scheduled date. This notification shall also include the new date and time for testing, if set, or a separate notification shall be sent with this information when it is set.
- f. The Permittee shall submit the Final Source Test Report(s) for these tests accompanied by a cover letter stating whether or not compliance was shown, to the Illinois EPA, Bureau of Air, Compliance Section Manager within thirty (30) days after the test results are compiled, but no later than sixty (60) days after the date of testing or sampling. The Final Source Test Report shall include as a minimum:

- i. General information describing the test, including the name and identification of the emission source, which was tested, date of testing, names of personnel performing the tests, and Illinois EPA observers, if any;
- ii. A summary of results;
- iii. Description of test procedures and method(s), including description and map of emission units and sampling points, sampling train, testing and analysis equipment, and test schedule;
- iv. Detailed description of test conditions, including:
 - A. List and description of the equipment (including serial numbers or other equipment specific identifiers) tested and process information (i.e., mode(s) of operation, process rate or throughput, fuel or raw material consumption rate, and heat content of the fuels);
 - B. Control equipment information (i.e., equipment condition and operating parameters) during testing; and
 - C. A discussion of any preparatory actions taken (i.e., inspections, maintenance and repair).
- v. Data and calculations, including copies of all raw data sheets and records of laboratory analyses, sample calculations, and data on equipment calibration. Identification of the applicable regulatory standards and permit conditions that the testing was performed to demonstrate compliance with, a comparison of the test results to the applicable regulatory standards and permit conditions, and a statement whether the test(s) demonstrated compliance with the applicable standards and permit conditions;
- vi. An explanation of any discrepancies among individual tests, failed tests or anomalous data;
- vii. The results and discussion of all quality control evaluation data, including a copy of all quality control data; and
- viii. The applicable operating parameters of the pollution control
 device(s) during testing (temperature, pressure drop, scrubbant
 flow rate, etc.), if any.
- 17a. Pursuant to 35 Ill. Adm. Code 218.105(d)(2)(A)(i), an owner or operator: That uses an afterburner or carbon adsorber to comply with any Section of 35 Ill. Adm. Code Part 218 shall use Illinois EPA and USEPA approved continuous monitoring equipment which is installed, calibrated, maintained, and operated according to vendor specifications at all times the control device is in use except as provided in 35 Ill. Adm. Code 218.105(d)(3). The continuous monitoring equipment must monitor the following parameters:

For each afterburner which does not have a catalyst bed, the combustion chamber temperature of each afterburner.

- b. Pursuant to 35 Ill. Adm. Code 218.105(d)(2)(B), an owner or operator: Must install, calibrate, operate and maintain, in accordance with manufacturer's specifications, a continuous recorder on the temperature monitoring device, such as a strip chart, recorder or computer, having an accuracy of \pm 1 percent of the temperature measured in degrees Celsius or \pm 0.5° C, whichever is greater.
- 18. Pursuant to 40 CFR 63.10(b)(3), if an owner or operator determines that his or her stationary source that emits (or has the potential to emit, without considering controls) one or more hazardous air pollutants regulated by any standard established pursuant to section 112(d) or (f) of the Clean Air Act, and that stationary source is in the source category regulated by the relevant standard, but that source is not subject to the relevant standard (or other requirement established under 40 CFR Part 63) because of limitations on the source's potential to emit or an exclusion, the owner or operator must keep a record of the applicability determination on site at the source for a period of 5 years after the determination, or until the source changes its operations to become an affected source, whichever comes first. record of the applicability determination must be signed by the person making the determination and include an analysis (or other information) that demonstrates why the owner or operator believes the source is unaffected (e.g., because the source is an area source). The analysis (or other information) must be sufficiently detailed to allow the USEPA and/or Illinois EPA to make a finding about the source's applicability status regarding the relevant standard or other requirement. If relevant, the analysis must be performed in accordance with requirements established in relevant subparts of 40 CFR Part 63 for this purpose for categories of stationary sources. If relevant, the analysis should be performed in accordance with USEPA guidance materials published to assist sources in making applicability determinations under Section 112 of the Clean Air Act, if any. requirements to determine applicability of a standard under 40 CFR 63.1(b)(3) and to record the results of that determination under 40 CFR 63.10(b)(3) shall not by themselves create an obligation for the owner or operator to obtain a Title V permit.
- 19a. Pursuant to 35 Ill. Adm. Code 212.110(e), the owner or operator of an emission unit subject to 35 Ill. Adm. Code Part 212 shall retain records of all tests which are performed.
 - b. i. Pursuant to 35 Ill. Adm. Code 212.324(g)(1), written records of inventory and documentation of inspections, maintenance, and repairs of all air pollution control equipment shall be kept in accordance with 35 Ill. Adm. Code 212.324(f).
 - ii. Pursuant to 35 Ill. Adm. Code 212.324(g)(2), the owner or operator shall document any period during which any process emission unit was in operation when the air pollution control

equipment was not in operation or was malfunctioning so as to cause an emissions level in excess of the emissions limitation. These records shall include documentation of causes for pollution control equipment not operating or such malfunction and shall state what corrective actions were taken and what repairs were made.

- iii. Pursuant to 35 Ill. Adm. Code 212.324(g)(3), a written record of the inventory of all spare parts not readily available from local suppliers shall be kept and updated.
- iv. Pursuant to 35 Ill. Adm. Code 212.324(g)(5), the records required under 35 Ill. Adm. Code 212.324 shall be kept and maintained.
- 20a. Pursuant to 35 Ill. Adm. Code 218.991(a)(2), any owner or operator of a VOM emission unit which is subject to the requirements of 35 Ill. Adm. Code Part 218 Subpart PP, QQ, RR or TT and complying using emission capture and control equipment shall comply with the following:

On and after a date consistent with 35 Ill. Adm. Code 218.106, or on and after the initial start-up date, the owner or operator of a subject VOM source shall collect and record all of the following information each day:

- i. Control device monitoring data.
- ii. A log of operating time for the capture system, control device, monitoring equipment and the associated emission source.
- iii. A maintenance log for the capture system, control device and monitoring equipment detailing all routine and non-routine maintenance performed including dates and duration of any outages.
- 21a. The Permittee shall maintain records of the following items so as to demonstrate compliance with the conditions of this permit:
 - i. Records addressing use of good operating practices for the RTO and Quench/Packed Tower Scrubber associated with the Hammermill Shredder System and Dust Collectors (DC-01 through DC-04) associated with Non-Ferrous Material Separation System:
 - A. Records for periodic inspection of the Roll Media Filter, RTO, Quench/Packed Tower Scrubber, and Dust Collectors (DC-01 through DC-04) with date, individual performing the inspection, and nature of inspection; and
 - B. Records for prompt repair of defects, with identification and description of defect, effect on emissions, date identified, date repaired, and nature of repair.
 - ii. A copy of the Fugitive Emissions Operating Program, any amendments or revisions to the Fugitive Emissions Operating

Program, and a record of activities completed according to the Fugitive Particulate Operating Program.

- iii. A. Daily records demonstrating the temperature for the RTO;
 - B. Daily records demonstrating pressure differential across inlet and outlet of the Quench/Packed Tower Scrubber
 - C. Daily records demonstrating scrubbant liquid flow rate of the Quench/Packed Tower Scrubber;
 - D. Daily records demonstrating the pH of the scrubbant of the Quench/Packed Tower Scrubber;
 - E. Daily records demonstrating inlet gas stream to the control train for the Hammermill Shredder System for the flammability of this gas stream as a percentage of the lower explosive limit (LEL) of this stream
 - F. Daily records demonstrating amperage or usage of electrical power by the motor for the fan in the control train or inlet gas flow rate of the control train.
 - G. Daily records demonstrating status of the emergency bypass vent on the RTO in the control train for the Hammermill Shredder System, i.e., whether this vent is closed or open.
- iv. Records of daily visual inspections of the Hammermill Shredder operations containing the date, time, individual performing the observation, observation details including operation of associated control systems, and any corrective actions taken.
- v. Natural gas usage for RTO (mmscf/month and mmscf/year).
- vi. Hours of operation for Non-Ferrous System, Barge loading, Hammermill Shredder System, RTO, and Quench/Packed Tower Scrubber (hours/day, hours/month and hours/year).
- vii. Type and amount material received by the facility (tons/month and tons/year).
- viii. Type and amount material processed by Hammermill Shredder System (tons/month and tons/year).
- ix. Material throughput (tons/month and tons/year) for the Ferrous Material Separation Process, Non-Ferrous Material Process, and Fines Processing Building.
- x. Amount of non-metallic materials (fluff) shipped offsite (tons/month and tons/year).
- xi. Hours of operation for Dust Collector DC-01 (hours/month and

hours/year).

- xii. For each event when the emergency bypass vent on the RTO is open while feed material is being sent to or being processed in the Hammermill Shredder System, the Permittee shall maintain records that include: the date, starting time and duration of the event; a description of the event; the monitored flammability of the gas stream at the start of the event; an estimate of the additional VOM emissions attributable to the event, with supporting data; the likely explanation for the event.; and, if the stoppage of feed to the Hammermill Shredder System when this vent opens is not automated, the time that feed to this system ceased.; and
- xiii. Monthly and annual emissions of PM, PM_{10} , CO, NOx, SO_2 , VOM, and HAPs from the Hammermill Shredder System, Ferrous Material Separation System, and Non-Ferrous Material Separation System with supporting calculations (tons/month and tons/year).
- b. All records and logs required under this permit shall be retained at a readily accessible location at the source for at least five (5) years from the date of entry and shall be made available for inspection and copying by the Illinois EPA or USEPA upon request. Any records retained in an electronic format (e.g., computer storage device) shall be capable of being retrieved and printed on paper during normal source office hours so as to be able to respond to an Illinois EPA or USEPA request for records during the course of a source inspection.
- 22a. Pursuant to 35 Ill. Adm. Code 212.110(d), a person planning to conduct testing for particulate matter emissions to demonstrate compliance shall give written notice to the Illinois EPA of that intent. Such notification shall be given at least thirty (30) days prior to the initiation of the test unless a shorter period is agreed to by the Illinois EPA. Such notification shall state the specific test methods from 35 Ill. Adm. Code 212.110 that will be used.
 - b. Pursuant to 35 Ill. Adm. Code 212.324(g)(6), upon written request by the Illinois EPA, a report shall be submitted to the Illinois EPA for any period specified in the request stating the following: the dates during which any process emission unit was in operation when the air pollution control equipment was not in operation or was not operating properly, documentation of causes for pollution control equipment not operating or not operating properly, and a statement of what corrective actions were taken and what repairs were made.
- 23a. Pursuant to 35 Ill. Adm. Code 218.991(a), any owner or operator of a VOM emission unit which is subject to the requirements of 35 Ill. Adm. Code Part 218 Subpart PP, QQ, RR or TT and complying by the use of emission capture and control equipment shall comply with the following:
 - i. By a date consistent with 35 Ill. Adm. Code 218.106, or upon initial start-up of a new emission unit, the owner or operator of the subject VOM emission unit shall demonstrate to the Illinois EPA that the subject emission unit will be in compliance on and

after a date consistent with 35 Ill. Adm. Code 218.106, or on and after the initial start-up date by submitting to the Illinois EPA all calculations and other supporting data, including descriptions and results of any tests the owner or operator may have performed.

- ii. On and after a date consistent with 35 Ill. Adm. Code 218.106, the owner or operator of a subject VOM emission source shall notify the Illinois EPA:
 - A. Of any violation of the requirements of 35 Ill. Adm. Code Part 218 Subpart PP, QQ, RR or TT by sending a copy of any record showing a violation to the Illinois EPA within 30 days following the occurrence of the violation;
 - B. At least 30 calendar days before changing the method of compliance with 35 Ill. Adm. Code Part 218 Subpart PP or TT from the use of capture systems and control devices to the use of complying coatings, the owner or operator shall comply with all requirements of 35 Ill. Adm. Code 218.991(a)(1). Upon changing the method of compliance with 35 Ill. Adm. Code Part 218 Subpart PP or TT from the use of capture systems and control devices to the use of complying coatings, the owner or operator shall comply with all requirements of 35 Ill. Adm. Code 218.991(a).
- 24a. The Permittee shall submit a written notification to the Illinois EPA, Bureau of Air, Compliance Section Manager of the initial receipt date of material to be processed in the Hammermill Shredder within seven (7) calendar days after the initial receipt date.
 - b. The Permittee shall submit a written notification to the Illinois EPA, Bureau of Air, Compliance Section Manager within seven (7) calendar days from the date that raw material is first processed through the hammermill shredder.
 - c. If, during a Bypass Event, the feed to the hammermill shredder continues for 30 seconds or more after the start of a Bypass Event, the Permittee shall notify the Illinois EPA within 3 hours of the start of the event, with this notification made by email to the Manager of the Compliance Section in the Illinois EPA, Bureau of Air. For all other Bypass Events, the Permittee shall submit to the Illinois EPA, Bureau of Air, Compliance Section Manager, within seven (7) calendar days of such event, a report for detailing the following information for each event when feed to the shredder was interlocked due to the LEL system: % of LEL detected, duration of the event, and VOM emissions with supporting documentation.
- 25a. The Permittee shall submit a quarterly report containing the following information for each month of the quarter:
 - Type and amount material received by the facility;

- ii. Type and amount material processed by Hammermill Shredder System;
- iii. Throughput for the Ferrous Material Separation Process, Non-Ferrous Material Process, and Fines Processing Building;
- iv. PM, PM_{10} , and HAPs emissions from the Hammermill Shredder System, Ferrous Material Separation System, and Non-Ferrous Material Separation System, with supporting calculations;
- v. A summary of all bypass events that occur during the quarter and for each event, this summary shall include the date, time, duration, description, likely explanation and estimated additional VOM emissions due to the event.
- vi. VOM emissions from the Hammermill Shredder System, Ferrous Material Separation System, and Non-Ferrous Material Separation System, with supporting calculations; and
- vii. Amounts of "fluff" and other non-metallic materials shipped offsite (truckloads/month).
- b. The Permittee shall submit this quarterly report to the Illinois EPA, Bureau of Air, Compliance Section Manager within thirty (30) calendar days of the end of a calendar quarter.
- 26a. If there is an exceedance of or a deviation from the requirements of this permit as determined by the records required by this permit or otherwise, the Permittee shall submit a report to the Illinois EPA's Bureau of Air Compliance Section in Springfield, Illinois within thirty (30) days after the exceedance or deviation. The report shall identify the duration and the emissions impact of the exceedance or deviation, a copy of the relevant records and information to resolve the exceedance or deviation, and a description of the efforts to reduce emissions from, and the duration of exceedance or deviation, and to prevent future occurrences of any such exceedance or deviation.
 - b. One (1) copy of required reports and notifications shall be sent to:

Illinois Environmental Protection Agency Bureau of Air Compliance Section (#40) P.O. Box 19276 Springfield, Illinois 62794-9276

and an electronic copy of test protocols and test results to epa.boa.smu@illinois.gov

If you have any questions on this permit, please call German Barria at 217/785-1705.

Raymond E. Pilapil Manager, Permit Section

Bureau of Air

REP:GB:tan

STATE OF ILLINOIS ENVIRONMENTAL PROTECTION AGENCY DIVISION OF AIR POLLUTION CONTROL P. O. BOX 19506 SPRINGFIELD, ILLINOIS 62794-9506

STANDARD CONDITIONS FOR CONSTRUCTION/DEVELOPMENT PERMITS ISSUED BY THE ILLINOIS ENVIRONMENTAL PROTECTION AGENCY

July 1, 1985

The Illinois Environmental Protection Act (Illinois Revised Statutes, Chapter 111-1/2, Section 1039) authorizes the Environmental Protection Agency to impose conditions on permits which it issues.

The following conditions are applicable unless superseded by special condition(s).

- 1. Unless this permit has been extended or it has been voided by a newly issued permit, this permit will expire one year from the date of issuance, unless a continuous program of construction or development on this project has started by such time.
- 2. The construction or development covered by this permit shall be done in compliance with applicable provisions of the Illinois Environmental Protection Act, and Regulations adopted by the Illinois Pollution Control Board.
- There shall be no deviations from the approved plans and specifications unless a written request for modification, along with plans and specifications as required, shall have been submitted to the Agency and a supplemental written permit issued.
- 4. The Permittee shall allow any duly authorized agent of the Agency upon the presentation of credentials, at reasonable times:
 - a. to enter the Permittee's property where actual or potential effluent, emission or noise sources are located or where any activity is to be conducted pursuant to this permit,
 - b. to have access to and copy any records required to be kept under the terms and conditions of this permit,
 - c. to inspect, including during any hours of operation of equipment constructed or operated under this permit, such equipment and any equipment required to be kept, used, operated, calibrated and maintained under this permit,
 - d. to obtain and remove samples of any discharge or emission of pollutants, and
 - e. to enter and utilize any photographic, recording, testing, monitoring or other equipment for the purpose of preserving, testing, monitoring, or recording any activity, discharge, or emission authorized by this permit.
- 5. The issuance of this permit:
 - a. shall not be considered as in any manner affecting the title of the premises upon which the permitted facilities are to be located,
 - b. does not release the Permittee from any liability for damage to person or property caused by or resulting from the construction, maintenance, or operation of the proposed facilities,
 - c. does not release the Permittee from compliance with the other applicable statues and regulations of the United States, of the State of Illinois, or with applicable local laws, ordinances and regulations,
 - d. does not take into consideration or attest to the structural stability of any units or parts of the project, and

- e. in no manner implies or suggests that the Agency (or its officers, agents or employees) assumes any liability, directly or indirectly, for any loss due to damage, installation, maintenance, or operation of the proposed equipment or facility.
- 6. a. Unless a joint construction/operation permit has been issued, a permit for operation shall be obtained from the Agency before the equipment covered by this permit is placed into operation.
 - b. For purposes of shakedown and testing, unless otherwise specified by a special permit condition, the equipment covered under this permit may be operated for a period not to exceed thirty (30) days.
- 7. The Agency may file a complaint with the Board for modification, suspension or revocation of a permit:
 - a. upon discovery that the permit application contained misrepresentations, misinformation or false statements or that all relevant facts were not disclosed, or
 - b. upon finding that any standard or special conditions have been violated, or
 - c. upon any violations of the Environmental Protection Act or any regulation effective thereunder as a result of the construction or development authorized by this permit.

General III, LLC Exhibit List

- 1. Hearing officer opening/closing statements (6 pages)
- 2. Permit section opening statement (1 page)
- 3. Connection instructions (2 pages)
- 4. Illinois EPA Project Summary (6 pages)
- 5. Draft Permit (29 pages)
- 6. Construction Permit Application [September 24, 2019] (436 pages)
- 7. Updated Emission Estimates [January 27, 2020] (65 pages)
- 8. Fugitive Particulate Operating Program [March 20, 2020] (34 pages)
- 9. Illinois EPA Inspection Report [March 20, 2020] (6 pages)
- 10. Air Dispersion Modeling Protocol to Assess Metal Emission Impacts [November 18, 2019] (54 pages)
- 11. Air Dispersion Modeling Report for Assessment of Metal Emission Impacts [January 24, 2020] (103 pages)
- 12. Supplement No. 1 to the January 24, 2020 Air Dispersion Modeling Report for Assessment of Metal Emission Impacts [February 12, 2020] (44 pages)
- 13. Illinois EPA Memorandum Regarding Permit Application [March 2, 2020] (6 pages)
- 14. Final Metal Emissions from South Chicago Property Management, Ltd. (44 pages)
- 15. Meleah Geertsma Email (5 pages)
- 16. Supplemental Information for Construction Permit Application [November 14, 2019] (22 pages)
- 17. GIII Public Notice (4 pages)
- 18. GIII Revised Public Notice (4 pages)
- 19. Hearing Order for Extended Comment Period/Meleah Geertsma Email (3 pages)
- 20. Amy Genender Email (1 page)
- 21. Mark Velez Email (2 pages)
- 22. Keith Harley Email (2 pages)
- 23. Thomas Ward Email (3 pages)
- 24. John Ashenden Email (1 page)
- 25. Haley McKeever Email (2 pages)
- 26. Emma Cullnan Email (2 pages)
- 27. Andrew Del Giudice Email (2 pages)
- 28. Terry Herlihy Email (2 pages)
- 29. Nicolette Cooke Email (2 pages)
- 30. Pastor Richard L. Martinez, Jr. Email and three attachments (30 pages)
- 31. Tom Meyer Email (2 pages)
- 32. Theodora Cunningham Email (1 page)
- 33. Matt Kraemer Email and attachment [article] (19 pages)
- 34. Danielle Austin-Cano Email (2 pages)
- 35. Rose E. Joshua Email (31 pages)
- 36. Pastor Matt Zemanick Email (2 pages)
- 37. Michael Caldie Email (2 pages)
- 38. Nancy Loeb Email with article (9 pages)
- 39. Article dated May 18, 2020 (17 pages)
- 40. Nancy Loeb Email (2 pages)

41. Group Exhibit (102 pages) - includes general correspondence of a logistical nature; not information constituting a main exhibit. Specific email (names) are provided below:

Amy Genender (aka Amy Genender Feltheimer) Email

Lara Compton Email

Eric Wallenius Email

Ann Zwick Email

Charles Stark Email

Cynthia Strickland Email

Maxwell Evans Email

Christopher O'Hara Email

Kiana Courtney Email

Pastor Richard Martinez Email

Meleah Geertsma Email

Jordan Diab Email

Juan Rojas Email

Alfredo Romo Email

Brian Cavanaugh Email

Mautice Elion Email

Gina Ramirez Email

Damon Watson Email

Peggy Salazar Email

Corina Pedraza Email

Jocelyn Rangel Email

Elihu K Blanks Email

Carolyn Marsh Email

Andy Daglas Email

Nick Radakovich Email

James Kinney Email

Mark Velez Email

Robert Adolfson Email

Miles Vance Email

Valerie Bollinger Email

Andres Villegas Email

Olga Bautista Email

Illinois EPA email

- 41A: Nancy Loeb and Olga Bautista Emails (1 page)
- 41B: Microsoft Teams Chat Hearing Record (4 pages)
- 42. Brian Gabriel Email (1 page)
- 43. Edwin Gonzalez Email (3 pages)
- 44. Gigi Buis Email (1 page)
- 45. Ms. Robateau Email (1 page)
- 46. Caroll Ordas Email (1 page)
- 47. cfa04@comcast.net Email (1 page)
- 48. Erik Ramirez Email (1 page)
- 49. Arlene Ramos Email (2 pages)
- 50. Maria Valerio Email (1 page)
- 51. Nelly Martinez Email (1 page)
- 52. arturo.b.anaya@gmail.com Email (1 page)
- 53. Mark Hagan Email (1 page)
- 54. Kimberly Boreczky Email (2 pages)
- 55. Carlos Cerda Email (1 page)
- 56. Pam Navarro Email (1 page)

- 57. Nancy Pacheco Email (1 page)
- 58. Mary Esquivel Email (1 page)
- 59. <u>ibamfxd@gmail.com</u> Email (1 page)
- 60. Gail Molinaro Email (1 page)
- 61. Diana Barthelemy Email (2 pages)
- 62. John Tabares Email (2 pages)
- 63. Tony Paz Email (2 pages)
- 64. Herminia Vanna Email (2 pages)
- 65. Jose Rodriguez Email (1 page)
- 66. Nicholas Valdez Email (1 page)
- 67. Joel Cortes Email (1 page)
- 68. Viviana Arellano Email (1 page)
- 69. Damien M. Spaulding Email (1 page)
- 70. Eddie Luna Email (1 page)
- 71. Rocio Ochoa Email (1 page)
- 72. Deeana Mendoza Email (1 page)
- 73. Julio Ponce Email (1 page)
- 74. Sandra Leon Email (1 page)
- 75. Aracely Galvan Email (1 page)
- 76. Maria Borja Email (1 page)
- 77. Margaret Cortes Email (2 pages)
- 78. Silvia Vaca Email (1 page)
- 79. Angelica Delacruz Email (1 page)
- 80. L. Rachel McKinzie Email (2 pages)
- 81. Rafael Razo Email (1 page)
- 82. Jessica Chavarria Email (1 page)
- 83. Elena Calvillo Email (1 page)
- 84. Ana Sanchez Email (1 page)
- 85. Mark Velez Email includes 5 pictures (6 pages)
- 86. Enriqueta Pacheco Email (1 page)
- 87. Mark Velez Email includes 4 pictures (5 pages)
- 88. Joseph and Bertha Aguilar Email (1 page)
- 89. Luis M. Alvarez Email (1 page)
- 90. Rachel Roti Email (1 page)
- 91. Annamarie Garza Email (1 page)
- 92. Joann Podkul-Murphy Email (1 page)
- 93. Yolie Rangel Email (1 page)
- 94. Angel Avalos Email (2 pages)
- 95. Merrick O'Connell Email (1 page)
- 96. lresteviz@gmail.com Email (1 page)
- 97. Ceasar Rodriguez Email (1 page)
- 98. Cristina Rodriguez Email (2 pages)
- 99. Hearing Session Detail Report (4 pages)
- 100. Ann Zwick FOIA Requests (3 pages)
- 101. Links to Hearing Recording Sessions (1 page)
- 102. Original Hearing Transcript (127 pages)
- 103. Keith Harley Email and Letter (7 pages)
- 104. Ricardo DeLeon Email (2 pages)
- 105. Betty Jo Joy Email (2 pages)
- 106. James and Angie Rodriguez Email (1 page)
- 107. Linda Young Email (1 page)
- 108. John Stajcic Email (1 page)

- 109. Carolina Diaz Martinez Email (1 page)
- 110. Adelina Avalos Email (1 page)
- 111. Nancy Loeb/Keith Harley Emails (9 pages)
- 112. Judith Andrade Email (2 pages)
- 113. Terry Evans Email (2 pages)
- 114. Wayne Garritano Email (1 page)
- 115. Jennifer Walling Email (2 pages)

NOTE: Exhibits 116 through 190 below include comments that appear to have been originated on a third party system or server intended for submittal of multiple emails of the same or nearly the same content. Each individual email was added to the hearing record *as a separate exhibit*. Subsequently, a single exhibit (Group Exhibit 191 - see below) was created based on the amount of emails that were received that had the same or nearly the same content.

- 116. Mark Mitrovich Email (3 pages)
- 117. Sarah Eddy Email (2 pages)
- 118. Esther Allman Email (2 pages)
- 119. Annie Morse Email (2 pages)
- 120. Gail Brandys Email (2 pages)
- 121. Janice Rodgers Email (2 pages)
- 122. Ryan Kannegiesser Email (2 pages)
- 123. Cathy Felix Email (2 pages)
- 124. Mark Lundholm Email (2 pages)
- 125. Matt Mitzen Email (2 pages)
- 126. Henrietta Saunders Email (2 pages)
- 127. Andrea Jakubas Email (2 pages)
- 128. Nicholas Noe Email (2 pages)
- 129. Kimberly Corn Email (2 pages)
- 130. Mary O'Connor Email (2 pages)
- 131. Elzbieta Pituch Email (2 pages)
- 132. Cristin Williams Email (2 pages)
- 133. <u>n.s.231347839@p2a.co</u> Email (2 pages)
- 134. Jessica Niekrasz Email (2 pages)
- 135. Eugene Wedoff Email (2 pages)
- 136. Lisa Albrecht Email (2 pages)
- 137. V Evan Email (2 pages)
- 138. Ruth Kurczewski Email (2 pages)
- 139. Carol Cooper Email (2 pages)
- 140. Bruce Davidson Email (2 pages)
- 141. Drucker Sally Email (2 pages)
- 142. Celeste Hammond Email (2 pages)
- 143. David O'Neill Email (2 pages)
- 144. John Massman Email (2 pages)
- 145. Glenn Reed Email (2 pages)
- 146. Janice Feinberg Email (2 pages)
- 147. Kim Buclet Email (2 pages)
- 148. Gloria Picchetti Email (2 pages)
- 149. Marcia Stoll Email (2 pages)
- 150. Lenore Reeves Email (2 pages)
- 151. Patrick Brown Email (2 pages)
- 152. Melinda Keith-Singleton Email (2 pages)
- 153. Kim Stone Email (2 pages)

- 154. Craig Schuttenberg Email (2 pages)
- 155. William Bromer Email (2 pages)
- 156. Carter O'Brien Email (2 pages)
- 157. Justin Hart Email (2 pages)
- 158. Edgar Lehr Email (2 pages)
- 159. Savannah Hawkins Email (2 pages)
- 160. Kevin Brubaker Email (2 pages)
- 161. Shirley Sutter Email (2 pages)
- 162. Barbara Evans Email (2 pages)
- 163. Nick Epstein Email (2 pages)
- 164. Judith Nemes Email (2 pages)
- 165. Mark Milby Email (2 pages)
- 166. Kevin Lindemann Email (2 pages)
- 167. Sara Kaplan Email (2 pages)
- 168. Grace Ramirez Email (2 pages)
- 169. Cheryl Henley Email (2 pages)
- 170. Carla Womack Email (2 pages)
- 171. Glen Moss Email (2 pages)
- 172. Dennis Kreiner Email (2 pages)
- 173. Ellen Craig Email (2 pages)
- 174. Kimberly Rigger Email (2 pages)
- 175. Lawrence Friedman Email (2 pages)
- 176. William Henggeler Email (2 pages)
- 177. Albert Legzdins Email (2 pages)
- 178. Eileen Culkin Email (2 pages)
- 179. Peter Sporn Email (2 pages)
- 180. Maya Crystal Email (2 pages)
- 181. Lewis Smith Email (2 pages)
- 182. Patricia Armstrong Email (2 pages)
- 183. Kathleen Hamill Email (2 pages)
- 184. Michaeline Hade Email (2 pages)
- 185. John Butler Email (2 pages)
- 186. Sue Crothers Email (2 pages)
- 187. Lee Canel Email (2 pages)
- 188. Thomas Schmidt Email (2 pages)
- 189. Maureen Kelleher Email (2 pages)
- 190. Rosemary Nash Email (2 pages)
- 191. Group Exhibit (120 pages): Includes email comments that appear to have been originated on a third party system or server intended for submittal of multiple emails of the same or nearly the same content. Specific email (names) are provided below:

Ellen.LaRue.110709516@p2a.co	Patricia.Pruitt.8501952@p2a.co	Ellyn.Jung.322065480@p2a.co
Brian.Holmes.321338046@p2a.co	Susan.Balaban.51569905@p2a.co	Valarie.Fairchild.322066461@p2a.co
Christina.tapia.321334329@p2a.co	Helen.Kessler.115329199@p2a.co	Ryan.Bailey.322070411@p2a.co
Ruby.ramirez.321333807@p2a.co	Renee.Patten.246464662@p2a.co	Mark.Kraemer.26231538@p2a.co
Robin.Wilson.29069022@p2a.co	Noah.Lande.320978326@p2a.co	Hillary.Colby.322090617@p2a.co
Maria.Avila.321310578@p2a.co	Nora.Zacharski.286546009@p2a.co	Meredith.West.322095829@p2a.co
Rev.Stolz.310425087@p2a.co>	Behn.Rudo.114746124@p2a.co	Jenny.Kendler.322100570@p2a.co
David.Wilcox.310377252@p2a.co	Kyla.Lamontagne.320963160@p2a.co	KAREN.NELSON.322107825@p2a.co
Victoria.Long.287043367@p2a.co	Robert.Handelsman.50095182@p2a.co	Timothea.Papas.322110740@p2a.co
Guillermo.RReyes.321166461@p2a.co	John.Stoner.320958869@p2a.co	Mickie.Weiss.322111172@p2a.co
Thomas.Gerez.321164607@p2a.co	Cynthia.Linton.39786061@p2a.co	Catharine.White.26329288@p2a.co

		11 001120
David.Boughner.321161817@p2a.co	Ralph.DeMott.320958256@p2a.co	Wynne.Coplea.322117833@p2a.co
Ricky.Lanham.18292783@p2a.co	Georgiann.Schulte.26360805@p2a.co	Georgia.Shankel.322128020@p2a.co
Marisol.Medina.321147840@p2a.co	Mollie.Bunis.158548937@p2a.co	Catherine.Palivos.322135077@p2a.co
Janet.Tapia.321144348@p2a.co	John.Gilroy.117356142@p2a.co	Mary.Shesgreen.8808114@p2a.co
Emily.Bohn.321090852@p2a.co	thomas.galka.320949940@p2a.co	Lynn.Schmitt.322141665@p2a.co
Matt.Geer.245619706@p2a.co	Marshall.Sorkin.17486266@p2a.co	Michael.barkowski.322142754@p2a.co
Cheryl.BrumbaughCayford.99110767@p2a.co	Bob.Schwartz.290008010@p2a.co	Leticia.Cortez.322150287@p2a.co
Monica.Brown.75182917@p2a.co	Barbara.Cornew.320943784@p2a.co	Carole.Arett.74917840@p2a.co
Tim.Fossa.93441577@p2a.co	Angela.Daidone.61050594@p2a.co	Sandra.Nickerson.320937754@p2a.co
Liam.Kenny.321530484@p2a.co	Corina.Lang.46753122@p2a.co	Rosemary.Maziarz.320936539@p2a.co
Ruth.Fast.321058759@p2a.co	Rachel.Havrelock.290634402@p2a.co	Dana.Renninger.320934405@p2a.co
Beth.Grunow.321053466@p2a.co	Veronica.Medina.321366540@p2a.co	Howard.Ehrman.320934234@p2a.co
Stacey.Doyle.321051909@p2a.co	Zhenya.Polozova.321430133@p2a.co	Rev.Roberts.321396547@p2a.co
Gwen.deVeer.321051783@p2a.co	Jessie.Gotsdiner.97289285@p2a.co	Jessica.Weninger.321049182@p2a.co
Richard.Stuckey.12564020@p2a.co	Ann.Chen.321444868@p2a.co	Norma.deYagcier.321058867@p2a.co
Jason.Woltman.321042909@p2a.co	Meryl.Domina.321456973@p2a.co	Rebecca.Brandtman.321543660@p2a.co
Eduardo.Diaz.321042512@p2a.co	Charlie.Ryan.321546216@p2a.co	Christine.DelPriore.321027735@p2a.co
Graciela.Diaz.321040857@p2a.co	William.Miller.107436234@p2a.co	Samantha. Abernethy. 321896777@p2a.co
Amber.Sullivan.321039318@p2a.co	Nancy.Bennett.158591218@p2a.co	Brock.AuerbachLynn.68827397@p2a.co
Carolee.Kokola.321036636@p2a.co	Saj.Gumidyala.321737034@p2a.co	Diane.libman.248987949@p2a.co
Jaeda.Patton.321029625@p2a.co	Armand.Cann.321742209@p2a.co	Ira.GerardDiBenedetto.320999927@p2a.co
Angela.Baluk.132697192@p2a.co	Melissa.achettu.321765358@p2a.co	Randy.Juras.36042429@p2a.co
Shane.Nodurft.28769224@p2a.co	Stephanie.Bilotto.321913678@p2a.co	Jenna.Miller.321979900@p2a.co
Joseph.Zefran.33118905@p2a.co	Erika.Sullivan.321923172@p2a.co	Madison.Olivieri.322009941@p2a.co
Julie.Nold.217390639@p2a.co	Charles.Nadler.321933234@p2a.co	John.Ginger.103004543@p2a.co
M.up.230608858@p2a.co	Jennifer.Bissell.16960800@p2a.co	Rita.McCabe.145872427@p2a.co
Shannon.Behan.321886039@p2a.co	Jennifer.Smith.229886609@p2a.co	Kendall.Granberry.158662570@p2a.co
Cristina.Pepe.321012416@p2a.co	Gisela.Lopez.321014810@p2a.co	Dawn.Silver.158672957@p2a.co
Deloris.Lucas.321025719@p2a.co		

NOTE: emails ending with "@p2a.co" were undeliverable.

- 192. <u>Rose.Panieri.272795468@p2a.co</u> Email (1 page)
- 193. Margarita Mendoza Email (1 page)
- 194. Citlalli Garcia Email (1 page)
- 195. Cenia Mendoza Email (1 page)
- 196. Nicole Kemerer Email (2 pages)
- 197. Rita Malfeo-Klein Email (2 pages)
- 198. Emilia Garcia Email (1 page)
- 199. Mark A. Weintraub Emails and PDF file (1,679 pages)
- 200. USEPA Region 5 Comments (3 pages)
- 201. Charles Stark Email (4 pages)
- 202. Robin Lam Email (3 pages)
- 203. Renée L. Grigorian Email (3 pages)
- 204. Susan Sadlowski Garza Email (5 pages)
- 205. Zac Halden Email (3 pages)
- 206. Margaret Galka Email (3 pages)
- 207. Neighbors for Environmental Justice Email (8 pages)
- 208. Keith Harley Email (169 pages)
- 209. Samira Hanessian Email (3 pages)
- 210. Mark Velez Email (270 pages) including 254 pages of signatures only need to print
- 211. Daniel Villarreal Email (2 pages)
- 212. Hal Tolin Email (5 pages)
- 213. Josh Ellis Email (5 pages)
- 214. Nancy Loeb Email (5 pages)
- 215. John Pinion Email (22 pages)

- 216. Ted Stalnos Email (2 pages)
- 217. Meleah Geertsma Email/Dropbox link (4,333 pages total) only printed email/main comments (first 83 pages). Please print pages 84 4,333
- 218. Fugitive Particulate Operating Program 6.25.20 (38 pages)
- 219. Responsiveness Summary (76 pages)
- 220. Final Permit (32 pages)
- 221. Pre-hearing notice comments (34 pages)
- 222. Signed hearing order

Hearing Officer Opening/Closing Statements

R 001125

Exhibit 1

From: Guy, Jeff

To: <u>EPA.PublicHearingCom</u>

Bcc: Alfredo Romo; Amy Genender; Amy Genender Feltheimer; Andrew Del Giudice; Andy Daglas; ANN M. ZWICK;

Brian Cavanaugh; Carolyn A. Marsh; Chalres Stark; Christopher O"Hara; Cynthia Strickland; Elihu K Blanks; Emma Cullnan; Erik Wallenius; Gina Ramirez; Haley McKeever; James Kinney; Jocelyn Rangel; John Ashenden; Jordan Diab; Juan Rojas; Keith Harley; Kiana Courtney; Lara Compton; Mark Velez; Maxwell Evans; Meleah Geertsma; Nick Radakovich; Nicolette Cooke; Olga Bautista; Peggy Salazar; Richard L. Martinez, Jr.; Robert

Adolfson; Rose Joshua; Terry Herlihy; Thomas Ward

Subject: General III, LLC Public Hearing

Date: Thursday, May 14, 2020 10:31:00 AM

Attachments: Connection Instructions.pdf

image001.png

Good morning,

Attached are more detailed connection instructions for today's public hearing. The connection instructions, in addition to the Agency's opening/closing statements, can be found at the following link: https://www2.illinois.gov/epa/public-notices/boa-notices/Pages/default.aspx under General III LLC.

Thank you,

Jeffrey J. Guy

Hearing Officer, Illinois Environmental Protection Agency Office of Community Relations (217) 785-8724

Jeff.Guy@illinois.gov

EXHIBIT 1

Opening Statements Illinois EPA Hearing Officer General III, LLC Public Hearing

May 14, 2020 1:30 pm & 6:00 pm (CST)

Please press record. Good [afternoon/evening]. The current time is On behalf of the
Illinois EPA Director, John Kim, I'd like to welcome you to today's hearing. My name is
Jeff Guy, and I am the Agency hearing officer. Before we get started, I would like to say that we
appreciate your time today and we look forward to receiving your comments. Over the last several
days, I have been in contact with many of you by phone or email and I know you are eager to be
heard. After the Agency's opening statements, we will begin taking your comments. If you should
run into connection or audio issues during this hearing, please attempt to reconnect.

Please note that the Agency has prepared opening and closing statements that will be included with the public record and posted on our web page in the same place where the hearing notice, draft permit, and other documents have been posted.

At this time, please mute your cell phones and other electronic devices. I am going to take a moment to identify certain speakers to make sure they are connected. If I call your name, please unmute yourself and state "I am on the line".

Identification of unidentified speakers

This is an informational hearing being held pursuant to Agency procedures for permit and closure plan hearings, which can be found at 35 Illinois Administrative Code Part 166, Subpart A. These regulations are available on the Illinois Pollution Control Board website at

pcb.illinois.gov. My purpose as the hearing officer is to ensure that this hearing runs properly and according to these rules.

This is not a contested case hearing. Rather, this is an informational hearing in the matter of a construction permit for a scrap metal recycling plant. We are holding this hearing for the purpose of accepting comments from the public concerning this permit prior to making a final decision. The Agency has made available documents for public review that outline the major permit terms and conditions that are the subject of this hearing. Those documents are available on the Agency's public notices webpage.

On September 25, 2019, General III, LLC submitted a construction permit application to construct and operate a scrap metal recycling facility to be located at 11600 South Burley Avenue in Chicago, Illinois, which would relocate their existing operation of General II, LLC at 1909 North Clifton Avenue in Chicago, Illinois. This plant is required to obtain an air pollution control construction permit prior to beginning construction because it is a new emission source.

The Illinois EPA has reviewed the permit application and made a preliminary determination that the application meets the standards for issuance and has prepared a draft permit for public review and comment. However, before issuance of the permit, the Agency is holding a public comment period to provide an opportunity for the public to understand and comment on this proposed action. We will fully consider and respond to all significant public comments and may make changes to the permit based upon the comments.

The Agency is accepting written public comments on the draft permit during the comment period. As indicated in the public notice, written comments should be received no later than midnight June 13, 2020 and should be submitted to EPA.PublicHearingCom@Illinois.gov or to

the Illinois EPA, attention Jeff Guy, Hearing Officer, P.O. Box 19276, 1021 North Grand Avenue, Springfield, Illinois 62974-9276. If a comment is e-mailed, please include "General III, LLC" in the subject line of the e-mail. We anticipate making a final decision in this matter by June 25, 2020.

Now I would like to explain how this hearing will proceed. First, we will have all Agency staff introduce themselves and identify their responsibilities within the Agency. Then a few of our staff will provide a brief overview of information we believe is relevant to today's proceeding. This will be followed by additional instructions from me on how we will be taking public comments.

Today's hearing will be recorded, and the recording will be included as part of the public record. We will post the recording on our web page in the same place where the hearing notice, draft permit, and other documents associated with the proceeding have been posted.

Written comments are given the same consideration as oral comments made during this hearing and may be submitted to us at any time during the comment period, which ends June 13, 2020. Although we will continue to accept comments through that date, today is the only time that we will accept oral comments.

Agency staff will be available to answer questions if those answers are readily available, but if the question calls for additional research or is too complicated for a quick answer, they may respond by deferring the response to the responsiveness summary, which will be available on the Agency's public notice web page. The responsiveness summary will be prepared by the Agency as part of the hearing record and will include a summary of all the views, significant comments, criticisms, and suggestions, whether written or oral, submitted at the hearing or during the time

the hearing record was open. The responsiveness summary will also provide a statement of the Agency's final action. All speakers and those that submit written comments during the comment period will be notified of the final decision in this matter and of the availability of the responsiveness summary.

As the hearing officer, I intend to treat everyone in a respectful manner, and I ask that Illinois EPA staff and the public please do the same. Please do not argue or engage in prolonged discussions with Agency staff, and please keep your comments related to issues involved with this permit. In addition, please avoid unnecessary repetition. Once a single point is made, it makes no difference if that same point is made once or a dozen times. It will be considered, and it will be responded to in the responsiveness summary. If you have lengthy comments, please consider giving only a summary of those comments and then submitting the entirety of your comments to the Agency before the end of the comment period and I will ensure that they are included in the hearing record. While the record is open, all comments, documents, and data will be placed into the hearing record as exhibits.

At this time, Agency staff will introduce themselves and then make brief statements.

Afterwards, we will begin taking comments from the public.

Agency statements

As a reminder, all participants are muted automatically. We will unmute only the current speaker – one at a time. When it is your turn to speak, I will call your name. However, please wait for me to ask you to proceed before starting. When it is your turn to speak, please ensure

that you are un-muted and then state your name and affiliation for the record. For example, you may indicate that you are a resident or a concerned citizen. For the benefit of creating an accurate record, please spell your last name. Please limit your comments to five minutes each.

Public comments

That concludes our public comment session. Thank you for your participation in today's public hearing. If you did not present oral comments today but still wish to comment, please submit your written comments to the Agency as directed in the public notice. The public notice can be accessed at the Illinois EPA web page. Written comments will be included in the record and reviewed by the Agency as the responsiveness summary is prepared.

The record in this matter closes on June 13, 2020. Please send your written comments to the attention of Jeff Guy, as indicated in the public notice. The repository of documents for the permitting action is available at Illinois EPA's office. You can obtain those through a FOIA request to the Agency. This can be done through our website. You can also contact the Agency if you need help with this request. Thank you for your participation today. The current time is and this hearing is adjourned.

Permit Section Opening Statement Exhibit 2

From: Guy, Jeff

To: <u>EPA.PublicHearingCom</u>

Bcc: Alfredo Romo; Amy Genender; Amy Genender Feltheimer; Andrew Del Giudice; Andy Daglas; ANN M. ZWICK;

Brian Cavanaugh; Carolyn A. Marsh; Chalres Stark; Christopher O"Hara; Cynthia Strickland; Elihu K Blanks; Emma Cullnan; Erik Wallenius; Gina Ramirez; Haley McKeever; James Kinney; Jocelyn Rangel; John Ashenden; Jordan Diab; Juan Rojas; Keith Harley; Kiana Courtney; Lara Compton; Mark Velez; Maxwell Evans; Meleah Geertsma; Nick Radakovich; Nicolette Cooke; Olga Bautista; Peggy Salazar; Richard L. Martinez, Jr.; Robert

Adolfson; Rose Joshua; Terry Herlihy; Thomas Ward

Subject: General III, LLC Public Hearing

Date: Thursday, May 14, 2020 10:31:00 AM

Attachments: Connection Instructions.pdf

image001.png

Good morning,

Attached are more detailed connection instructions for today's public hearing. The connection instructions, in addition to the Agency's opening/closing statements, can be found at the following link: https://www2.illinois.gov/epa/public-notices/boa-notices/Pages/default.aspx under General III LLC.

Thank you,

Jeffrey J. Guy

Hearing Officer, Illinois Environmental Protection Agency Office of Community Relations (217) 785-8724

Jeff.Guy@illinois.gov

Opening Statement

Good afternoon/evening. My name is Bob Bernoteit. I am the manager of the Federally Enforceable State Operating Permit unit, within the Illinois EPA Bureau of Air Permit Section. I will now provide a brief overview of permitting and of the permit that is the subject of this hearing.

Generally, permits are required in Illinois prior to construction and operation of emission units and air pollution control equipment. The permit program and permits issued thereunder provide a consistent and systematic way of ensuring that air emission sources are built and operated in compliance with applicable state and federal air pollution control laws and regulations.

In a permit application, the Illinois EPA requires: a description of the emission source and emission units proposed for construction, a list of types and amounts of the contaminants that will be emitted, and a description of the emission control equipment to be utilized. This information is used to determine whether the emission source can comply with standards adopted by the Illinois Pollution Control Board and the United States Environmental Protection Agency or USEPA.

In its review of an application, the Illinois EPA has no choice legally but to issue a construction permit to a source if the source will be in compliance with all state and federal air pollution control regulations.

To ensure compliance, the Illinois EPA establishes conditions in the permit or requirements that the source must follow. Conditions may restrict such things as the number of hours of operation, the amount and type of materials used, or the operating and control practices used by a source. Conditions within the permit may also include requirements for testing, parametric monitoring, record keeping, and reporting to demonstrate that restrictions are in fact being met. Failure to comply with conditions subjects a source to the risk of enforcement, that may include fines, and other penalties.

Additional tools for ensuring compliance include Agency review of reports that a source is obligated to submit and onsite inspections of sources. For example, a source must report its emissions to the Illinois EPA each year and must promptly report any deviation from permit requirements. These reports are reviewed by the Illinois EPA to assess compliance. The Illinois EPA also periodically visits a source to confirm compliance through observation of operations and review of source records. If problems are identified by either review of source reports or direct observation, corrective measures will be required and legal action may be pursued.

In this proposed permit, the new facility would be authorized to receive recyclable material such as end of life vehicles, used appliances, and metal scrap to be shredded and processed. The permit requires that the emissions from the shredder be controlled. That control train consists of an emission capture hood with rubber drapes that is inside a metal shed, a cyclone, roll media filter, a regenerative thermal oxidizer and a packed bed scrubber. The permit further requires inspection of the air pollution control equipment and a log of control equipment operation.

The permit places limits on emissions from the operations and requires testing of PM, PM10, PM2.5, metals, SO2, CO, lead, opacity, VOM, and halides/halogens to determine emissions from the source. Also, the permit calls for parametric monitoring. This monitoring addresses scrubber PH, temperature, differential pressure, and flow rate, and oxidizer combustion chamber temperature. And, the permit calls for record keeping and reporting.

In addition to the generally applicable statutory and regulatory requirements, the Illinois EPA required:

- Dispersion modeling
- Limitations on days and hours of operation based on the modeling
- Operation and emission limitations for all operations at the site
- A fugitive emissions control plan for piles, roadways, material processing and transfer
- A maintenance plan for the shredder

That concludes my opening remarks.

Exhibit 3

From: Guy, Jeff

To: <u>EPA.PublicHearingCom</u>

Bcc: Alfredo Romo; Amy Genender; Amy Genender Feltheimer; Andrew Del Giudice; Andy Daglas; ANN M. ZWICK;

Brian Cavanaugh; Carolyn A. Marsh; Chalres Stark; Christopher O"Hara; Cynthia Strickland; Elihu K Blanks; Emma Cullnan; Erik Wallenius; Gina Ramirez; Haley McKeever; James Kinney; Jocelyn Rangel; John Ashenden; Jordan Diab; Juan Rojas; Keith Harley; Kiana Courtney; Lara Compton; Mark Velez; Maxwell Evans; Meleah Geertsma; Nick Radakovich; Nicolette Cooke; Olga Bautista; Peggy Salazar; Richard L. Martinez, Jr.; Robert

Adolfson; Rose Joshua; Terry Herlihy; Thomas Ward

Subject: General III, LLC Public Hearing

Date: Thursday, May 14, 2020 10:31:00 AM

Attachments: Connection Instructions.pdf

image001.png

Good morning,

Attached are more detailed connection instructions for today's public hearing. The connection instructions, in addition to the Agency's opening/closing statements, can be found at the following link: https://www2.illinois.gov/epa/public-notices/boa-notices/Pages/default.aspx under General III LLC.

Thank you,

Jeffrey J. Guy

Hearing Officer, Illinois Environmental Protection Agency Office of Community Relations (217) 785-8724

Jeff.Guy@illinois.gov

EXHIBIT 3

Webex Event Information:

Date: Thursday, May 14, 2020

Times: 1:30 pm CST and 6:00 pm CST

Event Number: 804 080 241 Event Password: cWpHgfRA248

Access to the hearing:

You may connect to the hearing by computer or telephone. You may log in or call in beginning from 1:15 pm for the afternoon session or 5:45 pm for the evening session or anytime during the hearings. You will automatically be muted upon entry into the hearing.

By computer:

1. Click this link. This will take you to the Webex webpage for the hearing. https://illinois.webex.com/illinois/onstage/g.php?MTID=ede15d1e3bc40793e54ad27332af9805d

- 2. Enter your information (name and email address) and click the "Join Now" button. You may be prompted for an Event Number or Event Password, shown above.
- 3. An audio connection is required. The best option for connecting is to use the "Call Me" option. From the "Select Audio Connection", drop down, select "Call Me". Input or select your telephone number.

By smartphone browser or other electronic device:

- 1. Click this link https://illinois.webex.com/illinois/onstage/g.php?MTID=ede15d1e3bc40793e54ad27332af9805d
- 2. Click "Join"
- 3. You will be prompted to download/install Cisco Webex mobile app
- 4. Once the app has installed click the above link again
- 5. Enter your name and email address and press "Join"

By Dial-in phone:

- 1. Call +1-312-535-8110
- 2. You will be prompted to enter the access code or meeting number. Enter the event number 804 080 241 and then press the pound sign.
- 3. You will be prompted to enter your attendee I.D. number. You do not need to enter a number just **press the pound sign.**

Tips:

- Find a quiet location with a power source for your device.
- Close all background applications or browser sessions even if you are not using them.
- Reduce distractions and practice good meeting etiquette.

Device Options:

- Non-smartphone cellular (mobile) phones or landlines provide an audio-only experience.
- Smartphone, iPad or Tablets use the Webex mobile application.
- Laptop or desktop computer user should download the desktop application.

EXHIBIT 4

Illinois Environmental Protection Agency Bureau of Air, Permit Section 1021 N. Grand Avenue East P.O. Box 19506 Springfield, Illinois 62794-9506

Project Summary
Proposed Construction Permit
General III, LLC
Chicago, Cook County, Illinois

Site Identification No.: 031600SFX

Application No.: 19090021

<u>Schedule</u>

Public Comment Period Begins: March 30, 2020 Public Comment Period Closes: June 13, 2020

Illinois EPA Contacts

Permit Analyst: German Barria

Community Relations Coordinator: Brad Frost

217/782-7027

Brad.Frost@illinois.gov

I. INTRODUCTION

General III, LLC has applied for a Construction Permit for a scrap metal recycling plant to be located at 11600 South Burley Avenue in Chicago. This plant is required to obtain an air pollution control construction permit prior to beginning construction because it is a new source that contains emission units that are not exempt from the obligation to obtain a construction permit pursuant to 35 III. Adm. Code 201.146. The Illinois EPA has prepared a draft of the construction permit that it would propose to issue for the construction of the plant. However, before issuing the permit, the Illinois EPA is holding a public comment period to receive comments on this proposed action and the terms and conditions of the draft permit that it would propose to issue.

II. SOURCE DESCRIPTION

General III, LLC proposes to construct and operate a scrap metal recycling facility to move their existing operation of General II, LLC located 1909 North Clifton Avenue in Chicago, Illinois. The new facility will receive recyclable material such as End of Life Vehicles, used appliances, and metal scrap material to be shredded and processed in a variety of metal products, such as ferrous and non-ferrous materials. The emission units at this plant that require an construction permit are shown in Table 1, below.

Table 1. Listing of Non-Exempt Emission Units Located at the Source.

	Construction Date (and Date
Emission Unit and Description	Last Modified)
Hammermill Shredder System:	TBD
One (1) Hammermill Shredder with Integral Water	
Injection System equipped with capture hood and	
Cyclone, and controlled by a Roll-Media Filter,	
15.0 mmBtu/hour Natural Gas-Fired Regenerative	
Thermal Oxidizer (RTO), and Quench/Packed	
Tower Scrubber with feed and takeaway	
conveyors;	
One (1) Vibratory Conveyor; and	
One (1) Shredder Infeed Conveyor	
Ferrous Material Separation System:	TBD
One (1) Poker Picker with Gravity Chutes;	155
Seven (7) Magnetic Separators;	
Two (2) Z-Box Separators with Cyclones;	
Seventy (70) conveyor transfer points;	
Two (2) Ferrous Metal Stacking Conveyors;	
One (1) Auto Shredder Residue (ASR) Stacking	
Conveyor	
Ferrous Material Barge Loading;	
Ferrous Material Rail Car Loading; and	
Ferrous Material Truck Loading	

Emission Unit and Description	Construction Date (and Date Last Modified)
Non-Ferrous Material Separation System:	TBD
One (1)ASR Feed Hopper with Vibratory Batch	
Feeder;	
Eight (8) Magnetic Separators;	
Three (3) Screens;	
Seven (7) Eddy Current Separators (ECS) located in	
Enclosures;	
Four (4) Wind Sifters (Air Classifiers) with Cyclones; Five (5) Polishers (Air Classifiers) with Cyclone;	
One (1) Air Vibe (Air Classifier) with Cyclone;	
One (1) Low Speed Shredder for Size Reduction of	
Clean Non-Ferrous Material;	
Ninety nine (99) Material Transfer Points	TBD
Fines Processing Building – with All Equipment in	TBD
Building Controlled by Dust Collector DC-01	

The Source contains emission units which are sources of Particulate Matter (PM), Nitrogen Oxides (NOx), Carbon Monoxide (CO), Sulfur Dioxide (SO2), and Volatile Organic Material (VOM) generated from the shredding of recyclable materials and its associated control system, sorting, and handling of the shredded recyclable product. The recycled materials processed at the facility may contain components that are considered to be Hazardous Air Pollutants (HAPs), such as Hydrogen Chloride (HCI), Lead (Pb), and Manganese (Mn). PM and Metal HAPs are generated during the shredding and separation processes. VOM and Organic HAPs are generated during the shredding process and its associated control system.

The following table lists annual Potential to Emit (PTE) of pollutants to be emitted from this source, as limited by the proposed Construction permit:

Table 2. Potential Emissions of the Source (as limited by permit).

	PTE as limited by permit
<u>Pollutant</u>	(tons/year)
Carbon Monoxide (CO)	15.02
Nitrogen Oxides (NO _x)	2.57
Particulate Matter (PM)	41.72
Particulate Matter less than 10 microns (PM ₁₀) in diameter	21.28
Particulate Matter less than 2.5 microns (PM _{2.5}) in diameter	15.06
Sulfur Dioxide (SO ₂)	0.09
Volatile Organic Material (VOM)	5.26
Combined Hazardous Air Pollutants (HAPs)	1.4143
Hydrogen Chloride (HCI)	0.77
Lead (Pb)	0.0417
Manganese (Mn)	0.0218

Because this source has not yet been constructed, there have been no reported emissions.

This source also contains emission units and activities that are exempt from permitting under 35 Ill. Adm. Code 201.146 and the emissions from such units are not limited by the conditions of the draft permit. These emission units include:

No emission units were identified in the application as being exempt from the permitting requirements under 35 III. Adm. Code 201.146.

In cases where the potential emissions of exempt emission units may contribute to the source exceeding major source thresholds (for example, if the emission limits in the draft construction permit were 90% or more of the applicable major source thresholds and the exempt units' PTE were 5% or more of the threshold) the Illinois EPA would have established limits on such emission units in the draft construction permit that would normally be exempt from permitting. The permitting exemptions in 35 Ill. Adm. Code 201.146 do not relieve the owner or operator of any source from any obligation to comply with any other applicable requirements.

III. GENERAL DISCUSSION

Construction permits are federally enforceable, that is, the terms and conditions of the permits can be enforced by the United States Environmental Protection Agency (USEPA) and the public under federal law. The permit can also be enforced by Illinois government and the public under state law. These permits can establish federally enforceable limitations on the operation and emissions of a source that restrict the potential emissions of the source. However, in the absence of federally enforceable conditions and limitations, the plant's potential emissions would be such that the plant would be considered a major source.

The source would be allowed to construct this plant under this draft construction permit because the actual emissions of the plant will be below the levels at which the plant would be considered a major source under Titles I, III, and V of the federal Clean Air Act. The plant's potential emissions in the absence of limits established in the draft construction would be such that the plant would be considered a major source under Title V of the federal Clean Air Act and as a result the source may elect to apply for a Federally Enforceable State Operating Permit (FESOP) after construction and the performance testing required by the draft construction permit is complete. If the source elects to apply for a FESOP, it will not need to obtain a Clean Air Act Permit Program (CAAPP) permit for the plant, as would otherwise be required.

The draft construction permit proposes to allow operation of the equipment listed in Table 1 above for a period of twelve (12) months from the date of initial startup of any of the equipment listed in the construction permit in order to allow performance testing and the compilation of the results of such testing.

The draft construction permit proposes limits on the operation and annual emissions of the plant to below the major-source-thresholds of 250 tons for PM, PM₁₀, and PM_{2.5}, 50 tons for VOM, 10 tons for any individual HAP and 25 tons for combined HAPs. The potential emissions of other pollutants (e.g., CO, NO_x, and SO₂) from the plant are small enough that no restrictions are needed to avoid being a major source of these pollutants.)

IV. APPLICABLE EMISSION STANDARDS

All emission units in Illinois must comply with state emission standards adopted by the Illinois Pollution Control Board (Board). These emission standards represent the basic requirements for sources in Illinois. The Board has specific standards for units emitting PM and PM₁₀ under 35 Ill. Adm. Code Part 212. The Hammermill Shredder System, Ferrous Material Separation System, Non-Ferrous Material Separation System, Outdoor Material Transfer Points, and Fines Processing System are subject to 35 Ill. Adm. Code Part 212 Subpart B (Visible Emissions), which limits the opacity of the PM emissions

from each unit to no more than 30%, and Subpart L (Particulate Matter Emissions from Process Emission Units), which sets mass emission limits based on the process weight rate of each emission unit. The Hammermill Shredder System, Ferrous Material Separation System, Non-Ferrous Material Separation System, Outdoor Material Transfer Points, and Fines Processing System are subject to 35 III. Adm. Code 212.324 (Process Emission Units in Certain Areas), which limits the emission into the atmosphere of PM₁₀ from any process emission unit to not exceed 68.7 mg/scm (0.03 gr/scf) during any one hour period. Furthermore, the source is subject to 35 III. Adm. Code Part 212 Subpart UU (Additional Control Measures), which requires a contingency measure plan to provide for additional reductions in fugitive PM₁₀ emissions between 15% and 25%. This contingency measure plan will be subject to review and approval by the Illinois EPA and USEPA. In addition, the contingency measure plan will require an implementation schedule that is also subject to review and approval by the Illinois EPA.

The Board also has specific standards for units emitting VOM from stationary sources located in the Chicago area under 35 III. Adm. Code Part 218. The Hammermill Shredder System is subject to 35 III. Adm. Code Part 218 Subpart G (Use of Organic Material), which limits the emissions of VOM from the use of liquid organic material to eight pouds per hour or requires an 85 percent reduction in uncontrolled VOM emissions, and 35 III. Adm. Code Part 218 Subpart TT (Other Emission Units), which requires that the Hammermill Shredder System be equipped with air pollution control equipment, such as the Rengerative Thermal Oxidier (RTO), that achieves an overall reduction in uncontrolled VOM emissions of at least 81 percent.

During the analysis of the construction permit application, dispersion modeling of metal HAP emissions (including Lead and Manganese) was performed and reviewed. The analysis of the data from the dispersion modeling of the source's emissions revealed that the emissions from the source to the maximum off-site ambient air impact are not expected to exceed the primary and secondary National Ambient Air Quality Standards (NAAQS), specifically 40 CFR 50.16 for Lead (Pb). Furthermore, the analysis of the data from the dispersion modeling of Manganese (Mn) emissions and emissions of all other HAPs that relate to the expected emissions from the source to the maximum off-site ambient air impact do not exceed the Agency for Toxic Substances and Disease Registry (ATSDSR), and Minimal Risk Levels, hazardous air contaminant air quality standard in the Wisconsin Department of Natural Resources air toxics rule (Wisconsin Administrative Code, Chapter NR 445 – Control of Hazardous Pollutants), and an inhalation risk greater than 1 in 1,000,000 for carcinogenic substances with a unit risk factor established by the USEPA or the California Air Resources Board (CARB).

The application proposes that the plant will comply with applicable state and federal emission standards.

V. CONTENTS OF THE PERMIT

The permit that the Illinois EPA is proposing to issue will identify the specific emission standards that apply to the emission units at the plant. As explained, the Hammermill Shredder System, Ferrous Material Separation System, Non-Ferrous Material Separation System, Outdoor Material Transfer Points, and Fines Processing System are subject to 35 III. Adm. Code Part 212 Subpart B, which limits the opacity of the PM emissions from each unit to no more than 30%, and 35 III. Adm. Code Part 212 Subpart L, which sets mass emission limits based on the process weight rate of each emission unit and limits the emission into the atmosphere of PM₁₀ from any process emission unit to not exceed 68.7 mg/scm (0.03 gr/scf) during any one hour period. The source is subject to 35 III. Adm. Code Part 212 Subpart UU (Additional Control Measures) which

requires the source to design a contingency measure plan to provide for additional reductions in fugitive PM_{10} emissions between 15% and 25%. The Hammermill Shredder System is subject to 35 III. Adm. Code Part 218 Subpart G,which limits the emissions of VOM to no more than 8 pounds/hour or utilize air pollution control equipment to achieve an 85% reduction in VOM emssions, and 35 III. Adm. Code Part 218 Subpart TT, which requires that the Hammermill Shredder System be equipped with air pollution control equipment, such as the Rengerative Thermal Oxidier (RTO), that achieves an overall reduction in uncontrolled VOM emissions of at least 81 percent. The conditions of this permit are intended to ensure that the source will comply with applicable emission standards.

The permit would also contain limitations and requirements to assure that this plant is constructed, tested, and operated as a non-major source. The permit would limit the operation and annual emissions of the plant to below the major-sourcethresholds of 250 tons for PM, PM₁₀, and PM_{2.5}, 50 tons for VOM, 10 tons for an individual HAP and 25 tons for combined HAPs. (Annual emissions of other pollutants from the plant are well below the major source thresholds for the applicability of Prevention of Significant Deterioration (PSD) and the Illinois' rules for Major Stationary Sources Construction and Modification).

The draft construction permit would also set limitations on the amount of scrap metal that may be received processed and shipped. The draft construction permit also sets limits on the times of operation and the number of hours that the plant may operate during the day and incorporates a voluntary plan for controlling the source's fugitive dust emissions. Furthermore, the draft construction permit will require that the air pollution control equipment, such as the RTO and the packed tower scrubber, be equipped with monitoring devices to insure that the air pollution control devices are operating and functioning properly. These limitations are consistent with the proposed actual operation of emission units for this plant.

The permit conditions would also require appropriate compliance procedures, including inspection practices as well as recordkeeping and reporting requirements. The source must carry out these procedures on an on-going basis to demonstrate that the plant is being operated within the limitations set by the permit and the plant's emissions are being properly controlled.

VI. REQUEST FOR COMMENTS

It is the Illinois EPA's preliminary determination that the source has met the requirements for issuance of this construction permit. The Illinois EPA is therefore proposing to issue this permit.

Comments are requested on this proposed action by the Illinois EPA and the proposed conditions on the draft permit. Because substantial public interest has already been shown in this matter, the Illinois EPA will be holding a public hearing in accordance with 35 Ill. Adm. Code Part 166.

EXHIBIT 5

ILLINOIS ENVIRONMENTAL PROTECTION AGENCY

1021 North Grand Avenue East, P.O. Box 19276, Springfield, Illinois 62794-9276 · (217) 782-3397 JB PRITZKER, GOVERNOR JOHN J. KIM, DIRECTOR

217/785-1705

CONSTRUCTION PERMIT

PERMITTEE

General III, LLC Attn: Jim Kallas

11600 South Burley Avenue Chicago, Illinois 60617

<u>Application No.</u>: 19090021 <u>I.D. No.</u>: 031600SFX

Applicant's Designation: Date Received: September 25, 2019

Subject: Scrap Metal Recycling Facility

Date Issued:

Location: 11600 South Burley Avenue, Chicago, Cook County, 60617

This permit is hereby granted to the above-designated Permittee to CONSTRUCT emission source(s) and/or air pollution control equipment consisting of:

Hammermill Shredder System:

One (1) Hammermill Shredder with Integral Water Injection System equipped with capture hood and Cyclone, and controlled by a Roll-Media Filter, 15.0 mmBtu/hour Natural Gas-Fired Regenerative Thermal Oxidizer (RTO), and Quench/Packed Tower Scrubber with feed and takeaway conveyors;

One (1) Vibratory Conveyor; and

One (1) Shredder Infeed Conveyor;

Ferrous Material Separation System:

One (1) Poker Picker with Gravity Chutes;

Seven (7) Magnetic Separators;

Two (2) Z-Box Separators with Cyclones;

Seventy (70) conveyor transfer points;

Two (2) Ferrous Metal Stacking Conveyors;

One (1) Auto Shredder Residue (ASR) Stacking Conveyor

Ferrous Material Barge Loading;

Ferrous Material Rail Car Loading; and

Ferrous Material Truck Loading

Non-Ferrous Material Separation System:

One (1) ASR Feed Hopper with Vibratory Batch Feeder;

Eight (8) Magnetic Separators;

Three (3) Screens;

Seven (7) Eddy Current Separators (ECS) located in Enclosures;

Four (4) Wind Sifters (Air Classifiers) with Cyclones;

Five (5) Polishers (Air Classifiers) with Cyclone;

One (1) Air Vibe (Air Classifier) with Cyclone;

One (1) Low Speed Shredder for Size Reduction of Clean Non-Ferrous Material; Ninety nine (99) Material Transfer Points; and

Fines Processing Building - with All Equipment in Building Controlled by Dust Collector DC-01

pursuant to the above-referenced application. This Permit is subject to standard conditions attached hereto and the following special condition(s):

- 1a. This permit is issued based on the emissions of Hazardous Air Pollutants (HAP) as listed in Section 112(b) of the Clean Air Act from the Hammermill Shredder System, Ferrous Material Separation System, and Non-Ferrous Material Separation System being less than 10 tons/year of any single HAP and 25 tons/year of any combination of such HAPs. As a result, this permit is issued based on the emissions of all HAPs from the above-listed equipment not triggering the requirements of Section 112(g) of the Clean Air Act.
- b. This permit is issued based on the construction of the Hammermill Shredder System, Ferrous Material Separation System, and Non-Ferrous Material Separation System not constituting a new major source or major modification pursuant to Title I of the Clean Air Act, specifically 40 CFR 52.21 (Prevention of Significant Deterioration (PSD)). The source has requested that the Illinois EPA establish emission limitations and other appropriate terms and conditions in this permit that limit the emissions of Particulate Matter (PM), Particulate Matter less than 10 microns (PM10), Particulate Matter less than 2.5 microns (PM2.5), and Lead (Pb) from the above-listed equipment below the levels that would trigger the applicability of these rules.
- C. This permit is issued based on the construction of the Hammermill Shredder System not constituting a new major source or major modification pursuant to Title I of the Clean Air Act, specifically 35 Ill. Adm. Code Part 203 (Major Stationary Sources Construction and Modification). The source has requested that the Illinois EPA establish emission limitations and other appropriate terms and conditions in this permit that limit the emissions of Volatile Organic Material (VOM) from the above-listed equipment below the levels that would trigger the applicability of these rules.
- This permit is issued based on the analysis of the data from the dispersion modeling of the source's Lead (Pb) emissions, that relate to the expected emissions from the project to the maximum off-site ambient air impacts not to exceed the primary and secondary National Ambient Air Quality Standards (NAAQS) for Lead, specifically 40 CFR 50.16. Furthermore, this permit is also issued based on the analysis of the data from the dispersion modeling of emissions of Manganese (Mn) and other metal HAPs, that relate the expected emissions from the project to corresponding maximum off-site ambient air impacts not to exceed the Agency for Toxic Substances and Disease Registry (ATSDR) Minimal Risk Levels, hazardous air contaminant air quality standards in the Wisconsin Department of Natural Resources air toxics rule (Wisconsin Administrative Code, Chapter NR 445 - Control of Hazardous Pollutants), and an inhalation risk greater than 1 in 1,000,000 for carcinogenic metals with a unit risk factor established by the United States Environmental Protection Agency (USEPA) or the California Air Resources Board (CARB).
- e. For purposes of this permit, General III, LLC is considered a single source with South Chicago Property Management, Ltd. (I.D. No. 031600GYI, located at 11600 South Burley Ave).

Page 3

- f. Operation of the equipment listed above is allowed under this construction permit for a period of twelve (12) months from the date that raw material is first processed through the Hammermill Shredder.
- g. The operation of the emission units under this Construction Permit shall not begin until construction of the associated air pollution control equipment is complete and reasonable measures short of actual operation have been taken to verify proper operation of the air pollution control equipment.
- 2a. Pursuant to 40 CFR 50.16(a), the national primary and secondary ambient air quality standards for Lead (Pb) and its compounds are 0.15 micrograms per cubic meter, arithmetic mean concentration over a 3-month period, measured in the ambient air as Pb either by:
 - i. A reference method based on Appendix G of 40 CFR Part 50 and designated in accordance with 40 CFR Part 53;
 - ii. An equivalent method designated in accordance with 40 CFR Part 53.
- b. Pursuant to 40 CFR 50.16(b), the national primary and secondary ambient air quality standards for Pb are met when the maximum arithmetic 3-month mean concentration for a 3-year period, as determined in accordance with Appendix R of 40 CFR Part 50, is less than or equal to 0.15 micrograms per cubic meter.
- 3a. The Hammermill Shredder System, Ferrous Material Separation System, and Non-Ferrous Material Separation System are subject to 35 Ill. Adm. Code Part 212 Subpart B (Visible Emissions). Pursuant to 35 Ill. Adm. Code 212.123(a), no person shall cause or allow the emission of smoke or other particulate matter, with an opacity greater than 30 percent, into the atmosphere from any emission unit other than those emission units subject to 35 Ill. Adm. Code 212.122.
- b. Pursuant to 35 Ill. Adm. Code 212.123(b), the emission of smoke or other particulate matter from any such emission unit may have an opacity greater than 30 percent but not greater than 60 percent for a period or periods aggregating 8 minutes in any 60 minute period provided that such opaque emissions permitted during any 60 minute period shall occur from only one such emission unit located within a 305 m (1000 ft) radius from the center point of any other such emission unit owned or operated by such person, and provided further that such opaque emissions permitted from each such emission unit shall be limited to 3 times in any 24 hour period.
- c. This source is subject to 35 Ill. Adm. Code Part 212 Subpart K (Fugitive Particulate Matter). Pursuant to 35 Ill. Adm. Code 212.301, no person shall cause or allow the emission of fugitive particulate matter from any process, including any material handling or storage activity, that is visible by an observer looking generally toward the zenith at a point beyond the property line of the source.

Page 4

- d. The Hammermill Shredder System, Ferrous Material Separation System, and Non-Ferrous Material Separation System are subject to 35 Ill. Adm. Code Part 212 Subpart L (Particulate Matter Emissions from Process Emission Units). Pursuant to 35 Ill. Adm. Code 212.321(a), except as further provided in 35 Ill. Adm. Code Part 212, no person shall cause or allow the emission of particulate matter into the atmosphere in any one hour period from any new process emission unit which, either alone or in combination with the emission of particulate matter from all other similar process emission units for which construction or modification commenced on or after April 14, 1972, at a source or premises, exceeds the allowable emission rates specified in 35 Ill. Adm. Code 212.321(c).
- e. Pursuant to 35 Ill. Adm. Code 212.321(b), interpolated and extrapolated values of the data in 35 Ill. Adm. Code 212.321(c) shall be determined by using the equation:

$$E = A(P)^B$$

where:

P = Process weight rate; and

E = Allowable emission rate; and,

i. Up to process weight rates of 408 Mg/hr (450 T/hr):

Metric	English
P Mg/hr	T/hr
E kg/hr	lbs/hr
A 1.214	2.54
В 0.534	0.534

ii. For process weight rate greater than or equal to 408 Mg/hr (450 $\,\mathrm{T/hr}$):

	Metric	English
P	Mg/hr	T/hr
E	kg/hr	lbs/hr
A	11.42	24.8
В	0.16	0.16

f. Pursuant to 35 Ill. Adm. Code 212.321(c), Limits for Process Emission Units for Which Construction or Modification Commenced on or After April 14, 1972:

Metric		English	
P	E	P	E
Mg/hr	kg/hr	T/hr	lbs/hr
0.05	0.25	0.05	0.55
0.1	0.29	0.10	0.77
0.2	0.42	0.20	1.10
0.3	0.64	0.30	1.35
0.4	0.74	0.40	1.58
0.5	0.84	0.50	1.75
0.7	1.00	0.75	2.40

Page 5

Metric		English	
P	E	P	E
Mg/hr	kg/hr	T/hr	lbs/hr
0.9	1.15	1.00	2.60
1.8	1.66	2.00	3.70
2.7	2.1	3.00	4.60
3.6	2.4	4.00	5.35
4.5	2.7	5.00	6.00
9.	3.9	10.00	8.70
13.	4.8	15.00	10.80
18.	5.7	20.00	12.50
23.	6.5	25.00	14.00
27.	7.1	30.00	15.60
32.	7.7	35.00	17.00
36.	8.2	40.00	18.20
41.	8.8	45.00	19.20
45.	9.3	50.00	20.50
90.	13.4	100.00	29.50
140.	17.0	150.00	37.00
180.	19.4	200.00	43.00
230.	22.	250.00	48.50
270.	24.	300.00	53.00
320.	26.	350.00	58.00
360.	28.	400.00	62.00
408.	30.1	450.00	66.00
454.	30.4	500.00	67.00

where:

- P = Process weight rate in metric or T/hr, and
- E = Allowable emission rate in kg/hr or lbs/hr.
- g. The Hammermill Shredder System, Ferrous Material Separation System, and Non-Ferrous Material Separation System are subject to 35 Ill. Adm. Code 212.324 (Process Emission Units in Certain Areas). Pursuant to 35 Ill. Adm. Code 212.324 (b), except as otherwise provided in 35 Ill. Adm. Code 212.324, no person shall cause or allow the emission into the atmosphere, of PM_{10} from any process emission unit to exceed 68.7 mg/scm (0.03 gr/scf) during any one hour period.
- h. This source is subject to 35 Ill. Adm. Code Part 212 Subpart U (Additional Control Measures). Pursuant to 35 Ill. Adm. Code 212.700(a), 35 Ill. Adm. Code 212 Subpart U (Additional Control Measures) shall apply to those sources in the areas designated in and subject to 35 Ill. Adm. Code 212.324(a)(1) or 212.423(a) and that have actual annual source-wide emissions of PM₁₀ of at least fifteen (15) tons per year.
- 4. The Regenerative Thermal Oxidizer (RTO) associated with Hammermill Shredder System is subject to 35 Ill. Adm. Code Part 214 Subpart K (Process Emission Sources). Pursuant to 35 Ill. Adm. Code 214.301, except as further provided by 35 Ill. Adm. Code Part 214, no person shall cause or allow the emission of sulfur dioxide into the atmosphere from any process emission source to exceed 2000 ppm.
- 5a. The Hammermill Shredder System is subject to 35 Ill. Adm. Code Part 218

Subpart G (Use of Organic Material). Pursuant to 35 Ill. Adm. Code 218.301, no person shall cause or allow the discharge of more than 3.6 kg/hr (8 lbs/hr) of organic material into the atmosphere from any emission unit, except as provided in 35 Ill. Adm. Code 218.302, 218.303, or 218.304 and the following exception: If no odor nuisance exists the limitation of 35 Ill. Adm. Code Part 218 Subpart G shall only apply to photochemically reactive material.

b. Pursuant to 35 Ill. Adm. Code 218.302(a), emissions of organic material in excess of those permitted by 35 Ill. Adm. Code 218.301 are allowable if such emissions are controlled by one of the following methods:

Flame, thermal or catalytic incineration so as either to reduce such emissions to 10 ppm equivalent methane (molecular weight 16) or less, or to convert 85 percent of the hydrocarbons to carbon dioxide and water.

- c. The Hammermill Shredder System is subject to 35 Ill. Adm. Code Part 218 Subpart TT (Other Emission Units). Pursuant to 35 Ill. Adm. Code 218.980(a):
 - i. A source is subject to 35 Ill. Adm. Code Part 218 Subpart TT if it contains process emission units not regulated by 35 Ill. Adm. Code Part 218 Subparts B, E, F (excluding 35 Ill. Adm. Code 218.204 (1)), H (excluding 35 Ill. Adm. Code 218.405), Q, R, S, T (excluding 35 Ill. Adm. Code 218.486), V, X, Y, Z or BB of this Part, which as a group both:
 - A. Have maximum theoretical emissions of 90.7 Mg (100 tons) or more per calendar year of VOM, and
 - B. Are not limited to less than 90.7 Mg (100 tons) of VOM emissions per calendar year in the absence of air pollution control equipment through production or capacity limitations contained in a federally enforceable permit or a SIP revision.
 - ii. If a source is subject to 35 Ill. Adm. Code Part 218 Subpart TT as provided in 35 Ill. Adm. Code Part 218 Subpart TT, the requirements of 35 Ill. Adm. Code Part 218 Subpart TT shall apply to a source's VOM emission units which are not included within any of the categories specified in 35 Ill. Adm. Code Part 218 Subparts B, E, F, H, Q, R, S, T, V, X, Y, Z, AA, BB, PP, QQ, or RR or which are not exempted from permitting requirements pursuant to 35 Ill. Adm. Code 201.146.
- d. Pursuant to 35 Ill. Adm. Code 218.986(a), every owner or operator of an emission unit subject to 35 Ill. Adm. Code 218 Subpart TT shall comply with the requirements of 35 Ill. Adm. Code 218.986(a), (b), (c), (d), or (e) below.

Emission capture and control equipment which achieves an overall reduction in uncontrolled VOM emissions of at least 81 percent from each emission unit.

- 6. This permit is issued based on the Hammermill Shredder System, Ferrous Material Separation System, and Non-Ferrous Material Separation System at this source not being subject to the New Source Performance Standards (NSPS) for Metallic Mineral Processing Plants, 40 CFR 60 Subpart LL because the Raw Material Receiving and Handling System, Hammermill Shredder System, Ferrous Material Separation System, Non-Ferrous Material Separation System, and Fines Processing System at this source are not used to produce metallic mineral concentrates from ore.
- 7a. This permit is issued based on the Hammermill Shredder System, Ferrous Material Separation System, and Non-Ferrous Material Separation System at this source not being subject to the National Emission Standards for Hazardous Air Pollutants (NESHAP) from Off-Site Waste and Recovery Operations, 40 CFR 63 Subpart DD, because the plant site is not a major source of HAP emissions as defined in 40 CFR 63.2.
- b. This permit is issued based on the Hammermill Shredder System, Ferrous Material Separation System, and Non-Ferrous Material Separation System at this source not being subject to the NESHAP for Primary Nonferrous Metals Area Sources-Zinc, Cadmium, and Beryllium, 40 CFR 63 Subpart GGGGGG, because the source will not be engaged in primary zinc production or primary beryllium production.
- c. This permit is issued based on the Hammermill Shredder System, Ferrous Material Separation System, and Non-Ferrous Material Separation System at this source not being subject to the NESHAP for Secondary Nonferrous Metals Processing Area Sources, 40 CFR 63 Subpart TTTTTT, because the source will not be engaged in secondary nonferrous metals processing as defined in 40 CFR 63.11472.
- d. This permit is issued based on the Hammermill Shredder System, Ferrous Material Separation System, and Non-Ferrous Material Separation System at this source not being subject to the NESHAP for Nine Metal Fabrication and Finishing Source Categories, 40 CFR 63 Subpart XXXXXX, because the source will not be primarily engaged in the operations in one of the nine source categories listed in 40 CFR 63.11514(a)(1) through (9).
- 8a. Pursuant to 35 Ill. Adm. Code 212.314, 35 Ill. Adm. Code 212.301 shall not apply and spraying pursuant to 35 Ill. Adm. Code 212.304 through 212.310 and 35 Ill. Adm. Code 212.312 shall not be required when the wind speed is greater than 40.2 km/hr (25 mph). Determination of wind speed for the purposes of 35 Ill. Adm. Code 212.314 shall be by a one-hour average or hourly recorded value at the nearest official station of the U.S. Weather Bureau or by wind speed instruments operated on the site. In cases where the duration of operations subject to 35 Ill. Adm. Code 212.314 is less than one hour, wind speed may be averaged over the duration of the operations on the basis of on-site wind speed instrument measurements.

- b. Pursuant to 35 Ill. Adm. Code 212.324(d), the mass emission limits contained in 35 Ill. Adm. Code 212.324(b) and (c) shall not apply to those emission units with no visible emissions other than fugitive particulate matter; however, if a stack test is performed, 35 Ill. Adm. Code 212.324(d) is not a defense finding of a violation of the mass emission limits contained in 35 Ill. Adm. Code 212.324(b) and (c).
- Pursuant to 35 Ill. Adm. Code 212.324(f), for any process emission unit subject to 35 Ill. Adm. Code 212.324(a), the owner or operator shall maintain and repair all air pollution control equipment in a manner that assures that the emission limits and standards in 35 Ill. Adm. Code 212.324 shall be met at all times. 35 Ill. Adm. Code 212.324(f) shall not affect the applicability of 35 Ill. Adm. Code 201.149. Proper maintenance shall include the following minimum requirements:
 - i. Visual inspections of air pollution control equipment;
 - ii. Maintenance of an adequate inventory of spare parts; and
 - iii. Expeditious repairs, unless the emission unit is shutdown.
- Pursuant to 35 Ill. Adm. Code 212.701(a), those sources subject to 35 Ill. Adm. Code Part 212 Subpart U shall prepare contingency measure plans reflecting the PM_{10} emission reductions set forth in 35 Ill. Adm. Code 212.703. These plans shall become federally enforceable permit conditions. Such plans shall be submitted to the Illinois EPA by November 15, 1994. Notwithstanding the foregoing, sources that become subject to the provisions of 35 Ill. Adm. Code Part 212 Subpart U after July 1, 1994, shall submit a contingency measure plan to the Illinois EPA for review and approval within ninety (90) days after the date such source or sources became subject to the provisions of 35 Ill. Adm. Code Part 212 Subpart U or by November 15, 1994, whichever is later. The Illinois EPA shall notify those sources requiring contingency measure plans, based on the Illinois EPA's current information; however, the Illinois EPA's failure to notify any source of its requirement to submit contingency measure plans shall not be a defense to a violation of 35 Ill. Adm. Code Part 212 Subpart U and shall not relieve the source of its obligation to timely submit a contingency measure plan.
- c. Pursuant to 35 Ill. Adm. Code 212.703(a), all sources subject to 35 Ill. Adm. Code Part 212 Subpart U shall submit a contingency measure plan. The contingency measure plan shall contain two levels of control measures:
 - i. Level I measures are measures that will reduce total actual annual source-wide fugitive emissions of PM_{10} subject to control under 35 Ill. Adm. Code 212.304, 212.305, 212.306, 212.308, 212.316(a) through (e), 212.424 or 212.464 by at least 15%.
 - ii. Level II measures are measures that will reduce total actual annual source-wide fugitive emissions of PM_{10} subject to control under 35 Ill. Adm. Code 212.304, 212.305, 212.306, 212.308, 212.316(a) through (e), 212.424 or 212.464 by at least 25%.

- d. Pursuant to 35 Ill. Adm. Code 212.703(b), a source may comply with 35 Ill. Adm. Code Part 212 Subpart U through an alternative compliance plan that provides for reductions in emissions equal to the level of reduction of fugitive emissions as required at 35 Ill. Adm. Code 212.703(a) and which has been approved by the Illinois EPA and USEPA as federally enforceable permit conditions. If a source elects to include controls on process emission units, fuel combustion emission units, or other fugitive emissions of PM₁₀ not subject to 35 Ill. Adm. Code 212.304, 212.305, 212.306, 212.308, 212.316(a) through (e), 212.424 or 212.464 at the source in its alternative control plan, the plan must include a reasonable schedule for implementation of such controls, not to exceed two (2) years. This implementation schedule is subject to Illinois EPA review and approval.
- Pursuant to 35 Ill. Adm. Code 212.704(b), if there is a violation of the ambient air quality standard for ${\rm PM}_{10}$ as determined in accordance with 40 CFR Part 50, Appendix K, the Illinois EPA shall notify the source or sources the Illinois EPA has identified as likely to be causing or contributing to one or more of the exceedances leading to such violation, and such source or sources shall implement Level I or Level II measures, as determined pursuant to 35 Ill. Adm. Code 212.704(e). The source or sources so identified shall implement such measures corresponding to fugitive emissions within ninety (90) days after receipt of a notification and shall implement such measures corresponding to any nonfugitive emissions according to the approved schedule set forth in such source's alternative control plan. Any source identified as causing or contributing to a violation of the ambient air quality standard for PM_{10} may appeal any finding of culpability by the Illinois EPA to the Illinois Pollution Control Board pursuant to 35 Ill. Adm. Code 106 Subpart J.
- f. Pursuant to 35 Ill. Adm. Code 212.704(e), the Illinois EPA shall require that sources comply with the Level I or Level II measures of their contingency measure plans, pursuant 35 Ill. Adm. Code 212.704(b), as follows:
 - i. Level I measures shall be required when the design value of a violation of the 24-hour ambient air quality standard, as computed pursuant to 40 CFR 50, Appendix K, is less than or equal to $170~\rm ug/m^3$.
 - ii. Level II measures shall be required when the design value of a violation of the 24-hour ambient air quality standard, as computed pursuant to 40 CFR 50, Appendix K, exceeds 170 ug/m^3 .
- 10a. All storage piles of materials which are located within the source's property shall be sprayed with a surfactant solution or water, or treated by an equivalent method, in accordance with the operating program required by Condition 10(e).
 - b. All normal traffic pattern access areas surrounding storage piles and all normal traffic pattern roads and parking facilities which are

located on the source's property shall be paved or unpaved areas shall be treated with water, oils or chemical dust suppressants in accordance with the operating program required by Condition 10(e). All paved areas shall be cleaned as needed, in accordance with the operating program required by Condition 10(e). All areas treated with water, oils or chemical dust suppressants shall have the treatment applied, as needed, in accordance with the operating program required by Condition 10(e).

- c. All unloading and transporting operations of materials collected by pollution control equipment shall be enclosed or shall utilize spraying, pelletizing, screw conveying or other equivalent methods in accordance with the operating program required by Condition 10(e).
- d. The crushers, grinding mills, screening operations, bucket elevators, conveyor transfer points, conveyors, storage bins and product truck and railcar loading operations associated with the Raw Material Receiving and Handling System, Hammermill Shredder System, Ferrous Material Separation System, Non-Ferrous Material Separation System, and Fines Processing System shall be sprayed with water or a surfactant solution, utilize choke-feeding or be treated by an equivalent method in accordance with the operating program required by Condition 10(e).
- e. The emission units described in Conditions 10(a) through (d) shall be operated under the provisions of an operating program, consistent with the requirements set forth in set forth in Condition 10(f) and prepared by the owner or operator and submitted to the Illinois EPA for its review. Such operating program shall be designed to limit fugitive particulate matter emissions to ensure compliance with applicable limits and standards.
- f. As a minimum the operating program shall include the following:
 - i. The name and address of the source;
 - ii. The name and address of the owner or operator responsible for execution of the operating program;
 - iii. A map or diagram of the source showing approximate locations of storage piles, conveyor loading operations, normal traffic pattern access areas surrounding storage piles and all normal traffic patterns within the source;

 - v. A detailed description of the best management practices utilized to achieve compliance with 35 Ill. Adm. Code 212.301, including an engineering specification of particulate collection equipment, application systems for water, oil, chemicals and dust suppressants utilized and equivalent methods utilized;

- vi. Estimated frequency of application of dust suppressants by location of materials; and
- vii. Such other information as may be necessary to facilitate the Illinois EPA's review of the operating program.
- g. The operating program shall include provisions for a visual inspection of the Hammermill Shredder enclosure. Inspection(s) shall be completed at a frequency pursuant to the operating program for this facility when the Hammermill Metal Shredder and associated RTO and Quench/Packed Tower Scrubber is in operation, and identify if any additional dust suppression measures are required. This inspection, and any corrective actions taken, will be recorded in accordance with the operating program required by Condition 10(e).
- h. The Fugitive Particulate Operating Program, as submitted by the Permittee pursuant to Condition 10(e) dated December 11, 2019, is incorporated herein by reference. The source shall be operated under and shall comply with the provisions of this Fugitive Particulate Operating Program and any amendments to the Fugitive Particulate Operating Program submitted pursuant to Condition 10(e).
- i. The Fugitive Particulate Operating Program shall be amended from time to time by the Permittee so that the operating program is current. Such amendments shall be consistent with Condition No. 10(e) and (f) and shall be submitted to the Illinois EPA within thirty (30) days of such amendment. Any future revision to the Fugitive Particulate Operating Program made by the Permittee during the permit term is automatically incorporated by reference. In the event that the Illinois EPA notifies the Permittee that further information regarding the revision to the Fugitive Particulate Operating Program is needed, the Permittee shall respond to the notice within thirty (30) days of receipt of notification.
- 11a. In the event that the operation of this source results in an odor nuisance, the Permittee shall take appropriate and necessary actions to minimize odors, including but not limited to, changes in material or installation of controls, in order to eliminate the odor nuisance.
 - b. The Roll-media Filter, Regenerative Thermal Oxidizer (RTO), Quench/Packed Tower Scrubber, and Dust Collectors (DC-01 through DC-04) shall be in operation at all times when the associated emission units are in operation and emitting air contaminants.
 - c. The Permittee shall, in accordance with the manufacturer(s) and/or vendor(s) recommendations, perform periodic maintenance on the Regenerative Thermal Oxidizer (RTO) and the Quench/Packed Tower Scrubber associated with the Hammermill Shredder System; and Dust Collectors (DC-01 through DC-04) associated with the Fines Processing System such that the Regenerative Thermal Oxidizer (RTO), Quench/Packed Tower Scrubber, and Dust Collectors (DC-01 through DC-04) are kept in proper working condition and not cause a violation of the Illinois Environmental Protection Act or regulations promulgated therein.

- d. The Regenerative Thermal Oxidizer (RTO) combustion chambers shall be preheated to at least the manufacturer's recommended temperature but no less than the temperature at which compliance was demonstrated in the most recent compliance test or 1,400°F in the absence of a compliance test. This temperature shall be maintained during operation of the Metal Shredder System and calculated as a three hour block average.
- e. The Regenerative Thermal Oxidizer (RTO) shall only be operated with natural gas as the fuel. The use of any other fuel in the RTO may require that the Permittee first obtain a construction permit from the Illinois EPA and then perform stack testing to verify compliance with all applicable requirements.
- f. The Regenerative Thermal Oxidizer (RTO) associated with the Hammermill Shredder System shall be equipped with a temperature monitoring device that is installed, calibrated, operated and maintained, in accordance with vendor/manufacturer specifications and 35 Ill. Adm. Code 218.105(d)(2).
- g. The Quench/Packed Tower Scrubber associated with the Hammermill Shredder System shall be equipped with a monitoring device for pressure differential, scrubbant liquid flow rate, and pH of the scrubbant liquid. These monitoring devices shall be installed, calibrated, operated and maintained, in accordance with vendor/manufacturer specifications.
- h. Within 30 days of the startup of the Regenerative Thermal Oxidizer (RTO) and the Quench/Packed Tower Scrubber associated with the Hammermill Shredder System, the Permittee shall submit for Illinois EPA approval a Metal Shredder System operation and maintenance plan that details specific operation and maintenance practices for the equipment identified in this Permit, including frequencies of such specific activities and actions, individuals responsible for such activities and actions, and associated recordkeeping procedures.
- 12a. Operation of the source's emission units and activities shall not exceed the following limits:

i. Hours of operation:

Site Operation	Monday t	o Friday	Satu	rday
Ferrous System Operation				
(includes Hammermill	7:00 AM -		7:00 AM -	
Shredder RTO/Scrubber Stack)	7:00 PM	12 hrs/day	5:00 PM	10 hrs/day
Barge Loading	7:00 AM -		7:00 AM -	
	3:00 PM	8 hrs/day	3:00 PM	8 hrs/day
Non-Ferrous System Operation	5:00 AM -		5:00 AM -	
	11:00 PM	18 hrs/day	11:00 PM	18 hrs/day
Roadway Fugitive Emissions	5:00 AM -		5:00 AM -	
(Facility Vehicle Traffic)*	7:00 PM	14 hrs/day	5:00 PM	12 hrs/day

- * The roadway fugitive emissions (Facility Vehicle Traffic) operation limitations in the table above is only intended to reflect haul truck traffic (semi-trailers) on specified road segments accompanying deliveries of metal scrap and removal of waste material.
- ii. The limitations on hours of operation for the source are based upon the meteorological hours modeled for each operation as specified on Table 1 of the modeling analysis and page 1 of supplement No. 1 to the Air Dispersion Modeling Report, dated January 24, 2020, for assessment of metal emission impacts.
- b. Emissions from and operation of the Hammermill Shredder System shall not exceed the following limits:
 - i. VOM emissions:

			Uncontrolled Emission		
	Proces	ss Rate	Factor	VOM En	nission
Emission Unit	(Tons/Mo)	(Tons/Yr)	(lb/Ton)	(Tons/Mo)	(Tons/Yr)
Hammermill Shredder					
RTO/Scrubber Stack	100,000	1,000,000	0.5119	0.51	5.12

These limits are based on maximum shredder material throughput, an uncontrolled emission factor derived from a stack test at the inlet of the RTO in November 2019 at GII, LLC (I.D. # 031600BTB), and 98% removal efficiency by the RTO/Scrubber. All measured total hydrocarbon (THC) emissions are assumed to be VOM.

ii. HAP emissions:

Emission Unit	Lead (T/Mo)	(Pb) (T/Yr)	Manganes (T/Mo)	e (Mn) (T/Yr)	-	chloric (HCl) (T/Yr)	Combine	d HAPs ¹
Metal Shredder RTO/Scrubber Stack	0.000138	0.00138	0.000199	0.00199	0.08	0.77	0.13	1.33

 $^{\rm 1}$ Combined HAPs means the total of all individual HAPs (as defined in Section 112(b) of the Clean Air Act) that are emitted from the Hammermill Shredder System.

These limits are based on the maximum shredder material throughput in Condition 12(b)(i) above and measured emission rates from the November 2019 stack test at GII, LLC (I.D. # 031600BTB) adjusted by safety factor of 2.0.

iii. PM, PM_{10} , and $PM_{2.5}$ emissions:

Page 14

Emission Unit	(Tons/Mo)	(Tons/Yr)	(lb/Ton)	(Tons/Mo)	(Tons/Yr)
Metal Shredder					
RTO/Scrubber Stack	100,000	1,000,000	0.0047	0.47	4.70

These limits are based on maximum shredder material throughput in Condition 12(b)(i) above, emission factors derived from the May/June 2018 stack test at GII, LLC (I.D. # 031600BTB) adjusted by a safety factor of 2.0, and all measured filterable PM assumed to be PM₁₀ and PM_{2.5}.

- c. Emissions from fuel combustion in the Regenerative Thermal Oxidizer (RTO) associated with the Hammermill Shredding System shall not exceed the following limits:
 - i. Natural gas Usage: 6.57 mmscf/month, 51.47 mmscf/year
 - ii. Emissions from the combustion of natural gas:

	Emission Factor	Emiss	ions
<u>Pollutant</u>	(lbs/mmscf)	(Tons/Mo)	(Tons/Yr)
Carbon Monoxide (CO)	583.55	1.50	15.02
Nitrogen Oxides (NO_x)	100.0	0.26	2.57
Particulate Matter (PM, PM_{10} ,			
and $PM_{2.5}$)	7.6	0.02	0.20
Sulfur Dioxide (SO ₂)	0.6	0.01	0.09
Volatile Organic Material (VOM)	5.5	0.02	0.14

These limits are based on the maximum firing rate of the RTO burner (15.0 mmBtu/hour), maximum natural gas usage, 12.86 tons/year of CO emissions and 0.05 tons/year of SO_2 emissions based on data from the November 2019 stack test at GII, LLC (I.D. # 031600BTB), and standard emission factors (Tables 1.4-1 and 1.4-2, AP-42, Fifth Edition, Volume I, Supplement D, July 1998).

- d. Emissions from and operation of the Ferrous Material Separation Process shall not exceed the following limits:
 - i. Material process rates and Particulate Matter (PM) Emissions:

			Emission		
	Proce	ss Rate	Factor	PM Emissions	
Emission Unit	(Tons/Mo)	(Tons/Yr)	(lb/Ton)	(Tons/Mo)	(Tons/Yr)
70 Conveyor Transfer Points	1,444,050	14,440,500	0.00014	0.10	0.96
3 Truck & Barge Loading Points	137,600	1,376,000	0.000204	0.01	0.14
7 Stockpile Loading Points	300,000	3,000,000	0.00122	0.18	1.83
				Total:	2.93

ii. PM_{10} and $PM_{2.5}$ Emissions:

Page 15

	$ ext{PM}_{10}$ Emission Factor	PM ₁₀ Em	issions	PM _{2.5} Emission Factor	PM _{2.5} Em	issions
Emission Units	(lb/Ton)	(Tons/Mo)	(Tons/Yr)	(lb/Ton)	(Tons/Mo)	(Tons/Yr)
70 Conveyor Transfer Points 3 Truck & Barge Loading	0.000046	0.03	0.31	0.000013	0.01	0.09
Points	0.00010	0.01	0.07	0.000015	0.01	0.01
7 Stockpile Loading Points	0.00058	0.09 Totals:	$\frac{0.87}{1.25}$	0.000087	0.01	$\frac{0.13}{0.23}$

iii. HAP emissions:

			Manganese (Mn)		Combined HAP	
	Lead (Pb) Emissions		Emissions		${\tt Emissions}^2$	
Emission Unit	(Tons/Mo)	(Tons/Yr)	(Tons/Mo)	(Tons/Yr)	(Tons/Mo)	(Tons/Yr)
Ferrous Material						
Separation Process	0.0007	0.0069	0.0004	0.0042	0.0015	0.0143

- Combined HAPs means the total of all individual HAPs (as defined in Section 112(b) of the Clean Air Act) that are emitted from the Ferrous Material Separation Process.
- iv. The above limits for PM, PM_{10} , and $PM_{2.5}$ are based on the maximum material throughput, standard emission factors from AP-42 (Table 11.19.2-2, Fifth Edition, Volume I, Update 2004, August 2004) for conveyors transfer points and Truck/Barge Loading, stockpile loadings emission factor derived using AP-42, Section 13.2.4.3 (Table 13.2.4, AP-42, Fifth Edition, Volume I, November 2006) using coefficients of K=0.74 (PM), K=0.35 (PM $_{10}$), and K=0.053 $(PM_{2.5})$; U (mean windspeed) = 9.0 mph, and M (minimum moisture content) = 1.5% applied to light material stockpile, 5.4% applied to raw scrap metal handling, 10% applied to ASR stockpile loading. The above limits for HAP emissions limits are based upon total metal HAPs being 0.49% of the estimated total PM emissions based on metal HAP analyses performed on a sitespecific sample of material at GII representing anticipated characteristics of Ferrous Material Processing.
- e. Emissions from and operation of the Non-Ferrous Material Separation Process and Fines Processing System shall not exceed the following limits:
 - i. PM, PM₁₀, and PM_{2.5} emissions for Fines Separation System emission units and activities inside a building controlled by Dust Collector DC-01 shall not exceed 0.15 tons/month and 1.44 tons/year. This limit is based on PM, PM₁₀, and PM_{2.5} emissions being calculated by using the stack flow rate (12,000 cfm) and grain loading of 0.005 gr/dscf and hours of operation.

Page 16

- ii. Emissions from and operation of other Non-Ferrous Separation System emission units shall not exceed the following limits:
 - A. Material process rates and Particulate Matter (PM) Emissions:

	Proces	ss Rate	Emission Factor	PM E.m	ission
Emission Units	(Tons/Mo)	(Tons/Yr)	(lb/Ton)	(Tons/Mo)	(Tons/Yr)
88 Conveyor Transfer Points					
(Uncontrolled)	333 , 876	3,338,757	0.00300	0.43	4.34
11 Conveyor Transfer Points					
(Controlled)	57 , 210	572 , 103	0.00014	0.01	0.04
13 Screening Points					
(Uncontrolled)	13,670	136,702	0.02500	0.17	1.71
12 Screening Points					
(Controlled)	42,209	422,085	0.00220	0.04	0.41
2 Truck Loading Points	45,847	458,466	0.00020	0.01	0.05
13 Stockpile Loading Points	23,338	233,378	0.00737	0.09	0.86
<u>.</u>	•	•		Total:	7.40

B. PM_{10} and $PM_{2.5}$ emissions from outdoor emission units:

	PM ₁₀ Emission Factor	PM ₁₀ Em:	iggiona	PM _{2.5} Emission Factor	DM Ex	mission
Emission Units	(lb/Ton)	(Tons/Mo)	(Tons/Yr)	(lb/Ton)	(Tons/Mo)	(Tons/Yr)
EMISSION UNICS	(10/1011)	(10115/MO)	(10115/11)	(10/1011)	(10115/MO)	(10115/11)
88 Conveyor Transfer						
Points (Uncontrolled)	0.0011	0.16	1.59	0.000167	0.02	0.24
11 Conveyor Transfer						
Points (Controlled)	0.000046	0.01	0.01	0.000013	0.01	0.01
13 Screening Points						
(Uncontrolled)	0.0087	0.06	0.59	0.001317	0.01	0.09
12 Screening Points						
(Controlled)	0.00074	0.01	0.14	0.00005	0.01	0.01
2 Truck Loading Points	0.0001	0.01	0.02	0.000015	0.01	0.01
13 Stockpile Loading						
Points	0.00351	0.04	0.41	0.00051	0.01	0.06
		Totals:	2.76			0.41

C. The above limits for PM, PM₁₀, and PM_{2.5} are based on the maximum material throughput, Standard emission factors from AP-42 (Table 11.19.2-2, Fifth Edition, Volume I, Update 2004, August 2004) for conveyors transfer points screening and Truck Loading, stockpile loading emission factor derived using AP-42, Section 13.2.4.3 (Table 13.2.4, AP-42, Fifth Edition, Volume I, November 2006) using coefficients of K=0.74 (PM), K=0.35 (PM₁₀), and PM_{2.5} U (mean windspeed) = 9.0 mph, and M (minimum moisture content) = 1.5% applied to light material stockpile loading.

Page 17

iii. HAP emissions from Non-Ferrous Material Separation Process shall not exceed the following limits:

		Ma		Manganese (Mn)		Combined HAP	
	Lead (Pb) Emissions		Emissions		${\sf Emissions^3}$		
Emission Unit	(Tons/Mo)	(Tons/Yr)	(Tons/Mo)	(Tons/Yr)	(Tons/Mo)	(Tons/Yr)	
Non-Ferrous Material							
Separation Process	0.0042	0.0417	0.0016	0.0156	0.01	0.07	

Combined HAPs means the total of all individual HAPs (as defined in Section 112(b) of the Clean Air Act) that are emitted from the Non-Ferrous Material Separation Process.

These limits are based on total metal HAPs being 0.83% of the estimated total PM emissions based on metal HAP analyses performed on a site-specific sample of material at GII representing anticipated characteristics of Non-Ferrous Material Processing.

- f. Compliance with the annual limits of this permit shall be determined on a monthly basis from the sum of the data for the current month plus the preceding 11 months (running 12 month total).
- 13a. Pursuant to 35 Ill. Adm. Code 201.282, every emission source or air pollution control equipment shall be subject to the following testing requirements for the purpose of determining the nature and quantities of specified air contaminant emissions and for the purpose of determining ground level and ambient air concentrations of such air contaminants:
 - i. Testing by Owner or Operator. The Illinois EPA may require the owner or operator of the emission source or air pollution control equipment to conduct such tests in accordance with procedures adopted by the Illinois EPA, at such reasonable times as may be specified by the Illinois EPA and at the expense of the owner or operator of the emission source or air pollution control equipment. The Illinois EPA may adopt procedures detailing methods of testing and formats for reporting results of testing. Such procedures and revisions thereto, shall not become effective until filed with the Secretary of State, as required by the APA Act. All such tests shall be made by or under the direction of a person qualified by training and/or experience in the field of air pollution testing. The Illinois EPA shall have the right to observe all aspects of such tests.
 - ii. Testing by the Illinois EPA. The Illinois EPA shall have the right to conduct such tests at any time at its own expense. Upon request of the Illinois EPA, the owner or operator of the emission source or air pollution control equipment shall provide, without charge to the Illinois EPA, necessary holes in stacks or ducts and other safe and proper testing facilities, including scaffolding, but excluding instruments and sensing devices, as

may be necessary.

- b. Testing required by Conditions 14, 15, and 16 shall be performed upon a written request from the Illinois EPA by a qualified independent testing service.
- 14a. Pursuant to 35 Ill. Adm. Code 212.107, for both fugitive and nonfugitive particulate matter emissions, a determination as to the presence or absence of visible emissions from emission units shall be conducted in accordance with Method 22, 40 CFR Part 60, Appendix A, except that the length of the observing period shall be at the discretion of the observer, but not less than one minute. 35 Ill. Adm. Code 212 Subpart A shall not apply to 35 Ill. Adm. Code 212.301.
 - b. Pursuant to 35 Ill. Adm. Code 212.109, except as otherwise provided in 35 Ill. Adm. Code Part 212, and except for the methods of data reduction when applied to 35 Ill. Adm. Code 212.122 and 212.123, measurements of opacity shall be conducted in accordance with Method 9, 40 CFR Part 60, Appendix A, and the procedures in 40 CFR 60.675(c) and (d), if applicable, except that for roadways and parking areas the number of readings required for each vehicle pass will be three taken at 5-second intervals. The first reading shall be at the point of maximum opacity and second and third readings shall be made at the same point, the observer standing at right angles to the plume at least 15 feet away from the plume and observing 4 feet above the surface of the roadway or parking area. After four vehicles have passed, the 12 readings will be averaged.
 - c. Pursuant to 35 Ill. Adm. Code 212.110(a), measurement of particulate matter emissions from stationary emission units subject to 35 Ill. Adm. Code Part 212 shall be conducted in accordance with 40 CFR Part 60, Appendix A, Methods 5, 5A, 5D, or 5E.
 - d. Pursuant to 35 Ill. Adm. Code 212.110(b), the volumetric flow rate and gas velocity shall be determined in accordance with 40 CFR Part 60, Appendix A, Methods 1, 1A, 2, 2A, 2C, 2D, 3, and 4.
 - e. Pursuant to 35 Ill. Adm. Code 212.110(c), upon a written notification by the Illinois EPA, the owner or operator of a particulate matter emission unit subject to 35 Ill. Adm. Code Part 212 shall conduct the applicable testing for opacity or visible emissions at such person's own expense, to demonstrate compliance. Such test results shall be submitted to the Illinois EPA within thirty (30) days after conducting the test unless an alternative time for submittal is agreed to by the Illinois EPA.
- 15. Pursuant to 35 Ill. Adm. Code 218.988(a), when in the opinion of the Illinois EPA it is necessary to conduct testing to demonstrate compliance with 35 Ill. Adm. Code 218.986, the owner or operator of a VOM emission unit subject to the requirements of 35 Ill. Adm. Code Part 218 Subpart TT shall, at his own expense, conduct such tests in accordance with the applicable test methods and procedures specified in 35 Ill. Adm. Code 218.105.

- 16a. Within sixty (60) days after the date raw material is first processed through the Hammermill Shredder, the PM, PM_{10} , $PM_{2.5}$, SO_2 , CO, VOM, HCl, Pb and Mn emissions from the Hammermill Shredder System, and the PM, PM_{10} , $PM_{2.5}$, Pb and Mn emissions from the Non-Ferrous Material Separation System (DC-01) shall be measured and the VOM removal efficiency of the Regenerative Thermal Oxidizer (RTO) and Quench/Packed Tower Scrubber shall be determined during conditions which are representative of maximum emissions in order to demonstrate compliance with 35 Ill. Adm. Code 212.321, 35 Ill. Adm. Code 218.986(a), and Condition 12 of this permit.
- b. The following methods and procedures shall be used for testing of emissions, unless another method is approved by the Illinois EPA: Refer to 40 CFR 51, Appendix M and 40 CFR 60, Appendix A for USEPA test methods.

Sample and Velocity Traverses for Stationary Sources	USEPA	Method	1
Sample and Velocity Traverses for Stationary Sources With Small Stacks or Ducts	USEPA	Method	1A
Determination of Stack Gas Velocity and Volumetric Flow Rate (Type S Pitot Tube)	USEPA	Method	2
Direct Measurement of Gas Volume Through Pipes and Small Ducts	USEPA	Method	2A
Determination of Gas Velocity and Volumetric Flow Rate in Small Stacks or Ducts (Standard Pitot Tube)	USEPA	Method	2C
Measurement of Gas Volume Flow Rates in Small Pipes and Ducts	USEPA	Method	2D
Gas Analysis for the Determination of Dry Molecular Weight	USEPA	Method	3
Determination of Moisture Content in Stack Gases	USEPA	Method	4
Determination of Particulate Matter from Stationary Sources	USEPA	Method	5
Determination of Sulfur Dioxide from Stationary Sources		Method	
Determination of Sulfur Dioxide Emissions From	USEPA	Method	6C
Stationary Sources (Instrumental Analyzer Procedure) Visual Determination of the Opacity of Emissions from	IISEDA	Met.hod	9
Stationary Sources	OSELA	Mechod	J
Determination of Carbon Monoxide from Stationary Sources	USEPA	Method	10
Determination of Inorganic Lead Emissions from Stationary Sources	USEPA	Method	12
Visual Determination of Fugitive Emissions From Material Sources	USEPA	Method	22
Determination of Total Gaseous Nonmethane Organic Emissions as Carbon	USEPA	Method	25
Determination of Total Gaseous Organic Concentration Using a Flame Ionization Analyzer	USEPA	Method	25A
Determination of Hydrogen Chloride Emissions From Stationary Sources	USEPA	Method	26
Determination of Hydrogen Halide and Halogen Emissions from Stationary Sources—Isokinetic Method		Method	
Determination of Metals Emissions from Stationary Sources	USEPA	Method	29**

Determination of PM_{10} and $PM_{2.5}$ Emissions from Stationary USEPA Method 201A Sources (Constant Sampling Rate Procedure)

Dry Impinger Method for Determining Condensable USEPA Method 202

Particulate Emissions from Stationary Sources

- * USEPA Method 25A may only be used if outlet VOM concentration is less than 50 ppm as carbon (non-methane).
- ** USEPA Method 29 may be used as an alternate to USEPA Method 12 for lead emissions.
- c. At least thirty (30) days prior to the actual date of testing, the Permittee shall submit a written test plan to the Illinois EPA, Bureau of Air, Compliance Section Manager. This plan shall include at a minimum:
 - i. The name (or other identification) of the emission unit(s) to be tested and the name and address of the facility at which they are located;
 - ii. The name and address of the independent testing service(s) performing the tests, with the names of the individuals who may be performing sampling and analysis and their experience with similar tests;
 - iii. The specific determinations of emissions and/or performance which are intended to be made, including the site(s) in the ductwork or stack at which sampling will occur;
 - iv. The specific conditions under which testing will be performed, including a discussion of why these conditions will be representative of the maximum emissions, maximum operating rate, minimum control performance, the levels of operating parameters for the emission unit, including associated control equipment, at or within which compliance is intended to be shown, and the means by which the operating parameters will be determined;
 - v. The test method(s) which will be used, with the specific analysis method, if the method can be used with different analysis methods. The specific sampling, analytical and quality control procedures which will be used, with an identification of the standard methods upon which they are based;
 - vi. Any minor changes in standard methodology proposed to accommodate the specific circumstances of testing, with justification;
 - vii. Any proposed use of an alternative test method, with detailed justification; and
 - viii. The format and content of the Source Test Report.
- d. The Permittee shall provide the Illinois EPA with written notification of testing at least thirty (30) days prior to testing and again five

- (5) days prior to the testing to enable the Illinois EPA to have an observer present. This notification shall include the name of emission unit(s) to be tested, scheduled date and time, and contact person with telephone number.
- e. If testing is delayed, the Permittee shall promptly notify the Illinois EPA by e-mail or facsimile, at least five (5) days prior to the scheduled date of testing or immediately, if the delay occurs in the five (5) days prior to the scheduled date. This notification shall also include the new date and time for testing, if set, or a separate notification shall be sent with this information when it is set.
- f. The Permittee shall submit the Final Source Test Report(s) for these tests accompanied by a cover letter stating whether or not compliance was shown, to the Illinois EPA, Bureau of Air, Compliance Section Manager without delay, within thirty (30) days after the test results are compiled, but no later than sixty (60) days after the date of testing or sampling. The Final Source Test Report shall include as a minimum:
 - i. General information describing the test, including the name and identification of the emission source, which was tested, date of testing, names of personnel performing the tests, and Illinois EPA observers, if any;
 - ii. A summary of results;
 - iii. Description of test procedures and method(s), including description and map of emission units and sampling points, sampling train, testing and analysis equipment, and test schedule;
 - iv. Detailed description of test conditions, including:
 - A. List and description of the equipment (including serial numbers or other equipment specific identifiers) tested and process information (i.e., mode(s) of operation, process rate or throughput, fuel or raw material consumption rate, and heat content of the fuels);
 - B. Control equipment information (i.e., equipment condition and operating parameters) during testing; and
 - C. A discussion of any preparatory actions taken (i.e., inspections, maintenance and repair).
 - v. Data and calculations, including copies of all raw data sheets and records of laboratory analyses, sample calculations, and data on equipment calibration. Identification of the applicable regulatory standards and permit conditions that the testing was performed to demonstrate compliance with, a comparison of the test results to the applicable regulatory standards and permit conditions, and a statement whether the test(s) demonstrated

compliance with the applicable standards and permit conditions;

- vi. An explanation of any discrepancies among individual tests, failed tests or anomalous data;
- vii. The results and discussion of all quality control evaluation data, including a copy of all quality control data; and
- viii. The applicable operating parameters of the pollution control
 device(s) during testing (temperature, pressure drop, scrubbant
 flow rate, etc.), if any.
- g. Satisfactory completion of this test so as to demonstrate compliance with applicable emission standards and permit conditions is a prerequisite to issuance of an operating permit, pursuant to 35 Ill. Adm. Code 201.160(b).
- 17a. Pursuant to 35 Ill. Adm. Code 218.105(d)(2)(A)(i), an owner or operator: That uses an afterburner or carbon adsorber to comply with any Section of 35 Ill. Adm. Code Part 218 shall use Illinois EPA and USEPA approved continuous monitoring equipment which is installed, calibrated, maintained, and operated according to vendor specifications at all times the control device is in use except as provided in 35 Ill. Adm. Code 218.105(d)(3). The continuous monitoring equipment must monitor the following parameters:

For each afterburner which does not have a catalyst bed, the combustion chamber temperature of each afterburner.

- b. Pursuant to 35 Ill. Adm. Code 218.105(d)(2)(B), an owner or operator: Must install, calibrate, operate and maintain, in accordance with manufacturer's specifications, a continuous recorder on the temperature monitoring device, such as a strip chart, recorder or computer, having an accuracy of \pm 1 percent of the temperature measured in degrees Celsius or \pm 0.5°C, whichever is greater.
- Pursuant to 40 CFR 63.10(b)(3), if an owner or operator determines that 18. his or her stationary source that emits (or has the potential to emit, without considering controls) one or more hazardous air pollutants regulated by any standard established pursuant to section 112(d) or (f) of the Clean Air Act, and that stationary source is in the source category regulated by the relevant standard, but that source is not subject to the relevant standard (or other requirement established under 40 CFR Part 63) because of limitations on the source's potential to emit or an exclusion, the owner or operator must keep a record of the applicability determination on site at the source for a period of 5 years after the determination, or until the source changes its operations to become an affected source, whichever comes first. record of the applicability determination must be signed by the person making the determination and include an analysis (or other information) that demonstrates why the owner or operator believes the source is unaffected (e.g., because the source is an area source). The analysis (or other information) must be sufficiently detailed to allow the USEPA

and/or Illinois EPA to make a finding about the source's applicability status with regard to the relevant standard or other requirement. If relevant, the analysis must be performed in accordance with requirements established in relevant subparts of 40 CFR Part 63 for this purpose for particular categories of stationary sources. If relevant, the analysis should be performed in accordance with USEPA guidance materials published to assist sources in making applicability determinations under Section 112 of the Clean Air Act, if any. The requirements to determine applicability of a standard under 40 CFR 63.1(b)(3) and to record the results of that determination under 40 CFR 63.10(b)(3) shall not by themselves create an obligation for the owner or operator to obtain a Title V permit.

- 19a. Pursuant to 35 Ill. Adm. Code 212.110(e), the owner or operator of an emission unit subject to 35 Ill. Adm. Code Part 212 shall retain records of all tests which are performed. These records shall be retained for at least three (3) years after the date a test is performed.
 - b. i. Pursuant to 35 Ill. Adm. Code 212.324(g)(1), written records of inventory and documentation of inspections, maintenance, and repairs of all air pollution control equipment shall be kept in accordance with 35 Ill. Adm. Code 212.324(f).
 - ii. Pursuant to 35 Ill. Adm. Code 212.324(g)(2), the owner or operator shall document any period during which any process emission unit was in operation when the air pollution control equipment was not in operation or was malfunctioning so as to cause an emissions level in excess of the emissions limitation. These records shall include documentation of causes for pollution control equipment not operating or such malfunction and shall state what corrective actions were taken and what repairs were made.
 - iii. Pursuant to 35 Ill. Adm. Code 212.324(g)(3), a written record of the inventory of all spare parts not readily available from local suppliers shall be kept and updated.
 - iv. Pursuant to 35 Ill. Adm. Code 212.324(g)(5), the records required under 35 Ill. Adm. Code 212.324 shall be kept and maintained for at least three (3) years and shall be available for inspection and copying by Illinois EPA representatives during working hours.
- 20a. Pursuant to 35 Ill. Adm. Code 218.991(a)(2), any owner or operator of a VOM emission unit which is subject to the requirements of 35 Ill. Adm. Code Part 218 Subpart PP, QQ, RR or TT and complying by the use of emission capture and control equipment shall comply with the following:

On and after a date consistent with 35 Ill. Adm. Code 218.106, or on and after the initial start-up date, the owner or operator of a subject VOM source shall collect and record all of the following information each day and maintain the information at the source for a period of three years:

- i. Control device monitoring data.
- ii. A log of operating time for the capture system, control device, monitoring equipment and the associated emission source.
- iii. A maintenance log for the capture system, control device and monitoring equipment detailing all routine and non-routine maintenance performed including dates and duration of any outages.
- 21a. The Permittee shall maintain records of the following items so as to demonstrate compliance with the conditions of this permit:
 - i. Records addressing use of good operating practices for the Regenerative Thermal Oxidizer (RTO) and Quench/Packed Tower Scrubber associated with the Hammermill Shredder System and Dust Collectors (DC-01 through DC-04) associated with Non-Ferrous Material Separation System:
 - A. Records for periodic inspection of the Regenerative Thermal Oxidizer (RTO), Quench/Packed Tower Scrubber, and Dust Collectors (DC-01 through DC-04) with date, individual performing the inspection, and nature of inspection; and
 - B. Records for prompt repair of defects, with identification and description of defect, effect on emissions, date identified, date repaired, and nature of repair.
 - ii. The Permittee shall keep a copy of the Fugitive Particulate Operating Program, any amendments or revisions to the Fugitive Particulate Operating Program, and the Permittee shall also keep a record of activities completed according to the Fugitive Particulate Operating Program.
 - iii. Daily records demonstrating the temperature for the RTO and pressure differential across inlet and outlet of the Quench/Packed Tower Scrubber, liquid flow rate, and pH of the scrubbant liquid;
 - iv. Records of daily visual inspections of the Hammermill Shredder operations containing the date, time, individual performing the observation, observation details including operation of associated control systems, and any corrective actions taken;
 - v. Natural gas usage for RTO (mmscf/month and mmscf/year);

 - vii. Material throughput (tons/month and tons/year) for the Raw Material Receiving and Handling System, Hammermill Shredder System, Ferrous Material Separation Process, Non-Ferrous Material

Process, and Fines Processing System;

- viii. Hours of operation for Dust Collector DC-01 (hours/month and hours/year);
- ix. Monthly and annual emissions of PM, PM_{10} , CO, NOx, SO_2 , VOM, and HAPs from the Hammermill Shredder System, Ferrous Material Separation System, and Non-Ferrous Material Separation System with supporting calculations (tons/month and tons/year).
- b. All records and logs required by Condition 21(a) of this permit shall be retained at a readily accessible location at the source for at least five (5) years from the date of entry and shall be made available for inspection and copying by the Illinois EPA or USEPA upon request. Any records retained in an electronic format (e.g., computer storage device) shall be capable of being retrieved and printed on paper during normal source office hours so as to be able to respond to an Illinois EPA or USEPA request for records during the course of a source inspection.
- 22a. Pursuant to 35 Ill. Adm. Code 212.110(d), a person planning to conduct testing for particulate matter emissions to demonstrate compliance shall give written notice to the Illinois EPA of that intent. Such notification shall be given at least thirty (30) days prior to the initiation of the test unless a shorter period is agreed to by the Illinois EPA. Such notification shall state the specific test methods from 35 Ill. Adm. Code 212.110 that will be used.
 - b. Pursuant to 35 Ill. Adm. Code 212.324(g)(6), upon written request by the Illinois EPA, a report shall be submitted to the Illinois EPA for any period specified in the request stating the following: the dates during which any process emission unit was in operation when the air pollution control equipment was not in operation or was not operating properly, documentation of causes for pollution control equipment not operating or not operating properly, and a statement of what corrective actions were taken and what repairs were made.
- 23a. Pursuant to 35 Ill. Adm. Code 218.991(a), any owner or operator of a VOM emission unit which is subject to the requirements of 35 Ill. Adm. Code Part 218 Subpart PP, QQ, RR or TT and complying by the use of emission capture and control equipment shall comply with the following:
 - i. By a date consistent with 35 Ill. Adm. Code 218.106, or upon initial start-up of a new emission unit, the owner or operator of the subject VOM emission unit shall demonstrate to the Illinois EPA that the subject emission unit will be in compliance on and after a date consistent with 35 Ill. Adm. Code 218.106, or on and after the initial start-up date by submitting to the Illinois EPA all calculations and other supporting data, including descriptions and results of any tests the owner or operator may have performed.
 - ii. On and after a date consistent with 35 Ill. Adm. Code 218.106, the owner or operator of a subject VOM emission source shall

notify the Illinois EPA:

- A. Of any violation of the requirements of 35 Ill. Adm. Code Part 218 Subpart PP, QQ, RR or TT by sending a copy of any record showing a violation to the Illinois EPA within 30 days following the occurrence of the violation;
- B. At least 30 calendar days before changing the method of compliance with 35 Ill. Adm. Code Part 218 Subpart PP or TT from the use of capture systems and control devices to the use of complying coatings, the owner or operator shall comply with all requirements of 35 Ill. Adm. Code 218.991(a)(1). Upon changing the method of compliance with 35 Ill. Adm. Code Part 218 Subpart PP or TT from the use of capture systems and control devices to the use of complying coatings, the owner or operator shall comply with all requirements of 35 Ill. Adm. Code 218.991(a).
- 24. The Permittee shall notify the Illinois EPA, Bureau of Air, Compliance Section Manager of the initial receipt of material to be processed in the Hammermill Shredder and the date of the initial startup of the Hammermill Shredder within one week after each event has occurred.
- 25a. If there is an exceedance of or a deviation from the requirements of this permit as determined by the records required by this permit or otherwise, the Permittee shall submit a report to the Illinois EPA's Bureau of Air Compliance Section in Springfield, Illinois within thirty (30) days after the exceedance or deviation. The report shall identify the duration and the emissions impact of the exceedance or deviation, a copy of the relevant records and information to resolve the exceedance or deviation, and a description of the efforts to reduce emissions from, and the duration of exceedance or deviation, and to prevent future occurrences of any such exceedance or deviation.
 - b. One (1) copy of required reports and notifications shall be sent to:

Illinois Environmental Protection Agency Bureau of Air Compliance Section (#40) P.O. Box 19276 Springfield, Illinois 62794-9276 Page 27

If you have any questions on this permit, please call German Barria at 217/785-1705.

Raymond E. Pilapil Manager, Permit Section Bureau of Air

REP:GB:tan

STATE OF ILLINOIS ENVIRONMENTAL PROTECTION AGENCY DIVISION OF AIR POLLUTION CONTROL P. O. BOX 19506 SPRINGFIELD. ILLINOIS 62794-9506

STANDARD CONDITIONS FOR CONSTRUCTION/DEVELOPMENT PERMITS ISSUED BY THE ILLINOIS ENVIRONMENTAL PROTECTION AGENCY

July 1, 1985

The Illinois Environmental Protection Act (Illinois Revised Statutes, Chapter 111-1/2, Section 1039) authorizes the Environmental Protection Agency to impose conditions on permits which it issues.

The following conditions are applicable unless superseded by special condition(s).

- 1. Unless this permit has been extended or it has been voided by a newly issued permit, this permit will expire one year from the date of issuance, unless a continuous program of construction or development on this project has started by such time.
- 2. The construction or development covered by this permit shall be done in compliance with applicable provisions of the Illinois Environmental Protection Act, and Regulations adopted by the Illinois Pollution Control Board.
- 3. There shall be no deviations from the approved plans and specifications unless a written request for modification, along with plans and specifications as required, shall have been submitted to the Agency and a supplemental written permit issued.
- 4. The Permittee shall allow any duly authorized agent of the Agency upon the presentation of credentials, at reasonable times:
 - a. to enter the Permittee's property where actual or potential effluent, emission or noise sources are located or where any activity is to be conducted pursuant to this permit,
 - b. to have access to and copy any records required to be kept under the terms and conditions of this permit,
 - c. to inspect, including during any hours of operation of equipment constructed or operated under this permit, such equipment and any equipment required to be kept, used, operated, calibrated and maintained under this permit,
 - d. to obtain and remove samples of any discharge or emission of pollutants, and
 - e. to enter and utilize any photographic, recording, testing, monitoring or other equipment for the purpose of preserving, testing, monitoring, or recording any activity, discharge, or emission authorized by this permit.
- 5. The issuance of this permit:
 - a. shall not be considered as in any manner affecting the title of the premises upon which the permitted facilities are to be located,
 - b. does not release the Permittee from any liability for damage to person or property caused by or resulting from the construction, maintenance, or operation of the proposed facilities,
 - c. does not release the Permittee from compliance with the other applicable statues and regulations of the United States, of the State of Illinois, or with applicable local laws, ordinances and regulations,
 - d. does not take into consideration or attest to the structural stability of any units or parts of the project, and

- e. in no manner implies or suggests that the Agency (or its officers, agents or employees) assumes any liability, directly or indirectly, for any loss due to damage, installation, maintenance, or operation of the proposed equipment or facility.
- 6. a. Unless a joint construction/operation permit has been issued, a permit for operation shall be obtained from the Agency before the equipment covered by this permit is placed into operation.
 - b. For purposes of shakedown and testing, unless otherwise specified by a special permit condition, the equipment covered under this permit may be operated for a period not to exceed thirty (30) days.
- 7. The Agency may file a complaint with the Board for modification, suspension or revocation of a permit:
 - a. upon discovery that the permit application contained misrepresentations, misinformation or false statements or that all relevant facts were not disclosed, or
 - b. upon finding that any standard or special conditions have been violated, or
 - c. upon any violations of the Environmental Protection Act or any regulation effective thereunder as a result of the construction or development authorized by this permit.

EXHIBIT 6

September 24, 2019

R17421-7

Mr. Ray Pilapil Illinois Environmental Protection Agency - Bureau of Air 1021 North Grand Avenue East Springfield, IL 62702

Construction Permit Application for Scrap Metal Recycling Facility General III, LLC – 11600 South Burley - Chicago, Illinois STATE OF ILLINOIS

SEP 2 5 2019

Environmental Protection Agency
BUREAU OF AIR

Dear Mr. Pilapil:

Please find attached three copies of a construction permit application for General III, LLC (GIII) for the construction of a Scrap Metal Recycling Facility (Facility) located in Cook County at 11600 South Burley in Chicago, Illinois.

A check for the applicable permitting fee, in the amount of \$15,000, is attached to this application.

If you have any questions or need any additional information, please don't hesitate to contact us at 630-393-9000.

Yours very truly, RK & Associates

cc: Mr. Jim Kallas - General III, LLC - Chicago, Illinois (via e-mail)

IEPA - DIVISION OF RECORDS MANAGEMENT RELEASABLE

OCT 0 2 2019

REVIEWER: MED

Construction Permit Application for a Scrap Metal Recycling Facility General III This property Illinois

September 24, 2019

STATE OF ILLINOIS

SEP 2 5 2019

Environmental Protection Agency

R17421-7

Prepared for:

General III, LLC 1909 North Clifton Avenue Chicago, Illinois 60614 Attn: Mr. Jim Kallas

Prepared by:

John G. Pinion Principal Engineer RK & Associates, Inc. IEPA - DIVISION OF RECORDS MANAGEMENT RELEASABLE

OCT **0 2** 2019

2 South 631 Route 59 KEVIEWER: MED

Suite B

Warrenville, Illinois 60555 Phone: 630-393-9000

Fax: 630-393-9111

TABLE OF CONTENTS

1.0	INT	RODUCTION	1
	1.1	Facility Location and Contact Information	3
2.0	SCI	RAP METAL RECYCLING PROCESS DESCRIPTIONS	7
2.1 Metal Shredder Controlled by Cyclone, Roll-Media Filter, RTO, and Scrubber			8
		2.1.1 Cyclone / Roll-Media Filter	9
		2.1.2 Regenerative Thermal Oxidizer (RTO)	9
		2.1.3 Packed Tower Scrubber	12
		2.1.4 Exhaust Stack	l 2
	2.2	Ferrous Material Processing System	12
	2.3	Non-Ferrous Material Processing System	۱5
	2.4	Stockpile Operations	8
	2.5	Vehicular Traffic	8
	2.6	Natural Gas Combustion	9
	2.7	Excluded Activities	9
3.0	FAC	CILITY EMISSIONS ESTIMATES	21
	3.1	Shredder Emissions Controlled by Cyclone, Roll-Media Filter,	
		Regenerative Thermal Oxidizer, and Packed Tower Scrubber	22
		3.1.1 Shredder VOM and CO Emissions	23
		3.1.2 Shredder Particulate Emissions	24
		3.1.3 Shredder Hazardous Air Pollutant Emissions	25
		3.1.4 Shredder RTO Natural Gas Combustion Emissions	26
		3.1.5 Shredder Emissions Summary	26
	3.2 Ferrous Material Processing System Emissions		
	3.3	Non-Ferrous Material Processing System Emissions	29
	3.4 Stockpile Fugitive Emissions		1
3.5 Fugitive Emissions from Paved and Unpaved Roads			2
	3.6	Miscellaneous Natural Gas Combustion Emissions	4
	3.7	Facility-Wide Criteria Pollutant Emissions	4
	3.8	Facility-Wide HAP Emissions	4

Table of Contents

4.0	REGULATORY APPLICABILITY			35	
	4.1	Single	Source		35
				t Status	36
	4.3	Fugiti	ve Emissi	ions	36
	4.4	New S	Source Re	eview for Ozone Nonattainment Area (NA-NSR)	37
	4.5	Preve	ntion of S	Significant Deterioration (PSD)	37
	4.6	New S	Source Pe	erformance Standards (NSPS)	37
		4.6.1	40 CFR	60 Subpart LL Metallic Mineral Processing	38
	4.7	Natio	nal Emiss	sion Standards for Hazardous Air Pollutants (NESHAPs)	38
		4.7.1		63 Subpart 6J – Industrial, Commercial, and onal Boilers Area Sources	38
		4.7.2		Subpart 6G – Primary Non-Ferrous Metals Area Sources – dmium and Beryllium	38
		4.7.3		63 Subpart 6T – Secondary Non-Ferrous Metals Processing urces	38
		4.7.4	40 CFR	63 Subpart 6X - Nine Metal Fabrication and	
			Finishin	g Source Categories	38
		4.7.5	40 CFR	63 Subpart DD - Off-Site Waste Recovery Operations	39
	4.8	State	Rules		39
		4.8.1	35 IAC	205 - Emission Reduction Market System	39
		4.8.2	35 IAC	207 - Vehicle Scrappage Activities	39
		4.8.3	35 IAC	212 - Visible and Particulate Matter Emissions	39
			4.8.3.1	35 IAC 212.123 - Opacity Limits	39
			4.8.3.2	35 IAC 212.301 - Process Fugitive Particulate Matter	39
			4.8.3.3	35 IAC 212.309 - Fugitive Particulate Matter Operating Program	40
			4.8.3.4	35 IAC 212.321 - Process Weight Rate	40
			4.8.3.5	35 IAC 212.324 - Process Emission Units in Certain Areas	40
			4.8.3.6	35 IAC 212 Subpart U - Additional Control Measures	40
		4.8.4	35 IAC	241 - Sulfur Limitations	41
			4.8.4.1	35 IAC 214.301 General Limitations for Process Emission Sources	4
		4.8.5	35 IAC	216 - Carbon Monoxide Emissions	4
		4.8.6	35 IAC	217 - Nitrogen Oxide Emissions	4

Table of Contents

4.8.	7 35 IAC 218 - Organic Material Emissions Standards and Limitations	
	for the Chicago Area	42
	4.8.7.1 Section 218.105 - Test Methods and Procedures	42
	4.8.7.2 Section 218.301 – Use of Organic Material	42
	4.8.7.3 Section 218 Subpart TT – Other Emission Units	43
4.8	.8 35 IAC 244 – Episodes	43
4.8	.9 35 IAC 254 - Annual Emissions Report	43
TABLES		
Table 2-1	RTO Design Parameters	10
Table 3-1A	Summary of Controlled Shredder VOM and CO Emissions	
Table 3-1B	Summary of Controlled Shredder Filterable Particulate Emissions	
Table 3-1C	Summary of Controlled Shredder HAP Emissions	
Table 3-1D	Shredder RTO Natural Gas Combustion Emissions	
Table 3-1E	Summary of Controlled Shredder Emissions	
Table 3-2	Ferrous Material Processing - Particulate Emissions	
Table 3-3	Non-Ferrous Material Processing - Particulate Emissions	
Table 3-4	Summary of Estimated Fugitive Particulate Emission from Stockpile Operation	
Table 3-5A	Fugitive PM Emissions – Paved Roads	
Table 3-5B	Fugitive PM Emissions – Unpaved Roads	
Table 3-6	Miscellaneous Natural Gas Fired Environmental Heaters	
Table 3-7	Summary of Facility-Wide Criteria Pollutant Emissions	
Table 3-8	Summary of Facility-Wide HAP Emissions	
FIGURES		
Figure 1-1	Site Location Map	4
Figure 1-2	Facility Map	5
Figure 2-1	Shredder Emission Control System Flow Diagram	11
Figure 2-2	General Facility Layout	

Table of Contents

APPENDICES

Appendix A	IEPA Permitting Forms	3.4
APC-628	Construction Permit Application for a FESOP Source	A-1
197-FEE	Fee Form	A-5
CAAPP-286	Single Source Determination	A-7
CAAPP-220	Process Equipment Data and Information - Metal Shredder	A-11
CAA	APP-260 Air Pollution Control Equipment Data and Information – Meta Roll-Media Filter, RTO, and Packed Tower Scrubber	d Shredder A-21
	CAAPP-260C Supplement Form Air Pollution Control Equipment Roll-Media Filter	A-31
	CAAPP-260B Supplement Form Air Pollution Control Equipment Afterburner	A-33
	CAAPP-260G Supplement Form Air Pollution Control Equipment Packed Tower Scrubber	A-35
CAAPP-220	Process Equipment Data and Information	A-37
CAAPP-220	Process Equipment Data and Information	
CAAPP-220	Process Equipment Data and Information	A-4
CAA	APP-260 Air Pollution Control Equipment Data and Information Dust Collector DC-01	A-5'
	CAAPP-260C Supplement Form Air Pollution Control Equipment Dust Collector DC-01	A-6
Appendix B	Shredder/RTO Stack Test Report (May/June 2018)	В-
Appendix C	Institute of Scrap Recycling Industries – Title V Workbook Select Emission Factor Tables	C-

1.0 INTRODUCTION

General III, LLC (GIII), an affiliate of Reserve Management Group (RMG), is proposing to construct and operate a new scrap metal recycling facility (Facility) in Cook County at 11600 South Burley, Chicago, Illinois (see Figure 1-1). A Site Location Map and Facility Layout Map are presented in Figures 1-1 and 1-2.

The Facility described in this application will replace an existing facility currently owned and operated by General Iron Industries, Inc. (General Iron), located at 1909 North Clifton Avenue in Chicago, Illinois, which is scheduled to close by the end of 2020. This existing facility has been in operation at that location for over 60 years. Another RMG affiliate, GII, LLC (GII), is purchasing certain assets used in connection with the operation of General Iron's scrap metal business and intends to operate the business for a period of time at the existing facility and then transition the scrap metal operations from the Clifton Avenue location to its property at South Burley Avenue. Currently, the existing facility is processing approximately 750,000 ton per year of shreddable recyclables but is configured to process 1,000,000 tons per year. For purposes of this application, the existing facility is known as the "GII facility."

The proposed GIII facility on South Burley Avenue will also be configured to process 1,000,000 tons per year of shreddable recyclables and will effectively replace the existing GII facility. Currently, there is no other business in the Chicago area that has the capacity to handle this quantity of shreddable recyclables. If the GIII facility is not ready to accept and process material by the time the GII facility closes, there will be significant economic and environmental consequences to the City of Chicago and surrounding area.

Recycling offers the obvious benefit of keeping discarded metals out of landfills, but also provides other important and valuable benefits as well. There is a long nurtured a recyclable metal supply chain that includes thousands of individual peddlers at the GII facility. If these peddlers are unable to sell the discarded metal they collect for a fair price at an easily accessible location, there will be less incentive to search for and collect these materials. The burden for collection of discarded metals, such as used appliances and other bulk metal items, would then be shifted to local governments, which would significantly increase waste collection costs.

Peddlers often collect incidental items such as pressurized containers, used televisions, and batteries which are not safe or appropriate for city sanitation workers to manage. The GII facility provides a valuable community service by accepting these materials and properly disposing of them.

Disrupting the existing capacity for processing shreddable recyclables will also increase the cost of demolition required for redevelopment by increasing the transportation costs for shipment of shreddable material to other facilities located outside of the City of Chicago metropolitan area. The lack of adequate capacity to process this material would likely encourage illegal dumping or disposal of this material.

GIII's proposed facility will be a state-of-the-art recycling facility located in the heart of an industrial district well buffered from residential properties. The proposed new shredder and processing operations

will utilize the latest technology to create a clean, efficient, and environmentally sensitive plant that will preserve metal markets in Chicago, keep metal out of city alleys and landfills, maintain city garbage collection costs, support families that rely on the metal industry, and ensure that metals are reprocessed and reused instead of being abandoned or sent to landfills.

GIII will receive and shred mixed recyclable metal in various forms to produce uniform grades of ferrous and non-ferrous metals. Proposed scrap handling and processing activities include receiving, sorting, shredding, metal separation, and recovery of ferrous and non-ferrous metals.

GIII's proposed facility will be located in Cook County, which had been part a moderate ozone nonattainment area that was downgraded to a serious ozone nonattainment area effective September 23, 2019. GIII's proposed location is in an area that is 'in attainment' for all other National Ambient Air Quality Standards (NAAQS).

The proposed GIII facility will be a minor source with respect to federal and state nonattainment area new source review (NA NSR), prevention of significant deterioration (PSD) requirements and Title V permitting requirements. The proposed facility will also be an area source with respect to hazardous air pollutants (HAPs).

GIII will apply for and obtain a federally enforceable state operating permit (FESOP) for continued operation beyond the coverage of the construction permit requested by this application.

This permit application includes the following information:

- Scrap Metal Recycling Facility Process Descriptions (Section 2.0);
- Facility Emissions Estimates (Section 3.0);
- Regulatory Applicability (Section 4.0);
- Figures;
- Emission Tables;
- IEPA Construction Permit Application Forms (Appendix A);
- Shredder/Roll-Media Filter Stack Test Report (Appendix B); and
- ISRI Title V Workbook Emission Factor Tables (Appendix C)

Any questions regarding this application may be directed to Mr. Jim Kallas, Environmental Manager of GIII, at 847-508-9170 or to Mr. John Pinion, Principal Engineer at RKA at 630-393-9000 x 208.

1.1 Facility Location and Contact Information

Business Name: General III, LLC.

Source Location: 11600 South Burley – Chicago, Illinois 60617

Hyde Park Township, Cook County Illinois

<u>Latitude/Longitude</u> 41.685201° N / -87.545847" W –

Approximate Location of Front Gate

Office/Mailing Address: 1909 N. Clifton Avenue – Chicago, Illinois 60614

General III, LLC Mr. Jim Kallas - Environmental Manager

847-508-9170 - jim@general-iron.com

IEPA Site ID No.: Not yet assigned

SIC Code: 5093 – Scrap and Waste Materials

NAICS Code: 423930 – Recyclable Material Merchant Wholesalers

RKA Contact for John Pinion - Principal Engineer

Application Preparation 2S631 Route 59, Suite B - Warrenville, Illinois 60555

630-393-9000 - jpinion@rka-inc.com

This Page Left Blank

2.0 SCRAP METAL RECYCLING PROCESS DESCRIPTIONS

The Facility described in this application is a state-of-the-art scrap metal recycling facility designed to maximize recovery of reusable material from the raw feed stream received. The Facility will consist of the following operations:

- Raw material receiving and handling;
- Hammermill shredder;
- Ferrous separation and material processing; and,
- Non-ferrous separation and material processing.

A general facility layout diagram is presented in Figure 2-2. The Facility is designed and configured to process 1,000,000 tons per year of shreddable recyclables. GIII will be also one of the first scrap metal recycling facilities in the Midwest to install an emission capture and control system on the hammermill shredder to control particulate matter (PM), including metals and metal HAPs, and volatile organic material (VOM) and associated organic HAPs. This system will utilize a high capacity fan (approximately 60,000 cfm) and emission capture hood suspended over the top of the shredder to draw ambient air from around the outside of the shredder into the hood, capturing exhaust gases from the shredder and routing them to the control system.

The shredder emission control system will include:

- a cyclone for removal of large diameter material from the shredder exhaust before reaching the control system;
- a roll-media filter to remove PM (including associated metals and metal HAPs);
- a regenerative thermal oxidizer (RTO) for destruction VOM and organic HAPs; and,
- a packed tower scrubber to neutralize any acid gases formed in the RTO.

Additional features of this Facility that will minimize emissions include covers on selected conveyors and conveyor transfer points, processing of fines inside of a building equipped with four dust collectors to collect and capture fugitive particulate from inside the building before returning treated air back into the building, use of water atomizers to wet fugitive particulate matter in the outdoor ambient air and increase on site settling of suspended particulate, sweeping and watering of paved roadways, and watering or chemical treatment of unpaved roads.

The following sections describe the proposed operations and associated control equipment.

2.1 Metal Shredder Controlled by Cyclone, Roll-Media Filter, RTO, and Scrubber

GIII will install a new hammermill shredder capable of shredding up to 100,000 tons per month of mixed recyclable metal in various forms to produce uniform grades of ferrous and non-ferrous metal. The shredder will be located inside of a partial enclosure with walls and a vented metal roof to help contain debris and particulate matter (PM) generated during the shredding process. The shredder will be equipped with an integral water injection system to minimize the potential for fires and deflagrations inside the shredder.

The shredder will also be equipped with an emissions control system consisting of a capture hood, cyclone, roll-media filter, RTO and wet scrubber for control of PM, metals, metal HAPs, volatile organic material (VOM) and organic HAPs. The proposed control system has been installed and is currently being operated to control shredder emissions at the GII facility and will be relocated to the GIII facility in 2020.

The actual shredder feed rate will be dependent on the type and consistency of the feed material and the ability to consistently feed the mixed recyclable metal to the shredder. A belt scale, downstream of the shredder, measures the net mass of shredded ferrous metal produced in tons per hour. A site-specific ratio of total material received to the mass of ferrous metal produced is used to convert the measured rate of ferrous materials produced to the gross shredder feed rate. The existing facility's material ratio will be used until data from GIII's facility is available to update this ratio.

Shredded material, consisting primarily of ferrous material, non-ferrous metal, and non-metallic material is discharged at the bottom of the shredder by a vibratory conveyor and is routed by a series of belt conveyors to downstream processing equipment described in Section 2.3 below.

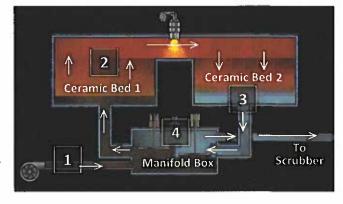
An emissions capture hood will be suspended above the top of the shredder by an overhead crane. The hood will be equipped with rubber curtains extending downward to the top of the shredder to enhance emissions capture efficiency. An induced draft fan draws shredder exhaust into the emission capture hood and through a cyclone and roll-media filter, for control of particulate matter, metals and metal HAPs before being routed to an RTO for control of volatile organic material (VOM) and organic HAPs and then through a packed tower scrubber for the control of acid gases and inorganic HAPs.

Treated exhaust gases will be discharged to the atmosphere through a stack mounted on the top of the packed tower scrubber.

Each component of the shredder control system is described in the following sections.

2.1.1 Cyclone / Roll-Media Filter

A standard cyclone is located between the shredder capture hood and the roll-media filter to remove any large material prior to entering the roll-media filter. Material collected in the cyclone is discharged through a rotary discharge valve and is added to the shredder residue (ASR) from the ferrous plant for further processing. This cyclone is integral to the process because it separates larger material from the conveying air stream to prevent it from plugging the downstream roll-media filter.


The roll-media filter includes a large rectangular section of duct measuring approximately 18 ft by 6 ft. A roll of unused filter material is placed on the supply side of the filter and fed through the rectangular section of duct to a take-up roll. The unit is designed so that the air flow passes downward through the filter to capture particulate matter. The filter material is automatically periodically advanced to remove spent filter material from the air stream and introduce clean filter material into the air stream. Spent filter material is collected on a take-up roll.

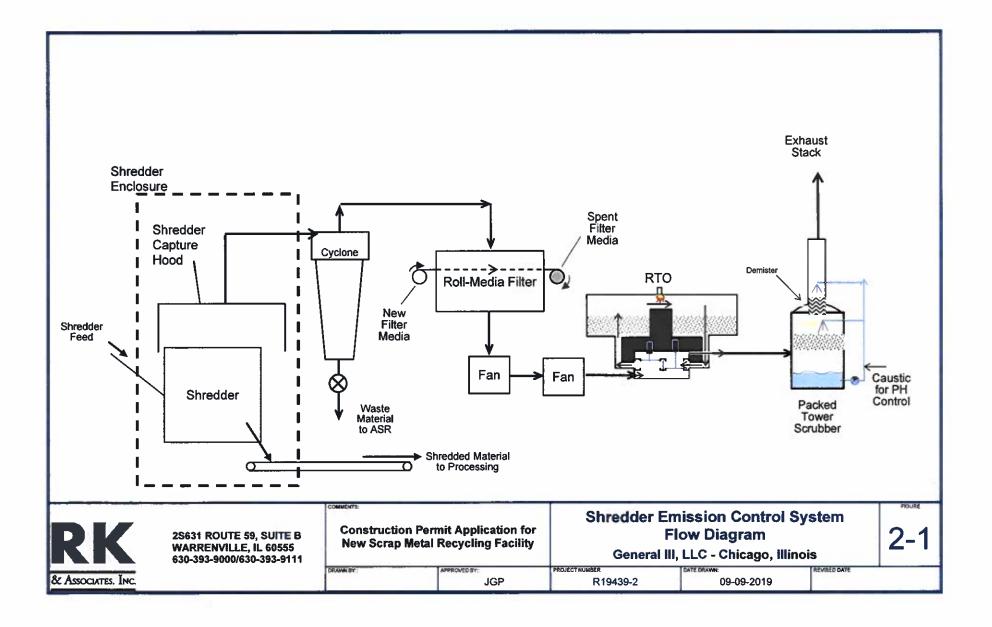
2.1.2 Regenerative Thermal Oxidizer (RTO)

RTOs achieve a very high thermal efficiency (95% or greater) and need only small amounts of supplemental fuel to maintain the desired operating temperature, even with low VOC concentrations in the process exhaust gas.

The RTO that will be installed at the Facility was designed and manufactured by Catalytic Products International of Lake Zurich, Illinois.

As illustrated on the right, the RTO is equipped with two beds of high-heat capacity ceramic media to store the heat released by the combustion of VOM and auxiliary fuel. At the beginning of an oxidization cycle, cool process exhaust gas [1] enter the RTO and are preheated as they pass through a hot ceramic bed [2] (heated by the combustion chamber exhaust gases from the previous cycle). The preheated inlet gas then enters the combustion chamber, between the two beds, where a natural gas fired burner adds additional

heat required to maintain the desired temperature for destruction of the VOM. The hot gas exiting the combustion chamber is directed downward through the second bed of ceramic media [3], preheating the ceramic media for the next cycle. This heat is recovered when two valves in the manifold box [4] change position reversing the flow of gas through the RTO.



As shown in the shredder control system process flow diagram presented in Figure 2-1, an induced draft fan upstream of the RTO forces shredder exhaust gases through the RTO and packed bed scrubber and discharges the treated gases to the atmosphere.

A summary of the RTO design characteristics is presented in Table 2-1 below.

Table 2-1 – RTO Design Parameters

RTO Design Parameter	Value	
Maximum Air Flow (scfm)	80,000	
VOM Destruction Efficiency	98% or greater	
Combustion Chamber Operating Temperature	Approx. 1,500 °F	
Heat Exchange Media	Ceramic	
Natural Gas Firing Rate	Approximately 10 to 18 MMBtu	
Induced Draft Fan	Approximately 300 to 400 HP	
Combustion Air Blower	Approximately 10 HP	
Valve Type	Poppet	

2.1.3 Packed Tower Scrubber

Combustion of potential chlorinated and fluorinated compounds in the shredder exhaust may generate hydrogen chloride (HCl) and hydrogen fluoride (HF). These acid gases will be neutralized in a quench/packed bed scrubber by contacting the acid gases with a solution of water and caustic.

The packed tower scrubber is a standard counter current design with gases entering the bottom of the scrubber and flowing upward through the packing. Water from the sump, located in the bottom portion of the scrubber vessel, is recirculated through one or more spray nozzles located at the top of the packing, to evenly distribute the scrubbing solution over the packing. Water will flow downward over the surfaces of the packing material. The packing material is designed to increase surface area to allow the reaction between the acid gases and scrubbing solution. In the packing, the acid gases react with the caustic in the scrubbing solution to convert the acids to salts that are disposed of with the spent scrubber water. As the treated gases exit the top of the packing, they will pass through a high efficiency mist eliminator to remove aerosols from the exhaust gases. The mist eliminator will be equipped with water sprays for periodic cleaning.

The scrubber will be equipped with a quench section located immediately upstream of the packed bed section. The quench will be equipped with water spray nozzles to ensure the process gas stream discharged from the RTO is controlled to the desired temperature, upon entering the packed tower section.

The scrubber will be equipped with a chemical metering pump suitable to handle the required caustic feed rate. The sump will be equipped with a level sensor to monitor the water level. The level transmitter will control the water makeup valve to ensure that the required volume of water is maintained. The pressure drop across the packing and demister pad will be monitored by a differential pressure gauge. In addition, a pH probe and analyzer, with control loop to the chemical metering pump, will maintain the target pH of the scrubbing solution.

The scrubber system will be designed to treat the maximum gas volume discharged by the RTO and to remove 99% of the acid gases.

2.1.4 Exhaust Stack

Treated gases are discharged to the atmosphere through a stack located on top of the packed tower scrubber.

2.2 **Ferrous Material Processing System**

The Ferrous Metal Processing System, including metal separation, cleaning system and equipment, that will be utilized by GIII will be designed by the Wendt Corporation of Buffalo, New York. Wendt is a

leader in the metal recycling industry and has over 35 years of experience designing and implementing comprehensive metal recycling systems. Emissions from the Ferrous Material Processing System are discussed in Section 3.

Shredded material is discharged from the bottom of the shredder onto a vibratory feeder located within the shredder enclosure. The shredded material has been sprayed with water from the shredder water injection system, which minimizes emissions from conveyors and downstream processing equipment. The vibratory feeder discharges shredded material to a series of belt conveyor that transport the material to downstream processing equipment. The vast majority of conveyors are either skirted or troughing conveyors designed to minimize material spilling or leaking from the conveyor on to the ground.

The following describes the major features of the Ferrous Material Processing System.

Poker Picker

The shredded material is conveyed from the shredder to a Poker Picker that automatically removes longer pieces of metal that may disrupt or damage downstream conveyor belts and equipment. The material removed slides down a gravity chute to one of two poker collection piles located in three sided partial enclosures. The majority of the materials removed by the Poker Picker will be reprocessed.

Magnetic Separation

The shredded material then passes over magnetic separators that pick up some of the ferrous metal and discharge it to a gravity chute that splits the ferrous metal into two identical streams. Non-metallic material consists primarily of ASR and a limited amount of ferrous metal. This material drops onto a takeaway conveyor.

The takeaway conveyor transports the ASR to a secondary magnetic separation system to remove any residual ferrous metal. Magnetic metal removed is conveyed back to the ferrous metal stream.

ASR Stockpile

ASR that is not removed by magnetic separation (described above) drops to a conveyor that transports the material to the ASR stockpile. A stacking conveyor is used to distribute ASR within the stockpile area. ASR is the feed stream for the Non-Ferrous Material Processing System described in Section 2.4.

Secondary Magnetic Separation

Material that passes beyond the ASR removal section is conveyed to magnetic separation process that picks up ferrous metal and discharges it to downstream conveyors. ASR that is not removed by these magnets falls onto a conveyor that transports the material back to the ASR takeaway conveyor.

Z-Box Separators

Ferrous metal is then conveyed to one of two Z-Box Separators. Each separator is a lined abrasion-resistant box, or chute, configured similarly to the letter "Z", which causes the material entering the top of the separator to change directions several times at it falls via gravity through the separator. An air recirculation loop, equipped with a fan, forces a stream of air into the bottom of the separator. The air flows upward through the separator, counter current to the direction of the falling ferrous metal. Light material and fines are entrained in the upward flowing air and ducted out of the top of the separator and into a cyclone. The cyclone disengages the light material and fines from the air stream. The clean air stream exiting the cyclone is ducted back to the inlet of the fan, which recirculates the clean air by ducting it back to the bottom of the separator. The separator is equipped with integral conveyor seals and air knives at the material inlet and outlet. The high velocity air curtain created by the air knives prevents particulate escape from the system without relying on pressure differential at the inlet and outlet of the separator.

Clean metal discharged from the separators is conveyed to another magnetic separation system to separate ferrous from non-ferrous metals in the final recycled metal stream. Clean metals discharged from the drum magnets are conveyed to a Picking Platform where select materials are manually separated. Ferrous metal passing through the Picking Platform is conveyed to a ferrous metal stockpile or to barge loadout.

Light Material from Z-Box Separator Cyclones

Light material removed in the cyclones is discharged through a rotary air lock to a conveyor that transports the material to another magnetic separation to remove any small pieces of ferrous metal that may become mixed with the light material. Ferrous metal is conveyed to the ferrous stream.

Non-magnetic material is conveyed to a final separation process designed to separate higher density materials from the light material, or fluff. Higher density materials are separated and drop into a container for further processing. Light material is conveyed to the fluff stockpile, located in a three-sided partial enclosure. Fluff is a waste stream that is disposed of at a properly licensed waste disposal facility.

Ferrous Stockpiles and Barge Loading

Recovered ferrous metal is either conveyed to one of two stacking conveyors for controlled distribution of materials onto ferrous stockpiles or is conveyed to barge loadout where ferrous metal drops into a barge for off-site shipment to customers. Material from the ferrous stockpiles are loaded into barges, rail cars or trucks for off-site shipment to customers.

2.3 Non-Ferrous Material Processing System

The Non-Ferrous Material Processing System, including metal separation, cleaning system and equipment, that will be utilized by GIII will be designed by Wendt Corporation of Buffalo, New York. Wendt is a leader in the metal recycling industry and has over 35 years of experience designing and implementing comprehensive metal recycling systems.

The Non-Ferrous Material Processing System includes a Fines Processing System to recycle smaller pieces of recyclable metal. The majority of the non-ferrous processing equipment is located outdoors and the majority of outside conveyors are equipped with covers. A portion of the Non-Ferrous Material Processing System, consisting of the induction sorters and a polisher are located inside of the Fines Building and are controlled by Dust Collector DC-01, which exhausts to the outside atmosphere.

Emissions from the Non-Ferrous Material Processing System are discussed in Section 3.

The following describes the major features of the Non-Ferrous Material Processing System.

ASR Batch Feeder

A rubber-tired end loader will be used to move material from the ASR stockpile to a vibratory batch feeder that provides a uniform feed rate to the downstream processing equipment. The vibratory batch feeder discharges to a covered conveyor. The batch feeder is located outdoors.

Magnetic Separation

ASR will pass through a magnetic separator to remove residual ferrous metal. The magnetic separation process is located outdoors. Ferrous metal is discharged to a small storage pile equipped with a partial enclosure consisting of three side walls. Material from this stockpile is recycled back to the shredder infeed. Non-magnetic material passing the drum magnet is discharged to a covered conveyor that feeds into a two-step screening process.

Screening Process

A two-step screening process is used to separate the ASR into specific material sizes. Screening equipment and connecting conveyors are located outdoors. The first screen separates material into three sizes; material > 4.5 inches in diameter; material that is 2.5 to 4.5 inches in diameter; and, material that is 1.5 to 2.5 inches in diameter. Material less than 1.5 inches in diameter is conveyed to the second screening step.

In the second screening step, two vibratory screens separate material into three sizes: material 1.5 to 2.5 inches in diameter; material that is 5/8 to 1.5 inches in diameter; and, material that is less than 5/8" inches in diameter.

Material discharged from the screening process is conveyed to various downstream separation equipment, as described below.

Other Equipment

The following is a brief description of other types of processing equipment in the Non-Ferrous Material Processing System.

Eddy Current Separators (ECS)

Upon exiting the screeners, the material streams pass through one of seven Eddy Current Separators. Each ECS is enclosed in a building to protect equipment from the weather. No credit for emissions control is attributed to the ECS building. Each ECS processes material in a specific size range. Each ECS is preceded by a magnetic separator to separate magnetic and weakly magnetic materials that represent impurities that can negatively affect the value of recovered non-ferrous products.

An ECS has a conveyor belt system with a high-speed magnetic rotor at the drive end. The rotational speed of the magnet generates an induction field, creating a rapidly changing magnetic field that temporarily magnetizes non-ferrous metals.

Non-ferrous metal removed by each ECS is conveyed to a polisher for further separation by particle density before being conveyed to a product storage pile as a finished product.

Material that cannot be magnetized is conveyed for further processing in Wind Sifters and Induction Sorters as described below.

Wind Sifters

There are four Wind Sifters included in the Non-Ferrous Material Processing System. All Wind Sifters and connecting conveyors are located outdoors. A Wind Sifter is an air classifier, in which a conveyor belt discharges material into an upward flowing air stream that removes light material. The residue laden air stream is ducted to a cyclone to remove the light material. Clean air from the cyclone is then ducted to a fan and is recycled back to the Wind Sifter. The Wind Sifter is an air classifier that functions similarly to the Z-Box separators described above. The residue removed in the cyclone is discharged through a rotary valve to conveyors that transport the material to the waste storage pile for subsequent off-site disposal. This device is treated as a screen with for purposes of estimating emissions.

Heavier metallic material falls downward through the air stream to a takeaway conveyor that transports the material to an Induction Sorter.

Induction Sorters

There are eight Induction Sorters. An Induction Sorter consists of a conveyor belt that carries material over an inductive metal sensor that produces an electromagnetic field. Any conductive object passing through the sensor area is detected and classified. As the material falls off the end of the conveyor, a targeted blast of compressed air ejects the metal containing material onto separate takeaway conveyor. Nonmetallic material falls off the end of the conveyor onto another takeaway conveyor.

The eight induction sorters and connecting conveyors are located inside of the Fines Processing Building. A network of ductwork connect the induction sorter enclosures to Dust Collector DC-01, which exhausts to the outside atmosphere.

Polishers

There are five polishers. Polishers function as an air classifier. As material travels over a perforated conveyor, a gentle stream of air flows upward through the conveyor to lift light (low density) material, such as paper and plastic, directing it to a separate takeaway conveyor. This material is relatively clean by the time it enters the polishers and results in only minimal emissions; however, for the purposes of this application, emissions are calculated using screening emission factors.

Air Vibe

There is one Air Vibe. The Air Vibe and connecting conveyors are located outdoors. An Air Vibe is a vibratory air separator that uses a combination of vibratory screens and air to separate dry materials by different density, shape and surface characteristics. The air flow through the separator is a closed loop system with no discharge point. A fan forces air through the separator. Dirty air exiting the device is ducted to a cyclone to remove suspended particulate matter. Clean air is ducted back to the inlet of the fan.

Low-Speed Shredder

There is one small low-speed shredder located outdoors. The Low-Speed Shredder is a small, low speed, high torque, quad shaft shredder used for size reduction of clean metal on an asneeded basis.

Fines Processing System

The Fines Processing System is a separate system of conveyors and processing equipment located in the Fines Processing Building. A system of exhaust ducts connects the fines processing equipment to three identical dust collectors that exhaust treated air back into the building. A fourth identical dust collector controls non-ferrous equipment located in the Fines Processing Building and discharges to the outside atmosphere.

All four dust collectors are located outside of the east wall of the Fines Processing Building and are identical in design and function. Each dust collector has a design air flow rate of 12,000 cfm. Combined, the four dust collectors withdraw 48,000 cfm from the building, return 36,000 cfm to the building, and exhaust 12,000 cfm of treated air to the outside atmosphere. The difference between the building withdrawal and return rates must be satisfied with outside makeup air entering the building through conveyor wall penetrations and air makeup louvers. This configuration will minimize potential emission of fugitive particulate from the building by maintaining a low particulate concentration in the inside air and by maintaining an inward flow through building openings.

Based on the configuration described above, there three dust collectors that discharge to the interior of the Fines Processing Building are not control devices for purposes of permitting. Only the dust collector that exhausts to the outside atmosphere is a permitted control device.

There are no other control devices associated with the Non-Ferrous Material Processing System.

2.4 Stockpile Operations

Stockpile Operations includes three large stockpiles fed by stacking conveyors and multiple small stockpiles fed by a standard conveyor. Small stockpiles are located within partial enclosures consisting of three walls to minimize fugitive emissions and provide secure containment for the material. All stockpiled material is moved by rubber-tired end loaders or material handlers equipped with electromagnets or grapples. Individual stockpiles are identified on Table 3-4.

2.5 Vehicular Traffic

The vast majority of material received at the proposed facility will be delivered by dump and gondola trailers and the remaining portion will enter the facility in pickup truck sized vehicles driven by peddlers. Vehicles will enter the facility through a controlled gate and travel over a weigh scale before being routed to a designated unloading area.

Dump trailers will dump material near one of two raw material storage piles located adjacent to the shredder infeed conveyor. Cranes equipped with electromagnets and grapples will move material from the unloading areas to the storage piles and from the storage piles to the shredder infeed conveyor.

Pickup trucks will be directed to a dedicated peddler unloading area where scrap metal will be manually unloaded or by an electromagnet and sorted. Sorted material will be transported by rubber-tired loader, material handlers with grapples, or dump trailers to the raw material storage piles.

After unloading, all vehicles will travel over a scale before exiting the facility.

Scrap Metal Recycling Facility Process Descriptions

Emissions from unloading scrap from dump trailers are identified in Section 3.3 and emissions associated with vehicular traffic are identified in Section 3.5.

Approximately 95% of the interior plant roadways are paved roads consisting of concrete or asphalt. Only 5% of interior plant roadways are unpaved roads consisting of compacted slag or other similar materials.

2.6 Natural Gas Combustion

Natural gas will be combusted by the shredder RTO and by miscellaneous environmental heaters located throughout the proposed facility. The miscellaneous environmental heaters are exempt from the requirement to obtain a state construction or operating permit pursuant to 35 IAC 201.146(d).

2.7 Excluded Activities

The following activities, potentially associated with the operation of metal recycling facilities, are not included in this permit application:

- Torch Cutting;
- · Fuel Storage Tanks; and
- Emergency Generators.

Scrap Metal Recycling Facility Process Descriptions

This Page Left Blank

3.0 FACILITY EMISSIONS ESTIMATES

As described in this application, GIII will install a state-of-the-art emissions control system on the hammermill shredder. The shredder will be located inside of a partial enclosure with walls and a vented metal roof to help contain debris and particulate matter (PM) generated during the shredding process. The shredder will be equipped with an integral water injection system to minimize the potential for fires and deflagrations inside the shredder. As established in previous permits, the water injection system is integral to the process and is not a pollution control device for the purposes of this permit application.

GIII has taken other significant measures to limit emissions, and potential impacts, from this facility, including:

- GIII's proposed facility will be a state-of-the-art recycling facility located in the heart of an
 industrial district well buffered from residential properties with at least 1,500 feet between the
 facility property line and the nearest residential area.
- Approximately 95% of interior plant roadways are paved with concrete or asphalt. The
 remaining approximately 5% of interior plant roadways consist of crushed slag or similar
 materials and are only lightly traveled.
- The shredder will one of the first shredders in the nation to install a comprehensive emissions capture and control system to control VOM, PM, and HAPs.
- Many of the conveyors in the Non-Ferrous Material Processing System will be equipped with covers to prevent windblown emissions.
- The majority of the fines processing equipment is located within a building and controlled with dust collectors.
- GIII will implement a fugitive operating program that will require periodic watering and sweeping of traffic areas to minimize fugitive particulate emissions.
- GIII will use a network of dust boss water atomizing cannons to apply water into the ambient air to wet suspended particulate to increase settling.
- The facility has received all necessary zoning approvals from the City of Chicago.

Emission units identified in the application include:

- Shredder controlled by cyclone, roll-media filter, RTO, and packed tower scrubber;
- Ferrous Material Processing System;
- Non-Ferrous Material Processing System;

- o Dust Collector for control of select exhaust streams from the fines handling building;
- Stockpiles (fugitive emissions);
- Paved and Unpaved Roads (fugitive emissions); and
- Miscellaneous Natural Gas Fired Environmental Heaters (exempt from permitting).

Each of the above emission units are discussed in the sections below and emissions for each are summarized in Tables 3-1A through 3-1E and Tables 3-2 through 3-6. Facility-wide criteria and HAP pollutant emissions are summarized in Tables 3-7 and 3-8. The emissions estimates presented in this application demonstrate that the proposed Facility is a minor source with respect to new source review, and Title V permitting requirements and is also a minor source of HAP emissions.

3.1 Shredder Emissions Controlled by Cyclone, Roll-Media Filter, Regenerative Thermal Oxidizer, and Packed Tower Scrubber

This section provides shredder emissions estimates for captured/controlled emissions routed through the proposed emission control system consisting of a cyclone, roll-media filter, RTO, and packed tower scrubber.

GIII will install a new shredder at the proposed facility and will relocate the existing cyclone, roll-media filter, RTO and packed tower scrubber from the existing GII facility to the proposed facility. The raw scrap feed stream received at the existing GII facility is essentially the same feed stream that will be received at GIII's proposed facility. For these reasons, for the purposes of this application, the emission data from the existing shredder and emission control system at the GII facility is assumed to reasonably represent the anticipated emissions from GIII's new shredder at the proposed facility.

The shredder will be located inside of a partial enclosure with walls and a vented metal roof to help contain debris and particulate matter (PM) generated during the shredding process. The shredder will be equipped with an integral water injection system to minimize the potential for fires and deflagrations inside the shredder.

VOM emission estimates presented herein assume an RTO control efficiency of 98% based on the design of the RTO. As of the date of this permit application, the existing GII shredder emissions, controlled by the RTO and packed tower scrubber, have not yet been measured. Emission testing of the RTO and packed tower scrubber are scheduled to be completed in early November 2019. This proposed testing will provide updated controlled shredder emission factors for PM/PM10, NOx, CO, SO2, VOM, metals, metal HAPs, hydrochloric acid, and hydrofluoric acid. Currently, the proposed testing of the existing shredder will not include organic HAPs. Once the emission data from the November 2019 testing have been finalized, the emission estimates in this application will be updated to incorporate the new November 2019 test results..

Facility Emissions Estimate

The captured shredder emissions identified in this application are based on demonstrated emission factors in units of pounds-of-emissions per ton of gross feed to the shredder derived from THC emissions testing performed on May 25, 2018, and PM and metals emissions testing performed on June 13 and 14, 2018. A copy of the test report from each of these testing events is presented in Appendix B of this application.

The emissions estimates presented in this section are calculated using demonstrated emission factors and proposed material throughput rates. This construction permit application does not rely on operating hours to estimate monthly or annual emissions; therefore, no operating hour limits are requested.

The new shredder for this facility will have a rated capacity of 100,000 tons/month. This construction permit application requests an annual shredder throughput limit of 1,000,000 tons/year and a monthly throughput limit of 10% of the annual, or 100,000 tons/month. These values are based on recent operating data and have also been used to estimate the proposed monthly and annual emissions limits requested in this construction permit application (see Table 3-1E).

Visual observations of the shredder capture hood by Agency observers during May 2018 emission testing showed that the capture hood is very effective and provides a high capture efficiency. The nature of the shredding operation and related safety concerns prevents a direct measurement of emissions capture efficiency using a permanent or temporary total enclosure. GIII anticipates that the new shredder emissions capture hood will perform similarly to the observed operation during the May/June 2018 testing of the existing shredder at the GII facility.

3.1.1 Shredder VOM and CO Emissions

For the purposes of these emission calculations, it is assumed that THC, as referenced in May 2018 GII shredder emission test report (presented in Appendix B) is equivalent to VOM.

The estimated controlled VOM and CO emissions from the proposed shredder, controlled by a cyclone, roll-media filter, RTO and packed tower scrubber, are presented in Table 3-1A. An uncontrolled VOM emission factor, adjusted to subtract methane, ethane, and other compounds exempt from the federal definition of volatile organic compound, was developed from THC emissions testing conducted on May 25, 2018, at the existing shredderat the GII facility. The THC test report is presented in Appendix B of this application.

The adjusted VOM emission factor is 0.2430 pounds of VOM (as propane) per ton of gross feed to the shredder. This VOM emission factor identifies captured/uncontrolled VOM, which is assumed to represent 95% or more of total VOM emissions.

The hourly shredder VOM emission rate is calculated using the following equation:

$$100,000 \frac{ton}{month} \times 0.2430 \frac{lb \, VOM}{ton \, shredder \, feed} \times (1-0.98) = 0.24 \frac{tons}{month}$$
maximum
monthly
shredder
throughput
$$x = 0.2430 \frac{lb \, VOM}{ton \, shredder \, feed} \times (1-0.98) = 0.24 \frac{tons}{month}$$
monthly
emission factor
(captured emissions)
removal
efficiency

The annual shredder RTO VOM emission rate is calculated using the following equation:

The monthly shredder RTO VOM emissions rate is based on 10% of the annual emission rate.

For the purposes of this application, shredder CO emissions are assumed to be 1% by weight of the uncontrolled VOM at the entrance of the RTO (See Table 3-1A).

3.1.2 Shredder Particulate Emissions

The estimated shredder PM/PM₁₀ emissions are presented in Table 3-1B. A PM/PM₁₀ emission factor was developed from filterable PM/Metals emission testing conducted on June 13 and 14, 2018, at a location downstream of the existing roll-media filter at the existing GIIfacility. The emissions test report for this testing event is presented in Appendix B of this application.

The measured controlled PM emission factor was 0.0047 lb-PM/ton of gross feed to the shredder. For the purposes of this permit application, the measured filterable PM is conservatively assumed to be PM₁₀ at the location where PM emission sampling was performed (downstream of the existing roll-media filter). For the purpose of this application, it has been assumed that the RTO and packed tower scrubber will not reduce the measured PM/PM₁₀ emission rate at the outlet of the roll-media filter.

The PM/PM₁₀ emissions factor identifies captured filterable PM/PM₁₀, which is assumed to be 95% of total shredder emissions.

The hourly shredder PM/PM₁₀ emissions at the scrubber stack are calculated using the following equation:

$$100,000 \frac{ton}{month} \times 0.0047 \frac{lb \ filterable \ PM/PM10}{ton \ shredder \ feed} = 0.24 \frac{ton}{month}$$

$$\frac{maximum}{monthly} \qquad \frac{measured \ filterable}{PM/PM_{10}} \qquad \frac{monthly}{filterable}$$

$$\frac{PM/PM_{10}}{throughput} \qquad \frac{pM/PM_{10}}{(captured \ emissions)} \qquad \frac{pM/PM_{10}}{emissions}$$

The annual shredder PM/PM₁₀ emissions at the scrubber stack are calculated using the following equation:

$$1,000,000 \frac{ton}{year} \times 0.0047 \frac{lb \ filterable \ PM/PM10}{ton \ shredder \ feed} \times \frac{1 \ ton}{2000 \ lbs} = 2.36 \frac{tons}{year}$$

$$\begin{array}{ccc} \text{maximum} & \text{measured filterable} & \text{convert} & \text{annual} \\ \text{shredder} & \text{emission factor} & \text{lbs to tons} & \text{filterable} \\ \text{throughput} & \text{(captured emissions)} & \text{emissions} \end{array}$$

The monthly shredder PM/PM₁₀ emission rate is based on 10% of the annual emission rate.

3.1.3 Shredder Hazardous Air Pollutant Emissions

Shredder metal and organic HAP emissions are summarized in Table 3-1C.

The metal HAP emission factors identified in Table 3-1C are the measured controlled emission factors from the June 2018 metals emissions testing at the discharge of the roll-media filter at the existing GII facility.

Organic HAPs were not measured during the existing GIIshredder emissions compliance test. Therefore, in order to estimate organic HAP emissions from the GIII shredder, uncontrolled organic HAP emission factors were obtained from the *Institute of Scrap Recycling Industries (ISRI) Title V Applicability Workbook (1996), Table D-11F.* A copy of this table is presented in Appendix C.

For the purposes of this construction permit application, it has been conservatively assumed that the RTO and packed tower scrubber will not provide any additional metal HAP removal and that the RTO will control 98% of the organic HAPs.

Metal and organic HAP emissions from combustion of natural gas in the shredder RTO are identified on Table 3-1D.

3.1.4 Shredder RTO Natural Gas Combustion Emissions

The estimated shredder RTO natural gas combustion emissions are presented in Table 3-1D. Emissions are calculated using a maximum natural gas firing rate of 15 MMBtu/hr, a natural gas higher heating value (HHV) of 1,020 Btu/scf, and standard USEPA natural gas emission factors from AP-42; Chapter 1.4; Tables 1.4-1 and 1.4-2.

Emission estimates are presented for criteria pollutants, greenhouse gas (GHG), and metal and organic HAPs.

3.1.5 Shredder Emissions Summary

Table 3-1E presents a summary of total estimated shredder emissions controlled by the cyclone, roll-media filter, RTO and packed tower scrubber. The values identified in Table 3-1E identify the emission limits and shredder throughput limits requested in this permit application. Proposed emission units are in units of tons/month and tons/year and correspond to shredder gross feed rate of 100,000 tons/month and 1,000,000 tons/year.

3.2 Ferrous Material Processing System Emissions

Emissions from the Ferrous Material Processing System include PM, PM₁₀, PM_{2.5} and metal HAPs. There is no combustion or high temperature processing performed, so emissions of VOM and other products of combustion are not anticipated.

Particulate Emissions

A review of AP-42 emission factors did not identify any published emission factors for processing shredded scrap metal or ASR using feed hoppers, conveyors, magnetic separators, screens, vibratory feed tables, eddy current separators, wind sifters, induction sorters, polishers, Air Vibe separators, or material transfer to stockpiles or storage containers. RKA is also not aware of any other source of published emission factors for this equipment processing shredded scrap metal or ASR.

In the Institute of Scrap Recycling Industries (ISRI) Title V Applicability Workbook (1996), Footnote 1 on Table D-9, states that;

"Emission factors applicable to conveyor transfer points for scrap in feed material or products are not available. A conservative estimate of PM₁₀ emission scan be made using emission factors derived from the handling of crushed stone products. The factors in this table were adapted from AP-42, Crushed Stone Processing, Section 11.19.2, Table 11.19.2-2 for uncontrolled and controlled transfer points."

Facility Emissions Estimate

The AP-42 emission factors for crushed stone (Section 11.19.2; Table 11.19.2.2) have been uniformly adopted by the metal recycling industry as evidenced by their use in numerous permit applications for metal recycling facilities and have been accepted by IEPA and other state regulatory agencies throughout the United States.

ASR separation processes include only one small low speed high torque shredder used for size reduction of clean metal. All other ASR equipment is designed for material separation. This fact limits the potential generation of total suspended particulate matter (TSP) to only the fines present in the ASR being processed. Based on the above, the application of AP-42 particulate matter emission factors for crushed stone processing to ASR processing is likely to result in estimated emissions that are greater than actual emissions from ASR separation processes.

The following table identifies emission factors from AP-42, Table 11.19.2-2 that are typically used in metal recycling emission calculations. The identifiers in the first column of the table are used in Tables 3-2 and 3-3 to document the specific emission factors used to estimate emissions for each piece of equipment or operation.

Particulate Emission Factors from AP 42; Table 11.19.2-2 Crushed Stone Processing (8/2004) Used in Estimating PM Emissions in Scrap Metal Material Handling and ASR Separation Operations.

Identifer			Uncontrolled			Controlled ¹		
Used in Tables 2 & 3	Equipment	Material	PM lb/ton	PM10 lb/ton	PM2.5 lb/ton	PM lb/ton	PM10 lb/ton	PM2.5 lb/ton
A	Conveyor Transfer Point	Crushed Stone	0.0030	0.0011	0.000167 2	0.00014	0.000046	0.000013
В	Screening	Crushed Stone	0.0250	0.0087	0.001317 2	0.00220	0.000740	0.000050
С	Truck loading	Fragmented Stone	0.000033 3	0.000016	0.000002 ²	·		
D	Truck Loading	Crushed Stone	0.000204 3	0.00010	0.000015 ²			

- 1. Use controlled emission factors when the moisture content of the materials being processed are greater than 1.5% by weight.
- 2. Where PM2.5 emission factors are not provided in AP-42, 11-19.2-2, a ratio of aerodynamic particle size multipliers from AP-42, 13.2.4 are used to estimate PM2.5 emission factors. PM2.5 EF = (PM10 EF/.035) x .0053.

Aerodynamic Particle sizes from AP-42, 13.2.4					
<30 um	<15 um	<10 um	<5 um	<2.5 um	
0.74	0.48	0.35	0.2	0.053	

PM emissions estimated as % of PM10 pursuant to Appendix A of SCAQMD Methodology to Calculate Particulate
Matter (PM) 2.5 and PM 2.5 Significance Thresholds, October 2006.

Particulate emissions from the Ferrous Material Processing System are generated from material transfer points and material drops (dropping materials onto stockpiles).

Material transfer emissions are calculated by applying selected PM, PM₁₀ and PM_{2.5} emission factors, in units of pounds of particulate matter per ton of material processed, to the projected material throughput rates (tons per hour and tons per year) at each material transfer point. Material transfer points include the

points at which material is transferred from one device to another, such as conveyor to conveyer transfers, conveyor to equipment transfers, and equipment to conveyor transfers. Material throughput rates at each transfer point have been estimated by the equipment supplier.

Material drop emissions are calculated using the material drop equation from AP-42 Section 13.2.4.3 for all locations where material is dropped from a conveyor onto a stockpile or into a container.

The mean wind speed is annual average wind speed recorded at Midway Airport in Chicago, Illinois. Material discharged from the shredder is sprayed by water due the water injection system. The moisture content of material is conservatively assumed to be 1.5% for most applications (unless otherwise specified in table footnotes) because this is the moisture content that triggers the use of controlled emission factors for material transfer points in AP-42, Section 11.19.2 (Crushed Stone Processing).

Table 3-2 presents a summary of estimated PM/PM₁₀/PM_{2.5} from the Ferrous Material Processing System with the exception of shredder emissions discussed in Section 3.1 above.

Metal HAP Emissions

There is no data available on HAP content of particulate emissions from the Ferrous Material Processing System.

For the purposes of this application, it has been assumed (as a worst case) that the particulate from the Ferrous Material Processing System will contain the same percentage of metal HAPs as the particulate emissions from the existing roll-media filter at the existing GII facility. Emission testing for metals using USEPA Method 29 was performed at the outlet of the existing roll-media filter (controlling shredder emissions) in June of 2018. The list of analytes specified in Method 29 includes 12 HAP metals.

Emissions of these metal HAPs are calculated by multiplying the estimated PM emissions from Ferrous Material Processing System by the weight % of each HAP (lb HAP/lb of PM) measured in the roll-media

Facility Emissions Estimate

filter emissions. The following table identifies the metal HAP data from the roll-media filter used to estimate HAP emissions from Ferrous Material Processing.

Metal HAPs	% of Metal HAP in Roll-Media PM Emissions
Lead	0.0665%
Manganese	0.0535%
Mercury	1.2866%
Nickel	0.0207%
Antimony	0.0040%
Arsenic	0.0015%

Metal HAPs	% of Metal HAP in Roll-Media PM Emissions
Beryllium	0.0003%
Cadmium	0.0147%
Chromium	0.0163%
Cobalt	0.0014%
Phosphorus	0.2000%
Selenium	0.0074%

Metal HAP emissions in the Ferrous Material Processing System are summarized on Table 3-8 (Summary of Facility-Wide HAP Emissions).

3.3 Non-Ferrous Material Processing System Emissions

Emissions from the Non-Ferrous Material Processing System include PM, PM₁₀, PM_{2.5} and metal HAPs. There is no combustion or high temperature processing performed, so emissions of VOM and other products of combustion are not anticipated.

Particulate Emissions

Particulate emissions from the Non-Ferrous Material Processing System are generated from material transfer points screening, truck loading, and material drops.

Material transfer emissions are calculated by applying selected PM, PM₁₀ and PM_{2.5} emission factors in units of pounds of particulate matter per ton of material processed, to the projected material throughput rates (tons per hour and tons per year) at each material transfer point. Material transfer points include the points at which material is transferred from one device to another, such as conveyor to conveyer transfers, conveyor to equipment transfers and equipment to conveyor transfers. Material throughput rates at each transfer point have been estimated by the applicant and the supplier.

Truck loading emissions are calculated by applying selected PM, PM₁₀ and PM_{2.5} emission factors in units of pounds of particulate matter per ton of material loaded, to the projected truck loading rates (tons per hour and tons per year).

Material drop emissions are calculated using the material drop equation from AP-42 Section 13.2.4.3 (see Section 3.2 above) for all locations where material is dropped from a conveyor onto a stockpile or into a container.

Equipment located in the Fines Building are controlled by one of four identical dust collectors. Each dust collector has a design flow rate of 12,000 cfm. Three of the dust collectors (DC-02, DC-03 and DC-04) will discharge treated air back into the building and therefore, have no emissions and are not emission units with respect to permitting requirements.

One of the dust collectors (DC-01) does vent to the outside atmosphere and its emissions represent emissions from all of the equipment located inside of the fines processing building. Particulate emissions from the dust collector are calculated by multiplying the design air flow rate by a clean side particulate concentration of 0.005 gr/dscf. The result of this calculation is shown on Table 3-3.

Table 3-3 presents a summary of estimated PM/PM₁₀/PM_{2.5} from the Non-Ferrous Material Processing System

Metal HAP Emissions

There is no data available on metal HAP content of particulate emissions from the Non-Ferrous Material Processing System.

For the purposes of this application, it has been assumed (as a worst case) that the particulate emissions from the Non-Ferrous Material Processing System will contain the same percentage of metal HAPs as the particulate emissions from the existing roll-media filter at the existing GII facility. Emission testing for metals using USEPA Method 29 was performed at the outlet of the existing roll-media filter (controlling shredder emissions) in June of 2018. The list of analytes specified in Method 29 includes 12 HAP metals.

Emissions of these metal HAPs are calculated by multiplying the estimated PM emissions from the Non-Ferrous Material Processing System by the weight % of each HAP (lb HAP/lb of PM) measured in the roll-media filter emissions. The metal HAP data from the roll-media filter used to estimate HAP emissions from the Non-Ferrous Material Processing System are identified in Section 3.2 above.

Metal HAP emissions from the Non-Ferrous Material Processing System are summarized on Table 3-8 (Summary of Facility-Wide HAP Emissions).

3.4 Stockpile Fugitive Emissions

Fugitive emissions from stockpiles include particulate matter and assumed metal HAPs.

Particulate Emissions

Fugitive particulate emissions from stockpiles are estimated in accordance with procedures recommended by the Texas Commission on Environmental Quality (TCEQ) for calculation of emissions from crushed stone processing. Fugitive emissions from stockpiles are calculated using the following equation:

PM Emission Rate (tpy) [(inactive day PM EF x No. of inactive days) x (stockpile area/2000) x control factor] + [(active day PM EF x No. of active days) x (stockpile area/2000) x control factor]

Stockpile control factors are identified as follows:

Stockpile Control Method	Control Eff. (%)	Control Factor (1 - ctrl eff)
None	0	1
Wet material	50	0.5
Water	70	0.3
Chemicals/foam	80	0.2
Partial enclosure	50-85	0.5-0.15
Full enclosure	90	0.1
Enclosed by building	90	0.1
Washed sand/gravel	95	0.05
Washed sand/gravel with water spray	98.5	0.015
Manufacturer rating	0	0

A summary of stockpile fugitive particulate emissions is presented in Table 3-4.

Metal HAP Emissions

There is no data available on the metal HAP content of particulate emissions from stockpiles.

For the purposes of this application, it has been assumed (as a worst case) that the fugitive particulate from stockpiles will contain the same percentage of metal HAPs as the particulate emissions from the existing roll-media filter at the existing GIIfacility. Emission testing for metals using USEPA Method 29 was performed at the outlet of the existing roll-media filter (controlling shredder emissions) in June of 2018. The list of analytes specified in Method 29 includes 12 HAP metals.

Emissions of these metal HAPs are calculated by multiplying the estimated PM emissions from the Non-Ferrous Material Processing System by the weight % of each HAP (lb HAP/lb of PM) measured in the roll-media filter emissions. The metal HAP data from the roll-media filter used to estimate HAP emissions from the Non-Ferrous Material Processing System are identified in Section 3.2 above.

Estimated metal HAP emissions from stockpiles are summarized on Table 3-8 (Summary of Facility Wide HAP Emissions).

3.5 Fugitive Emissions from Paved and Unpaved Roads

Fugitive emissions from paved and unpaved roads include fugitive particulate and assumed metal HAPs.

Particulate Emissions

Approximately 95% of interior plant roadways are paved with concrete or asphalt. The remaining approximately 5% of interior plant roadways will be lightly traveled and consist of crushed slag or similar materials. The facility will employ a program of sweeping and watering and posted speed limits of 10 mph to minimize generation of fugitive emissions.

Fugitive particulate emissions from vehicular traffic on paved roadways are calculated pursuant to AP-42, Section 13.2.1 Paved Roads, using the following equation:

$E_{ext} = (k * (sL)^{0.91})$	* (W) ^{1.02}) * (1 - (P/(4N)) Equation 2, AP42, Section 13.2.1 Paved Roads (Jan 2011)
Ee	a =		Size specific annual average particulate emission factor (lb/VMT)
		0.011 PM	
1	K =	0.0022 PM ₁₀	Particle size multiplier lb/VMT (AP-42 Table 13.2.1-1)
		0.0054 PM _{2.5}	
	L =	9.7	Mean controlled silt content, % (AP42 Table 13.2.1-3 Jan 2011 -
3	L -	5.7	Iron & Steel Range: 0.09 to 79; mean 9.7-g/m2)
V	V =		Mean vehicle weight , tons (use weighted average where available)
	n -	120	Number of precipitation days (>0.01 in) per year (AP42 Fig 13.2.1.2 Jan
	P =	120	2011 - Chicago, IL)
1	N =	365	Averaging Period, annual
Control Efficienc	y =	%	Estimated Control Efficiency for periodic sweeping and watering
	-		

Table 3-5A presents a summary of the estimated fugitive particulate emissions from paved roadways.

Facility Emissions Estimate

Fugitive particulate emissions from vehicular traffic on unpaved roadways are calculated pursuant to AP-42, Section 13.2.2 Unpaved Roads, using the following equation:

$E_{ext} = (k * (s/12)^a * (W/$	(3)b) * ((N-P)/P)	Equation 1a & 2, AP42, Section 13.2.2 Paved Roads (Nov 2006)
E _{ext} =		Size specific annual average particulate emission factor (lb/VMT)
	4.9 PM	
K =	1.5 PM ₁₀	Particle size multiplier lb/VMT (AP-42 Table 13.2.2-2)
	0.15 PM _{2.5}	
S =	6	Mean controlled silt content, % (AP42 Table 13.2.2-2 Nov 2006 - Iron & Steel Production (%)
W =		Mean vehicle weight, tons (use weighted average where available)
Ρ =	120	Number of precipitation days (>0.01 in) per year – Chicago, IL (AP42 Fig 13.2.2-2 Nov 2006)
N =	365	Averaging Period, annual
Control Efficiency =	%	Estimated Control Efficiency for periodic watering or chemical treatment

Table 3-5B presents a summary of the estimated fugitive particulate emissions from unpaved roadways.

The estimated number and weight of vehicles required to operate the facility at its maximum throughput was calculated, and the mean vehicle weight (19.08 tons) was used in the fugitive particulate calculations for both paved and unpaved roads. The total daily vehicle miles traveled on-site for each type of vehicle was provided by facility personnel.

Metal HAP Emissions

There is no data available on the metal HAP content of particulate emissions from paved or unpaved roads.

For the purposes of this application, it has been assumed (as a worst case) that the fugitive particulate from paved and unpaved roads will contain the same percentage of metal HAPs as the particulate emissions from the existing roll-media filter at the existing GIIfacility. Emission testing for metals using USEPA Method 29 was performed at the outlet of the existing roll-media filter (controlling shredder emissions) in June of 2018. The list of analytes specified in Method 29 includes 12 HAP metals.

Emissions of these metal HAPs are calculated by multiplying the estimated PM emissions from the Non-Ferrous Material Processing System by the weight % of each HAP (lb HAP/lb of PM) measured in the roll-media filter emissions. The metal HAP data from the roll-media filter used to estimate HAP emissions from the Non-Ferrous Material Processing System are identified in Section 3.2 above.

Estimated metal HAP emissions from pave and unpaved roads are summarized on Table 3-8 (Summary of Facility-Wide HAP Emissions).

3.6 Miscellaneous Natural Gas Combustion

Miscellaneous natural gas combustion sources will consist of environmental heaters.

The estimated miscellaneous natural gas combustion emissions are presented in Table 3-6. Emissions are calculated using a maximum natural gas firing rate of 10 MMBtu/hr, a natural gas higher heating value (HHV) of 1,020 Btu/scf, and standard USEPA natural gas emission factors from AP-42; Chapter 1.4; Tables 1.4-1 and 1.4-2.

Emission estimates are presented for criteria pollutants, greenhouse gas (GHG), and metal and organic HAPs.

3.7 Facility-Wide Criteria Pollutant Emissions

A summary of facility-wide criteria pollutant emissions is presented in Table 3-7.

3.8 Facility-Wide HAP Emissions

A summary of facility-wide HAP emissions is presented in Table 3-8.

4.0 REGULATORY APPLICABILITY

The proposed facility is a greenfield facility and has no existing state air permits at the South Burley Avenue location.

GIII is requesting limits on its potential to emit (PTE), so the Facility will be a minor source with respect to federal and state prevention of significant deterioration (PSD) and nonattainment area new source review (NA NSR) rules and an 'area source' (i.e., minor source) with respect to HAP emissions.

4.1 Single Source

The proposed facility will be located at the site of a former steel mill that has been converted into an industrial campus which currently houses the sources identified below, all of which share common ownership and control under Reserve Management Group, (RMG), which also has corporate offices at the South Burley Avenue industrial campus.

Source Name	Source Description		
Reserve Marine Terminals (RMT)	RMT operates a foundry sand, slag and scrap recovery operation that includes conveyors, magnetic separation, screening, crushing, and conveying that processes approximately 60,000 tpy of material. Outdoor equipment is equipped with water misters as necessary to control particulate emissions.		
	RMT generates fugitive particulate emissions from use of paved and unpaved roads, torch cutting, and operation of one 7 HP gasoline-fired generator and three diesel-fired electric generators (56 HP, 167 HP, and 241 HP) used to power process equipment. Generators operate only when processes are operating.		
	RMT has no air permits and is not registered under the ROSS program.		
Regency Technologies (RSR)	RSR is a small electronics recycling operation that operates indoors and has no process emissions.		
	RSR also generates fugitive particulate emissions from use of paved roads.		
	RSR has no process air emissions and therefore, is not required to obtain an air permit or register under the ROSS program.		

Source Name	Source Description			
Napuck Salvage of Waupaca (NSW)	NSW recycles approximately 262,800 tpy of aluminum (with some cast steel). Operations include crushing, screening and conveying with processing equipment located indoors.			
	NSW also acquires, processes, and markets all grades of ferrous and non-ferrous scrap, specializing in engine blocks, foundry steel and aluminum. This includes processing of approximately 5,400 tpy of material by crushing, screening and other separation processes. All processing equipment is located indoors.			
	NSW also generates fugitive particulate emissions from use of paved roads.			
	NSW is registered under the Registration of Smaller Sources (ROSS) program (Application 12020006) — since February 6, 2012 continues to meet program eligibility requirements.			
South Shore Recycling (SSR)	SSR purchases retail non-ferrous scrap metal and sells it to NSW or other offsite entities.			
	SSR generates fugitive particulate emissions from use of unpaved roads and torch cutting (propane and plasma).			
	SSR has no air emission permits and is not registered under the ROSS program.			

The four entities identified above share their primary SIC code, 5093 – Scrap and Waste Materials, with the proposed GIII facility.

4.2 Site Attainment Status

The proposed facility is located in Cook County, Illinois, as illustrated in Figure 1-1. The following identifies the attainment status for this site.

<u>Pollutant</u>	<u>Designation</u>
Sulfur Dioxide (SO ₂)	Attainment
Carbon Monoxide (CO)	Attainment
Ozone (O ₃)	Cook County had been designated as a moderate non-attainment for the 8-hour ozone standard but was downgraded to serious on September 23, 2019.
Particulate Matter	

Regulatory Applicability

< 2.5 Microns in Diameter (PM2.5) Attainment

Particulate Matter

< 10 Microns in Diameter (PM₁₀) Attainment

Oxides of Nitrogen (NO₂) Attainment

Lead (Pb) Attainment

4.3 Fugitive Emissions

Fugitive emission sources at the proposed facility include, but are not limited to, vehicular traffic emissions, conveyor transfer points, stockpile operations, and truck and barge loading.

Since metal recycling is not one of the twenty-eight listed industrial categories under 35 IAC 203.206(d) and there is no applicable New Source Performance Standard or National Emission Standard for Hazardous Air Pollutants that was in effect on August 7, 1980, fugitive emission of criteria pollutants are not counted toward the determination of potential to emit with respect to federal and state PSD, NA NSR, or Title V permitting rules. However, for purposes of NESHAP applicability, fugitive HAP emissions are included in the facility wide potential to emit for HAPs.

The fugitive emissions of hazardous air pollutants (HAPs) are counted toward the determination of Part 70 Permit (Title V Permitting) applicability and source status under Section 112 of the Clean Air Act (CAA).

4.4 New Source Review for Ozone Nonattainment Area (NA-NSR)

The proposed facility is located in an area that is designated as serious nonattainment for ozone (VOM and NOx). Proposed VOM and NOx emission limits are significantly less than 25 tpy, which is below the corresponding major source threshold of 50 tpy for both VOM and NOx.

4.5 Prevention of Significant Deterioration (PSD)

The proposed facility is located in an area that is designated in attainment or unclassifiable for criteria pollutants, other than ozone (VOM and NOx). The requested emission limits in this application limit potential to emit for each pollutant to below major source thresholds with respect to PSD.

4.6 New Source Performance Standards (NSPS)

The proposed facility will not be subject to any New Source Performance Standards (NSPS) codified in 40 CFR 60 as described in the following sections.

4.6.1 40 CFR 60 Subpart LL Metallic Mineral Processing

The requirements of the NSPS for Metallic Mineral Processing Plants, 40 CFR 60, Subpart LL, are not applicable because the proposed facility will not meet the definition of a metallic mineral processing plant, as defined in 40 CFR 60.381. The proposed facility is a scrap metal recycling facility and will not produce metallic mineral concentrates from ore.

4.7 National Emission Standards for Hazardous Air Pollutants (NESHAPs)

The proposed facility is not subject to any National Emission Standards for Hazardous Air Pollutants (NESHAP) codified in 40 CFR 60 as described in the following sections.

The proposed facility is also not subject to any NESHAP requirements in 40 CFR 61 or 63.

4.7.1 40 CFR 63 Subpart 6J – Industrial, Commercial, and Institutional Boilers Area Sources

The requirements of the NESHAP for Industrial, Commercial, and Institutional Boilers Area Sources, 40 CFR 63.11193, Subpart JJJJJJ (6J), are not applicable because the proposed facility will not include subject boilers or process heaters and because hot water heaters are exempt under 40 CFR 63.11195(f).

4.7.2 40 CFR 63 Subpart 6G – Primary Non-Ferrous Metals Area Sources – Zinc, Cadmium and Beryllium

The requirements of the NESHAP for Primary Non-Ferrous Metals Area Sources- Zinc, Cadmium and Beryllium, 40 CFR 63, Subpart GGGGGG (6G), are not applicable because the proposed facility will not be engaged in primary zinc production or primary beryllium production. The proposed facility is a scrap metal recycling facility.

4.7.3 40 CFR 63 Subpart 6T – Secondary Non-Ferrous Metals Processing Area Sources

The requirements of the NESHAP for Secondary Non-Ferrous Metals Processing Area Sources, 40 CFR 63, Subpart TTTTTT (6T), are not applicable because the proposed facility will not engage in secondary Non-Ferrous Metals Processing as defined in 40 CFR 63.11472.

4.7.4 40 CFR 63 Subpart 6X - Nine Metal Fabrication and Finishing Source Categories

The requirements of the NESHAP for Nine Metal Fabrication and Finishing Source Categories, 40 CFR 63, Subpart XXXXXX (6X), are not applicable because the proposed facility will not be primarily engaged in operations which are classified in one of the nine source categories listed in 40 CFR 63.11514(a)(1) through (9).

Regulatory Applicability

4.7.5 40 CFR 63 Subpart DD – Off-Site Waste and Recovery Operations

The requirements of the NESHAP for Off-Site Waste and Recovery Operations, 40 CFR 63, Subpart DD, are not applicable because the proposed facility is not located at, or part of, a major source of HAPs.

Emission limits requested in this permit limit HAP emission to below major source levels.

4.8 State Rules

4.8.1 35 IAC 205 – Emission Reduction Market System

The operating limits requested in this application limit the Facility's potential to emit VOM to less than 25 tpy, and is therefore, not subject to ERMS requirements.

4.8.2 35 IAC 207 – Vehicle Scrappage Activities

Part 207 identifies the procedures and performance requirements to be followed when conducting vehicle scrappage activities within the State of Illinois for the purpose of receiving Creditable Emission Reductions (CERs). Vehicle scrappage is defined in Section 207.102 as activities related to the retirement of eligible vehicles for the purpose of CERs.

Although the proposed facility will recycle End of Life Vehicles (ELVs), the proposed facility will not be performing these activities for the purposes of obtaining CERs and is, therefore, not subject to these requirements.

4.8.3 35 IAC 212 - Visible and Particulate Matter Emissions

4.8.3.1 35 IAC 212.123 - Opacity Limits

Section 212.123(a) prohibits the emission of smoke or other particulate matter from any process source to exceed 30% opacity.

4.8.3.2 35 IAC 212.301 – Process Fugitive Particulate Matter

Section 212.301 prohibits the emission of fugitive particulate matter from any process that is visible by an observer looking generally toward the zenith overhead, at a point beyond the property line of the source, unless wind speed is greater than 25 mph.

4.8.3.3 35 IAC 212.309 - Fugitive Particulate Matter Operating Program

Section 212.309 requires certain types of sources located in designated geographical areas defined in §212.302 to prepare, implement and maintain a fugitive particulate matter operating program meeting the minimum requirements identified in §212.310.

Although the proposed facility is located in Cook County, which is a geographical area defined in §212.302(a), the facility's SIC code (5093) is not included in the major SIC groups that are subject to this rule. Therefore, GIII is not subject to the requirements of §212.309.

Despite this exemption, GIII will voluntarily implement and maintain a fugitive particulate matter operating program that meets the requirements of §212.309.

4.8.3.4 35 IAC 212.321 - Process Weight Rate

Section 212.321(a) prohibits the emissions of particulate matter into the atmosphere in any one hour period from any new or modified emission unit to exceed the allowable emission rates specified in §212.321(c). The requested particulate emissions limit for emissions units identified in the application does not exceed the allowable particulate emission limit, as specified by the process weight rate equations in §212.321(c).

4.8.3.5 35 IAC 212.324 – Process Emission Units in Certain Areas

GIII's proposed facility is located in an area described by §212.324(a)(1)(B). Emissions units identified in this application will be subject to the following requirements:

§212.324(b) PM₁₀ emissions from any process emissions unit shall not exceed 0.03 gr/scf during any one-hour period.

Pursuant to §212.324(d), this mass emissions limit shall not apply to emissions units with no visible emissions other than fugitive particulate matter.

§212.324(f) Requirements for maintenance and repair of air pollution control equipment.

§212.324(g) Recordkeeping of maintenance and repair of air pollution control equipment.

4.8.3.6 35 IAC 212 Subpart U – Additional Control Measures

The requirements of §212 Subpart U apply to facilities located within an area defined in §212.324(a)(1) and that have actual annual source-wide PM₁₀ emissions of at least 15 tpy. Actual annual source-wide emissions is defined as the total of fugitive emissions and stack emissions from process emission units and fuel combustion units, as reported on a facility's annual emission report. For a newly constructed

Regulatory Applica bility

source, the estimated emissions included in this permit application are compared to the applicability threshold.

GIII's proposed facility is located in the area described by §212.324(a)(1)(B) and this permit application identifies estimated annual source wide PM₁₀ emissions from fugitives and process emission units exceeding 15-tpy. Therefore, the requirements of §212 Subpart U are applicable to the proposed facility.

4.8.4 35 IAC 214 - Sulfur Limitations

4.8.4.1 35 IAC 214.301 General Limitations for Process Emission Sources

Section 214.301 prohibits the emission of sulfur dioxide from any process emissions source from exceeding 2,000 ppm.

Combustion emissions sources at the proposed facility are limited to small natural gas-fired environmental heaters with negligible emission of SO₂, due to negligible amounts of sulfur present in the fuel (pipeline quality natural gas). No solid or liquid fuel will be combusted in these units.

The materials that will be processed at this facility contain negligible amounts of sulfur and process operating conditions will not result in oxidization of sulfur to SO₂.

Based on the above, SO₂ emissions will be negligible.

4.8.5 35 IAC 216 - Carbon Monoxide Emissions

Part 216 regulates carbon dioxide (CO) emissions from various types of sources. Potentially regulated emission sources at the proposed facility are limited to natural gas-fired unit heaters under §216.121.

Section 216.121 prohibits emission of carbon monoxide into the atmosphere from any fuel combustion source with actual heat input greater than 10 MMBtu/hr to exceed 200 ppm, corrected to 50% excess air. None of the fuel combustion units at the proposed facility will have a design firing rate exceeding 10 MMBtu/hr and therefore, this facility is exempt from this limitation.

4.8.6 35 IAC 217 - Nitrogen Oxide Emissions

Part 217 regulates emission of oxides of nitrogen (NOx) from various types of sources. Pursuant to §217.150, the provisions of Subparts E, F, G H, I and M of this rule apply only to units that emit or have the potential to emit NOx in an amount equal to or greater than 100 tpy. As presented in Section 3 of this application, the proposed facility's potential to emit for NOx is less than 100 tpy, and the proposed facility does not include any other regulated NOx emission sources.

Based on the above, the proposed facility is not subject to any requirements in 35 IAC 217.

4.8.7 35 IAC 218 - Organic Material Emissions Standards and Limitations for the Chicago Area

4.8.7.1 Section 218.105 Test Methods and Procedures

Section 218.105 includes testing, monitoring, and recordkeeping requirements applicable to the proposed shredder emission control system (cyclone, roll-media filter, RTO and scrubber).

Section 218.105(c)(2) requires capture efficiency of an emission unit to be measured using one of the specified test protocols, unless the specified techniques are not suitable to a particular process, then an alternative capture efficiency protocol may be used pursuant to §218.108(b). Due to safety concerns, none of the specified methods for capture efficiency testing can be used at the shredder exhaust hood.

Section 218.105(d)(1) addresses demonstration of control device efficiency. Control device efficiency must be determined by simultaneously measuring the inlet and outlet gas phase VOM concentration and gas volumetric flow rates, in accordance with the gas phase test methods specified in §218.105(f).

Section 218.105(d)(2)(A) addresses control device monitoring requirements. When an afterburner (without a catalyst bed) is used, temperature of the combustion chamber must be continuously monitored with a monitoring device that is installed, calibrated, maintained, and operated according to vendor specifications at all times that the control device is in use.

Section 218.105(d)(2)(B) requires that a continuous temperature recorder must installed, calibrated, operated and maintained in accordance with the manufacturer's specifications.

4.8.7.2 Section 218.301 – Use of Organic Material

Section 218.301 limits the discharge of organic material from any emission source to less than 8 lb/hr, except as provided in Sections 218.302, 218.303, 218.304, and if no odor nuisance exists, the limitation of this Subpart shall apply only to photochemically reactive material.

Section 218.302(a) allows emissions of organic material in excess of that permitted by §218.301, if such emissions are controlled by a thermal incinerator so as either to reduce such emissions to 10 ppm equivalent methane or less, or to convert 85% of the hydrocarbons to carbon dioxide and water.

The only process unit with a potentially significant amount of organic material emissions is the hammermill shredder. The shredder will be equipped with a regenerative thermal oxidizer (RTO) that will have a destruction efficiency of at least 98%. The use of an RTO will ensure that the proposed shredder does not exceed the requirements of §218.301.

Regulatory Applicability

The ASR processed in the non-ferrous plant, contains negligible amounts of organic material, and operating conditions do not promote the generation of volatile organic material from the materials being processed. Based on the applicant's significant experience operating ferrous and non-ferrous separation processes, plant operations are not anticipated to result in an odor nuisance.

Based on the above, emissions of organic material will not exceed the allowable limit in this rule.

4.8.7.3 35 IAC 218 Subpart TT - Other Emission Units

35 IAC 218 Subpart TT identifies VOM control requirements for sources that have a potential to emit of 25 tpy or more of VOM. The application of an RTO to control VOM emissions from the hammermill shredder, limits the source-wide VOM potential to emit to less than 25 tpy, as evidenced by the VOM emission limits requested in this application.

Based on the above, the requirements of §218 Subpart TT are not applicable to the proposed facility.

4.8.8 35 IAC 244 - Episodes

Section 244.142 identifies the facilities for which Episode Action Plans are required. The proposed facility does not meet any of the applicability criteria identified in this section; therefore, 35 IAC 244 is not applicable to the proposed facility.

4.8.9 35 IAC 254 – Annual Emissions Report

Part 254 establishes uniform procedures for the reporting of air pollution emissions data from sources of regulated air pollutants. The proposed facility will be required to submit annual emissions reports to the IEPA and maintain associated facility records pursuant to this rule.

This Page Left Blank

Construction Permit Application for New Scrap Metal Recycling Facility

General III, LLC 11600 South Burley Chicago, Illinois 60614

September 20, 2019

TABLES

This Page Left Blank

Table 3-1A Summary of Controlled Shredder VOM and CO Emissions
General III, LLC - Chicago, Illinois

Parameter	Units	Values	Comment	
Captured VOC Emissions Controlled by	RTO and Emitted Through	the RTO/Sci	rubber Stack	
Demonstrated Captured Shredder VOM Emission Factor ^a	lbs of VOM ton of gross shredder feed	0.2430	Measured value from May 25, 2018 testing by Method 25A (as propane). (Assume VOM = THC)	
Maximum Gross Shredder Feed Rate	tons/month	100,000	Permitted maximum shredder feed rates	
Maximum Annual Shredder Throughput b	tons/year	1,000,000	requested in shredder RTO construction permit.	
RTO VOM Control Eff.	%	98.0%	RTO manufacturer's guarantee.	
VOM emission safety factor		1.00	Safety factor used to establish permitted shredder VOM emission limits.	
Charles and Charle	tons/month	0.24	Maximum VOM emission rates requested in	
Shredder VOM Emissions *	tons/year	2.43	construction permit application.	

Parameter	Units	Units	Comment
CO Emissions (from combustion of	VOM)		
CO emissions as percent of VOM at RTO Inlet	%	1.0%	Assumed value identifed by IEPA
Total Shredder CO Emissions	tons/month	0.12	Maximum CO emission rates requested in
Total Shredder CO Emissions	tons/year	1.22	construction permit application.

- a. VOM emissions measured by USEPA Method 25A minus methane, ethane, and compounds exempt from the federal definition of VOC and reported as propane.
- b. Maximum annual shredder throughput requested in shredder RTO construction permit application based on recent operating data.
- c. Minimum 81% VOM overall capture and control efficiency is required by 35 IAC 218 Subpart $\Pi_{\rm t}$

Table 3-1B Summary of Controlled Shredder Filterable Particulate Emissions

General III, LLC - Chicago, Illinois

Parameter	Units	Values	Comment
Captured PM/PM ₁₀ Emissions Controll	ed by Cyclone and Roll Med	dia Filter and	d Emitted Through the RTO/Scrubber Stack
Demonstrated Filterable PM Emission Factor ^a	lbs of filterable PM ton of gross shredder feed	0.0047	Measured values from shredder filterable PM emission testing performed June 13 & 14, 2018, downstream from roll media filter (represents inlet to RTO).
	tons/month	100,000	Permitted maximum shredder feed rates
Maximum Annual Shredder Throughput B	tons/year	1,000,000	requested in shredder RTO construction permit.
Assumed Shredder Emissions Capture Eff.	%	95.0%	Assumed value based on visible observations at shredder emissions capture hood.
Filterable PM Emissions Safety Factor		1.00	Safety factor used to establish permitted shredder PM emission rates.
Controlled Shredder Filterable PM	tons/month	0.24	Permitted filterable PM/PM ₁₀ emission rates
Emission Rates	tons/year	2.36	requested in shredder RTO/Scrubber construction permit.
Controlled Shredder Filterable PM ₁₀	tons/month	0.24	Assumes that all PM is PM10. Estimates assume no PM/PM10 emission reduction
Emission Rates	tons/year	2.36	in RTO/Scrubber.

- a. Filterable PM emission rate measured by USEPA Methods 1 through 4 and Method 29.
- b. Maximum annual shredder throughput requested in shredder RTO construction permit application based on recent operating data.
- c. Maximum allowable PM emission rate defined by the Process Weight Rate (35 IAC 212 321) is 67-lb/hr.

Table 3-1C Summary of Controlled Shredder HAP Emissions
General III, LLC - Chicago, Illinois

		Permitted Shredd	er Thruput Rates
		100,000 ton/mo	1,000,000 tpy
	Emission Factor	Maximum	Maximum
	From June 2018	Hourly	Annual
	Emission Testing	Emissions	Emissions
	lb/ton	ton/month	tpy
Metal HAPs ¹			
Lead ⁽²⁾	3.1377E-06 ¹	0.0002	0.0016
Manganese	2.5261E-06 ¹	0.0001	0.0013
Mercury	6.0694E-05 ¹	0.0030	0.0303
Nickel	9.7720E-07 ¹	0.0000	0.0005
Antimony	1.8777E-07 ¹	0.0000	0.0001
Arsenic	7.2614E-08 ¹	0.0000	0.0000
Beryllium	1.4583E-08 ¹	0.0000	7.29E-06
Cadmium	6.9228E-07 ¹	0.0000	0.0003
Chromium ⁽³⁾	7.6720E-07 ¹	0.0000	0.0004
Cobalt	6.4876E-08 ¹	0.0000	0.0000
Phosphorus	9.4334E-06 ¹	0.0005	0.0047
Selenium	3.4861E-07 ¹	0.0000	0.0002
Volatile HAPs ²			
Ethylbenzene	6.6700E-05 ²	0.0001	0.0007
Styrene	1.3300E-05 ²	0.0000	0.0001
Toluene	3.3300E-04 ²	0.0003	0.0033
Tetrachloroethane (PCE)	2.6700E-06 ²	0.0000	0.0000
m,p-Xylene	1.3300E-05 ²	0.0000	0.0001
Benzene	4.0000E-04 ²	0.0004	0.0040
1,1,1-Trichloroethane	2.0000E-04 ²	0.0002	0.0020
Methylene Chloride	6.0000E-05 ²	0.0001	0.0006
Trichloroethene (TCE)	6.6700E-05 ²	0.0001	0.0007
o-Xylene	6.6700E-05 ²	0.0001	0.0007

Total Metal HAPs	0.0039	0.0395
Total Organic HAPs	0.0012	0.0122
Total HAPs	0.0052	0.0517

ı	Maximum Individual HAP Me	rcury 0.0303

^{1.} Measured metal emission rates from hammermill shredder controlled by cyclone and a roll media filter from June 2018.

^{2.} Uncontrolled organic compound emission rates, as presented in ISRI Title V Applicability Workbook, Table D-11F, adjusted for RTO with 98% destruction efficiency.

^{3.} Chromium (metal) and compounds other than Chromium VI

Table 3-1D Shredder RTO Natural Gas Combustion Emissions
General III, LLC - Chicago, Illinois

	Pollutant Emission Factor ^a	NG HHV = 1,020-Btu/scf Annual Gas Consumption 52,500 MMBtu				
Pollutant	lb/MMscf	ton/month ^b	tpy			
Nitrogen Oxide (NOx)	100	0.26	2.57			
Carbon Monoxide (CO)	84	0.22	2.16			
Total Filterable PM	1.9	0.00	0.05			
Total Condensable PM	5.7	0.01	0.15			
Total Particulate Matter	7.6	0.02	0.20			
Sulfur Dioxide (SO ₂)	0.6	0.00	0.02			
Volatile Organic Compounds (VOC)	5.5	0.01	0.14			
Greenhouse Gas Emissions						
Carbon Dioxide (CO₂)	120,174	309.27	3,092.72			
Methane (CH ₄)	2.2649	0.0058	0.06			
Nitrous Oxide (N ₂ O)	0.2265	0.0006	0.01			
Carbon Dioxide Equivalents (CO₂e) ^c	_ :	309.59	3,095.91			

a. AP-42 Emission factors from Tables 1.4-1 and 1.4-2.

b. Monthly emissions are assumed to be 10% of annual emissions.

c. Global Warming Potentials (GWPs) for CO₂, CH₄ and N₂O are 1, 25, and 298 respectively (40 CFR 98 Subpart A).

Table 3-1D Shredder RTO Natural Gas Combustion Emissions General III, LLC - Chicago, Illinois

Summary of HAP Emissions from Natural Gas Combustion

нарь		Emission Factor	_	
Y/N	Pollutant	(lb/10° scf)	ton/month*	tpy
	Metal HAPs ^c	·		
Υ	Lead	0.0005	1.29E-06	1.29E-05
Υ	Manganese	3.80E-04	9.78E-07	9.78E-06
Υ	Mercury	2.60E-04	6.69E-07	6.69E-06
Υ	Nickel	2.10E-03	5.40E-06	5.40E-05
Υ	Arsenic	2.00E-04	5.15E-07	5.15E-06
Υ	Beryllium	< 1.20E-05	3.09E-08	3.09E-07
Υ	Cadmium	1.10E-03	2.83E-06	2.83E-05
Υ	Chromium	1.40E-03	3.60E-06	3.60E-05
Υ	Cobalt	8.40E-05	2.16E-07	2.16E-06
γ	Selenium	< 2.40E-05	6.18E-08	6.18E-07
	Volatile HAPs ^d			
Υ	Toluene	3.40E-03	8.75E-06	8.75E-05
Υ	Hexane	< 1.80E+00	< 4.63E-03	< 4.63E-02
Υ	Anthracene	< 2.40E-06	< 6.18E-09	< 6.18E-08
Yst	Pyrene	5.00E-06	1.29E-08	1.29E-07
Υ	Benzo(g,h,i)perylene	< 1.20E-06	< 3.09E-09	< 3.09E-08
Υ	Indeno(1,2,3-cd)pyrene	< 1.80E-06	< 4.63E-09	< 4.63E-08
Υ	Acenaphthylene	< 1.80E-06	< 4.63E-09	< 4.63E-08
Υ	Benzo(b)fluoranthene	< 1.80E-06	< 4.63E-09	< 4.63E-08
Υ	Fluoranthene	3.00E-06	7.72E-09	7.72E-08
Υ	Benzo(k)fluoranthene	< 1.80E-06	< 4.63E-09	< 4.63E-08
Υ	Chrysene	< 1.80E-06	< 4.63E-09	< 4.63E-08
Υ	Dichlorobenzene	1.20E-03	3.09E-06	3.09E-05
Y	Formaldehyde	7.50E-02	1.93E-04	1.93E-03
Υ	Benzo(a)pyrene	< 1.20E-06	< 3.09E-09	< 3.09E-08
Υ	Dibenzo(a,h)anthracene	< 1.20E-06	< 3.09E-09	< 3.09E-08
Υ	3-Methylcholanthrene	< 1.80E-06	< 4.63E-09	< 4.63E-08
Υ	Benz(a)anthracene	< 1.80E-06	< 4.63E-09	< 4.63E-08
Υ	7,12-Dimethylbenz(a)anthracene	< 1.60E-05	< 4.12E-08	< 4.12E-07
Υ	Benzene	< 2.10E-03	< 5.40E-06	< 5.40E-05
Υ	Acenaphthene	< 1.80E-06	< 4.63E-09	< 4.63E-08
Υ	Phenanathrene	1.70E-05	4.38E-08	4.38E-07
Υ	Fluorene	2.80E-06	7.21E-09	7.21E-08
Υ	Naphthalene	6.10E-04	1.57E-06	1.57E-05
Υ	2-Methylnaphthalene	2.40E-05	6.18E-08	6.18E-07
	Total HAPs		4.86E-03	4.86E-02
	Maximum Individual HAP	Hexane	4.63E-03	4.63E-02

a. Criteria pollutant emission factors for natural gas combustion - AP-42 Tables 1.4-1 and 1.4-2.

b. Hazardous Air Pollutant (HAP) as defined by Section 112(b) of the Clean Air Act.

c. Metal HAP emission factors from natural gas combustion - AP-42 Emission factors from Tables 1.4-4.

d. Organic HAP emission factors from natural gas combustion - AP-42 Emission factors from Tables 1.4-3.

e. Monthly emissions are assumed to be 10% of annual emissions.

Table 3-1E Summary of Controlled Shredder Emissions General Iron Industries, Inc. - Chicago, Illinois

	. NO	Dχ	C	o*	Pħ	A *	PM	10 *	SC)2	vor	VI ^{a,b}	Total	HAPs	Max Sin	gle HAP	GHG (
Emission Source	ton/mo	ton/yr	ton/mo	ton/yr_	ton/mo	ton/yr	ton/mo	ton/yr										
Shredder RTO/Scrubber Stack Emissions ^c	-	•	0.12	1.22	0.24	2.36	0.24	2.36	-	-	0.24	2.43	0.0608	0.6076	0.0030	0.0303	309.59	3,096
Shredder RTO Natural Gas Combustion Emissions ^{c,d}	0.26	2.57	0.22	2.16	0.02	0.20	0.02	0.20	0.0015	0.02	0.01	0.14	0.0049	0.0486	0.0046	0.0463	309.59	3,096
Total Shredder RTO/Scrubber Stack Emissions	0.26	2.57	0.34	3.38	0.26	2.55	0.26	2.55	0.0015	0.02	0.26	2.57	0.0656	0.6562	0.0077	0.0767	619.18	6,192

- a. VOM and PM/PM₁₀ emission rates in the above table are based on a maximum monthly feed rate of 100,000 tons/month and a maximum annual feed rate of 1,000,000 tons/year.
- b. VOM emissions are based on Method 25A testing reported as propane adjusted to remove compounds exempt from the federal definition of VOC.
- c. See Table 1A for VOM emission estimates, Table 1B for PM/PM10 emission estimates, Table 1C for HAP emission estimates, and Table 1D for RTO natural gas combustion emission estimates.
- d. Natural gas emissions are based on a maximum RTO firing rate of 15.00 MMBtu/hr
- e. CO emissions from RTO are assumed to be 1% of total uncontrolled VOM at the inlet of the RTO (0.2430 lb/ton of shredder feed from May 2018 emission testing at the outlet of roll media filter at GII).

Requested Shredder Operating Limits:

Gross Shredder Feed Rate: tons/month 100,000 based on a calendar month

tons/year 1,000,000 based on a 12-month rolling average

Calculation of Actual Emissions:

Actual monthly and annual emissions will be calculated using pollutant emission factors and shredder material processing rates.

Table 3-2 - Ferrous Material Processing - Particulate Emissions General III, LLC - Chicago, Illinois

	1	Moisture >	Transfer	Emission	Esti	mated									
		1.5%	Point	Factor	Material	Throughput	PN	l Emissions		PM:	_o Emissions	3	PM ₂	_s Emission	s
Equipment Generating Emissions	No of Points	Y/N	Location	Source ^d	ton/mo	tpy	lb/ton	ton/mo	tpy	lb/ton	ton/mo	tpy	lb/ton	ton/mo	tpy
Conveyor Transfer Points - Controlled Emission Factors	52	۸,	Outside	A	1,245,450	12,454,500	0.00014 *	0.0874	0.8205	0.000046 a	0.0290	0.2692	0.000013 *	0.0085	0.0764
Truck Loading Crushed Stone - Uncontrolled Emission Factors ^b	3	NA b	Outside	D	174,000	1,740,000	0.00020 b	0.0177	0.1778	0.000100 b	0.0087	0.0870	0.000015 b	0.0014	0.0132
Stockpile Loading - material drop emissions ^c	7	NA ¢	Outside	Drop	300,000	3,000,000	¢	0.1831	1.8294	¢	0.0866	0.8653	٠	0.0130	0.1309
		Tota	als Ferrous P	lant Materi	ial Handling I	PM Emissions		0.2882	2.8277		0.1243	1.2215		0.0229	0.2205
		Totals Ferre	ous Plant Ma	sterial Hand	fling HAP Me	tal Emissions	1.33% *	0.0038	0.0375	Ratio o			from June 2018 (iter at General II)		t of

- a. Controlled particulate matter emission factors from AP-42, Table 11.19.2-2 for conveying used based on conservative assumption that moisture content is greater than 1.5% due to water added in the shredder.
- b. Uncontrolled particulate matter emission factors from AP-42, Table 11.19.2-2 for truck loading of crushed stone conservative. Use uncontrolled emission factor because controlled emissions factors are not identified.
- . Material Drop PM Emission Equation from AP-42, Section 13.2.4.3.

		E = emission factor (lb/ton of material dropped)
E = k (0.0032):	x <u>(U/5)^{1.3}</u>	k = particle size multiplier (dimensionless)
	(M/2)1.4	U = mean wind speed
	(141, 2)	https://www.timeanddate.com/weather/usa/chicago/climate
		M = material moisture content (%)
U=	9.0	mph - annual average wind speed for Chicago (Midway Airport)
k =	0.74	PM - AP-42, Section 13.2.4, for particle size < 30 um
	0.35	PM - AP-42, Section 13.2.4, for particle size < 10 um
	0.053	PM - AP-42, Section 13.2.4, for particle size < 2.5 um
M =	1.5	Applied to light material stockpile loading. Moisture content for use of controlled emission factors for crushed stone processing - Conveyor Transfer Points - AP-42, Table 11.19.2-2. Considered to be conservative due to moisture added to material in shredder.
	5.4	Applied to raw scrap metal handling. Material moisture was assumed to be the mean of material moisture contents for Iron and Steel Production identified in AP42, Table 13.2.4-1.
	10.0	Applied to ASR stockpile loading. Northern Metals (Minneapolis, MN) found moisture content of ASR in the range of 20 to 30%; from MPCA Construction Permit Technical Support Document for Northern Metals in Becker MN, Stream COMG-2. Calculations for the ASR stacking conveyor drop point conservatively assumes 10% moisture.

- d. See emission factors identified in Section 3.2 of permit application.
- e. Metal HAPs as percent of total PM measured at the discharge of the existing roll media filter during June 2018 metal emissions testing at General II, LLC.

Table 3-3 - Non-Ferrous Material Processing - Particulate Emissions General III, LLC - Chicago, Illinois

		Moisture >	Transfer Point	Transfer Point	Emission Factor		nated Throughput	РМ	Emissions		PM,	, Emission:		PM ₂	_s Emissions	
Equipment Generating Emissions	No of Points	Y/N	Location	Controlled	Source ⁴	ton/mo	tpy	lb/ton	ton/mo	tpy	lb/ton	ton/mo	tpy	lb/ton	ton/mo	tpy
Conveyor Transfer Points - Uncontrolled Emission Factors	74	N al	Inside Bidg	Y	A	110,624	1,106,236	0.00300	Note f	Note f	0.001100	Note f	Note f	0.000167	Note f	Note f
Conveyor Transfer Points - Controlled Emission Factors*	30	Y *2	Inside Bldg	Y	A	13,436	134,361	0.00014 *	Note f	Note f	0.000046 *	Note f	Note f	0.000013	Note f	Note f
Screening - Uncontrolled Emission Factors	8	N ^{a3}	Inside 8ldg	Y	В	2,820	28,196	0.02500	Note f	Note f	0.008700	Note f	Note f	0.001317	Note f	Note f
Screening - Controlled Emission Factors	8	Y	Inside Bldg	Y	B	1,541	15,406	0.00220	Note f	Note f	0.000740	Note f	Note f	0.000050	Note f	Note f
Stockpile Loading - Material Drop Emissions	17	NA "	Inside Bldg	Y	Drop	838	8,381	¢	Note f	Note f	د	Note f	Note f	c	Note f	Note f
				Total E	missions f	or Sources Ins	ide Building		0.14	1.36		0.14	1.36		0.14	1.36
Conveyor Transfer Points - Uncontrolled Emission Factors	59	N 41	outside	N	A	215,368	2,153,675	0.00300 *1	0.3228	3.2259	0.00110 *1	0.1188	1.1824	0.000167	0.0178	0.1791
Conveyor Transfer Points - Controlled Emission Factors®	11	A 113	outside	Y	A	57,210	572,103	0.00014 *2	0.0040	0.0363	0.00005 *2	0.0014	0.0118	0.000013 47	0.0004	0.0034
Screening - Uncontrolled Emission Factors	13	N #3	outside	N	8	13,670	136,702	0.02500	0.1710	1.7088	0.00870 43	0.0595	0.5944	0.001317 **	0.0090	0.0900
Screening - Controlled Emission Factors	12	Y #	outside	Y	В	42,209	422,085	0.00220	0.0464	0.4140	0.00074	0.0153	0.1394	0.000050 44	0.0011	0.0093
Truck Loading Crushed Stone - Uncontrolled Emission Factors ^b	2	NA B	outside	NA	D	26,003	260,027	0.00020 6	0.0026	0.0266	0.00010 b	0.0013	0.0130	0.000015	0.0002	0.0020
Stockpile Loading - Material Drop Emissions	10	NA *	outside	NA	Drop	23,073	230,725	c	0.0877	0.8480	¢	0.0416	0.4010	٠	0.0065	0.0609
			Tol	als Ferrous P	lant Mater	(al Handling I	PM Emissions		0.77	7.62		0.37	3.71		0.17	1.71
			Totals Feri	rous Plant Ma	iterial Han	dling HAP Me	tal Emissions	1.33% *	0.0102	0.1012	Ratio ol			from June 2018 d ilter at General II,		t of

- a1. Uncontrolled particulate matter emission factors from AP-42, Table 12.19.2-2 for conveying.
- a2. Controlled particulate matter emission factors from AP-42, Table 11.19.2-2 for conveying used based on conservative assumption that moisture content is greater than 1.5% due to water added in the shredder.
- a3. Uncontrolled particulate matter emission factors from AP-42, Table 11.19.2-2 for screening.
- a4. Controlled particulate matter emission factors from AP-42, Table 11.19.2-2 for screening used based on conservative assumption that moisture content is greater than 1.5% due to water added in the shredder.
- b. Uncontrolled particulate matter emission factors from AP-42, Table 11.19.2-2 for truck loading of crushed stone conservative. Use uncontrolled emission factor because controlled emissions factors are not identified.
- . Material Drop PM Emission Equation from AP-42, Section 13.2.4.3.

```
E = emission factor (lb/ton of material dropped)
E = k (0.0032) \times (U/5)^{1.3}
                                         k = particle size multiplier (dimensionless)
                                         U = mean wind speed
                        (M/2)^{1.4}
                                                https://www.timeanddate.com/weather/usa/chicaga/dimate
                                          M = material moisture content (%)
                                       mph - annual average wind speed for Chicago (Midway Airport)
                                       PM = AP-42, Section 13.2.4, for particle size < 30 um
                           0.35
                                       PM - AP-42, Section 13.2.4, for particle size < 10 um
                           0.053
                                       PM - AP-42, Section 13.2.4, for particle size < 2.5 um
                                       Applied to light material stockpile loading. Moisture content for use of controlled emission factors for crushed stone processing - Conveyor Transfer Points - AP-42, Table 11.19.2-2. Considered to be conservative due to moisture added to material
                 M =
                                       in shredder.
```

- d. See emission factors identified in Section 3.2 of permit application.
- e. Metal HAPs as percent of total PM measured at the discharge of the existing roll media filter during June 2018 metal emissions testing at General II, LLC.
- f. Sources located inside the Fines Building emit to the atmosphere through Dust Collection DC-01. Emissions are estimated by multiplying the DC air flow rational rate of 12,000 cfm by a grain loading of 0.005 gr/dscf.

 All PM emissions are assumed to be PM₃.

Table 3-4 - Summary of Estimated Fugitive Particulate Emissions from Stockpile Operations General III, LLC - Chicago, Illinois

		Stock Pile		No of	lņa	ctive Emissi	ons	A	tive Emissio	ns	Tot	al PM Emiss	ions
		Area	Control	Active Days	PM	PM10	PM2.5	PM	PM10	PM2.5	PM	PM10	PM2.5
Plant	Stock Pile	Acres	Factor ^b	day/yr ^c	tpy ^{d,h}	tpy ^{e,h}	tpy ^{(,h}	tpy ^{d,h}	tpy*,h	tpy ^{f,h}	tpy ^{g,h}	tpy ^{g,h}	tpy ^{ah}
	Poker North	0.0115	0.1	312	0.0001	0.0001	0.0000	0.0024	0.0012	0.0002	0.0025	0.0013	0.0002
	Poker South	0.0115	0.1	312	0.0001	0.0001	0.0000	0.0024	0.0012	0.0002	0.0025	0.0013	0.0002
	ASR	0.2541	1	312	0.0236	0.0118	0.0018	0.5232	0.2616	0.0396	0.5468	0.2734	0.0414
#	Ferrous North	0.3630	1	312	0.0337	0.0169	0.0026	0.7475	0.3738	0.0566	0.7812	0.3907	0.0592
Plar	Ferrous South	0.3630	1	312	0.0337	0.0169	0.0026	0.7475	0.3738	0.0566	0.7812	0.3907	0.0592
Ferrous Plant	Fluff (Bin)	0.0161	0.1	312	0.0001	0.0001	0.0000	0.0033	0.0017	0.0003	0.0034	0.0018	0.0003
Ferr	Raw Material Truck Dumping (Drop 1)	0.3630	1	312	0.0337	0.0169	0.0026	0.7475	0.3738	0.0566	0.7812	0.3907	0.0592
	Raw Material Movement from Truck Dumping Area to Stockpile (Drop 2)	0.1815	1	312	0.0168	0.0084	0.0013	0.3737	0.1869	0.0283	0.3905	0.1953	0.0296
	FE from E-02	0.0047	0.1	312	0.0000	0.0000	0.0000	0.0010	0.0005	0.0001	0.0010	0.0005	0.0001
	5" + Zorba	0.0189	0.1	312	0.0002	0.0001	0.0000	0.0039	0.0020	0.0003	0.0041	0.0021	0.0003
¥	2-1/2" - 5" Zorba	0.0189	0.1	312	0.0002	0.0001	0.0000	0.0039	0.0020	0.0003	0.0041	0.0021	0.0003
Plant	5/8" - 2-1/2" Zorba	0.0189	0.1	312	0.0002	0.0001	0.0000	0.0039	0.0020	0.0003	0.0041	0.0021	0.0003
sno	Tailings	0.0195	0.1	312	0.0002	0.0001	0.0000	0.0040	0.0020	0.0003	0.0042	0.0021	0.0003
Nonferrous	Open	0.0195	0.1	312	0.0002	0.0001	0.0000	0.0040	0.0020	0.0003	0.0042	0.0021	0.0003
5	Wire	0.0195	0.1	312	0.0002	0.0001	0.0000	0.0040	0.0020	0.0003	0.0042	0.0021	0.0003
	Wire Rich Solids	0.0195	0.1	312	0.0002	0.0001	0.0000	0.0040	0.0020	0.0003	0.0042	0.0021	0.0003
	Zurick	0.0195	0.1	312	0.0002	0.0001	0.0000	0.0040	0.0020	0.0003	0.0042	0.0021	0.0003
	Waste	0.0868	0.1	312	0.0008	0.0004	0.0001	0.0179	0.0090	0.0014	0.0187	0.0094	0.0015
	· · · · · · · · · · · · · · · · · · ·			Totals							3.2893	1.6452	0.2493

- a. Stockpile emissions calculation from TCEQ for crushed stone downloaded August 2019.
- https://www.tceq.texas.gov/assets/public/permitting/air/Guldance/NewSourceReview/emiss-calc-rock1.xltx
- b. Control Factor of 0.1 (90% control) for partial enclosure consisting of walls on three sides of bin. Control Factor of 1.0 for no control.

 c. Assume number of active days to be 6 days per week and 52 weeks per year and inactive days to be 1 day per week and 52 weeks per year.
- d. From TCEQ Guidance

Stockpile emission calculation:

PM Emission Rate (tpy) = {(inactive day PM EF x No. of inactive days) x stockpile area/2000 x control factor) + {(active day PM EF x No. of active days) x (stockpile area/2000) x control factor)

Inactive Day PM Emission Factor = 3.50 lb-PM/acre-day from TCEQ rock crushing emission calculation spreadsheet.

Active Day PM Emission Factor = 13.20 Ib-PM/acre-day from TCEQ rock crushing emission calculation spreadsheet.

- e. PM10 emissions are half of PM emission per TCEQ Air Permits Division, Rock Crushing Emission Calculation spreadsheet.
- f. Where PM2.5 emission factors are not provided in AP-42, 11-19.2-2, a ratio of aerodynamic particle size multipliers from AP-42, 13.2.45 is used to estimate PM2.5 emission factors. PM2.5 EF = (PM10 EF/.035) x.0053.
- g. Total particulate emissions is the sum of inactive day emissions plus active day emissions.
- h. Hourly emissions, if required, would be based on 8,760 hr/yr.

Control Method	Control Eff. (%)	Control Factor (1 - ctrl eff)
None	0	11
Wet material	50	0.5
Water	70	0.3
Chemicals/foam	80	0.2
Partial Enclosure*	\$0-85	0.5-0.15
Full enclosure®	90	0.1
Enclosed by building*	90	0.1
Washed Sand/gravel	95	0.05
Washed Sand/gravel with water spray	98.5	0.015
Manufacturer Rating	0	0

Walls on three sides.
Use 0.10 as average control factor.

Table 3-5A - Fugitive PM Emissions - Paved Roads General III, LLC - Chicago, Illinois

Paved Road Fugitive Emission Calculation Procedure

 $E_{\text{ext}} = (k * (sL)^{0.91} * (W)^{1.02}) * (1 - (P/(4N))$ Equation 2, AP-42 13.2.1 Paved Roads (Jan 2011) equation does not include brake and tire wear.

where:

E _{ext} =		Size specific annual average particulate emission factor (lb/VMT)
k =	See Below	Particle size multiplier lb/VMT (AP-42 Table 13.2.1-1)
sL≖	9.7	mean controlled silt content, % (AP42 Table 13.2.1-3 Jan 2011 - Iron & Steel Range: 0.09 to 79; mean 9.7-g/m2)
W =	19.08	Mean vehicle weight , tons (use weighted average where available)
P ==	120	Number of precipitation days (>0.01 in) per year (AP42 Fig 13.2.1.2 Jan 2011 - Chicago, IL)
N =	365	Averaging Period, annual
Control Eff % =	75.00%	Emission Control Efficiency for sweeping or watering
Daily Operating Hours	17	Hours per Year
Weekly Operating Days	6	Days /Week
Annual Operating Weeks =	52	Weeks/Yr
Annual Operating hours =	5,304	Hours per Year

Material Hauling				PM	Particle size mu	ltiplier (k) =	0.011	
Vehicle Miles Uncontrolled E Weight Traveled 1.6155-lb/ Vehicle Type (tons) per Day (lb/day)				Emissions		Average I Emissions	Annual PM Emissions	
Vehicle Type	Vehicle Type (tons) per Day (lb/day)					(ton/month)	tpy	
Semi (Shredded Steel)	26.75	27.17	43.893	0.685	10.973	0.171	1.71	
Semi (scrap metal)	24.50	70.87	114.490	1.786	28.623	0.447	4.47	
Semi (overseas container)	27.25	2.57	4.144	0.065	1.036	0.016	0.16	
Semi (shredder residue (fluff))	27.75	9.69	15.654	0.244	3.914	0.061	0.61	
Peddler Pickups	3.45	66.41	107.277	1.674	26.819	0.419	4.18	
WA500 Loader (steel residue)	36.49	20.90	33.764	0.527	8.441	0.132	1.32	
WA300 Loader (steel residue)	16.60	9.50	15.347	0.239_	3.837	0.060	0.60	
Weighted Average Weight:	19.08	Subtotals:	334.569	5.220	83.643	1.306	13.05	

Material Hauling				PM10	Particle size mu	ltiplier (k) =	0.0022	
	Vehicle Weight	Miles Traveled	Annual A Uncontrolled 0.3231-lt	Emissions		Average Emissions	Annual PM10 Emissions	
Vehicle Type	(ib/day)	(ton/month)	(lb/day)	(ton/month)	tpy			
Semi (Shredded Steel)	26.75	27.17	8.779	0.137	2.195	0.034	0.34	
Semi (scrap metal)	24.50	70.87	22.898	0.357	5.725	0.089	0.89	
Semi (overseas container)	27.25	2.57	0.829	0.013	0.207	0.003	0.03	
Semi (shredder residue (fluff))	27.75	9.69	3.131	0.049	0.783	0.012	0.12	
Peddler Pickups	3.45	66.41	21.455	0.335	5.364	0.084	0.84	
WA500 Loader (steel residue)	36.49	20.90	6.753	0.105	1.688	0.026	0.26	
WA300 Loader (steel residue)	16.60	9.50	3.069	0.048	0.767	0.012	0.12	
Weighted Average Weight:	19.08	Subtotals:	66.914	1.044	16.729	0.260	2.61	

Material Hauling				PM2.5	Particle size mu	ltiplier (k) =	0.00054
	Vehicle Weight	Miles Traveled	Annual A Uncontrolled 0.0793-it	Emissions		Average Emissions	Annual PM2.5 Emissions
Vehicle Type	Vehicle Type (tons) per Day (lb/day)					(ton/month)	tpy
Semi (Shredded Steel)	26.75	27.17	2.155	0.034	0.539	0.009	0.08
Semi (scrap metal)	24.50	70.87	5.620	0.088	1.405	0.022	0.22
Seml (overseas container)	27.25	2.57	0.203	0.003	0.051	0.001	0.01
Semi (shredder residue (fluff))	27.75	9.69	0.768	0.012	0.192	0.003	0.03
Peddler Pickups	3.45	66.41	5.266	0.082	1.317	0.021	0.21
WA500 Loader (steel residue)	36.49	20.90	1.657	0.026	0.414	0.007	0.07
WA300 Loader (steel residue)	16.60	9.50	0.753	0.012	0.188	0.003	0.03
Weighted Average Weight:	19.08	Subtotals:	16.422	0.257	4.106	0.066	0.64

Table 3.5B - Fugitive PM Emissions - Paved Roads General III, LLC - Chicago, Illinois

Unpaved Industrial Road Fugitive Emission Calculation Procedure

E_{ext} = [(k * (s/12)^a * (W/3)^b]*[(N-P)/N] Equation 1a & 2, AP-42 13.2.2-2 (Nov 2006)

where:

HC/C;									
E _{ext} =		Size specific annual average pa	rticulate emission fa	ctor (lb/VMT)				
k =	See Below	Particle size multiplier lb/VMT	AP-42 Table 13.2.2-	-2)					
S=	6	mean material silt content (%) (AP42 Table 13.2.2-1 Nov 2006	- Iron & Steel Produ	iction: mean	= 6.0%)				
W =	19.08	Mean vehicle weight , tons (us	weighted average	where availat	ile)				
P =	120	Number of precipitation days (P42 Table 13.2.2-1 Nov 2006 - Iron & Steel Production: mean = 6.0%) ean vehicle weight , tons (use weighted average where available) mber of precipitation days (>0.01 in) per year (AP42 Fig 13.2.1.2 Jan 2011 - Chicago, IL)						
N =	365	Averaging Period, annual	ber of precipitation days (>0.01 in) per year (AP42 Fig 13.2.1.2 Jan 2011 - Chicago, IL) raging Period, annual						
Control Eff % =	50.00%	Emission Control Efficiency for	watering						
Daily Operating Hours	17	Hours per Year							
Weekly Operating Days	6	Days /Week	(AP42 Table 1	3.2.2-2 Nov 20	06 - Industrial Ro	ads (Eq. 1a)			
ual Operating Weeks =	52	Tweeks/Vr	FO 1a Constants	PM	PM10	PM2.5			

Annual Operating Weeks =	52	Weeks/Yr	EQ 1a Constants	PM	PM10	PM2.5
Annual Operating hours =	5,304	Hours per Year	9 =	0.7	0.9	0.9
			b=	0.45	0.45	0.45
erial Hauling	PM	Particle size mu	ltiplier (k) =	4.9		

Material Hauling				PM	Particle size mu	ltiplier (k) =	4.9
	Vehicle Weight	Miles Traveled	Annual A Uncontrolled 4.6548-lb	Emissions		Average Emissions	Annual PM Emissions
Vehicle Type	(tons)	per Day	(lb/day)	(ton/month)	(lb/day)	(ton/month)	tpy
Semi (Shredded Steel)	26.75	1.43	6.656	0.104	3.328	0.052	0.52
Semi (scrap metal)	24.50	3.73	17.362	0.271	8.681	0.136	1.35
Semi (overseas container)	27.25	0.14	0.628	0.010	0.314	0.005	0.05
Semi (shredder residue (fluff))	27.75	0.51	2.374	0.037	1.187	0.019	0.19
Peddler Pickups	3.45	3.50	16.269	0.254	8.135	0.127	1.27
WA500 Loader (steel residue)	36.49	1.10	5.120	0.080	2.560	0.040	0.40
WA300 Loader (steel residue)	16.60	0.50	2.327	0.036	1.164	0.018	0.18
Weighted Average Weight:	19.08	Subtotals:	50.736	0.792	25.369	0.397	3.96

Material Hauling				PM10	Particle size mu	itiplier (k) =	1.5	
Vehicle Miles Uncontrolled E Weight Traveled 1.2405-lb/				Emissions		Average Emissions	Annual PM10 Emissions	
Vehicle Type	(tons)	per Day	(lb/day)	(ton/month)	(lb/day)	(ton/month)	tpy	
Semi (Shredded Steel)	26.75	1.43	1.774	0.028	0.887	0.014	0.14	
Semi (scrap metal)	24.50	3.73	4.627	0.072	2.314	0.036	0.36	
Semi (overseas container)	27.25	0.14	0.167	0.003	0.084	0.001	0.01	
Semi (shredder residue (fluff))	27.75	0.51	0.633	0.010	0.317	0.005	0.05	
Peddler Pickups	3.45	3.50	4.336	0.068	2.168	0.034	0.34	
WAS00 Loader (steel residue)	36.49	1.10	1.365	0.021	0.683	0.011	0.11	
WA300 Loader (steel residue)	16.60	0.50	0.620	0.010	0.310	0.005	0.05	
Weighted Average Weight:	19.08	Subtotals:	13.522	0.211	6.763	0.106	1.06	

Material Hauling				PM2.5	Particle size mu	ltiplier (k) =	0.15
	Vehicle Weight	Miles Traveled	Annual A Uncontrolled 0.1240-lt	Emissions		Average Emissions	Annual PM2.5 Emissions
Vehicle Type	(tons)	per Day	(ton/month)	(lb/day)	(ton/month)	tpy	
Semi (Shredded Steel)	26.75	1.43	0.177	0.003	0.089	0.001	0.01
Semi (scrap metal)	24.50	3.73	0.463	0.007	0.232	0.004	0.04
Semi (overseas container)	27.25	0.14	0.017	0.000	0.009		0.00
Semi (shredder residue (fluff))	27.75	0.51	0.063	0.001	0.032		0.01
Peddler Pickups	3.45	3.50	0.433	0.007	0.217	0.003	0.03
WA500 Loader (steel residue)	36.49	1.10	0.136	0.002	0.068	0.001	0.01
WA300 Loader (steel residue)	16.60	0.50	0.062	0.001	0.031		0.00
Weighted Average Weight:	19.08	Subtotals:	1.351	0.021	0.678	0.009	0.11

Table 3-6 Miscellaneous Natural Gas Fired Environmental Heaters General III, LLC - Chicago, Illinois

	Pollutant Emission Factor ^a	NG HHV = 1	ate 10.0 MMBtu/hr ,020-Btu/scf tion 65,700 MMBtu/yi	
Pollutant	lb/MMscf	ton/mo ^e	tpy	
Nitrogen Oxide (NOx)	100	0.32	3.22	
Carbon Monoxide (CO)	84	0.27	2.71	
Total Filterable PM	1.9	0.01	0.06	
Total Condensable PM	5.7	0.02	0.18	
Total Particulate Matter	7.6	0.02	0.24	
Sulfur Dioxide (SO ₂)	0.6	0.00	0.02	
Volatile Organic Compounds (VOC)	5.5	0.02	0.18	
Greenhouse Gas Emissions				
Carbon Dioxide (CO ₂)	120,174	387.03	3,870.31	
Methane (CH ₄)	2.2649	0.0073	0.07	
Nitrous Oxide (N ₂ O)	0.2265	0.0007	0.01	
Carbon Dioxide Equivalents (CO₂e) ^c		387.43	3,874.31	

a. AP-42 Emission factors from Tables 1.4-1 and 1.4-2.

b. Unit heaters are estimated to operate 6,570 hr/year.

c. Global Warming Potentials (GWPs) for CO₂, CH₄ and N₂O are 1, 25, and 298 respectively (40 CFR 98 Subpart A).

Table 3-6 Miscellaneous Natural Gas Fired Environmental Heaters
General III, LLC - Chicago, Illinois

Summary of HAP Emissions from Natural Gas Combustion

HAP ^b		Emission Factor					
Y/N	Pollutant	(lb/10 ⁶ scf)	ton/mo	tpy			
·	Metal HAPs ^c						
Υ	Lead	0.0005	1.61E-06	1.61E-05			
Υ	Manganese	3.80E-04	1.22E-06	1.22E-05			
Υ	Mercury	2.60E-04	8.37E-07	8.37E-06			
Υ	Nickel	2.10E-03	6.76E-06	6.76E-05			
Υ	Arsenic	2.00E-04	6.44E-07	6.44E-06			
Υ	Beryllium	< 1.20E-05	3.86E-08	3.86E-07			
Υ	Cadmium	1.10E-03	3.54E-06	3.54E-05			
Υ	Chromium	1.40E-03	4.51E-06	4.51E-05			
Υ	Cobalt	8.40E-05	2.71E-07	2.71E-06			
Υ	Selenium	< 2.40E-05	7.73E-08	7.73E-07			
	Volatile HAPs ^d			•			
Υ	Toluene	3.40E-03	1.10E-05	1.10E-04			
Υ	Hexane	< 1.80E+00	< 5.80E-03	< 5.80E-02			
Υ	Anthracene	< 2.40E-06	< 7.73E-09	< 7.73E-08			
Υ	Pyrene	5.00E-06	1.61E-08	1.61E-07			
Υ	Benzo(g,h,i)perylene	< 1.20E-06	< 3.86E-09	< 3.86E-08			
Υ	Indeno(1,2,3-cd)pyrene	< 1.80E-06	< 5.80E-09	< 5.80E-08			
Υ	Acenaphthylene	< 1.80E-06	< 5.80E-09	< 5.80E-08			
Y	Benzo(b)fluoranthene	< 1.80E-06	< 5.80E-09	< 5.80E-08			
Υ	Fluoranthene	3.00E-06	9.66E-09	9.66E-08			
Υ	Benzo(k)fluoranthene	< 1.80E-06	< 5.80E-09	< 5.80E-08			
Y	Chrysene	< 1.80E-06	< 5.80E-09	< 5.80E-08			
Y	Dichlorobenzene	1.20E-03	3.86E-06	3.86E-05			
Υ	Formaldehyde	7.50E-02	2.42E-04	2.42E-03			
Υ	Benzo(a)pyrene	< 1.20E-06	< 3.86E-09	< 3.86E-08			
Υ	Dibenzo(a,h)anthracene	< 1.20E-06	< 3.86E-09	< 3.86E-08			
Υ	3-Methylcholanthrene	< 1.80E-06	< 5.80E-09	< 5.80E-08			
Y	Benz(a)anthracene	< 1.80E-06	< 5.80E-09	< 5.80E-08			
Υ	7,12-Dimethylbenz(a)anthracene	< 1.60E-05	< 5.15E-08	< 5.15E-07			
Υ	Benzene	< 2.10E-03	< 6.76E-06	< 6.76E-05			
Υ	Acenaphthene	< 1.80E-06	< 5.80E-09	< 5.80E-08			
Y	Phenanathrene	1.70E-05	5.48E-08	5.48E-07			
Υ	Fluorene	2.80E-06	9.02E-09	9.02E-08			
Υ	Naphthalene	6.10E-04	1.96E-06	1.96E-05			
Υ	2-Methylnaphthalene	2.40E-05	7.73E-08	7.73E-07			
	Total HAPs		6.08E-03	6.08E-02			
	Maximum Individual HAP	Hexane	5.80E-03	5.80E-02			

a. AP-42 Emission factors from Tables 1.4-1 and 1.4-2.

b. Hazardous Air Pollutant (HAP) as defined by Section 112(b) of the Clean Air Act.

c. Metal HAP emission factors from natural gas combustion - AP-42 Emission factors from Tables 1.4-4.

d. Organic HAP emission factors from natural gas combustion - AP-42 Emission factors from Tables 1.4-3.

e. Monthly emissions are assumed to be 10% of annual emissions.

Table 3-7 - Summary of Facility Wide Criteria Pollutant Emissions General III, LLC - Chicago, Illinois

		го"	Natu	TO al Gas ^b	Ferrou	s Plant ^e	Nonferro		Natu	flisc ral Gas ^E	Facility Wide Potential ^b	From Si Opera		Fugitive I	ed Roads	Facility Wide Emissions with Fugitivies
Pollutant	ton/mo	tpy	ton/mo	tpγ	ton/mo	tpy	ton/mo	tpy	ton/mo	tpγ	tpy	ton/mo	tpy	ton/mo	tpy	tpy
Oxides of Nitrogen - NOx				2.57						3.22	5.79					5.79
Carbon Monoxide - CO	0.12	1.22	0.22	2.16			į		2.71	2.71	6.08					6.08
Total Particulate Matter - PM	0.24	2.36		0.20		2.83		7.62		0.24	13.25	0.33	3.29	1.31	13.05	29.59
filterable PM less than 10 microns in diameter - PM ₁₀	0.24	2.36		0.20		1.22		3.71		0.24	7.73	0.16	1.65	0.26	2.61	11.98
Filterable PM less than 2.5 microns in diameter - PM _{2.5}				0.20		0.22		1.71		0.24	2.37	0.02	0.25	0.06	0.64	3.26
Sulfur Dioxide - SO ₂				0.02						0.02	0.03					0.03
Volatile Organic Material - VOM	0.24	2.43		0.14						0.18	2.75					2.75
Total - HAPs	0.0052	0.0517		0.0486		0.0473		0.1275		0.0608	0.3359	0.0055	0.0550	0.03	0.2845	0.6754
Max Individual HAP	Mercury	Mercury		Hexane		Mercury		Mercury		Hexane	DESTRUCTION OF	Mercury	Mercury	Mercury	Mercury	100000000000000000000000000000000000000
Mercury		0.0303				0.0364		0.0980			0.1648	0.0042	0.0423	0.02	0.2188	0.4259
Hexane				0.0463						0.0580	0.1043					0.1043
Greenhouse Gas Emissions											0.00					0.00
Carbon Dioxide - CO ₂		3,095.91		3,092.72						3,870.31	10,058.94					10,058.94
Methane - CH ₄		0.0583		0.0583						0.0729	0.1895					0.1895
Nitrous Oxide - N₂O		0.0058		0.0058						0.0073	0.0190					0.0190
Carbon Dioxide Equivalents - CO ² e		3,099.10		3,095.91						3,874.31	10,069.33					10,069.33

a. See Tables 1A (VOM and CO), Table 1B (PM), and Table 1C (HAPs). For the purposes of this application, GHG from combustion of VOM in the RTO is assumed to be equal to GHG from maximum natural gas combustion in RTO.

b. See Table 1D.

c. See Table 2.

d. See Table 3.

e. See Table 4.

f. See Table 5.

g. See Table 6.

h. Scrap metal recycling is not one included in one of the 28 industrial quantities identifed in PSD rules, there for purposes of PSD, fugitive emissions are not included in PTE.

Table 3-8 - Summary of Facility Wide HAP Emissions General III, LLC - Chicago, Illinois

				ro								Unpaved		lsc		ty Wide
	RT	ro*	Natur	I Gas		s Plant ^c	Nonferro		Stockpile C	-		e Road ^e		al Gas ^b	Ton/mo	HAP tpy
Hazardous Air Poliutant	ton/mo	tpy	ton/mo	tpy	ton/mo	tpγ	ton/mo	tpy	ton/mo	tpy	ton/mo	tpy	ton/mo	tpy	1011/1110	ФУ
Volatile HAPs							_									
Ethylbenzene	6.67E-05	6.67E-04		Ĺ											6.67E-05	6.67E-04
Styrene	1.33E-05	1.33E-04					<u> </u>			[1.33E-05	1.33E-0
Toluene	3.33E-04	3.33E-03	8.75E-06	8.75E-05						<u> </u>	<u> </u>		1.10E-05	1.10E-04	3.53E-04	3.53€-0
Hexane			4.63E-03	4.63E-02	_								5.80E-03	5.80E-02	1.04E-02	1.04E-0
Anthracene			6.18E-09	6.18E-08			ľ						7.73E-09	7.73E-08	1.39E-08	1.39E-0
Tetrachloroethane (PCE)	2.67E-06	2.67E-05													2.67E-06	2.67E-0
Pyrene		1	1.29E-08	1.29E-07									1.61E-08	1.61E-07	2.90E-08	2.90E-0
m,p-Xylene	1.33E-05	1.33E-04													1.33E-05	1.33E-0
Benzo(g,h,i)perylene			3.09E-09	3.09E-08						l	<u>l </u>		3.86E-09	3.86E-08	6.95E-09	6.95E-0
Indeno(1,2,3-cd)pyrene			4.63E-09	4.63E-08								<u> </u>	5.80E-09	5.80E-08	1.04E-08	1.04E-0
Acenaphthene			4.63E-09	4.63E-08									5.80E-09	5.80E-08	1.04E-08	1.04E-0
Benzo(b)fluoranthene			4.63E-09	4.63E-08									5.80E-09	5.80E-08	1.04E-08	1.04E-0
Fluoranthene	1		7.72E-09	7.72E-08		e 1							9.66E-09	9.66E-08	1.74E-08	1.74E-0
Benzo(k)fluoranthene			4.63E-09	4.63E-08									5.80E-09	5.80E-08	1.04E-08	1.04E-0
Chrysene	 	1	4.63E-09	4.63E-08									5.80E-09	5.80E-08	1.04E-08	1.04E-0
Dichlorobenzene		 	3.09E-06	3.09E-05			I		<u> </u>				3.86E-06	3.86E-05	6.95E-06	6.95E-0
Formaldehyde			1.93E-04	1.93E-03									2.42E-04	2.42E-03	4.35E-04	4.35E-0
Benzo(a)pyrene			3.09E-09	3.09E-08		1							3.86E-09	3.86E-08	6.95E-09	6.95E-0
Dibenzo(a,h)anthracene			3,09E-09	3.09E-08		1					1		3.86E-09	3.86E-08	6.95E-09	6.95E-0
3-Methylcholanthrene			4.63E-09	4.63E-08		1						I	5.80E-09	5.80E-08	1.04E-08	1.04E-
Benz(a)anthracene		i e	4.63E-09	4.63E-08				i					5.80E-09	5.80E-08	1.04E-08	1.04E-
7,12-Dimethylbenzene(a)anthracer		 	4.12E-08	4.12E-07									5.15E-08	5.15E-07	9.27E-08	9.27E-
Benzene	4.00E-04	4.00E-03	5.40E-06	5.40E-05									6.76E-06	6.76E-05	4.12E-04	4.12E-
1,1,1-Trichloroethane	2.00E-04	2.00E-03						T							2.00E-04	2.00E-
Methylene Chloride	5.00E-05	6.00E-04			1								1		6.00E-05	6.00E-
Trichloroethene (TCE)	6.67E-05	6.67E-04	1										l		6.67E-05	6.67E⊣
Acenaphthylene	0.000		4,63E-09	4.63E-08							1		5.80E-09	5.80E-08	1.04E-08	1.04E-
Phenanthrene		<u> </u>	4.38E-08	4.38E-07		1	1				i –		5.48E-08	5.48E-07	9.85E-08	9.85E-
Fluorene		1	7.21E-09	7.21E-08		Τ	1						9.02E-09	9.02E-08	1.62E-08	1.62E-
Naphthalene			1.57E-06	1.57E-05	1			†					1.96E-06	1.96E-05	3.53E-06	3.53E-
2-Methylnaphthalene		 	6.18E-08	6.18E-07				1					7.73E-08	7.73E-07	1.39E-07	1.39E-
o-Xylene	6.67E-05	6.67E-04				1									6.67E-05	6.67E-
		1					•	•	1,-				•			
Metal HAPs		T		I			1500504	I = 075 00	7.405.04	2 405 02	1.13E-03	1.13E-02	1.61E-06	1.61E-05	2.21E-03	2.20E-
Lead	1.57E-04	1.57E-03	1.29E-06	1.29E-05	1.92E-04	1.88E-03	5.12E-04	5.07E-03	2.19E-04	2.19E-03						1.77E-
Manganese	1.26E-04	1.26E-03	9.78E-07	9.78E-06	1.54E-04	1.51E-03	4.12E-04	4.08E-03	1.76E-04	1.76E-03	9.11E-04	9.11E-03	1.22E-06	1.22E-05	1.78E-03	1.//E-
Mercury	3.03E-03	3.03E-02	6.69E-07	6.69E-06	3.71E-03	3.64E-02	9.91E-03	9.80E-02	4.23E-03	4.23E-02	2.19E-02	2.19E-01	8.37E-07	8.37E-06	4.28E-02	
Nickel	4.89E-05	4.89E-04	5.40E-06	5.40E-05	5.97E-05	5.86E-04	1.60E-04	1.58E-03	6.81E-05	6.81E-04	3.52E-04	3.52E-03	6.76E-06	6.76E-05	7.01E-04	6.98E-
Antimony	9.39E-06	9.39E-05			1.15E-05	1.13E-04	3.06E-05	3.03E-04	1.31E-05	1.31E-04	6.77E-05	6.77E-04			1.32E-04	1.32E-
Arsenic	3.63E-06	3.63E-05	5.15E-07	5.15E-06	4.44E-06	4.35E-05	1.19E-05	1.17E-04	5.06E-06	5.06E-05	2.62E-05	2.62E-04	6.44E-07	6.44E-06	5.23E-05	5.21E-
Beryllium	7.29E-07	7.29E-06	3.09E-08	3.09E-07	8.91E-07	8.74E-06	2.38E-06	2.36E-05	1.02E-06	1.02E-05	5.26E-06	5.26E-05	3.86E-08	3.86E-07	1.03E-05	1.03E-
Cadmium	3.46E-05	3.46E-04	2.83E-06	2.83E-05	4.23E-05	4.15E-04	1.13E-04	1.12E-03	4.83E-05	4.83E-04	2.50E-04	2.50E-03	3.54E-06	3.54E-05	4.94E-04	4.92E-
Chromium	3.84E-05	3.84E-04	3.60E-06	3.60E-05	4.69E-05	4.60E-04	1.25E-04	1.24E-03	5.3SE-05	5.35E-04	2.77E-04	2.77E-03	4.51E-06	4.51E-05	5.49E-04	5.46E-
Cobalt	3.24E-06	3.24E-05	2.16E-07	2.16E-06	3.96E-06	3.89E-05	1.06E-05	1.05E-04	4.52E-06	4.52E-05	2.34E-05	2.34E-04	2.71E-07	2.71E-06	4.62E-05	4,60E
Phosphorus	4.72E-04	4.72E-03	1		5.76E-04	5.65E-03	1.54E-03	1.52E-02	6.58E-04	6.58E-03	3.40E-03	3.40E-02			6.65E-03	6.62E-
Selenium	1.74E-05	1.74E-04	6.18E-08	6.18E-07	2.13E-05	2.09E-04	5.69E-05	5.63E-04	2.43E-05	2.43E-04	1.26E-04	1.26E-03	7.73E-08	7.73E-07	2.46E-04	2.45E-
Total HAPs	5.17E-03	5.17E-02	4.86E-03	4.86E-02	4.82E-03	4.73E-02	1.29E-02	1.27E-01	5.50E-03	5.50E-02	2.85E-02	2.85E-01	6.08E-03	6.08E-02	6.78E-02	6.75E-
TOTAL FIRST	JAAFE-03	1 3.27 0.02									faximum Indi	hidual HAP		Mercury	4.28E-02	4.26E-

a. Uncontrolled organic compound emission factors ((b/fon), as presented in ISRI Title V Applicability Workbook, Table D-11F, were multiplied by proposed permit throughput limits, adjusted for for 98% control by the RTO. Metal HAP emission factors were taken from the June 2018 emission testing of the RTO at GII, LLC's existing Clifton Street facility in Chicago. No additional control efficiencing was applied to the metal MAP emission factors for the packed tower scrubber.

b. HAP emissions from natural gas combustion as identified in AP-42, Tables 1.4-3 and 1.4-4.

c. Metal HAP emissions calculated by multilying the weight % of metal HAP in RTO particulate emission by the total PM emissions from identified emission unit.

d. HAP emission factors from natural gas combustion from AP-42, Tables 1.4-3 and 1.4-4 adjusted to propane on the basis of 1,020 Btu/cf (see footnotes on Table S).

Construction Permit Application for New Scrap Metal Recycling Facility

General III, LLC 11600 South Burley Chicago, Illinois 60614

September 20, 2019

FIGURES

Construction Permit Application for New Scrap Metal Recycling Facility

General III, LLC 11600 South Burley Chicago, Illinois 60614

September 24, 2019

APPENDIX A - IEPA PERMIT APPLICATION FORMS

APC-628	Construction Pe	ermit Application for a FESOP Source	A-1
197-FEE	Fee Form		A-5
CAAPP-286	Single Source De	etermination	A-7
CAAPP-220	Process Equipme	nt Data and Information - Metal Shredder	A-11
CAA		tion Control Equipment Data and Information – Metal Shredder dia Filter, RTO, and Packed Tower Scrubber	A-21
	CAAPP-260C	Supplement Form Air Pollution Control Equipment	A-31
	CAAPP-260B	Supplement Form Air Pollution Control Equipment Afterburner	A-33
	CAAPP-260G	Supplement Form Air Pollution Control Equipment Packed Tower Scrubber	A-35
CAAPP-220		ent Data and Information	A-37
CAAPP-220		ent Data and Informationterial Processing System	A-47
CAA		ntion Control Equipment Data and Information	A-57
	CAAPP-260C	Supplement Form Air Pollution Control Equipment Dust Collector DC-01	A-67

Illinois Environmental Protection Agency
Division Of Air Pollution Control -- Permit Section
P.O. Box 19506
Springfield, Illinois 62794-9506

SEP 2 5 2019

Environmental Protection Agency
BUREAU OF AIR

Construction Permit Application for a FESOP Source (FORM APC628)

For Illinois EPA use only
BOA ID No.:
031 600 SPX
Application No.:
19 09 0021
Date Rec'd:
4-25-19

This form is to be used to supply information to obtain a construction permit for a proposed project involving a Federally Enforceable State Operating Permit (FESOP) or Synthetic Minor source, including construction of a new FESOP source. Other necessary information must accompany this form as discussed in the "General Instructions For Permit Applications," Form APC-201

			Proposed	Project				
1.	•	•						
2.	Scrap Metal Recycling Facility Is the project occurring at a source that already has a permit from the Bureau of Air (BOA)?							1
۷.			OA ID Numb	•	ic baroaa (,, , , , , , , , , , , , , , , , , , ,	·y ·	
_					normit innu	d by the E	2042	-
3.	Does this application requ				permit issue	ed by the E	OM?	
		· •	ermit Numbe					-
4.	Does this application requ FESOP issued by the BO	A?	new/modified	emission units I	be incorpor	ated into a	n existing	
	(facility will apply for	•						
	☑ No ☐ Yes If Ye	es, provide P	ermit Numbe	r;				
reser	arrene a company agreement	Colored Sec		Construction of the Constr	Visited Visited	IEDA DI		1
1626			Source Info	ormauon		IEPA - DI	VISION OF RECO	PDS MANAGEMEN TLE
5.	Source name:* General III, LLC							3 8 8
6.	Source street address:* 11600 South Burley	v Avenue					OCT 02	1019
7.	City:	8. C	ounty:		9. Zip co	de:	The spine of the same	1
	Chicago		Cook	<u>.</u>	606	17 K	VIEWE	RIMED
	ONLY COM	PLETE THE FO	LLOWING FOR	A SOURCE WITH	OUT AN ID NU	MBER.		4
10	. Is the source located with	-		Yes 🗌 No				ļ
_	If no, provide Township N			1,2.5.	- 1# ·			4
11	. Description of source and Scrap metal recycling re			12. Primary	/ Classificat	ion Code	of source:	•
	ferrous metals for reuse		illous alla li	SIC	5093 o	r NAICS	423930	
13	. Latitude (DD:MM:SS.SSS	S):	1	14. Longitude (D		SSSS):		1
L	41° 41' 07.02" N			87° 32' 4				J
FE:	this information different than pro SOP application for the source on viously issued.	evious informat r Form APC-62	ion, then comple 0 for Air Permit	ete a new Form 200 Name and/or Owne	-CAAPP to clership Change	ange the so if the FESO	urce name in initi P has been	al
100		A	oplicant In	formation				
15	. Who is the applicant?		16. All corre	espondence to:	(check one)		1
	🛛 Owner 🖾 Ope	erator		Source 🔲 (Owner [☑ Operat	or	
17	. Applicant's FEIN: 40-0011010	18. Attentio	n name and/ Jim Kallas	or title for writte	n correspor	idence:		1

This Agency is authorized to require and you must disclose this information under 415 ILCS 5/39. Failure to do so could result in the application being denied and penalties under 415 ILCS 5 et seq. It is not necessary to use this form in providing this information. This form has been approved by the forms management center.

IL 532-2865 APC628 9/07

Printed on Recycled Paper

The make the same in the same	Owner Info	-mation*	
19. Name: General III, LLC	Owner into)ffiiauoii 36621	
20. Address: 11600 South But	rley Avenue		
21. City: Chicago	22. State:		23. Zip code: 60617
	SOP application for the source or For		for a Request for Ownership Change for Permit Name and/or Ownership Change if
0	perator Information (if	different froi	m owner)*
24. Name: Same as above			
25. Address:			
26. City:	27. State:	4	28. Zip code:
			0-CAAPP to change the source name in initial ership Change if the FESOP has been
	Technical Contact	s for Applica	tion
29. Preferred technical co	ontact: (check one)	pplicant's contac	ct Consultant
30. Applicant's technical Mr. Jim Kallas	contact person for application	n:	
31. Contact person's tele 847-508-9170	phone number(s)		person's e-mail address:
33. Consultant for applica	ation: s, Inc. – Mr. John G. Pinlon		
34. Applicant's consultan 660-393-9000 x 2	t's telephone number:		ant's e-mail address: ion@rka-inc.com
	Review Of Contents	of the Appli	cation
constructed?	overed by this application alread		☐ YES ☒ NO
	ate construction was completed to issue a construction permit for a e		S
•	nclude a narrative description of	f the proposed	☑ YES ☐ NO
38. Does the application c	contain a list or summary that cle d air pollution control equipment		⊠ YES □ NO
showing new and mod	nclude process flow diagram(s) dified emission units and control quipment and their relationships	l equipment,	⊠ YES □ NO
	urce that has not previously rec does the application include a s and site map?		⊠ YES □ NO

443	Review Of Contents of the Application (co	ontinued)		East Park
	Does the application include relevant information for the proposed project as requested on Illinois, BOA application forms (or otherwise contain all relevant technical information)?	⊠ YES	□ NO	
	Does the application identify and address all applicable or potentially applicable emission standards, including: a. State emission standards (35 IAC Chapter I, Subtitle B); b. Federal New Source Performance Standards (40 CFR Part 60); c. Federal standards for HAPs (40 CFR Parts 61 & 63)?	⊠ YES	□ NO	
99	Does the application address whether the proposed project or the source could be a major project for Prevention of Significant Deterioration, 40 CFR 52.21?	⊠ YES	□ №	□ N/A
	Does the application address for which pollutant(s) the proposed project or source could be a major project for PSD, 40 CFR 52.21?	☐ YES	□ №	⊠ N/A
	Does the application address whether the proposed project or the source could be a major project for "Nonattainment New Source Review," (NA NSR), 35 IAC Part 203?	⊠ YES	□ NO	□ N/A
	Does the application address for which pollutant(s) the proposed project or the source could be a major project for NA NSR, 35 IAC Part 203?	☐ YES	□ NO	⊠ N/A*
47.	Does the application address whether the proposed project or the source could potentially be subject to federal Maximum Achievable Control Technology (MACT) standard under 40 CFR Part 63 for Hazardous Air Pollutants (HAP) and identify the standard that could be applicable?	YES * Source n Project no	•	□ N/A* □ N/A*
48.	Does the application identify the HAP(s) from the proposed project or the source that would trigger the applicability of a MACT standard under 40 CFR Part 63?	⊠ YES	□ NO	□ N/A
49.	Does the application include a summary of the current and the future potential emissions of the source after the proposed project has been completed for each criteria air pollutant and/or HAP (tons/year)?	* Applicabilit 40 CFR 63 n source's emi	not applicab	
	Does the application include a summary of the requested permitted annual emissions of the proposed project for the new and modified emission units (tons/year)?	YES * Project doe increase in e modified emi	emission fro	m new or
51.	Does the application include a summary of the requested permitted production, throughput, fuel, or raw material usage limits that correspond to the annual emissions limits of the proposed project for the new and modified emission units?	YES * Project doe increase in e modified emi	es not involv emission fro	ve an om new or
<u> </u>	Does the application include sample calculations or methodology for the emission estimations and the requested emission limits?	⊠ YE\$	□ №	
	Does the application address the relationships with and implications of the proposed project for the source's FESOP?	YES • FESOP not	NO No vet issued	⊠ N/A*
	If the application contains information that is considered a TRADE SECRET, has such information been properly marked and claimed and other requirements to perfect such a clam been satisfied in accordance with 35 IAC Part 130?	YES * No informatic claimed to		N/A* pplication is DE SECRET
	e: *Claimed information will not be legally protected from disclosure to the public if it is properly claimed or does not qualify as trade secret information.			

	Review Of Contents of the Application (continued)					
55.	If the source is located in a county other than Cook County, are two separate copies of this application being submitted	☐ YES ☐ NO NA - Source located in Cook County				
56.	If the source is located in Cook County, are three separate copies of this application being submitted?	⊠ YES □ NO				
57.	Does the application include a completed "FEE DETERMINATION FOR CONSTRUCTION PERMIT APPLICATION," Form 197-FEE, for the emission units and control equipment for which a permit for construction or modification is being sought?	☑ YES □ NO				
58.	Does the application include a check in the proper amount for payment of the Construction permit fee??	☑ YES ☐ NO				

Signature Blo	ock
Pursuant to 35 IAC 201.159, all applications and supplement operator of the source, or their authorized agent, and shall be sign the application. Applications without a signed certification	be accompanied by evidence of authority to
59. Authorized Signature:	
I certify under penalty of law that, based on information inquiry, the statements and information contained in this complete and that I am a responsible official for the sou Environmental Protection Act. In addition, the technical authorized to submit (by hard copy and/or by electronic related to this application that may be requested by the	s application are true, accurate and rce, as defined by Section 39.5(1) of the contact person identified above is copy) any supplemental information
BY: MSC SIGNATURE	COO TITLE OF SIGNATORY
Mr. Hal Tolin TYPED OR PRINTED NAME OF SIGNATORY	9 1 19 1 19 DATE

Agency ID: 170002390446

02390446 Media File Type: AIR

Bureau ID: 031600SFX
Site Name: General III LLC
Site Address1: 11600 S Burley Ave

Site Address2:

Site City: Chicago

State: IL

Zip: 60617-

This record has been determined to be partially or wholly exempt from public disclosure

Exemption Type:

Redaction

Exempt Doc #: 1

Document Date: 9 /25/2019

Staff: MED

Document Description: CONSTRUCTION PERMIT CHECK

Category ID: 03M

Category Description:

AIR PERMIT - CONSTRUCTION/JOINT

Exempt Type

Exempt Type: Redaction

Permit ID: 19090021

Date of Determination:

10/2 /2019

Reserve FTL, LLC

11600 S. Burley Ave Chicago, IL 60617

VOID AFTER 90 DAYS

No. 019714

DATE 08/20/19

CHECK AMOUNT \$****15,000,00

PAY EXACTLY *****15,000 DOLLARS AND 00 CENTS

Wells Fargo Bank, N.A. 420 Montgomery Street San Francisco, CA 94104

AY TO THE ROER OF

ILLINOIS EPA 1021 N GRAND AVENUE EAST PO BOX 19506 SPRINGFIELD, IL 62794-9506

SECURITY FEATURES INCLUDED, DETAILS ON BACK

#019714# #12100024B#

O31600SFX/look

GENERAL IZLLL &

AIRBORNIT-CONSTRUCTION SOINT

IEPA - DIVISION OF RECORDS MANAGEMENT RELEASABLE

OCT 02 2019

REVIEWER MED

Page 1 of 2

197-FEE Rev. 1/2012

Illinois Environmental Protection Agency

Bureau of Air • 1021 North Grand Avenue East • P.O. Box 19506 • Springfield • Illinois • 62794-9506

	FOR	AGENCY USE OF	VLY	415mm
ID Namb	er 131000 SFX	Permit#:	09 0021	· Hicon
Com	Committee of the second	Date Complete:	8-20-19	
Check No		Account Name:	heserve	FILUC
in fame in to be a	read to expent for information that m	ust seemseeu ell	construction normit s	applications. This
pplication must in nvironmental Pro	used to supply fee information that maked to supply fee information that maked tection Agency, Division of Air Pollutes (197-INST) for assistance.	complete. Make ch	eck or money order	payable to the Illinois
ource Informa	•			
Source Name:	General III, LLC			
. Project Name:	Metal Recycling Facility	3.	Source ID #: (if app	olicable)
. Contact Name:		•	Contact Phone #:	847-508-9170
ee Determinati				· · · · ·
	w are automatically calculated.	0.04.0	*40.000.00	* 47.000.00
Section 1 Subto	otal\$5,000.00 + Section	2, 3 or 4 Subtotal	\$10,000.00	= \$15,000.00
ection 1: Statu	is of Source/Purpose of Submi	ttal		Grand Total
Your application	n will fall under only one of the follow	ing five categories	described below. Cl	heck the box that applies.
Proceed to app	licable sections. For purposes of thi	s form:		
• Major S	Source is a source that is required to	obtain a CAAPP p	ermit.	
	e <mark>tic Minor Source</mark> is a source that he ments (e.g.,FESOP).	as taken limits on p	otential to emit in a p	permit to avoid CAAPP permit
• Non-M	ajor Source is a source that is not a	major or synthetic	minor source.	10
	ce without status change or with state Proceed to Section 2.	us change from syn	thetic minor to majo	r source
Existing non-r	major source that will become synthe	etic minor to major s	source. Proceed to	Section 4.
New major or	synthetic minor source. Proceed to	Section 4.		\$5,000.00
	or source. Proceed to Section 3.			Section 1 Subtot
agency error	ROR. If this is a timely request to co and if the request is received within t I. Skip Sections 2, 3 and 4. Proceed	he deadline for a p	ermit appeal to the F	
This agency is authorpplication being der	rized to require and you must disclose the nied and penalties under 415 ILCS 5 ET oved by the forms management center.	is information under 4	15 ILCS 5/39. Failure	
ection 2: Spec	ial Case Filing Fee			
	the application only addresses of d 4 and proceed directly to Section			
	n or replacement of control devic		•	
	ojects/trial burns by a permitted u	•		
	emediation projects	The state of		\$0.00
	ons related to methodology or tim	ing for emission t	estina	ψυ.υυ
	administrative-type change to a p	•		
HIIIO	.anotiativo-typo oriango to a p			
L 532-2776				

Application Page

Section 3: Fees for C	urrent or Projected Non-M	ajor Sources		
	This application consists of a single new emission unit or no more than two modified emission units. (\$500 fee)			<u></u>
	This application consists of more than one new emission unit or more than two modified units. (\$1,000 fee)			
Section 39.2 or a municip commercial j	This application consists of a new source or emission unit subject to Section 39.2 of the Act (i.e., Local Siting Review); a commercial incinerator or a municipal waste, hazardous waste, or waste tire incinerator; a commercial power generator; or an emission unit designated as a complex source by agency rulemaking. (\$15,000 fee)			
• •	ring is held (see instructions). (S		12.	
13. Section 3 su	ototal. (lines 9 through 12 - ente	ered on page 1)		\$0.00
Section 4: Fees for C	urrent or Projected Major o	or Synthetic Minor Sources	_	
	14. For the first modified e	mission unit, enter \$2,000.		
Application contain modified emission units only	15. Number of additional r	nodified emission \$1,000.	15	\$0.00
,	16. Line 14 plus line 15, o	r \$5,000, whichever is less.	16	\$0.00
Application contain	17. For the first new emiss	sion unit, enter \$4,000.	17.	
new and/or modifie emission units		new and/or modified emission \$1,000.	18	
	19. Line 17 plus line 18, o	r \$10,000, whichever is less.	19.	\$10,000.00
Application contain netting exercise	s contemporaneous emi	ollutants that rely on a netting exercise or ssions decrease to avoid application of PSD NSR = x \$3,000.	20	\$0.00
	Act (i.e. siting); a comr hazardous waste, or w generator; or one or m	mission unit is subject to Section 39.2 of the mercial incinerator or other municipal waste, raste tire incinerator; a commercial power ore other emission units designated as a ency rulemaking, enter \$25,000.	21	
Additional Supplemental	22. If the source is a new i	major source subject to PSD, enter \$12,000.	22.	
Fees	23. If the project is a major	r modification subject to PSD, enter \$6,000.	23	
	24. If this is a new major s NSR, enter \$20,000.	ource subject to nonattainment area (NAA)		
	25. If this is a major modifi	cation subject to NAA NSR, enter \$12,000.	25	
	and the project is not s pollutant under PSD of \$5,000 per unit for whi	ves a determination of MACT for a pollutant subject to BACT or LAER for the related r NSR (e.g., VOM for organic HAP), enter ch a determination is requested or otherwise x \$5,000.	26	\$0.00
	27. If a public hearing is he	eld (see instructions), enter \$10,000.	27.	
28. Section 4 subt	otal (line 16 and lines 19 throug	h 28) to be entered on page1	28.	\$10,000.00
29. I certify under penalt contained in this fee	out a signed certification will be	ion and belief formed after reasonable inquiry, to and complete.	the inform	ation
by:	Signature	COO Title of Signatory		-
	Hal Tolin	1111e of Signatory		
Typed or F	rinted Name of Signatory	Date		

197-FEE

Application Page ___

ILLINOIS ENVIRONMENTAL PROTECTION AGENCY DIVISION OF AIR POLLUTION CONTROL-PERMIT SECTION P.O. BOX 19506 SPRINGFIELD, ILLINOIS 62794-9506

FOR AF	PLI	CANT	SUSE	
Revision No.:				_
Date:	_/			
Page:		of		
Page:Source Design	ation	 1		

SINGLE SOURCE DETERMINATION

FOR AGENCY USE ONLY	
ID NUMBER:	
EMISSION POINT #:	
DATE:	

SECTION ONE				SOURCE INFORMAT	ION				
1)	SOURCE NAME::	General III, LLC							
2)	SOURCE ID NO.:		3)	DATE FORM PREPARED:	09	/	1	2019	٦

SECTION TWO INSTRUCTIONS IN BRIEF

- COMPLETE SECTION FOUR FOR EACH SOURCE THAT THE PERMITTEE DETERMINES IS OPERATING AS A SINGLE SOURCE WITH THE PERMITTEE. THIS SECTION MAY BE COPIED AS NEEDED FOR ADDITIONAL SOURCES OR IF ADDITIONAL SPACE IS NEEDED. IF COMPLETING THIS SECTION THERE IS NO NEED TO COMPLETE SECTION FIVE OF THIS FORM AS THE SOURCE CONFIRMS A SINGLE SOURCE RELATIONSHIP.
- COMPLETE SECTION FIVE FOR EACH SOURCE THAT THE PERMITTEE CONFIRMS IS NOT OPERATING AS A SINGLE SOURCE WITH THE PERMITTEE. CHECK ALL THAT APPLY AND PROVIDE AS AN ATTACHMENT TO THIS FORM A CONCISE BUT THOROUGH EXPLANATION OF EACH CHECKED SINGLE SOURCE FACTOR. REFERENCE THE ATTACHMENT(S) USING THE APPROPRIATE SINGLE SOURCE FACTOR CONDITION. THIS SECTION MAY BE COPIED AS NEEDED FOR ADDITIONAL SOURCES OR IF ADDITIONAL SPACE IS NEEDED.
- REFER TO 286-CAAPP INSTRUCTIONS FOR FURTHER GUIDANCE ON COMPLETING THIS FORM.

SE	CTION THREE	SINGLE SOURCE STATUS	
1)	☐ THE ABOVE MENTIONED SOURCE IS A SINGLE	SOURCE WITH ANOTHER SOURCE.	
2)	☐ THE ABOVE MENTIONED SOURCE IS A SINGLE	SOURCE WITH MULTIPLE SOURCES.	
3)	☐ THE ABOVE MENTIONED SOURCE IS NOT A SIN	NGLE SOURCE WITH ANOTHER SOURCE.	

SIGNATURE BLOCK NOTE: THIS CERTIFICATION MUST BE SIGNED BY A RESPONSIBLE OFFICIAL. APPLICATIONS WITHOUT A SIGNED CERTIFICATION WILL BE RETURNED AS INCOMPLETE. LCERTIFY UNDER PENALTY OF LAW THAT, BASED ON INFORMATION AND BELIEF FORMED AFTER REASONABLE INQUIRY, THE STATEMENTS AND INFORMATION CONTAINED IN THIS APPLICATION ARE TRUE, ACCURATE AND COMPLETE. **AUTHORIZED SIGNATURE** COO BY: SIGNATURE TITLE OF SIGNATORY Mr. Hal Tolin TYPED OR PRINTED NAME OF SIGNATORY

THIS AGENCY IS AUTHORIZED TO REQUIRE THIS INFORMATION UNDER 39.5 OF THE ILLINOIS ENVIRONMENTAL PROTECTION ACT, 415 ILCS 5/39.5. FURTHER DISCLOSURE OF THIS INFORMATION IS REQUIRED UNDER THAT SECTION, MOREOVER AS ALSO PROVIDED IN THAT SECTION FAILURE TO PROVIDE THIS INFORMATION MAY PREVENT THIS APPLICATION FROM BEING PROCESSED AND COULD RESULT IN THE APPLICATION BEING DENIED.

APPLICATION PAGE
Printed on Recycled Paper 286-CAAPP

SECTION FOUR

OPERATING AS A SINGLE SOURCE WITH THE FACILITY

COMPLETE THE FOLLOWING TABLE FOR ALL SOURCES WHICH ARE CONSIDERED SINGLE SOURCES WITH THIS SOURCE. FOR THE REQUESTED SINGLE SOURCE DESCRIPTION COLUMN, DESCRIBE THE FUNCTION AND PRODUCT/SERVICE PROVIDED BY THE SINGLE SOURCE. FOR THE REQUESTED SINGLE SOURCE RELATIONSHIP COLUMN, DESCRIBE THE INTERACTION(S) WITH THE SINGLE SOURCE BY CHOOSING FROM AMONG THE FOLLOWING REASONS LISTED BELOW, AND BRIEFLY EXPLAIN IF NECESSARY. USE ADDITIONAL PAGES OR ATTACHMENTS AS NECESSARY.

		1			I
#	S <mark>OURC</mark> E NAME	SOURCE ID#	ADDRESS	SINGLE SOURCE DESCRIPTION	SINGLE SOURCE RELATIONSHIP
1	Reserve Marine Terminals (RMT)	None	11600 South Burley Ave Chicago, IL 60617	See Section 4.1 of Application.	Located on same site as other entities identified herein ⁽¹⁾ .
					Primary SIC Code is 5093 ⁽²⁾
					Common Ownership/ Control thru Reserve Management Group (RMG)
2	Regency Technologies (RSR)	None	11600 South Burley Ave Chicago, IL 60617	See Section 4.1 of Application.	Located on same site as other entities identified herein ⁽¹⁾ .
					Primary SIC Code is 5093 ⁽²⁾
					Common Ownership/ Control thru Reserve Management Group (RMG)
3	Napuck Salvage of Waupaca (NSW)	031600GYI	11600 South Burley Ave Chicago, IL 60617	See Section 4.1 of Application.	Located on same site as other entities identified herein ⁽¹⁾ .
					Primary SIC Code is 5093 ⁽²⁾
					Common Ownership/ Control thru Reserve Management Group (RMG)
4	South Shore Recycling (SSR)	None	11600 South Burley Ave Chicago, IL 60617	See Section 4.1 of Application.	Located on same site as other entities identified herein ⁽¹⁾ .
					Primary SIC Code is 5093 ⁽²⁾
					Common Ownership/ Control thru Reserve Management Group (RMG)
5					<u>"</u>

- (1) General III will be located at this site. (2) General III has a primary SIC code of 5093 Scrap and Waste Materials.
- A CHOOSE OF THE FOLLOWING REASONS AND BRIEFLY EXPLAIN IF NECESSARY: 1) SAME SIC CODE; 2) SHARED COMPANY STRUCTURE (E.G., SAME PARENT COMPANY, SISTER COMPANIES, ETC.); 3) CONTRACTUAL RELATIONSHIP(S); 4) PROCESS/PRODUCTION CO-DEPENDENCY; 5) CONTIGUOUS OR ADJACENT PROPERTIES; 6) INTEGRATED FACILITIES; 7) SUPPORT FACILITY RELATIONSHIP (E.G., CONVEYS, STORES, OR OTHERWISE ASSISTS IN THE PRODUCTION OF A PRINCIPAL PRODUCT AT ANOTHER SOURCE), OR 8) OTHER (EXPLAIN).

APPLICATION PAGE	
Printed on Recycled Paper 286-CAAPP	

001248

142		SECTION FIVE NOT OPERATING AS A SINGLE SOURCE WITH THIS FACILITY										
1)	SOUR	RCE NAME										
2)	SOUF	URCE STREET ADDRESS:										
3)	3) CITY											
4)												
6)	PRIM	ARY STANDARD INDUSTRIAL CLASSIFICATION (SIC) CATEGORY:										
Ĺ												
7)	LONG	GITUDE (DD:MM:SS): 8) LONGITUDE (DD:MM:SS):										
	Si	NGLE SOURCE FACTORS: SINGLE MAJOR INDUSTRIAL GROUPING (SIC CODE)										
9)	THE	ABOVE MENTIONED SOURCE IS A STATIONARY SOURCE BELONGING TO A <u>SINGLE MAJOR INDUSTRIAL</u> UPING (SIC CODE):										
		YES NO										
		ARY SIC OF THE SINGLE SOURCE:										
Lizi .		SINGLE SOURCE FACTORS: COMMON CONTROL										
10)	THE	ABOVE MENTIONED SOURCE IS A STATIONARY SOURCE UNDER COMMON CONTROL:										
		YES IF "YES" CONTINUE TO QUESTION 11 AS THE SOURCE CONFIRMS A COMMON CONTROL RELATIONSHIP										
Α		SAME "PARENT" COMPANY BETWEEN THE TWO (OR MORE) FACILITIES?										
В		CONTRACTUAL RELATIONSHIPS BETWEEN THE TWO (OR MORE) FACILITIES?										
С		A FINANCIAL CO-DEPENDENCY BETWEEN THE TWO (OR MORE) FACILITIES?										
D		JOINT OWNERSHIP BETWEEN THE TWO (OR MORE) FACILITIES?										
E		VOTING INTEREST BETWEEN THE TWO (OR MORE) FACILITIES?										
F		SHARED LIABILITY BETWEEN THE TWO (OR MORE) FACILITIES?										
G		SHARED MANAGERIAL HIERARCHY BETWEEN THE TWO (OR MORE) FACILITIES?										
н		CONTRACT-FOR-SERVICE RELATIONSHIP BETWEEN THE TWO (OR MORE) FACILITIES?										
		PROCESS/PRODUCTION CO-DEPENDENCY BETWEEN THE TWO (OR MORE) FACILITIES?										
J		ADJACENT LOCATION BETWEEN THE TWO (OR MORE) FACILITIES?										
к		FINANCIAL INTEREST BETWEEN THE TWO (OR MORE) FACILITIES?										
L		COMMON EMPLOYEES BETWEEN THE TWO (OR MORE) FACILITIES?										
М		SHARED EQUIPMENT BETWEEN THE TWO (OR MORE) FACILITIES?										
N		LANDLORD-TENANT RELATIONSHIP BETWEEN THE TWO (OR MORE) FACILITIES?										
0		FUNDING RELATIONSHIP BETWEEN THE TWO (OR MORE) FACILITIES?										
Р		SHARED PRODUCTS OR BY-PRODUCTS BETWEEN THE TWO (OR MORE) FACILITIES?										
a		SHARED TRANSPORTATION/PROCESS LINE BETWEEN THE TWO (OR MORE) FACILITIES?										
R		SHARED PAYROLL ACTIVITY, EMPLOYEE BENEFITS, HEALTH PLANS, RETIREMENT FUNDS, INSURANCE COVERAGE, OR OTHER ADMINISTRATIVE FUNCTIONS BETWEEN THE TWO (OR MORE) FACILITIES?										
s		SHARED RESPONSIBILITY FOR COMPLIANCE WITH AIR QUALITY CONTROL REQUIRMENTS BETWEEN THE TWO (OR MORE) FACILITIES?										
Т		OTHER (EXPLAIN):										
1	I											

	d. B.d	SINGLE SOURCE FACTORS: CONTIGUOUS OR ADJACENT PROPERTIES									
11)		BOVE MENTIONED SOURCE IS A STATIONARY SOURCE LOCATED ON ONE OR MORE <u>CONTIGUOUS OR</u>									
		/ES NO IF "YES" CONTINUE TO QUESTION 12 AS THE SOURCE CONFIRMS A CONTIGUOUS OR ADJACENT RELATIONSHIP.									
	APPROXIMATE STRAIGHT LINE DISTANCE TO THE SOURCE (MILES):										
А	A U WAS THE LOCATION CHOSEN DUE TO ITS PROXIMITY TO EXISTING FACILITY?										
В		ARE THE FACILITIES INTEGRATED SUCH THAT THEY SIGNIFICANTLY AFFECT THE DEGREE TO WHICH THEY MAY BE DEPENDENT ON EACH OTHER?									
С		ARE MATERIALS ROUTINELY TRANSFERRED BETWEEN FACILITIES? WATERWAY RAILWAY OVER THE ROAD – PUBLIC ROAD OVER THE ROAD – SPECIAL PURPOSE ROAD									
		PIPELINE OTHER (EXPLAIN):									
D		ARE EMPLOYEES SHUTTLED BETWEEN FACILITIES? LINE WORKERS MAINTENANCE AND/OR REPAIR CREWS ADMINISTRATIVE PERSONNEL ENVIRONMENTAL STAFF OTHER (EXPLAIN):									
E		ARE PRODUCTION PROCESSES SPLIT BETWEEN FACILITIES AND/OR IS THERE A FUNCTIONAL INTER- RELATIONSHIP? COMPONENTS PROCESSED IN FACILITY #1 AND FINISHED IN FACILITY #2. RAW MATERIAL PROCESSED IN FACILITY #1 AND FINISHED IN FACILITY #2. A BYPRODUCT PRODUCED IN FACILITY #1 AND PROCESSED IN FACILITY #2. OTHER (EXPLAIN):									
F		OTHER (EXPLAIN):									
	managed to a transfer of										
		SINGLE SOURCE FACTORS: SUPPORT FACILITY RATIONALE									
12)	,	SINGLE SOURCE FACTORS: SUPPORT FACILITY RATIONALE ABOVE MENTIONED SOURCE IS A STATIONARY SOURCE OPERATING AS A SUPPORT FACILITY: YES ON NO RELATIONSHIP.									
12) A	,	ABOVE MENTIONED SOURCE IS A STATIONARY SOURCE OPERATING AS A <u>SUPPORT FACILITY</u> : VES									
		ABOVE MENTIONED SOURCE IS A STATIONARY SOURCE OPERATING AS A <u>SUPPORT FACILITY</u> : YES NO IF "YES" STOP AS THE SOURCE CONFIRMS A SUPPORT FACILITY RELATIONSHIP. THE SOURCE CONVEYS, STORES, OR OTHERWISE ASSISTS IN THE PRODUCTION OF A PRINCIPAL									
A		ABOVE MENTIONED SOURCE IS A STATIONARY SOURCE OPERATING AS A SUPPORT FACILITY: YES NO IF "YES" STOP AS THE SOURCE CONFIRMS A SUPPORT FACILITY RELATIONSHIP. THE SOURCE CONVEYS, STORES, OR OTHERWISE ASSISTS IN THE PRODUCTION OF A PRINCIPAL PRODUCT AT ANOTHER STATIONARY SOURCE (OR GROUP OF STATIONARY SOURCES). THE SOURCE PROVIDES MORE THAN 50 PERCENT OF ITS OUTPUT OR SERVICE TO ANOTHER									
АВ		ABOVE MENTIONED SOURCE IS A STATIONARY SOURCE OPERATING AS A SUPPORT FACILITY: YES NO IF "YES" STOP AS THE SOURCE CONFIRMS A SUPPORT FACILITY RELATIONSHIP. THE SOURCE CONVEYS, STORES, OR OTHERWISE ASSISTS IN THE PRODUCTION OF A PRINCIPAL PRODUCT AT ANOTHER STATIONARY SOURCE (OR GROUP OF STATIONARY SOURCES). THE SOURCE PROVIDES MORE THAN 50 PERCENT OF ITS OUTPUT OR SERVICE TO ANOTHER STATIONARY SOURCE (OR GROUP OF STATIONARY SOURCES)? THE SOURCE'S PROCESSES ARE SOLELY DERIVED/SUPPLIED FROM/TO ANOTHER STATIONARY									
A B C		ABOVE MENTIONED SOURCE IS A STATIONARY SOURCE OPERATING AS A SUPPORT FACILITY: YES NO IF "YES" STOP AS THE SOURCE CONFIRMS A SUPPORT FACILITY RELATIONSHIP. THE SOURCE CONVEYS, STORES, OR OTHERWISE ASSISTS IN THE PRODUCTION OF A PRINCIPAL PRODUCT AT ANOTHER STATIONARY SOURCE (OR GROUP OF STATIONARY SOURCES). THE SOURCE PROVIDES MORE THAN 50 PERCENT OF ITS OUTPUT OR SERVICE TO ANOTHER STATIONARY SOURCE (OR GROUP OF STATIONARY SOURCES)? THE SOURCE'S PROCESSES ARE SOLELY DERIVED/SUPPLIED FROM/TO ANOTHER STATIONARY SOURCE (OR GROUP OF STATIONARY SOURCES). THE SOURCE HAS THE "TECHNICAL CAPABILITY" TO PROVIDE OUTPUT OR SERVICE TO OTHER									
A B C		ABOVE MENTIONED SOURCE IS A STATIONARY SOURCE OPERATING AS A SUPPORT FACILITY: YES NO IF "YES" STOP AS THE SOURCE CONFIRMS A SUPPORT FACILITY RELATIONSHIP. THE SOURCE CONVEYS, STORES, OR OTHERWISE ASSISTS IN THE PRODUCTION OF A PRINCIPAL PRODUCT AT ANOTHER STATIONARY SOURCE (OR GROUP OF STATIONARY SOURCES). THE SOURCE PROVIDES MORE THAN 50 PERCENT OF ITS OUTPUT OR SERVICE TO ANOTHER STATIONARY SOURCE (OR GROUP OF STATIONARY SOURCES)? THE SOURCE'S PROCESSES ARE SOLELY DERIVED/SUPPLIED FROM/TO ANOTHER STATIONARY SOURCE (OR GROUP OF STATIONARY SOURCES). THE SOURCE HAS THE "TECHNICAL CAPABILITY" TO PROVIDE OUTPUT OR SERVICE TO OTHER CUSTOMERS. THE SOURCE WOULD NOT EXIST AT THAT SITE BUT FOR ANOTHER STATIONARY SOURCE (OR GROUP									

ILLINOIS ENVIRONMENTAL PROTECTION AGENCY DIVISION OF AIR POLLUTION CONTROL-PERMIT SECTION P.O. BOX 19506 SPRINGFIELD, ILLINOIS 62794-9506

FC	R APPLICANT'S USE							
Revision No.:								
Date:								
Page:	of							
Source	of Designation:							
_								

		FOR AGENCY USE ONLY			
P_{i}	ROCESS EMISSION UNIT	ID NUMBER:			
ם	ATA AND INFORMATION	EMISSION POINT #:			
		DATE:			
	SOURCE	INFORMATION			
1) SOURCE	E NAME: ai III, LLC				
2) DATE FO	ORM PREPARED mber 2019	3) SOURCE ID NO. (IF KNOWN):			
	GENERAL	LINFORMATION			
,	F EMISSION UNIT: ermill Shredder				
_,	F PROCESS: us Material Processing System				
l '	PTION OF PROCESS: metal shredder				
	PTION OF ITEM OR MATERIAL PRODUCED metal is shredded to a size suitable	OR ACTIVITY ACCOMPLISHED: a for processing for recovery of ferrous metals			
8) FLOW D	DIAGRAM DESIGNATION OF EMISSION UNIT	:			
	ACTURER OF EMISSION UNIT (IF KNOWN): Determined (TBD)				
10) MODEL TBD	NUMBER (IF KNOWN):	11) SERIAL NUMBER (IF KNOWN): TBD			
OPERA	OF COMMENCING CONSTRUCTION, TION AND/OR MOST RECENT MODIFICATIO B EMISSION UNIT (ACTUAL OR PLANNED)	a) CONSTRUCTION (MONTH/YEAR): June 2020			
	,	b) OPERATION (MONTH/YEAR):			
		c) LATEST MODIFICATION (MONTH/YEAR):			
13) DESCR	PTION OF MODIFICATION (IF APPLICABLE)	:			

THIS AGENCY IS AUTHORIZED TO REQUIRE THIS INFORMATION UNDER ILLINOIS REVISED STATUTES, 1991, AS AMENDED 1992, CHAPTER 111 1/2, PAR. 1039.5. DISCLOSURE OF THIS INFORMATION IS REQUIRED UNDER THAT SECTION. FAILURE TO DO SO MAY PREVENT THIS FORM FROM BEING PROCESSED AND COULD RESULT IN THE APPLICATION BEING DENIED. THIS FORM HAS BEEN APPROVED BY THE FORMS MANAGEMENT CENTER.

ADD	LICA'	FION	DA	CE
AFF			FA	ue.

FOR APPLICANT'S USE

14) DOES THE EMISSION UNIT HAVE MORE THAN ONE MODE OF OPERATION?										
IF YES, EXPLAIN AND IDENTIFY WHICH MODE IS COVERED BY THIS FORM (NOTE: A SEPARATE PROCESS EMISSION UNIT FORM 220-CAAPP MUST BE COMPLETED FOR EACH MODE):										
15) PROVIDE THE NAME AND DESIGNATION OF ALL AIR POLLUTION CONTROL EQUIPMENT CONTROLLING THIS EMISSION UNIT, IF APPLICABLE (FORM 260-CAAPP AND THE APPROPRIATE 260-CAAPP ADDENDUM FORM MUST BE COMPLETED FOR EACH ITEM OF AIR POLLUTION CONTROL EQUIPMENT):										
Emissions will be controlled by shredder emissions control system – See 260 CAAPP										
RATE PURSUANT TO A SPECIF	16) WILL EMISSIONS DURING STARTUP EXCEED EITHER THE ALLOWABLE EMISSION RATE PURSUANT TO A SPECIFIC RULE, OR THE ALLOWABLE EMISSION LIMIT AS ESTABLISHED BY AN EXISTING OR PROPOSED PERMIT CONDITION?									
IF YES, COMPLETE AND ATTAC STARTUP OF EQUIPMENT'.	CH FOI	RM 203-CAAPP, "I	REQUEST	TO OPERATE	WITH EXCE	ESS EMI	ISSIONS DURING			
17) PROVIDE ANY LIMITATIONS OF STANDARDS (E.G., ONLY ONE	N SOUI	RCE OPERATION S OPERATED AT	AFFECTI A TIME):	NG EMISSION	IS OR ANY W	ORK PR	RACTICE			
Scheduled maintenance processing system (upst to operate the shredder.	and r ream	malfunctions o or downstrea	of any eo m of the	quipment ir e shredder)	the ferrou potentially	ıs mat y affec	erial ts the ability			
		PERATING								
18) ATTACH THE CALCULATIONS, FOLLOWING OPERATING INFO AND LABEL AS EXHIBIT 220-1.	TO TH	IE EXTENT THEY ION, MATERIAL U	ARE AIR	EMISSION REF	LATED, FROM	/ WHICH	H THE ATA WERE BASED			
FOLLOWING OPERATING INFO	TO TH RMAT REFE	IE EXTENT THEY ION, MATERIAL U	ARE AIR	EMISSION REF	LATED, FROM ND FUEL US APP.	AGE DA	ATA WERE BASED			
FOLLOWING OPERATING INFO AND LABEL AS EXHIBIT 220-1.	TO TH PRMAT REFE	IE EXTENT THEY ION, MATERIAL U R TO SPECIAL NO HOURS/DAY:	ARE AIR	EMISSION REI FORMATION A FORM 202-CA DAYS/WEEK	LATED, FROM NND FUEL US APP.	WEEK	S/YEAR: (S/YEAR: (S/YEAR:			
FOLLOWING OPERATING INFO AND LABEL AS EXHIBIT 220-1. 19a) MAXIMUM OPERATING HOUR	TO TH PRMAT REFE	HOURS/DAY:	ARE AIR ISAGE INI	EMISSION REI FORMATION A FORM 202-CA DAYS/WEEK 6 DAYS/WEEK	LATED, FROM NND FUEL US APP.	WEEK 52 WEEK 52	S/YEAR: (S/YEAR:			
FOLLOWING OPERATING INFO AND LABEL AS EXHIBIT 220-1. 19a) MAXIMUM OPERATING HOURS b) TYPICAL OPERATING HOURS 20) ANNUAL THROUGHPUT	TO THE	HOURS/DAY: 10 HOURS/DAY: 14 HOURS/DAY: 10 DEC-FEB(%):	ARE AIR ISAGE INI DTES OF	EMISSION REI FORMATION A FORM 202-CA DAYS/WEEK 6 DAYS/WEEK 6 -MAY(%):	LATED, FROM AND FUEL US APP. C: JUN-AUG(% 26	WEEK 52 WEEK 52	ATA WERE BASED (S/YEAR: 2 (S/YEAR: 2 SEP-NOV(%):			
FOLLOWING OPERATING INFO AND LABEL AS EXHIBIT 220-1. 19a) MAXIMUM OPERATING HOURS b) TYPICAL OPERATING HOURS 20) ANNUAL THROUGHPUT	TO THE PRIMATE REFE	HOURS/DAY: 10 HOURS/DAY: 14 HOURS/DAY: 10 DEC-FEB(%): 22	MARE AIR ISAGE INI	DAYS/WEEK 6 DAYS/WEEK 6 -MAY(%):	LATED, FROM AND FUEL US APP. C: JUN-AUG(% 26	WEEK 52 WEEK 52 6):	ATA WERE BASED (S/YEAR: 2 (S/YEAR: 2 SEP-NOV(%):			
FOLLOWING OPERATING INFO AND LABEL AS EXHIBIT 220-1. 19a) MAXIMUM OPERATING HOURS b) TYPICAL OPERATING HOURS 20) ANNUAL THROUGHPUT	TO THE PRINCE OF	HOURS/DAY: 14 HOURS/DAY: 10 HOURS/DAY: 10 HOURS/DAY: 10 DEC-FEB(%): 22	MARE AIR ISAGE INI	DAYS/WEEK 6 DAYS/WEEK 6 -MAY(%):	LATED, FROM AND FUEL US APP. C: JUN-AUG(% 26	WEEK 52 WEEK 52 6):	(S/YEAR: 2 (S/YEAR: 2 SEP-NOV(%): 26			
FOLLOWING OPERATING INFO AND LABEL AS EXHIBIT 220-1. 19a) MAXIMUM OPERATING HOURS b) TYPICAL OPERATING HOURS 20) ANNUAL THROUGHPUT	TO THE PRINCE OF	HOURS/DAY: 14 HOURS/DAY: 10 DEC-FEB(%): 22 TERIAL USA	MARE AIR ISAGE INI	DAYS/WEEK 6 DAYS/WEEK 6 -MAY(%): 26 FORMATI	LATED, FROM NND FUEL US APP. (: JUN-AUG(% 26) APPR	WEEK 52 WEEK 52 6):	(S/YEAR: 2 (S/YEAR: 2 (SP-NOV(%): 26			
FOLLOWING OPERATING INFO AND LABEL AS EXHIBIT 220-1. 19a) MAXIMUM OPERATING HOURS b) TYPICAL OPERATING HOURS 20) ANNUAL THROUGHPUT 21a) RAW MATERIALS	TO THE PRINCE OF	HOURS/DAY: 14 HOURS/DAY: 10 DEC-FEB(%): 22 TERIAL USA	MARE AIR ISAGE INIDITES OF INI	DAYS/WEEK 6 DAYS/WEEK 6 -MAY(%): 26 FORMATI	LATED, FROM NND FUEL US APP. (: JUN-AUG(% 26) APPR	WEEK 52 WEEK 52 6):	(S/YEAR: 2 SEP-NOV(%): 26 PICAL RATES TONS/YEAR			
FOLLOWING OPERATING INFO AND LABEL AS EXHIBIT 220-1. 19a) MAXIMUM OPERATING HOURS b) TYPICAL OPERATING HOURS 20) ANNUAL THROUGHPUT 21a) RAW MATERIALS	TO THE PRINCE OF	HOURS/DAY: 14 HOURS/DAY: 10 DEC-FEB(%): 22 TERIAL USA	MARE AIR ISAGE INIDITES OF INI	DAYS/WEEK 6 DAYS/WEEK 6 -MAY(%): 26 FORMATI	LATED, FROM NND FUEL US APP. (: JUN-AUG(% 26) APPR	WEEK 52 WEEK 52 6):	(S/YEAR: 2 SEP-NOV(%): 26 PICAL RATES TONS/YEAR			
FOLLOWING OPERATING INFO AND LABEL AS EXHIBIT 220-1. 19a) MAXIMUM OPERATING HOURS b) TYPICAL OPERATING HOURS 20) ANNUAL THROUGHPUT 21a) RAW MATERIALS	TO THE PRINCE OF	HOURS/DAY: 14 HOURS/DAY: 10 DEC-FEB(%): 22 TERIAL USA	MARE AIR ISAGE INIDITES OF INI	DAYS/WEEK 6 DAYS/WEEK 6 -MAY(%): 26 FORMATI	LATED, FROM NND FUEL US APP. (: JUN-AUG(% 26) APPR	WEEK 52 WEEK 52 6):	(S/YEAR: 2 SEP-NOV(%): 26 PICAL RATES TONS/YEAR			

	APPROX MAX	KIMUM RATES	APPROX TYPICAL RATES		
21b) PRODUCTS	LBS/HR	TONS/YEAR	LBS/HR	TONS/YEAR	
Shredded Scrap		1,000,000		750,000	
	MANIMUM	ADATES	TVDICA	LDATES	
21c) BY-PRODUCT MATERIALS	MAXIMUN	T		L RATES	
NA NA	LBS/HR	TONS/YEAR	LBS/HR	TONS/YEAR	
	FUEL L	ISAGE DATA			
22a) MAXIMUM FIRING RATE		FIRING RATE	c) DESIGN CAPA		
(MILLION BTU/HR): None	(MILLION	BTU/HR):	RATE (MILLIO	N BTU/HR):	
d) FUEL TYPE:					
☐ NATURAL GAS ☐ FUEL O	L: GRADE NUMBER	COAL	OTHER		
IF MORE THAN ONE FUEL IS	USED, ATTACH AN EX	(PLANATION AND LABE	L AS EXHIBIT 220-2.		
e) TYPICAL HEAT CONTENT OF	FUEL (BTU/LB.	f) TYPICAL SUI	LFUR CONTENT (WT	%	
BTU/GAL OR BTU/SCF):	1022 (810/25,	NA FOR NAT	URAL GAS):	70.,	
		17			
g) TYPICAL ASH CONTENT (WT NA FOR NATURAL GAS):	%.,		EL USAGE (SPECIFY SALYEAR, TONYEAR		
NATORNATORAL GAS).		GOI / I LAIN, C	BALTLAN, TONTLAN	ν.	
23) ARE COMBUSTION EMISSION	S DUCTED TO THE SA	AME STACK OR CONTR	OL AS	YES NO	
PROCESS UNIT EMISSIONS?	02001251011120			TES LINO	
IF NO, IDENTIFY THE EXHAUS	ST POINT FOR COMBL	JSTION EMISSIONS:			

APPLICABLE RULES				
24) PROVIDE ANY SPECIFIC EMISSION STANDARD(S) AN		ABLE TO THIS EMISSION UNIT (E.G., VOM, IAC 218.204(j)(4), 3.5 LBS/GAL):		
REGULATED AIR POLLUTANT(S)	EMISSION STANDARD(S)	REQUIREMENT(S)		
25) PROVIDE ANY SPECIFIC RECORDKEEPING RULE(S) REGULATED AIR POLLUTANT(S)	See 260 CAAPP for Shredder Emissions Control System and Section 4 of the application.	REQUIREMENT(S)		
26) PROVIDE ANY SPECIFIC REPORTING RULE(S) WHICH	REPORTING RULE(S)	REQUIREMENT(S)		
27) PROVIDE ANY SPECIFIC MONITORING RULE(S) WHICH	CH ARE APPLICABLE TO THIS EMISSION UNIT: MONITORING RULE(S)	REQUIREMENT(S)		
28) PROVIDE ANY SPECIFIC TESTING RULES AND/OR PROVIDE AND SPECIFIC TESTING RULES AND SP	ROCEDURES WHICH ARE APPLICABLE TO THIS EMISSION TESTING RULE(S)	ON UNIT : REQUIREMENT(S)		

29)	DOES THE EMISSION UNIT Q	UALIFY FOR AN EXEMPTIC	N FROM AN	YES	⊠ NO
	OTHERWISE APPLICABLE RU F YES, THEN LIST BOTH THE		EXEMPT AND THE	RUI F WHICH ALL	OWS THE EXEMPTION
	PROVIDE A DETAILED EXPLA CALCULATIONS. ATTACH AN AND JUSTIFY THIS EXEMPTION	NATION JUSTIFYING THE I ND LABEL AS EXHIBIT 220-3	EXEMPTION. INCL	JDE DETAILED SU	JPPORTING DATA AN
20)	IS THE EMISSION UNIT IN CO	COMPLIANCE			
	REQUIREMENTS?	MIPLIANCE WITH ALL APPL	ICABLE		∐ NO
	IF NO, THEN FORM 294-CAAF COMPLYING EMISSION UNIT	PP "COMPLIANCE PLAN/SC S" MUST BE COMPLETED A	HEDULE OF COMP AND SUBMITTED W	LIANCE ADDEN ITH THIS APPLICA	DUM FOR NON ATION.
					¥
	EXPLANATION OF HOW INITI Operate shredder in ac	ed Branch C All		2000 - 2000	ATED:
	See CAAPP 260 for Shr				
32)	EXPLANATION OF HOW ONG	GOING COMPLIANCE WILL E	BE DEMONSTRATE	D:	
	Operating shredder em	issions control syster	n as described	In 260 CAAPP	
			*		
	TESTING. M	ONITORING, RECO	ORDKEEPING	AND REPO	ORTING
33a)	LIST THE PARAMETERS THA	AT RELATE TO AIR EMISSIO	ONS FOR WHICH RI	CORDS ARE BEI	NG MAINTAINED TO
	DETERMINE FEES, RULE AF OF MEASUREMENT, AND TH				
	PARAMETER	UNIT OF MEASUREMENT	METHOD OF M	EASUREMENT	FREQUENCY
	Scrap Throughput	Tons/month	Belt scale and of purchasir	ng, shipping	monthly
a i					
		ŭ.			
		3			
	<u> </u>				

33b) BRIEFLY DESCRIBE THE METHOD BY WHICH RECORDS WILL BE CREATED AND MAINTAINED. FOR EACH RECORDED PARAMETER INCLUDE THE METHOD OF RECORDKEEPING, TITLE OF PERSON RESPONSIBLE FOR RECORDKEEPING, AND TITLE OF PERSON TO CONTACT FOR REVIEW OF RECORDS:						
PARAMETER	METHOD OF RECORDKEEPING	TITLE OF PERSON RESPONSIBLE	TITLE OF CONTACT PERSON			
Scrap throughput	Electronic database	Environmental Manager	Environmental Manager			
7:						
		7				
c) IS COMPLIANCE OF T THE RECORDS?	HE EMISSION UNIT READILY D	DEMONSTRATED BY REVIEW OF	⊠ YES □ NO			
IF NO, EXPLAIN:						
	d) ARE ALL RECORDS READILY AVAILABLE FOR INSPECTION, COPYING AND SUBMITTAL TO THE AGENCY UPON REQUEST?					
IF NO, EXPLAIN:	IF NO, EXPLAIN:					
34a) DESCRIBE ANY MONI COMPLIANCE:	ITORS OR MONITORING ACTIV	/ITIES USED TO DETERMINE FEE	S, RULE APPLICABILITY OR			
Recording scrap	throughput					
b) WHAT PARAMETER(S) IS (ARE) BEING MONITORED (E.G., VOM EMISSIONS TO ATMOSPHERE)?						
Scrap throughput						
c) DESCRIBE THE LOCA	ATION OF EACH MONITOR (E.G	G., IN STACK MONITOR 3 FEET FR	OM EXIT):			
Belt scale data is adjusted based on monthly records reflecting purchases, shipments, and change in inventory.						

e) IS EACH MONITOR REVIEWED FOR ACCURACY ON AT LEAST A QUARTERLY BASIS? IF NO, EXPLAIN: 1) IS EACH MONITOR OPERATED AT ALL TIMES THE ASSOCIATED EMISSION UNIT IS YES NO NO PERATION? IF NO, EXPLAIN: 25) PROVIDE INFORMATION ON THE MOST RECENT TESTS, IF ANY, IN WHICH THE RESULTS ARE USED FOR PURPOSES OF THE DETERMINATION OF FEES, RULE APPLICABILITY OR COMPLIANCE. INCLUDE THE TEST DATE, TEST METHOD USED, TESTING COMPANY, OPERATING CONDITIONS EXISTING DURING THE TEST AND A SUMMARY OF RESULTS. IF ADDITIONAL SPACE IS NEEDED, ATTACH AND LASEL AS EXHIBIT 220-4: TEST DATE TEST DATE TEST METHOD TESTING COMPANY OPERATING CONDITIONS SUMMARY OF RESULTS SUBMITTALS TO THE AGENCY: REPORTING REQUIREMENTS TITLE OF REPORT FREQUENCY Annual Emissions Emission Deviation Report Within 30 days of event	34d) IS EACH MONITOR EQUIPPED WITH	A RECORDING DEVICE?	✓ YES ✓ NO
BASIS? IF NO, EXPLAIN: 1) IS EACH MONITOR OPERATED AT ALL TIMES THE ASSOCIATED EMISSION UNIT IS YES NO IN OPERATION? IF NO, EXPLAIN: 35) PROVIDE INFORMATION ON THE MOST RECENT TESTS, IF ANY, IN WHICH THE RESULTS ARE USED FOR PURPOSES OF THE DETERMINATION OF FEES, RULE APPLICABILITY OR COMPLIANCE. INCLIDE THE TEST DATE, TEST METHOD USED, TESTING COMPANY, OPERATING CONDITIONS EXISTING DURING THE TEST AND A SUMMARY OF RESULTS. IF ADDITIONAL SPACE IS NEEDED, ATTACH AND LABEL AS EXHIBIT 220-4: TEST DATE TEST DATE TEST METHOD TESTING COMPANY OPERATING CONDITIONS SUMMARY OF RESULTS NA 36) DESCRIBE ALL REPORTING REQUIREMENTS AND PROVIDE THE TITLE AND FREQUENCY OF REPORT SUBMITTALS TO THE AGENCY: REPORTING REQUIREMENTS TITLE OF REPORT FREQUENCY Annual Emissions Emission Deviation Within 30 days of event	IF NO, LIST ALL MONITORS WITHOU		
BASIS? IF NO, EXPLAIN: 1) IS EACH MONITOR OPERATED AT ALL TIMES THE ASSOCIATED EMISSION UNIT IS YES NO IN OPERATION? IF NO, EXPLAIN: 35) PROVIDE INFORMATION ON THE MOST RECENT TESTS, IF ANY, IN WHICH THE RESULTS ARE USED FOR PURPOSES OF THE DETERMINATION OF FEES, RULE APPLICABILITY OR COMPLIANCE. INCLIDE THE TEST DATE, TEST METHOD USED, TESTING COMPANY, OPERATING CONDITIONS EXISTING DURING THE TEST AND A SUMMARY OF RESULTS. IF ADDITIONAL SPACE IS NEEDED, ATTACH AND LABEL AS EXHIBIT 220-4: TEST DATE TEST DATE TEST METHOD TESTING COMPANY OPERATING CONDITIONS SUMMARY OF RESULTS NA 36) DESCRIBE ALL REPORTING REQUIREMENTS AND PROVIDE THE TITLE AND FREQUENCY OF REPORT SUBMITTALS TO THE AGENCY: REPORTING REQUIREMENTS TITLE OF REPORT FREQUENCY Annual Emissions Emission Deviation Within 30 days of event			
BASIS? IF NO, EXPLAIN: 1) IS EACH MONITOR OPERATED AT ALL TIMES THE ASSOCIATED EMISSION UNIT IS YES NO IN OPERATION? IF NO, EXPLAIN: 35) PROVIDE INFORMATION ON THE MOST RECENT TESTS, IF ANY, IN WHICH THE RESULTS ARE USED FOR PURPOSES OF THE DETERMINATION OF FEES, RILL APPLICABILITY OR COMPLIANCE. INCLUDE THE TEST DATE, TEST METHOD USED, TESTING COMPANY, OPERATING CONDITIONS EXISTING DURING THE TEST AND A SUMMARY OF RESULTS. IF ADDITIONAL SPACE IS NEEDED, ATTACH AND LABEL AS EXHIBIT 220-4: TEST DATE TEST DATE TEST METHOD TESTING COMPANY OPERATING CONDITIONS SUMMARY OF RESULTS NA 36) DESCRIBE ALL REPORTING REQUIREMENTS AND PROVIDE THE TITLE AND FREQUENCY OF REPORT SUBMITTALS TO THE AGENCY: REPORTING REQUIREMENTS TITLE OF REPORT FREQUENCY Annual Emissions Finiseion Deviation Within 30 days of event.			
BASIS? IF NO, EXPLAIN: 1) IS EACH MONITOR OPERATED AT ALL TIMES THE ASSOCIATED EMISSION UNIT IS YES NO IN OPERATION? IF NO, EXPLAIN: 35) PROVIDE INFORMATION ON THE MOST RECENT TESTS, IF ANY, IN WHICH THE RESULTS ARE USED FOR PURPOSES OF THE DETERMINATION OF FEES, RILL APPLICABILITY OR COMPLIANCE. INCLUDE THE TEST DATE, TEST METHOD USED, TESTING COMPANY, OPERATING CONDITIONS EXISTING DURING THE TEST AND A SUMMARY OF RESULTS. IF ADDITIONAL SPACE IS NEEDED, ATTACH AND LABEL AS EXHIBIT 220-4: TEST DATE TEST DATE TEST METHOD TESTING COMPANY OPERATING CONDITIONS SUMMARY OF RESULTS NA 36) DESCRIBE ALL REPORTING REQUIREMENTS AND PROVIDE THE TITLE AND FREQUENCY OF REPORT SUBMITTALS TO THE AGENCY: REPORTING REQUIREMENTS TITLE OF REPORT FREQUENCY Annual Emissions Finiseion Deviation Within 30 days of event.			
BASIS? IF NO, EXPLAIN: 1) IS EACH MONITOR OPERATED AT ALL TIMES THE ASSOCIATED EMISSION UNIT IS YES NO IN OPERATION? IF NO, EXPLAIN: 35) PROVIDE INFORMATION ON THE MOST RECENT TESTS, IF ANY, IN WHICH THE RESULTS ARE USED FOR PURPOSES OF THE DETERMINATION OF FEES, RILL APPLICABILITY OR COMPLIANCE. INCLUDE THE TEST DATE, TEST METHOD USED, TESTING COMPANY, OPERATING CONDITIONS EXISTING DURING THE TEST AND A SUMMARY OF RESULTS. IF ADDITIONAL SPACE IS NEEDED, ATTACH AND LABEL AS EXHIBIT 220-4: TEST DATE TEST DATE TEST METHOD TESTING COMPANY OPERATING CONDITIONS SUMMARY OF RESULTS NA 36) DESCRIBE ALL REPORTING REQUIREMENTS AND PROVIDE THE TITLE AND FREQUENCY OF REPORT SUBMITTALS TO THE AGENCY: REPORTING REQUIREMENTS TITLE OF REPORT FREQUENCY Annual Emissions Finiseion Deviation Within 30 days of event.			
BASIS? IF NO, EXPLAIN: 1) IS EACH MONITOR OPERATED AT ALL TIMES THE ASSOCIATED EMISSION UNIT IS YES NO IN OPERATION? IF NO, EXPLAIN: 35) PROVIDE INFORMATION ON THE MOST RECENT TESTS, IF ANY, IN WHICH THE RESULTS ARE USED FOR PURPOSES OF THE DETERMINATION OF FEES, RILL APPLICABILITY OR COMPLIANCE. INCLUDE THE TEST DATE, TEST METHOD USED, TESTING COMPANY, OPERATING CONDITIONS EXISTING DURING THE TEST AND A SUMMARY OF RESULTS. IF ADDITIONAL SPACE IS NEEDED, ATTACH AND LABEL AS EXHIBIT 220-4: TEST DATE TEST DATE TEST METHOD TESTING COMPANY OPERATING CONDITIONS SUMMARY OF RESULTS NA 36) DESCRIBE ALL REPORTING REQUIREMENTS AND PROVIDE THE TITLE AND FREQUENCY OF REPORT SUBMITTALS TO THE AGENCY: REPORTING REQUIREMENTS TITLE OF REPORT FREQUENCY Annual Emissions Finiseion Deviation Within 30 days of event.			
IF NO, EXPLAIN:		ACCURACY ON AT LEAST A QUARTERLY	⊠ YES □ NO
f) IS EACH MONITOR OPERATED AT ALL TIMES THE ASSOCIATED EMISSION UNIT IS YES NO IN OPERATION? IF NO, EXPLAIN: 35) PROVIDE INFORMATION ON THE MOST RECENT TESTS, IF ANY, IN WHICH THE RESULTS ARE USED FOR PURPOSES OF THE DETERMINATION OF FEES, RULE APPLICABILITY OR COMPLIANCE. INCLUDE THE TEST DATE, TEST METHOD USED, TESTING COMPANY, OPERATING CONDITIONS EXISTING DURING THE TEST AND A SUMMARY OF RESULTS. IF ADDITIONAL SPACE IS NEEDED, ATTACH AND LABEL AS EXHIBIT 220-4: TEST DATE TEST METHOD TESTING COMPANY OPERATING CONDITIONS NA 36) DESCRIBE ALL REPORTING REQUIREMENTS AND PROVIDE THE TITLE AND FREQUENCY OF REPORT SUBMITTALS TO THE AGENCY: REPORTING REQUIREMENTS TITLE OF REPORT FREQUENCY Annual Emissions Annual Emissions Report Emission Deviation Within 30 days of event			
IN OPERATION? IF NO, EXPLAIN: 35) PROVIDE INFORMATION ON THE MOST RECENT TESTS, IF ANY, IN WHICH THE RESULTS ARE USED FOR PURPOSES OF THE DETERMINATION OF FEES, RULE APPLICABILITY OR COMPLIANCE. INCLUDE THE TEST DATE, TEST METHOD USED, TESTING COMPANY, OPERATING CONDITIONS EXISTING DURING THE TEST AND A SUMMARY OF RESULTS. IF ADDITIONAL SPACE IS NEEDED, ATTACH AND LABEL AS EXHIBIT 220-4: TEST DATE TEST METHOD TESTING COMPANY OPERATING CONDITIONS SUMMARY OF RESULTS NA 36) DESCRIBE ALL REPORTING REQUIREMENTS AND PROVIDE THE TITLE AND FREQUENCY OF REPORT SUBMITTALS TO THE AGENCY: REPORTING REQUIREMENTS TITLE OF REPORT FREQUENCY Annual Emissions Emission Deviations Within 30 days of event	ii No, Ext E iiv.		
IN OPERATION? IF NO, EXPLAIN: 35) PROVIDE INFORMATION ON THE MOST RECENT TESTS, IF ANY, IN WHICH THE RESULTS ARE USED FOR PURPOSES OF THE DETERMINATION OF FEES, RULE APPLICABILITY OR COMPLIANCE. INCLUDE THE TEST DATE, TEST METHOD USED, TESTING COMPANY, OPERATING CONDITIONS EXISTING DURING THE TEST AND A SUMMARY OF RESULTS. IF ADDITIONAL SPACE IS NEEDED, ATTACH AND LABEL AS EXHIBIT 220-4: TEST DATE TEST METHOD TESTING COMPANY OPERATING CONDITIONS SUMMARY OF RESULTS NA 36) DESCRIBE ALL REPORTING REQUIREMENTS AND PROVIDE THE TITLE AND FREQUENCY OF REPORT SUBMITTALS TO THE AGENCY: REPORTING REQUIREMENTS TITLE OF REPORT FREQUENCY Annual Emissions Emission Deviations Within 30 days of event			
IN OPERATION? IF NO, EXPLAIN: 35) PROVIDE INFORMATION ON THE MOST RECENT TESTS, IF ANY, IN WHICH THE RESULTS ARE USED FOR PURPOSES OF THE DETERMINATION OF FEES, RULE APPLICABILITY OR COMPLIANCE. INCLUDE THE TEST DATE, TEST METHOD USED, TESTING COMPANY, OPERATING CONDITIONS EXISTING DURING THE TEST AND A SUMMARY OF RESULTS. IF ADDITIONAL SPACE IS NEEDED, ATTACH AND LABEL AS EXHIBIT 220-4: TEST DATE TEST METHOD TESTING COMPANY OPERATING CONDITIONS SUMMARY OF RESULTS NA 36) DESCRIBE ALL REPORTING REQUIREMENTS AND PROVIDE THE TITLE AND FREQUENCY OF REPORT SUBMITTALS TO THE AGENCY: REPORTING REQUIREMENTS TITLE OF REPORT FREQUENCY Annual Emissions Emission Deviations Within 30 days of event			
IN OPERATION? IF NO, EXPLAIN: 35) PROVIDE INFORMATION ON THE MOST RECENT TESTS, IF ANY, IN WHICH THE RESULTS ARE USED FOR PURPOSES OF THE DETERMINATION OF FEES, RULE APPLICABILITY OR COMPLIANCE. INCLUDE THE TEST DATE, TEST METHOD USED, TESTING COMPANY, OPERATING CONDITIONS EXISTING DURING THE TEST AND A SUMMARY OF RESULTS. IF ADDITIONAL SPACE IS NEEDED, ATTACH AND LABEL AS EXHIBIT 220-4: TEST DATE TEST METHOD TESTING COMPANY OPERATING CONDITIONS SUMMARY OF RESULTS NA 36) DESCRIBE ALL REPORTING REQUIREMENTS AND PROVIDE THE TITLE AND FREQUENCY OF REPORT SUBMITTALS TO THE AGENCY: REPORTING REQUIREMENTS TITLE OF REPORT FREQUENCY Annual Emissions Emission Deviations Within 30 days of event			,
IN OPERATION? IF NO, EXPLAIN: 35) PROVIDE INFORMATION ON THE MOST RECENT TESTS, IF ANY, IN WHICH THE RESULTS ARE USED FOR PURPOSES OF THE DETERMINATION OF FEES, RULE APPLICABILITY OR COMPLIANCE. INCLUDE THE TEST DATE, TEST METHOD USED, TESTING COMPANY, OPERATING CONDITIONS EXISTING DURING THE TEST AND A SUMMARY OF RESULTS. IF ADDITIONAL SPACE IS NEEDED, ATTACH AND LABEL AS EXHIBIT 220-4: TEST DATE TEST METHOD TESTING COMPANY OPERATING CONDITIONS SUMMARY OF RESULTS NA 36) DESCRIBE ALL REPORTING REQUIREMENTS AND PROVIDE THE TITLE AND FREQUENCY OF REPORT SUBMITTALS TO THE AGENCY: REPORTING REQUIREMENTS TITLE OF REPORT FREQUENCY Annual Emissions Emission Deviations Within 30 days of event			
35) PROVIDE INFORMATION ON THE MOST RECENT TESTS, IF ANY, IN WHICH THE RESULTS ARE USED FOR PURPOSES OF THE DETERMINATION OF FEES, RULE APPLICABILITY OR COMPLIANCE. INCLUDE THE TEST DATE, TEST METHOD USED, TESTING COMPANY, OPERATING CONDITIONS EXISTING DURING THE TEST AND A SUMMARY OF RESULTS. IF ADDITIONAL SPACE IS NEEDED, ATTACH AND LABEL AS EXHIBIT 220-4: TEST DATE TEST METHOD TESTING COMPANY OPERATING CONDITIONS SUMMARY OF RESULTS NA OPERATING CONDITIONS SUMMARY OF RESULTS TEST DATE TEST METHOD TESTING COMPANY OPERATING CONDITIONS SUMMARY OF RESULTS TITLE OF REPORT FREQUENCY Annual Emissions Annual Emissions Report Emission Deviation Within 30 days of event		ALL TIMES THE ASSOCIATED EMISSION UN	NIT IS 🛛 YES 🗌 NO
35) PROVIDE INFORMATION ON THE MOST RECENT TESTS, IF ANY, IN WHICH THE RESULTS ARE USED FOR PURPOSES OF THE DETERMINATION OF FEES, RULE APPLICABILITY OR COMPLIANCE. INCLUDE THE TEST DATE, TEST METHOD USED, TESTING COMPANY, OPERATING CONDITIONS EXISTING DURING THE TEST AND A SUMMARY OF RESULTS. IF ADDITIONAL SPACE IS NEEDED, ATTACH AND LABEL AS EXHIBIT 220-4: TEST DATE TEST METHOD TESTING COMPANY OPERATING CONDITIONS SUMMARY OF RESULTS NA 36) DESCRIBE ALL REPORTING REQUIREMENTS AND PROVIDE THE TITLE AND FREQUENCY OF REPORT SUBMITTALS TO THE AGENCY: REPORTING REQUIREMENTS TITLE OF REPORT Annual Emissions Annual Emissions Report Emission Deviation Within 30 days of event	Action 4-specialists - To project project (respectively)		
PURPOSES OF THE DETERMINATION OF FEES, RULE APPLICABILITY OR COMPLIANCE. INCLUDE THE TEST DATE, TEST METHOD USED, TESTING COMPANY, OPERATING CONDITIONS EXISTING DURING THE TEST AND A SUMMARY OF RESULTS. IF ADDITIONAL SPACE IS NEEDED, ATTACH AND LABEL AS EXHIBIT 220-4: TEST DATE TEST METHOD TESTING COMPANY OPERATING CONDITIONS SUMMARY OF RESULTS OPERATING CONDITIONS SUMMARY OF RESULTS OPERATING CONDITIONS SUMMARY OF RESULTS TITLE OF REPORT FREQUENCY Annual Emissions Annual Emissions Report Emission Deviation Within 30 days of event	,		
PURPOSES OF THE DETERMINATION OF FEES, RULE APPLICABILITY OR COMPLIANCE. INCLUDE THE TEST DATE, TEST METHOD USED, TESTING COMPANY, OPERATING CONDITIONS EXISTING DURING THE TEST AND A SUMMARY OF RESULTS. IF ADDITIONAL SPACE IS NEEDED, ATTACH AND LABEL AS EXHIBIT 220-4: TEST DATE TEST METHOD TESTING COMPANY OPERATING CONDITIONS SUMMARY OF RESULTS OPERATING CONDITIONS SUMMARY OF RESULTS OPERATING CONDITIONS SUMMARY OF RESULTS TITLE OF REPORT FREQUENCY Annual Emissions Annual Emissions Report Emission Deviation Within 30 days of event			
PURPOSES OF THE DETERMINATION OF FEES, RULE APPLICABILITY OR COMPLIANCE. INCLUDE THE TEST DATE, TEST METHOD USED, TESTING COMPANY, OPERATING CONDITIONS EXISTING DURING THE TEST AND A SUMMARY OF RESULTS. IF ADDITIONAL SPACE IS NEEDED, ATTACH AND LABEL AS EXHIBIT 220-4: TEST DATE TEST METHOD TESTING COMPANY OPERATING CONDITIONS SUMMARY OF RESULTS OPERATING CONDITIONS SUMMARY OF RESULTS OPERATING CONDITIONS SUMMARY OF RESULTS TITLE OF REPORT FREQUENCY Annual Emissions Annual Emissions Report Emission Deviation Within 30 days of event			
PURPOSES OF THE DETERMINATION OF FEES, RULE APPLICABILITY OR COMPLIANCE. INCLUDE THE TEST DATE, TEST METHOD USED, TESTING COMPANY, OPERATING CONDITIONS EXISTING DURING THE TEST AND A SUMMARY OF RESULTS. IF ADDITIONAL SPACE IS NEEDED, ATTACH AND LABEL AS EXHIBIT 220-4: TEST DATE TEST METHOD TESTING COMPANY OPERATING CONDITIONS SUMMARY OF RESULTS OPERATING CONDITIONS SUMMARY OF RESULTS OPERATING CONDITIONS SUMMARY OF RESULTS TITLE OF REPORT FREQUENCY Annual Emissions Annual Emissions Report Emission Deviation Within 30 days of event			
PURPOSES OF THE DETERMINATION OF FEES, RULE APPLICABILITY OR COMPLIANCE. INCLUDE THE TEST DATE, TEST METHOD USED, TESTING COMPANY, OPERATING CONDITIONS EXISTING DURING THE TEST AND A SUMMARY OF RESULTS. IF ADDITIONAL SPACE IS NEEDED, ATTACH AND LABEL AS EXHIBIT 220-4: TEST DATE TEST METHOD TESTING COMPANY OPERATING CONDITIONS SUMMARY OF RESULTS OPERATING CONDITIONS SUMMARY OF RESULTS OPERATING CONDITIONS SUMMARY OF RESULTS TITLE OF REPORT FREQUENCY Annual Emissions Annual Emissions Report Emission Deviation Within 30 days of event			
DATE, TEST METHOD USED, TESTING COMPANY, OPERATING CONDITIONS EXISTING DURING THE TEST AND A SUMMARY OF RESULTS. IF ADDITIONAL SPACE IS NEEDED, ATTACH AND LABEL AS EXHIBIT 220-4: TEST DATE TEST METHOD TESTING COMPANY OPERATING CONDITIONS SUMMARY OF RESULTS NA 36) DESCRIBE ALL REPORTING REQUIREMENTS AND PROVIDE THE TITLE AND FREQUENCY OF REPORT SUBMITTALS TO THE AGENCY: REPORTING REQUIREMENTS TITLE OF REPORT Annual Emissions Annual Emissions Report Emission Deviation Within 30 days of event			
SUMMARY OF RESULTS. IF ADDITIONAL SPACE IS NEEDED, ATTACH AND LABEL AS EXHIBIT 220-4: TEST DATE TEST METHOD TESTING COMPANY OPERATING CONDITIONS SUMMARY OF RESULTS NA 36) DESCRIBE ALL REPORTING REQUIREMENTS AND PROVIDE THE TITLE AND FREQUENCY OF REPORT SUBMITTALS TO THE AGENCY: REPORTING REQUIREMENTS TITLE OF REPORT FREQUENCY Annual Emissions Annual Emissions Report Emission Deviation Within 30 days of event			
NA 36) DESCRIBE ALL REPORTING REQUIREMENTS AND PROVIDE THE TITLE AND FREQUENCY OF REPORT SUBMITTALS TO THE AGENCY: REPORTING REQUIREMENTS TITLE OF REPORT Annual Emissions Annual Emissions Report Emission Deviation Within 30 days of event			
NA 36) DESCRIBE ALL REPORTING REQUIREMENTS AND PROVIDE THE TITLE AND FREQUENCY OF REPORT SUBMITTALS TO THE AGENCY: REPORTING REQUIREMENTS TITLE OF REPORT Annual Emissions Annual Emissions Report Emission Deviation Within 30 days of event		OPERATIN	ug.
36) DESCRIBE ALL REPORTING REQUIREMENTS AND PROVIDE THE TITLE AND FREQUENCY OF REPORT SUBMITTALS TO THE AGENCY: REPORTING REQUIREMENTS TITLE OF REPORT FREQUENCY Annual Emissions Annual Emissions Report Emission Deviation Within 30 days of event	TEST DATE TEST METHOD		
SUBMITTALS TO THE AGENCY: REPORTING REQUIREMENTS TITLE OF REPORT FREQUENCY Annual Emissions Annual Emissions Report Emission Deviation Within 30 days of event	NA L		
SUBMITTALS TO THE AGENCY: REPORTING REQUIREMENTS TITLE OF REPORT FREQUENCY Annual Emissions Annual Emissions Report Emission Deviation Within 30 days of event			
SUBMITTALS TO THE AGENCY: REPORTING REQUIREMENTS TITLE OF REPORT FREQUENCY Annual Emissions Annual Emissions Report Emission Deviation Within 30 days of event			
SUBMITTALS TO THE AGENCY: REPORTING REQUIREMENTS TITLE OF REPORT FREQUENCY Annual Emissions Annual Emissions Report Emission Deviation Within 30 days of event			
SUBMITTALS TO THE AGENCY: REPORTING REQUIREMENTS TITLE OF REPORT FREQUENCY Annual Emissions Annual Emissions Report Emission Deviation Within 30 days of event	36) DESCRIBE ALL REPORTING REQUI	IREMENTS AND PROVIDE THE TITLE AND I	FREQUENCY OF REPORT
Annual Emissions Report Annually Emission Deviation Within 30 days of event	SUBMITTALS TO THE AGENCY:		
Emission Deviation Within 30 days of event	REPORTING REQUIREMENTS	TITLE OF REPORT	FREQUENCY
Emission Deviations Within 30 days of event	Annual Emissions	Annual Emissions Report	Annually
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Emission Deviations		Within 30 days of event

IMPORTANT: ATTACH CALCULATIONS, TO THE EXTENT THEY ARE AIR EMISSIONS RELATED, ON WHICH EMISSIONS WERE DETERMINED AND LABEL AS EXHIBIT 220-5.

APPLICATION PAGE
Printed on Recycled Paper
220-CAAPP

¹CHECK UNCONTROLLED EMISSION RATE BOX IF CONTROL EQUIPMENT IS USED, OTHERWISE CHECK AND PROVIDE THE ACTUAL EMISSION RATE TO ATMOSPHERE, INCLUDING INDOORS. SEE INSTRUCTIONS.

²PROVIDE THE EMISSION RATE THAT WILL BE USED AS A PERMIT SPECIAL CONDITION. THIS LIMIT WILL BE USED TO DETERMINE THE PERMIT FEE.

³PLEASE PROVIDE ANY OTHER EMISSION RATE WHICH IS COMMONLY USED, REQUIRED BY A SPECIFIC LIMITATION OR THAT WAS MEASURED (E.G. PPM, GR/DSCF, ETC.)

⁴DM - DETERMINATION METHOD: 1) STACK TEST, 2) MATERIAL BALANCE, 3) STANDARD EMISSION FACTOR (AP-42 OR AIRS), 4) ENGINEERING ESTIMATE, 5) SPECIAL EMISSION FACTOR (NOT AP-42 OR AIRS)

⁵RATE - ALLOWABLE EMISSION RATE SPECIFIED BY MOST STRINGENT APPLICABLE RULE.

IMPORTANT: ATTACH CALCULATIONS, TO THE EXTENT THEY ARE AIR EMISSIONS RELATED, ON WHICH EMISSIONS WERE DETERMINED AND LABEL AS EXHIBIT 220-6.

APPLICATION PAGE

Printed on Recycled Paper
220-CAAPP

¹ PROVIDE UNCONTROLLED EMISSIONS IF CONTROL EQUIPMENT IS USED. OTHERWISE, PROVIDE ACTUAL EMISSIONS TO THE ATMOSPHERE, INCLUDING INDOORS. CHECK BOX TO SPECIFY.

²CAS - CHEMICAL ABSTRACT SERVICE NUMBER.

³PLEASE PROVIDE ANY OTHER EMISSION RATE WHICH IS COMMONLY USED, REQUIRED BY A SPECIFIC LIMITATION OR THAT WAS MEASURED (E.G., PPM, GR/DSCF, ETC.).

⁴DM - DETERMINATION METHOD: 1) STACK TEST, 2) MATERIAL BALANCE, 3) STANDARD EMISSION FACTOR (AP-42 OR AIRS, 4) ENGINEERING ESTIMATE, 5) SPECIAL EMISSION FACTOR (NOT AP-42 OR AIRS).

⁵RATE - ALLOWABLE EMISSION RATE OR STANDARD SPECIFIED BY MOST STRINGENT APPLICABLE RULE.

	EXHAUST POINT INFORMATION					
THIS	THIS SECTION SHOULD NOT BE COMPLETED IF EMISSIONS ARE EXHAUSTED THROUGH AIR POLLUTION CONTROL EQUIPMENT.					
39)	9) FLOW DIAGRAM DESIGNATION OF EXHAUST POINT:					
	Exhaust through Shredder E	missions Contro	ol System			
40)	DESCRIPTION OF EXHAUST POINT (STACK, VENT, ROOF MONITOR, INDOORS, ETC.). IF THE EXHAUST POINT DISCHARGES INDOORS, DO NOT COMPLETE THE REMAINING ITEMS.					
41)	DISTANCE TO NEAREST PLANT BO	UNDARY FROM EXH	IAUST POINT DISCH	ARGE (FT):		
42)	DISCHARGE HEIGHT ABOVE GRADI	Ξ (FT):				
43)	GOOD ENGINEERING PRACTICE (G	EP) HEIGHT, IF KNC	WN (FT):			
44)	DIAMETER OF EXHAUST POINT (FT TIMES THE SQUARE ROOT OF THE): NOTE: FOR A NO AREA.	N CIRCULAR EXHAL	JST POINT, THE DIAMETER IS 1.128		
45)	EXIT GAS FLOW RATE	a) MAXIMUM (ACFM):		b) TYPICAL (ACFM):		
46)	EXIT GAS TEMPERATURE	a) MAXIMUM (°F):		b) TYPICAL (°F):		
47)	DIRECTION OF EXHAUST (VERTICA	L, LATERAL, DOWN	WARD):			
48)	LIST ALL EMISSION UNITS AND CO	NTROL DEVICES SE	ERVED BY THIS EXH	AUST POINT:		
	NAME		FLO	W DIAGRAM DESIGNATION		
a)						
b)			-			
c)		The state of the s	-			
d)						
e)						
f)						
g)						
h)						
i)						
	FOLLOWING INCODING TO THE TOTAL TOTA					
	FOLLOWING INFORMATION NEED ONLY) LATITUDE:	BE SUPPLIED IF READ	c) LONGITUDE:			
50)	UTM ZONE:	b) UTM VERTICA	AL (KM):	d) UTM HORIZONTAL (KM):		

ILLINOIS ENVIRONMENTAL PROTECTION AGENCY DIVISION OF AIR POLLUTION CONTROL-PERMIT SECTION P.O. BOX 19506 SPRINGFIELD, ILLINOIS 62794-9506

FOR APPLICA	ANT'S USE
Revision No.:	
Date:	les alcologico especial (1.55%) a comprese
Page:	of
Page: Source Designation:	

AIR POLLUTION CONTROL EQUIPMENT DATA AND INFORMATION

FOR AGENCY USE ONLY			
ID NUMBER:			
CONTROL EQUIPMENT #:			
DATE:			

THIS FORM MUST BE COMPLETED FOR EACH AIR POLLUTION CONTROL EQUIPMENT. COMPLETE AND PROVIDE THIS FORM IN ADDITION TO THE APPLICABLE ADDENDUM FORM 260-A THROUGH 260-K. A SEPARATE FORM MUST BE COMPLETED FOR EACH MODE OF OPERATION OF AIR POLLUTION CONTROL EQUIPMENT FOR WHICH A PERMIT IS BEING SOUGHT.

	SOURCE INFORMATION					
1)	SOURCE NAME:					
	General III, LLC					
2)	DATE FORM PREPARED:	3)	SOURCE ID NO. (IF KNOWN):			
	September 2019					

Γ	GENERAL INFORMATION					
4)	NAME OF AIR POLLUTION CONTROL EQUIPMENT AND/OR CONTROL SYSTEM:					
	Metal Shredder Emissions Control System consisting of a Cyclone, Roll-Media Filter, Regenerative Thermal Oxidizer (RTO) and Packed Tower Scrubber					
5)	FLOW DIAGRAM DESIGNATION OF CONTROL EQUIPMENT AND/OR CONTROL SYSTEM:					
	Metal Shredder Emissions Control System					
6)	MANUFACTURER OF CONTROL EQUIPMENT (IF KNOW	N):				
	Pedcon, Inc. (Cyclone and Roll-Media Filter) and Catalytic Products International, Inc. (RTO/Scrubber)					
7)	MODEL NUMBER (IF KNOWN):	8) SERIAL NUMBER (IF KNOWN):				
9)	DATES OF COMMENCING CONSTRUCTION, OPERATION AND/OR MOST RECENT MODIFICATION OF THIS EQUIPMENT (ACTUAL OR PLANNED)	a) CONSTRUCTION (MONTH/YEAR):				
		Jan 2021				
1		b) OPERATION (MONTH/YEAR):				
1						
		c) LATEST MODIFICATION (MONTH/YEAR):				
10)	BRIEFLY DESCRIBE MODIFICATION (IF APPLICABLE):					
	NA					

THIS AGENCY IS AUTHORIZED TO REQUIRE THIS INFORMATION UNDER ILLINOIS REVISED STATUTES, 1991, AS AMENDED 1992, CHAPTER 111 1/2, PAR. 1039.5. DISCLOSURE OF THIS INFORMATION IS REQUIRED UNDER THAT SECTION. FAILURE TO DO SO MAY PREVENT THIS FORM FROM BEING PROCESSED AND COULD RESULT IN THE APPLICATION BEING DENIED. THIS FORM HAS BEEN APPROVED BY THE FORMS MANAGEMENT CENTER.

APPLICATION PAGE

Printed on Recycled Paper 260-CAAPP

11)	LIST ALL EMISSION UNITS AND OTHER CONTROL EQU	IPMENT DUCTING EMISSIONS TO THIS CONTROL
*********	EQUIPMENT:	
Г	NAME	DESIGNATION OR CODE NUMBER
	Metal Shredder	Metal Shredder
L		
12)	DOES THE CONTROL EQUIPMENT HAVE MORE THAN O	ONE MODE OF OPERATION? YES NO
	IF YES, EXPLAIN AND IDENTIFY WHICH MODE IS COVE A SEPARATE AIR POLLUTION CONTROL EQUIPMENT F COMPLETED FOR EACH MODE):	
		1.474
13)	IDENTIFY ALL ATTACHMENTS TO THIS FORM RELATED TECHNICAL DRAWINGS):	TO THIS AIR POLLUTION CONTROL EQUIPMENT(E.G.,
	Forms 260B, 260C, and 260G.	
	OPERATING	SCHEDULE
14)	IDENTIFY ANY PERIOD WHEN THE CONTROL EQUIPME MAINTENANCE AND/OR REPAIRS WHEN THE FEEDING IN OPERATION:	ENT WILL NOT BE OPERATING DUE TO SCHEDULED E EMISSION UNIT(S) TO THIS CONTROL EQUIPMENT IS/ARE
	None	
15a) IDENTIFY ANY PERIODS DURING OPERATION OF THE EQUIPMENT IS/ARE NOT USED:	FEEDING EMISSION UNIT(S) WHEN THE CONTROL
	None	
b	IS THIS CONTROL EQUIPMENT IN OPERATION AT ALL FEEDING EMISSION UNIT(S) IS/ARE IN OPERATION?	OTHER TIMES THAT THE YES NO
	IF NO, EXPLAIN AND PROVIDE THE DURATION OF THE DOWNTIME:	CONTROL EQUIPMENT
		1
		4
1		
ı		(5) M

COMPLIANCE INFORMATION					
21) IS THE CONTROL SYSTEM IN COMPLIANCE WITH ALL APPLICABLE					
REQUIREMENTS? IF NO, THEN FORM 294-CAAPP "COMPLIANCE PLAN/SCHEDULE OF COMPLIANCE ADDENDUM FOR NON					
			ND SUBMITTED WITH THIS AP		
22) EXPLANATION OF HOW	INITIAL COMPLIANCE IS TO	BE,	OR WAS PREVIOUSLY, DEMO	NSTRATED:	
Roll-Media Filter					
	Initial compliance will be demonstrated by operating the roll-media filter in accordance with manufacturer's instructions.				
RTO					
manufacturer's		ntair	y operating the RTO in a ning the oxidizer at the n		
Scrubber					
	nce will be demonstrate recommendations.	ed k	y operating the scrubbe	r in accordance with	
23) EXPLANATION OF HOW	ONGOING COMPLIANCE WI	ILL E	E DEMONSTRATED:		
Roll-Media Filter					
Maintaining dif	ferential pressure acro	SS	the filter at a value that i	s greater than the	
			ccessful emission test.	o grouter than the	
RTO					
Scrubber					
	lianco will be demonst	rate	ed by operating the scru	bbor in accordance with	
			accessful emission test.	pper in accordance with	
			RDKEEPING AND REPO		
DETERMINE FEES, RU	LE APPLICABILITY OR COMP	PLIA	ONS FOR WHICH RECORDS AI NCE. INCLUDE THE UNIT OF I DF SUCH RECORDS (E.G., HOI	MEASUREMENT, THE	
PARAMETER	UNIT OF MEASUREMENT	ГГ	METHOD OF MEASUREMENT	FREQUENCY	
Roll-Media Filter	Inches WC		Differential Pressure Sensor	Continuous	
Combustion Chamber Temp	°F		Thermocouple	Continuous	
Scrubber Differential Press.	Inches WC		Differential Pressure Sensor	Continuous	
Scrubber liquid flow rate	gpm		Liquid Flow meter	Continuous	

Unitless

Scrubbant pH

pH probe

Continuous

24b) BRIEFLY DESCRIBE THE METHOD BY WHICH RECORDS WILL BE CREATED AND MAINTAINED. FOR EACH RECORDED PARAMETER INCLUDE THE METHOD OF RECORDKEEPING, TITLE OF PERSON RESPONSIBLE FOR RECORDKEEPING, AND TITLE OF PERSON TO CONTACT FOR REVIEW OF RECORDS:						
RECORDINEEPING, AND	TITLE OF PERSON TO CON	TACT FOR REVIEW OF RECORD	5:			
PARAMETER	METHOD OF RECORDKEEPING	TITLE OF PERSON RESPONSIBLE	TITLE OF CONTACT PERSON			
Roll-Media Filter	Data logger	Environmental Manager	Environmental Manager			
Combustion Chamber Temp	Data logger	Environmental Manager	Environmental Manager			
Scrubber Differential Press.	Data logger	Environmental Manager	Environmental Manager			
Scrubber liquid flow rate	Data logger	Environmental Manager	Environmental Manager			
Scrubbant pH	Data logger	Environmental Manager	Environmental Manager			
c) IS COMPLIANCE OF THE REVIEW OF THE RECOR		ADILY DEMONSTRATED BY	⊠ yes □ no			
IF NO, EXPLAIN:			E gi			
	d) ARE ALL RECORDS READILY AVAILABLE FOR INSPECTION, COPYING AND/OR SUBMITTAL TO THE AGENCY UPON REQUEST? NO					
IF NO, EXPLAIN:						
25a) DESCRIBE ANY MONITORS OR MONITORING ACTIVITIES USED TO DETERMINE FEES, RULE APPLICABILITY OR COMPLIANCE:						
See Item 24a above						
b) WHAT OPERATING PAR	AMETER(S) IS(ARE) BEING	MONITORED (E.G., COMBUSTIO	N CHAMBER TEMPERATURE\?			
See Item 24a above		MONTONED (E.G., COMBOOTIO	N OHAMBER TEIMI ERATORE):			
See item 24a above	•					
A) DESCRIPE THE LOCATION	ON OF FACIL MONITOR /F (C EVIT OF COMPUSTION CHAM	DED):			
*		G., EXIT OF COMBUSTION CHAM				
	Roll-media filter differential pressure sensors will be located on the upstream and downstream side of the filter material.					
	RTO combustion chamber temperature thermocouple will be centrally located in the combustion chamber.					
Scrubber differentia packing.	al pressure sensors w	ill be located above demis	ter and below the			
	w meter will be located recirculation pump.	on the scrubber water red	circulation system			
Scrubber pH monitor pump.	Scrubber pH monitor will be located in the scrubber sump near the inlet to the recirculation					

25d) IS EACH MONITOR EQUIPPED WITH	A RECORDING DEVICE?	⊠ YES □ NO					
IF NO, LIST ALL MONITORS WITHOU	IF NO, LIST ALL MONITORS WITHOUT A RECORDING DEVICE:						
25e) IS EACH MONITOR REVIEWED FOR A BASIS?	ACCURACY ON AT LEAST A QUARTE	YES NO					
IF NO, EXPLAIN:							
All monitoring devices will be	rovioused for accuracy in acc	and an activity manufacturers					
recommendations for operation							
25f) IS EACH MONITOR OPERATED AT AI OPERATION?	LL TIMES THE CONTROL EQUIPMEN	TISIN YES NO					
IF NO, EXPLAIN:		=					
26) PROVIDE INFORMATION ON THE MO		CH THE RESULTS ARE USED FOR R COMPLIANCE. INCLUDE THE TEST					
	IG COMPANY, OPERATING CONDITION	ONS EXISTING DURING THE TEST AND A					
		RATING					
TEST DATE TEST METHOD	TESTING COMPANY COND	DITIONS SUMMARY OF RESULTS					
NA							
27) DESCRIBE ALL REPORTING REQUIR	REMENTS AND PROVIDE THE TITLE A	AND FREQUENCY OF REPORT					
SUBMITTALS TO THE AGENCY:							
REPORTING REQUIREMENTS	TITLE OF REPORT	FREQUENCY					
Annual Emissions	Annual Emissions Report	Annually					
Emission Deviations	Emission Deviation Report	Within 30 days of event					
	CAPTURE AND CONTROL						
	ALL HOODS, DUCTS, FANS, ETC. ALS	TRANSPORT EMISSIONS TO THE SO INCLUDE THE METHOD OF CAPTURE ATTACH AND LABEL AS EXHIBIT 260-2):					
An emissions capture hood v	will be located above the shre	dder. An induced draft fan will					

APPLICATION PAGE

29)	ARE FEATURES OF THE CAPT DIAGRAM CONTAINED IN THIS		CCURATELY DE	PICTED IN	THE FLOW		□ NO
	IF NO, A SKETCH SHOWING T ATTACHED AND LABELED AS		F THE CAPTURE	SYSTEM	SHOULD BE		
30)	PROVIDE THE ACTUAL (MINIM DESTRUCTION/REMOVAL EFF COMBINATION OF THE CAPTUTO BE CONTROLLED. ATTAC WHICH THESE EFFICIENCIES	FICIENCY, AND T URE SYSTEM ANI H THE CALCULA	HÉ OVERALL RE D CONTROL EQI TIONS, TO THE I	DUCTION JIPMENT I EXTENT TI	EFFICIENCY P FOR EACH REC HEY ARE AIR E	ROVIDED BY	THE POLLUTANT
a)	CONTROL PERFORMANCE:						
	REGULATED AIR	CAPTURE SY EFFICIENC		CONTROL E	QUIPMENT NCY (%)		REDUCTION ENCY (%)
	POLLUTANT	(MIN)	(TYP)	(MIN)	(TYP)	(MIN)	(TYP)
i.	VOM (controlled by RTO)	> 95	> 95	98	98	93	93
ii.	Acid Gases (controlled by scrubber)	100	100	>99	> 99	> 99	> 99
iii.							,
iv.	EXPLAIN ANY OTHER REQUIR CONCENTRATION, COOLANT None			MENT PEF	RFORMANCE S	UCH AS OUT	'LET
b)	METHOD USED TO DETERMIN						L BALANCE,
	MANUFACTURER'S GUARAN	TEE, ETC.) AND T	HE DATE LAST	TESTED, II	F APPLICABLE:		
	EFFICIENCY	/ DETERMINATION	METHOD			DATE LAS TESTED	
	CAPTURE: VOM engineer	ing estimates /	observations	rubber	NA		
		ΓO manufacture Scrubber manu		antee	NA		
	OVERALL: capture % mul	tiplied by contr	ol %		NA		
-							
C)	REQUIRED PERFORMANCE:						
		CAPTURE	CONTROL	0	VERALL		
	REGULATED AIR	SYSTEM EFFICIENCY	EQUIPMENT EFFICIENCY		DUCTION FICIENCY		-
	POLLUTANT	(%)	(%)		(%)	APPLICA	BLE RULE
i.	VOM				85%	35 IAC	218.301
ii.	Acid Gases					No	one
iii.							
iv	. EXPLAIN ANY OTHER REQUI			MENT PE	RFORMANCE S	SUCH AS OU	TLET
	None						
			*,				
			×11-2-14-24-14-14-14-2-14-14-14-14-14-14-14-14-14-14-14-14-14-	10			

A-28

					(31)	EMISSION	INFORMATION				
			¹ACTUAL	EMISSION	RATE	,	ALLOWABLE B	Y RULE EMISS	ION RATE	² PERMITTED EMI	SSION RATE
REGULATED POLLUTAI		LBS PER HOUR (LBS/HR)	TONS PER YEAR (TONS/YR)	³ OTHER TERMS	³ OTHER TERMS	⁴ DM	⁵ RATE (UNITS)	APPLICABLE RULES	TONS PER YEAR (TONS/YR)	RATE (UNITS)	TONS PER YEAR (TONS/YR)
CARBON	MAXIMUM:						()			-	
MONOXIDE (CO)	TYPICAL:						()				
	MAXIMUM:						()				
LEAD	TYPICAL:						()				
NITROGEN	MAXIMUM:	See Tal	oles 3-1A	through	3-1E in		()				
OXIDES (NOx)	TYPICAL:		on 3 of th				()				
PARTICULATE	MAXIMUM:						()				
MATTER (PART)	TYPICAL:						()				
PARTICULATE MATTER <= 10	MAXIMUM:						()			*	
MICROMETERS (PM10)	TYPICAL:			62			()				
SULFUR DIOXIDE	MAXIMUM:						()				
(SO2)	TYPICAL:					-	()				
VOLATILE	MAXIMUM:						()				
ORGANIC MATERIAL (VOM)	TYPICAL:						()				
OTHER, SPECIFY:	MAXIMUM:						()				
	TYPICAL:						()				
EXAMPLE: PARTICULATE	MAXIMUM:	5.00	21.9	0.3 GR/DSCF		1	6.0 (LBS/HR)	212.321	26.28	5.5 LBS/HR	22
MATTER	TYPICAL:	4.00	14.4	0.24 GR/DSCF		4	5.5 (LBS/HR)	212.321	19.80		

IMPORTANT: ATTACH CALCULATIONS, TO THE EXTENT THEY ARE AIR EMISSIONS RELATED, ON WHICH EMISSIONS WERE DETERMINED AND LABEL AS EXHIBIT 260-5.

- 1 PROVIDE CONTROLLED EMISSIONS (E.G., THE EMISSIONS THAT WOULD RESULT AFTER ALL CONTROL AND CAPTURE EFFICIENCIES ARE ACCOUNTED FOR).

- PROVIDE THE EMISSION RATE THAT WILL BE USED AS A PERMIT SPECIAL CONDITION. THIS LIMIT WILL BE USED TO DETERMINE THE PERMIT FEE.

 PLEASE PROVIDE ANY OTHER EMISSION RATE WHICH IS COMMONLY USED, REQUIRED BY A SPECIFIC LIMITATION OR THAT WAS MEASURED (E.G. PPM, GR/DSCF, ETC.)

 M DETERMINATION METHOD: 1) STACK TEST, 2) MATERIAL BALANCE, 3) STANDARD EMISSION FACTOR (AP-42 OR AIRS), 4) ENGINEERING ESTIMATE, 5) SPECIAL EMISSION FACTOR (NOT AP-42 OR AIRS)
- 5 RATE ALLOWABLE EMISSION RATE SPECIFIED BY MOST STRINGENT APPLICABLE RULE.

Ŋ
0
Ó
12
0

		(32) HAZARDOUS	AIR POLLUTAN	IT EMISSION I	NFORMATIC	ION
HAP INFORM	MATION			¹ ACTUAL EMIS	SION RATE		ALLOWABLE BY RULE
NAME OF HAP EMITTED	² CAS NUMBER		POUNDS PER HOUR (LBS/HR)	TONS PER YEAR (TONS/YR)	³OTHER TERMS	⁴DM	APPLICABLE 5RATE OR STANDARD RULE
		MAXIMUM:					
		TYPICAL:					
		MAXIMUM:					
		TYPICAL:					
		MAXIMUM:					
		TYPICAL:					
		MAXIMUM:	See Table	es 3-1A throu	ah 3-1E in		
		TYPICAL:	Section	3 of this app	lication.		
		MAXIMUM:		o or ano app			
		TYPICAL:					
		MAXIMUM:					
		TYPICAL:					
		MAXIMUM:					
		TYPICAL:					
		MAXIMUM:					
		TYPICAL:					
		MAXIMUM:					
		TYPICAL:					
		MAXIMUM:					
		TYPICAL:					
		MAXIMUM:					
		TYPICAL:					
EXAMPLE:	e encentération	MAXIMUM:	10.0	1.2		2	98% by wt control device CFR 61
Benzene	71432	TYPICAL:	8.0	0.8		2	leak-tight trucks 61.302(b),(d)

IMPORTANT: ATTACH CALCULATIONS, TO THE EXTENT THEY ARE AIR EMISSIONS RELATED, ON WHICH EMISSIONS WERE DETERMINED AND LABEL AS EXHIBIT 260-6.

- PROVIDE CONTROLLED EMISSIONS (E.G., THE EMISSIONS THAT WOULD RESULT AFTER ALL CONTROL AND CAPTURE EFFICIENCIES ARE ACCOUNTED FOR).
- CAS CHEMICAL ABSTRACT SERVICE NUMBER. 2
- PLEASE PROVIDE ANY OTHER EMISSION RATE WHICH IS COMMONLY USED, REQUIRED BY A SPECIFIC LIMITATION OR THAT WAS MEASURED (E.G., PPM, GR/DSCF, ETC.).
 DM DETERMINATION METHOD: 1) STACK TEST, 2) MATERIAL BALANCE, 3) STANDARD EMISSION FACTOR (AP-42 OR AIRS, 4) ENGINEERING ESTIMATE, 5) SPECIAL EMISSION FACTOR (NOT AP-42 OR 3 AIRS).
- RATE ALLOWABLE EMISSION RATE OR STANDARD SPECIFIED BY MOST STRINGENT APPLICABLE RULE.

	EXHAUST POINT	TINFORMATION		
33) DESCRIPTION OF EXHAUST POINT DISCHARGES INDOORS, DO NOT C			RS, ETC.). IF THE EXHAUST POINT	
Shredder emissions control unobstructed circular vertical				
34) DISTANCE TO NEAREST PLANT BO	OUNDARY FROM EXH	AUST POINT DISCH	ARGE (FT):	
Approximately 690 ft				
35) DISCHARGE HEIGHT ABOVE GRAD	E (FT):			
Approximately 41 ft				
36) GOOD ENGINEERING PRACTICE (C	GEP) HEIGHT, IF KNC	OWN (FT):		
37) DIAMETER OF EXHAUST POINT (FI TIMES THE SQUARE ROOT OF THE		ON CIRCULAR EXHAL	JST POINT, THE DIAMETER IS 1.128	
Approximately 6 ft	_			
38) EXIT GAS FLOW RATE	a) MAXIMUM (AC	CFM):	b) TYPICAL (ACFM):	
	80,000		70,000	
39) EXIT GAS TEMPERATURE	a) MAXIMUM (°F)):	b) TYPICAL (°F):	
	140		120	
40) DIRECTION OF EXHAUST (VERTICA	AL, LATERAL, DOWN	WARD):		
Vertical				
41) LIST ALL EMISSION UNITS AND CO	NTROL DEVICES SE	RVED BY THIS EXH	AUST POINT:	
NAME		EL 01		
a) Metal shredder		Metal shredde	W DIAGRAM DESIGNATION	
b) Cyclone		Cyclone		
c) Roll-Media Filter		0		
d) Regenerative Thermal Oxid	lizer	RTO		
e) Scrubber	The state of the s	Scrubber		
f)				
g)				
	Non-interpretation and the control of the control o	L		
42) WHAT PERCENTAGE OF THE CON	TROL EQUIPMENT E	EMISSIONS ARE BEIN	NG DUCTED TO THIS EXHAUST POINT	
100%			1 6	
43) IF THE PERCENTAGE OF THE CON	JTROL FOLIPMENT	EMISSIONS BEING D	LICTED TO THE EXHALIST POINT IS	
			SOLED TO THE EXHAUST FOINT IS	

THE FOLLOWING INFORMATION NEED ONLY	BE SUPPLIED IF READ	ILY AVAILABLE.	
44a) LATITUDE:		b) LONGITUDE:	
Approx 41° 41' 04" N		Approx 87°	32' 58" W
45) UTM ZONE:	b) UTM VERTICA	AL (KM):	c) UTM HORIZONTAL (KM):

FOR APPLIC	ANT'S USE
Revision No.:	
Date:	
Page:	of
Page:Source Designation:	

SUPPLEMENTAL FORM AIR POLLUTION CONTROL EQUIPMENT AFTERBURNER (260B)

FOR AGENCY USE ONLY	
ID NUMBER:	
CONTROL EQUIPMENT#:	
DATE:	

			DAT	A AND	INFOR	MATION		
1)	FLOW DIAGRAM DESIG	NATION OF	AFTERBL	JRNER:	-			
	Metal Shredder RT	0						
2)	FUEL USED IN BURNERS:	⊠ NAT	URAL GAS	3		FUEL OIL; NUMBER	₹:	
	DOMNERO.	OTH SPECIF						
3)	BURNERS PER AFTERBURNER	1	AT		15.0	(MILLION BTU/HR,	, EACH)	
4)	MINIMUM COMBUSTION	N CHAMBER	TEMPER	ATURE (EGREE	S FAHRENHEIT):		
	1,400° F							
5)	IS A CATALYST USED? IF YES, CATALYST MAT						YES	⊠ NO
6)	EXPECTED FREQUENCE REPLACEMENT:	Y OF CATA	LYST			ATE CATALYST WA MONTH/YEAR):	S LAST REPLACE)
	NA				N	Α		
8)	EXPLAIN DEGRADATION REPLACEMENT:	N OR PERF	ORMANCI	E INDICA	OR CRI	TERIA DETERMININ	IG CATALYST	
0-7	IO A LIEAT EVOLIANCE	D. LIOEDO. IE		ODIDE:				
(9a)	IS A HEAT EXCHANGE				64.		⊠ YES	□ NO
	RTO uses ceramic preheat the incom			neat tr	om arte	erburner exnaus	St to	
b)	HEAT EXCHANGER SU	JRFACE ARI	EA (FT ²):		c) AVE	RAGE THERMAL EI	FFICIENCY (%):	
					9	5%		
10)	DESCRIBE METHOD O	F GAS MIXIN	NG USED:					
	Inherent to design turbulence from n						ustion air injec	tion, and
11)	RANGE OF RETENTION TIME:	1/2	то	1	SEC	12) COMBUSTIO LENGTH (FEE		2)

THIS AGENCY IS AUTHORIZED TO REQUIRE THIS INFORMATION UNDER ILLINOIS REVISED STATUTES, 1991, AS AMENDED 1992, CHAPTER 111 1/2, PAR. 1039.5. DISCLOSURE OF THIS INFORMATION IS REQUIRED UNDER THAT SECTION. FAILURE TO DO SO MAY PREVENT THIS FORM FROM BEING PROCESSED AND COULD RESULT IN THE APPLICATION BEING DENIED. THIS FORM HAS BEEN APPROVED BY THE FORMS MANAGEMENT CENTER.

APPLICATION PAGE

13) COMBUSTION CHAMBER CROSS SECTIONAL AREA (SQUA	ARE FEET):	
14) INLET EMISSION STREAM PARAMETERS:		
ŗ	MAX	TYPICAL
PRESSURE (mmHG):	Varies	Varies
HEAT CONTENT (BTU/SCF):	NA	NA
OXYGEN CONTENT (%):	Ambient	Ambient
MOISTURE CONTENT (%):	Approx 4%	Approx 5%
ARE HALOGENATED ORGANICS PRESENT?	⊠ YES □ NO	
ARE PARTICULATES PRESENT?	⊠ YES □ NO	
ARE METALS PRESENT?	⊠ YES □ NO	
15) AFTERBURNER OPERATING PARAMETERS:		
	DURING MAXIMUM OPERATION OF FEEDING UNIT(S)	DURING TYPICAL OPERATION OF FEEDING UNIT(S)
COMBUSTION CHAMBER TEMPERATURE (DEGREES FAHRENHEIT):	1,500° F	> 1,400° F
INLET GAS TEMPERATURE (DEGREES FAHRENHEIT):	Ambient	Ambient
INLET FLOW RATE (SCFM):	Approx. 70,000	Approx. 60,000
EFFICIENCY (VOM REDUCTION):	98 %	98 %
EFFICIENCY (OTHER; SPECIFY CONTAMINANT:	00 0/	00.00
Organic HAPs CO):	98 % > 95 %	98 % > 95 %
FOR THERMAL AFTERBURNERS, IS THE COMBUSTION C CONTINUOUSLY MONITORED AND RECORDED?	HAMBER TEMPERATURE	⊠ YES □ NO
17) FOR CATALYTIC AFTERBURNERS, IS THE TEMPERATUR CATALYST BED CONTINUOUSLY MONITORED AND RECO		YES NO
18) IS THE VOM CONCENTRATION OF EXHAUST MONITOREI	D AND RECORDED?	YES NO
19) IS THE OPERATION OF THE AFTERBURNER DISCONTINU OZONE SEASON (SEPTEMBER 1 TO MAY 31)?	JED DURING THE NON-	☐ YES ☒ NO

FOR APPLICA	ANT'S USE
Revision No.:	
Date:	
Page:	of
Page:Source Designation:	

SUPPLEMENTAL FORM AIR POLLUTION CONTROL EQUIPMENT FILTER (260C)

FOR AGENCY USE ONLY	
ID NUMBER:	-
CONTROL EQUIPMENT #:	
DATE:	
NFORMATION	

					Andrew State of the State of th			
	DATA AND INFORMATION							
1)	FLOW DIAGRAM DESIGNATION OF FILTER:							
	Roll-Media Filter							
2)	FILTER CONFIGURATION (CHECK ONE):	OPEN PRE	SSURE	⊠ cL	.OSED P	RESSURE	☐ CLOSED SUCTION	
		OTHER, S	PECIFY:					
			\$ 					
3)	DESCRIBE FILTER MATERI	AL:						
	Polyester felt							
4)	FILTERING AREA (SQUARE FEET):				TO CLO	OTH RATIO :		
	108 sq	feet						
6)	CLEANING METHOD	SHAKER	REVE	ERSE AIR		PULSE AIR	☐ PULSE JET	
		OTHER, SPECI	FY:					
			Roll-N	ledia Filt	er – filt	er is continuo	ously replaced	
7)	NORMAL RANGE OF PRESSURE DROP:	20	то	3	35	(INCH H₂O)		
8a)	INLET EMISSION STREAM	PARAMETERS:						
						IAX	TYPICAL	
	MOISTURE CONTENT (% I	BY VOLUME):			satu	rated	saturated	
	PARTICULATE INLET LOADING (GRAINS/SCF):				va	ries	varies	
b) MEAN PARTICLE DIAMETE	R (MICRONS):						
				varies				

THIS AGENCY IS AUTHORIZED TO REQUIRE THIS INFORMATION UNDER ILLINOIS REVISED STATUTES, 1991, AS AMENDED 1992, CHAPTER 111 1/2, PAR. 1039.5. DISCLOSURE OF THIS INFORMATION IS REQUIRED UNDER THAT SECTION. FAILURE TO DO SO MAY PREVENT THIS FORM FROM BEING PROCESSED AND COULD RESULT IN THE APPLICATION BEING DENIED. THIS FORM HAS BEEN APPROVED BY THE FORMS MANAGEMENT CENTER.

APPLICATION PAGE

9) FILTER OPERATING PARAMETE	DC.		
9) FILLEN OF ENATING PARAMETE	_NO.	DURING MAXIMUM OPERATION OF FEEDING UNIT(S)	DURING TYPICAL OPERATION OF FEEDING UNIT(S)
INLET FLOW RATE (SCFM):		Approx. 70,000	Approx. 60,000
INLET GAS TEMPERATURE (DE FAHRENHEIT):	GREES	Ambient	Ambient
EFFICIENCY (PM REDUCTION):		>99	>95
EFFICIENCY (PM10 REDUCTION	N):	>99	>95
10) HOW IS FILTER MONITORED FOR INDICATIONS OF DETERIORATION (E.G., BROKEN BAGS)?	CONTINUOUS OPACITY	⊠ PRESSURE DROP	ALARMS-AUDIBLE TO PROCESS OPERATOR
	☐ VISUAL OPACITY	READINGS, FREQUENCY: _	
	OTHER, SPECIFY	:	
11) DESCRIBE ANY RECORDING D	EVICE AND EDECUIENC	V OF LOC ENTRIES.	
every 15 minutes.	NG REING DEDECOMED		
12) DESCRIBE ANY FILTER SEEDIN	NG BEING PERFORMED		
None			

FOR APPLICA	NT'S USE
Revision No.:	
Date:	
Page:	of
Source Designation:	

SUPPLEMENTAL FORM AIR POLLUTION CONTROL EQUIPMENT PACKED TOWER SCRUBBER (260G)

FOR AGENCY USE ONLY						
ID NUMBER:						
CONTROL EQUIPMENT #:						
DATE:						

NOTE: FOR PACKED COLUMN SCRUBBERS, FORM 260g SHOULD BE COMPLETED RATHER THAN FORM 260H.

-	DATA AND INFORMATION		
2)	FLOW DIAGRAM DESIGNATION OF FILTER:		
	Metal Shredder Quench/Scrubber		
3)	SCRUBBANT (LIQUID):		
-/	Water with NaOH addition controlled by pH analyzer		
	Tracer than the or addition controlled by pri unaryzon		
4)	IS SCRUBBANT RECYCLED BACK INTO CONTROL SYSTEM?		
4)		X YES	☐ NO
	IF YES, DESCRIBE METHOD BY WHICH SCRUBBANT SATURATION IS AVOIDED AND THE DESIRED CONTROL EFFICIENCY IS MAINTAINED?		
	Scrubber blow down controlled based on monitored parameters.		
5)	TYPE OF PACKING USED:		27-1271 - 17-128
	Polypropylene		
	92 29		

THIS AGENCY IS AUTHORIZED TO REQUIRE THIS INFORMATION UNDER ILLINOIS REVISED STATUTES, 1991, AS AMENDED 1992, CHAPTER 111 1/2, PAR. 1039.5. DISCLOSURE OF THIS INFORMATION IS REQUIRED UNDER THAT SECTION. FAILURE TO DO SO MAY PREVENT THIS FORM FROM BEING PROCESSED AND COULD RESULT IN THE APPLICATION BEING DENIED. THIS FORM HAS BEEN APPROVED BY THE FORMS MANAGEMENT CENTER.

APPLICATION PAGE

6)	PACKING VOLUME (FT³):	7)	COLUMN DIAMETER (FEE	T):
			Approximately 14 ft	
8)	COLUMN HEIGHT – PACKED (FEET):	9)	COLUMN WEIGHT (LB):	
	Approximately 6 to 8 ft			
10)	PRESSURE DROP (INCHES H₂O):	11)	SLOPE OF EQUILIBRIUM ((LB PER MOLE LIQUID / LE	
	Approximately 10 to 14			
12)	INLET EMISSIONS STREAM PARAMETERS:		MAXIMUM	TYPICAL
	PRESSURE (mmHg):		varies	varies
	MOISTURE CONTENT (%):		saturated	saturated
	RELATIVE HUMIDITY:		100%	100%
13)	SCRUBBER OPERATING PARAMETERS:		DURING MAXIMUM OPERATION OF FEEDING UNIT(S)	DURING TYPICAL OPERATION OF FEEDING UNIT(S)
	INLET GAS TEMPERATURE (DEGREES °F): (approx)		300	175
	INLET GAS FLOW RATE (SCFM): (approx)		80,000	70,000
	SCRUBBANT RATE (GAL/MIN): (approx)		1,000	800
	INLET LIQUID FLOW RATE (GAL/MIN): (approx)		varies	varies
	OUTLET LIQUID FLOW RATE (GAL/MIN): (approx)		varies	varies
	EFFICIENCY (PM REDUCTION) (%):		NA	NA
	EFFICIENCY (OTHER; SPECIFY REGULATED AIR POLLUTANT): HAPS (HCI – HF)		99%	99%

FOR APPLICA	NT'S USE
Revision No.:	
Date:	
Page:	of
Source Designation:	

		FOR AGENCY USE ONLY			
	PROCESS EMISSION UNIT	ID NUMBER:			
	DATA AND INFORMATION	EMISSION POINT #:			
		DATE:			
	SOURCE	INFORMATION			
1)	SOURCE NAME: General III, LLC				
2)	DATE FORM PREPARED September 2019	3) SOURCE ID NO. (IF KNOWN):			
	GENERAL	INFORMATION			
4)	NAME OF EMISSION UNIT: Ferrous Material Processing System				
5)	NAME OF PROCESS: Ferrous Material Processing System				
6)	S) DESCRIPTION OF PROCESS: Separation of ferrous scrap metal from shredded material includes conveyors, magnetic separators, Z-Box separators, and stockpiling.				
7)	DESCRIPTION OF ITEM OR MATERIAL PRODUCED C Scrap metal is shredded to a size suitable	or ACTIVITY ACCOMPLISHED: for processing for recovery of ferrous metals			
8)	FLOW DIAGRAM DESIGNATION OF EMISSION UNIT: Ferrous Material Processing System				
9)	MANUFACTURER OF EMISSION UNIT (IF KNOWN): To Be Determined (TBD)				
10) MODEL NUMBER (IF KNOWN): TBD	11) SERIAL NUMBER (IF KNOWN): TBD			
12	P) DATES OF COMMENCING CONSTRUCTION, OPERATION AND/OR MOST RECENT MODIFICATION OF THIS EMISSION UNIT (ACTUAL OR PLANNED)	a) CONSTRUCTION (MONTH/YEAR): June 2020			
		b) OPERATION (MONTH/YEAR):			
		c) LATEST MODIFICATION (MONTH/YEAR):			
12	S) DESCRIPTION OF MODIFICATION (IF APPLICABLE):				

THIS AGENCY IS AUTHORIZED TO REQUIRE THIS INFORMATION UNDER ILLINOIS REVISED STATUTES, 1991, AS AMENDED 1992, CHAPTER 111 1/2, PAR. 1039.5. DISCLOSURE OF THIS INFORMATION IS REQUIRED UNDER THAT SECTION. FAILURE TO DO SO MAY PREVENT THIS FORM FROM BEING PROCESSED AND COULD RESULT IN THE APPLICATION BEING DENIED. THIS FORM HAS BEEN APPROVED BY THE FORMS MANAGEMENT CENTER.

. APPLICATION PAGE

(E) (E) E) :		RE THAN ONE MO	DL 01 0	FERATION	Line	YES	⊠ NO
IF YES, EXPLAIN AND IDENTIFY EMISSION UNIT FORM 220-CAA						RATE F	PROCESS
5) PROVIDE THE NAME AND DESI EMISSION UNIT, IF APPLICABLI BE COMPLETED FOR EACH ITE	E (FOR	M 260-CAAPP AN	D THE AF	PPROPRIATE	E 260-CAAPP A		
None							
16) WILL EMISSIONS DURING STAI RATE PURSUANT TO A SPECIF ESTABLISHED BY AN EXISTING	IC RUI	LE, OR THE ALLO	WABLE E	MISSION LIN		YES	⊠ NO
IF YES, COMPLETE AND ATTAC STARTUP OF EQUIPMENT".	CH FOR	RM 203-CAAPP, "R	EQUEST	TO OPERA	TE WITH EXCE	SS EMI	ISSIONS DURING
OTATION OF EQUILIBRITY.							
7) PROVIDE ANY LIMITATIONS OF STANDARDS (E.G., ONLY ONE				NG EMISSIO	NS OR ANY W	ORK PF	RACTICE
Scheduled maintenance				uinmont n	nuet he take	n offli	ine
ocheduled maintenance	and n	nanunctions w	nen eq	uipinentii	ilust be take	11 01111	ille.
		OPERATING	INFOR	MATION			
18) ATTACH THE CALCULATIONS, FOLLOWING OPERATING INFO AND LABEL AS EXHIBIT 220-1.	RMAT	E EXTENT THEY A	ARE AIR I	EMISSION R FORMATION	AND FUEL US		H THE
19a) MAXIMUM OPERATING HOUR	S	HOURS/DAY:		DAYSAME	EK.	WEEK	ATA WERE BASED
19a) MAXIMUM OPERATING HOUR	RS	HOURS/DAY:		DAYS/WEE	EK:	WEEK	ATA WERE BASED (S/YEAR:
19a) MAXIMUM OPERATING HOUR b) TYPICAL OPERATING HOURS		5-2-17-12				52	ATA WERE BASED
		14		6		52	XS/YEAR: 2 XS/YEAR:
b) TYPICAL OPERATING HOURS		14 HOURS/DAY:		6 DAYS/WEE		52 WEEK 52	XS/YEAR: 2 XS/YEAR:
b) TYPICAL OPERATING HOURS	3	14 HOURS/DAY: 10 DEC-FEB(%):	2	6 DAYS/WEE 6MAY(%):	JUN-AUG(% 26	52 WEEK 52	(S/YEAR: 2 (S/YEAR: 2 (S/YEAR: 2 SEP-NOV(%):
b) TYPICAL OPERATING HOURS	M	14 HOURS/DAY: 10 DEC-FEB(%): 22 ATERIAL USA	GE INF	6 DAYS/WEE 6 -MAY(%): 26	JUN-AUG(% 26	52 WEEK 52 6):	ATA WERE BASED (S/YEAR: 2 (S/YEAR: 2 SEP-NOV(%): 26
b) TYPICAL OPERATING HOURS 20) ANNUAL THROUGHPUT	M	14 HOURS/DAY: 10 DEC-FEB(%): 22 ATERIAL USA APPROX MAXI	GE INF	6 DAYS/WEE 6 -MAY(%): 26 FORMATIO	JUN-AUG(% 26 N APPR	52 WEEK 52 6):	SATA WERE BASED SS/YEAR: SS/YEAR: SEP-NOV(%): 26 YPICAL RATES
b) TYPICAL OPERATING HOURS 20) ANNUAL THROUGHPUT 21a) RAW MATERIALS	M	14 HOURS/DAY: 10 DEC-FEB(%): 22 ATERIAL USA	GE INF MUM RAT	6 DAYS/WEE 6 2-MAY(%): 26 CORMATION TES YEAR	JUN-AUG(% 26	52 WEEK 52 6):	ATA WERE BASED AS/YEAR: 2 AS/YEAR: 2 SEP-NOV(%): 26 YPICAL RATES TONS/YEAR
b) TYPICAL OPERATING HOURS 20) ANNUAL THROUGHPUT	M	14 HOURS/DAY: 10 DEC-FEB(%): 22 ATERIAL USA APPROX MAXI	GE INF	6 DAYS/WEE 6 2-MAY(%): 26 CORMATION TES YEAR	JUN-AUG(% 26 N APPR	52 WEEK 52 6):	SATA WERE BASED SS/YEAR: SS/YEAR: SEP-NOV(%): 26 YPICAL RATES
b) TYPICAL OPERATING HOURS 20) ANNUAL THROUGHPUT 21a) RAW MATERIALS	M	14 HOURS/DAY: 10 DEC-FEB(%): 22 ATERIAL USA APPROX MAXI	GE INF MUM RAT	6 DAYS/WEE 6 2-MAY(%): 26 CORMATION TES YEAR	JUN-AUG(% 26 N APPR	52 WEEK 52 6):	ATA WERE BASED AS/YEAR: 2 AS/YEAR: 2 SEP-NOV(%): 26 YPICAL RATES TONS/YEAR
b) TYPICAL OPERATING HOURS 20) ANNUAL THROUGHPUT 21a) RAW MATERIALS	M	14 HOURS/DAY: 10 DEC-FEB(%): 22 ATERIAL USA APPROX MAXI	GE INF MUM RAT	6 DAYS/WEE 6 2-MAY(%): 26 CORMATION TES YEAR	JUN-AUG(% 26 N APPR	52 WEEK 52 6):	ATA WERE BASED AS/YEAR: 2 AS/YEAR: 2 SEP-NOV(%): 26 YPICAL RATES TONS/YEAR
20) ANNUAL THROUGHPUT 21a) RAW MATERIALS	M	14 HOURS/DAY: 10 DEC-FEB(%): 22 ATERIAL USA APPROX MAXI	GE INF MUM RAT	6 DAYS/WEE 6 2-MAY(%): 26 CORMATION TES YEAR	JUN-AUG(% 26 N APPR	52 WEEK 52 6):	ATA WERE BASED AS/YEAR: 2 AS/YEAR: 2 SEP-NOV(%): 26 YPICAL RATES TONS/YEAR

		- Committee - Comm		
1	APPROX M	AXIMUM RATES	APPROX	TYPICAL RATES
21b) PRODUCTS	LBS/HR	TONS/YEAR	LBS/HR	TONS/YEAR
Ferrous Metal		734,000		550,000
Auto Shredder Residue (ASR)		258,000		195,000
W 6				
	APPROY M	AXIMUM RATES	APPROY	TYPICAL RATES
21c) BY-PRODUCT MATERIALS	LBS/HR	TONS/YEAR	LBS/HR	TONS/YEAR
Fluff		8,000		3,400
	LL			
	FUEL	USAGE DATA		
22a) MAXIMUM FIRING RATE	b) TYPICAL	FIRING RATE		ACITY FIRING
(MILLION BTU/HR): None	(MILLION	N BTU/HR):	RATE (MILLIO	ON BTU/HR):
d) FUEL TYPE:				
☐ NATURAL GAS ☐ FUEL OI	L: GRADE NUMBER	□ COAL □	OTHER	
IF MORE THAN ONE FUEL IS	USED, ATTACH AN E	EXPLANATION AND LABE	EL AS EXHIBIT 220-2.	
e) TYPICAL HEAT CONTENT OF BTU/GAL OR BTU/SCF):	FUEL (BTU/LB,		LFUR CONTENT (WT FURAL GAS):	· %.,
g) TYPICAL ASH CONTENT (WT NA FOR NATURAL GAS):	%.,		EL USAGE (SPECIFY GAL/YEAR, TON/YEA	
23) ARE COMBUSTION EMISSION	S DUCTED TO THE S	AME STACK OR CONTR	ROL AS	YES NO
PROCESS UNIT EMISSIONS?	T DOINT FOR COMP	UCTION EMISSIONS		
IF NO, IDENTIFY THE EXHAUS	I POINT FOR COMB	SUSTION EMISSIONS:		
· · · · · ·				

APPLICATION PAGE _

Printed on Recycled Paper 220-CAAPP

29) DOES THE EMISSION UNIT CONTROLLE RUNGE APPLICABLE RU		N FROM AN Y	ES ⊠ NO					
IF YES, THEN LIST BOTH THE RULE FROM WHICH IT IS EXEMPT AND THE RULE WHICH ALLOWS THE EXEMPTION. PROVIDE A DETAILED EXPLANATION JUSTIFYING THE EXEMPTION. INCLUDE DETAILED SUPPORTING DATA AND CALCULATIONS. ATTACH AND LABEL AS EXHIBIT 220-3, OR REFER TO OTHER ATTACHMENT(S) WHICH ADDRESS AND JUSTIFY THIS EXEMPTION.								
	COMPLIANCE I	NEORMATION						
ON TO THE EMISSION LINES IN OC								
30) IS THE EMISSION UNIT IN COMPLIANCE WITH ALL APPLICABLE YES NO REQUIREMENTS?								
		EDULE OF COMPLIANCE AD ND SUBMITTED WITH THIS APP						
31) EXPLANATION OF HOW INIT	IAL COMPLIANCE IS TO BE (OR WAS PREVIOUSLY. DEMON	ISTRATED:					
		51. T.						
Visual observations an	d emission calculations							
Visual Observations an	u emission calculations	•						
32) EXPLANATION OF HOW ONG	SOING COMPLIANCE WILL BE	E DEMONSTRATED:						
Visual observations an	d emission calculations	S						
TEOTING	MONITORING RESS		DT/110					
		RDKEEPING AND REPOI						
	PLICABILITY OR COMPLIAN	NS FOR WHICH RECORDS ARE CE. INCLUDE THE UNIT OF ME ECORDS (E.G., HOURLY, DAILY	ASUREMENT, THE METHOD					
PARAMETER	UNIT OF MEASUREMENT	METHOD OF MEASUREMENT	FREQUENCY					
Emissions	ton/mo & tons/yr	Calculations	Monthly					
Shredder	ton/mo &	Calculations	Monthly					
Throughput Rate	tons/yr							
	*							
		**						

RECORDED PARAMET	ER INCLUDE THE METHOD OF	RDS WILL BE CREATED AND MA RECORDKEEPING, TITLE OF PE ACT FOR REVIEW OF RECORDS	ERSON RESPONSIBLE FOR				
PARAMETER	METHOD OF RECORDKEEPING	TITLE OF PERSON RESPONSIBLE	TITLE OF CONTACT PERSON				
Emissions	Spreadsheet	Environmental Manager	Environmental Manager				
Shredder Feed Rate	Production Logs	Environmental Manager	Environmental Manager				
5							
	<u> </u>						
c) IS COMPLIANCE OF TH THE RECORDS? IF NO, EXPLAIN:	HE EMISSION UNIT READILY DI	EMONSTRATED BY REVIEW OF	⊠ YES □ NO				
SUBMITTAL TO THE A	EADILY AVAILABLE FOR INSPE GENCY UPON REQUEST?	CTION, COPYING AND	⊠ YES □ NO				
IF NO, EXPLAIN:			,				
34a) DESCRIBE ANY MONIT COMPLIANCE:	ORS OR MONITORING ACTIVI	TIES USED TO DETERMINE FEE	S, RULE APPLICABILITY OR				
Visual observation	ns and emission calculat	ions					
b) WHAT PARAMETER(S)	IS (ARE) BEING MONITORED	(E.G., VOM EMISSIONS TO ATM	DSPHERE)?				
Shredder throughput							
c) DESCRIBE THE LOCAT	TION OF EACH MONITOR (E.G.	, IN STACK MONITOR 3 FEET FR	OM EXIT):				
Belt scale data is adjusted based on monthly records reflecting purchases, shipments, and change in inventory.							

34d) IS EACH MONITOR EQUIPPED WITH A	A RECORDING DEVICE?	☐ YES ☐ NO					
IF NO, LIST ALL MONITORS WITHOUT	A RECORDING DEVICE:						
NA							
a) IS FACH MONITOR REVIEWED FOR	ACCURACY ON AT LEAST A QUARTER	RLY TYES TONO					
e) IS EACH MONITOR REVIEWED FOR A BASIS?	ACCURACT ON AT LEAST A QUARTER	RLY LI YES LI NO					
IF NO, EXPLAIN:							
NA							
A IO FACIL MONITOR OPERATES AT A	L TIMEO THE ACCOUNTED ENGLISH	TUNIT IO					
f) IS EACH MONITOR OPERATED AT AL IN OPERATION?	L TIMES THE ASSOCIATED EMISSION	NUNITIS LYES LNO					
IF NO, EXPLAIN:							
NA							
35) PROVIDE INFORMATION ON THE MO PURPOSES OF THE DETERMINATION	OST RECENT TESTS, IF ANY, IN WHIC N OF FEES, RULE APPLICABILITY OR						
	G COMPANY, OPERATING CONDITIO DNAL SPACE IS NEEDED, ATTACH AN	NS EXISTING DURING THE TEST AND A					
TEST DATE TEST METHOD	TESTING COMPANY COND	ATING TIONS SUMMARY OF RESULTS					
NA NA							
36) DESCRIBE ALL REPORTING REQUIR	PEMENTS AND PROVIDE THE TITLE A	ND ERECLIENCY OF REPORT					
SUBMITTALS TO THE AGENCY:	REMERTO AND I NOVIDE THE THEE A	AD I NEW DENOT OF THE ORT					
REPORTING REQUIREMENTS	TITLE OF REPORT	FREQUENCY					
		Annually					
Annual Emissions	Annual Emissions Report						
Emission Deviations	Emissions Deviation Report	Within 30 days of event					
	Кероп						

(37) EMISSION INFORMATION

ALLOWABLE BY RULE EMISSION RATE

IMPORTANT: ATTACH CALCULATIONS, TO THE EXTENT THEY ARE AIR EMISSIONS RELATED, ON WHICH EMISSIONS WERE DETERMINED AND LABEL AS EXHIBIT 220-5.

¹ACTUAL EMISSION RATE

¹UNCONTROLLED EMISSION RATE

GR/DSCF

REGULATED AIR

APPLICATION PAGE Printed on Recycled Paper 220-CAAPP

²PERMITTED EMISSION RATE

TONS PER

¹ CHECK UNCONTROLLED EMISSION RATE BOX IF CONTROL EQUIPMENT IS USED, OTHERWISE CHECK AND PROVIDE THE ACTUAL EMISSION RATE TO ATMOSPHERE, INCLUDING INDOORS. SEE INSTRUCTIONS.

²PROVIDE THE EMISSION RATE THAT WILL BE USED AS A PERMIT SPECIAL CONDITION. THIS LIMIT WILL BE USED TO DETERMINE THE PERMIT FEE.

³PLEASE PROVIDE ANY OTHER EMISSION RATE WHICH IS COMMONLY USED, REQUIRED BY A SPECIFIC LIMITATION OR THAT WAS MEASURED (E.G. PPM, GR/DSCF, ETC.)

⁴DM - DETERMINATION METHOD: 1) STACK TEST, 2) MATERIAL BALANCE, 3) STANDARD EMISSION FACTOR (AP-42 OR AIRS), 4) ENGINEERING ESTIMATE, 5) SPECIAL EMISSION FACTOR (NOT AP-42 OR AIRS)

⁵RATE - ALLOWABLE EMISSION RATE SPECIFIED BY MOST STRINGENT APPLICABLE RULE.

IMPORTANT: ATTACH CALCULATIONS, TO THE EXTENT THEY ARE AIR EMISSIONS RELATED, ON WHICH EMISSIONS WERE DETERMINED AND LABEL AS EXHIBIT 220-6.

APPLICATION PAGE

Printed on Recycled Paper
220-CAAPP

¹ PROVIDE UNCONTROLLED EMISSIONS IF CONTROL EQUIPMENT IS USED. OTHERWISE, PROVIDE ACTUAL EMISSIONS TO THE ATMOSPHERE, INCLUDING INDOORS. CHECK BOX TO SPECIFY.

²CAS - CHEMICAL ABSTRACT SERVICE NUMBER.

³PLEASE PROVIDE ANY OTHER EMISSION RATE WHICH IS COMMONLY USED, REQUIRED BY A SPECIFIC LIMITATION OR THAT WAS MEASURED (E.G., PPM, GR/DSCF, ETC.).

⁴DM - DETERMINATION METHOD: 1) STACK TEST, 2) MATERIAL BALANCE, 3) STANDARD EMISSION FACTOR (AP-42 OR AIRS, 4) ENGINEERING ESTIMATE, 5) SPECIAL EMISSION FACTOR (NOT AP-42 OR AIRS).

⁵RATE - ALLOWABLE EMISSION RATE OR STANDARD SPECIFIED BY MOST STRINGENT APPLICABLE RULE.

	EXHAUST POINT INFORMATION								
THIS	THIS SECTION SHOULD NOT BE COMPLETED IF EMISSIONS ARE EXHAUSTED THROUGH AIR POLLUTION CONTROL EQUIPMENT.								
39)	9) FLOW DIAGRAM DESIGNATION OF EXHAUST POINT:								
- HE	NA - equipment does not vent through a stack								
40)	DESCRIPTION OF EXHAUST POINT (STACK, VENT, ROOF MONITOR, INDOORS, ETC.). IF THE EXHAUST POINT DISCHARGES INDOORS, DO NOT COMPLETE THE REMAINING ITEMS.								
41)	1) DISTANCE TO NEAREST PLANT BOUNDARY FROM EXHAUST POINT DISCHARGE (FT):								
42)	DISCHARGE HEIGHT ABOVE GRAD	E (FT):							
43)	GOOD ENGINEERING PRACTICE (G	EP) HEIGHT, IF KNC	OWN (FT):						
44)	DIAMETER OF EXHAUST POINT (FT TIMES THE SQUARE ROOT OF THE		N CIRCULAR EXHAL	JST POINT, THE DIAMETER IS 1.128					
45)	EXIT GAS FLOW RATE	a) MAXIMUM (AC	CFM):	b) TYPICAL (ACFM):					
46)	EXIT GAS TEMPERATURE	a) MAXIMUM (°F):		b) TYPICAL (°F):					
47)	DIRECTION OF EXHAUST (VERTICA	L, LATERAL, DOWN	WARD):						
48)	LIST ALL EMISSION UNITS AND CO	NTROL DEVICES SE	ERVED BY THIS EXH	AUST POINT:					
	NAME		FLO	W DIAGRAM DESIGNATION					
a)									
b)	= = = = = = = = = = = = = = = = = = =			7 1					
c) d)									
e)		TANDO KOO MARANA MA							
f)									
g)									
h)									
i)									
THE	FOLLOWING INFORMATION NEED ONLY	BE SUPPLIED IF READ	ILY AVAILABLE.						
498	ı) LATITUDE:		c) LONGITUDE:						
50)	UTM ZONE:	b) UTM VERTICA	AL (KM):	d) UTM HORIZONTAL (KM):					

FOR APPLICA	ANT'S USE
Revision No.:	- Variable
Date:	
Page:	of
Source Designation:	

		FOR AGENCY USE ONLY				
	PROCESS EMISSION UNIT	ID NUMBER:				
	DATA AND INFORMATION	EMISSION POINT #:				
		DATE:				
	SOURCE I	NFORMATION				
1)	SOURCE NAME:					
	General III, LLC					
2)	DATE FORM PREPARED 3	SOURCE ID NO. (IF KNOWN):				
	September 2019					
_	GENERAL	INFORMATION				
4)	NAME OF EMISSION UNIT:					
	Non-Ferrous Material Processing System					
5)	NAME OF PROCESS:					
	Non-Ferrous Material Processing System					
6)	DESCRIPTION OF PROCESS:					
	screens, shakers, eddy current separators, wind sifter	SR including feed hoppers, conveyors, magnetic separators, induction separators, polishers, and stockpiles. Select ding and are connected to dust collectors, 3 of which vent are.				
7)	DESCRIPTION OF ITEM OR MATERIAL PRODUCED OF	R ACTIVITY ACCOMPLISHED:				
	Ferrous and non-ferrous metals, including	aluminum, stainless steel, zinc, copper, etc.				
8)	FLOW DIAGRAM DESIGNATION OF EMISSION UNIT:					
	Non-Ferrous Material Processing System					
9)	MANUFACTURER OF EMISSION UNIT (IF KNOWN):					
	Multiple equipment manufacturers					
10) MODEL NUMBER (IF KNOWN):	11) SERIAL NUMBER (IF KNOWN):				
12) DATES OF COMMENCING CONSTRUCTION,	a) CONSTRUCTION (MONTH/YEAR):				
	OPERATION AND/OR MOST RECENT MODIFICATION OF THIS EMISSION UNIT (ACTUAL OR PLANNED)	June 2020				
		b) OPERATION (MONTH/YEAR):				
		c) LATEST MODIFICATION (MONTH/YEAR):				
13	B) DESCRIPTION OF MODIFICATION (IF APPLICABLE):					

THIS AGENCY IS AUTHORIZED TO REQUIRE THIS INFORMATION UNDER ILLINOIS REVISED STATUTES, 1991, AS AMENDED 1992, CHAPTER 111 1/2, PAR. 1039.5. DISCLOSURE OF THIS INFORMATION IS REQUIRED UNDER THAT SECTION. FAILURE TO DO SO MAY PREVENT THIS FORM FROM BEING PROCESSED AND COULD RESULT IN THE APPLICATION BEING DENIED. THIS FORM HAS BEEN APPROVED BY THE FORMS MANAGEMENT CENTER.

APPLICATION PAGE

IEVEO EVELANDISTE ISSUES									
IF YES, EXPLAIN AND IDENTIFY EMISSION UNIT FORM 220-CAA							ARATE I	PROCES	S
15) PROVIDE THE NAME AND DESI EMISSION UNIT, IF APPLICABLE BE COMPLETED FOR EACH ITE	E (FOR	M 260-CAAPI	P AND	THE AF	PROPRIATE	260-CAAPP A			
There are four identical d collection points connect dust collectors (DC-02 the therefore, not control dev	ted to	various e	quipm ent tre	ent in	n the Fines air back in	Processing to the build	g Buil	Iding. T	
16) WILL EMISSIONS DURING STAF RATE PURSUANT TO A SPECIF ESTABLISHED BY AN EXISTING	IC RUL	E, OR THE A	LLOWA	ABLE E	MISSION LIN		YES	s 🗵	NO
IF YES, COMPLETE AND ATTAC STARTUP OF EQUIPMENT".	CH FOF	RM 203-CAAP	PP, "REC	QUEST	TO OPERAT	E WITH EXCE	ESS EM	IISSIONS	DURING
17) PROVIDE ANY LIMITATIONS ON SOURCE OPERATION AFFECTING EMISSIONS OR ANY WORK PRACTICE STANDARDS (E.G., ONLY ONE UNIT IS OPERATED AT A TIME):							ORK PI	RACTICE	
STANDARDS (E.G., UNLY ONE	Scheduled maintenance and malfunctions when equipment must be taken offline.								
		nalfunctior	ns who	en eq	uipment m	ust be take	en offl	ine.	
		nalfunctior OPERATI				ust be take	en offl	ine.	
	TO THI	OPERATI E EXTENT TH ION, MATERI	ING IN HEY AR AL USA	IFORI E AIR I	MATION EMISSION RE	ELATED, FROM	M WHIC	CH THE	E BASED
Scheduled maintenance at 18) ATTACH THE CALCULATIONS, FOLLOWING OPERATING INFO	TO THI	OPERATI E EXTENT TH ION, MATERI	ING IN HEY AR AL USA LL NOTE	IFORI E AIR I	MATION EMISSION RE	ELATED, FROI AND FUEL US AAPP.	M WHIC	CH THE	
18) ATTACH THE CALCULATIONS, FOLLOWING OPERATING INFO AND LABEL AS EXHIBIT 220-1.	TO THI REFER	OPERATION, MATERIAR TO SPECIAL HOURS/DA	ING	IFORI E AIR I	MATION EMISSION REFORMATION FORM 202-CA	ELATED, FROI AND FUEL US AAPP. K:	WEEF	CH THE ATA WER	
18) ATTACH THE CALCULATIONS, FOLLOWING OPERATING INFO AND LABEL AS EXHIBIT 220-1. 19a) MAXIMUM OPERATING HOURS	TO THI REFER	OPERATION, MATERIAR TO SPECIAL HOURS/DATERIAR HOURS	ING	IFORI E AIR I GE INK ES OF I	MATION EMISSION REFORMATION FORM 202-CA DAYS/WEE 6 DAYS/WEE	ELATED, FROI AND FUEL US AAPP. K:	WEEF WEEF WEEF	CH THE ATA WER KS/YEAR 2 KS/YEAR	DV(%):
18) ATTACH THE CALCULATIONS, FOLLOWING OPERATING INFO AND LABEL AS EXHIBIT 220-1. 19a) MAXIMUM OPERATING HOURS b) TYPICAL OPERATING HOURS	TO THI PRMATI REFER	OPERATION, MATERIAR TO SPECIA HOURS/DATA 18 HOURS/DATA 12 DEC-FEB(%	ING	IFORI E AIR I GE INI ES OF I	MATION EMISSION REFORM 202-CA DAYS/WEE 6 DAYS/WEE 6 -MAY(%):	ELATED, FROM AND FUEL US AAPP. K: K: JUN-AUG(% 26	WEEF WEEF WEEF	CH THE ATA WERE ATA W	DV(%):
18) ATTACH THE CALCULATIONS, FOLLOWING OPERATING INFO AND LABEL AS EXHIBIT 220-1. 19a) MAXIMUM OPERATING HOURS b) TYPICAL OPERATING HOURS	TO THORMATI	OPERATI E EXTENT TH ION, MATERIA R TO SPECIA HOURS/DA' 18 HOURS/DA' 12 DEC-FEB(% 22	HEY AR AL USA	IFORI E AIR I GE INF ES OF I	MATION EMISSION REFORMATION FORM 202-C, DAYS/WEE 6 DAYS/WEE 6 -MAY(%):	ELATED, FROI AND FUEL US AAPP. K: K: JUN-AUG(9 26	WEEF WEEF WEEF 6):	KS/YEAR: 2 KS/YEAR: 2 KS/YEAR: 2 SEP-Ni 26	OV(%):
18) ATTACH THE CALCULATIONS, FOLLOWING OPERATING INFO AND LABEL AS EXHIBIT 220-1. 19a) MAXIMUM OPERATING HOURS b) TYPICAL OPERATING HOURS 20) ANNUAL THROUGHPUT	TO THI	OPERATION MATERIA TO SPECIA HOURS/DATA 18 HOURS/DATA 12 DEC-FEB(% 22 ATERIAL CAPPROX MATERIAL CAPPROX	ING IN HEY AR AL USA AL NOTE Y: Y: USAG	MAR E INF	MATION EMISSION REFORMATION FORM 202-CA DAYS/WEE 6 DAYS/WEE 6 -MAY(%): 26 CORMATIO	ELATED, FROM AND FUEL US AAPP. K: K: JUN-AUG(9) 26	WEEF WEEF WEEF WEEF MONTH	CH THE ATA WERE ATA W	OV(%):
18) ATTACH THE CALCULATIONS, FOLLOWING OPERATING INFO AND LABEL AS EXHIBIT 220-1. 19a) MAXIMUM OPERATING HOURS b) TYPICAL OPERATING HOURS	TO THI	OPERATI E EXTENT TH ION, MATERIA R TO SPECIA HOURS/DA' 18 HOURS/DA' 12 DEC-FEB(% 22	ING IN HEY AR AL USA AL NOTE Y: Y: USAG	IFORI E AIR I GE INF ES OF I	MATION EMISSION REFORMATION FORM 202-C/ DAYS/WEE 6 DAYS/WEE 6 -MAY(%): 26 CORMATIO	ELATED, FROI AND FUEL US AAPP. K: K: JUN-AUG(9 26	WEEF WEEF WEEF WEEF MONTH	CH THE ATA WERE ATA W	OV(%):
18) ATTACH THE CALCULATIONS, FOLLOWING OPERATING INFO AND LABEL AS EXHIBIT 220-1. 19a) MAXIMUM OPERATING HOURS b) TYPICAL OPERATING HOURS 20) ANNUAL THROUGHPUT	TO THI	OPERATION MATERIA TO SPECIA HOURS/DATA 18 HOURS/DATA 12 DEC-FEB(% 22 ATERIAL CAPPROX MATERIAL CAPPROX	ING IN HEY AR AL USA AL NOTE Y: Y: USAG	MAR 2 INFONS/	MATION EMISSION REFORMATION FORM 202-C/ DAYS/WEE 6 DAYS/WEE 6 -MAY(%): 26 CORMATIO	ELATED, FROM AND FUEL US AAPP. K: K: JUN-AUG(9) 26	WEEF WEEF WEEF WEEF MONTH	CH THE ATA WERE ATA W	OV(%): ATES NS/YEAR
18) ATTACH THE CALCULATIONS, FOLLOWING OPERATING INFO AND LABEL AS EXHIBIT 220-1. 19a) MAXIMUM OPERATING HOURS b) TYPICAL OPERATING HOURS 20) ANNUAL THROUGHPUT	TO THI	OPERATION MATERIA TO SPECIA HOURS/DATA 18 HOURS/DATA 12 DEC-FEB(% 22 ATERIAL CAPPROX MATERIAL CAPPROX	ING IN HEY AR AL USA AL NOTE Y: Y: USAG	MAR 2 INFONS/	MATION EMISSION REFORMATION FORM 202-C/ DAYS/WEE 6 DAYS/WEE 6 -MAY(%): 26 CORMATIO	ELATED, FROM AND FUEL US AAPP. K: K: JUN-AUG(9) 26	WEEF WEEF WEEF WEEF MONTH	CH THE ATA WERE ATA W	OV(%): ATES NS/YEAR

	APPROX MA	AXIMUM RATES	APPROX	TYPICAL RATES		
21b) PRODUCTS	LBS/HR	TONS/YEAR	LBS/HR	TONS/YEAR		
Ferrous and Non-Ferrous metals		57,500		43,100		
				**		
	APPROX M	AXIMUM RATES	APPROX	TYPICAL RATES		
21c) BY-PRODUCT MATERIALS	LBS/HR	TONS/YEAR	LBS/HR	TONS/YEAR		
Waste Residue		200,500		105,400		
	· · · · · · · · · · · · · · · · · · ·					
		*				
	FUEL	USAGE DATA				
22a) MAXIMUM FIRING RATE		FIRING RATE		ACITY FIRING		
(MILLION BTU/HR): None	(MILLION	N BTU/HR):	RATE (MILLIC	ON BTU/HR):		
d) FUEL TYPE:						
□ NATURAL GAS □ FUEL OII	_: GRADE NUMBER	□ COAL □] OTHER			
IF MORE THAN ONE FUEL IS I	JSED, ATTACH AN E	EXPLANATION AND LAB	EL AS EXHIBIT 220-2.			
e) TYPICAL HEAT CONTENT OF BTU/GAL OR BTU/SCF):	FUEL (BTU/LB,		f) TYPICAL SULFUR CONTENT (WT %., NA FOR NATURAL GAS):			
g) TYPICAL ASH CONTENT (WT NA FOR NATURAL GAS):	%.,		JEL USAGE (SPECIFY GAL/YEAR, TON/YEA			
23) ARE COMBUSTION EMISSIONS PROCESS UNIT EMISSIONS?	S DUCTED TO THE S	SAME STACK OR CONT	ROL AS	YES NO		
IF NO, IDENTIFY THE EXHAUS	T POINT FOR COMB	USTION EMISSIONS:				
,						

R 001290

	RULE?		
PROVIDE A DETAILED EXPL	ANATION JUSTIFYING THE EXAND LABEL AS EXHIBIT 220-3,	KEMPT AND THE RULE WHICH AL KEMPTION. INCLUDE DETAILED S OR REFER TO OTHER ATTACHME	SUPPORTING DATA AND
	COMPLIANCE II	NFORMATION	
30) IS THE EMISSION UNIT IN C REQUIREMENTS?	OMPLIANCE WITH ALL APPLIC	CABLE YES	□ NO
		EDULE OF COMPLIANCE ADDEN ID SUBMITTED WITH THIS APPLIC	
31) EXPLANATION OF HOW INIT	TIAL COMPLIANCE IS TO BE, C	OR WAS PREVIOUSLY, DEMONST	RATED:
	n Points - visual observa	tions	
Dust Collector DC-01 -	- See 260 CAAPP for DC	-01	
32) EXPLANATION OF HOW ON ASR throughput rate	GOING COMPLIANCE WILL BE	DEMONSTRATED:	
Aort anoughput rate			
Uncontrolled Emission	n Points - visual observa	tions and emission calcula	tions
	n Points - visual observa - See 260 CAAPP for DC		tions
			tions
Dust Collector DC-01 -	- See 260 CAAPP for DC	-01	
Dust Collector DC-01 -	- See 260 CAAPP for DC	-01 RDKEEPING AND REPORTI	ING
Dust Collector DC-01 - TESTIN 33a) LIST THE PARAMETERS TH DETERMINE FEES, RULE A	- See 260 CAAPP for DC G, MONITORING, RECOR AT RELATE TO AIR EMISSION PPLICABILITY OR COMPLIANCE	-01	ING EING MAINTAINED TO UREMENT, THE METHOD
Dust Collector DC-01 - TESTIN 33a) LIST THE PARAMETERS TH DETERMINE FEES, RULE A	- See 260 CAAPP for DC G, MONITORING, RECOR AT RELATE TO AIR EMISSION PPLICABILITY OR COMPLIANCE	-01 RDKEEPING AND REPORTI IS FOR WHICH RECORDS ARE BE CE. INCLUDE THE UNIT OF MEAS	ING EING MAINTAINED TO UREMENT, THE METHOD
TESTIN 33a) LIST THE PARAMETERS TH DETERMINE FEES, RULE A OF MEASUREMENT, AND T	G, MONITORING, RECORDER TO AIR EMISSION PPLICABILITY OR COMPLIANCE THE FREQUENCY OF SUCH RE	RDKEEPING AND REPORTION IS FOR WHICH RECORDS ARE BEEDE. INCLUDE THE UNIT OF MEAS' ECORDS (E.G., HOURLY, DAILY, W	ING EING MAINTAINED TO UREMENT, THE METHOD EEKLY):
TESTIN 33a) LIST THE PARAMETERS TH DETERMINE FEES, RULE A OF MEASUREMENT, AND T	G, MONITORING, RECOME AT RELATE TO AIR EMISSION PPLICABILITY OR COMPLIANCE THE FREQUENCY OF SUCH REMAINS OF S	RDKEEPING AND REPORTION IS FOR WHICH RECORDS ARE BECE. INCLUDE THE UNIT OF MEAS' ECORDS (E.G., HOURLY, DAILY, WETHOD OF MEASUREMENT	ING EING MAINTAINED TO UREMENT, THE METHOD EEKLY): FREQUENCY
TESTIN 33a) LIST THE PARAMETERS THO DETERMINE FEES, RULE A OF MEASUREMENT, AND TO PARAMETER Emissions	G, MONITORING, RECORDATE TO AIR EMISSION PPLICABILITY OR COMPLIANCE THE FREQUENCY OF SUCH RESULT OF MEASUREMENT TON/mo & tons/yr	RDKEEPING AND REPORTION IS FOR WHICH RECORDS ARE BECE. INCLUDE THE UNIT OF MEAST CORDS (E.G., HOURLY, DAILY, WETHOD OF MEASUREMENT Calculation	ING EING MAINTAINED TO UREMENT, THE METHOD EEKLY): FREQUENCY Monthly
TESTIN 33a) LIST THE PARAMETERS THO DETERMINE FEES, RULE A OF MEASUREMENT, AND TO PARAMETER Emissions	G, MONITORING, RECORDATE TO AIR EMISSION PPLICABILITY OR COMPLIANCE THE FREQUENCY OF SUCH RESULT OF MEASUREMENT TON/mo & tons/yr	RDKEEPING AND REPORTION IS FOR WHICH RECORDS ARE BECE. INCLUDE THE UNIT OF MEAST CORDS (E.G., HOURLY, DAILY, WETHOD OF MEASUREMENT Calculation	ING EING MAINTAINED TO UREMENT, THE METHOD EEKLY): FREQUENCY Monthly
TESTIN 33a) LIST THE PARAMETERS THO DETERMINE FEES, RULE A OF MEASUREMENT, AND TO PARAMETER Emissions	G, MONITORING, RECORDATE TO AIR EMISSION PPLICABILITY OR COMPLIANCE THE FREQUENCY OF SUCH RESULT OF MEASUREMENT TON/mo & tons/yr	RDKEEPING AND REPORTION IS FOR WHICH RECORDS ARE BECE. INCLUDE THE UNIT OF MEAST CORDS (E.G., HOURLY, DAILY, WETHOD OF MEASUREMENT Calculation	ING EING MAINTAINED TO UREMENT, THE METHOD EEKLY): FREQUENCY Monthly
TESTIN 33a) LIST THE PARAMETERS THO DETERMINE FEES, RULE A OF MEASUREMENT, AND TO PARAMETER Emissions	G, MONITORING, RECORDATE TO AIR EMISSION PPLICABILITY OR COMPLIANCE THE FREQUENCY OF SUCH RESULT OF MEASUREMENT TON/mo & tons/yr	RDKEEPING AND REPORTION IS FOR WHICH RECORDS ARE BECE. INCLUDE THE UNIT OF MEAST CORDS (E.G., HOURLY, DAILY, WETHOD OF MEASUREMENT Calculation	ING EING MAINTAINED TO UREMENT, THE METHOD EEKLY): FREQUENCY Monthly
TESTIN 33a) LIST THE PARAMETERS THO DETERMINE FEES, RULE A OF MEASUREMENT, AND TO PARAMETER Emissions	G, MONITORING, RECORDATE TO AIR EMISSION PPLICABILITY OR COMPLIANCE THE FREQUENCY OF SUCH RESULT OF MEASUREMENT TON/mo & tons/yr	RDKEEPING AND REPORTION IS FOR WHICH RECORDS ARE BECE. INCLUDE THE UNIT OF MEAST CORDS (E.G., HOURLY, DAILY, WETHOD OF MEASUREMENT Calculation	ING EING MAINTAINED TO UREMENT, THE METHOD EEKLY): FREQUENCY Monthly
TESTIN 33a) LIST THE PARAMETERS THO DETERMINE FEES, RULE A OF MEASUREMENT, AND TO PARAMETER Emissions	G, MONITORING, RECORDATE TO AIR EMISSION PPLICABILITY OR COMPLIANCE THE FREQUENCY OF SUCH RESULT OF MEASUREMENT TON/mo & tons/yr	RDKEEPING AND REPORTION IS FOR WHICH RECORDS ARE BECE. INCLUDE THE UNIT OF MEAST CORDS (E.G., HOURLY, DAILY, WETHOD OF MEASUREMENT Calculation	ING EING MAINTAINED TO UREMENT, THE METHOD EEKLY): FREQUENCY Monthly

RECORDED PARAMET	ER INCLUDE THE METHOD OF	RDS WILL BE CREATED AND MA RECORDKEEPING, TITLE OF P	ERSON RESPONSIBLE FOR					
RECORDKEEPING, AN	D TITLE OF PERSON TO CONT	ACT FOR REVIEW OF RECORDS	5:					
PARAMETER	METHOD OF RECORDKEEPING	TITLE OF PERSON RESPONSIBLE	TITLE OF CONTACT PERSON					
Emissions	Spreadsheet	Environmental Manager	Environmental Manager					
ASR Feed Rate	Production Logs	Environmental Manager	Environmental Manager					
c) IS COMPLIANCE OF THE RECORDS?	HE EMISSION UNIT READILY D	EMONSTRATED BY REVIEW OF	⊠ YES □ NO					
IF NO, EXPLAIN:								
	EADILY AVAILABLE FOR INSPE GENCY UPON REQUEST?	CTION, COPYING AND	⊠ YES □ NO					
IF NO, EXPLAIN:								
V								
34a) DESCRIBE ANY MONI COMPLIANCE:	TORS OR MONITORING ACTIV	TIES USED TO DETERMINE FEE	ES, RULE APPLICABILITY OR					
ASR Throughput								
Uncontrolled Emis	ssion Points – periodic v	isual observations						
Dust Collector DC	-01 - See 260 CAAPP for	DC-01						
b) WHAT PARAMETER(S) IS (ARE) BEING MONITORED	(E.G., VOM EMISSIONS TO ATM	OSPHERE)?					
ASR Throughput	Correspondence of the control of the	Secretary Transactor (Title Secretary)	F (C)					
	ssion Points — ASR Food	Rate used to calculate en	nissions					
	C-01 - See 260 CAAPP for		1113310113					
		., IN STACK MONITOR 3 FEET F	SOM EXIT).					
ASR Throughput		, IT O I TOK MONTOR OF LET FE	Com EATT).					
	ssion Points – NA							
		* DC 04						
Dust Collector DC	Dust Collector DC-01 – See 260 CAAPP for DC-01							

34d) IS EACH MONITOR EQUIPPED WITH A	A RECORDING DEVICE?	☐ YES ☐ NO
IF NO, LIST ALL MONITORS WITHOUT	TA RECORDING DEVICE:	
Uncontrolled Emission Points	- NA	
Dust Collector DC-01 – See 26	0 CAAPP for DC-01	
(41)		W.
e) IS EACH MONITOR REVIEWED FOR A BASIS?	ACCURACY ON AT LEAST A QUARTER	RLY YES NO
IF NO, EXPLAIN:		
Uncontrolled Emission Points	s – NA	_
Dust Collector DC-01 - See 26	0 CAAPP for DC-01	
	L	
f) IS EACH MONITOR OPERATED AT AL IN OPERATION?	L TIMES THE ASSOCIATED EMISSION	N UNIT IS X YES NO
IF NO, EXPLAIN:		
Uncontrolled Emission Points	s – NA	
Dust Collector DC-01 - See 26	60 CAAPP for DC-01	
PURPOSES OF THE DETERMINATION DATE, TEST METHOD USED, TESTIN	OST RECENT TESTS, IF ANY, IN WHIC N OF FEES, RULE APPLICABILITY OR IG COMPANY, OPERATING CONDITIO ONAL SPACE IS NEEDED, ATTACH AN	COMPLIANCE. INCLUDE THE TEST NS EXISTING DURING THE TEST AND A
TEST DATE TEST METHOD		ATING ITIONS SUMMARY OF RESULTS
NA NA		
36) DESCRIBE ALL REPORTING REQUIR SUBMITTALS TO THE AGENCY:	REMENTS AND PROVIDE THE TITLE A	ND FREQUENCY OF REPORT
REPORTING REQUIREMENTS	TITLE OF REPORT	FREQUENCY
Annual Emissions	Annual Emissions Report	Annually
Emission Deviations	Emissions Deviation Report	Within 30 days of event
		1

(37)EMISSION INFORMATION													
		-		MISSION RATE OLLED EMISSIO	N RATE		AL	LOV	VABLE B	Y RULE EMISS	ON RATE	² PERMITTED EMIS	SION RATE
REGULATED AIR POLLUTANT		LBS PER HOUR (LBS/HR)	TONS PER YEAR (TONS/YR)	³ OTHER TERMS	³ OTHER TERMS	⁴ DМ	5 _R A	\TE	(UNITS)	APPLICABLE RULES	TONS PER YEAR (TONS/YR)	RATE (UNITS)	TONS PER YEAR (TONS/YR)
CARBON	MAXIMUM:)				
MONOXIDE (CO)	TYPICAL:)				
LEAD	MAXIMUM:)				
	TYPICAL:					_)				
NITROGEN	MAXIMUM:		See Permit	Application	n - Table :	3-3)				
OXIDES (NOx)	TYPICAL:)				
PARTICULATE	MAXIMUM:	Lannance)				
MATTER (PART)	TYPICAL:)				
PARTICULATE MATTER <= 10	MAXIMUM:							[)				
MICROMETERS (PM10)	TYPICAL:							[)				
SULFUR	MAXIMUM:							()				
DIOXIDE (SO2)	TYPICAL:)				
VOLATILE ORGANIC	MAXIMUM:							1)				
MATERIAL (VOM)	TYPICAL:							()				
OTHER, SPECIFY:	MAXIMUM:							ĺ)				
	TYPICAL:)				
EXAMPLE: PARTICULATE	MAXIMUM:	5.00	21.9	0.3 GR/DSCF		1	6	.0 (LB	S/HR)	212.321	26.28	5.5 LBS/HR	22
MATTER	TYPICAL:	4.00	14.4	0.24 GR/DSCF		4	5	.5 (LB	SS/HR)	212.321	19.80		

IMPORTANT: ATTACH CALCULATIONS, TO THE EXTENT THEY ARE AIR EMISSIONS RELATED, ON WHICH EMISSIONS WERE DETERMINED AND LABEL AS EXHIBIT 220-5.

APPLICATION PAGE

¹CHECK UNCONTROLLED EMISSION RATE BOX IF CONTROL EQUIPMENT IS USED, OTHERWISE CHECK AND PROVIDE THE ACTUAL EMISSION RATE TO ATMOSPHERE, INCLUDING INDOORS. SEE INSTRUCTIONS.

²PROVIDE THE EMISSION RATE THAT WILL BE USED AS A PERMIT SPECIAL CONDITION. THIS LIMIT WILL BE USED TO DETERMINE THE PERMIT FEE.

³PLEASE PROVIDE ANY OTHER EMISSION RATE WHICH IS COMMONLY USED, REQUIRED BY A SPECIFIC LIMITATION OR THAT WAS MEASURED (E.G. PPM, GR/DSCF, ETC.)

⁴DM - DETERMINATION METHOD: 1) STACK TEST, 2) MATERIAL BALANCE, 3) STANDARD EMISSION FACTOR (AP-42 OR AIRS), 4) ENGINEERING ESTIMATE, 5) SPECIAL EMISSION FACTOR (NOT AP-42 OR AIRS)

 $^{^{5}\}mathrm{RATE}$ - ALLOWABLE EMISSION RATE SPECIFIED BY MOST STRINGENT APPLICABLE RULE.

IMPORTANT: ATTACH CALCULATIONS, TO THE EXTENT THEY ARE AIR EMISSIONS RELATED, ON WHICH EMISSIONS WERE DETERMINED AND LABEL AS EXHIBIT 220-6.

APPLICATION PAGE

Printed on Recycled Paper
220-CAAPP

¹ PROVIDE UNCONTROLLED EMISSIONS IF CONTROL EQUIPMENT IS USED. OTHERWISE, PROVIDE ACTUAL EMISSIONS TO THE ATMOSPHERE, INCLUDING INDOORS. CHECK BOX TO SPECIFY.

²CAS - CHEMICAL ABSTRACT SERVICE NUMBER.

³PLEASE PROVIDE ANY OTHER EMISSION RATE WHICH IS COMMONLY USED, REQUIRED BY A SPECIFIC LIMITATION OR THAT WAS MEASURED (E.G., PPM, GR/DSCF, ETC.).

⁴DM - DETERMINATION METHOD: 1) STACK TEST, 2) MATERIAL BALANCE, 3) STANDARD EMISSION FACTOR (AP-42 OR AIRS, 4) ENGINEERING ESTIMATE, 5) SPECIAL EMISSION FACTOR (NOT AP-42 OR AIRS).

⁵RATE - ALLOWABLE EMISSION RATE OR STANDARD SPECIFIED BY MOST STRINGENT APPLICABLE RULE.

	EXHAUST POINT INFORMATION								
THIS	HIS SECTION SHOULD NOT BE COMPLETED IF EMISSIONS ARE EXHAUSTED THROUGH AIR POLLUTION CONTROL EQUIPMENT.								
39)	FLOW DIAGRAM DESIGNATION OF EXHAUST POINT:								
	Uncontrolled Equipment – NA								
	Dust Collector DC-01 – see 2	60 CAAPP for D	C-01						
40)	DESCRIPTION OF EXHAUST POINT (STACK, VENT, ROOF MONITOR, INDOORS, ETC.). IF THE EXHAUST POINT DISCHARGES INDOORS, DO NOT COMPLETE THE REMAINING ITEMS.								
41)	DISTANCE TO NEAREST PLANT BO	UNDARY FROM EXH	HAUST POINT DISCH	IARGE (FT):					
42)	DISCHARGE HEIGHT ABOVE GRAD	Ξ (FT):							
43)	GOOD ENGINEERING PRACTICE (G	EP) HEIGHT, IF KNC	OWN (FT):						
44)	DIAMETER OF EXHAUST POINT (FT TIMES THE SQUARE ROOT OF THE		ON CIRCULAR EXHA	UST POINT, THE DIAMETER IS 1.128					
45)	EXIT GAS FLOW RATE	a) MAXIMUM (AC	CFM):	b) TYPICAL (ACFM):					
46)	EXIT GAS TEMPERATURE	a) MAXIMUM (°F):		b) TYPICAL (°F):					
47)	DIRECTION OF EXHAUST (VERTICA	L, LATERAL, DOWN	WARD):						
48)	LIST ALL EMISSION UNITS AND CC	NTROL DEVICES SE	ERVED BY THIS EXH	IAUST POINT:					
	NAME			W DIAGRAM DESIGNATION					
a)	INAMIL		120	W DIAGRAW DESIGNATION					
b)									
c)									
d)									
e)	on the second								
f)									
g)									
h)									
i)									
	: FOLLOWING INFORMATION NEED ONLY 1) LATITUDE:	BE SUPPLIED IF READ	c) LONGITUDE:						
50)	UTM ZONE:	b) UTM VERTICA	AL (KM):	d) UTM HORIZONTAL (KM):					

NT'S USE
of
) Section Control of the Control of

AIR POLLUTION CONTROL
EQUIPMENT
DATA AND INFORMATION

FOR AGENCY USE ONLY				
ID NUMBER:				
CONTROL EQUIPMENT #:				
DATE:				

THIS FORM MUST BE COMPLETED FOR EACH AIR POLLUTION CONTROL EQUIPMENT. COMPLETE AND PROVIDE THIS FORM IN ADDITION TO THE APPLICABLE ADDENDUM FORM 260-A THROUGH 260-K. A SEPARATE FORM MUST BE COMPLETED FOR EACH MODE OF OPERATION OF AIR POLLUTION CONTROL EQUIPMENT FOR WHICH A PERMIT IS BEING SOUGHT.

SOURCE INFORMATION			
1)	SOURCE NAME:		
	General III, LLC		
2)	DATE FORM PREPARED:	3) SOURCE ID NO. (IF KNOWN):	
	September 2019		

	GENERAL INFORMATION			
4)	NAME OF AIR POLLUTION CONTROL EQUIPMENT AND/OR CONTROL SYSTEM:			
	Dust Collector – DC-01			
5)	FLOW DIAGRAM DESIGNATION OF CONTROL EQUIPMENT AND/OR CONTROL SYSTEM:			
	DC-01			
6)	MANUFACTURER OF CONTROL EQUIPMENT (IF KNOWN):			
	Camfil			
7)	MODEL NUMBER (IF KNOWN):	8)	SERIAL NUMBER (IF KNOWN):	
	GS16			
9)			CONSTRUCTION (MONTH/YEAR):	
	OPERATION AND/OR MOST RECENT MODIFICATION OF THIS EQUIPMENT (ACTUAL OR PLANNED)		June 2020	
	,	b)	OPERATION (MONTH/YEAR):	
		c)	LATEST MODIFICATION (MONTH/YEAR):	
10)	BRIEFLY DESCRIBE MODIFICATION (IF APPLICABLE):			
	NA			

THIS AGENCY IS AUTHORIZED TO REQUIRE THIS INFORMATION UNDER ILLINOIS REVISED STATUTES, 1991, AS AMENDED 1992, CHAPTER 111 1/2, PAR. 1039.5. DISCLOSURE OF THIS INFORMATION IS REQUIRED UNDER THAT SECTION. FAILURE TO DO SO MAY PREVENT THIS FORM FROM BEING PROCESSED AND COULD RESULT IN THE APPLICATION BEING DENIED. THIS FORM HAS BEEN APPROVED BY THE FORMS MANAGEMENT CENTER.

APPLICATION PAGE

Printed on Recycled Paper 260-CAAPP

11)	LIST ALL EMISSION UNITS AND OTHER CONTROL EQUIPMENT DUCTING EMISSIONS TO THIS CONTROL EQUIPMENT:				
	NAME	DESIGNATION OR CODE NUMBER			
	Non-Ferrous Induction Sorters	E-19, E-20, E-25, E-26, E-30, E-31, E37 & E-38			
	~				
_					
12)	DOES THE CONTROL EQUIPMENT HAVE MORE THAN ON	IE MODE OF OPERATION? ☐ YES ☒ NO			
	IF YES, EXPLAIN AND IDENTIFY WHICH MODE IS COVERI A SEPARATE AIR POLLUTION CONTROL EQUIPMENT FO COMPLETED FOR EACH MODE):	ED BY THIS FORM (NOTE: RM 260-CAAPP MUST BE			
13)	IDENTIFY ALL ATTACHMENTS TO THIS FORM RELATED TECHNICAL DRAWINGS):	TO THIS AIR POLLUTION CONTROL EQUIPMENT(E.G.,			
	OPERATING S	SCHEDULE			
14)	IDENTIFY ANY PERIOD WHEN THE CONTROL EQUIPMEN MAINTENANCE AND/OR REPAIRS WHEN THE FEEDING E IN OPERATION:	IT WILL NOT BE OPERATING DUE TO SCHEDULED EMISSION UNIT(S) TO THIS CONTROL EQUIPMENT IS/ARE			
	None				
15a) IDENTIFY ANY PERIODS DURING OPERATION OF THE FE EQUIPMENT IS/ARE NOT USED:	EEDING EMISSION UNIT(S) WHEN THE CONTROL			
	None				
		*			
b	IS THIS CONTROL EQUIPMENT IN OPERATION AT ALL OF FEEDING EMISSION UNIT(S) IS/ARE IN OPERATION?	THER TIMES THAT THE YES NO			
	IF NO, EXPLAIN AND PROVIDE THE DURATION OF THE CONTROL EQUIPMENT DOWNTIME:				
1					
1					

COMPLIANCE INFORMATION					
21) IS THE CONTROL SYSTEM IN (REQUIREMENTS?	COMPLIANCE WITH AL	L APPLICABLE Y	ES NO		
		SCHEDULE OF COMPLIANCE ADI D AND SUBMITTED WITH THIS APP			
22) EXPLANATION OF HOW INITIA	L COMPLIANCE IS TO E	BE, OR WAS PREVIOUSLY, DEMON	STRATED:		
Operating equipment in	accordance with r	manufacturer's recommenda	ations.		
23) EXPLANATION OF HOW ONGO	DING COMPLIANCE WIL	I BE DEMONSTRATED:			
20) EXCENTION OF HOW ONE	71110 001111 EI7 1110E 711E	LE DE DEMONOTO TO TEST			
Operating equipment in	accordance with	manufacturer's recommenda	ations		
Operating equipment in accordance with manufacturer's recommendations.					
		CORDKEEPING AND REPO			
DETERMINE FEES, RULE API	PLICABILITY OR COMP	SSIONS FOR WHICH RECORDS AR LIANCE. INCLUDE THE UNIT OF M CY OF SUCH RECORDS (E.G., HOU	EASUREMENT, THE		
PARAMETER	UNIT OF MEASUREMENT	METHOD OF MEASUREMENT	FREQUENCY		
Operating Hours	Hours	Production Logs	Daily		
Differential Pressure	Inches of WC	Differential Pressure Gauge	Daily		

24b) BRIEFLY DESCRIBE THE METHOD BY WHICH RECORDS WILL BE CREATED AND MAINTAINED. FOR EACH RECORDED PARAMETER INCLUDE THE METHOD OF RECORDKEEPING, TITLE OF PERSON RESPONSIBLE FOR RECORDKEEPING, AND TITLE OF PERSON TO CONTACT FOR REVIEW OF RECORDS:						
METHOD OF TITLE OF TITLE OF PARAMETER RECORDKEEPING PERSON RESPONSIBLE CONTACT PERSON						
Operating Hours	Production Logs	Environmental Manager	Environmental Manager			
Differential Pressure Gauge	Logs	Environmental Manager	Environmental Manager			
	c) IS COMPLIANCE OF THE CONTROL EQUIPMENT READILY DEMONSTRATED BY REVIEW OF THE RECORDS? IF NO, EXPLAIN:					
	d) ARE ALL RECORDS READILY AVAILABLE FOR INSPECTION, COPYING AND/OR YES NO					
SUBMITTAL TO THE AGENCY UPON REQUEST? IF NO, EXPLAIN:						
25a) DESCRIBE ANY MONITORS OR MONITORING ACTIVITIES USED TO DETERMINE FEES, RULE APPLICABILITY OR COMPLIANCE: Differential pressure gauge installed to measure the pressure drop across the filter media.						
b) WHAT OPERATING PAR	AMETER(S) IS(ARE) BEING I	MONITORED (E.G., COMBUSTIO	ON CHAMBER TEMPERATURE)?			
Differential Pressure						
c) DESCRIBE THE LOCATION	ON OF EACH MONITOR (E.G	G., EXIT OF COMBUSTION CHAM	BER):			
Monitor located on	Monitor located on filter housing or adjacent structural support.					

25d	IS EACH MONITOR EQUIPPED WITH	H A RECORDING DEVICE?			□ NO				
	IF NO, LIST ALL MONITORS WITHOU	UT A RECORDING DEVICE:							
e)	IS EACH MONITOR REVIEWED FOR BASIS?	ACCURACY ON AT LEAST A	QUARTERLY	YES	□ NO				
	IF NO, EXPLAIN:								
f)	IS EACH MONITOR OPERATED AT A OPERATION?	ALL TIMES THE CONTROL EC	QUIPMENT IS	IN XES	□ №				
	IF NO, EXPLAIN:								
26)	26) PROVIDE INFORMATION ON THE MOST RECENT TESTS, IF ANY, IN WHICH THE RESULTS ARE USED FOR PURPOSES OF THE DETERMINATION OF FEES, RULE APPLICABILITY, OR COMPLIANCE. INCLUDE THE TEST DATE, TEST METHOD USED, TESTING COMPANY, OPERATING CONDITIONS EXISTING DURING THE TEST AND A SUMMARY OF RESULTS. IF ADDITIONAL SPACE IS NEEDED, ATTACH AND LABEL AS EXHIBIT 260-1:								
	TEST DATE TEST METHOD	TESTING COMPANY	OPERATI CONDITIO		OF RESULTS				
	NA								
_			L	the state of the s	OCCUPATION OF THE OCCUPATION O				
27)	DESCRIBE ALL REPORTING REQUI SUBMITTALS TO THE AGENCY:	REMENTS AND PROVIDE TH	E TITLE AND	FREQUENCY OF REPO	ORT				
	REPORTING REQUIREMENTS	TITLE OF REPORT		FREQUENC	Y				
	Annual Emissions		Annual Emissions Report		у				
	Emission Deviations	Emission Deviat Report	ion	Within 30 days of event					
-		_							
L									

		CAPTURE AND CON	ITROL						
28)	DESCRIBE THE CAPTURE SYSTEM			NSPORT EMISSIONS T	O THE				
	CONTROL EQUIPMENT. INCLUDE	ALL HOODS DUCTS EANS I	TC ALSO IN	ACLUDE THE METHOD	OF CARTURE				

USED AT EACH EMISSION POINT. (IF ADDITIONAL SPACE IS NEEDED, ATTACH AND LABEL AS EXHIBIT 260-2):

Dust Collector fan pulls air from emission unit pickup points through a system of ductwork to the dust collector.

29)	ARE FEATURES OF THE CAPTURE SYSTEM ACCURATELY DEPICTED IN THE FLOW YES NO DIAGRAM CONTAINED IN THIS APPLICATION								
	IF NO, A SKETCH SHOWING THE FEATURES OF THE CAPTURE SYSTEM SHOULD BE ATTACHED AND LABELED AS EXHIBIT 260-3:								
30)	PROVIDE THE ACTUAL (MINIMUM AND TYPICAL) CAPTURE SYSTEM EFFICIENCY, CONTROL EQUIPMENT DESTRUCTION/REMOVAL EFFICIENCY, AND THE OVERALL REDUCTION EFFICIENCY PROVIDED BY THE COMBINATION OF THE CAPTURE SYSTEM AND CONTROL EQUIPMENT FOR EACH REGULATED AIR POLLUTANT TO BE CONTROLLED. ATTACH THE CALCULATIONS, TO THE EXTENT THEY ARE AIR EMISSIONS RELATED, ON WHICH THESE EFFICIENCIES WERE BASED AND LABEL AS EXHIBIT 260-4:								
a)	CONTROL PERFORMANCE:								
	REGULATED AIR		SYSTEM NCY (%)	CONTROL E				REDUCTION ENCY (%)	
	POLLUTANT	(MIN)	(TYP)	(MIN)	(TYF		(MIN)	(TYP)	
i.	Particulate	100	100	99.9	99	.9	99.9	99.9	
ii.									
iii.									
b)	CONCENTRATION, COOLANT TEMPERATURE, ETC.: 0.03 gr/dscf pursuant to 35 IAC 212.315. b) METHOD USED TO DETERMINE EACH OF THE ABOVE EFFICIENCIES (E.G., STACK TEST, MATERIAL BALANCE, MANUFACTURER'S GUARANTEE, ETC.) AND THE DATE LAST TESTED, IF APPLICABLE: DATE LAST TESTED								
ſ	CAPTURE: Engineering					NA			
	CONTROL: Vendor's filte	er performa	nce data			NA			
	OVERALL: Engineering	estimate				NA			
c)	REQUIRED PERFORMANCE		X				· · · · · · · · · · · · · · · · · · ·		
i.	REGULATED AIR POLLUTANT	CAPTURE SYSTEM EFFICIENCY (%)	CONTRO EQUIPME EFFICIEN (%)	NT RE	OVERALI EDUCTIO FFICIENO (%)	N	APPLICAE	BLE RULE	
ii.									
iii.						_	***************************************		

iv	. EXPLAIN ANY OTHER REQUI			QUIPMENT PE	ERFORM	MANCE S	SUCH AS OUT	「LET	

					(31)	EMISSION	INFORMAT	TION					
		¹ ACTUAL EMISSION RATE				ALLOWABLE BY RULE EMISSION RATE				² PERMITTED EMISSION RATE			
REGULATED AIR POLLUTANT		LBS PER HOUR (LBS/HR)	TONS PER YEAR (TONS/YR)	³ OTHER TERMS	³ OTHER TERMS	⁴ DM	⁵ RATE	(UNITS)	APPLICABLE RULES	TONS PER YEAR (TONS/YR)	RATE	(UNITS)	TONS PER YEAR (TONS/YR)
CARBON	MAXIMUM:						()					
MONOXIDE (CO)	TYPICAL:						()					
	MAXIMUM:						()					
LEAD	TYPICAL:						()					
NITROGEN	MAXIMUM:						()				Series and the series of the s	
OXIDES (NOx)	TYPICAL:		Sec	e Applicati Row	on Table 3	3-3	()					
PARTICULATE	MAXIMUM:			ROW	130		()					
MATTER (PART)	TYPICAL:						()					
PARTICULATE MATTER <= 10	MAXIMUM:						()					
MICROMETERS (PM10)	TYPICAL:						()					
SULFUR DIOXIDE	MAXIMUM:						()					
(SO2)	TYPICAL:						()					
VOLATILE	MAXIMUM:						()			TANNON SUMMANNAN PANNAN		
ORGANIC MATERIAL (VOM)	TYPICAL:						()					
OTHER, SPECIFY:	MAXIMUM:						()					
	TYPICAL:						()					
EXAMPLE:	MAXIMUM:	5.00	21.9	0.3 GR/DSCF	=	1	6.0 (LBS/HR)	212.321	26.28	5.5	LBS/HR	22
PARTICULATE MATTER	TYPICAL:	4.00	14.4	0.24 GR/DSCF	₹	4	5.5 (LBS/HR)	212.321	19.80			

IMPORTANT: ATTACH CALCULATIONS, TO THE EXTENT THEY ARE AIR EMISSIONS RELATED, ON WHICH EMISSIONS WERE DETERMINED AND LABEL AS EXHIBIT 260-5.

- 1 PROVIDE CONTROLLED EMISSIONS (E.G., THE EMISSIONS THAT WOULD RESULT AFTER ALL CONTROL AND CAPTURE EFFICIENCIES ARE ACCOUNTED FOR).
- 2 PROVIDE THE EMISSION RATE THAT WILL BE USED AS A PERMIT SPECIAL CONDITION. THIS LIMIT WILL BE USED TO DETERMINE THE PERMIT FEE.
- 3 PLEASE PROVIDE ANY OTHER EMISSION RATE WHICH IS COMMONLY USED, REQUIRED BY A SPECIFIC LIMITATION OR THAT WAS MEASURED (E.G. PPM, GR/DSCF, ETC.)
- 4 DM DETERMINATION METHOD: 1) STACK TEST, 2) MATERIAL BALANCE, 3) STANDARD EMISSION FACTOR (AP-42 OR AIRS), 4) ENGINEERING ESTIMATE, 5) SPECIAL EMISSION FACTOR (NOT AP-42 OR AIRS)
- 5 RATE ALLOWABLE EMISSION RATE SPECIFIED BY MOST STRINGENT APPLICABLE RULE.

		(32)	HAZARDOUS	AIR POLLUTAN	T EMISSION II	NFORMATION		
HAP INFORM	MATION			1ACTUAL EMIS		ALLOWABLE BY RULE		
NAME OF HAP EMITTED	² CAS NUMBER		POUNDS PER HOUR (LBS/HR)	TONS PER YEAR (TONS/YR)	³ OTHER TERMS	⁴DM	⁵RATE OR STANDARD	APPLICABLE RULE
		MAXIMUM:						
		TYPICAL:						
		MAXIMUM:						
		TYPICAL:	7					
		MAXIMUM:	See Appl	ication Table 3-	8			
		TYPICAL:	- 0007166					
		MAXIMUM:						
		MAXIMUM:						
		TYPICAL:						
		MAXIMUM:						
		TYPICAL:						
		MAXIMUM:						
		TYPICAL:						
		MAXIMUM:						
		TYPICAL:					A	
		MAXIMUM:						
		TYPICAL:						
		MAXIMUM:						
		TYPICAL:						
		MAXIMUM:						
		TYPICAL:						
EXAMPLE:	a december of the second	MAXIMUM:	10.0	1.2		2	98% by wt control device	CFR 61
Benzene	71432	TYPICAL:	8.0	0.8		2	leak-tight trucks	61.302(b),(d)

IMPORTANT: ATTACH CALCULATIONS, TO THE EXTENT THEY ARE AIR EMISSIONS RELATED, ON WHICH EMISSIONS WERE DETERMINED AND LABEL AS EXHIBIT 260-6.

- 1 PROVIDE CONTROLLED EMISSIONS (E.G., THE EMISSIONS THAT WOULD RESULT AFTER ALL CONTROL AND CAPTURE EFFICIENCIES ARE ACCOUNTED FOR).
- 2 CAS CHEMICAL ABSTRACT SERVICE NUMBER.
- PLEASE PROVIDE ANY OTHER EMISSION RATE WHICH IS COMMONLY USED, REQUIRED BY A SPECIFIC LIMITATION OR THAT WAS MEASURED (E.G., PPM, GR/DSCF, ETC.).
- 4 DM DETERMINATION METHOD: 1) STACK TEST, 2) MATERIAL BALANCE, 3) STANDARD EMISSION FACTOR (AP-42 OR AIRS, 4) ENGINEERING ESTIMATE, 5) SPECIAL EMISSION FACTOR (NOT AP-42 OR AIRS).
- RATE ALLOWABLE EMISSION RATE OR STANDARD SPECIFIED BY MOST STRINGENT APPLICABLE RULE.

-	E	EXH.	AUST POINT	INFORMATION					
33)	DESCRIPTION OF EXHAUST POINT (STACK, VENT, ROOF MONITOR, INDOORS, ETC.). IF THE EXHAUST POINT DISCHARGES INDOORS, DO NOT COMPLETE THE REMAINING ITEMS.								
	Circular discharge stack, unobstructed, venting vertically								
34)	i) DISTANCE TO NEAREST PLANT BOUNDARY FROM EXHAUST POINT DISCHARGE (FT):								
	Approximately 875 feet		T ₁						
35)	DISCHARGE HEIGHT ABOVE GRADE	E (FT):						
	Approximately 47 feet								
36)) GOOD ENGINEERING PRACTICE (GEP) HEIGHT, IF KNOWN (FT):								
37)	DIAMETER OF EXHAUST POINT (FT TIMES THE SQUARE ROOT OF THE			N CIRCULAR EXHAL	UST POINT, THE DIAMETER IS 1.128				
	Approximately 2 feet								
38)	EXIT GAS FLOW RATE	a)	MAXIMUM (AC	FM):	b) TYPICAL (ACFM):				
			12,000		12,000				
39)	EXIT GAS TEMPERATURE	a)	MAXIMUM (°F)	:	b) TYPICAL (°F):				
	2		ambient		ambient				
40)	DIRECTION OF EXHAUST (VERTICAL	L, LA	ATERAL, DOWN	WARD):					
	Vertical								
41)	LIST ALL EMISSION UNITS AND COI	NTRO	DL DEVICES SE	RVED BY THIS EXH	AUST POINT:				
	NAME			ELO:	W DIA ORAM DEGIONATION				
a)	Dust Collector			DC-01	W DIAGRAM DESIGNATION	\dashv			
b)						-			
c)									
d)									
e)									
f)									
g)									
42)	WHAT PERCENTAGE OF THE CONT	TROL	EQUIPMENT E	MISSIONS ARE BEI	NG DUCTED TO THIS EXHAUST POINT				
	100					1			
43)	IF THE PERCENTAGE OF THE CON NOT 100%, THEN EXPLAIN WHERE								
L									
	FOLLOWING INFORMATION NEED ONLY	BE S	UPPLIED IF READ	ILY AVAILABLE.					
448	a) LATITUDE:			b) LONGITUDE:					
	Approximately 41° 41' 02' N			Approximat	tely 87° 32' 54' N				
45)	UTM ZONE:	b)	UTM VERTICA	AL (KM):	c) UTM HORIZONTAL (KM):				

ILLINOIS ENVIRONMENTAL PROTECTION AGENCY DIVISION OF AIR POLLUTION CONTROL-PERMIT SECTION P.O. BOX 19506 SPRINGFIELD, ILLINOIS 62794-9506

FOR APPLICA	ANT'S USE
Revision No.:	
Date:	
Page:	of
Source Designation:	

SUPPLEMENTAL FORM
AIR POLLUTION CONTROL
EQUIPMENT
FILTER (260C)

FOR AGENCY USE ONLY	
ID NUMBER:	
CONTROL EQUIPMENT #:	
DATE:	

.,	FLOW DIAGRAM DESIGNAT		NFOR	MATION								
.,		ION OF FILTER:	DATA AND INFORMATION									
	The company of the co	ION OF FILTER.										
	Dust Collector DC-01											
-,	FILTER CONFIGURATION (CHECK ONE):	OPEN PRESSURE		CLOSED PRESSURE	☐ CLOSED SUCTION							
		OTHER, SPECIFY:										
		_										
3)	DESCRIBE FILTER MATERIA	AL:										
1	Laminated polyester											
4)	FILTERING AREA			AIR TO CLOTH RATIO								
	(SQUARE FEET):		(FEET/MIN):								
	5,200			2.31:	1							
6)	CLEANING METHOD	SHAKER REV	ERSE A	IR PULSE AIR	☐ PULSE JET							
		OTHER, SPECIFY:										
. /	NORMAL RANGE OF PRESSURE DROP:	то		(INCH H₂O)								
8a)	INLET EMISSION STREAM F	PARAMETERS:										
			_	MAX	TYPICAL							
	MOISTURE CONTENT (% E	BY VOLUME):		ambient	ambient							
	PARTICULATE INLET LOADING (GRAINS/SCF):			varies	varies							
b)	MEAN PARTICLE DIAMETER	R (MICRONS):										
			varie	es								

THIS AGENCY IS AUTHORIZED TO REQUIRE THIS INFORMATION UNDER ILLINOIS REVISED STATUTES, 1991, AS AMENDED 1992, CHAPTER 111 1/2, PAR. 1039.5. DISCLOSURE OF THIS INFORMATION IS REQUIRED UNDER THAT SECTION. FAILURE TO DO SO MAY PREVENT THIS FORM FROM BEING PROCESSED AND COULD RESULT IN THE APPLICATION BEING DENIED. THIS FORM HAS BEEN APPROVED BY THE FORMS MANAGEMENT CENTER.

APPLICATION PAGE

FOR APPLICANT'S USE

9) FILTER OPERATING PARAMETI	FRS:		
-,		DURING MAXIMUM OPERATION OF FEEDING UNIT(S)	DURING TYPICAL OPERATION OF FEEDING UNIT(S)
INLET FLOW RATE (SCFM):		12,000	12,000
INLET GAS TEMPERATURE (DE FAHRENHEIT):	GREES	ambient	ambient
EFFICIENCY (PM REDUCTION):		>99.90	>99.90
EFFICIENCY (PM10 REDUCTION	N):	>99	>99
10) HOW IS FILTER MONITORED FOR INDICATIONS OF DETERIORATION (E.G., BROKEN BAGS)?	CONTINUOUS OPACITY	⊠ PRESSURE DROP	ALARMS-AUDIBLE TO PROCESS OPERATOR
	☐ VISUAL OPACITY	READINGS, FREQUENCY: _	
	OTHER, SPECIFY	:	
11) DESCRIBE ANY RECORDING D	EVICE AND FREQUENC	Y OF LOG ENTRIES:	
Operating logs			
12) DESCRIBE ANY FILTER SEEDIN	NG BEING PERFORMED	:	
None			

Construction Permit Application for New Scrap Metal Recycling Facility

General III, LLC 11600 South Burley Chicago, Illinois 60614

September 20, 2019

APPENDIX B

ROLL MEDIA FILTER STACK TEST REPORT GENERAL II, LLC – CHICAGO, ILLINOIS (FORMERLY GENERAL IRON INDUSTRIES, INC.) PERFORMED MAY/JUNE 2018

June 25, 2018

R17421-3

Compliance Tracker, AE-18J
Air Enforcement and Compliance Assurance Branch
US Environmental Protection Agency - Region 5
77 W Jackson Boulevard
Chicago, IL 60604

Copy on Electronic Media Delivered to USEPA Region V Chicago, Illinois

Shredder Emissions Test Report - Total Hydrocarbons, Particulate, and Metals General Iron Industries, Inc. - 1909 N. Clifton Avenue - Chicago, Illinois 60614

To Whom This May Concern:

On behalf of General Iron Industries, Inc. (General Iron), please find attached the report of total hydrocarbon (THC), filterable particulate matter (PM) and metals emissions testing from the existing hammermill shredder located at General Iron Industries in Chicago, Illinois.

These tests were performed in response to requirements specified in the United States Environmental Protection Agency's (USEPA's) Request to Provide Information Pursuant to the Clean Air Act (information request) dated November 16, 2017, and in accordance with the USEPA approved test protocol dated May 23, 2018.

The attached test report was prepared to provide the required information identified in Appendix B, Item 7 of the above-referenced USEPA information request.

In addition to the testing required by the information request, General Iron voluntarily decided to surpass the USEPA testing requirements and perform an impact assessment for the metals emissions on the surrounding community. The results of this analysis show that metals emissions from the shredder are far below the identified health-based standards, as described in Section 5 of the attached report.

Based on the results of the required emissions testing and the additional metals impact evaluation, we can reasonably conclude that:

- Actual THC emissions from the shredder over the past 5 years were less than 89 tons
 per year, which demonstrates that emissions from this shredder do not exceed the
 current VOC major source threshold of 100 tpy.
- PM/PM₁₀ rate of 1.9 lb/hour is well below the limits in the current IEPA Lifetime Operation Permit.
- Evaluation of the metals, as described above, demonstrates that related off-site impacts are far below the health-based standards identified in Section 5.

If you have any questions, or require any additional information please do not hesitate to contact Mr. Jim Kallas, Environmental Manager for General Iron 847-508-9170 (jim@general-iron.com) or me at 630-393-9000 (jpinion@rka-inc.com).

Yours very truly,

RK & Associates, Inc.

John G. Pinion

Principal Engineer

Shredder Emissions Test Report for Total Hydrocarbons, Particulate, and Metals

General Iron Industries, Inc. – Chicago, Illinois IEPA Bureau of Air Site ID No.: 031600BTB June 25, 2018

R17421-3

Prepared for:
General Iron Industries, Inc.
1909 N. Clifton, Avenue
Chicago, Illinois 60614

Submitted to:

Compliance Tracker, AE-18J
Air Enforcement and Compliance Assurance Branch
US Environmental Protection Agency - Region 5
77 W Jackson Boulevard
Chicago, IL 60604

2 South 631 Route 59 Suite B Warrenville, Illinois 60555 Phone: 630-393-9000

Fax: 630-393-9111

TABLE OF CONTENTS

1.0	INT	RODUCTION	1
	1.1	Facility Location	2
	1.2	Project Contact Information	2
	1.3	Report Certification	3
2.0	SUI	MMARY OF RESULTS	6
		THC Emissions	6
		2.1.1 THC Test Results	6
		2.1.2 Process and Control Equipment Data – THC Testing	9
		2.1.3 Errors During Testing	11
		2.1.4 Deviation of Reference Test Methods	11
		2.1.5 Production Rates During Testing	11
	2.2	PM/Metals Emissions	11
	(m) 1 (m)	2.2.1 PM/Metals Test Results	11
		2.2.2 Process and Control Equipment Data – PM/Metals THC Testing	15
		2.2.3 Errors During Testing	17
		2.2.4 Deviation of Reference Test Methods	17
		2.2.5 Production Rates During Testing	18
		2.2.6 Metals Audit Samples	18
3.0	FAC	CILITY OPERATIONS	19
220	3.1	Hammermill Shredder and Operating Parameters	19
		Cyclone and Roll Filter PM Control System	20
		Shredder Throughput	20
40		MPLING AND ANALYTICAL PROCEDURES	22
1	4.1		
		PM and Metals Emissions Testing	-
		Appendices (detailed testing information)	
5.0	HE	ALTH EFFECTS SCREENING FOR METALS	23
-		Air Dispersion Modeling	23
	5.2		24
	3.2	5.2.1 Non-Carcinogenic Metals	24
		5.2.2 Carcinogens Metals	25
	5.3		25
	7. 25.	Conclusions	25
	ACT OF SER	- Secretary and the secretary of the secretary of the secretary desired and the secretary secretarity and the secretary secretary secretary secretary secretarity secretary secr	BECK 15

B-4

Table of Contents

FIGURES		
Figure 1	Site Location Map	4
Figure 2	Site Layout Diagram	4
Figure 3	Shredder Flow Diagram	2
TABLES		
Table 2-1	Summary of Shredder THC Emission Testing – May 25, 2018	3
Table 2-2	Measured Response Factors for VOC Exempt Compounds	-
Table 2-3	Summary of Shredder Feed Rates for THC Emission Testing	4
Table 2-4	Shredder Water Injection Rates for THC Emission Testing	1
Table 2-5	Shredder Motor Amperage for THC Emission Testing	1
Table 2-6	Summary of Shredder PM/Metals Emissions Testing – June 13 & 14	13
Table 2-7	Summary of Shredder Feed Rates for PM/Metals Emissions Testing	1:
Table 2-8	Summary of PM/Metal Emission Factors	1
Table 2-9	Shredder Water Injection Rates for PM/Metals Emissions Testing	1
Table 2-10	Shredder Motor Amperage for PM/Metals Emissions Testing	1.
Table 5-1	Comparison to NR 445 for Metals for Both Carcinogens and	
	Non-Carcinogens	2
APPENDI	CES	
Appendix A	Report of VOC Emission Testing on the Shredder Exhaust at the General Iron Facility	
. ibbanani i	Located in Chicago, Illinois Prepared by Stack Test Group, Inc.	
Appendix E	Test Report Particulate Matter and Total Select Metals	
The second of	Hammermill Shredder General Iron Industries, Inc Chicago, Illinois, prepared by	
	Montrose Air Quality Services and Dated June 21, 2018	

1.0 INTRODUCTION

General Iron Industries, Inc. (General Iron) is an existing scrap metal recycling facility located at 1909 I	٧.
Clifton Avenue, Chicago, Illinois (see Figure 1). General Iron receives and shreds mixed recyclable	
metal in various forms to produce uniform grades of ferrous and non-ferrous metals. Existing scrap	
handling and processing activities include receiving, sorting, shredding, metal separation and recovery of	of
ferrous and nonferrous metals.	

General Iron currently operates under an Illinois Environmental Protection Agency (IEPA) Lifetime Operating Permit (Application No. 81050001; Site ID No. 031600BTB) most recently revised and reissued on September 1, 2004.

General Iron received a Request to Provide Information Pursuant to the Clean Air Act (Information Request) from the United States Environmental Protection Agency (USEPA) requiring that General Iron conduct emissions testing to quantify emissions for total hydrocarbons, methane, ethane, particulate matter (PM), and metals from its hammermill shredder.

Specifically, in Appendix B, Item 1 of the information request, USEPA is requiring General Iron to ...

... perform emission testing at the facility to determine:

- a. The total gaseous organic compound emission rate as volatile organic compounds (VOC) of the hammermill shredder using EPA Reference Methods 1 – 4 and Method 25A. Methane and ethane concentrations shall be determined using Method 18 and subtracted from the total hydrocarbon concentration measured following Method 25A to determine VOC concentrations;
- Particulate Matter emission rate using EPA Reference Methods 1 4 and Method 5; and,
- Metal emission rates of the hammermill shredder using EPA Methods 1 4 and Method 29.

A revised protocol, dated May 23, 2018, was submitted to USEPA and approved. Testing for total hydrocarbon (THC) was performed by Stack Test Group on May 25, 2018, in accordance with the approved protocol. Testing for PM and Metals was performed by Montrose Environmental Services on June 13 and 14, 2018, in accordance with the approved protocol.

In addition to the testing required by the information request, General Iron voluntarily decided to surpass the USEPA testing requirements and perform an impact assessment for the metals emissions on the surrounding community. The results of this analysis show that metals emissions from the shredder are far below the identified health-based standards, as described in Section 5 of the attached report.

B-6

Introduction

Based on the results of the required emissions testing and the additional metals impact evaluation, we can reasonably conclude that:

- Actual THC emissions from the shredder over the past 5 years were less than 89 tons
 per year, which demonstrates that emissions from this shredder do not exceed the
 current VOC major source threshold of 100 tpy.
- PM/PM₁₀ rate of 1.9 lb/hour is well below the limits in the current IEPA Lifetime Operation Permit.
- Evaluation of the metals, as described above, demonstrates that related off-site impacts are far below the health-based standards identified in Section 5.

The testing was witnessed by Mr. Scott Connolly, Environmental Engineer, from USEPA Region V and at USEPA's request, by Mr. Kevin Mattison, a stack testing specialist from Illinois Environmental Protection Agency (IEPA).

The Information Request requires that a complete report of emissions be submitted within 30 days of completion of the tests. This test report fulfills this requirement.

1.1 Facility Location

General Iron is located at 1909 N Clifton Avenue in Chicago (Cook County) Illinois as shown in Figure 1. A Facility Layout map is presented in Figure 2. Facility contact information is provided in Section 1.2.

1.2 Project Contact Information

Business Name:

General Iron Industries, Inc.

Source Location:

1909 N. Clifton Avenue - Chicago, Illinois 60614

Cook County Illinois

Latitude/Longitude

41,915823° N / -87,658231" W -

Intersection of N Clifton Ave. and N Kingsbury Street - Front Gate

Office/Mailing Address:

1909 N. Clifton Avenue - Chicago, Illinois 60614

General Iron

Mr. Jim Kallas - Environmental Manager

Contact:

847-508-9170 - jim@general-iron.com

IEPA Site ID No.:

031600BTB

SIC Code:

5093 - Scrap and Waste Materials

NAICS Code:

423930 - Recyclable Material Merchant Wholesalers

THC Emission Testing

Stack Test Group

Contractor

1500 Boyce Memorial Drive - Ottawa, Illinois 61350

815-433-0545

PM/Metals Emissions

Montrose Air Quality Services, LLC

Testing Contractor

1370 Brummel Avenue

Elk Grove Village, Illinois 60007

630-860-4740

RKA Contact for

John Pinion - Principal Engineer

Emission Testing

2S631 Route 59, Suite B - Warrenville, Illinois 60555

630-393-9000

jpinion@rka-inc.com

Introduction

1.3 Report Certification

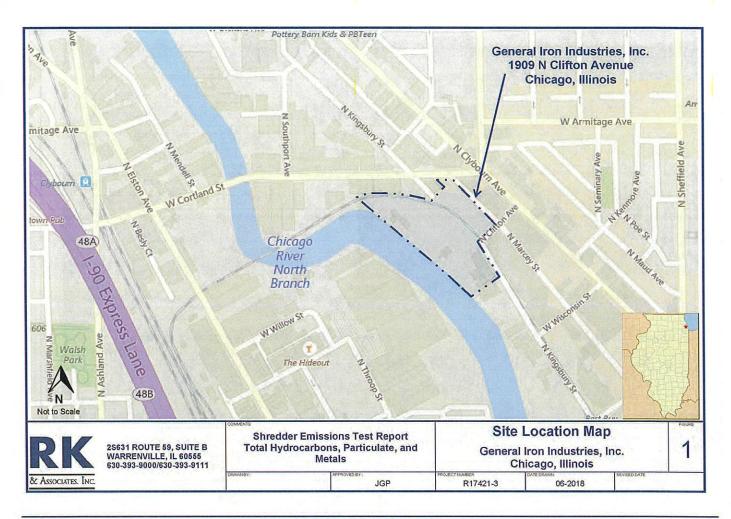
The Certification Statement required by the Information Request for all submittals is provided below.

Certification Statement:

I certify under penalty of law that I have examined and am familiar with the information in the enclosed documents, including all attachments. Based on my inquiry of those individuals with primary responsibility for obtaining the information, I certify that the statements and information are, to the best of my knowledge and belief, true and complete. I am aware that there are significant penalties for knowingly submitting false statements and information including the possibility of fines or imprisonment pursuant to Section 113(c)(2) of the Glean Air Act and 18 U.S.C. §§ 1001 and 1341.

Signature:

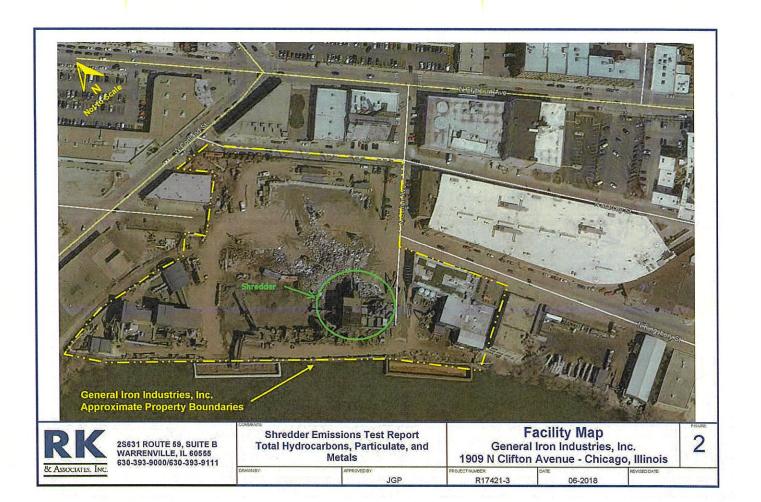
Date:


6/25/18

Name:

Attachment:

Shredder Air Emission Test Report


General Iron Industries, Inc. - Chicago, Illinois

General Iron Industries, Inc. Chicago, Illinois Shredder Emissions Test Report for Total Hydrocarbons, Particulate, and Metals June 25, 2018

B-9

GI0000186

General Iron Industries, Inc. Chicago, Illinois Shredder Emissions Test Report for Total Hydrocarbons, Particulate, and Metals June 25, 2018

B-10

GI0000187

5

2.0 SUMMARY OF RESULTS

Detailed testing reports of THC and PM/Metals are presented in Appendices A and B respectively. THC emissions are discussed in Section 2.1 and PM/Metals emissions are discussed in Section 2.2.

2.1 **THC Emissions**

THC Test Results 2.1.1

THC testing was performed by Stack Test Group on May 25, 2018. Detailed information from sample collection and analyses is presented in Stack Test Group's report presented in Appendix A of this document.

Table 2-1 below presents a summary of THC emission testing including the shredder feed rate, Uncorrected and Corrected THC emissions, and the corrected THC emission factor.

Table 2-1 Summary of Shredder THC Emission Testing - May 25, 2018^a General Iron - Chicago, Illinois

Parameter	Run 1	Run 2	Run 3	Average
Date:	5/25/2018	5/25/2018	5/25/2018	49
Start Time:	08:35AM	09:49AM	11:05AM	
Finish Time:	09:35AM	10:48 AM	12:26 PM	
Shredder Feed Rate (tph):	396.34	389.69	384.37	390.13
Stack Diameter, inches:	50	50.	50	
Barometric Pressure, inches Hg:	29,33	29.33	29,33	
Static Pressure in Stack, Inches H2O:	-0.81	-0.81	-0.81	
Duration of Sample, minutes:	60	60	60	
Stack Gas Temperature, degrees F:	114.1	116,8	119.1	116.7
% Carbon Dioxide:	0.2	0.2	0.1	0.2
% Oxygen:	20.5	20.5	20.7	20.6
% Moisture:	4.1	3.77	3.86	3.91
Stack Gas Flow Rate, DSCFM:	60,258	60,953	61,197	60,803
VOC Calculations (Uncorrected)	PER MUNICIPAL A	Territoria di		199501-
PPMvw as Propane:	281.0	169.9	270.3	240.4
LBS/DSCF	3.21E-05	1,94E-05	3.09E-05	2.75E-09
LBS/HR	121.0	73.7	117.9	104.2
THC from VOM-Exempt Compounds	and the state of t	The state of	11 1 1 1 1 1	
PPMvw as Propane (see Table 2-2):	10,7	28.0	27.6	20.1
VOC Calculations (Corrected)	100	Beneficial (1 En	
PPMvw as Propane:	268.8	146.6	241.4	218.9
LBS/DSCF	3.07E-05	1.67E-05	2.76E-05	2.50E-09
LBS/HR	115.72	63.61	105,27	94.8
LB-THC/TON SHREDDER FEED	0.2920	0.1632	0.2739	0.243

a. See Appendix C of Stack Test Group THC Test Report attached in Appendix A of this document.

B-11

Chicago, Illinois

Uncorrected THC represents the 'raw' THC emissions measured during the test using Method 25A. No methane or ethane was detected in the samples collected.

Integrated exhaust gas samples were collected in Tedlar bags during each THC test run. Stack Test Group submitted the Tedlar Bag samples to DAT Laboratory in Plain City, Ohio. The gas samples were analyzed in accordance with USEPA Method TO-15 for the purposes of identifying compounds in the exhaust that are specifically exempt from the federal definition of Volatile Organic Compound (VOC) in 40 CFR 51.100(s).

The laboratory then prepared a 100 ppm sample of each VOC-exempt compound that had a three-sample average that exceeded the method detection limit. These samples were sent to Stack Test Group to measure an instrument response factor for each compound using the same Method 25A analyzer used during the testing. An instrument response factor is the ratio of the ppm of VOC-exempt compound to the corresponding ppm of THC. The average concentration of VOC-exempt compounds identified in the three TO-15 samples were then multiplied by the corresponding compound-specific instrument response factor to determine the concentration (ppm) of THC that could be subtracted from the raw data.

The total THC corresponding to the VOC-exempt compounds was then subtracted from the raw THC and is reported as the 'Corrected THC'. Table 2-2 identifies the VOC-Exempt compounds subtracted from the raw THC data.

The corrected THC, in Table 2-1 above, is the final result from these tests. Dividing the corrected THC (lb/hr) by the gross shredder feed rate (tph) yields a THC emission factor in units of lb-THC per ton of shredder feed. The shredder feed rate for the THC tests consisted of 21.3% end of life vehicles (ELVs) and 78.7% mixed recyclable metals. The average THC emission factor for this set of tests (as shown in Table 2-1 above) is 0.2430 lb/ton.

This emission factor may be applied to past actual shredder material feed rates to estimate past actual THC emissions. Information previously submitted in response to the EPA 114 Information Request included actual monthly shredder feed rates (tons per month) from July 2012 through December 2017. The maximum 12 consecutive month shredder feed rate was 729,790 tons from April 2016 through March 2017. Based on the above, application of the measured THC emission factor to the maximum annual shredder feed rate yields a maximum actual annual THC emission rate of 88.68 tons, which demonstrates that actual emissions from the shredder do not exceed the current VOC major source threshold of 100 tpy.

Table 2-2

Measured Response Factors for VOC Exempt Compounds^a

General Iron - Chicago, Illinois

	Concentration in Sample	FID Response (ppm)				Measured Response
VOM Exempt Compound	PPM	Trial 1	Trial 2	Trial 3	Average	Factor
Chloromethane	100	67.1	67.0	67.0	67.0	0.67
Freon 22	100	47.50	47.70	47.80	47.70	0.48
Freon 12	100	117.60	117.40	117.80	117.60	1.18
Freon 152a	100	114.90	115.00	115.00	115.00	1.15
Freon 134a	100	114.80	115.10	115.20	115.00	1.15
Octamethycyclotetrasiloxane	100	114.80	114.90	114.90	114.90	1.15
Acetone	Response	Factor obtained	from Instrum	ent Manufac	turer	
Methylene Chloride	Response	Factor obtained	from Instrum	ent Manufac	turer	
Tetrachloroethylene	Response Factor obtained from Instrument Manufacturer					
Freon 11	Sample of Freon 11 was not available. The Freon 11 response factor is an estimated resonse factor based on the results of other Freon response factor testing				and the second second	

a. See Appendix G of Stack Test Group THC Test Report attached in Appendix A of this document for details.

Corrected THC by Removal of VOC-Exempt Compounds^d General Iron - Chicago, Illinois

VOM Exempt Compound	Parameter	Run 1	Run 2	Run 3	Average	Response Factor
chile and and	TO-15 (PPM)	0.02	0.02	0.02	0.02	0.67.8
Chloromethane	Adjusted THC (PPM)	0.01	0.01	0.01	0.01	0.67
Freon 22	TO-15 (PPM)	8,34	2.83	0.00	3.72	0.48 8
Freon 22	Adjusted THC (PPM)	3,98	1,35	0.00	1.78	0.48
Freon 12	TO-15 (PPM)	0.88	0.41	0.89	0.73	1.18 "
Freon 12	Adjusted THC (PPM)	1.03	0.48	1.05	0.85	1,18
A/4.2.466-	TO-15 (PPM)	0.00	3.84	1.56	1.80	115
Freon 152a	Adjusted THC (PPM)	0.00	4.42	1.79	2.07	1.15
Freon 134a	TO-15 (PPM)	0.02	0.02	0.02	0.02	To Sara
	Adjusted THC (PPM)	0.02	0.02	0.02	0.02	1.15
S	TO-15 (PPM)	2,14	0.00	0.00	0,71	1.15
Octamethycyclotetrasiloxane	Adjusted THC (PPM)	2,46	0.00	0.00	0.82	
*<	TO-15 (PPM)	2.71	14.73	29,91	15.80	0.75
Acetone	Adjusted THC (PPM)	1.95	10.61	21.54	11.40	0.72
Color Description	TO-15 (PPM)	0.22	0.18	0.18	0,20	1,00
Methylene Chloride	Adjusted THC (PPM)	0.24	0.20	0,20	0.20	1.00
#75 Mr. 10 M	TO-15 (PPM)	0.03	0.03	0.04	0.03	4 20 1
Tetrachloroethylene	Adjusted THC (PPM)	0.04	0.04	0.05	0.04	1,30
e a car	TO-15 (PPM)	2.00	10.21	5.98	6.10	0.48
Freon 11	Adjusted THC (PPM)	0.95	4.87	2.85	2.90	0.48
PARK CO	TO-15 (PPM)	3.29	3.10	3,40	3.26	0.33
Methane	Adjusted THC (PPM)	1.10	1.03	1,13	1.09	0.33
- And Auto-	TO-15 (PPM)	0.63	0.45	0.46	0,51	0.00
Ethane	Adjusted THC (PPM)	0.42	0.30	0.30	0.34	0.66
Total THC from	VOC Exempt Compounds	12,20	23,33	28.94	21.52	

- a. Measured instrument response factor.
- b. Instrument response factor from instrument manufacturer.
- c. Instrument response factor for Freon 11 is conservatively assumed to be equal to the resonse factor for Freon 22.
- d. See Appendix Cof Stack Test Group THC Test Report attached in Appendix A of this document for details.

Uncorrected THC	PPM	281.0	169.9	270.3	240.4
Corrected THC	PPM	268.8	146.6	241.4	218.9

General Iron Industries, Inc. Chicago, Illinois Shredder Emissions Test Report for Total Hydrocarbons, Particulate, and Metals June 25, 2018

2.1.2 Process and Control Equipment Data – THC Testing

The following presents the process and control equipment data recorded during the test.

Shredder Feed Rate:

Table 2-3 presents a summary of shredder feed rate. A calibrated belt scale measures the total ferrous metal produced by the shredding operation. Based on recent facility operating data, the ferrous production rate is multiplied by a factor of 1.33 to estimate the gross shredder feed rate.

Table 2-3
Summary of Shredder Feed Rates for THC Emission Testing
General Iron Industries - Chicago, Illinois

		Test Data from May 25, 2018				
Parameter	Units	Run 1	Run 2	Run 3	Average	
Pollutant		THC	THC	THC	THC	
Test Method:	1.0	25A	25A	25A	25A	
Start Time:	. 1	8:35 AM	9:49 AM	11:05 AM		
Stop Time:	11.0	9:35 AM	10:49 AM	12:26 PM		
Interruptions:		None	None	Note 1		
Duration:	minutes	60.0	60.0	60.0	60.0	
Ferrous Metal Produced During Test Run	tons/hour	298	293	289	293	
Factor to Convert Ferrous Produced to Gross Shredder Feed Rate	ton of gross feed ton of ferrous produced	1.33	1,33	1.33	1,33	
Hourly Gross Feed Rate to Shredder	tons/hour	396.3	389.7	384.4	390.1	
Number of ELVs 2 Processed During Three Test Runs		189.00				
Average Weight of ELVs Processed ³	ton/ELV	1.32				
Tons of ELVs Fed	tons	248.9				
Average Weight of ELVs Fed as % of Gross Shredder Feed	%	21.3%				

- 1. Run 3 testing was interrupted twice due to loss of feed to the shredder;
 - 11:19 to 11:30 AM (11-minutes) due to a feed roll jam
 - 11:33 to 11:43 AM (10-minutes) due to a feed discharge conveyor jam.
- 2. ELV = End of Life Vehicle.
- A total of 201 ELVs (264.75-tons) were stockpiled for this test. These values were derived from summing the number of ELVs
 and corresponding weight of each load of ELVs. These data demonstrate that the average weight of ELVs stockpiled for this
 test was 1.32-tons.

End of life vehicles (ELVs) were fed to the shredder during this test. Based on recent operating data, the facility estimates that approximately 20% of total shredder feed is comprised of ELVs. The goal during this test was for ELVs to make up approximately 20% of the gross shredder feed rate.

ELVs were stockpiled for this test. The gross weight and number of ELVs in each incoming load of ELVs placed in the stockpile was recorded. A total of 201 ELVs weighing 264.75 tons were stockpiled for processing during the THC testing. The average weight of ELVs in this stockpile was 1.32 tons.

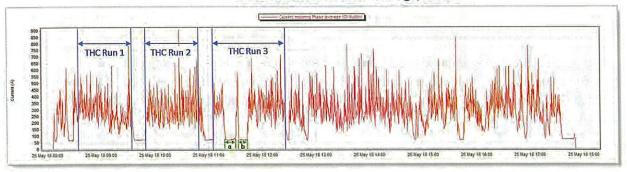
Ferrous production is electronically monitored in the control room from a totalizer on the calibrated belt scale. The value from the totalizer was manually recorded at the start and end of each test to identify the total mass of ferrous scrap produced. This value was multiplied by the conversion factor of 1.33 to

estimate the gross shredder feed rate. During testing, the number of cars fed to the shredder was manually recorded. A total of 189 cars (248.9 tons) were fed to the shredder during the three THC test runs.

As shown in Table 2-3 above, the total tons of material processed during the three tests was 1,170.4 tons, which included 248.94 tons of ELVs. Based on the above, ELVs comprised 21.3% of the total mass of material process in the shredder. This is consistent with recent levels of ELV processing.

Shredder Water Injection:

Water is injected into the shredder as a safety measure. Heat from shredding converts the water to steam. The steam expands to displace ambient air from the interior of the shredder to reduce the volume of oxygen in the shredder to minimize the potential for deflagrations. The water feed rate is manually controlled such that the non-metal material discharged from the shredder contains some moisture. Water feed rate was manually recorded during the THC emissions tests. The average water injection rates from each THC test is shown in Table 2-4 below.


Table 2-4
Shredder Water Injection Rates
General Iron Industries - Chicago, Illinois

Test	Date	gpm
Run 1	5/25/18	42
Run 2	5/25/18	41
Run 3	5/25/18	41

Shredder Motor Amperage:

The amperage of the electric motor that powers the shredder is electronically recorded. Motor amperage is a function of the type and rate of material fed to the shredder. As shown in Table 2-5 below, the motor amperage indicates that the type and rate of material fed to the shredder was consistent during all three THC test runs.

Table 2-5 Shredder Motor Amperage General Iron Industries - Chicago, Illinois

General Iron Industries, Inc. Chicago, Illinois Shredder Emissions Test Report for Total Hydrocarbons, Particulate, and Metals June 25, 2018

Shredder Emissions Capture:

An emissions capture hood is suspended over the top of the shredder. The hood is equipped with rubber curtains that extend downward to the top of the shredder to minimize the open area. The only opening to atmosphere is at the shredder feed chute, which is blocked by the feed rolls and incoming material. The placement of the hood and the air flow is maintained to minimize the amount of steam escaping the hood.

Although it is not possible to directly, or indirectly, measure the capture efficiency of the hood, it was the opinion of the USEPA and IEPA inspectors observing the test, that the hood appeared to provide > 95% capture of steam created in the shredder.

2.1.3 Errors During Testing – THC Testing

There were no errors during THC emission testing.

2.1.4 Deviation of Reference Test Methods - THC Testing

There were no deviations from the reference test methods as described in the approved test protocol.

2.1.5 Production Rates During Testing – THC Testing

The shredder production rate during THC testing is presented in Section 2.1.2 above.

2.2 PM/Metals Emissions

2.2.1 PM/Metals Test Results

PM/Metals emissions testing was performed using a single Method 29 sampling apparatus. Combining PM and Metals into a single test apparatus was approved by USEPA and IEPA observers on site at the initiation of testing on June 13, 2018. PM/Metals emissions testing was performed by Montrose Air Quality Services on June 13 and 14, 2018. Detailed information from sample collection and analyses is presented in the Montrose Air Quality Services test report presented in Appendix B of this document.

Table 2-6 below presents a summary of PM and Metals emissions testing including the shredder feed rate. PM emission rates averaged 1.9 lb/hr, which is significantly below the permitted PM emission limits from the current Lifetime Operation Permit of 67 lb/hr.

All of the filterable PM is assumed to be PM₁₀ based on the performance of the roll media filter, therefore, measured filterable PM is assumed to be PM₁₀. The reported hourly PM/PM10 emission rate of 1.9 lb/hr is also significantly below the permitted PM₁₀ emission limit from the current Lifetime Operation Permit of 34 lb/hr.

B-16

Table 2-6 Shredder PM/Metals Emissions Summary - June 13 & 14, 2018 General Iron Industries - Chicago, Illinois

Parameter	June 13, 2018 Run 1 lb/hr	June 13, 2018 Run 2 lb/hr	June 13, 2018 Run 3 lb/hr	June 14, 2018 Run 4 lb/hr	June 14, 2018 Run 5 lb/hr	Average Runs 1, 2, 4, 5 lb/hr
Start Time:	11:49	15:15		10:56	13:45	
End Time:	13:40	17:09		12:45	15:33	-
Particulate	1.55	2.09		2.21	1.75	1,90
Antimony	0.0000667	0.0000874		0.0000778	0.0000504	0.0000706
Arsenic	0.0000300	0.0000351		< 0.0000238	< 0.0000237	0.0000282
Barium	0.000551	0.00109	Run 3 failed the posttest leak	0.000469	0.000411	0.000630
Beryllium	< 0.00000583	< 0.00000583	check due to a	< 0.00000595	<0.00000592	< 0.0000059
Cadmium	0.000398	0.000231	broken glass	0.000226	0.000188	0.0002608
Chromium	0.000288	0.000365	probe liner. With the concurrence	0.000289	0,000235	0.0002943
Cobalt	< 0.0000233	0.0000318	of the IEPA	< 0.0000238	< 0.0000237	0,0000257
Copper	0,000315	0.000714	observer on site	0.000369	0.00109	0.0006220
Lead	0.00105	0.00171	leak check, Run 3	0.00114	0.000727	0.0011568
Manganese	0.000857	0.00111	was deemed to be	0.00114	0.000738	0,0009613
Nickel	0.000349	0.000588	invalid and samples were not	0.000284	0.000198	0.000355
Phosphorus	0.00388	0.00451	submitted for	0.00319	0.00292	0,00363
Selenium	0.000149	0.000269	analysis.	<0.0000238	0.0000434	0.0001213
Thallium	< 0.0000233	< 0.0000233		<0.0000238	< 0.0000237	< 0.0000235
Silver	0.0000233	0.0000233		0.000337	< 0.0000237	0.0001018
Zinc	0.0705	0.0795		0.0654	0.0563	0.0679
Mercury	0.0291	0.0117		0.0368	0.00243	0.0200

Table 2-7 identifies the average shredder feed rate from Runs 1, 2, 4, and 5.

Table 2-7 Summary of Shredder Feed Rates for PM and Metals Emission Testing
General Iron Industries - Chicago, Illinois

		Test Data from June 13 & 14, 2018					
Parameter	Units	Run 1	Run 2	Run 4	Run 5	Average	
Pollutant		PM/Metals	PM/Metals	PM/Metals	PM/Metals	PM/Metal:	
Test Method:		M29	M29	M29	M29	M29	
Start Time:		11:49 AM	3:15 PM	10:56 AM	1:45 PM		
Stop Time:		1:40 PM	5:09 PM	12:45 PM	3:33 PM		
Test Run Dura <mark>tion (Includes traverse change)</mark>		111,0	114.0	109.0	108.0		
Sample Collection Time	minutes	96.0	96.0	96,0	96.0		
Shredder Feed Interruptions		None	None	None	None		
Hourly Rate of Ferrous Metal Production	tons/hour	303.38	303.89	300,00	304.04	302.83	
Factor to Convert Ferrous Produced to Gross Shredder Feed	ton of gross feed ton of ferrous produced	1,33	1.33	1.33	1.33	1.33	
Gross Feed to Shredder During Testing Period	tons/hour	403.50	404.18	399.00	404.37	402.76	
Hourly Rate of ELVs Fed to Shredder	tons/hour	70.33	74.08	91.10	85.05	80.14	
ELVs Fed as % of Gross Shredder Feed	%	17.4%	18.3%	22.8%	21.0%	19.9%	
Average Weight of ELVs Processed ³	ton/ELV	1.46	1,45	1.44	1.55	1.48	
No. of ELVs Fed	# of ELVs	89	97	118	95	100	

^{1.} ELV = End of Life Vehicle.

As shown in Table 2-7 above, the demonstrated gross shredder feed rates were consistent with the targeted gross feed rate of 400 tph. ELVs ranged from 17.4% of gross shredder feed in Run 1 to 22.8% of gross shredder feed in Run 4. The average ELV feed rate was 19.9% of the gross shredder feed rate, which was consistent with the targeted ELV feed rate of 20%.

PM and Metals emission factors were calculated by dividing the average hourly emission rate by the average hourly shredder gross feed rate. Table 2-9 presents a summary of PM and Metal emission factors.

The PM and Metal emission factors in Table 2-8 can be combined with the past maximum actual annual shredder feed rate identified in Section 2.1.1 above to estimate maximum annual emissions from the shredder.

Table 2-8 Shredder PM/Metals Emission Factors General Iron Industries - Chicago, Illinois

Parameter	June 13, 2018 Run 1 lb/ton of Feed	June 13, 2018 Run 2 lb/ton of Feed	June 13, 2018 Run 3 lb/ton of Feed	June 14, <mark>2</mark> 018 Run 4 lb/ton of Feed	June 14, 2018 Run 5 lb/ton of Feed	Average Runs 1, 2, 4, 5 lb/ton of Feed
Shredder Feed Rate (tph)	403.50	404.18		399.00	404,37	402.76
Particulate	3.84E-03	5.17E-03		5.54E-03	4.33E-03	4.72E-03
Antimony	1.65E-07	2.16E-07		1,95E-07	1.25E-07	1,75E-07
Arsenic	7.43E-08	8,68E-08		5,96E-08	5.86E-08	6.99E-08
Barium	1,37E-06	2,70E-06		1,18E-06	1.02E-06	1.56E-06
Beryllium	1.44E-08	1.44E-08		1,49E-08	1.46E-08	1.46E-08
Cadmium	9.86E-07	5,72E-07		5.66E-07	4,65E-07	6.47E-07
Chromium	7.14E-07	9.03E-07		7.24E-07	5,81E-07	7.31E-07
Cobalt	5.77E-08	7,87E-08		5,96E-08	5.86E-08	6.37E-08
Copper	7.81E-07	1.77E-06		9.25E-07	2.70E-06	1,54E-06
Lead	2,60E-06	4,23E-06		2.86E-06	1.80E-06	2,87E-06
Manganese	2,12E-06	2.75E-06		2.86E-06	1.83E-06	2,39E-06
Nickel	8,65E-07	1,45E-06		7.12E-07	4,90E-07	8.80E-07
Phosphorus	9,62E-06	1,12E-05		7.99E-06	7,22E-06	9.00E-06
Selenium	3.69E-07	6.66E-07		5,96E-08	1.07E-07	3.00E-07
Thallium	5.77E-08	5.76E-08		5.96E-08	5.86E-08	5.84E-08
Silver	5.77E-08	5.76E-08		8.45E-07	5.86E-08	2.55E-07
Zinc	1.75E-04	1.97E-04		1,64E-04	1.39E-04	1.69E-04
Mercury	7.21E-05	2.89E-05		9.22E-05	6.01E-06	4.98E-05

2.2.2 Process and Control Equipment Data - PM/Metals Emissions Testing

The following presents the process and control equipment data recorded during the PM/Metals emissions testing.

Shredder Feed Rate:

Table 2-7 above, presents a summary of shredder feed rate. A calibrated belt scale measures the total ferrous metal produced by the shredding operation. Based on recent facility operating data, the ferrous production rate is multiplied by a factor of 1.33 to estimate the gross shredder feed rate.

End of life vehicles (ELVs) were fed to the shredder during this test. Based on recent operating data, the facility estimates that approximately 20% of total shredder feed is comprised of ELVs. The goal during this test was for ELVs to make up approximately 20% of the gross shredder feed rate.

ELVs were stockpiled for these tests. The gross weight and number of ELVs in each incoming load of ELVs placed in the stockpile was recorded.

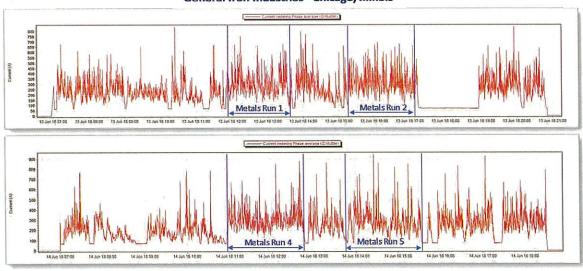
Ferrous production is electronically monitored in the control room from a totalizer on the calibrated belt scale. The value from the totalizer was manually recorded at the start and end of each test to identify the total mass of ferrous scrap produced. This value was multiplied by the conversion factor of 1.33 to estimate the gross shredder feed rate. During testing, the number of cars fed to the shredder was manually recorded. A total of 320.42 tons of ELVs were fed to the shredder during the four PM/Metals test runs.

The total tons of material shredded during the four PM/Metals tests was 1,611.05 tons, which included 320.42 tons of ELVs. Based on the above, ELVs comprised 19.9% of the total mass of material processed in the shredder. This is consistent with recent ELV processing rates.

Shredder Water Injection:

Water is injected into the shredder as a safety measure. Heat from shredding converts the water to steam. The steam expands to displace ambient air from the interior of the shredder to reduce the volume of oxygen in the shredder to minimize the potential for deflagrations. The water feed rate is manually controlled such that the non-metal material discharged from the shredder contains some moisture. Water feed rate was manually recorded during the PM/Metals emissions tests. The average water injection rates from each PM/metals emission test is shown in Table 2-9 below.

B-20


Table 2-9 **Shredder Water Injection Rates** PM/Metals Emission Testing General Iron Industries - Chicago, Illinois

Test	Date	gpm
Run 1	6/13/18	45
Run 2	6/13/18	47
Run 4	6/14/18	45
Run 5	6/14/18	46

Shredder Motor Amperage:

The amperage of the electric motor that powers the shredder is electronically recorded. Motor amperage is a function of the type and rate of material fed to the shredder. As shown in Table 2-10 below, the motor amperage indicates that the type and rate of material fed to the shredder was consistent during all four PM/Metals test runs.

Table 2-10 Shredder Motor Amperage PM/Metals Emissions Testing - June 13 & 14, 2018 General Iron Industries - Chicago, Illinois

Shredder Emissions Capture:

An emissions capture hood is suspended over the top of the shredder. The hood is equipped with rubber curtains that extend downward to the top of the shredder to minimize the open area. The only opening to atmosphere is at the shredder feed chute, which is blocked by the feed rolls and incoming material. The placement of the hood and the air flow is maintained to minimize the amount of steam escaping the hood.

Although it is not possible to directly, or indirectly, measure the capture efficiency of the hood, it was the opinion of the USEPA and IEPA inspectors observing the test, that the hood appeared to provide > 95% capture of steam created in the shredder.

2.2.3 Errors During Testing - PM/Metals

There were no process errors or upsets during PM/Metals emissions testing.

During Test Run 2, an operator mistakenly advanced the roll filter material approximately three times further than when the filter material is advanced automatically. Because there were no obvious visual indications that the samples were affected by this error, a decision was made to send the Run 2 samples for analysis and conduct a fourth test run in the event that analytical results confirmed that this error negatively impacted the samples. In the event that analysis confirmed no impacts to Run 2, the test would include the results of all four test runs in the reported average results. The USEPA and IEPA observers present during Run 2 concurred with this decision.

Test Run No. 3 was performed on June 13, 2018, however, the post-test leak check failed due to a broken glass liner in the sampling probe. A failed leak check indicates that ambient air may have been leaking into the sampling apparatus diluting or replacing process exhaust gas. Due to the failed leak check, this run was considered invalid and the samples were not sent for analysis. The IEPA observer, present at the time of the leak check concurred with this conclusion and agreed that the samples should not be sent for analysis.

There were no other errors identified during the PM /Metals emissions testing.

2.2.4 Deviation of Reference Test Methods - PM/Metals

Prior to the initiation of PM/Metals emissions testing, the USEPA and IEPA observers were consulted to request approval to measure PM emissions as part of the Method 29 Metals test to eliminate the need to perform a separate Method 5 test for PM. Combining PM and Metals in a single Method 29 test is done routinely, has no impact on the validity of either test, and is not prohibited by Method 29. When PM and Metals are combined in a Method 29 test, the filter and front half probe are first dried and weighed to obtain the PM emissions data and are then digested and analyzed for metals in accordance with Method 29. Upon receipt of verbal approval from both the USEPA and IEPA observers, a single Method 29 test was performed to measure both PM and Metals. Based on the above, this change was not a deviation from the reference method but was a deviation from the protocol.

There were no other deviations from the reference test methods as described in the approved test protocol.

2.2.5 Production Rates During Testing – PM/Metals

The shredder production rate during PM and Metals emissions testing is presented in Section 2.2.2 above.

B-22

2.2.6 Metals Audit Samples

A total selected metals (TSM) audit sample, prepared by ERA, was sent to the laboratory selected for analysis with the metals test samples. The purpose of the audit sample is to evaluate the accuracy of the analytical results. Detailed results from analysis of the audit sample are presented in Montrose Air Quality Services' report in Appendix B of this document.

The results of the audit sample were 'Acceptable' for all metals with the exception of Cadmium. The term 'Acceptable' as used above refers only to the accuracy and reliability of the analytical results and do not infer noncompliance with any applicable limit. The audit sample was prepared with 20.6 ug/filter of cadmium and required an analytical response of 16.5 to 24.7 ug/filter. The reported value from the lab was 16 ug/filter, which is just below the minimum required response. ERA verbally reported the result to Kevin Mattison of IEPA.

It is our understanding that the metals laboratory will conduct additional analyses to determine the potential source of the error. It is possible that the cadmium results reported in this document may be adjusted slightly based on any correction factor that may be identified. In the event that the reported cadmium results require adjustment, a supplemental report will be prepared and submitted to USEPA and IEPA. Because the error was so small, Kevin Mattison of IEPA indicated that any change to the reported cadmium emission rates would be minimal.

All other metals in the audit sample had an "Acceptable Result."

3.0 FACILITY OPERATIONS

The following information presents a process description of the hammermill shredder and roll filter particulate control device operated during THC and Metals emissions testing.

3.1 Hammermill Shredder and Operating Parameters

The actual shredder feed rate is dependent on the type and consistency of the feed material and the ability to consistently feed the mixed recyclable metal to the shredder. Based on monthly shredder operating data (monthly tons of material processed and daily operating hours) previously submitted to USEPA in response to the 114 Information Request, during the period of July 2012 through December 2017, the average gross shredder feed rate was approximately 313.9 tph. This value more accurately represents long term operation of the shredder.

During the limited testing period, General Iron selected a target gross shredder feed rate of 400 tph (with 20% comprised of ELVs). Data presented in Sections 2.1.2 and 2.2.2 of this test report demonstrate that the facility met its targeted feed rate. It should be noted however, that it is not possible to sustain a feed rate of 400 tph over a long period of time because the amount of material entering the facility on a day-to-day basis is not sufficient to sustain this rate.

Based on recent operating data, the facility estimates that shredder feed is comprised of approximately 20% end of life vehicles (ELVs) and 80% mixed recyclable metal. Shredded metal is discharged by conveyor and travels over two drum magnets, to separate ferrous and non-ferrous metal. Ferrous metal is then routed through a Z-Box separator to remove any remaining light materials. Metal discharged from the Z-Box separator is then conveyed to stockpiles. In the Z-Box separator, shredded metal passes through a rising column of air. A fan and ducting system maintains an upward flow of air through the Z-Box (counter current to the direction of the shredded metal). Shredded metal falls downward through the rising column of air and is discharged at the bottom of the Z-Box over a conveyorized belt scale. The belt scale measures the net mass of shredded metal produced (tph). The amount of ferrous metal produced is multiplied by a factor of 1.33, based on recent operating data, to estimate the gross shredder feed rate.

The upward flow of air through the Z-Box removes light material. The air stream carries this light material to an integral cyclone that disengages the material from the air stream. Light material is discharged from the bottom of the cyclone where it is collected for further processing. The majority of the air exiting from the top of the cyclone is recycled through the fan, back to the bottom of the Z-Box.

The shredder is equipped with an integral water injection system to minimize the potential for fires and deflagrations within the shredder. The shredder is located within an enclosure consisting of curtain walls on four sides, and solid plate and metal grating on the roof. The water injection rate is monitored by a flow meter and the flow rate is electronically recorded.

A flow diagram of the shredder is presented in Figure 3.

3.2 Cyclone and Roll Filter PM Control System

An exhaust hood, located above the shredder, is equipped with rubber curtains extending downward to the top of the shredder to enhance emissions capture efficiency. An induced draft fan draws exhaust from the shredder through the exhaust hood, a cyclone and roll media filter for control of particulate matter before being discharged to the atmosphere.

The roll filter is essentially a rectangular section of duct measuring approximately 18 ft by 6 ft. A roll of unused filter material is placed on the supply side of the filter media system and fed through the rectangular section of duct to a take-up roll. The unit is designed so that the air flow passes downward through the filter. The filter periodically advances automatically.

3.3 Shredder Throughput

The feed rate of the shredder is monitored by measuring the production of ferrous metal. A material conversion factor is used to convert ferrous metal produced to gross shredder feed rate. A discussion of the demonstrated shredder feed rate with respect to shredder throughput is presented in Section 3.1 above.

Process Description and Proposed Operating Conditions

Hammermill Shredder Flow Diagram

- A. Shredder Feed Conveyor
- B. Shredder Enclosure
- C. Z-Box
- D. Z-Box Cyclone
- E. Shredder Exhaust Cyclone
- F. Shredder Exhaust Roll media filter and Induced Draft Fan
- G. Test Ports on Horizontal Duct
- H. Ferrous Material Belt Scale
- Shredder Exhaust (exhaust gases discharge to the interior of the shredder enclosure and are released to the atmosphere through an area of expanded metal grating on the roof of the shredder enclosure)

2S631 ROUTE 59, SUITE B WARRENVILLE, IL 60555 630-393-9000 Shredder Emissions Test Report Total Hydrocarbons, Particulate, and Metals

Shredder Flow Diagram General Iron Industries, Inc. – Chicago, Illinois

R17421-3 DATE DRAWN 06-2018

General Iron Industries, Inc. Chicago, Illinois Shredder Emissions Test Report for Total Hydrocarbons, Particulate, and Metals June 25, 2018

JGP

21

B-26

GI0000203

4.0 SAMPLING AND ANALYTICAL PROCEDURES

Sampling and analytical procedures are presented in the THC and PM/Metals test reports presented in Appendix A and B of this document.

4.1 THC Emission Testing

The required detailed sampling and analytical data for THC emission testing is presented in Stack Test Group's detailed test reports presented in Appendix A of this document.

4.2 PM/Metals Emissions Testing

The required detailed sampling and analytical data for PM/Metals emissions testing is presented in Montrose Environmental Service' detailed test reports presented in Appendix B of this document.

4.3 Appendices (detailed testing information)

The required detailed sampling and analytical data for the THC and PM/Metals tests are presented in the detailed test reports presented in Appendix A and B of this document respectively.

5.0 HEALTH EFFECTS SCREENING FOR METALS

The test results required by the USEPA information request are presented in Section 2.2 of this report. General Iron has voluntarily decided to surpass the USEPA testing requirements and provide the following impact assessment for the metals emissions on the surrounding community.

There are no IEPA or USEPA regulations limiting emissions of specific metals or requiring an ambient impact analysis. In an effort to identify a standard for metals emissions, regulations from other states in Region V were reviewed. The State of Wisconsin has a rule regulating the emissions of air toxic pollutants (including metals) that is applicable to facilities that are not subject to other state or federal rules for metals emissions. Wisconsin's air toxics rule (NR 445) sets health-based emission standards for about 550 air toxics, also known as hazardous air pollutants (HAPs), to protect people from air emissions that are known or suspected to cause cancer or other serious health problems. These problems include asthma, respiratory damage, kidney failure, heart failure, infertility, and birth defects. Facilities seeking an air emissions permit in Wisconsin must demonstrate compliance with applicable requirements of this rule in a construction permit application.

NR 445 can be used as a screening tool to assess the potential impacts from metals emissions from the shredder. The standards in NR 445 are based on threshold limit values established by American Conference of Governmental Industrial Hygienists (ACGIH) and USEPA or California Air Resources Board risk factors.

The results of this analysis show that metals emissions from the shredder are far below the healthbased standards identified in NR 445.

In order to use NR 445 as a screening tool for metals emissions from the shredder, the estimated off-site impacts must be identified. For this purpose, and in accordance with NR 445, an air dispersion modeling analysis was performed as described in Section 5.1 below.

5.1 Air Dispersion Modeling

EPA refined dispersion model, AERMOD (version 16216r), was used to predict maximum off-site concentrations of the metals identified by the recent air emission testing program described herein.

Commercially available hourly meteorological data for the years 2012 through 2016, measured at Midway Airport, was used for modeling to predict the maximum 1-Hr, 24-Hr, and annual average concentrations (µg/m³) of each identified organic compound and metals.

Each of General Iron's buildings on the site was set up in the model to take into account building wake effects. Based on the orientation of the shredder exhaust stack, and on advice of IEPA air dispersion

B-28

Health Effects Screening for Metals

modeling experts, the shredder emissions were modeled as a volume source with a unitized pollutant emission rate of 1 lb/hr. Particulate deposition was not included in this modeling analysis. Modeling of shredder emissions was performed using the average shredder feed rate demonstrated during the period of July 2012 through December 2017.

A total 5,568 receptors were identified in the model by establishing a rectangular receptor, centered on the shredder emission point, with grid with spacing of 25-m from the property line out to 500-m and a spacing of 100-m from a distance of 500-m to 2,500-m from the property line. Receptors were also placed on the property line. Based on our experience, this receptor grid was extended to a distance that would ensure that the maximum off-site impacts would be identified (i.e. a maximum ground level impact would not occur further than 2,500-meters from the property line.)

In all cases, the modeling results identified the point of maximum impact at or near the property line. Based on principles of air dispersion modeling, the mathematical relationship between the mass emission rate (lb/hr) from the stack and the maximum off site impact concentration (µg/m³) is identical for all pollutants. Therefore, the off-site impacts for any pollutant can determined simply by multiplying the predicted off-site impact concentration (µg/m³) by the measured mass emission rate in lbs/hr. If the measured mass pollution emission rate is 2 lb/hr, the predicted impact would be twice as much as the modeled impact at an emission rate of 1 lb/hr. The predicted pollutant-specific impacts can then be compared to concentration-based standards, such as those in NR 445.

5.2 WDNR's NR 445 Standards for Metals

According to NR 445.08(2)(b)(c), for each hazardous air contaminant, a permittee shall either limit the ambient air concentration off the source property to less than the ambient air standard concentration allowed under column (g) of the Tables A or B of s. NR 445.07; or not cause an ambient air concentration off the source property that results in an inhalation impact greater than 1×10^{-6} . Specific compounds may have more than one standard based on a non-carcinogenic and carcinogenic health effects.

5.2.1 Non-Carcinogenic Metals

According to NR 445.08(2)(b), for acute and chronic non-carcinogens, any air toxic pollutant that has a standard expressed as an ambient air concentration in Table A or B of s. NR 445.07, the off-property ambient air concentration must be less than the maximum allowable concentration identified in column (g) of the tables.

The modeled maximum off-site concentrations were compared with the allowable concentration ($\mu g/m^3$) in column (g) of NR 445 for the corresponding averaging time period listed in column (h). The results of this analysis show that metals emissions from the shredder are far below the health-based standards identified in NR 445.

Health Effects Screening for Metals

5.2.2 Carcinogenic Metals

According to NR 445.08(2)(c), emissions of carcinogenic air contaminants having a unit risk factor established by either the EPA or the California Air Resources Board shall not result in an ambient air concentration off the source property corresponding to an inhalation impact (or risk) greater than 1 in $1.000.000 (1 \times 10^{-6})$.

The inhalation impact is determined by the following equation:

Inhalation impact = (Inhalation impact concentration annual average) x (Unit risk factor)

where:

inhalation impact concentration annual average is the annual average concentration of a contaminant in (μg/m³)

unit risk factor for the contaminant is the unit risk factor value established by either EPA or the California Air Resources Board and is expressed in (μg/m³)-1

The predicted (modeled) maximum annual concentrations were multiplied by the compounds corresponding unit risk factor, and then compared to a value of 1 in 1,000,000. The results of this analysis show that metals emissions from the shredder are far below the health-based standards identified in NR 445.

5.3 Comparison of Predicted Off-Site Metals Impacts with NR 445

Table 5-1 identifies the predicted maximum off-site metals impacts (ug/m³) to the applicable NR 445 standards for non-carcinogenic and carcinogenic metals identified from the recent metals emissions testing. The measured metal emission rates were calculated using the actual average shredder feed rate demonstrated from July 2012 through December of 2017.

NR 445 identifies standards for all of the identified metals except lead, silver and zinc. The predicted maximum off-site concentrations of all other identified metals were far below the applicable NR 445 standards.

5.4 Conclusions

The results of this analysis show that metals emissions from the shredder are far below the health-based standards identified in NR 445.

B-30

Health Effects Screening for Metals

Table 5-1 Comparison to NR 445 for Metals for Both Carcinogens and Non-Carcinogens

Shredder Metals Emissions from Testing Conducted June 13 & 14, 2018 - General Iron Industries - Chicago, Illinois

Using Average Metal Emission Rates from Runs 1, 2, 4, and 5 (all test runs)

	Mass Emi		Metal Emission		Feed Rate		Maximum ults ⁽³⁾	NR 445 Ambient Air Standard for Non- Carcinogens		NR 445 for Carcinogens			
	Run 1 6/13/2018 lb/hr	Run 2 6/13/2018 lb/hr	Run 4 6/14/2018 lb/hr	Run 5 6/14/2018 lb/hr	Average Runs 1,2,4,5 lb/hr	24 Hour (ug/m³)	Annual (ug/m³)	24 Hour	Annual	Unit Risk Factor		Inhalation Impact ^[4]	Complies with
Metals		Modeled I	Maximum Impa	ct for Unit Emis	ssion (1 lb/hr)	6.45135	0.64704	(ug/m³)	(ug/m³)	(ug/m ³) ⁻¹	Source	< 1.0E-06	NR 445
Antimony	0.0000519	0.0000679	0.0000612	0.0000391	0.0000550	0.0004	0.00004	12.00	NA				Yes
Arsenic	0.0000233	0.0000273	0.0000187	0.0000184	0.0000219	0.0001	0.00001	NA	Carcinogen	0,00430	IRIS	6.10E-08	Yes
Barium	0.0004286	0.0008465	0.0003690	0.0003190	0.000491	0.0032	0,0003	12.00	NA NA				Yes
						0.000000	0.000000	214	Carcinogen	0.00240	IRIS	7.12E-09	Yes
Beryllium	0.00000454	0.00000453	0.00000468	0.00000460	0.00000458	0.000030	0.000003	NA	0.02		-		Yes
Cadmium	0.0003096	0.0001794	0.0001778	0.0001459	0.000203	0.0013	0.0001	NA	Carcinogen	0.00180	IRIS	2.37E-07	Yes
Chromium (1)	0.000224	0,000283	0.000227	0.000182	0.000229	0.0015	0.0001	12.00	NA				Yes
Cobalt	0.0000181	0.0000247	0.0000187	0.0000184	0.0000200	0.0001	0.0000	0.48	NA			Sales in the company of the Control	Yes
Copper	0.000245	0.000555	0.000290	0.000846	0.000484	0.0031	0.0003	24.00	NA	-		- Career Communication of the	Yes
Lead ⁽²⁾	0.00082	0.00133	0.00090	0.00056	0.00090	0.0058	0.0006	NA	NA NA				NA
Manganese	0.000667	0.000862	0.000897	0.000573	0.000750	0.0048	0.0005	4.80	NA NA				Yes
Nickel	0.000272	0.000457	0.000223	0.000154	0.000276	0.0018	0.0002	NA	Carcinogen	0.00026	CAL	4.65E-08	Yes
Phosphorus	0.00302	0.00350	0,00251	0.00227	0.00282	0.0182	0,0018	2,43	NA				Yes
Selenium	0.000116	0.000209	0.000019	0.000034	0.000094	0.0006	0.0001	4.80	NA				Yes
Thallium	0.0000181	0.0000181	0.0000187	0.0000184	0.0000183	0.0001	0.00001	2.40	NA				Yes
Silver ⁽²⁾	0.0000181	0.0000181	0.0002651	0.0000184	0.0000799	0.0005	0.0001	NA	NA				NA
Zinc ⁽²⁾	0.0548	0.0617	0.0515	0.0437	0.0529	0.3415	0.0343	NA	NA				NA
Mercury	0.0226	0.0091	0.0290	0.0019	0.0156	0.1009	0.0101	0.60	0,30	1			Yes

General Iron Industries, Inc. Chicago, Illinois Shredder Emissions Test Report for Total Hydrocarbons, Particulate, and Metals June 25, 2018 26

Shredder Emissions Test Report for Total Hydrocarbons, Particulate, and Metals General Iron Industries, Inc. – Chicago, Illinois IEPA Bureau of Air Site ID No.: 031600BTB

JUNE 25, 2018

APPENDIX A -

Report of VOC Emission Testing on the Shredder Exhaust at the General Iron Facility Located in Chicago, Illinois

Prepared by Stack Test Group, Inc.

Chicago Office: 1500 Boyce Memorial Dr. Ottawa, IL 61350 Phone 815-433-0545 888 STACK TEST Fax 815-433-0592

REPORT OF VOC EMISSION TESTING ON THE SHREDDER EXHAUST AT THE GENERAL IRON FACILITY LOCATED IN CHICAGO, ILLINOIS

Prepared for:

FREEBORN & PETERS, LLC 311 SOUTH WACKER DRIVE SUITE 3000 CHICAGO, IL 60606

Prepared by:

STACK TEST GROUP, INC. 1500 BOYCE MEMORIAL DRIVE OTTAWA, IL 61350

MAY 25, 2018 STACK TEST GROUP, INC. PROJECT NO. 18-3042

Report Prepared By:

Bill J. Byczynski

Principal

Report Reviewed By:

Nicholas Sergenti OSTI

Project Manager

www.stacktestgroup.com • e-mail: info@stacktestgroup.com Offices in Chicago, Indianapolis & Philadelphia

TABLE OF CONTENTS

			Page#			
1.0	Executive Sun	nmary	1			
2.0	Introduction		1			
3.0	Summary of S	ampling Procedures	2			
3.1	Exhaust Gas P 3.1.1 Travers 3.1.2 Gas Co 3.1.2 Moistu	se and Sampling Points composition	2 2 2 2			
3.2	VOC Emission 3.2.1 Sampli 3.2.2 Sample 3.2.3 Calibra	ng Method Duration and Frequency	2 2 3 3			
4.0	Discussion of I	Results I.1 – Shredder Exhaust Test Results	3 4			
APPENDIX A	A	EXAMPLE CALCULATIONS				
APPENDIX I	3	FIELD DATA SHEETS				
APPENDIX (FIELD PARAMETER SHEET				
APPENDIX I		CALIBRATION DATA				
APPENDIX I	3	DATA LOGGER RECORDINGS				
APPENDIX F		CALIBRATION GAS CERTIFICATION SHEETS				
APPENDIX (RESPONSE FACTOR DETERMINA	ATION FOR VOC EXEMPT			
APPENDIX I	H	LABORATORY REPORT FOR EXE	EMPT COMPOUNDS			
APPENDIX I		LOCATION OF SAMPLE PORTS & POINTS				

1.0 EXECUTIVE SUMMARY

On May 25, 2018, The Stack Test Group, Inc. performed volatile organic compound (VOC) emission testing on the shredder exhaust at the General Iron facility located in Chicago, IL. Three one-hour tests were conducted on this source for the VOC emission testing. Presented below are the average results of these tests.

Shredder Exhaust Stack:

VOC Concentration:	240.4 PPM as Propane Uncorrected
VOC Concentration:	104.20 Pounds per Hour Uncorrected
VOC Concentration:	218.9 PPM as Propane Corrected*
VOC Concentration:	94.87 Pounds per Hour Corrected*

^{*}VOC corrected refers to correcting for exempt compounds

2.0 INTRODUCTION

On May 25, 2018, The Stack Test Group, Inc. performed volatile organic compound (VOC) emission testing on the shredder exhaust at the General Iron facility located in Chicago, IL.

Testing was conducted while General Iron personnel operated the shredder and corresponding control equipment under normal conditions. A copy of the operating data is included.

Testing was conducted by Mr. Bill J. Byczynski, Mr. Nicholas Sergenti, Mr. Lee Kennedy and Mr. Benjamin Byczynski of the Stack Test Group, Inc. Testing was under the direction of Ms. Ann M. Zwick of Freeborn & Peters, LLC. Testing was witnessed by Mr. Kevin Mattison of the Illinois Environmental Protection Agency (IEPA) and Mr. Scott Connolly of the U.S. EPA.

A TO-15 sample was integrated simultaneously with the Method 25A testing. The samples were sent to the laboratory and analyzed for exempt VOC compounds per Method TO-15. A response factor was then developed on the FID used in this test series. The response factor for each compound was used in subtracting the exempt VOC compounds from the total VOC readings.

All testing followed the guidelines of U.S. EPA Reference Methods 1 through 4, 25A and TO-15. This report contains a summary of results for the above-mentioned tests and all the supporting field, process, and computer generated data.

At the beginning of the test series, the analyzer was calibrated and then checked for calibration error by introducing zero, low-range, mid-range and high-range calibration gases to the back of the analyzers. Before and after each individual test run, a system bias was performed by introducing a zero and mid-range propane calibration gas to the outlet of the probe. Calibration gases used were U.S. EPA Protocol 1 certified.

3.3.2 Sample Duration and Frequency

The Method 25A train samples were collected in triplicate with each test lasting sixty minutes in duration.

3.3.3 Calibrations

All sampling equipment was calibrated according to the procedures outlined in EPA Reference Method 25A. Copies of the FID calibrations are included in Appendix D.

4.0 TEST RESULTS

Presented in this section are the results of this test series. Test results are reported in Table 4.1. Table 4.1 reports the results for the shredder exhaust including stack gas temperature, percent carbon dioxide and oxygen, percent moisture, molecular weight of the stack gas dry and wet, velocity in feet per second (fps), and flow rate in actual cubic feet per minute (acfin), standard cubic feet per minute (scfin), and dry standard cubic feet per minute (dscfin).

Tables 4.1 also presents the VOC results for the shredder exhaust. The VOC results are presented in terms of parts per million as propane uncorrected, ppm as propane corrected, pounds per standard cubic feet (lb/scf), and pounds per hour (lb/hr). The exempt VOC compounds are also listed in Table 4.1 in terms of ppm. The exempt VOC compounds are subtracted from the total VOC uncorrected ppm to obtain the corrected ppm.

Copies of the calculations used to determine these emission rates may be found in Appendix A. Copies of the field data sheets are presented in Appendix B. Copies of equipment calibrations are presented in Appendix D.

Table 4.1

VOC Results General Iron Chicago, IL 05/25/18 Shredder Exhaust

Test No:	<u>T1</u>	<u>T2</u>	<u>T3</u>	<u>Avg.</u>
Start Time:	08:35 AM	09:49 AM	11:05 AM	
Finish Time:	09:35 AM	10:48 AM	12:26 PM	
Stack Gas Temperature, °F: % Carbon Dioxide: % Oxygen: % Moisture: Molecular Weight dry, lb/lb-Mole: Molecular Weight wet, lb/lb-Mole:	114.1	116.8	119.1	116.7
	0.2	0.2	0.1	0.2
	20.5	20.5	20.7	20.6
	4.10	3.77	3.86	3.91
	28.85	28.85	28.84	28.85
	28.41	28.44	28.42	28.42
Velocity and Flow Results: Average Stack Gas Velocity FPS: Stack Gas Flow Rate, ACFM: Stack Gas Flow Rate, SCFM: Stack Gas Flow Rate, DSCF/HR: Stack Gas Flow Rate, DSCFM:	85.33	86.43	87.20	86.32
	69,834	70,734	71,364	70,644
	62,834	63,341	63,654	63,276
	3,615,492	3,657,182	3,671,800	3,648,158
	60,258	60,953	61,197	60,803
VOC Results (Uncorrected): PPM as Propane: LBS/DSCF: LBS/HR (as Propane):	281.0	169.9	270.3	240.4
	3.21E-05	1.94E-05	3.09E-05	2.75E-05
	120.98	73.74	117.89	104.20
VOC Results (Corrected): PPM as Propane: LBS/DSCF: LBS/HR (as Propane):	268.8	146.6	241.4	218.9
	3.07E-05	1.67E-05	2.76E-05	2.50E-05
	115.72	63.61	105.27	94.87

	R 001348
APPENDIX A	
SAMPLE CALCULATIONS	
B-38	

STG PROJECT No: 18-3042

SAMPLE CALCULATIONS

The tables presenting the results are generated electronically from raw data. It may not be possible to exactly duplicate these results using a calculator. The reference method data, results and all calculations are carried to sixteen decimal places throughout. The final table is formatted to an appropriate number of significant figures.

1. Volume of water collected (wscf)

$$V_{wsid} = (0.04707)(V_{lc})$$

Where:

V_{1c} total volume of liquid collected in impingers and silica gel (ml)

V_{wstd} volume of water collected at standard conditions (ft³)

0.04707 conversion factor (ft³/ml)

2. Volume of gas metered, standard conditions (dscf)

$$V_{mstd} = \frac{(17.64)(V_m)(P_{bar} + \frac{\Delta H}{13.6})(Y_d)}{(460 + T_m)}$$

Where:

P_{bar} barometric pressure (in. Hg)

T_m average dry gas meter temperature (°F)

V_m volume of gas sample through the dry gas meter at meter conditions (ft³) volume of gas sample through the dry gas meter at standard conditions (ft³)

vinsus

Y_d gas meter correction factor (dimensionless)

ΔH average pressure drop across meter box orifice (in. H₂O)

17.64 conversion factor (°R/in. Hg) 13.6 conversion factor (in. H₂O/in. Hg)

460 °F to °R conversion constant

STG PROJECT No: 18-3042

SAMPLE CALCULATIONS (CONTINUED)

3. Volume of gas metered, standard conditions (dscm)

$$V_{mstd(m)} = \frac{\left(V_{mstd(ft)}\right)}{35.35}$$

Where:

$V_{mstd(ft)}$	volume of gas sample through the dry gas meter at standard conditions (ft3)
V _{mstd(m)}	volume of gas sample through the dry gas meter at standard conditions (m ³)
35.35	conversion factor (ft ³ to m ³)
13.6	conversion factor (in H2O/in Hg)

4. Sample gas pressure (in. Hg)

$$P_s = P_{bar} + \left(\frac{P_g}{13.6}\right)$$

Where:

\mathbf{P}_{bar}	barometric pressure (in. Hg)
P_g	sample gas static pressure (in. H ₂ O)
P_s	absolute sample gas pressure (in. Hg)
13.6	conversion factor (in. H ₂ O/in. Hg)

5. Actual vapor pressure (in. Hg)¹

$$P_{r} = P_{s}$$

Where:

 P_{v} vapor pressure, actual (in. Hg) P_{s} absolute sample gas pressure (in. Hg)

6. Moisture content (%)

$$B_{wo} = \frac{V_{wstd}}{V_{mstd} + V_{wstd}}$$

Where:

 B_{wo} proportion of water vapor in the gas stream by volume (%) V_{mstd} volume of gas sample through the dry gas meter at standard conditions (ft³) volume of water collected at standard conditions (ft³)

¹ For effluent gas temperatures over 212°F, P_v is assumed to be equal to P_s.

STG PROJECT No: 18-3042

SAMPLE CALCULATIONS (CONTINUED)

7. Saturated moisture content (%)

$$B_{ws} = \frac{\left(P_{v}\right)}{\left(P_{s}\right)}$$

Where:

Bws proportion of water vapor in the gas stream by volume at saturated conditions (%)

P_s absolute sample gas pressure (in. Hg) P_v vapor pressure, actual (in. Hg)

Whichever moisture value is smaller is used for Bwo in the following calculations.

8. Molecular weight of dry gas stream (lb/lb·mole)

$$M_d$$
 = $M_{CO_2} \frac{\left(CO_2\right)}{\left(100\right)} + M_{O_2} \frac{\left(O_2\right)}{\left(100\right)} + M_{CO+N_2} \frac{\left(CO+N_2\right)}{\left(100\right)}$

Where:

Md dry molecular weight of sample gas (lb/lb·mole) MCO, molecular weight of carbon dioxide (lb/lb·mole)

M_{O2} molecular weight of oxygen (lb/lb·mole)

 $M_{CO}+N_2$ molecular weight of carbon monoxide and nitrogen (lb/lb·mole) CO_2 proportion of carbon dioxide in the gas stream by volume (%)

O₂ proportion of oxygen in the gas stream by volume (%)

CO+N₂ proportion of carbon monoxide and nitrogen in the gas stream by volume (%)

100 conversion factor (%)

9. Molecular weight of sample gas (lb/lb·mole)

$$M_s = (M_d)(1 - B_{wo}) + (M_{H_2O})(B_{wo})$$

Where:

B_{wo} proportion of water vapor in the gas stream by volume M_d dry molecular weight of sample gas (lb/lb·mole)

M_{H2O} molecular weight of water (lb/lb·mole)

Ms molecular weight of sample gas, wet basis (lb/lb·mole)

STG PROJECT No: 18-3042

SAMPLE CALCULATIONS (CONTINUED)

10. Velocity of sample gas (ft/sec)

$$V_{s} = \left(K_{p}\right)\left(C_{p}\right)\left(\sqrt{\overline{\Delta P}}\right)\left(\sqrt{\frac{\left(\overline{T_{s}}+460\right)}{\left(M_{s}\right)\left(P_{s}\right)}}\right)$$

Where:

K_p velocity pressure coefficient (dimensionless)

C_p pitot tube constant

M_s molecular weight of sample gas, wet basis (lb/lb·mole)

P_s absolute sample gas pressure (in. Hg) T_s average sample gas temperature (°F)

V_s sample gas velocity (ft/sec)

 $\sqrt{\Delta P}$ average square roots of velocity heads of sample gas (in. H₂O)

460 °F to °R conversion constant

11. Total flow of sample gas (acfm)

$$Q_a = (60)(A_s)(V_s)$$

Where:

A_s cross sectional area of sampling location (ft²)
Q_a volumetric flow rate at actual conditions (acfin)

V_s sample gas velocity (ft/sec) 60 conversion factor (sec/min)

12. Total flow of sample gas (dscfm)

$$Q_{std} = \frac{(Q_a)(P_s)(17.64)(1 - B_{wo})}{(\overline{T_s} + 460)}$$

Where:

B_{wo} proportion of water vapor in the gas stream by volume

P_s absolute sample gas pressure (in. Hg)

Qa volumetric flow rate at actual conditions (acfm)

Q_{std} volumetric flow rate at standard conditions, dry basis (dscfm)

T_s average sample gas temperature (°F)

17.64 conversion factor (°R/in. Hg)

460 °F to °R conversion constant

STG PROJECT No: 18-3042

SAMPLE CALCULATIONS (CONTINUED)

13. VOC concentration (lb/scf)

$$E_{lb \, l \, sef} = \frac{\left(ppm \, \right) \left(MW\right)}{\left(385.3 \times 10^6\right)}$$

Where:

Elb/scf emission rate

C_{ppm} measured concentration in the gas stream (ppm_v)

MW molecular weight of NMP (99.13)

385.3 conversion factor

14. VOC emission (lb/hr)

$$E_{lb/hr} = (lb/scf)(60)(scfm)$$

Where:

E_{lb/hr} emission rate E_{lb/sef} concentration SCFM flow rate

60_{min/hr} conversion factor

\Box	\sim	\sim	1	2	E 1
\boldsymbol{r}	U	U	п	J	54

APPENDIX B

FIELD DATA SHEETS

FLOW / MOISTURE DATA SHEET

Location: GEN	100 La			
Unit: <u>SHARODA</u>	Outlet	Run:	<u>Vam</u> Testing	Method 1- 4, 25A
Client: General Plant: CHIGAGO I Meter Operator: In // Probe Operator: LM Date: C/35/18 Meter Box No.: 70 Ye: OA78 AH: / 463	\(\) \(\)	Meter Lk Ck Pre: OF 1 @ 13 " Meter Lk Ck Post: OF 1 @ 13 " Pitol Lk Ck: +0.0@ 11 -0.0@ " 6.6 Start Time (approx.): Obio / OB 35 Stop Time (approx.): Q:25 Static Press. (in. H2O): -0.66 Port Length (in.): 5 (0.66) Irist Point (all the way) (in) (o(t))	Duct Dimensions (in.): YO	Bar. Press. (in. Hg): 29.33 Pitot ID No.: ST6-7 O ₂ (dry, vol. %): SATA CO ₂ (dry, vol. %): CO6GET H ₂ O (condensate, ml): 3 H H ₂ O (silica gel, g): 6 Total H ₂ O: HO

Pre Velocity Traverse Moisture Train

Post Velocity Traverse

Traverse	Pitot	Stack Temp, MinuPt. Metered Vol. Sample Dry Car Malar Vol.						Analysis Various and Analysis a	Post Velocity Traverse			
Point	ΔP	7s	5	Metered Vol. (ft ³)	Sample AH	Ory Gr Tmi	is Meter	Exit Temp.	1	Pitot	Stack Temp,	Notes
Number	(in. H2O)		Elapsod Time	387.65	(in.H2O)	(PF)	Titio (°F)	(°F)	Vac	ΔР	Ts	
1	1	113	5	375.8)	イア	7/	70	(5	(in:H20)	(in. H2O)		
2	2.1	113	10.	297, GU		27	70	56	3.0	1.4	116	
3	2,2	1/2	15	399, 46		74	73	72	3.0	<u> </u>	-117	
4	dia	11)	20	403,48		89	75		3.0			
5	2,2	113	25	407,29		96	77	57 59		1.8	116	
6	214	1/4	30	411.19		98	77		3.0	1.1	116	
7	2.5	114	35	415,13		94	80	61	3.0	1.7	116	
8	2,4	116	40	419.08		93	31	62	3.0	1,9	117	
1	9.9	10 Y	45	423.04		48	32	63	3,0	7.0	116	
2	7.3	10/	50	476.94		94	43	63	3.0	1.5	118	
3	2'M	· 108	55	431.01		44	8904	64	<u> 3</u> の 3の	171	113	
4	2.5	108	60	434.02		94	44	60	2),0	(16)	1(9)	
5	2-15	109	\	-	The second secon	CONTRACTOR OF THE PROPERTY OF	The second secon			17	113	
6	24	110								1.6		
7	2.4	105							.,	19	115	
8	2,2	167		il. mar a see a seem					1	2.0	<u> </u>	
		j			A recommend or an artist and province whomas I are	Allendary and the second and the second allendary	Marie a restant more survey and the	alignad a supplication of the same		2.1	118	

Avn 1.6222 110, 94	
84.00	110 14 1

Stack Test Group, Inc.

GI0000222

FLOW / MOISTURE DATA SHEET

Location: General Iron Unit:

Inlet

Testing

Method 1-4, 25A

Client: General Iron	Meter Lk Ck Pre: , OO @ 5 "		
Plant: Chicago, IL	Meter Lk Ck Post: OD \ @ 6 "	- X	Bar, Press. (In. Hg): 24,33
Meter Operator: しい36	Pitot Lk Ck: +00 @ 7.1 -,00@6,6"	- / ? /	Pitot ID No.: STG-7
Probe Operator: /_ \u00f3/	Start Time (approx.): 9:44	Lugar & Hadra	O ₂ (dry, vol. %): SEE
Date: 5/25/14	Stop Time (approx.):	1000 \$ 1000	DATAL-DATA
Meter Box No.: -10	Static Press. (in. H2O):	-	H ₂ O (condensate, ml): 2-7
Ya 1.978	Port Length (in.): 4 10	- \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	H ₂ O (silica gel, g):
ΔH: 1,463	First Point (all the way): (in) (out)	Duct Dimensions (in.): 50	Total H ₂ O: Sy 4O
-		Duct Dimensions (In.): ,50	

Pre Velocity Traverse

Moisture Train

Traverse	ំងរាច់វង	e e visit de la constitución de	\$17.80 m	Meteran Val	10-23/20	sture i rain		V. Pr.	Annahana, w. W. Angles a mandana a man	Post Vel	ocity Traverse	
Point	3.5	Tere	5	(42)	Sample AH	Dry.G. Tml	is Meter Titlo	Exit Temp.	100	Pitot :	Stack Temp	Notes
Number	((n).(H210))	(65)	Elapadd Time	435.08	((h.H20)		(⁹ F)	MEN	Vád	ΔP	J. ∏s	
1	1.9	160	5	439 23	1.7	85	83	50	(in:H20) ১৩	(ta. H2C)	(15)	4.00
2	47	L	10	447,90		/03	96	51	2.0	1.6	1/3	<u></u>
3	LU)		15	446.57		103	36	51	20	1.9	// /	<u> </u>
4	1.8	الله	20	451,79		104	87	.57.	2.0	1, 2	119	
5		116	25	455.86		103	44	.53	2.0	2.0	120	
6	1.7	116	30	460.01		104	49	54	2.0	J.7	190	
7	1,9		35	464,17		(03	49	56	2.0	7.7	130	
8	2.0	116	40	464 33		103	90	57	7.0	45'	120	<u> </u>
1	1,5	118	45	472.06		103	90	58	العراز	3.)	111	
2	[.7	118	50	476,66		19	91	58	7,0	Ž. 0	117	
3	1.6	168	55	480.89		7	92	60	2.0	1.4	118	·
4	(.7	118	60	484.95		0	46	60	2.0	1,5	110	
5	1.4	118								1.6	119	
6	1,9	114								14	178	
8	2.0	118								13	109	
0	2.1	(18	Andrews and a second	and the first of the property of the second				new second	1852 a.z	1.9	101	
		i_									السيد مسالح المستحد	

1.27.19

95.04

116.44 Stack Test Group, Inc.

1,4458

116.82

FLOW / MOISTURE DATA SHEET

Outlet

Inlet

Run:

<u>Vo.M</u> Testing

Method 1-4, 25A

Cilent: (seneral Iron	Meter Lk Ck Pre: , 002 @ 20 "
Plant: Chicago Ti	Meter Lk Ck Post: > 502 @ 10 "
Meter Operator: LWPBR	Pitot Lk Ck: +,00 @ 7,1 -,00 @ 6,5"
Probe Operator: しい	Start Time (approx.): 11:05
Date: 5-15-15	Stop Time (approx.): 17:26
Meter Box No.: 70	Static Press. (in. H2O):
Y ₄ 0.974	Port Length (in.): 410
ΔH: 1.463	First Point (all the way):(in) (opt)

Duct Dimensions (in.): 60

Bar, Press. (In. Hg): 99.33 Pitot ID No.: O2 (dry, vol. %): CO2 (dry, vol. %): DATALOGGER H₂O (condensate, ml): H₂O (silica gel, g): Total H₂O:

		ĹŔ	¥	aic	/CH	У	11	a,	9:	30	,
		4.1		-	717 A =1	MAIL	-				
75	277	MK.	14.4	100	1000	0.18	20.00	33X	950	235	ŒΚ
И	Di-	11811	M2.	3.5	76	98,83	77 W	200	22	220	m
	Tike.	253	12.5	153	23 64	He i	æv	Y.W.	100	152	Иú

Moisture Train

provene environment			Same and the Court of the Court	Error ve pouzza in comme de la		tule Hall	to make the control of the state of the stat	Non		Post Velo	city Traverse	
Juayara Pelit	44.9	Ta-	5	Metered Vol (fP)		Длу.Са Тіті	s Meter Tino	Exit Femp	Pump Vec		Stack Temp, Ts	Notes
Rember	(m9-20)		Elanad/Time	45,49	(in.H2©)	(°F)	(°F)	(°F)	(in:H20)		(YE)	
1	[1.6	(13	5	489,92	1.5	101	91	53	3.0	1.9	170	100
2	(17)	117	10	494.00		167	91	56	3.0	1.9	124	
3	49	119	15	499.25		109	92		3,0	1,7	124	
4	LA.	120	20	502,45		168	93	57	3,0	1, %	125	
55	7.0	170	25	506,67		104	93	61	3.0	1.7	125	
6	2.2	150	30	511.08		99	47	54	3.6	1.8	127	
7	2.2	(70	35	515,24		107	43	64	3.0	1.1	125	
8	21	120	40	519 36		109	93	Con	3,0	1.7	126	
1	2.0	(()	45	523.50		104	94	63	3,0	20	125	
2	7.0	112	50	527.65		10%	94	64	3.0	18	1/8	
3	1.4	11/3	55	531.82		109	95	64	3.0	_16_	1211	
4	1.7	1(9	60	536,22		108	94	64	3,0	17	112	
5	1.6	119								2.0	119	
6	1.5	ાધ								7,0	118	
8	1.9	109								3,6	1, 8	
L	<u> </u>	100	in her in the second	San and the second seco	m en	Samuel Marie Commercial Commercia		**************************************	and a second second second	200	<u>llv</u>	

1.5635 11644

99,68

107510

Stack Test Group, Inc.

R 001357

1.4553

119.10

APPENDIX C

FIELD PARAMETER SHEET

STACK TEST GROUP, INC. Air Quality Services

Exhaust VOC Sampling Train Calculations				
Client: Project No: Date: Source:	General Iron 18-3042 05/25/18 Shredder Exha	ust		
Test No:	<u>T1</u>	<u>T2</u>	<u>T3</u>	Aum
Start Time:	08:35 AM	1 <u>2</u> 09:49 AM	13 11:05 AM	<u>Avg.</u>
Finish Time:	08:35 AM	10:48 AM		
Pitot Cal. Factor:	0.84		12:26 PM	
Meter Calibration Factor:	•	0.84	0.84	
	0.978	0.978	0.978	
Stack Length, inches:	0	0	0	
Stack Width, inches:	0	0	0	
Stack Diameter, inches:	50	50	50	
Barometric Pressure, inches Hg:	29.33	29.33	29.33	
Static Pressure in Stack, Inches H2O:	-0.81	-0.81	-0.81	
Duration of Sample, minutes:	60	60	60	
Meter Start Volume:	387.65	435.08	485.89	
Meter Final Volume:	434.92	484.98	536.22	
Average Meter Pressure, Inches H2O:	1.50	1.50	1.50	1.5000
Average Meter Temperature, degrees F:	84.5	95.04	99.58	93.0
Average Sqrt. Velocity Pressure:	1.4301	1.4458	1.4553	1.4437
Stack Gas Temperature, degrees F:	114.1	116.8	119.1	116.7
% Carbon Dioxide:	0.2	0.2	0.1	0.2
% Oxygen:	20.5	20.5	20.7	20.6
% Carbon Monoxide:	0.0	0.0	0.0	0.0
Liquid Volume Collected, milliliters:	40	38	39	39.0
Sample Train Calculations				
Meter Volume, Actual:	47.270	49.900	50.330	49.167
Meter Volume, STP:	44.093	45.665	45.680	45.146
Volume of Water Vapor Condensed:	1.883	1.789	1.836	1.836
Total Gas Sampled:	45.976	47.454	47.516	46.982
% Moisture:	4.10	3.77	3.86	3.91
Area of Stack, Square Feet:	13,64	13.64	13.64	13.64
% Excess Air at Test Location: Molecular Weight dry, Ib/Ib-Mole:	4710.5 28.85	4710.5 28.85	9913.8 28.84	6444.9 28.85
Molecular Weight wet, Ib/lb-Mole:	28.41	28.44	28.42	28.42
Absolute Stack Gas Pressure, in Hg:	29.27	29.27	29.27	29.27
Velocity and Flow Calculations				
Average Stack Gas Velocity FPS:	85.33	86.43	87.20	86.32
Stack Gas Flow Rate, ACFM:	69,834	70,734	71,364	70,644
Stack Gas Flow Rate, SCFM:	62,834	63,341	63,654	63,276
Stack Gas Flow Rate, DSCF/HR:	3,615,492	3,657,182	3,671,800	3,648,158
Stack Gas Flow Rate, DSCFM:	60,258	60,953	61,197	60,803

VOC Catculations (Uncorrected):				
PPMvw as Propane:	281.0	169.9	270.3	240.4
LBS/DSCF:	3.21E-05	1.94E-05	3.09E-05	2.75E-05
LBS/HR:	120.98	73.74	117.89	104.20
VOC Calculations (Corrected):				
PPM Chloromethane: PPM Chloromethane RF Adjusted:	0.02	0.02	0.02	0.02
	0.01	0.01	0.01	0.01
PPM Freon 22:	8.34	2.83	0.00	3.72
PPM Freon 22 RF Adjusted:	3.98	1.35	0.00	1.78
PPM Freon 12:	0.88	0.41	0.89	0.73
PPM Freon 12 RF Adjusted:	1.03	0.48	1.05	0.85
PPM Freon 152A:	0.00	3.84	1.56	1.80
PPM Freon 152A RF Adjusted:	0.00	4.42	1.79	2.07
PPM Freon 134A:	0.02	0.02	0.02	0.02
PPM Freon 134A RF Adjusted:	0.02	0.02	0.02	0.02
PPM Octamethycyclotetrasiloxane: PPM Octamethycyclotetrasiloxane RF Adjusted:	2.14	0.00	0.00	0.71
	2.46	0.00	0.00	0.82
PPM Acetone: PPM Acetone RF Adjusted:	2.71	14.73	29.91	15.8
	1.95	10.61	21.54	11.4
PPM Methylene Chloride:	0.22	0.18	0.18	0.2
PPM Methylene Chloride RF Adjusted:	0.24	0.20	0.20	0.2
PPM Tetrachloroethylene:	0.03	0.03	0.04	0.0
PPM Tetrachloroethylene RF Adjusted:	0.04	0.04	0.05	0.0
PPM Freon 11**: PPM Tetrachloroethylene RF Adjusted**:	2.000	10.21	5.98	6.1
	0.95	4.87	2.85	2.9
PPM Methane (as Propane):	1.10	1.03	1.13	1.09
PPM Ethane (as Propane):	0.42	0.30	0.30	0.34
PPMv as Propane (Corrected):	268.8	146.6	241.4	218.9
LBS/DSCF (Corrected):	3.07E-05	1.67E-05	2.76E-05	2.50E-05
LBS/HR (Corrected):	115.72	63.61	105.27	94.87

 ^{*} See Appendix G for response factor determinations for each compound.
 ** Freon 11 is an ESTIMATED response factor. The laboratory was not able to obtain a Freon 11 sample in order to develop a response factor by the issuance deadline of this report.

APPENDIX D

CALIBRATIONS

R 001362

General Iron 18-3042 Chicago, Illinois EPA Method 25A Shredder Exhaust Exhaust Stack (1,000 Range)

VOC		Wet
Value	Response	Calibration Error
1145.0	(0.00)	
916.0	927.0	1.20%
506.3	527.0	4.09%
305.0	316.0	3.61%
0.0	1.0	0.09%
	Value 1145.0 916.0 506.3 305.0	Value Response 1145.0 916.0 916.0 927.0 506.3 527.0 305.0 316.0

*Pre Upscale and Corrected Run Average cells must be adjusted if a high or low calibration gas is used for post calibration upscale checks.

***All Drift and Bias calculations for VOC are based off of the most ienient Span value possible (High Cal gas is 80% of Span). May not agree with report values if a more restrictive span is identified.

Туре	Run Average	Pre Zero	Post Zero	*Pre Upscale	Post Upscale	Zero System Blas	Upscale System Bias	Zero Drift	Upscale Drift
Initial System Bias Check									
Run 1	281.0	1.0	10.0	527.0	522.0			0.79%	0.44%
Run 2	169.9	10.0	10.0	522.0	534.0			0.00%	1.05%
Run 3	270.3	10.0	11.0	534.0	529.0			0.09%	0.44%

R 001363

General Iron 18-3042 Chicago, Illinois EPA Method 25A Shredder Exhaust Exhaust Stack (10,000 range)

Response	Calibration Error
	Walter from Strategy (Strategy Control
8 C	Broker was new general state 27
8421.0	0.89%
4861.0	2.55%
2955.0	0.71%
1.0	0.01%
	4861.0

*Pre Upscale and Corrected Run Average cells must be adjusted if a high or low calibration gas is used for post calibration upscale checks.

***All Drift and Bias calculations for VOC are based off of the most lenient Span value possible (High Cal gas is 80% of Span). May not agree with report values if a more restrictive span is identified.

Туре	Run Average	Pre Zero	Post Zero	*Pre Upscale	Post Upscale	Zero System Bias	Upscale System Blas	Zero Drift	Upscale Drift
Initial System Blas Check	Paragraphic Committee							10 an	
Run 1	281.0	1.0	10.0	4861.0	4900.0			0.08%	
Run 2	169.9	10.0	10.0	4861.0	4900.0			0.00%	0.37%
Run 3	270.3	10.0	11.0	4861.0	4900.0			0.01%	0.37%

General Iron 18-3042 Chicago, Illinois 5/25/2018 Shredder Exhaust

Analyte	Oxygen	FR01877524-MD60280000000	Calibration
Initial Calibration	Value	Response	Error
High	23,20	23.20	0.00%
Mid	11.91	12.00	0.39%
Low (Zero)	0.00	0.00	0.00%

*Corrected Run Average and Upscale System Bias cell formulas must be adjusted if the high calibration gas is used for post calibration upscale checks.

Туре	Run Average	Pre Zero	Post Zero	Pre Upscale	Post Upscale	Corrected Run Average	Zero System Blas	*Upscale System Blas	Zero Drift	Upscale Drift
Initial System Bias Check			0.0		12.0		0.00%	0.00%		
Run 1	20.7	0.0	0.0	12,0	12.0	20.5	0.00%	0.00%	0.00%	0.00%
Run 2	20.7	0.0	0.0	12.0	12.0	20.5	0.00%	0.00%	0.00%	0.00%
Run 3	20.7	0.0	0.1	12.0	11.9	20.7	0.43%	0.43%	0.43%	0.43%

Low (Zero)	0.00	0.10	
High	24.01 12.15	24,00 12,00	0.04% 0.62%
Initial Calibration	Value	Response	Calibration Error

*Corrected Run Average and Upscale System Bias cell formulas must be adjusted if the high calibration gas is used for post calibration upscale checks.

			1							
Туре	Run Average	Pre Zero	Post Zero	Pre Upscale	Post Upscale	Corrected Run Average	Zero System Blas	Upscalo System Blas	Zero Drift	Upscale Drift
Initial System Bias Check			0.0		12.0		0.42%	0.00%		
Run 1	0.2	0.0	0.0	12.0	12.0	0.2	0.42%	0.00%	0.00%	0.00%
Run 2	0.2	0.0	0.1	12.0	12.0	0.2	0.00%	20.00%	0.42%	0.00%
Run 3	0.2	-0.1	0.1	12,0	11.8	0.1	0.00%	0.83%	0.00%	
_ widerus commence them. It has been commented as	la serie se con contracto e encore	Supplied to the supplied of th	TO SHARE SHOWING A PRINCIPLE	CONTRACTOR CONTRACTOR	TO A COMPLEX TO SHAPE S	and the second second second second	VANGUSKAN PROGRAMA	9500 XX 1000 XX 1000 XX	CONTROL SALEST AND COM	ANIZANIA (2000)

APEX INSTRUMENTS EPA Method 5 522 Series Meter Box Calibration Pre-Test Orlfice Method English Meter Box Units, English K' Factor

Filename:

S:\Calibrations\MeterCals\[Meter Cal Spread Sheet,xis]27100203

Revised:

7/21/95

Version: 2.2

Model #: Serial #:

Apex Method 5 70

Date: -----

11/9/17

Barometric Pressure: -Theoretical Critical Vacuum:---> 29.65 (in. Hg) 13,99 (in. Hg)

111111111

IMPORTANT For valid test results, the Actual Vacuum should be 1 to 2 in. Hg greater than the Theoretical Critical Vacuum shown above, IMPORTANT The Critical Orifice Coefficient, K', must be entered in English units, (ft)*3*(deg R)*0.5/((In.Hg)*(min)).

- DRY GAS METER READINGS -----

-CRITICAL ORIFICE READINGS-

		Volume	Volume	Volume	Initial Temp	ıs.	Final Tem	ps.	Orifice K	Orifice	Actual -	- Amblent 1	emperatur	e
dH	Time	Inilial	Final	Total	Inlet	Quilet	Inlet	Outlet	Serial# Co	efficient	Vacuum li	nitial	Final	Average
(in H2O)	(nin)	(cu ft)	(cu ft)	(cu ft)	(deg F)	(deg F)	(deg F)	(deg F)	(number) (sa	(şvçda se	(in Hg)	(deg F)	(deg F)	(deg F)
0.51	13.00	837.620	843.720	6.100	65.0	65.0	67.0	64.0	CJ48	0.350	23.0	68.0	68.0	68.0
0.93	10.00	843.940	850.140	6.200	68.0	64.0	71.0	66.0	CJ55	0.461	22.0	68.0	68.0	68.0
1.60	11.00	850,300	859.060	8.760	71.0	65.0	77.0	68.0	CJ63	0.598	20.0	68.0	68.0	68.0
3.00	19.00	859.250	880.000	20.750	76.0	6 7.0	91.0	73.0	CJ73	0.821	17.5	68.0	68.0	68.0
4.50	6.00	880.200	888.310	8.110	86.0	73.0	97.0	75.0	CJ81	1.012	15.0	68.0	68.0	68.0

DRY GAS	METER	ORIFIC	E		DRY G	AS METER -	ORIFIC	CE	
VOLUME CORRECTED	VOLUME DRRECTED	VOLUME CORRECTECC	VOLUME ORRECTED	VOLUME NOMINAL	CALIBRA Y	TION FACTOR	CALIBRAT dH@	ION FACTO	R
Vm(std)	Vm(std)	Vcr(std)	Vcr(std)	Ver	Value	Variation	Value	Value	Variation
(cu ft)	(liters)	(cu ft)	(liters)	(cu ft)	(number)	(number)	(in H2O)	(mm H2O)	
6.082	172.2	5.878	166.5	5.934	0.968	-0.011	1,400	35.56	-0.063
6.165	174.6	5.942	168.3	5.999	0.964	-0.014	1,477	37.51	0.013
8.875	245.7	8,494	240.5	8,574	0.979	0.001	1.500	38.10	0.037
20.370	576.9	20.118	589.8	20.310	0.988	0.010	1.486	37.74	0.023
7.902	223.8	7.837	221.9	7,911	0.992	0.014	1.454	36.93	-0.009
			werage Y -	>	0.978		1.463	37.17	< Average dH@

Note: For Calibration Factor Y, the ratio of the reading of the calibration meter to the dry gas meter. acceptable tolerance of individual values from the average is +-0.02.

For Orifice Calibration Factor dH@, the orifice differential pressure in Inches of H20 that equates to 0.75 cfm of air at 68 F and 29.92 inches of Hg, acceptable tolerance of individual values from the average is +-0.2.

GI0000232

Pitot Tube Calibration Sheet

Client General Iron
Plant Chicago, IL
Pitot ID P-7A-S-Type

	Measured	Allowable				
P _a /D _t	1.389	1.05-1.50				
P_b/D_t	1.395	1.05-1.50				
Angle al°	0.0	10.0				
Angle al	0.0	10.0				
Angle β1°	0.0	5.0				
Angle β1°	0.0	5.0				
z (inches)	0	0.125 in.				
w(inches)	0.000	0.031 in.				

Signiture R. Schueller

Date 1/5/2018

<u>u</u>

GI0000233

R 001366

Pyrometer Calibration Sheet

STG Project No. 18-3042
Client: General Iron
Chicago, IL

Date: 5/25/2018

Date Calibrated: 1/5/2018

Temperature Scale Used: °F

Probe No. STG-7A
Reference Used: Mercury Thermometer

Calibration Reference Settings ^o F	Pyrometer Reading ^o F
29	30
76	76
212	213

Calibrated by: R. Schueller

	R 001368	لاعتصادها دهاري
		Service and the service and th
		والمرسيسيدين
		المعددة عربي ويوم ولوجها
		in municipal and a second a second and a second a second and a second a second and a second and a second and
		Excellent to the second
		si kunistaannas
		State
APPENDIX E		Legal Vision in the Control of the C
VOC DATALOGGER RECORDINGS		Lincolne
		Vegaterpre-autopolitica)
		Mining and a second sec
		To Carting the second second
		A A A A A A A A A A A A A A A A A A A
		:
B-58		

GI0000235

General iron 18-3042 Chicago, Illinois Shredder Exhaust Method 25A Run 1

Dete	Time	O ₂ %	CO ₂ %	VOC PPMvw
Date	8:35:00 AM	20.7	0.2	322
2018/05/25 2018/05/25	8:36:00 AM	20.7	0.2	309
2018/05/25	8:37:00 AM	20.7	0.2	295
2018/05/25	8:38:00 AM	20.8	0.2	234
2018/05/25	8:39:00 AM	20.7	0.2	202
2018/05/25	8:40:00 AM	20.7	0.2	204
2018/05/25	8:41:00 AM	20.7	0.2	441
2018/05/25	8:42:00 AM	20.7	0.2	157
2018/05/25	8:43:00 AM	20.7	0.2	95
2018/05/25	8:44:00 AM	20.7	0.2	297
2018/05/25	8:45:00 AM	20.7	0.2	387
2018/05/25	8:46:00 AM	20.7	0.2	414
2018/05/25	8:47:00 AM	20.8	0.2	264
2018/05/25	8:48:00 AM	20.7	0.2	564
2018/05/25	8:49:00 AM	20.7	0.2	177
2018/05/25	8:50:00 AM	20.7	0.2	788
2018/05/25	8:51:00 AM	20.7	0.2	252
2018/05/25	8:52:00 AM	20.7	0,2	577
2018/05/25	8:53:00 AM	20.7	0.2	225
2018/05/25	8:54:00 AM	20.7	0.2	427
2018/05/25	8:55:00 AM	20.7	0.2	430
2018/05/25	8:56:00 AM	20.8	0.2	176
2018/05/25	8:57:00 AM	20.7	0.2	124
2018/05/25	8:58:00 AM	20.7	0.2	408
2018/05/25	8:59:00 AM	20.8	0.2	197
2018/05/25	9:00:00 AM	20.8	0.2 0.2	172 193
2018/05/25	9:01:00 AM	20.7	0.2	218
2018/05/25	9:02:00 AM	20.7 20.7	0.2	160
2018/05/25	9:03:00 AM 9:04:00 AM	20.7	0.2	459
2018/05/25	9:05:00 AM	20.7	0.2	1062
2018/05/25 2018/05/25	9:06:00 AM	20.7	0.2	355
2018/05/25	9:07:00 AM	20.7	0.2	211
2018/05/25	9:08:00 AM	20.7	0.2	772
2018/05/25	9:09:00 AM	20.7	0.2	181
2018/05/25	9:10:00 AM	20.8	0.2	42
2018/05/25	9:11:00 AM	20.7	0.2	449
2018/05/25	9:12:00 AM	20.7	0.2	296
2018/05/25	9:13:00 AM	20.7	0.2	213
2018/05/25	9:14:00 AM	20.7	0.2	174
2018/05/25	9:15:00 AM	20.7	0.2	104
2018/05/25	9:16:00 AM	20.7	0.2	321
2018/05/25	9:17:00 AM	20.7	0.2	163
2018/05/25	9:18:00 AM	20.7	0,2	242
2018/05/25	9:19:00 AM	20.7	0.2	357
2018/05/25	9;20:00 AM	20.7	0.2	52
2018/05/25	9:21:00 AM	20.7	0.2	100
2018/05/25	9:22:00 AM	20.7	0.2	214
2018/05/25	9:23:00 AM	20.8	0.2	183
2018/05/25	9:24:00 AM	20.7	0.2	288
2018/05/25	9:25:00 AM	20.7	0.2 0.2	212 111
2018/05/25	9:26:00 AM	20.7	0.2	194
2018/05/25	9:27:00 AM	20.7	0.2	292
2018/05/25	9:28:00 AM	20.7	0.2	184
2018/05/25	9:29:00 AM 9:30:00 AM	20.7 20.7	0.2	190
2018/05/25	9:31:00 AM	20.7	0.2	177
2018/05/25	9:31:00 AM	20.7	0.2	255
2018/05/25 2018/05/25	9:33:00 AM	20.7	0.2	209
2018/05/25	9:34:00 AM	20.7	0.2	87
70 101001F0	5.0			
	Avg.	20.7	0.2	281.0
	• •			

General Iron 18-3042 Chicago, Illinois Shredder Exhaust Method 25A Run 2

Date	Time	O ₂ %	CO ₂ %	VOC PPMvw
2018/05/25	9:49:00 AM	20.7	0.2	11
2018/05/25	9:50:00 AM	20.7	0.2	29
2018/05/25	9:51:00 AM	20.7	0,2	59
2018/05/25	9:52:00 AM	20.7	0.2	104
2018/05/25	9:53:00 AM	20.7	0.2	43
2018/05/25	9:54:00 AM	20.7	0.2	204
2018/05/25	9:55:00 AM	20.7	0.2	92
2018/05/25	9:56:00 AM	20.7	0.2	113
2018/05/25 2018/05/25	9:57:00 AM 9:58:00 AM	20.7	0.2	103
2018/05/25	9:59:00 AM	20.7	0.2	43 55
2018/05/25	10:00:00 AM	20.8 20.7	0.2 0,2	55 441
2018/05/25	10:01:00 AM	20.7	0,2	183
2018/05/25	10:02:00 AM	20.7	0.2	214
2018/05/25	10:03:00 AM	20.7	0.2	244
2018/05/25	10:04:00 AM	20.7	0.2	150
2018/05/25	10:05:00 AM	20.7	0.2	37
2018/05/25	10:06:00 AM	20.7	0.2	110
2018/05/25	10:07:00 AM	20.7	0.2	152
2018/05/25	10:08:00 AM	20.7	0.2	455
2018/05/25	10:09:00 AM	20.7	0.2	150
2018/05/25	10:10:00 AM	20.7	0.2	97
2018/05/25	10:11:00 AM	20.8	0.2	106
2018/05/25	10:12:00 AM	20.7	0.2	133
2018/05/25	10:13:00 AM	20.7	0.2	291
2018/05/25	10:14:00 AM	20.7	0.2	171
2018/05/25	10:15:00 AM	20.7	0.2	145
2018/05/25	10:16:00 AM	20.7	0,2	199
2018/05/25	10:17:00 AM	20.7	0.2	100
2018/05/25	10:18:00 AM	20.7	0.2	283
2018/05/25	10:19:00 AM	20.7	0.2	162
2018/05/25	10:20:00 AM	20.7	0.2	175
2018/05/25	10:21:00 AM	20.7	0.2	236
2018/05/25	10:22:00 AM	20.7	0.2	174
2018/05/25	10:23:00 AM	20.7	0.2	192
2018/05/25 2018/05/25	10:24:00 AM	20.7	0.2	139
2018/05/25	10:25:00 AM 10:26:00 AM	20.7 20.7	0.2 0.2	414 96
2018/05/25	10:27:00 AM	20.7	0.2	201
2018/05/25	10:28:00 AM	20.7	0.2	164
2018/05/25	10:29:00 AM	20.7	0.2	107
2018/05/25	10:30:00 AM	20.7	0,2	225
2018/05/25	10:31:00 AM	20.7	0.2	171
2018/05/25	10:32:00 AM	20.7	0.2	264
2018/05/25	10:33:00 AM	20.7	0.2	401
2018/05/25	10:34:00 AM	20.7	0.2	181
2018/05/25	10:35:00 AM	20.7	0.2	203
2018/05/25	10:36:00 AM	20.7	0.2	127
2018/05/25	10:37:00 AM	20.7	0.2	106
2018/05/25	10:38:00 AM	20.7	0.2	293
2018/05/25	10:39:00 AM	20.7	0.2	166
2018/05/25	10:40:00 AM	20.7	0.2	489
2018/05/25	10:41:00 AM	20.7	0.2	317
2018/05/25	10:42:00 AM	20.7	0.2	61
2018/05/25	10:43:00 AM	20.7	0.2	98
2018/05/25	10:44:00 AM	20.7	0.2	109
2018/05/25	10:45:00 AM	20.7	0.2	92
2018/05/25	10:46:00 AM	20.7	0.2	66
2018/05/25	10:47:00 AM	20.7	0.2	145
2018/05/25	10:48:00 AM	20.7	0.2	102
	Avg.	20.7	0.2	169.9

General fron 18-3042 Chicago, Illinois Shredder Exhaust Method 25A Run 3

Date	Time	O ₂ %	CO ₂ %	VOC PPMvw
2018/05/25	11:05:00 AM	20.7	0.2	11
2018/05/25	11:05:00 AM	20.7	0.2	20
2018/05/25	11:07:00 AM	20.7	0.2	76
2018/05/25	11:08:00 AM	20.7 20.7	0.2 0.2	1934 404
2018/05/25 2018/05/25	11:09:00 AM 11:10:00 AM	20.7	0.2	92
2018/05/25	11:11:00 AM	20.7	0.2	80
2018/05/25	11:12:00 AM	20.7	0.2	96
2018/05/25	11:13:00 AM	20.7	0,2	117
2018/05/25	11:14:00 AM	20.7	0.2	101
2018/05/25	11:15:00 AM 11:16:00 AM	20.7 20.7	0.2 0.2	156 102
2018/05/25 2018/05/25	11:17:00 AM	20.7	0.2	125
2018/05/25	11:18:00 AM	20.7	0.2	62
2018/05/25	11:19:00 AM	20.7	0.2	41
2018/05/25	11:20:00 AM	20.7	0.2	29
2018/05/25	11:21:00 AM	20.7	0.2 0.2	23 20
2018/05/25	11:22:00 AM 11:23:00 AM	20.7 20.8	0.2	18
2018/05/25 2018/05/25	11:24:00 AM	20.7	0.2	17
2018/05/25	11:25:00 AM	20.7	0.2	15
2018/05/25	11:26:00 AM	20.7	0.2	15
2018/05/25	11:27:00 AM	20.7	0.2	17
2018/05/25	11:28:00 AM	20.7	0,2	13
2018/05/25	11:29:00 AM 11:30:00 AM	20.7 20.7	0.2 0.2	13 21
2018/05/25 2018/05/25	11:30:00 AM	20.7	0.2	26
2018/05/25	11:32:00 AM	20,7	0.2	210
2018/05/25	11:33:00 AM	20.7	0.2	112
2018/05/25	11:34:00 AM	20.7	0.2	103
2018/05/25	11:35:00 AM	20.7	0.2	33
2018/05/25	11:36:00 AM	20.7 20.7	0.2 0.2	20 17
2018/05/25 2018/05/25	11:37:00 AM 11:38:00 AM	20.7	0.2	14
2018/05/25	11:39:00 AM	20.7	0.2	12
2018/05/25	11:40:00 AM	20.7	0.2	11
2018/05/25	11:41:00 AM	20.7	0.2	11
2018/05/25	11:42:00 AM	20.7	0.2	11 10
2018/05/25 2018/05/25	11:43:00 AM 11:44:00 AM	20.7 20.7	0.2 0.2	12
2018/05/25	11:45:00 AM	20.7	0.2	39
2018/05/25	11:46:00 AM	20.7	0.2	138
2018/05/25	11:47:00 AM	20,7	0.2	2752
2018/05/25	11:48:00 AM	20.7	0.2 0.2	525 234
2018/05/25 2018/05/25	11:49:00 AM 11:50:00 AM	20.7 20.7	0.2	233
2018/05/25	11:51:00 AM	20.7	0.2	181
2018/05/25	11:52:00 AM	20.7	0.2	224
2018/05/25	11:53:00 AM	20.7	0.2	108
2018/05/25	11:54:00 AM	20.7	0.2	118 400
2018/05/25 2018/05/25	11:55:00 AM 11:56:00 AM	20.7 20.7	0.2 0.2	343
2018/05/25	11:57:00 AM	20.7	0.2	90
2018/05/25	11:58:00 AM	20.7	0.2	216
2018/05/25	11:59:00 AM	20.7	0.2	158
2018/05/25	12:00:00 PM	20.7	0,2	143
2018/05/25	12:01:00 PM	20.7	0.2 0.2	171 254
2018/05/25 2018/05/25	12:02:00 PM 12:03:09 PM	20.7 20.7	0.2	277
2018/05/25	12:04:00 PM	20.7	0.2	698
2018/05/25	12:05:00 PM	20.7	0.2	375
2018/05/25	12:06:00 PM	20.7	0.2	224
2018/05/25	12:07:00 PM	20.7	0.2	142
2018/05/25	12:08:00 PM 12:09:00 PM	20.7 20.7	0.2 0.2	281 241
2018/05/25 2018/05/25	12:10:00 PM	20.7	0.2	149
2018/05/25	12:11:00 PM	20.7	0.2	228
2018/05/25	12:12:00 PM	20.7	0.2	323
2018/05/25	12:13:00 PM	20.7	0.2	647
2018/05/25	12:14:00 PM	20.7	0.2	223 86
2018/05/25	12:15:00 PM 12:16:00 PM	20.7 20.7	0.2 0.2	199
2018/05/25 2018/05/25	12:17:00 PM	20.7	0.2	158
2018/05/25	12:18:00 PM	20.7	0.2	206
2018/05/25	12:19:00 PM	20.7	0.2	157
2018/05/25	12:20:00 PM	20.7	0.2	274
2018/05/25	12:21:00 PM	20.7	0.2	300 514
2018/05/25	12:22:00 PM 12:23:00 PM	20.7 20.7	0.2 0.2	338
2018/05/25 2018/05/25	12:24:00 PM	20.7	0.2	121
2018/05/25	12:25:00 PM	20.7	0,2	77
	A	00.7		070 9
	Avg.	20.7	0.2	270.3

^{*}Shredder was down during this period. These numbers are not included in the average.

	R 001372
	Construction of the Constr
	· ·
	Except Section 1.
	The state of the s
APPENDIX F	
CALIBRATION GAS CERTIFICATION SHEETS	
B-62	

an Air Liquide company

Part Number:

Laboratory:

Gas Code:

Cylinder Number:

PGVP Number:

CERTIFICATE OF ANALYSIS

Grade of Product: EPA Protocol

E03N176E15A0295

ASG - Chicago - IL

SG9133821BAL

CO2, O2, BALN

B12016

Reference Number: 54-124572685-1 152.5 CF Cylinder Volume:

Cylinder Pressure: 2015 PSIG

590 Valve Outlet:

Aug 22, 2016 Certification Date:

Expiration Date: Aug 22, 2024

Airgas Specialty Gases Airgas USA, LLC

12722 South Wentworth Ave. Chicago, 1L 60528 773-785-3000 Fax: 773-785-1928 Airgas.com

Certification performed in accordance with "EPA Traceability Protocol for Assay and Certification of Gaseous Celibration Standards (May 2012)" document EPA 600/R-12/531, using the assay procedures listed. Analytical Methodology does not require correction for analytical interference. This cylinder has a total analytical uncertainty as stated below with a confidence level of 95%. There are no significant impurities which affect the use of this celibration mixture. All concentrations are on a volume/volume basis unless otherwise noted.

Do Not like This Culibrate below 400 cele 16.0.7 measured:

Do Not Use This Cylinder below 100 psig. i.e. 0.7 megapascals.

Compane	ent	Requested Concentration	ANALYTICA Actual Concentration	L RESULTS Protocol Method	Total Relative Uncertainty	Assay Dates
CARBON (OXYGEN NITROGEI		12.00 % 12.00 % Balance	12.15 % 11.91 %	G1 G1	+/- 1.0% NIST Traceable +/- 1.0% NIST Traceable	08/22/2016 08/22/2016
Туре	Lot ID	Cylinder No	CALIBRATION Concentration		Uncertainty	Expiration Date May 16, 2019
NTRM NTRM	13060817 12062016	CC416652 CC367570	24,04 % CARBON D 22.88 % OXYGEN/N	NOXIDEMITROGEN NTROGEN	+/- 0.2%	Apr 24, 2018
SECTION MEDICAL			ANALYTICAL Analytical Prir	EQUIPMEN	T Last Multipoint Cali	bration
Instrument/Make/Model CO2-1 HORIBA VIA-510 V1E3H7P5 O2-1 HORIBA MPA-510 3VUYL9NR		NDIR Paramagnetic		Aug 13, 2016 Aug 22, 2016		

Triad Data Available Upon Request

Alai Hurain

Approved for Release

Page 1 of 54-124572685-1

an Air Liquide compan

ERTIFICATE OF ANALYSIS **Grade of Product: EPA Protocol**

Airgas Specialty Gases Airgas USA, LLC

12722 South Wentworth Ave.

Airgas.com

Part Number: Cylinder Number: E03NI52E15A38Q7

Cylinder Volume: CC183526 ASG - Chicago - IL

54-124572686-1^{Chicago, IL 60628} Reference Number: 163.9 CF

773-785-3000 Fax: 773-785-1928

Laboratory: PGVP Number:

Gas Code:

B12016 CO2, O2, BALN

Cylinder Pressure: Valve Outlet:

2015 PSIG

296

Certification Date:

Aug 26, 2016

Aug 26, 2024 **Expiration Date:**

Certification performed in accordance with "EPA Traceability Protocol for Assay and Certification of Gaseous Calibration Standards (May 2012)" document EPA 600/R-12/531, using the assay procedures listed. Analytical Methodology does not require correction for analytical interference. This cylinder has a total analytical uncertainty as stated below with a confidence level of 95%. There are no significant impurities which affect the use of this calibration mixture. All concentrations are on a volume/volume basis unless otherwise noted.

vie Cullader helow 100 asia, i.e. 0.7 megagascals.

			ANALYTICA	L RESULTS		
Component		Requested Concentration	Actual Protocol Concentration Method		Total Relative Uncertainty	Assay Dates
CARBON DO OXYGEN NITROGEN		24.00 % 24.00 % Balance	24.01 % 23.18 %	G1 G2	+/- 1.0% NIST Traceable +/- 1.1% NIST Traceable	
Туре	Lot ID	Cylinder No	CALIBRATION Concentration		Uncertainty	Expiration Date
NTRM NTRM	13060817 06120112	CC416652 CC195607	24.04 % CARSON D 9.898 % OXYGEN/N		l +/- 0.6% +/- 0.7%	May 16, 2019 Jun 26, 2018
Instrume	nt/Make/Mod	lel	ANALYTICAL Analytical Prin		T Last Multipoint Calil	bration
Instrument/Make/Model CO2-1 HORIBA VIA-510 V1E3H7P5 O2-1 HORIBA MPA-510 3VUYL9NR		V1E3H7P5	NDIR Paramagnetic		Aug 13, 2016 Aug 22, 2016	The state of the s

Triad Data Available Upon Request

Alai Je sain

Approved for Release

Page 1 of 54-124572686-1

LIQUID TECHNOLOGY CORPORATION

"INDUSTRY LEADER IN SPECIALTY GASES"

Certificate of Analysis

- EPA PROTOCOL GAS -

Customer

Stack Test Group (Ottawa, IL)

<u>Date</u>

April 30, 2014 DR-51311

Delivery Receipt Gas Standard

900 ppm Propane/Nitrogen - EPA PROTOCOL

Final Analysis Date

April 28, 2014

Expiration Date

April 28, 2022

Component

Propane

Balance Gas

<u>Air</u>

Analytical Data:

DO NOT USE BELOW 100 psig

EPA Protocol, Section No. 2.2, Procedure G-1

Reported Concentrations

Propane: 916 ppm +/- 3.0 ppm

Nitrogen: Balance

Reference Standards:

SRM/GMIS:

GMIS

GMIS

Cylinder Number:

CC-125618

CC-165614

Concentration:

497.23 ppm Propane/Nitrogen

1011.92 ppm Propane/Nitrogen

Expiration Date:

04/09/20

04/09/20

Certification Instrumentation

Component:

Propane

Make/Model:

Agilent 7890A

Serial Number:

CN10736166

Principal of Measurement:

GC-FID

Last Calibration:

April 09, 2014

Cylinder Data

Cylinder Serial Number:

CC-185323

Cylinder Outlet:

CGA 350

Cylinder Volume:

140 Cubic Feet

Cylinder Pressure:

2000 psig, 70°F

Analytical Uncertainty and NIST Traceability are in compliance with EPA-600/R-12/531.

Certified by:

Cole Dylewski

Cole Pylandi

PGVP Vendor ID: E12014

"UNMATCHED EXCELLENCE" 2048 APEX COURT APOPKA, FLORIDA 32703 ~ PHONE (407)-292-2990 FAX (407)-292-3913 WWW.LIQUIDTECHCORP.COM APOPKA, FL . HOUSTON, TX

Airgas.

CERTIFICATE OF ANALYSIS

Grade of Product: EPA Protocol

Part Number: Cylinder Number:

Laboratory:

E02NI99E15A0932

CC349203

ASG - Chicago - IL B12016

PGVP Number: PPN, BALN Gas Code:

Reference Number:

Cylinder Volume: Cylinder Pressure:

Valve Outlet:

Certification Date:

350

Mar 21, 2016

54-124545729-1

144.4 CF

2015 PSIG

Expiration Date: Mar 21, 2024

Certification performed in accordance with "EPA Traceability Protocol for Assay and Certification of Gascous Calibration Standards (May 2012)" document EPA 600/R-12/531, using the assay procedures listed. Analytical Methodology does not require correction for analytical interference. This cylinder has a total analytical uncertainty as stated below with a confidence level of 95%. There are no significant impurities which affect the use of this calibration mixture. All concentrations are on a volume/volume basis unless otherwise noted.

Do Not Use This Cylinder below 100 psig, i.e. 0.7 megapascals

and the state of t		I	NALYTI	CAL RESULTS	3	
Component	Requested Concentrati	Actual on Conce	ntration	Protocol Method	Total Relative Uncertainty	Assay Dates
PROPANE NITROGEN	500.0 PPM Balance	506,3 P	PM	G1	+/- 1.1% NIST Traces	able 03/21/2016
		CA	LIBRATI(ON STANDAR	DS	
Туре	Lot ID	Cylinder No	Concent	ration	Uncertainty	Expiration Date
NTRM	10060532	CC281503	495.3 PPN	PROPANE/AIR	+/- 0.5%	Jan 06, 2022
		AN	VALYTICA	L EQUIPME	NT	
Instrument/N	łake/Model		tical Princip		Last Multipoint Ca	dibration
Nicolet 6700 Ai		FTIR			Feb 28, 2016	Section 200 Section of the Contract Con

Triad Data Available Upon Request

Alai Hurain **Approved for Release**

Page 1 of 54-124545729-1

LIQUID TECHNOLOGY CORPORATION

"INDUSTRY LEADER IN SPECIALTY GASES"

Certificate of Analysis

- EPA PROTOCOL GAS -

Customer Stack Test Group (Ottawa, IL)

<u>Date</u> April 30, 2014 <u>Delivery Receipt</u> DR-51311

Gas Standard 300 ppm Propane/Nitrogen - EPA PROTOCOL

Final Analysis Date April 28, 2014
Expiration Date April 28, 2022

Component Propane
Balance Gas Air

Analytical Data: DO NOT USE BELOW 100 psig

EPA Protocol, Section No. 2.2, Procedure G-I

Reported Concentrations

Propane: 305 ppm +/- 1.0 ppm

Nitrogen: Balance

Reference Standards:

SRM/GMIS: GMIS
Cylinder Number: CC-231424 CC-125618

Concentration: 106.42 ppm Propane/Nitrogen 497.23 ppm Propane/Nitrogen

Expiration Date: 04/09/20 04/09/20

Certification Instrumentation

Component: Propane
Make/Model: Agilent 7890A
Serial Number: CN10736166
Principal of Measurement: GC-FID

Last Calibration: April 09, 2014

Cylinder Data

Cylinder Serial Number: EB-0050476 Cylinder Outlet: CGA 350
Cylinder Volume: 140 Cubic Feet Cylinder Pressure: 2000 psig, 70°F

Analytical Uncertainty and NIST Traceability are in compliance with EPA-600/R-12/531.

Certified by:

Cole Dylewski

PGVP Vendor ID: E12014

Certificate of Analysis

Certificate Number:

3034A-07T5-C01 4 November 2014

Certification Date: Mixture Grade:

EPA Protocol Standard Gas Mixture

Cylinder Number:

CC454471

Mixture Components Requested Composition

Certified Composition U (Expanded Unicertainty, k=2) +/- 55 PPM (absolute)

Propane

8500 PPM

8497 PPM Balance

Nitrogen

Balance

Cylinder Pressure:

Lot Number:

CGA Outlet Conn.: UN Number:

Classification:

Certification Expiration Date:

Procedure Used:

Analytical Method:

Multipoint Calibration Date:

1900 psi - Do not use below 100 psi (0.7 megapascais)

3034A-07T5

350 **UN 1956**

Compressed Gas, n. o. s.

4 November 2022

EPA Traceability Protocol for Gaseous Calibration Standards

Procedure G1, EPA/600/R-12/531 May 2012

Production Lab:

17 October 2014

Tier 5 Labs, LLC, Naperville, IL, PGVP Vendor ID R12014

Reference Standards:

NIST SRM Number NIST Sample Number Cylinder Identification Number

Certified Concentration Expanded Uncertainty **Certification Expiration**

2647a 104-C-44

XF002995B 2467 µmol/mol +/- 13 µmol/mol

6-May-17

The calibration results published in this certificate were obtained using equipment and standards capable of producing results that are traceable to National Institute of Standards and Technology (NIST) and through NIST to the International System of Units (SI). The expanded uncertainties, if included on this certificate, use a coverage factor of k=2 to approximate the 95% confidence level of the measurement, unless otherwise noted. If uncertainties are not included on this certificate, they are available upon request. This calibration certificate applies only to the item described and shall not be reproduced other than in full, without written approval from the calibration facility. Calibration certificates without signatures are not valid. This calibration meets the requirements of ISO/IEC 17025-2005.

Steve Tarrant

Weldstar Aurora 1750 Mitchell Road, PO Box 1150 Aurora, IL 6050S Phone 630.859.3100 Fax 630,859,3199

Weldstar Logansport 1000 E. Main Street Logansport, IN 46947 Phone 574,722.1177 Fax 574.753.3113

Weldstar University Park 1100 Hamilton Avenue University Park, IL 60484 Phone 708,534,8561 Fax 708.534.7819

Airgas Specialty Gases Airgas USA, LLC 12722 S. Wentworth Ave. Chicago, IL 60628

CERTIFICATE OF ANALYSIS

Grade of Product: EPA Protocol

Part Number: Cylinder Number: E02NI99E15A0561

CC175226

Reference Number: 54-401002568-1

124 - Chicago (SAP) - IL

Cylinder Volume:

144.7 CF 2015 PSIG

Laboratory: PGVP Number:

B12017

Cylinder Pressure: Valve Outlet:

350

Certification Date:

Sep 20, 2017

Gas Code: PPN,BALN

Expiration Date: Sep 20, 2025

Certification performed in accordance with "EPA Traceability Protocol for Assay and Certification of Gaseous Calibration Standards (May 2012)" document EPA 500/R-12/531, using the assay procedures listed. Analytical Methodology does not require correction for analytical Interference. This cylinder has a total analytical uncertainty as stated below with a confidence level of 95%. There are no significant impurities which affect the use of this calibration mixture. All concentrations are on a volume/volume basis unless otherwise noted.

Do Not Use This Cylinder below 100 psig, i.e. 0.7 megapascals.

			ANALYTI	CAL RESULTS		
Component	Requesti Concenti		Actual Concentration	Protocol Method	.Total Relative Uncertainty	Assay Dates
PROPANE NITROGEN	5000 PPM Balance		4988 PPM	G1	+/- 0.6% NIST Traceable	09/20/2017
			CALIBRATIO	ON STANDARI	OS	
Туре	Lot ID	Cylinder No	Concentrati	on	Uncertainty	Expiration Date
NTRM	12061208	CC357634	5026 PPM PR	OPANE/NITROGEN	+/- 0.6%	Jan 20, 2018
College of the College			ANALYTICA	AL EQUIPMEN	T	
instrument/f	Make/Model		Analytical Princip		Last Multipoint Calibr	ation
Nicolet 6700 A	HR0801332		FTIR		Aug 21, 2017	

Triad Data Available Upon Request

Approved for Release

Page 1 of 54-401002558-1

Certificate of Analysis

Certificate Number: Certification Date:

3034A-06T5-C01 4 November 2014

Mixture Grade:

EPA Protocol Standard Gas Mixture

Cylinder Number:

CC451707

Mixture Requested Composition Components Propane 3000 PPM

Certified U (Expanded Composition Uncertainty, k=2 2976 PPM +/- 35 PPM (absolute)

Nitrogen Balance Balance

Cylinder Pressure:

1900 psi - Do not use below 100 psi (0.7 megapascals)

Lot Number: CGA Outlet Conn.:

350 UN 1956

UN Number: Classification:

Compressed Gas, n. o. s.

Certification Expiration Date:

4 November 2022

Procedure Used:

EPA Traceability Protocol for Gaseous Calibration Standards Procedure G1, EPA/600/R-12/531 May 2012

Analytical Method:

17 October 2014

Multipoint Calibration Date: Production Lab:

Tier 5 Labs, LLC, Naperville, IL, PGVP Vendor ID R12014

Reference Standards:

NIST SRM Number NIST Sample Number Cylinder Identification Number **Certified Concentration Expanded Uncertainty**

2647a 104-C-44 XF002995B 2467 µmol/mol +/- 13 µmol/mol

6-May-17

Certification Expiration

The calibration results published in this certificate were obtained using equipment and standards capable of producing results that are traceable to National Institute of Standards and Technology (NIST) and through NIST to the International System of Units (SI). The expanded uncertainties, if included on this certificate, use a coverage factor of k=2 to approximate the 95% confidence level of the measurement, unless otherwise noted. If uncertainties are not included on this certificate, they are available upon request. This calibration certificate applies only to the item described and shall not be reproduced other than in full, without written approval from the calibration facility. Calibration certificates without signatures are not valid. This calibration meets the requirements of ISO/IEC 17025-2005.

Steve Tarrant

Weldstar Aurora 1750 Mitchell Road, PO Box 1150 Aurora, 1L 60505

Phone 630.859,3100 Fax 630.859.3199

Weldstar Logansport 1000 E. Main Street Logansport, IN 46947 Phone 574.722.1177 Fax 574.753.3113

Weldstar University Park 1100 Hamilton Avenue University Park, IL 60484 Phone 708.534.8561 Fax 708,534.7819

APPENDIX G

RESPONSE FACTOR DETERMINATION FOR VOC EXEMPT COMPOUNDS

General Iron Chicago, IL VOM Testing Response Factor Testing 6/13/2018

Compound	Bag Concentration	FID Response
Chloromethane		
Trial #1	100 PPM	67.1
Trial #2	100 PPM	67.0
Trial #3	100 PPM	67.0
Avg.		67.0
Freon 22		
Trial #1	100 PPM	47.5
Trial #2	100 PPM	47.7
Trial #3	100 PPM	47.8
Avg.		47.7
Freon 12		
Trial #1	100 PPM	117.6
Trial #2	100 PPM	117.4
Trial #3	100 PPM	117.8
Avg.		117.6
Freon 152A		
Trial #1	100 PPM	114.9
Trial #2	100 PPM	115.0
Trial #3	100 PPM	115.0
Avg.		115.0
Carbon Disulfide		
Trial #1	120 PPM	0.2
Trial #2	120 PPM	0.1
Trial #3	120 PPM	0.3
Avg.		0.2
Freon 134A		
Trial #1	100 PPM	114.8
Trial #2	100 PPM	115.1
Trial #3	100 PPM	115.2
Avg.		115.0
Octamethycyclotetrasiloxane		
Trial #1	100 PPM	114.8

 Trial #2
 100 PPM
 114.9

 Trial #3
 100 PPM
 114.9

 Avg.
 114.9

	R 001384
APPENDIX H	
LABORATORY REPORT FOR VOC EXEMPT COMPOUNDS	
B-74	

Data Summary GPA 2286

Client:

Stack Test Group

Client Project: DAT Project: Date Sampled: Date Analyzed: Analyst:

0518042

5/25/2018 6/25/2018 SM

Client Sample ID	DAT Sample ID	Analyte	Detector	ppm (vol)	ppm as Propane	Q
Run 1	0518042- 1	Methanc Ethane	FID FID	3.29 0.63	1.10 0.42	

ND = Not detected in the sample.

D = Value measured from a dilution.

J=Below the lowest calibration point

Data Summary GPA 2286

Stack Test Group

Client: Client Project: DAT Project: Date Sampled: Date Analyzed: Analyst:

0518042 5/26/2018 6/25/2018 SM

Cilent Sample ID Run 2	DAT Sample ID		Detector	ppm (vol)	ppm as Propane	Q
Kuli Z	0518042-2	Methane	FID	3.10	1.03	
		Ethane	FID	0.45	0.30	

ND = Not detected in the sample.
D = Value measured from a dilution.
J=Below the lowest calibration point

Data Summary GPA 2286

Clienta

Stack Test Group

Client Project: DAT Project: Date Sampled:

0518042 5/27/2018 6/25/2018 SM

Date Analyzed:

Analyst:

Client Sample ID
Run 3 DAT Sample ID 0518042- 3 Analyte ppm (vol) 3.40 ppm as Propane Q 1.13 Detector FID FID Methane Ethane 0.46 0.30

ND = Not detected in the sample. D = Value measured from a dilution.

J=Below the lowest calibration point

TO-15 Data Summary

Client ID

Test 1

Sample Name:

0518042-1 1.0mL

Date Acquired:

05/31/18 16:40

Method File:

TO151805

Data File Path:

C:\HPCHEM\1\DATA\0518042\

Data File Name:

05318R01.D

Sample Multiplier:

200

Dilution factor:

1

Name	Amount (ppb)	PQL (ppb)	MDL (ppb)	Q
Dichlorodifluoromethane	882.72	250.00	22.80	
Chloromethane	ND	250.00	19.80	
1,2-dichlorotetrafluoroethane	ND	250.00	19.20	
Acetone	2714.54	250.00	22.00	
Trichlorofluoromethane	2003,48	250.00	23.40	
Methylene Chloride	221.01	250.00	177.40	
1,1,2-Trichlorotrifluoroethane	ND	250.00	20.80	
1,1,1-Trichloroethane	ND	250.00	21.60	
Tetrachloroethylene	ND	250,00	25.40	
Surrogate %R	%R			
4-bromofluorobenzene	83.26			

ND= Not Detected at the Method Detection Limit. PQL=Practical Quantitation Limit

MDL= Method Detection Limit

Tentatively Identified Compound (LSC) summary

Operator ID: CSM Date Acquired: 31 May 18 4:40 pm Data File: C:\HPCHEM\1\DATA\0518042\05318R01.D

Name: 0518042-1 1.0mL

Misc: Test 1

Method: C:\HPCHEM\1\METHODS\TO151812.M (Chemstation Integrator)

Title: TO-15

Library Searched: C:\DATABASE\NBS75K.L

TIC Top Hit name	RT	EstConc Units
walk of at the White of at he calle as the tenter	MANAGEM	
Methane, chlorodifluoro-	4.53	8336.8 ppb
Cyclotetrasiloxane, octamethyl-	20.34	2142.2 ppb

RT=Retention time (minutes)

TO-15 Data Summary

Client ID

Test #2

Sample Name:

0518042-2 1.0 mL

Date Acquired:

06/ 8/18 15:57

Method File:

TO151805

Data File Path:

C:\HPCHEM\1\DATA\0518042F\

Data File Name:

06088R03.D

Sample Multiplier:

200

Dilution factor:

Name	Amount (ppb)	PQL (ppb)	MDL (ppb) Q
Dichlorodifluoromethane	406.2	250	22.8
Chloromethane	ND	250	19.8
1,2-dichlorotetrafluoroethane	ND	250.00	19,20
Acetone	14729.93	250.00	22.00
Trichlorofluoromethane	10211.55	250.00	23.40
Methylene Chloride	ND	250.00	177.40
1,1,2-Trichlorotrifluoroethane	ND	250.00	20.80
1,1,1-Trichloroethane	ND	250.00	21.60
Tetrachloroethylene	ND	250,00	25.40
Surrogate %R	%R		
4-bromofluorobenzene	100.9		

ND= Not Detected at the Method Detection Limit. PQL=Practical Quantitation Limit

MDL= Method Detection Limit

DAT Laboratory, Inc. 7715 Corporate Blvd. Plain City, OH 43064

reports@datlab.com

800-733-8644

Tentatively Identified Compound (LSC) summary

Operator ID: Date Acquired: 8 Jun 18 3:57 pm Data File: C:\HPCHEM\1\DATA\0518042F\06088R03.D

Name: 0518042-2 1.0 mL

Misc: Test #2

Method: C:\HPCHEM\1\METHODS\TO151812.M (Chemstation Integrator)

Title: TO-15

Library Searched: C:\DATABASE\NBS75K.L

TIC Top Hit name	RT	EstConc Units
	-	
Methane, chlorodifluoro-	4.47	2831.2 ppb
Ethane, 1,1-difluoro-	4.89	3844.5 ppb

DAT Laboratory, Inc. 7715 Corporate Blvd. Plain City, OH 43064

TO-15 Data Summary

Client ID

Test #3

Sample Name:

0518042-3 1.0 mL

Date Acquired:

06/ 8/18 15:14

Method File:

TO151805

Data File Path:

C:\HPCHEM\1\DATA\0518042F\

Data File Name:

06088R02.D

Sample Multiplier:

200

Dilution factor:

1

Name	Amount (ppb)	PQL (ppb)	MDL (ppb)	Q
Dichlorodifluoromethane	890.44	250.00	22.80	
Chloromethane	ND	250.00	19.80	
1,2-dichlorotetrafluoroethane	ND	250,00	19.20	
Acetone	29905.85	250,00	22.00	
Trichlorofluoromethane	5978.77	250.00	23.40	
Methylene Chloride	ND	250,00	177.40	
1,1,2-Trichlorotrifluoroethane	ND	250.00	20.80	
1,1,1-Trichloroethane	ND	250.00	21.60	
Tetrachloroethylene	42.35	250.00	25.40	
Surrogate %R	%R			
4-bromofluorobenzene	106.4			

ND= Not Detected at the Method Detection Limit.

PQL=Practical Quantitation Limit

MDL= Method Detection Limit

DAT Laboratory, Inc. 7715 Corporate Blvd. Plain City, OH 43064

reports@datlab.com

800-733-8644

Tentatively Identified Compound (LSC) summary

Operator ID: Date Acquired: 8 Jun 18 3:14 pm Data File: C:\HPCHEM\1\DATA\0518042F\06088R02.D

Name: 0518042-3 1.0 mL

Misc: Test #3

Method: C:\HPCHEM\1\METHODS\TO151812.M (Chemstation Integrator)

Title: TO-15

Library Searched: C:\DATABASE\NBS75K.L

TIC Top Hit name	RT	EstConc Units		
	*****	-		
Ethane, 1,1-difluoro-	4.89	1560.6 ppb		

DAT Laboratory, Inc. 7715 Corporate Blvd. Plain City, OH 43064

_	_	_	_	~ 4
R	()	()1	1.3	94

APPENDIX I

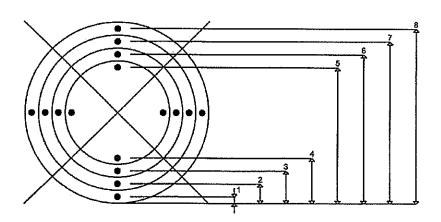
LOCATION OF SAMPLING PORTS & POINTS

ack Test Group, Inc. Air Compliance & Embstons Solutions

General Iron Shredder Exhaust

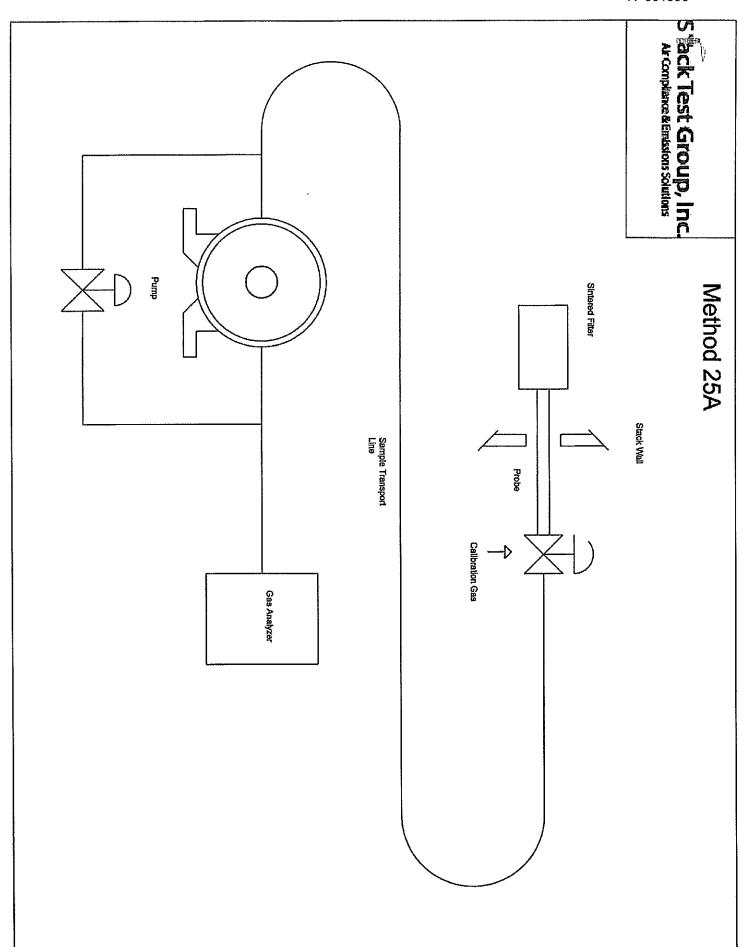
Diameter of Stack = 50 in

96 in (1.9 di)


MEASUREMENT SITE

360 in (7.2 di)

DISTURBANCE


Location of Sample Ports

Traverse Point	% of diameter Distance	Distance form Stack Wall (in)
1	.032	1.6
2	.105	5.25
3	.194	9.7
4	.323	16.15
5	.677	33,85
6	.806	40,3
7	.895	44.75
8	.968	48.4

Location of Sample Points

and the second

Shredder Emissions Test Report for Total Hydrocarbons, Particulate, and Metals General Iron Industries, Inc. – Chicago, Illinois IEPA Bureau of Air Site ID No.: 031600BTB

JUNE 25, 2018

APPENDIX B -

Test Report Particulate Matter and Total Select Metals
Hammermill Shredder
General Iron Industries, Inc. – Chicago, Illinois

Prepared by Montrose Air Quality Services and
Dated June 21, 2018

TEST REPORT
PARTICULATE MATTER AND
TOTAL SELECT METALS
HAMMERMILL SHREDDER
GENERAL IRON INDUSTRIES, INC.
IEPA BUREAU OF AIR SITE ID NO.: 031600BTB
CHICAGO, ILLINOIS

Prepared For:

Freeborn & Peters, LLP 311 South Wacker Drive Chicago, Illinois 60606

Prepared By:

Montrose Air Quality Services, LLC 1371 Brummel Avenue Elk Grove Village, Illinois

Document Number: Test Dates: Document Date 023AS-451738-RT-144 June 13 and 14, 2018 June 25, 2018

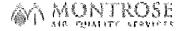


TABLE OF CONTENTS

SECTIONS	PAGE
1.0 PROJECT OVERVIEW	4
1.1 General 1.2 Methodology 1.3 Parameters 1.4 Results	
2.0 SUMMARY OF RESULTS	6
3,0 TEST PROCEDURES	11
3.1 Method Listing 3.2 Method Descriptions 3.2.1 Method 1 3.2.2 Method 2 3.2.3 Method 3A 3.2.4 Method 4 3.2.5 Method 5/29	1111121213
4.0 DESCRIPTION OF INSTALLATION	15
LIST OF TABLES	
TABLE 1-1 EXECUTIVE SUMMARY	5
TABLE 2 - 1 SUMMARY OF PM RESULTS	6
TABLE 2 - 2 SUMMARY OF TSM RESULTS	7

APPENDICES

APPENDIX A FIGURES
APPENDIX B SAMPLE CALCULATIONSAPPENDIX C PARAMETERS
APPENDIX D FIELD DATA PRINTOUTS
APPENDIX E FIELD DATA
APPENDIX F LABORATORY DATA
APPENDIX G CALIBRATION DATA

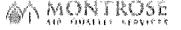
REPORT CERTIFICATION

STATEMENT OF CONFORMANCE AND TEST REPORT CERTIFICATION

I certify, to the best of my knowledge, that this test program was conducted in a manner conforming to the criteria set forth in ASTM D7036-04: <u>Standard Practice for Competence of Air Emission Testing Bodies</u>, and that project management and supervision of all project related activities were performed by qualified individuals as defined by this practice.

I further certify that this test report and all attachments were prepared under my direction or supervision in accordance with the Montrose Air Quality Services, LLC quality management system designed to ensure that qualified personnel gathered and evaluated the test information submitted. Based on my inquiry of the person or persons who performed the sampling and analysis relating to this performance test, the information submitted in this test report is, to the best of my knowledge and belief, true, accurate and complete.

Performance data is available upon request.


Cathy Busse Technical Writer

Montrose Air Quality Services, LLC

Roy Slick, Technical Writer Quality Assurance Manager

Koy Slick

Montrose Air Quality Services, LLC

1.0 PROJECT OVERVIEW

1.1 GENERAL

Montrose Air Quality Services, LLC (Montrose) located at 1371 Brummel Avenue, Elk Grove Village, Illinois was contracted by Freeborn & Peters, LLP to conduct an air emissions test program at the General Iron Industries, Inc. (General Iron) facility located at 1909 N Clifton Ave, Chicago, Illinois. This test program was conducted in accordance with the United States Environmental Protection Agency (USEPA) Request to Provide Information Pursuant to the Clean Air Act (information request) dated November 16, 2017. The specific objectives of this test program were to determine the concentration of particulate matter (PM), and total selected metals (TSM¹) from the exhaust duct of the Hammermill Shredder.

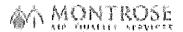
Testing was performed at the direction of Freeborn & Peters, LLP.

Testing was performed on June 13 and June 14, 2018. Coordinating the field portion of the test program were:

John Pinion – RK & Associates, Inc. (630) 393-9000 Jim Kallas – General Iron Industries, Inc. (847) 508-9710 Michael Hess – Montrose Air Quality Services, LLC (630) 670-4740

Testing was witnessed on site by the following regulatory officials:

Kevin Mattison – Illinois Environmental Protection Agency (IEPA)


Scott Connolly – United States Environmental Protection Agency (USEPA)

1.2 METHODOLOGY

EPA Methods 5 and Method 29 were used in a combined sample train to determine the PM and TSM at the test location. In Method 5/29, a sample of the gas stream was withdrawn isokinetically from the exhaust duct and the PM collected in a glass lined sample probe and on a quartz fiber filter. TSM were collected in the glass lined probe, on the quartz fiber filter and in a series of chilled impingers charged with metals absorbing solutions. The mass of filterable and gaseous TSM, collected within the sample train, combined with the volume of dry gas withdrawn from the test location was used to calculate the TSM concentration. Analysis of samples for PM and TSM was conducted by ElementOne, Inc. at their laboratory located in Wilmington, North Carolina. PM results are expressed in units of grains per dry standard cubic foot (gr/dscf) and pounds per hour (lb/hr). Results for TSM are reported in units of microgram per dry standard cubic meter (ug/dscm) and lb/hr,

In order to convert the concentration of each constituent to a mass emissions rate, the volumetric flow rate through the test location was determined concurrently with each test run using EPA Methods 1, 2, 3A and 4.

¹ For this test program, TSM will include the following constituents: antimony, arsenic, barium, beryllium, cadmium, chromium, cobalt, copper, lead, manganese, mercury, nickel, phosphorus, selenium, silver, thallium and zinc.

1.3 PARAMETERS

The following parameters were determined at the test location during each test run:

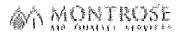
- gas temperature
- gas velocity
- carbon dioxide concentration
- oxygen concentration
- moisture concentration
- particulate matter concentration
- TSM concentrations

1.4 RESULTS

TABLE 1-1 EXECUTIVE SUMMARY

Pollutant	Method	Results (lb/hr)
PM	EPA Method 5	1.90
TSM	EPA Method 29	0.0973

A complete summary of test results is presented in Tables 2 - 1 and $2 - 2^2$.


A TSM audit sample was submitted to ERA and analysis was conducted. The results of all audits may be found in the Laboratory section of the Appendix.

Due to the location of the test ports, a heated flexible ambillocal was used to connect the sampling probe to the impinger box. This is a modification from the Methods 5/29 procedures.

Run 3 did not meet the post leak check requirements. The results obtained with this sampling train were not analyzed and an additional run was performed to replace Run 3.

The blank correction used for the PM results was adjusted to 0.001% of the weight of the acetone. 222 ml of acetone was used for the field blank. The blank correction was calculated as follows: Blank sample volume X specific gravity X 0.001/100. The specific calculation was: (222 X 0.791 X .001)/100 = 0.0018

Both qualitative and quantitative factors contribute to field measurement uncertainty and should be taken into consideration when interpreting the results contained within this report. Whenever possible, Montrose personnel reduce the impact of these uncertainty factors through the use of approved and validated test methods. In addition, Montrose personnel perform routine instrument and equipment calibrations and ensure that the calibration standards, instruments, and equipment used during test events meet, at a minimum, test method specifications as well as the specifications of the Montrose Quality Manual and ASTM D7036-04. The limitations of the various methods, instruments, equipment, and materials utilized during this test have been reasonably considered, but the ultimate impact of the cumulative uncertainty of this project is not fully identified within the results of this report.

² MEASUREMENT UNCERTAINTY STATEMENT

2.0 SUMMARY OF RESULTS

TABLE 2-1 SUMMARY OF PM RESULTS

Test Parameters	Run 1	Run 2	Run 4	Run 5	Äverage
Date	6/13/18	6/13/18	6/14/18	6/14/18	
Start Time	11:49	15:15	10:56	13:45	
Stop Time	13:40	17:09	12:45	15:33	
Gas Conditions					
Temperature (°F)	120	117	120	117	119
Volume Metered Standard, V _{m(std)} (ft ³)	64.68	69.74	62.11	63.41	64.99
Volumetric Flow Rate (acfm)	66,300	71,200	65,500	66,100	67,300
Volumetric Flow Rate (scfm)	60,400	64,900	59,600	60,300	61,300
Volumetric Flow Rate (dscfm)	57,000	61,500	55,900	56,700	57,800
Carbon Dioxide (% dry)	0.40	0.30	0.39	0,40	0,37
Oxygen (% dry)	20.80	20.90	20.79	20,80	20.82
Moisture (%)	5.59	5.36	6.24	6.04	5.81
Particulate Results					
Concentration (grains/dscf)	0.00318	0.00398	0.00460	0.00361	0.00384
Emission Rate (lb/hr)	1.55	2.10	2.21	1.75	1.90

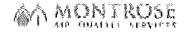
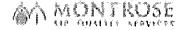



TABLE 2-2 SUMMARY OF TSM RESULTS

Test Parameters	Run 1	Run 2	Run 4	Run 5	Average
Date	6/13/18	6/13/18	6/14/18	6/14/18	
Start Time	11:49	15:15	10:56	13:45	
Stop Time	13:40	17:09	12:45	15:33	
Gas Conditions					
Temperature (°F)	120	117	120	117	119
Volumetric Flow Rate (acfm)	66,300	71,200	65,500	66,100	67,300
Volumetric Flow Rate (scfm)	60,400	64,900	59,600	60,300	61,300
Volumetric Flow Rate (dscfm)	57,000	61,500	55,900	56,700	57,800
Carbon Dioxide (% dry)	0,40	0.30	0,39	0.40	0.37
Oxygen (% dry)	20,80	20.90	20.79	20.80	20.82
Moisture (%)	5.59	5.36	6.24	6.04	5.81
Antimony - Sb					
Concentration (µg/dscm)	0.312*	0.379	0.371	0.237*	0.325
Concentration (gr/dscf)	1.36E-07*	1,66E-07	1.62E-07	1.04E-07*	1.42E-07
Emission Rate (lb/hr)	0.0000667*	0.0000874	0.0000778	0.0000504*	0.0000706
Arsenic - As					
Concentration (µg/dscm)	0.140*	0.152*	<0.114	< 0.111	0.129
Concentration (gr/dscf)	6.13E-08*	6,66E-08*	<4.97E-08	<4.87E-08	5.66E-08
Emission Rate (lb/hr)	0.0000300*	0.0000351*	<0.0000238	<0.0000237	0.0000281
Barium - Ba					
Goncentration (µg/dscm)	2.58	4.73	2.24	1.93	2.87
Concentration (gr/dscf)	1.13E-06	2.07E-06	9.79E-07	8,45E-07	1.25E-06
Emission Rate (lb/hr)	0.000551	0.00109	0.000469	0.000411	0.000630
Beryllium - Be					
Concentration (µg/dscm)	<0.0273	<0.0253	<0.0284	<0.0278	<0.0272
Concentration (gr/dscf)	<1.19E-08	<1.11E-08	<1.24E-08	<1.22E-08	<1.19E-08
Emission Rate (lb/hr)	<0,00000583	<0.00000583	<0.00000595	<0.00000592	<0.00000588

indicates the results of both fractions were below the detection limit of the Method
indicates one fraction was below the detection limit of the Method

TABLE 2 – 2 SUMMARY OF TSM RESULTS (CONTINUED)

Test Parameters	Run 1	Run 2	Run 4	Run 5	Average
Date	6/13/18	6/13/18	6/14/18	6/14/18	
Start Time	11:49	15:15	10:56	13:45	
Stop Time	13:40	17:09	12:45	15:33	
Cadmium - Cd					
Concentration (µg/dscm)	1.86*	1.00*	1.08	0.886*	1.21
Concentration (gr/dscf)	8.13E-07*	4.38E-07*	4.72E-07	3.87E-07*	5.28E-07
Emission Rate (lb/hr)	0.000398*	0.000231*	0.000226	0.000188*	0.000261
Chromium - Cr					
Concentration (µg/dscm)	1.35	1.59	1.38	1.10	1.35
Concentration (gr/dscf)	5.89E-07	6.93Ĕ-07	6.02E-07	4.83E-07	5.92E-07
Emission Rate (lb/hr)	0.000288	0.000365	0.000289	0.000235	0.000294
Cobalt - Co					
Concentration (μg/dscm)	<0.109	0.138*	< 0.114	<0.111	<0.118
Concentration (gr/dscf)	<4.77E-08	6.04E-08*	<4.97E-08	<4.87E-08	<5.16E-08
Emission Rate (lb/hr)	<0.0000233	0,0000318*	<0.0000238	<0.0000237	<0.0000257
Copper - Cu					
Concentration (µg/dscm)	1,47	3.10	1.76	5.14	2,87
Concentration (gr/dscf)	6.44E-07	1.36E-06	7.70E-07	2.24E-06	1,25E-06
Emission Rate (lb/hr)	0.000315	0.000714	0.000369	0.00109	0.000622
Lead - Pb					
Concentration (µg/dscm)	4.93	7.43	5,44	3.42	5.30
Concentration (gr/dscf)	2.15E-06	3.25E-06	2.38E-06	1.49E-06	2.32E-06
Emission Rate (lb/hr)	0.00105	0.00171	0.00114	0.000727	0.001158
Manganese - Mn					
Concentration (µg/dscm)	4.01	4,82	5.42	3.48	4,43
Concentration (gr/dscf)	1.75E-06	2.11E-06	2.37E-06	1.52E-06	1.94E-06
Emission Rate (lb/hr)	0.000857	0.00111	0.00114	0.000738	0.000960

indicates the results of both fractions were below the detection limit of the Method indicates one fraction was below the detection limit of the Method

TABLE 2 – 2 SUMMARY OF TSM RESULTS (CONTINUED)

Test Parameters	Run 1	Run 2	Run 4	Run 5	Average
Date	6/13/18	6/13/18	6/14/18	6/14/18	
Start Time	11:49	15:15	10:56	13:45	
Stop Time	13:40	17:09	12:45	15:33	
Nickel - Ni					
Concentration (µg/dscm)	1.63	2.55	1.36	0.930	1.62
Concentration (gr/dscf)	7.14E-07	1.12E-06	5.92E-07	4.06E-07	7.07E-07
Emission Rate (lb/hr)	0.000349	0.000588	0.000284	0,000198	0.000355
Phosphorous - P					
Concentration (µg/dscm)	18.2	19.6	15.2	13.7	16.7
Concentration (gr/dscf)	7.93E-06	8.56E-06	6.66E-06	6.00E-06	7.29E-06
Emission Rate (lb/hr)	0,00388	0.00451	0.00319	0.00292	0.00363
Selenium - Se					
Concentration (µg/dscm)	0.698	1.17	< 0.114	0,160	0.535
Concentration (gr/dscf)	3.05E+07	5.10E-07	<4.97E-08	6.98E-08	2.34E-07
Emission Rate (lb/hr)	0.000149	0.000269	<0.0000238	0.0000340	0.0001189
Silver - Ag					
Concentration (µg/dscm)	<0.109	<0,101	1.61*	<0.111	< 0.482
Concentration (gr/dscf)	<4.77E-08	<4,42E-08	7.02E-07*	<4.87E-08	<2.11E-07
Emission Rate (lb/hr)	<0.0000233	<0.0000233	0.000337*	<0.0000237	<0.000102
Thallium - Ti					
Concentration (µg/dscm)	<0.109	<0.101	< 0.114	<0.111	<0.109
Concentration (gr/dscf)	<4.77E-08	<4.42E-08	<4.97E-08	<4.87E-08	<4.76E-08
Emission Rate (lb/hr)	<0.0000233	<0.0000233	<0.0000238	<0.0000237	<0.0000235
Zinc - Zn					
Concentration (µg/dscm)	351	345	312	265	318
Concentration (gr/dscf)	1.53E-04	1.51E-04	1.36E-04	1.16E-04	1.39E-04
Emission Rate (lb/hr)	0.0750	0.0795	0.0654	0,0563	0.0690

Indicates the results of both fractions were below the detection limit of the Method
Indicates one fraction was below the detection limit of the Method

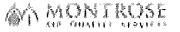


TABLE 2 – 2 SUMMARY OF TSM RESULTS (CONTINUED)

Test Parameters	Run 1	Run 2	Run 4	Run 5	Average
Date	6/13/18	6/13/18	6/14/18	6/14/18	
Start Time	11:49	15:15	10:56	13:45	
Stop Time	13:40	17:09	12:45	15:33	
Mercury - Hg					
Concentration (µg/dscm)	136*	50.6*	176*	11.0*	93.5
Concentration (gr/dscf)	5.96E-05*	2.21E-05*	7.68E-05*	4.82E-06*	4.08E-05
Emission Rate (lb/hr)	0.0291*	0.0117*	0.0368*	0.00234*	0.0200
Total Select Metals	•				
Emission Rate (lb/hr)	0.112	0.102	0.110	0.0654	0.0973

< indicates the results of both fractions were below the detection limit of the Method

^{*} indicates at least one fraction was below the detection limit of the Method

3.0 TEST PROCEDURES

3.1 METHOD LISTING

The test methods found in 40 CFR Part 60, Appendix A were referenced for the test program. The following individual methods were referenced:

Method 1	Sample and v	elocity tr	raverse for	stationary sources
IVICUIOGI	Callible allu v	GIOCILY LI	avelse iui	Stationally Sources

Method 2 Determination of stack gas velocity and volumetric flow rate (type S pitot

tube)

Method 3A Determination of oxygen and carbon dioxide concentrations in emissions

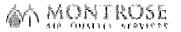
from stationary sources (Instrumental analyzer procedure)

Method 4 Determination of moisture content in stack gases

Method 5 Determination of particulate emissions from stationary sources

Method 29 Determination of Metals Emissions from Stationary Sources

3.2 METHOD DESCRIPTIONS


3.2.1 Method 1

Method 1 was used to determine the suitability of the test location and to determine the sample points used for the volumetric flow rate determinations. The test location conformed to the minimum requirements of being located at least 2.0 diameters downstream and at least 0.5 diameters upstream from the nearest flow disturbance.

The Hammermill Shredder test location was a round, vertical duct with a diameter of 50.0 inches. Eight points were sampled at each of the two test ports. The test location was approximately 6.0 diameters downstream and approximately 12.0 diameters upstream from the nearest flow disturbances. A cross section of the sampling location, showing the sample points, can be found in Figure 1 of the Appendix.

3.2.2 Method 2

EPA Method 2 was used to determine the gas velocity at the test location using an "S" type pitot tube and incline oil manometer. The manometer was leveled and "zeroed" prior to each test run. The sample trains were leak checked before and after each run by pressurizing the positive or "high" side, of each pitot tube and creating a 3 in. H₂O deflection on the manometer. The leak check was considered valid if the manometer remained stable for 15 seconds. This procedure was repeated on the negative side by generating a vacuum of at least 3 in. H₂O. The velocity head pressure and gas temperature were then determined at each point specified in Method 1. The static pressure of the duct was measured using water filled U-tube manometer. In addition, the barometric pressure was measured and recorded. A diagram of the Method 2 apparatus is shown in Figure 2 as part of the Method 5/29 sampling train.

3.2.3 Method 3A

The carbon dioxide and oxygen contents were determined at the test location using EPA Method 3A. A gas sample was collected into a Tedlar bag from the back of each sample train for the duration of each test run. Analysis was performed using a Servomex 1440 infrared carbon dioxide analyzer/paramagnetic oxygen analyzer. The analyzers were calibrated immediately prior to analysis of the bag samples using the procedures outlined in Method 3A using EPA Protocol calibration gases.

The carbon dioxide content and oxygen content were used to calculate the dry molecular weight of the gas stream. The molecular weight was then used, along with the moisture content determined by EPA Method 4, for the calculation of the volumetric flow rate. For these calculations, the balance of the gas stream was assumed to be nitrogen since the other gas stream components are insignificant for the purposes of calculating molecular weight.

3.2.4 Method 4

The moisture content at the test location was determined using Method 4. A known volume of sample gas was withdrawn from the source and the moisture was condensed and measured. The dry standard volume of the sample gas was then compared to the volume of moisture collected to determine the moisture content of the sample gas. A diagram of the Method 4 apparatus is shown in Figure 2 as part of the Method 5/29 sampling trains.

To condense the water vapor, the gas sample passed through a series of impingers charged as outlined in Methods 29. After exiting the impinger system, the sample train was leak checked prior to the test run by capping the probe tip and pulling a vacuum of at least 15 inches Hg. The sample train was leak checked prior to the test run by capping the probe tip and pulling a vacuum higher than the value expected during the run. A leak check was considered valid if the leak rate was less than 0.02 cubic feet per minute.

The volume of dry gas exiting the gas condenser system was measured with a dry gas meter. After leaving the dry gas meter, the sample stream passed through an orifice used to meter the flow rate through the sample train. The pressure drop across the orifice was measured with an incline plane, oil manometer. The gas meter reading, gas meter inlet and outlet temperatures, gas meter static pressure and pump vacuum were recorded for each sample point.

After the test run, the sample train was leak checked at the highest vacuum encountered during the test run. The tests were considered valid since the leak rate was less than 0.02 cfm. The amount of water collected in the condenser system was measured gravimetrically. The net weight gain of water was converted to a volume of wet gas and then compared to the amount of dry gas sampled to determine the moisture content.

General Iron Industries: Chicago, Illinois Hammermill Shredder PM and TSM

3.2.5 Method 5/29

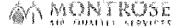
Methods 5 and 29 were used to determine the PM and TSM concentration in a combined sample train at the test location. A sample of the gas stream was withdrawn isokinetically from the stack and the PM in the sample gas stream was collected in a glass probe liner and on a quartz filter. The metals were collected in the glass probe liner, on the quartz filter and in a series of chilled impingers. A diagram of the Method 5/29 sampling train in shown in Figure 2 of the Appendix.

To prevent contamination, all components of the sample train were glass or Teflon with no metal connections. Prior to testing all components were washed with hot tap water then hot soapy water, rinsed three times with tap water and then rinsed three times with de-ionized, ultra filtered (DIUF) water. All glassware was then soaked for a minimum of four hours in a 10% nitric acid solution. After soaking, the glassware was rinsed three times with DIUF water and then rinsed with acetone. After drying, all components were sealed with parafilm.

The sample probe used consisted of a glass liner and glass nozzle. The liner was housed in a heated sheath maintained at a temperature of 248°F (+/- 25°F). Sample gas passed through the nozzle and probe assembly and then through a quartz fiber filter heated to 248°F (+/- 25°F). After exiting the filter, the sample gas passed through a series of six glass impingers. The first and second impingers contained 100ml of a 5 percent nitric acid (HNO₃)/10 percent hydrogen peroxide (H₂O₂) solution to collect all the The third impinger remained empty to prevent cross metals except mercury. contamination of the separate solutions. The fourth and fifth impingers contained 100ml of a 4 percent potassium permanganate (KMnO₄)/10 percent sulfuric acid (H₂SO₄) solution to absorb mercury. The sixth impinger contained a known quantity of silica gel. The dry gas exiting the moisture condenser system then passed through a sample pump and a dry gas meter to measure the gas volume. After leaving the dry gas meter, the sample stream passed through an orifice, which was used to meter the flow rate through the sample train. The pressure drop across the orifice was measured with an incline plane oil manometer.

Prior to the test run the filter was weighed to the nearest 0.0001g until a constant weight was achieved. The weight of the filter was considered constant only when two consecutive weights taken at least six hours apart were within 0.0005g of each other. The filter was then loaded into a glass filter holder with a Teflon support screen that was prepared in the same manner as the other components of the sample train. The probe was thoroughly cleaned with acetone and the probe wash saved as a quality assurance check. The condenser system was then loaded as outlined above. After assembly, the sample train was leak checked prior to the test run by capping the probe tip and pulling a vacuum of at least 15 in Hg. A leak check was considered valid if the leak rate was below 0.02 cubic feet per minute,

The probe tip was placed at the first of the sample points determined in Method 1. The velocity at the sample point was determined using Method 2 by reading the velocity pressure from the oil manometer. Sample was withdrawn from the source at a rate such that the velocity at the opening of the nozzle matched the velocity of the stack gas at the sample point (isokinetically). During the test run the train was moved to each of the Method 1 sample points. The sample time at each point was calculated based on the number of sample points and the total run time. The run time and sample rate was


General Iron Industries: Chicago, Illinois Hammermill Shredder PM and TSM

determined such that a minimum sample volume of 60 dry standard cubic feet (dscf) was collected. The gas velocity pressure (ΔP), stack temperature, gas meter reading, gas meter inlet and outlet temperatures, gas meter orifice pressure (ΔH), probe and filter temperatures, and pump vacuum was recorded for each sample point.

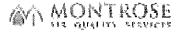
After the test run, the train was leak checked at the highest vacuum encountered during the test run. The sample train was then transferred to the on-site laboratory for recovery. The filter was removed from the holder and placed in a glass petri dish. The front half of the sample train, consisting of the nozzle, probe liner and filter holder, was brushed with a non-metallic brush and rinsed with 0.1 N nitric acid. The rinse was saved in a 250ml trace clean amber glass sample jar. The contents of the first two impingers were recovered and saved in two 500ml sample jars. The impingers were then rinsed with 0.1N nitric acid, and the rinses added to the sample jars. The contents of the third impinger, which was originally empty, was recovered and saved separately in a 500ml sample jar. The impinger was rinsed with nitric acid and the rinse added to the sample jar. The contents of the fourth and fifth impingers was recovered and saved in two 500ml sample jars. The impingers were rinsed with fresh potassium permanganate and the rinse added to the sample jars. If deposits remained on the potassium permanganate impinger surface, the impingers were rinsed with 25 ml of 8 N hydrochloric acid (HCI) and the rinse saved in a separate 250ml sample jar.

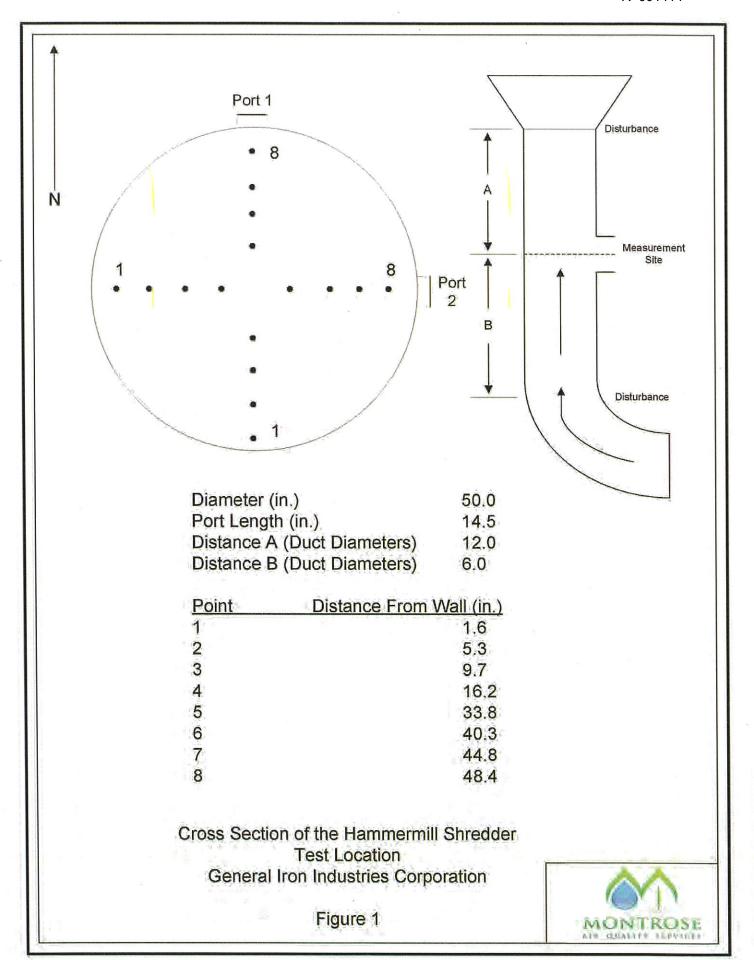
Analysis of the samples for particulate and metals followed procedures outlined in EPA Method 29. The front half rinse and filter were digested with HNO₃. This fraction and the sample fraction acquired from the first three impingers were analyzed separately for all the metals listed using ICP and GFAA. These two fractions were also analyzed for mercury using CVAA. The KMnO₄ impinger sample, the HCl rinse and the empty impinger sample were then analyzed separately for mercury using CVAA.

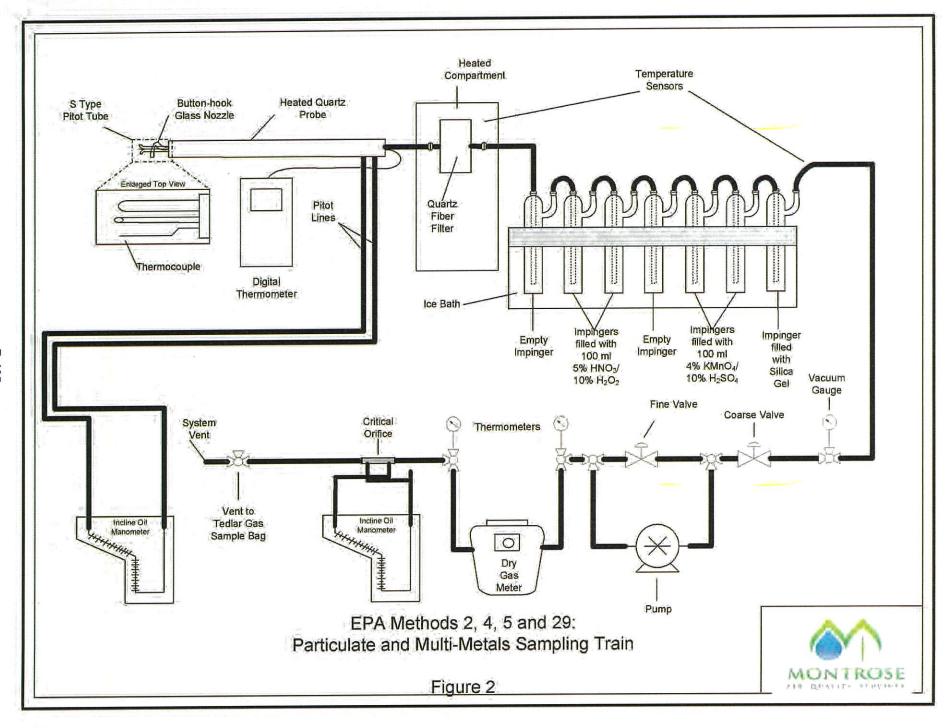
Analysis of the samples for PM and TSM was performed by ElementOne located in Wilmington, North Carolina.

General Iron Industries: Chicago, Illinois Hammermill Shredder PM and TSM

4.0 DESCRIPTION OF INSTALLATION


General Iron Industries, Inc. (General Iron) is an existing scrap metal recycling facility located at 1909 N. Clifton Avenue, Chicago, Illinois (see Figure 1). General Iron receives and shreds mixed scrap metal in various forms to produce uniform grades of ferrous and non-ferrous metals. Existing scrap handling and processing activities include receiving, sorting, shredding, metal separation and recovery of ferrous and nonferrous metals.


Testing was performed in the exhaust duct of the hammermill shredder air handling system, downstream of a cyclone separator, a roll media filter, and the induced draft fan.


General Iron Industries: Chicago, Illinois Hammermill Shredder PM and TSM Protected by the Attorney Client Privilege and Attorney Work Product Doctrine

APPENDIX A FIGURES



GI0000282

General Iron Industries: Chicago, Illinois Hammermill Shredder PM and TSM Protected by the Attorney Client Privilege and Attorney Work Product Doctrine

APPENDIX B SAMPLE CALCULATIONS

Sample Calculations for Method 5/29, Run 1

Area of Sample Location

$$A_s = (\pi) \left(\frac{d_s}{2 \times 12}\right)^2$$

$$A_s = (\pi) \left(\frac{50.0}{2 \times 12}\right)^2$$

$$A_s = 13.6 ft^2$$

where:

 A_s = area of stack (ft²) D_s = diameter of stack (in) 12 = conversion factor (in/ft)

2 = conversion factor (diameter to radius)

Stack Pressure Absolute

$$P_a = P_b + \frac{P_s}{13.6}$$

$$P_a = 29.85 + \frac{1.3}{13.6}$$

$$P_a = 29.95 in. Hg$$

where:

 P_a = stack pressure absolute (in. Hg) P_b = barometric pressure (in. Hg) P_s = static pressure (in. H₂O)

13.6 = conversion factor (in. H₂O/in. Hg)

Volume of Dry Gas Collected Corrected to Standard Conditions

$$V_{m(std)} = \frac{17.64(V_m)(Y_d)\left(P_b + \frac{\Delta H}{13.6}\right)}{(T_m + 460)}$$

$$V_{m(std)} = \frac{17.64(69.19)(0.9987)\left(29.85 + \frac{1.62}{13.6}\right)}{(105 + 460)}$$

$V_{m(std)} = 64.68scf$

where:

 $\begin{array}{lll} V_{m(std)} & = \text{volume of gas collected at standard conditions (scf)} \\ V_m & = \text{volume of gas sampled at meter conditions (ft}^3) \\ Y_d & = \text{gas meter correction factor (dimensionless)} \\ P_b & = \text{barometric pressure (in. Hg)} \\ \Delta H & = \text{average sample pressure (in. H}_2O) \\ T_m & = \text{average gas meter temperature (}^oF) \end{array}$

13.6 = conversion factor (in. H₂O/in. Hg)

17.64 = ratio of standard temperature over standard pressure (°R/in. Hg)

460 = conversion (°F to °R)

Volume of Water Vapor Collected Corrected to Standard Conditions

$$\begin{split} V_{w(std)} &= 0.04715 \times V_{wc} + 0.04715 \times V_{wsg} \\ V_{w(std)} &= 0.04715 \times 68.5 + 0.04715 \times 12.8 \\ V_{w(std)} &= 3.83scf \end{split}$$

where:

 $V_{w(std)}$ = volume of water vapor at standard conditions (scf)

V_{wc} = weight of liquid collected (g)
V_{wsq} = weight gain of silica gel (g)

0.04715 = volume occupied by one gram water at standard conditions (ft³/g)

Percent Moisture

$$B_{ws} = 100 \times \left[\frac{V_{w(std)}}{(V_{m(std)} + V_{w(std)})} \right]$$

$$B_{ws} = 100 \times \left[\frac{3.83}{(64.68 + 3.83)} \right]$$

$$B_{ws} = 5.59\%$$

where:

B_{ws} = moisture content of the gas stream (%)

 $V_{m(std)}$ = volume of gas collected at standard conditions (scf) $V_{w(std)}$ = volume of water vapor at standard conditions (scf)

100 = conversion factor

Molecular Weight of Dry Gas Stream³

$$\begin{split} \mathbf{M_{d}} &= \left(44 \times \frac{\%\text{CO}_{2}}{100}\right) + \left(32 \times \frac{\%\text{O}_{2}}{100}\right) + \left(28 \times \frac{\left(\%\text{N}_{2}\right)}{100}\right) \\ \mathbf{M_{d}} &= \left(44 \times \frac{0.4}{100}\right) + \left(32 \times \frac{20.8}{100}\right) + \left(28 \times \frac{78.8}{100}\right) \\ \mathbf{M_{d}} &= 28.90 lbs / lb - mole \end{split}$$

where:

M_d = molecular weight of the dry gas stream (lb/lb-mole) %CO₂ = carbon dioxide content of the dry gas stream (%) 44 = molecular weight of carbon dioxide (lb/lb-mole) %O₂ = oxygen content of the dry gas stream (%) 32 = molecular weight of oxygen (lb/lb-mole)

%CO = carbon monoxide content of the dry gas stream (%)

%N₂ = nitrogen content of the dry gas stream (%) 28 = molecular weight of nitrogen (lb/lb-mole)

100 = conversion factor

³ The remainder of the gas stream after subtracting carbon dioxide and oxygen is assumed to be nitrogen.

Molecular Weight of Wet Gas Stream

$$\begin{aligned} \mathbf{M}_{s} = & \left(\mathbf{M}_{d} \times \left(1 - \frac{\mathbf{B}_{ws}}{100} \right) \right) + \left(18 \times \frac{\mathbf{B}_{ws}}{100} \right) \\ \mathbf{M}_{s} = & \left(28.90 \times \left(1 - \frac{5.59}{100} \right) \right) + \left(18 \times \frac{5.59}{100} \right) \end{aligned}$$

 $M_s = 28.29 lbs / lb - mole$

where:

M_s = molecular weight of the wet gas stream (lb/lb-mole)
M_d = molecular weight of the dry gas stream (lb/lb-mole)

B_{ws} = moisture content of the gas stream (%) 18 = molecular weight of water (lb/lb-mole)

100 = conversion factor

Velocity of Gas Stream

$$V_{s} = 85.49 (C_{p}) (\sqrt{\overline{\Delta P}}) \sqrt{\frac{(T_{s} + 460)}{(M_{s})(P_{b} + \frac{P_{s}}{13.6})}}$$

$$V_{s} = 85.49 (0.84) (1.36) \sqrt{\frac{(120 + 460)}{(28.29)(29.85 + \frac{1.3}{13.6})}}$$

 $V_s = 81.0 \, ft \, / \sec$

where:

V_s = average velocity of the gas stream (ft/sec)

C_p = pitot tube coefficient dimensionless

 $\sqrt{\Delta P}$ = average square root of velocity pressures (in. H₂O) ^{1/2}

T_s = average stack temperature (°F)

M_s = molecular weight of the wet gas stream (lb/lbmole)

P_b = barometric pressure (in. Hg)

 P_s = static pressure of gas stream (in. H_2O)

85.49 = pitot tube constant (ft/sec)([(lb/lbmole)(in, Hg)]/[($^{\circ}$ R)(in, H₂O)]) $^{1/2}$

460 = conversion (°F to °R)

13.6 = conversion factor (in. H₂O/in Hg)

Volumetric Flow of Gas Stream - Actual Conditions

$$Q_a = 60(V_s)(A_s)$$

 $Q_a = 60(81.0)(13.6)$
 $Q_a = 66,269$ acfm

where:

Q_a = volumetric flow rate of the gas stream at actual conditions (acfm)

V_s = average velocity of the gas stream (ft/sec)

A_s = area of duct or stack (ft²) 60 = conversion factor (sec/min)

Volumetric Flow of Gas Stream - Standard Conditions

$$Q_{std} = \frac{17.64(Q_a)(P_a)}{(T_s + 460)}$$

$$Q_{std} = \frac{17.64(66, 269)(29.95)}{(120 + 460)}$$

$$Q_{std} = 60,368scfm$$

where:

Q_{std} = volumetric flow rate of the gas stream at standard conditions (scfm)

Q_a = volumetric flow rate of the gas stream at actual conditions (acfm)

T_s = average stack temperature (°F) P_a = stack pressure absolute (in. Hg)

17.64 = ratio of standard temperature over standard pressure (°R/in. Hg)

460 = conversion (°F to °R)

Volumetric Flow of Gas Stream - Standard Conditions - Dry Basis

$$Q_{dstd} = Q_{std} \left(1 - \frac{B_{ws}}{100} \right)$$

$$Q_{dstd} = 60,368 \left(1 - \frac{5.59}{100} \right)$$

$$Q_{dstd} = 57,013 dscfm$$

where:

Q_{dstd} = volumetric flow rate of the dry gas stream at standard conditions

(dscfm)

Q_{std} = volumetric flow rate of the gas stream at standard conditions (scfm)

B_{ws} = moisture content of the gas stream (%)

100 = conversion factor

Area of Nozzle

$$A_n = \pi \times \left(\frac{d_n}{2 \times 12}\right)^2$$

$$A_n = \pi \times \left(\frac{0.170}{2 \times 12}\right)^2$$

$$A_n = 0.000158 \, ft^2$$

where.

 A_n = area of nozzle (ft²)

 d_n = diameter of nozzle (in)

12 = conversion factor (in/ft)

2 = conversion factor (diameter to radius)

Percent Isokinetic

$$I = \frac{0.0945 (T_s + 460) (V_{m(std)})}{\left(P_b + \frac{P_s}{13.6}\right) (v_s) (A_n) (\Theta) \left(1 - \frac{B_{ws}}{100}\right)}$$

$$I = \frac{0.0945 (120 + 460) (64.68)}{\left(29.85 + \frac{1.3}{13.6}\right) (81.0) (0.000158) (96) \left(1 - \frac{5.59}{100}\right)}$$

$$I = 102.3\%$$

where:

= percent isokinetic (%)

T_s = average stack temperature (°F)

 $V_{m(std)}$ = volume of gas collected at standard temperature and pressure (scf)

P_b = barometric pressure (in. Hg)

 P_s = static pressure of gas stream (in. H_2O) V_s = average velocity of the gas stream (ft/sec)

 A_n = cross sectional area of nozzle (ft²)

B_{wsat} = moisture saturation point of the gas stream (%)

0.0945 = constant (°R/in, Hg) 460 = conversion (°F to °R)

13.6 = conversion factor (in. H₂O/in Hg)

100 = conversion factor

Acetone Wash Blank Correction

$$W_{a} = \frac{(m_{ab})(v_{aw})}{v_{awb}}$$

$$W_{a} = \frac{(0.0018)(134)}{222}$$

$$W_{a} = 0.0011g$$

where:

W_a = maximum allowable particulate mass in acetone wash blank (g)

m_{ab} = mass collected, acetone wash blank (g)

v_{aw} = mass of acetone wash (g) v_{awb} = mass of acetone wash blank (g)

Particulate Catch

$$\begin{split} M_n &= m_f + \left(m_a - W_a\right) \\ M_n &= 0.0052 + \left(0.0092 - 0.0011\right) \\ M_n &= 0.0133g \\ \text{where:} \\ M_n &= \text{particulate catch (g)} \\ m_f &= \text{particulate on filter (g)} \\ m_a &= \text{particulate in wash (g)} \\ W_a &= \text{particulate mass in acetone wash blank (g)} \end{split}$$

Particulate Concentration, grains/dscf

$$C = \frac{(M_n)(15.43)}{V_{m(std)}}$$

$$C = \frac{(0.0133)(15.43)}{64.68}$$

$$C = 0.00318gr / dscf$$

where:

C = particulate concentration (grains/dscf)

M_n = particulate catch (g)

 $V_{m(std)}$ = volume of gas collected at standard temperature and pressure (scf)

15.43 = conversion factor (grains/g)

Particulate Emission Rate (lb/hr)

$$E_{lb/hr} = \frac{(M_n)(Q_{dstd})(60)}{(V_{m(std)})(453.6)}$$

$$E_{lb/hr} = \frac{(0.0133)(57,013)(60)}{(64.68)(453.6)}$$

$$E_{lb/hr} = 1.55 lb / hr$$

where:

 $E_{tb/hr}$ = particulate emission rate (lb/hr)

 M_n = particulate catch (g)

 $V_{m(std)}$ = volume of dry gas collected at standard temperature and pressure (scf) = volumetric flow rate of the gas stream at standard conditions, on a dry

basis (dscfm)

60 = conversion factor (min/hr) 453.6 = conversion factor (g/lb)

Concentration of Lead in Flue Gas, ug/dscm⁴

$$C_{ug/dscm} = \frac{\left(M_C\right)}{\left(V_{m(std)}\right)} \left(35.31\right)$$

$$C_{ug/dscm} = \frac{(9.03)}{(64.68)} (35.31)$$

$$C_{ug/dscm} = 4.93ug / dscm$$

where:

 $C_{ug/dscm}$ = concentration of lead in flue gas (ug/dscm)

M_c = mass of lead in sample (ug)

 $V_{m(std)}$ = volume of gas collected at standard temperature and pressure(scf)

35.31 = conversion factor (ft^3/m^3)

⁴ The concentrations of all TSM are calculated in a similar manner.

Concentration of Lead in Flue Gas, gr/dscf5

$$C_{gr/dscf} = \frac{\left(C_{ug/dscm}\right)(15.43)}{\left(35.32\right)(10^6)}$$

$$C_{gr/dsof} = \frac{(4.93)(15.43)}{(35.32)(10^6)}$$

$$C_{gr/dscf} = 2.15E^{-6}gr/dscf$$

where:

 $C_{gr/dscf}$ = concentration of lead in flue gas (gr/dscf) = concentration of lead in flue gas (ug/dscm)

15.43 = conversion factor (grains/g) 35.32 = conversion factor (ft³/m³) 10⁶ = conversion factor (ug/g)

Lead Emission Rate, lb/hr6

$$E_{lb/hr} = \frac{\left(C_{ug/dscm}\right)\left(Q_{dstd}\right)(60)}{\left(35.315\right)\left(10^{6}\right)\left(453.6\right)}$$

$$E_{lb/hr} = \frac{(4.93)(57,013)(60)}{(35.315)(10^6)(453.6)}$$

$$E_{lb/hr} = 0.00105lb/hr$$

where:

E_{lb/hr} = lead emission rate (lb/hr)

 $C_{ug/dscm}$ = lead concentration (ug/dscm)

Q_{dstd} = volumetric flow rate of dry gas stream at standard conditions (dscfm)

10³ = conversion factor (ug/mg) 35.315 = conversion factor (ft 3 /m 3)

60.0 = conversion factor (min/hr)

⁵ The concentrations of all TSM are calculated in a similar manner.

⁶ The emission rates of all TSM are calculated in a similar manner.

General Iron Industries: Chicago, Illinois Hammermill Shredder PM and TSM Protected by the Attorney Client Privilege and Attorney Work Product Doctrine

APPENDIX C
PARAMETERS

General Iron Industries, Inc. Hammermill Shredder Method 5 and 29 Parameters

Project No. 023AS-451738

EPA Methods 1-4 Parameters	Run 1	Run 2	Run 4	Run 5
Date	6/13/2018	6/13/2018	6/14/2018	6/14/2018
Start Time	11:49	15:15	10:56	13:45
Stop Time	13:40	17:09	12:45	15:33
Dimensions of Sample Location, D _s (in)	50.0	50.0	50.0	50.0
Velocity Pressure, ΔP ^{1/2} avg (in. H ₂ O ^{1/2})	1.36	1.47	1.35	1.36
Barometric Pressure, P _b (Inches Hg)	29.85	29.79	29.85	29.80
Static Pressure, P _s (Inches H ₂ O)	1.3	1.0	1.0	1.0
Pitot Coefficient, C _p	0.84	0.84	0.84	0.84
Sample Location Temperature, T _s (°F)	120	117	120	117
Volume Metered, V _m (ft ³)	69.19	75.29	65.49	66.40
Meter Temperature, T _m (°F)	105	109	96.5	91.8
Average Sample Pressure, ΔH_{avg} (in. H_2O)	1.62	1.86	1.51	1.54
Gas Meter Correction Factor, Y _d	0.9987	0.9987	0.9987	0.9987
Carbon Dioxide (% dry)	0.40	0.30	0.39	0.40
Oxygen (% dry)	20.8	20.9	20.8	20.8
Weight of Water Collected, Vwc (g)	68.5	64.7	72.6	74.6
Silica Gel Net Weight, V _{wsg} (g)	12.8	19.1	15.1	11.8
Diameter of Nozzle, D _n (in)	0.170	0.170	0.170	0.170
Run Time, θ (minutes)	96	96	96	96
EPA METHODS 1-4 RESULTS				
Area of Sample Location, A _s (ft ²)	13.6	13.6	13.6	13.6
Stack Pressure Absolute (inches Hg)	29.95	29.86	29.92	29.87
Volume Metered Standard, V _{m(std)} (ft ³)	64.68	69.74	62.11	63.41
Volume of Water Vapor, V _{w(std)} (ft ³)	3.83	3.95	4.14	4.07
Percent Moisture, B _{ws} (%)	5.59	5.36	6.24	6.04
Moisture Saturation Point, Bwsat (%)	11.5	10.7	11.6	10.7
Dry Molecular Weight, M _d (lbs/lb mole)	28.90	28,88	28.89	28.90
Wet Molecular Weight, M _s (lbs/lb mole)	28.29	28.30	28.21	28.24
Gas Velocity, V _s (ft/sec)	81.0	87.0	80.1	80.8
Average Flowrate, Q _a (acfm)	66,269	71,167	65,533	66,101
Standard Flowrate, Q _{std} (scfm)	60,368	64,946	59,615	60,350
Dry Standard Flowrate, Q _{dstd} (dscfm)	57,013	61,489	55,916	56,729
Area of Nozzle, A _n (ft ²)	0.000158	0.000158	0.000158	0.000158
Isokinetics (%)	102.3	102.3	100.2	100.8
F1/2 Particulate Matter (mg)	14.4	18.7	19.4	15.5
F1/2 Particulate Matter, blank corrected (g)	0.0133	0.0180	0.0185	0.0148
Concentration (gr/dscf)	0.00318	0.00398	0.00460	0.00361
Emission Rate (lb/hr)	1.55	2.10	2.21	1.75

General Iron Industries, Inc. Hammermill Shredder

Method 5 Parameters

Project No. 023AS-451738

EPA Method 5 Parameters		Blank	Run 1	Run 2	Run 4	Run 5
<u>Filter</u>			31347	31346	31457	31460
Filter tare weight (g)		0,4022	0.4015	0.4031	0.3679	0.3551
Filter final welght (g)		0,4035	0.4067	0.4118	0.3759	0.3618
Filter net weight, m _f (g)		0.0013	0.0052	0.0087	0.0080	0.0067
Front Half Wash	Beaker ID	895	758	737	597	<i>x</i> 23
Beaker tare weight (g)		10.2526	10.8814	11.0158	10.1119	9,9149
Beaker final weight (g)	Average	10.2550	10.8906	11.0258	10,1233	9.9237
Volume of Wash, V _{aw} (ml)	•	222	134	88	108	84
Beaker net weight, m _a (g)		0.0018	0.0092	0.0100	0.0114	8800,0

Front Half (ug)	EPA METHOD 29 RESULTS	Run 1	Run 2	Run 4	Run 5
Back Half (ug) 40.1 0.127 0.265 <0.1	Front Half (ug)	0.472	0.6225	0.388	0.326
Antimony - Sb, (µg) Pront Half (µg) Back Half (µg) Arsenic - As, (µg) Front Half (µg) Arsenic - As, (µg) Pront Half (µg) Back Half (µg) Arsenic - As, (µg) Pront Half (µg) Back Half (<0.1	0.127	0.265	<0.1
Back Half (ug) < 0.1 < 0.1 < 0.1 < 0.1 Arsenic - As, (μg) 0.287 0.301 < 0.2		0.572	0.749	0.653	0.426
Arsenic - As, (μg) 0.257 0.301 < 0.2 < 0.2 Front Half (μg) 3.95 3.96 2.80 2.73 Back Half (μg) 0.774 5.38 1.14 0.741 Barium - Ba, (μg) 4.724 9.34 3.94 3.47 Front Half (μg) <0.025	Front Half (ug)	0.157	0.201	<0.1	<0.1
Front Half (ug)	Back Half (ug)	<0.1	<0.1	<0.1	<0.1
Back Half (ug) 0.774 5.38 1.14 0.741 Barium - Ba, (μg) 4.724 9.34 3.94 3.47 Front Half (ug) <0.025	Arsenic - As, (μg)	0.257	0.301	<0.2	<0.2
Barium - Ba, (μg) 4.724 9.34 3.94 3.47 Front Half (μg) <0.025	Front Half (ug)	3.95	3.96	2.80	2.73
Front Half (ug) <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.01 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.2 <0.2 </td <td>Back Half (ug)</td> <td>0.774</td> <td>5.38</td> <td>1.14</td> <td>0.741</td>	Back Half (ug)	0.774	5.38	1.14	0.741
Back Half (ug) <0.025 <0.025 <0.025 <0.050 <0.050 Beryllium - Be, (μg) <0.050	Barium - Ba, (μg)	4.724	9.34	3.94	3.47
Beryllium - Be, (μg) <0.050 <0.050 <0.050 Front Half (ug) 3.31 1.88 1.74 1.49 Back Half (ug) <0.1	Front Half (ug)	<0.025	<0.025	<0.025	<0.025
Front Half (ug) 3.31 1.88 1.74 1.49 Back Half (ug) < 0.1	Back Half (ug)	<0.025	<0.025	<0.025	<0.025
Back Half (ug) < 0.1 < 0.1 0.159 < 0.1 Cadmium - Cd, (μg) 3.41 1.98 1.90 1.59 Front Half (ug) 2.01 2.14 1.76 1.58 Back Half (ug) 0.460 0.997 0.664 0.404 Chromium - Cr, (μg) 2.47 3.13 2.42 1.98 Front Half (ug) <0.1	Beryllium - Be, (μg)	<0.050	<0.050	<0.050	<0.050
Cadmium - Cd, (μg) 3.41 1.98 1.90 1.59 Front Half (ug) 2.01 2.14 1.76 1.58 Back Half (ug) 0.460 0.997 0.664 0.404 Chromium - Cr, (μg) 2.47 3.13 2.42 1.98 Front Half (ug) <0.1	Front Half (ug)	3.31	1.88	1.74	1.49
Front Half (ug) 2.01 2.14 1.76 1.58 Back Half (ug) 0.460 0.997 0.664 0.404 Chromium - Cr, (μg) 2.47 3.13 2.42 1.98 Front Half (ug) < <0.1 <0.1 <0.1 <0.1 <0.1 Back Half (ug) <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	Back Half (ug)	<0.1	<0.1	0.159	<0.1
Back Half (ug) 0.460 0.997 0.664 0.404 Chromium - Cr, (μg) 2.47 3.13 2.42 1.98 Front Half (ug) <0.1	Cadmium - Cd, (μg)	3,41	1.98	1.90	1.59
Chromium - Cr, (μg) 2.47 3.13 2.42 1.98 Front Half (ug) <0.1	Front Half (ug)	2.01	2,14	1.76	1.58
Front Half (ug)	Back Half (ug)	0.460	0.997	0.664	0.404
Back Half (ug) <0.1	Chromium - Cr, (μg)	2.47	3.13	2.42	1.98
Cobalt - Co, (μg) <0.2 0.273 <0.2 <0.2 Front Half (ug) 1.63 1.79 1.55 1.35 Back Half (ug) 1.07 4.34 1.55 7.87 Copper - Cu, (μg) 2.70 6.13 3.100 9.22 Front Half (ug) 7.70 10.7 8.68 5.67 Back Half (ug) 1.33 3.98 0.884 0.471 Lead - Pb, (μg) 9.03 14.7 9.56 6.14 Front Half (ug) 4.04 4.52 3.97 4.02 Back Half (ug) 3.31 5.00 5.57 2.22 Manganese - Mn, (μg) 7.35 9.52 9.54 6.24 Front Half (ug) 2.54 2.64 0.974 0.864 Back Half (ug) 0.452 2.41 1.41 0.805 Nickel - Ni, (μg) 2.99 5.05 2.38 1.67 Front Half (ug) 5.96 8.86 5.22 4.46 Back Half (ug) 2.73	Front Half (ug)	<0.1	<0.1	<0.1	<0.1
Front Half (ug) 1.63 1.79 1.55 1.35 Back Half (ug) 1.07 4.34 1.55 7.87 Copper - Cu, (μg) 2.70 6.13 3.100 9.22 Front Half (ug) 7.70 10.7 8.68 5.67 Back Half (ug) 1.33 3.98 0.884 0.471 Lead - Pb, (μg) 9.03 14.7 9.56 6.14 Front Half (ug) 3.31 5.00 5.57 2.22 Manganese - Mn, (μg) 7.35 9.52 9.54 6.24 Front Half (ug) 2.54 2.64 0.974 0.864 Back Half (ug) 0.452 2.41 1.41 0.805 Nickel - Ni, (μg) 2.99 5.05 2.38 1.67 Front Half (ug) 5.96 8.86 5.22 4.46 Back Half (ug) 5.96 8.86 5.22 4.46	Back Half (ug)	<0.1	0.173	<0.1	<0.1
Back Half (ug) 1.07 4.34 1.55 7.87 Copper - Cu, (μg) 2.70 6.13 3.100 9.22 Front Half (ug) 7.70 10.7 8.68 5.67 Back Half (ug) 1.33 3.98 0.884 0.471 Lead - Pb, (μg) 9.03 14.7 9.56 6.14 Front Half (ug) 4.04 4.52 3.97 4.02 Back Half (ug) 3.31 5.00 5.57 2.22 Manganese - Mn, (μg) 7.35 9.52 9.54 6.24 Front Half (ug) 2.54 2.64 0.974 0.864 Back Half (ug) 0.452 2.41 1.41 0.805 Nickel - Ni, (μg) 2.99 5.05 2.38 1.67 Front Half (ug) 5.96 8.86 5.22 4.46 Back Half (ug) 27.3 29.9 21.6 20.2	Cobalt - Co, (μg)	<0.2	0.273	<0.2	<0.2
Copper - Cu, (μg) 2.70 6.13 3.100 9.22 Front Half (ug) 7.70 10.7 8.68 5.67 Back Half (ug) 1.33 3.98 0.884 0.471 Lead - Pb, (μg) 9.03 14.7 9.56 6.14 Front Half (ug) 4.04 4.52 3.97 4.02 Back Half (ug) 3.31 5.00 5.57 2.22 Manganese - Mn, (μg) 7.35 9.52 9.54 6.24 Front Half (ug) 2.54 2.64 0.974 0.864 Back Half (ug) 0.452 2.41 1.41 0.805 Nickel - Ni, (μg) 2.99 5.05 2.38 1.67 Front Half (ug) 5.96 8.86 5.22 4.46 Back Half (ug) 27.3 29.9 21.6 20.2	Front Half (ug)	1.63	1.79	1.55	1.35
Front Half (ug) 7.70 10.7 8.68 5.67 Back Half (ug) 1.33 3.98 0.884 0.471 Lead - Pb, (μg) 9.03 14.7 9.56 6.14 Front Half (ug) 4.04 4.52 3.97 4.02 Back Half (ug) 3.31 5.00 5.57 2.22 Manganese - Mn, (μg) 7.35 9.52 9.54 6.24 Front Half (ug) 2.54 2.64 0.974 0.864 Back Half (ug) 0.452 2.41 1.41 0.805 Nickel - Ni, (μg) 2.99 5.05 2.38 1.67 Front Half (ug) 5.96 8.86 5.22 4.46 Back Half (ug) 27.3 29.9 21.6 20.2	Back Half (ug)	1.07	4.34	1.55	7.87
Back Half (ug) 1.33 3.98 0.884 0.471 Lead - Pb, (μg) 9.03 14.7 9.56 6.14 Front Half (ug) 4.04 4.52 3.97 4.02 Back Half (ug) 3.31 5.00 5.57 2.22 Manganese - Mn, (μg) 7.35 9.52 9.54 6.24 Front Half (ug) 2.54 2.64 0.974 0.864 Back Half (ug) 0.452 2.41 1.41 0.805 Nickel - Ni, (μg) 2.99 5.05 2.38 1.67 Front Half (ug) 5.96 8.86 5.22 4.46 Back Half (ug) 27.3 29.9 21.6 20.2	Copper - Cu, (µg)	2.70	6.13	3.100	9.22
Lead - Pb, (μg) 9.03 14.7 9.56 6.14 Front Half (ug) 4.04 4.52 3.97 4.02 Back Half (ug) 3.31 5.00 5.57 2.22 Manganese - Mn, (μg) 7.35 9.52 9.54 6.24 Front Half (ug) 2.54 2.64 0.974 0.864 Back Half (ug) 0.452 2.41 1.41 0.805 Nickel - Ni, (μg) 2.99 5.05 2.38 1.67 Front Half (ug) 5.96 8.86 5.22 4.46 Back Half (ug) 27.3 29.9 21.6 20.2	Front Half (ug)	7.70	10.7	8.68	5.67
Front Half (ug) 4.04 4.52 3.97 4.02 Back Half (ug) 3.31 5.00 5.57 2.22 Manganese - Mn, (μg) 7.35 9.52 9.54 6.24 Front Half (ug) 2.54 2.64 0.974 0.864 Back Half (ug) 0.452 2.41 1.41 0.805 Nickel - Ni, (μg) 2.99 5.05 2.38 1.67 Front Half (ug) 5.96 8.86 5.22 4.46 Back Half (ug) 27.3 29.9 21.6 20.2	Back Half (ug)	1.33	3.98	0.884	0.471
Back Half (ug) 3.31 5.00 5.57 2.22 Manganese - Mn, (μg) 7.35 9.52 9.54 6.24 Front Half (ug) 2.54 2.64 0.974 0.864 Back Half (ug) 0.452 2.41 1.41 0.805 Nickel - Ni, (μg) 2.99 5.05 2.38 1.67 Front Half (ug) 5.96 8.86 5.22 4.46 Back Half (ug) 27.3 29.9 21.6 20.2	Lead - Pb, (μg)	9.03	14.7	9.56	6.14
Manganese - Mn, (μg) 7.35 9.52 9.54 6.24 Front Half (ug) 2.54 2.64 0.974 0.864 Back Half (ug) 0.452 2.41 1.41 0.805 Nickel - Ni, (μg) 2.99 5.05 2.38 1.67 Front Half (ug) 5.96 8.86 5.22 4.46 Back Half (ug) 27.3 29.9 21.6 20.2	Front Half (ug)	4.04	4.52	3.97	4.02
Front Half (ug) 2.54 2.64 0.974 0.864 Back Half (ug) 0.452 2.41 1.41 0.805 Nickel - Ni, (μg) 2.99 5.05 2.38 1.67 Front Half (ug) 5.96 8.86 5.22 4.46 Back Half (ug) 27.3 29.9 21.6 20.2	Back Half (ug)	3.31	5.00	5.57	2.22
Back Half (ug) 0.452 2.41 1.41 0.805 Nickel - Ni, (µg) 2.99 5.05 2.38 1.67 Front Half (ug) 5.96 8.86 5.22 4.46 Back Half (ug) 27.3 29.9 21.6 20.2	Manganese - Mn, (μg)	7.35	9.52	9.54	6.24
Nickel - Ni, (μg) 2.99 5.05 2.38 1.67 Front Half (ug) 5.96 8.86 5.22 4.46 Back Half (ug) 27.3 29.9 21.6 20.2	Front Half (ug)	2.54	2.64	0.974	0.864
Front Half (ug) 5.96 8.86 5.22 4.46 Back Half (ug) 27.3 29.9 21.6 20.2	Back Half (ug)	0.452	2.41	1.41	0.805
Back Half (ug) 27.3 29.9 21.6 20.2	Nickel - Ni, (μg)	2.99	5.05	2.38	1.67
	Front Half (ug)	5.96	8.86	5.22	4.46
Phosphorous - P, (μg) 33.3 38.7 26.8 24.7	Back Half (ug)	27.3	29.9	21.6	20.2
	Phosphorous - P, (μg)	33.3	38.7	26.8	24.7

EPA METHOD 29 RESULTS	Run 1	Run 2	Run 4	Run 5
Front Half (ug)	0.943	1.74	<0.1	0.186
Back Half (ug)	0.336	0.569	<0.1	0.101
Selenium - Se, (µg)	1.28	2.30	<0.2	0.287
Front Half (ug)	<0.1	<0.1	<0.1	<0.1
Back Half (ug)	<0.1	<0.1	2.726	<0.1
Silver - Ag, (μg)	<0.2	<0.2	2.83	<0.2
Front Half (ug)	<0.1	<0.1	<0.1	<0.1
Back Half (ug)	<0.1	<0.1	<0.1	<0.1
Thallium - Tl, (μg)	<0.2	<0.2	<0.2	<0.2
Front Half (ug)	612	629	524	455
Back Half (ug)	30.9	52.6	25.1	21.0
Zinc - Zn, (μg)	643	682	549	476
Mercury - Hg				
Front-Half Trial 1	<0.1	<0.1	<0.1	<0.1
Front-Half Trial 2	<0.1	<0.1	<0.1	<0.1
Front-Half (μg)	<0.1	<0.1	<0.1	<0.1
H ₂ O ₂ /HNO ₃ Impingers Trial 1	<0.5	<0.3	<0.3	<0.4
H ₂ O ₂ /HNO ₃ Impingers Trial 2	<0.5	< 0.3	<0.3	<0.4
H ₂ O ₂ /HNO ₃ Impingers (μg)	<0.5	<0.3	<0.3	<0.4
Empty Impinger Trial 1	<0.2	<0.2	<0.2	<0.2
Empty Impinger Trial 2	<0.2	<0.2	<0.2	<0.2
Empty Impinger (μg)	<0.2	<0.2	<0.2	<0.2
H ₂ SO ₄ /KMnO ₄ Impingers Trial 1	232	80.3	205	9.65
H ₂ SO ₄ /KMnO ₄ Impingers Trial 2	233	80.2	211	9,66
H ₂ SO ₄ /KMnO ₄ (μg)	233	80.3	208	9.66
8N HCl Rinse Trial 1	17.5	19.8	101	10.2
8N HCl Rinse Trial 2	17.5	19.6	101	10.2
8N HCl Rinse (μg)	17.5	19.7	101	10.2
Total Mercury - Hg (μg)	250	100	309	19.8

EPA METHOD 29 RESULTS	Run 1	Run 2	Run 4	Run 5
Antimony - Sb				
Concentration (µg/dscm)	0.312	0.379	0.371	0.237
Concentration (gr/dscf)	1.36E-07	1.66E-07	1.62E-07	1.04E-07
Emission Rate (lb/hr)	0.0000667	0.0000874	0.0000778	0.0000504
Arsenic - As				
Concentration (µg/dscm)	0.140	0.152	<0.114	<0.111
Concentration (gr/dscf)	6.13E-08	6.66E-08	<4.97E-08	<4.87E-08
Emission Rate (lb/hr)	0.0000300	0.0000351	<0.0000238	<0.0000237
Barium - Ba				
Concentration (µg/dscm)	2.58	4.73	2.24	1.93
Concentration (gr/dscf)	1.13E-06	2.07E-06	9.79E-07	8.45E-07
Emission Rate (lb/hr)	0.000551	0.00109	0.000469	0.000411
Berylium - Be				
Concentration (µg/dscm)	<0.0273	<0.0253	<0.0284	<0.0278
Concentration (gr/dscf)	<1.19E-08	<1.11E-08	<1.24E-08	<1.22E-08
Emission Rate (lb/hr)	<0.00000583	<0.00000583	<0.00000595	<0.00000592
Cadmium - Cd				
Concentration (µg/dscm)	1.86	1.00	1.08	0.886
Concentration (gr/dscf)	8.13E-07	4.38E-07	4.72E-07	3.87E-07
Emission Rate (lb/hr)	0.000398	0.000231	0.000226	0.000188
Chromium - Cr				
Concentration (µg/dscm)	1.35	1.59	1.38	1.10
Concentration (gr/dscf)	5.89E-07	6.93E-07	6.02E-07	4.83E-07
Emission Rate (lb/hr)	0.000288	0.000365	0.000289	0.000235
Cobalt - Co				
Concentration (µg/dscm)	<0.109	0.138	<0.114	<0.111
Concentration (gr/dscf)	<4.77E-08	6.04E-08	<4.97E-08	<4.87E-08
Emission Rate (lb/hr)	<0.0000233	0.0000318	<0.0000238	<0.0000237
ZSolori ricito (issila)	.5.5555255	0.0000010	-0.0000200	-5.5550207
Copper - Cu				
Concentration (µg/dscm)	1.47	3.10	1.76	5.14
Concentration (gr/dscf)	6.44E-07	1.36E-06	7.70E-07	2.24E-06
Emission Rate (lb/hr)	0.000315	0.000714	0.000369	0.00109

General Iron Industries, Inc. Hammermill Shredder Method 29 Parameters

Project No. 023AS-451738

Lead - Pb	EPA METHOD 29 RESULTS	Run 1	Run 2	Run 4	Run 5
Concentration (gr/dscf) Emission Rate (lb/hr) 0.00105 0.00171 0.00114 0.000727 Manganess - Mn Concentration (gr/dscm) Concentration (gr/dscm) Nickel - Ni Concentration (gr/dscm) 1.63 2.55 0.001110 0.001136 0.000738 Nickel - Ni Concentration (gr/dscm) Concentration (gr/dscm) 1.63 2.55 1.36 0.930 Concentration (gr/dscf) Emission Rate (lb/hr) 0.000349 0.000588 0.000284 0.000198 Phosphorous - P Concentration (gr/dscm) Concentration (gr/dscm) 1.8.2 1.9.6 1.52 1.3.7 Concentration (gr/dscm) 1.8.2 1.9.6 1.52 1.3.7 Concentration (gr/dscm) 1.8.2 1.9.6 1.52 1.3.7 Concentration (gr/dscm) 1.8.2 1.9.6 1.52 1.3.7 Concentration (gr/dscm) 1.8.2 1.9.6 1.52 1.3.7 Concentration (gr/dscm) 1.8.2 1.9.6 1.52 1.3.7 Concentration (gr/dscm) 1.000388 0.000451 0.000319 0.00292 Selenium - Se Concentration (gr/dscf) 2.305E-07 5.10E-07 4.97E-08 6.98E-08 Emission Rate (lb/hr) 0.000149 0.000269 2.0000238 0.0000340 Silver - Ag Concentration (gr/dscf) 4.77E-08 4.42E-08 7.02E-07 4.87E-08 Emission Rate (lb/hr) 0.000233 0.0000237 Thallium - TI Concentration (gr/dscf) 2.0000233 0.0000237 Thallium - TI Concentration (gr/dscf) 2.0000233 0.0000237 Thallium - TI Concentration (gr/dscf) 2.0000233 0.0000237 Zinc - Zn Concentration (gr/dscf) 3.51 3.52 3.12 2.65 Concentration (gr/dscf) 2.65 Emission Rate (lb/hr) 0.00750 0.0795 0.0654 0.0563 Mercury - Hg Concentration (gr/dscf) 1.53E-04 1.51E-04 1.51E-04 1.50E-04 1.50E-04	Lead - Pb				
Concentration (gr/dscf)	Concentration (µg/dscm)	4.93	7.43	5,44	3.42
Emission Rate (lb/hr) 0.00105	• -	2.15E-06	3.25E-06	2.38E-06	1.49E-06
Manganese - Mn Concentration (µg/dscm) 4.01 4.82 5.42 3.48 Concentration (gr/dscf) 1.75E-08 2.11E-06 2.37E-08 1.52E-06 Emission Rate (lb/hr) 0.000857 0.001110 0.001136 0.000738 Nickel - Ni Concentration (µg/dscm) 1.63 2.55 1.36 0.930 Concentration (µg/dscf) 7.14E-07 1.12E-06 5.92E-07 4.06E-07 Emission Rate (lb/hr) 0.000349 0.000588 0.000284 0.000198 Phosphorous - P Concentration (µg/dscm) 18.2 19.6 15.2 13.7 Concentration (µg/dscm) 18.2 19.6 15.2 13.7 Concentration (µg/dscf) 7.93E-06 8.66E-06 6.66E-06 6.00E-06 Emission Rate (lb/hr) 0.00388 0.00451 0.00319 0.00292 Selenium - Se Concentration (µg/dscm) 0.70 1.17 <0.114		0.00105	0.00171	0.00114	0.000727
Concentration (µg/dscm) 4.01 4.82 5.42 3.48 Concentration (gr/dscf) 1.75E-06 2.11E-06 2.37E-06 1.52E-06 Emission Rate (lb/hr) 0.000857 0.001110 0.001136 0.000738 Nickel - Ni Concentration (µg/dscm) 1.63 2.55 1.36 0.930 Concentration (gr/dscf) 7.14E-07 1.12E-06 5.92E-07 4.06E-07 Emission Rate (lb/hr) 0.000349 0.000588 0.000284 0.000198 Phosphorous - P Concentration (µg/dscm) 18.2 19.6 15.2 13.7 Concentration (µg/dscm) 7.93E-06 8.56E-06 6.66E-06 6.00E-06 Emission Rate (lb/hr) 0.00388 0.00451 0.00319 0.00292 Selenium - Se Concentration (µg/dscm) 0.70 1.17 <0.114	, ,				
Concentration (gr/dscf) 1.75E-06 2.11E-06 2.37E-06 1.52E-06 Emission Rate (lb/hr) 0.000857 0.001110 0.001136 0.000738 Nickel - Ni Concentration (μg/dscm) 1.63 2.55 1.36 0.930 Concentration (gr/dscf) 7.14E-07 1.12E-06 5.92E-07 4.06E-07 Emission Rate (lb/hr) 0.000349 0.000588 0.000284 0.000198 Phosphorous - P Concentration (µg/dscm) 18.2 19.6 15.2 13.7 Concentration (µg/dscf) 7.93E-06 8.56E-06 6.66E-06 6.00E-06 Emission Rate (lb/hr) 0.00388 0.00451 0.00319 0.00292 Selenium - Se Concentration (µg/dscm) 0.70 1.17 <0.114	Manganese - Mn				
Emission Rate (lb/hr) 0.000857 0.001110 0.001136 0.000738 Nickel - Ni Concentration (µg/dscm) 1.63 2.55 1.36 0.930 Concentration (µg/dscf) 7.14E-07 1.12E-06 5.92E-07 4.06E-07 Emission Rate (lb/hr) 0.000349 0.000588 0.000284 0.000198 Phosphorous - P Concentration (µg/dscf) 7.93E-06 8.56E-06 6.66E-06 6.00E-06 Emission Rate (lb/hr) 0.00388 0.00451 0.00319 0.00292 Selenium - Se Concentration (µg/dscf) 7.93E-06 8.56E-06 6.66E-06 6.00E-06 Concentration (µg/dscm) 0.70 1.17 <0.114	Concentration (µg/dscm)	4.01	4,82	5.42	3.48
Nickel - Ni Concentration (μg/dscm) 1.63 2.55 1.36 0.930 Concentration (gr/dscf) 7.14E-07 1.12E-06 5.92E-07 4.06E-07 Emission Rate (lb/hr) 0.000349 0.000588 0.000284 0.000198 Phosphorous - P Concentration (μg/dscm) 18.2 19.6 15.2 13.7 Concentration (gr/dscf) 7.93E-06 8.56E-06 6.66E-06 6.00E-06 Emission Rate (lb/hr) 0.00388 0.00451 0.00319 0.00292 Selenium - Se Concentration (μg/dscm) 0.70 1.17 <0.114	Concentration (gr/dscf)	1.75E-06	2.11E-06	2.37E-06	1.52E-06
Concentration (μg/dscrf) 1.63 2.55 1.36 0.930 Concentration (gr/dscf) 7.14E-07 1.12E-06 5.92E-07 4.06E-07 Emission Rate (lb/hr) 0.000349 0.000588 0.000284 0.000198 Phosphorous - P Concentration (μg/dscm) 18.2 19.6 15.2 13.7 Concentration (gr/dscf) 7.93E-06 8.56E-06 6.66E-06 6.00E-06 Emission Rate (lb/hr) 0.00388 0.00451 0.00319 0.00292 Selenium - Se Concentration (μg/dscm) 0.70 1.17 <0.114	Emission Rate (lb/hr)	0.000857	0.001110	0.001136	0.000738
Concentration (μg/dscrf) 1.63 2.55 1.36 0.930 Concentration (gr/dscf) 7.14E-07 1.12E-06 5.92E-07 4.06E-07 Emission Rate (lb/hr) 0.000349 0.000588 0.000284 0.000198 Phosphorous - P Concentration (μg/dscm) 18.2 19.6 15.2 13.7 Concentration (gr/dscf) 7.93E-06 8.56E-06 6.66E-06 6.00E-06 Emission Rate (lb/hr) 0.00388 0.00451 0.00319 0.00292 Selenium - Se Concentration (μg/dscm) 0.70 1.17 <0.114	** / / **				
Concentration (gr/dscf) 7.14E-07 1.12E-06 5.92E-07 4.06E-07 Emission Rate (lb/hr) 0.000349 0.000588 0.000284 0.000198 Phosphorous - P Concentration (μg/dscm) 18.2 19.6 15.2 13.7 Concentration (μg/dscf) 7.93E-06 8.56E-06 6.66E-06 6.00E-06 Emission Rate (lb/hr) 0.00388 0.00451 0.00319 0.00292 Selenium - Se Concentration (μg/dscm) 0.70 1.17 <0.114		4.00	0.55	4.00	0.000
Emission Rate (lb/hr)					
Phosphorous - P Concentration (μg/dscm) 18.2 19.6 15.2 13.7 Concentration (gr/dscf) 7.93E-06 8.56E-06 6.66E-06 6.00E-06 Emission Rate (lb/hr) 0.00388 0.00451 0.00319 0.00292 Selenium - Se Concentration (μg/dscm) 0.70 1.17 <0.114					
Concentration (μg/dscm) 18.2 19.6 15.2 13.7 Concentration (gr/dscf) 7.93E-06 8.56E-06 6.66E-06 6.00E-06 Emission Rate (lb/hr) 0.00388 0.00451 0.00319 0.00292 Selenium - Se Concentration (μg/dscm) 0.70 1.17 <0.114	Emission Rate (lb/hr)	0.000349	0.000588	0.000284	0.000198
Concentration (μg/dscm) 18.2 19.6 15.2 13.7 Concentration (gr/dscf) 7.93E-06 8.56E-06 6.66E-06 6.00E-06 Emission Rate (lb/hr) 0.00388 0.00451 0.00319 0.00292 Selenium - Se Concentration (μg/dscm) 0.70 1.17 <0.114	Phosphomus - P				
Concentration (gr/dscf) 7.93E-06 8.56E-06 6.66E-06 6.00E-06 Emission Rate (lb/hr) 0.00388 0.00451 0.00319 0.00292 Selenium - Se Concentration (μg/dscm) 0.70 1.17 <0.114		18.2	19.6	15.2	13.7
Emission Rate (lb/hr) 0.00388 0.00451 0.00319 0.00292 Selenium - Se Concentration (μg/dscm) 0.70 1.17 <0.114 0.160 Concentration (gr/dscf) 3.05E-07 5.10E-07 <4.97E-08 6.98E-08 Emission Rate (lb/hr) 0.000149 0.000269 <0.0000238 0.0000340 Silver - Ag Concentration (μg/dscm) <0.109 <0.101 1.61 <0.111 Concentration (μg/dscm) <0.109 <0.101 1.61 <0.111 Concentration (μg/dscf) <4.77E-08 <4.42E-08 7.02E-07 <4.87E-08 Emission Rate (lb/hr) <0.109 <0.101 <0.114 <0.111 Concentration (μg/dscm) <0.109 <0.101 <0.114 <0.111 Concentration (μg/dscf) <4.77E-08 <4.42E-08 <4.97E-08 <4.87E-08 Emission Rate (lb/hr) <0.0000233 <0.0000233 <0.0000233 <0.0000238 <0.0000237 Zinc - Zn Concentration (μg/dscm) 351 345 312 265 C					
Selenium - Se Concentration (μg/dscm) 0.70 1.17 <0.114 0.160 Concentration (gr/dscf) 3.05E-07 5.10E-07 <4.97E-08					-
Concentration (μg/dscm) 0.70 1.17 <0.114 0.160 Concentration (gr/dscf) 3.05E-07 5.10E-07 <4.97E-08	Emosor rate (ionii)	0.0000	0.00.00		
Concentration (gr/dscf) 3.05E-07 5.10E-07 <4.97E-08	Selenium - Se				
Emission Rate (lb/hr) 0.000149 0.000269 <0.0000238 0.0000340 Silver - Ag Concentration (μg/dscm) <0.109 <0.101 1.61 <0.111 Concentration (gr/dscf) <4.77E-08 <4.42E-08 7.02E-07 <4.87E-08 Emission Rate (lb/hr) <0.0000233 <0.0000233 0.000337 <0.0000237 Thallium - Tl Concentration (μg/dscm) <0.109 <0.101 <0.114 <0.111 Concentration (gr/dscf) <4.77E-08 <4.42E-08 <4.97E-08 <4.87E-08 Emission Rate (lb/hr) <0.0000233 <0.0000233 <0.0000238 <0.0000237 Zinc - Zn Concentration (μg/dscm) 351 345 312 265 Concentration (gr/dscf) 1.53E-04 1.51E-04 1.36E-04 1.16E-04 Emission Rate (lb/hr) 0.0750 0.0795 0.0654 0.0563 Mercury - Hg Concentration (μg/dscm) 136 50.6 176 11.0	Concentration (µg/dscm)	0.70	1.17	<0.114	0.160
Silver - Ag Concentration (μg/dscm) < 0.109	Concentration (gr/dscf)	3.05E-07	5.10E-07	<4.97E-08	6.98E-08
Concentration (μg/dscm) <0.109 <0.101 1.61 <0.111 Concentration (gr/dscf) <4.77E-08	Emission Rate (lb/hr)	0.000149	0.000269	<0.0000238	0.0000340
Concentration (μg/dscm) <0.109 <0.101 1.61 <0.111 Concentration (gr/dscf) <4.77E-08					
Concentration (gr/dscf) <4.77E-08 <4.42E-08 7.02E-07 <4.87E-08 Emission Rate (lb/hr) <0.0000233	Silver - Ag				
Emission Rate (lb/hr) <0.0000233 <0.0000233 0.000337 <0.0000237 Thallium - TI Concentration (μg/dscm) <0.109 <0.101 <0.114 <0.111 Concentration (gr/dscf) <4.77E-08 <4.42E-08 <4.97E-08 <4.87E-08 Emission Rate (lb/hr) <0.0000233 <0.0000233 <0.0000238 <0.0000237 Zinc - Zn Concentration (μg/dscm) 351 345 312 265 Concentration (gr/dscf) 1.53E-04 1.51E-04 1.36E-04 1.16E-04 Emission Rate (lb/hr) 0.0750 0.0795 0.0654 0.0563 Mercury - Hg Concentration (μg/dscm) 136 50.6 176 11.0	Concentration (µg/dscm)	<0.109	<0.101	1.61	<0.111
Thallium - TI Concentration (μg/dscm) <0.109	Concentration (gr/dscf)	<4.77E-08	<4.42E-08	7.02E-07	<4.87E-08
Concentration (μg/dscm) <0.109 <0.101 <0.114 <0.111 Concentration (gr/dscf) <4.77E-08	Emission Rate (lb/hr)	<0.0000233	<0.0000233	0.000337	<0.0000237
Concentration (μg/dscm) <0.109 <0.101 <0.114 <0.111 Concentration (gr/dscf) <4.77E-08	The Wisses Ti				
Concentration (gr/dscf) <4.77E-08 <4.42E-08 <4.97E-08 <4.87E-08 Emission Rate (lb/hr) <0.0000233		<0.100	<0.101	<0.114	<0.111
Emission Rate (lb/hr) <0.0000233 <0.0000233 <0.0000238 <0.0000237 Zinc - Zn Concentration (μg/dscm) 351 345 312 265 Concentration (gr/dscf) 1.53E-04 1.51E-04 1.36E-04 1.16E-04 Emission Rate (lb/hr) 0.0750 0.0795 0.0654 0.0563 Mercury - Hg Concentration (μg/dscm) 136 50.6 176 11.0					
Zinc - Zn Concentration (μg/dscm) 351 345 312 265 Concentration (gr/dscf) 1.53E-04 1.51E-04 1.36E-04 1.16E-04 Emission Rate (lb/hr) 0.0750 0.0795 0.0654 0.0563 Mercury - Hg Concentration (μg/dscm) 136 50.6 176 11.0					
Concentration (μg/dscm) 351 345 312 265 Concentration (gr/dscf) 1.53E-04 1.51E-04 1.36E-04 1.16E-04 Emission Rate (lb/hr) 0.0750 0.0795 0.0654 0.0563 Mercury - Hg Concentration (μg/dscm) 136 50.6 176 11.0	Emission Rate (Ib/nr)	<0.0000233	<0.0000233	<0.0000238	<0.0000237
Concentration (gr/dscf) 1.53E-04 1.51E-04 1.36E-04 1.16E-04 Emission Rate (lb/hr) 0.0750 0.0795 0.0654 0.0563 Mercury - Hg Concentration (µg/dscm) 136 50.6 176 11.0	Zinc - Zn				
Concentration (gr/dscf) 1.53E-04 1.51E-04 1.36E-04 1.16E-04 Emission Rate (lb/hr) 0.0750 0.0795 0.0654 0.0563 Mercury - Hg Concentration (μg/dscm) 136 50.6 176 11.0	Concentration (µg/dscm)	351	345	312	265
Mercury - Hg Concentration (μg/dscm) 136 50.6 176 11.0		1.53E-04	1.51E-04	1.36E-04	1.16E-04
Concentration (µg/dscm) 136 50.6 176 11.0		0.0750	0.0795	0.0654	0.0563
Concentration (µg/dscm) 136 50.6 176 11.0	Moroumy Ha				
	• •	136	50 S	176	11 0
Concentration (gr/qscr) 5.50E*U0 2.21E*U0 /.00E*U0 4.02E*U0					
,					
Emission Rate (lb/hr) 0.0291 0.0117 0.0368 0.00234	Emission Rate (ID/Inf)	0.0281	0.0117	0.0366	0,00234

General Iron Industries: Chicago, Illinois Hammermill Shredder PM and TSM Protected by the Attorney Client Privilege and Attorney Work Product Doctrine

APPENDIX D FIELD DATA PRINTOUTS

Project Number	451738
Client	Iron Industries
Plant	Chicago, IL.
Location	Hammer Mill Shredder
Date	6/13/2018
Meter ID	M-39
Y _a	0.9987
Pitot C _o	0.84

Nozzle Diameter (in)	0.170
Titer ID	31347
Train Type	IMP
Train ID	IB-18
P _b (Inches Hg)	29.85
P _s (inches H ₂ O)	1,3
Start Time	11:49
Stop Time	13;40

Place	ອກ	"ג"	in	the
annr	กกก	iate	a	ΩY

Circular?	×
Rectangular?	
Diameter	50
Length	
Width	

Molsture	Tare Wt	Final Wt	Net Wt
Impinger 1	642.4	681,4	39.0
Impinger 2	713.4	733.9	20.5
Impinger 3	752.7	758.0	5.3
impinger 4	605.6	607.9	2.3
Impinger 5	630.7	632,1	1.4
Impinger 6	737.2	737.2	0.0
			SWEETERS.
Silica Gel	911.1	923.9	12.8
Weight of W	ater Collected	I, V _{wc} (g)	68.5
Silica Gel Ne	el Weight, V _m	, (g)	12.8

Analyzer 👙	%CO₂	%CO;+%O;	% O,
Trial 1	D.40	NA	20.8
Trial 2	0.40	NA.	20.8
Triel 3	0,40	NA	20.8
Average :	0.40	NA .	20.8

D.	•••	4

XIII	∴Min/Pt ≥ 6	Velocity Pressure	Orifice Setting	Gas Sample Volume	Stack	DGM	DGM	Square	Stack Gas	Volume Metered	
Traverse	Elapsed	ΔP	ΔH	Initial (ft ³)	Temp.	intet	Outlet	Root	Velocity	Vmstd	Isokinetics
Point	Time	(in. H ₂ O)	(in, H ₂ O)	807,36	(°F)	(라)	(°F)	ΔP	Vs (IVsec)	(ft³)	(%)
1-1	6	1.60	1.40	811.55	114	93	89	1.265	74.8	4.013	108.9
1-2	12	1,90	1.60	815,92	119	96	91	1.378	81.8	4.168	104.2
1-3	18	1.80	1.50	820.20	119	101	91	1,342	79.7	4.063	104.4
1-4	24	1.70	1.50	824.50	120	103	93	1.304	77.5	4.067	107.6
1-5	30	1,60	1.40	828,90	121	105	95	1,265	75.2	4.146	113.2
1-6	36	2.20	1,90	832.84	120	107	98	1.483	88.1	3,701	86.1
1-7	42	2,40	2.10	837,60	120	109	100	1.549	92.1	4.457	99.3
1-8	48	2.00	1.70	842.10	121	110	102	1.414	84.1	4.198	102.5
2-1	54	1,50	1.30	846,14	121	107	104	1.225	72.8	3,769	106.3
2-2	60	1,60	1.40	850.25	120	110	104	1.265	75.2	3.825	104,3
2-3	66	1,70	1.50	854.30	120	112	106	1.304	77.5	3,757	99.4
2-4	72	1.60	1.40	858.35	121	115	108	1.265	75.2	3.739	102.1
2-5	78	1.70	1.50	862.45	120	115	109	1,304	€ 77.5	3.783	100.1
2-6	84	2.20	1.90	867.22	123	116	110	1.483	88.4	4.398	102.6
2-7	90	2.20	1.90	871.82	118	116	111	1.483	88.0	4.238	98.4
2-8	96	2.20	1.90	876.55	121	116	111	1.483	88.2	4.357	101.4

Totals and Averages									
96	1.62	69.19	120	105	1,36	81.0	64.68	102.3	

Method 29 Field Data Entry

Project No. 023AS-451738

Project Number	451738
Client	Iron Industries
TREESE, 1 . 1 . 4 . 4 . 4 . 5 . 5 . 5 . 5 . 5	
Plant	Chicago, IL
Location	Hammer Mill Shredder
Dale	6/13/2018
Meter ID	M-39
Y _a	0,9987
Pitot C _o	0.84

Nozzie Diameter (in)	0.170
Filter ID	31346
Train Type	IMP
Train ID	IB-16
P _b (Inches Hg)	29.79
P _s (Inches H ₂ O)	1.0
Start Time	15:15
Stop Time	17:09

Place an			
appropr	ate	28	οх

Circular?	x
Rectangular?	
Diameter	50
Length	
Width	

Moisture	Tare Wt (g)	Final Wt (g)	Nel WI (g)
Impinger 1	736,9	769.0	32.1
Impinger 2	736.0	753.1	17.1
Impinger 3	661.4	667.8	6.4
Impinger 4	733.7	741.5	7.8
Impinger 5	735.8	737.1	1.3
			54804666
		, i	
Silica Gel	946.1	965.2	19.1
	ater Collected		64.7
Silica Gel Ne	el Weighl, V.,,	ղ (g)	19.1

Analyzer	%CO ₂	%CO2+%O2	%O ₂
Trial 1	0,30	NA	20,9
Trial 2	0.30	NA.	20.9
Trial 3	0.30	NA.	20,9
Average	0.30	NA	20.9

Run 2

	Min/Pt	Velocity	Orifice	Gas Sample	STATE OF	46755	SANCE.		Stack	Volume	37533
V 27 V V	6	Pressure	Setting	Volume	Stack	DGM	DGM	Square	Gas	Metered	
Traverse	Elaosed	ΔP	ΔH	Initial (ft ³)	Temp.	inlet	Outlet	Root	Velocity	Vmstd	Isolonetics
Point	Time	(in, H ₂ O)	(in. H ₂ O)	878.51	(°F)	(°F)	(°F)	ΔP	Vs (fVsec)	(ft²)	(%)
1-1	6	2.90	2.60	883.75	113	107	106	1.703	100.7	4.886	98.3
1-2	12	2.70	2.30	888.90	115	109	106	1.643	97.3	4.790	100.0
1-3	18	2.50	2.20	893.95	116	111	106	1.581	93,7	4.687	101.8
1-4	24	2.10	1.80	899.08	117	113	107	1.449	86.0	4.744	112.5
1-5	30	2.40	2.10	903.60	118	115	108	1.549	92,0	4.172	92.7
1-6	36	2.00	1.70	908.45	118	115	108	1.414	84.0	4.472	108.6
1-7	42	2.10	1.80	913.30	115	117	110	1.449	85,8	4.458	105.6
1-8	48	1,90	1.60	917.70	119	118	111	1.378	81.9	4.035	100.8
2-1	54	2.70	2.30	923.26	120	107	109	1.643	97.8	6.157	108.2
2-2	60	2.10	1,80	928.05	119	108	108	1,449	86.1	4.455	105.9
2-3	66	1,60	1.40	932.16	122	109	107	1.265	75.4	3.811	104.0
2-4	72	2.00	1.70	936.50	118	110	107	1.414	84,0	4.023	97.9
2-5	78	1.90	1.60	940,72	117	109	106	1,378	81.8	3,918	97.7
2-8	84	2.00	1,70	945,15	117	110	106	1.414	83.9	4.110	99.9
2-7	90	1.90	1.60	949.45	116	110	106	1.378	81.7	3.989	99.4
2-8	96	1.80	1.50	953,80	116	109	105	1.342	79.5	4,041	103.5

Totals and Averages		•							
96	1.86	75.29	117	109	1.47	87 n	69.74	1023	٠

Project Number	451738
Client	tron Industries
Plant	Chicago, IL
Location	Hammer Mill Shredder
Date	6/14/2018
Meter ID	M-39
Y.	0.9987
Pitot C.	0.84

Nozzle Diameter (in)	0.170
Filter ID	31457
Train Type	IMP
Train ID	1B-16
, (Inches Hg)	29.85
, (Inches H ₂ O)	1,0
Start Time	10:56
Stop Time	12:45

Place	ал	"x"	in	the
appr	орг	iale	B	οx

Circular?	X
Rectangular?	
Diameter	50
Length	
Width	

Moisture	Tare Wt	Final Wt	Net Wt
Impinger 1	687.8	741.5	63.7
impinger 2	765.2	777,6	12.4
impinger 3	609.1	611.4	2.3
Impinger 4	622.8	624.3	1.5
impinger 5	732.8	735.5	2.7
			30.00 Males #
Silica Gel	848.0	863.1	15.1
Weight of W	72.6		
Silica Gel Ne	t Weight, V,,	, (g)	15.1

Analyzer	%CO₂	%CO2+%O2	%O₂
Trial 1	0.39	NA	20.79
Trial 2	0.39	NA.	20.79
Trial 3	0.39	NA	20.79
Average	0,39	NA .	20,79

0	ı	•		J	ı

	Min/Pt	Velocity	Orifice	Gas Sample		包装铁铁			Stack	Volume	200
	6	Pressure	Setting	Volume	Stack	DGM	DGM	Square	Gas	Metered	
Traverse	Elapsed	ΔΡ	ΔH	Initial (ft ³)	Temp.	Intet	Outlet	Root	Velocity	Vmstd	Isokinetics
Point	Time	(in. H ₂ O)	(in. H₂O)	1,058.74	(°F)	(°F)	(°F)	ΔΡ	Vs (IVsec)	(ft³)	(%)
1-1	6	1.90	1.60	1062.82	111	89	86	1,378	81.4	3,934	98.3
1-2	12	2,00	1.70	1067.10	119	95	87	1.414	84.1	4.102	100.6
1-3	18	1.80	1.50	1071,25	120	99	88	1.342	79.9	3.957	102.4
1-4	24	1.90	1.60	1075.42	121	100	89	1.378	82.1	3.970	100.0
1-5	30	1.70	1.4D	1079,45	122	100	90	1.304	77.7	3.832	102.2
1-6	36	1,90	1.60	1083.66	121	101	90	1.378	82.1	4.001	100,8
1-7	42	1.70	1.40	1087.90	123	102	92	1.304	77.8	4.017	107.2
1-8	48	2.10	1.70	1092.17	119	102	93	1.449	86.2	4.045	96.8
2-1	54	1.40	1,20	1095.70	120	98	94	1.183	70.4	3.349	98.2
2-2	60	1.50	1.20	1099.30	121	100	94	1.225	73.0	3,409	96.7
2-3	66	1.50	1.20	1103.05	123	102	94	1.225	73.1	3.545	100.7
2-4	72	1.50	1.20	1106.80	122	103	95	1,225	73,0	3,538	100.4
2-5	78	2.00	1.70	1111.11	123	104	96	1.414	84.4	4.064	100.0
2-6	84	1.80	1.50	1115.35	120	105	97	1,342	79.9	3,989	103.2
2-7	90	2.20	1.80	1119.75	120	105	97	1.483	88.3	4.143	96.9
2-8	96	2.20	1.80	1124.23	119	105	97	1.483	88.2	4.218	98.6

Totals and Averages								
96	1.51	65.49	120	96.5	1.35	80.1	62.11	100.2

Run 5

2-2 2-3

2-4 2-5 2-6

2-7 2-8

60

66

72 78

84

90

Isokinetics

(%) 99.1 101.4 103.3 101.5 100.8 100.8

97.8

101.5

100.0

102.1

85.4

117.9

100.5

.99.5

100.4 100.9

Project Number	451738
Client	Iron Industries
Plant	Chicago, IL
Location	Hammer Mill Shredder
Dale	6/14/2018
Meter ID	M-39
Y	0,9987
Pitot C.	0.84

Nozzle Diameter (in)	0.170	_
Filter ID	31460	
Train Type	1MP	
Train ID	IB-18	
P _b (Inches Hg)	29.80	
P ₂ (inches H ₂ O)	1.0	
Start Time	13:45	
Stop Time	15:33	

1,90

1.90

1,80

1.80

1,60

1.90

2,20 2.20

1.60

1.60 1.50

1.50

1,30

1.60

1.80

Place an "x" in the appropriate Box

Circular?	x
Rectangular?	
Diameter	50
Length	
Width	

Moisture	Tare Wt	Final Wt	Nel WI			
	(g)	(g)	(g)			
impinger 1	743.2	800.3	57.1			
impinger 2	738.0	749.5	11,5			
Impinger 3	665.9	663,9	3.0			
Impinger 4	746.9	748.7	1.8			
Impinger 5	744.2	745.4	1.2			
			44454444			
			共產黨等			
Silica Gel	964,4	976.2	11.8			
Weight of W	74.6					
Sifica Gel Ne	Silica Gel Net Weight, V,,,, (g)					

Analyzer	%CO ₂	%CO2+%O2	%O ₂
Trial 1	0.40	NA.	20.80
Trial 2	0.40	NA NA	20.80
Trial 3	0.40	NA	20.80
Average	0.40	NA .	20.80

1,378

1.378

1.342

1.342

1.265

1.378

1,483

81,9

81.9

79.8

79.7

75.3

82.0

88.2

3,985

4.068

3,309

4.574

3,670

3.959 4.301

	MIDATE	velocity	Ontice	Gas Sample				1.606.60	Stack	Volume
	6	Pressure	Setting	Volume	Stack	DGM	DGM	Square	Gas	Melered
Traverse	Elaosed	ΔΡ	ΔH	Initial (ft ³)	Temp.	Inlet	Outlet	Root	Velocity	Vmstd
Point	Time	(in, H ₂ O)	(in. H ₂ O)	124.85	(°F)	(°F)	(°F)	ΔΡ	Vs (fVsec)	(ft³)
1-1	6	2.00	1.70	129.10	107	88	88	1,414	83,3	4,089
1-2	12	1.70	1.40	133.10	116	93	88	1.304	77.4	3.828
1-3	18	1.50	1.20	136.92	120	95	88	1.225	72.9	3.647
1-4	24	1.50	1.20	140.68	119	95	89	1,225	72.9	3,587
1-5	30	1.70	1.40	144.66	118	95	89	1.304	77.5	3.798
1-6	36	1,90	1.60	143.86	119	95	89	1,378	82.0	4,010
1-7	42	2.00	1.70	153.05	116	95	89	1.414	83.9	4.002
1-8	48	2.10	1.70	157.50	118	95	89	1.449	86.1	4.250

161.67

165,93

169.40

174,20

178.05

182.20

186.71 191.25

- 1				1100				j	1.100			100.1
	2-8	96	2.20	1.80	191.25	116	96	89	1.483	88.0	4.333	100.9
	Totals and A											
		96		1.54	66.40	117	91	8.8	1.36	80,8	63.41	100.8

117

117

118

117

119

119

119

94

95

96 97

96

95

96

89

89

89

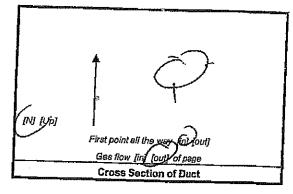
89

89

90 90

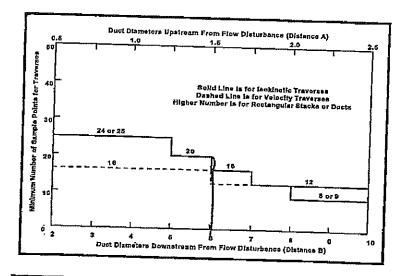
General Iron Industries: Chicago, Illinois Hammermill Shredder PM and TSM Protected by the Attorney Client Privilege and Attorney Work Product Doctrine

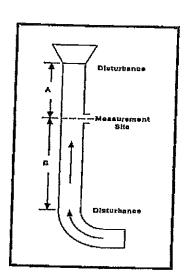
APPENDIX E FIELD DATA



MONTROSE AIR QUALITY SERVICES, LLC

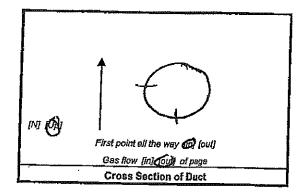
EPA Method 1


LOCATION | Sample and Velocity Traverses Datasheet


Cilent	Frem	Ind-stries	1.00
Project No:	451	738	
Plant	Cha	p IC	
Date	6-13	3-18	
Technician	_ (<		
Duct Diameter (in.)	50	
Port Diameter (i	n,)	L(-^	
Port Length (In.)		14.0	
Port Type		1 ippl	2
Distance A (ft)		≥ 50	
Distance B (ft)	,	1 25	
Distance A (Duc	Diameters)	1813	
Distance B (Ducl		1	

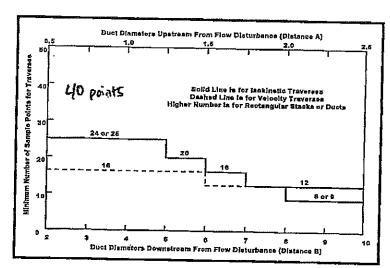
For rectangular ducts

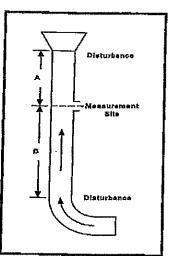
$$ED = \frac{2LW}{(L+W)}$$


ocation Schematic and Notes	Traverse	Distance
	Point	(in.)
	1	16-11
	2	19.74
	3	24.19
	4	30.66
	5	48-30
	6	54.81
	7	59.20
	8	628
	9	
	10	
Diction and her was	11	
Sisterice is includes it of all derive, for EPA quillone cloquest	12	
Distance is includes 17" of a 12" derve per EAN guildonce clocularly and student status and student of a 12" englished use then 15" of a 12" englished use them 15" of a 12" englished use them 15" of a 12" englished uses them 15" of a 12" englished uses them 15" of a 12" derve per EAN guildonce clocularly englished uses the 15" of a 12" derve per EAN guildonce clocularly englished uses the e	.13	
icale sample ports, height from grade, types of dishustration	14	
icale sample ports, height from grade, types of disturbances, access, unistrut configuration, etc. tance to point must include length of port	15	
The state of both	16	

MONTROSE AIR QUALITY SERVICES, LLC

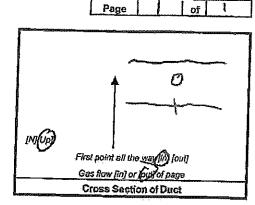
EPA Method 1


LOCATION Hammer Mill Sample and Velocity Traverses Datasheet


Shredder							
Client	I ron I	adustries					
Project No:	451738	451738					
Plant	Chicuse,	T L					
Date	6/14/18						
Technician	13H						
Duct Diameter	(in.)	50					
Port Diameter	(in.)	4					
Port Length (in	1.)	8					
Port Type		M-Vipple					
Distance A (ft)		450					
Distance B (ft)		25					
Distance A (Du	ct Diameters)	612					
Distance B (Du	ct Diameters)	6					

For rectangular ducts

$$ED = \frac{2LW}{(L+W)}$$



		3DFLOW POIN
Location Schematic and Notes	A=13.6354	Traverse Distance Point (in.)
		1 8.63
		2 9.95
		3 11.35
•		4 17.84
		5 14.46
		6 16.23
		7 18.21 8 20.50
		9 23 32
		10 27.41
		11 38.99
T L		12 42.68
Dist		13 45,50
		14 47. 79
ndicate sample ports, height from grade, types of disturbances, ac Distance to point must include length of port	cess, unistrut configuration, etc.	15 44.77
sociation to point most include length or port		16 51.54
		17 53.16
		18 54.65
		19 56.05
	B-131	20 57.37

MONTROSE AIR QUALITY SERVICES, LLC EPA Method 2

Cyclonic Flow Traverse Datasheet

Client	Iron Industries Inc.	
Project No.	451738	***************************************
Plant	Chicago, TL	
Location	Hamar Mill Duct size (in)	50
Date	6/13) 8 Port Length (in)	54
Probe ID	AE2-G-G Pitot Cp	. 011

Run Nun	nber	1	1	Run Nun				and the same of th		· parameters and	
Start Tim	ms ZM9:30-956		39-956	Start Time			Run Nun		ļ		
Stop Tim	8	10.	06	Stop Tim				Start Tim			
	Barometric (InHg) 29,85		Barometr				Stop Tima				
Static (in		1.3		Static (In				Barometric (InHg)		<u></u>	
Probe Op	***************************************	10	3					Static (in			
Data Rec			M.	Probe Op				Probe Op			
Pre Leak	***************************************			Data Rec	The second second		·	Data Rec			
Post Leaf				Pre Leak Post Leal				Pre Leak			
	Pressun	e Angle		Last rest	The state of the s			Post Leaf	Check		
Travense	ΔP @ 0°	_			Pressure	Angle			Pressure	Angle	- "
Point	(in H ₂ O)		Notes	Traverse Point		α (< 20°)		Traverse	AP @ 0°	α	
7-1	202		110103	CONS	(In H ₂ O)	(< 20)	Notes	Point	(in H ₂ O)	{< 20°)	Notes
2	02	0,2						 			
3		0.3						[
¥	.0	4.5									
5	OL	6.2									
6	.02	13.5									
Ť	,02	15.5								······································	
Я	:03	17.2						ļ			
2-1	-, 0	5.0									
2	.01	5.0									
3	,01	7.0		-			······				
4	-,01	10.0				 - -				·	
5	0.0	0.6				 }					
6	15]	5.0									
7	101	15.0									
8	01	0.0									
									- 1		
		1, 71,									
		-						<u></u> -			
									<u> </u>		
											
						-					
otal		107.2	-	rotal	-		****				
verage		67	<u></u>	Average				rotal			ı
			remarkation of the second	reateffa				\verage	ĺ	1	

TESTING TYPE:

RUN NO.

METHOD NO.

Page of

Client Iron Industries Inc.		Barometric (in. Hg)	29.85	Water (ml) (g) 68.5
Plant Chicago, Th.		Ambient Temp. (⁰ F)	80	Silica gel (g) 12.8
Location Hallimed Mill Shredder	A STATE OF THE PARTY OF THE PAR	Static (In. H ₂ O)ZM	1.013	Total Vic \$1.3
Date 6/13/18 Project No. 45/738	Î o	Probe ID	5-6-7	Liner Type 4/25
Meter Operator 2M		Nozzle ID	.170	Nozzle Dia (in.) , /-jo
Probe Operator CS		Filter ID	31347	
Meter ID W-39 Yd 9987 Pitot Cp 84	IN (ii)	Train ID 18-15	CB-3-	Train Type
ΔH@ 1.599 Kf . 8 Leak check V	First point all the way (in) [out]	Duct Dim. (in.) *	* <i>5</i> 0	Port Lgth. (in.) 8 14.5
Pre Leak Check 0000 (cfp) [lpm] @ 15 (inHg)	Gas flow [in] [iful] of page		**	*\?\\
Post Leak Check 0.000 (cfm] [lpm] @ 15 (inHg)	Cross Section of Duct	Start Time	11349	Stop Time 13:40

	Min/Point	Velocity	Orifice	Gas Sample		Probe	Filter	Impinger	DGM	DGM		Ĩ			
	6	Pressure	Setting	Volume	Stack	Temp	Temp	Outlet	Inlet	Outlet	Pump	Auxiliary			
Traverse	Elapsed	ΔP	ΔH	Initial [[7] [1]	Temp	(°F)	(°F)	Temp	Temp	Temp	Vacuum	Temp			
Point	Time	(in H ₂ O)	(in H₂O)	804-45	(^o F)	250	258	(°F)	(⁰ F)	(°F)	(In Hg)	(°F)	Notes		
1-1	6	1.6	1.4	811.55	114	250	250	63	93	89	6	N/A	Initial Val	=807.03-,36	ZW
2	12	1.9	1.6	815.92		252	250	62	96	91	6	1			
3	18	(~8	1.5	820.20		253	257	60	101	91	6				
4	24	7-9-		824.20	120		250	62	103	93	6		1.7 = AP	15 AF	
5	30	16	1.4	828,90	121	252		63	105	95	6				
7		1.2	1.9	832-84	120		250	63	107	43	6				
1 7			2.	837.60	120	251	253	62	109	105	6				
8	48	2.0		842.10	121	253	252	62	115	107	6				
2-1	54	1.5	13	846.14	121		250	6	167	104	_{		-		
2	(50	1.6	14	850.25	126		250	60	10	104	<u> </u>	·			
3	66	1.7		354.30	120		253	56	112	106	7				
3/				ƙ5 8 ∙35	12-1	250	250	54	115	108	δ.	V			
Total	96	21/8/23	18.7	69.19	1436				1268	118					
Average		L3633	1.6		[19.9]				104.	8	Ĵ ^e		27.5%		

Circle correct bracketed [] units
Train Type denotes impingers, knockouts, etc.

τ
_
2
4
ĸ

			10011119	-aid::0	C.					
	TES'IING I	TYPE:	PM	Med	a 5	_				
RUN NO. 1 (COnd)	METHO	D NO	PM /	29		_		Р	age 7	of 2-
Plant Chicago TL Consider Hammer Hill Shredder	-					Ambient	ric (In. Hg) Temp. (°F)	29-85 80	Water (ml) (g) Silica gel (g)	68.5 17.8
ocation Hymner Hill Shredger Date 6/3/18 Project No. 45/738	-	4				Static (in	. H ₂ O)	1.3	Total Vic	81.3
Reter Operator	1			0	•	Probe ID	 I	5-6-1	Liner Type Nozzie Dia (іл.)	[ales5]
Probe Operator] _	-		 	—ù	Filter ID		3)347	MOZZIO DIA (III.)	<u> </u>
Meter ID M-39 Yd 9987 Pitot Cp 84] [1] [G])					13-18	CB=3'	Train Type	Inp
H@] 999 Kf 86 Leak check 7 re Leak Check 0 2000 [cfm] [lpm] @ 15 (inHg)	-	First poi	int all the way	(b) tomi		Duct Dim	. (in.)	50	Port Lgth. (in.)	
Post Leak Check 0.000 [gfm] [lpm] @ 15 (lnHg)			ow [in] [out] s Section o			Start Time		11:44	Ia/	12 11 2
ost contractor (04-00 [family] @ 10 [family]		G103	s acction (· ·		Joean Tim	<u> </u>	11.41	Stop Time	13:40
Min/Point Velocity Orifice Gas Sample -	Probe	Filter	Impinger	DGM	DGM				_:	<u></u>
Pressure Setting Volume Stack		Temp	Outlet	Inlet	Outlet	Pump	Auxiliary			
Traverse Elapsed AP AH Initial [17] II Temp	(°F)	(⁰ F)	Temp	Temp	Temp	Vacuum	Temp			
Point Time (in H ₂ O) (in H ₂ O) 807:03 (°F) 2-5 78 2-1-49 862.45 120	050	253	(°F)	(°F)	(°F)	(In Hg)	(°F)	Notes		
6 84 2.2 1-4 867.22 123	253	7-51	56	116	109	· /s	MA	Tutted		1.36
	254	255	57	116	717	2		AP= 1.		<u> 5 </u>
7 90 22-19 876.56 121	254	254	58	116	111	7		- de 1	L / Δn = /•/	
2 N 124	253	257	56	116	171					
		٠.								
	 									
	 	 								A
	 			·						
		 			-					

104.8

21-8/23 7.2

69.19

482

119.9

Total

Average

GI0000312

MONTROSE AIR QUALITY SERVICES, LL
General Testing Datasheet
Partia 11.

RUN NO. ______ METHOD NO. ______ 5/29

		<u> </u>
Page	of	2

Client		industries	Inc			Barometric (in. Hg)	29.79	Water (ml) (g)	641
Plant	Chreage					Amblent Temp, (°F)	27	Silica gel (g)	19,1
Location	Haymer	Mill Shre	dder			Static (in. H ₂ O)	1.0	Total Vic	83,8
Date	6/13/18		10. 45-173	8	· Ø	Probe ID	5-6-7	Liner Type	Glevs5
Meter Operator	2	<u> </u>				Nozzie ID	170	Nozzle Dia (in.	
Probe Operator)			· '	Filter ID	B1348		
	39 Yd	19987	Pitot Cp . 8 1	MOD			68-348H	Train Type	tinp
AH@ 1-8	79 Kf	.87	Leak check	<u> </u>	First point all the way The [out]	Duct Dim. (in.)		Port Lgth. (In.)	
Pre Leak Chack	0.000	[cff][[pm] @	18 (inHg)		Gas flow [in] [qut] of page				
ost Leak Check	k 0.000	(cfp) [lpm] @	is (InHg)		Cross Section of Duct	Start Time	1515	Stop Time	17.59

-	Min/Point	Velocity	Orlfice	Gas Sample	-	Probe	Filter	Impinger	DGM	DGM			
	6	Pressure	Setting	Valume	Stack	Temp	Temp	Outlet	Inlet	Outlet	Pump	Auxiliary	**************************************
Traverse	Elapsed	ΔP	ДН	initial 📆 [i]	Temp	(⁰ F) ₀ ⋅	(°F)	Temp	Temp	Temp	Vacuum	Temp	v
Point	Time	(in H ₂ O)	(in H₂O)	878.51	(^e F)	258	750	(°F)	(°F)	(⁰ F}	(în Hg)	(⁶ F)	Notes
1~	6	2.9	258	883.75	113	150	250	12	107	106	117	NA	AH= 2.6
7	12	2.7	2.3	385.20	15	253	250	54	109	109	11	11	Danard = 106
3	18	25	2.2	893.95	16.	253	25%	53	$\mathcal{I}(\mathcal{I})$	106	71		1/
.4	24	201	1.8	799.08	414	251	250	57	113	167	-11		Struk semo c 117
5_		2-4	2.	403.60	45	251	251	59	115	108	1		3 24 temp 2/18
3	36	7.6	107	408,45	113	25	250	6/	115	108	-1/		New Kz= .85
7	42	2.	1.3	913.30	115	25)	25	61	ゴブ	110	il ,		
·Ø	48.	1.9	1.6	717.79	119	250	Ş	62	118	M	11	4	Resource 16:20
2-1	54	2.7	2.3		120	250	250	60	107	901	1/2/		Mering 170
2-	60	2.1	1.8	928.05	119	250	250	53	104	108	A-2M		Vacuumell a
<u> </u>	66 .	1.60	1.4	732,16	122	250	2.50		109	107	9		K42.86
4	72	2.0	1.7	936.50	118	250	250	59	110	10-7	9	4	
Total				75.29	1410	_		á	1339	1293			
Average		1,4657	1856	استعر	111.29		<u> </u>		07.1				

RUNNO. 2 (cont.)

METHOD NO.

of 2 Page

Client Fron Industries Inc.					
		Barometric (in. Hg)		Water (mi) (g)	64.2
		Ambient Temp. (°F)	80	Silica gel (g)	19.
		Static (in. H ₂ O)	1.0	Total V/c	8,3.8
Date 6/13/18 Project No. 145/738	j o	Probe ID	5-6-7	Liner Type	Glass
Meter Operator ZM;	1	Nozzie ID		Nozzle Dia (in.	
Probe Operator (C)		Filter ID	31346		1
Meter ID 11-39 Yd .9987 Pitot Cp -84	IN CUST .		CO VBH	Teolo Teor	Ind
ДН@ 1.899 Kf . 36 Leak check	First point all the way (in) [out]	Duct Dim. (in.)	_	Port Lgth. (in.)	
Pre Leak Check 0.000 (6m) [pm] @ 8 (9nHg)	Gas flow [in] [qur] of page		1. 30	COLUMN (III)	<u> </u>
Post Leak Check 0.000 (cfp) [lpm] @ 5 (inHg)	Cross Section of Duct	Start Time	1515		,
*		lorair illia	1313	Stop Time	17:09

Traverse Point	Elapsed	Pressure AP (In H ₂ O)	Setting ΔH	Gas Sample Volume Initial ☑ [I]		Probe Temp (°F) 4_6-6	Filter Temp (°F) 2.5	Implinger Outlet Temp (⁰ F)	DGM Injet Temp (^D F)	DGM Outlet Temp (¹ F)	Pump Vacuum ((in Hg)	Auxillar Temp (°F)	Notes
L- 5	78 84	3	15	940.73	[[] 		250 250	61	109	10% 10%	9	ΝŽΑ	ROING
7 8	40	1.8	1.5	949.45 953.80	116		250	63	110	106	9		
										,,,,			
į.													
otal verage	96	34514	6,4	75.29	1161				438 19.1	423		<u> </u>	

Circle correct brecketed [] units Train Type denotes impingers, knockouts, etc.

G10000313

G10000314

MONTROSE	AIR	QUALIT	Y	SERVICES.		.C
----------	-----	--------	---	-----------	--	----

General Testing Datasheet

TESTING TYPE: PM MetaS

METHOD NO. 5/29

RUN NO. METHOD NO. 2 Page of Client Barometric (In. Hg) Water (mil) (g) Plant Amblent Temp. (⁹F) Silica gel (g) 15.1 Location Static (in. H₂O) Total Vic 87,7 451738 Date Project No. 0 5-6-Liner Type Proba ID Meter Operator ZM 170 Nozzie ID Nozzie Dia (in.) Probe Operator 31457 Filter ID INI(JUD) Meter ID 998-Υď Pitot Cp 2m 20-16 Train ID Ino Train Type ΔH@ First point all the way [in] [out] Kf Leak check Duct Dim. (in.) Port Lgth. (in.) 0.000 to 1000 to 1000 20 Pre Leak Check (inHg) Gas flow [in] (out) of page * BH 0000 15 Post Leak Check (cfm) [ipm] @ (inlig) Cross Section of Duct Start Time 053 1245 Stop Time

. 1	MIn/Point	Velocity	Orifice	Gas Sample		Probe	Filter	impinger	DGM	DGM				
	6	Pressure	Dayson a Til	Volume	Stack	Temp	Temp	Outlet	Inlet	Outlet	Pump	Auxillary		
Traverse		ΔP	ΔH	Initial [1]	Temp	(^a F)	(°F)	Temp	Temp	Temp	Vacuum	Temp	•	
Point			(in H ₂ O)	10.58:79	(°F)	250	250	{°F)	(°F)	(°F)	(in Hg)	(°F),	Notes	
[-		1-9	146	1062.82		250	980	65	89	86	7	NIA		
ر-	- 1 - O	20	.7	10667 2M	119	250	250	65	75	87	9	V	1067,10	2 VO/1
_3	18	1.8	,5		190	250	250	65	99	88	8			
4	24	1.4	1.6		121	250	250	65	00	89	8			
5	70	1.7	104	1079.45	122	250	250	65	100	90	8			
6	76	1.9	1/6		2.	250	250	65	bi	90	. g			
7	12	1.7	1.4	1087.90	123	250	250	60	102	92	8			
8	48		1.7	1092.17	119		25%	54	102	43	4			
\ -	54	7,4	1.2	1095,70	120		7-83	65	48	94	6		Resme	1144 Pause
2		1.5	1-2	099.30	121	250	250	57	100	94	6			Port Chage
_ 31	44	مراسست أنسسه المراث	1,2	1103.05	12-3	250	250	58	102	94	6			
-1	72,	1.5		1/06.80	122	7-51	250	6	103	45	6	\/	 <u></u>	
otel	96	11-5277	17.3	65.49	942				119.1	1092				
verage	1	.345	1.5067	5	20.25	-		Γ	96	.5				

G10000315

MONTROSE AIR QUALITY SERVICES, LLC

General Testing Datasheet

TESTING TYPE: PM / Metals

RUN NO. METHOD NO. Page of Client dustries 29.85 Barometric (in. Hg) Water (ml) (g) 77.6 Plant Ambient Temp. (°F) 1,5 . 3 Silica gel (g) Location 87.17 . 0 Static (in. H₂O) Total Vic Date Project No. Probe ID Liner Type Meter Operator 170 Nozzie Dia (in.) Nozzle ID Probe Operator 31457 Filter ID . 84 [N] [Uþ] 9987 Train Type Meter ID Υđ Pitot Cp 1316 Train ID AH@ Kf Leak check First point all the way fin (jout) Duct Dim. (in.) Port Lgth. (in.) 30 (inHg) Pre Leak Check 0.000 (cfm] [pm] @ Gas flow [in] [gut] of page 0.000 (cfm) [lpm] @ Post Leak Check (InHg) Cross Section of Duct 1056 Start Time Stop Time 1245

Traverse Point	Q	Velocity Pressure ΔP (in H ₂ O)	Setting ΔH	Gas Sample Volume Initial (2) [] 1058.74	Stack Temp (°F)	Probe Temp (°F) 25-0	Filter Temp (⁰ F)	Impinger Outlet Temp (°F)	DGM Inlet Temp (°F)	DGM Outlet Temp (°F)	Pump Vacuum (In Hg)	Auxiliary Temp (°F)/	Notes
2 · 5 · 6 · 7 · 8	754 84 90 96	20 1.7 202 202	4.5	1111.11	19-0	250 250 251	250 250 25] 250	63 63 65	104 105 165	96	10 10 10 10	N/A	- Stack Q 119
otai verage	96	21. 52 7 1.3458	1-8 1-5062	65-49 8	482 126126				419	387 ×5		<u> </u>	

Circle correct bracketed [] units
Train Type denotes impingers, knockouts, etc.

G10000316

MONTROSE AIR QUALITY SERVICES, LLC

General Testing Datasheet

TESTING TYPE: Page of RUN NO. METHOD NO. Industries Inc. Water (ml) (g) Barometric (in. Hg) Client 88 Ambient Temp. (0F) Silica gel (g) Plant 86.4 Hammer Mill Static (in. H₂O) Total Vic 1.0 Location 0 451738 Project No. Liner Type Probe ID Date 170 Nozzte Dia (in.) Nozzle ID Mater Operator 31460 Filter ID Probe Operator INI W 13-12 Train ID Train Type Pitot Cp Meter ID Υd First point all the way [in] [out] Duct Dim. (in.) Port Lgth. (in.) ΔH@ Kf Leak check *13H Gas flow [in] (out) of page @ [mqiffaff] 650.C (inHg) 22 Pre Leak Check

Cross Section of Duct

	Min/Point	Velocity	Orifice	Gas Sample		Probe	Filter	Impinger	DGM	DGM			,
	6	Pressure	Setting	Volume	Stack	Temp	Temp	Outlet	iniet	Outlet	Pump	Auxiliary	
raverse	Elapsed	ΔP	ДΗ	Initlak以为 [i]	Temp	(⁰ F)	(°F)	Temp	Temp	Temp	Vacuum	Temp	
Point	Time	(in H ₂ O)	(in H ₂ O)-	19-1-67	(^v F)	250	250	(°F)	(°F)	(°F)	(in Hg)	(°F),	Notes
[-1	6	٦.0	1.7.	29.10	101	250	250	55	88	48	7	N/A	124.85
J	12		1,4	133.0	116	150	2.5	53	93	Q.Q	7	1	
ን	18	65	1.2	136.92	120	250	250	万上	45	88	7		
4	24	1.5	1.2	140.68	119	250	250	54	95	89	7		
5	3 0	7	1.4	144 66	118	252	252	54	75	89	7		
6	36	1.0	.6	148.86	119	250	250	55	95	89	7		
	42	2.0	177	153.05	116	254	252	53	75	89.	7		
8	48	2.1	1.7	157.50	13	253	252	54	95	89	7		Resume 1445
<u>}</u>	54	1.9	1.6	161.67	117	250	250	63	44	89	8		
2	€°	1,9	.6	165,93,	157	250	251	52	95	89	Q _		
3	66		1,5	269.40	1/8	251	255	52	96	39	9		169.40 ZM
_ Y	72	148	1.5	174.20	117	253	255	52	97	89	91	V	
tal		21763		-19 m-7 Mg					1133_	1065			
erage	. /	13602	0.537	57 66.490	117.18	75>		Ī	91	· 8)			

Circle correct bracketed [] units
Train Type denotes impingers, knockouts, etc.

0.000

Post Leak Check

[cfm] [ipm] @

(inHg)

1345

Start Time

Stop Time

GI0000317

RUN NO.

General Testing Datasheet

TESTING TYPE:

METHOD NO.

General Testing Datasheet

Meta

5/29

THOD NO. 5/29 Page 1 of 3

Client - From Brows free Twee		Barometric (in. Hg)	21.80	Water (mi) (g)	74.6
Plant (bicago) 11		Ambient Temp. (°F)	85	Silica gel (g)	11.6
Location Hammer Mill Shredder	A CONTRACTOR OF THE PARTY OF TH	Static (in. H ₂ O)	1.0	Total Vic	66-4
Date 2/14/18 Project No. 45/738		Probe ID	5-6-0	Liner Type	6/485
Meter Operator ZM		Nozzle ID	*170	Nozzie Dia (in.	170
Probe Operator	3	Filter ID	3146O		
Meter ID M-39 Yd 1 .996- Pitot Cp 184	ואון (נים)	Train ID	18-18	Train Type	Imp
∆H@ 1. 1/99 Kf 483 Leak check ✓	First point all the way [in] [out]	Duct Dim. (in.)	50	Port Láth. (in.)	
Pre Leak Check 0,000 (cm) [lpm] @ 22 (inHg)	Ges flow [in] [quit] of page		-		* ₩₩
Post Leak Check 0.000 [cfm] [lpm] @ 14 (inHg)	Cross Section of Duct	Start Time	1345	Stop Time	1523

	Min/Point	Velocity	Orifice	Gas Sample		Probe	Filter	Impinger	DGM	DGM			
	6	Pressure	Setting		Stack	Temp	Temp	Outlet	iniet	Outlet	Pump	Auxiliary	
Traverse	Elapsed	ΔP	ΔH	Initial (F7)[i]	Temp	(^p F)	(°F)	Temp	Temp	Temp	Vacuum	Temp	
Point	Time	(in H ₂ O)	(in H₂O)	174-89	(⁰ F)	250	250	(⁰ F)	(°F)	(°F)	(in Hg)	(°F),	Notes ,
2-5	78	1.6	1.3	17.8.05	19	252	250	52_	96	_89	10	W/A	Initial Vol. = 124.85
G	84	1,9	4.5	182-20	119	253	250	53	95	90	10		A4=1.6
7	90	4.2	1.8	186,71	119	250	25	53	96	90	10		
ક	96	2.2	1.8	196.25	116	250	252	53	46	89	10		
										٠,			
											<u> </u>		
				,			ļ						
													•
							<u> </u>					V	
Total	96	21.763	6.5	66-40	473				383				
Average		1-3602-	7-53	75	117.19	178			91.	. 8			

Circle correct bracketed [] units Train Type denotes impingers, knockouts, etc.

MONTROSE AIR QUALITY SERVICES, LLC Impinger Weights Datasheet

PROJECT NO. 451738

Page	į	of	2

Client	Iron Industries Inc.	
Plant	Chicago, IL	
Location	Hammer Mill Shredder	
Date	6/13/14 Unit	
Operator	18:1	

Run No.	(7			
Method No.	5/29	Train ID	iB- 18	Filter No.	313 47
	Contents	Tare with Contents (g)	Final (g)	Total (g)	Notes
impinger No. 1	Empty	642.4	691.4	39.0	NOGS
Impinger No. 2	10% H2025/11	713-4	733.4	20.5	
Impinger No. 3	10% H202 58 HAGS	752-7	758.C	5.3	
Impinger No. 4	Emety	605.6	607.9	2.3	
impinger No. 5	104 HZSOU 48 KMG		632.1	1.4	
Impinger No. 6	107 42 604 4% KM . 64		737.3	0.0	
Impinger No. 7	Silice	94-1	923.9	12.8	
Additional Rinse			162.1	16.0	
			Net Weight (g)	81.3	

Run No.	2	?			
Method No.	5/25	Train ID	18-16	Fifter No.	31346
	Contents	Tare with Contents (g)	Final (g)	Total (g)	
Impinger No. 1	10 % H2 100 FR. HNC	736.9	769.0	32.1	Notes
Impinger No. 2	10% H2509 5% HAO;		753.1	12.1	Low Moisture,
Impinger No. 3	Empty	661, 4	667.8	1. 41	decided to eliminate
Impinger No. 4	10% H2 Sey 48tm		741.5	10.4	first "ampty Imp"
lmpinger No. 5	10% H2504 4% KMgdy		737.1	1.3	
impinger No. 6	Silica	946.1	965.2	19.1	
impinger No. 7				 	
Additional Rinse					
			Net Weight (g)	83.8	

Run No.	3	7			
Method No.	5/21	Train ID	31-41	Filter No.	31345
	Contents	Tare with Contents (g)	Final (g)	Total (g)	
mpinger No. 1	1016H202 536H1012	786.4	739.0	22.6	Notes
mpinger No. 2	10% H2OZ 5% HWO:	756.0	159.4	3.4	
mpinger No. 3	Empty	868.9	610.0	1 1 1	
mpinger No. 4	10% HIZSON 4%KHA	1024.3	629 0	טליין	
mpinger No. 5	10% History 4%kmacy		735.3	1.2	
mpinger No. 6	Silier	923.1	940.0	16.9	
mpinger No. 7			1.0	19.1	
Additional Rinse					
			Net Weight (g)	42-8	

45.9

MONTROSE AIR QUALITY SERVICES, LLC

impinger Weights Datasheet

PROJECT NO. 451738

Dana	<i>.</i>	أعما	7
rage ;		101	l.

Client	From Industries	
Plant	Chicago, IC	
Location	Hammer Mill Shredder	
Date	(0/13/18 Unit	
Operator	BH	

Run No.	FB				
Method No.	5/29	Train ID	113-16	Filter No.	31344
	Contents	Tare with Contents (g)	Final (g)	Total (g)	Notes
Impinger No. 1	18% H202 5% HNO,	743.1	743.2	.10	
Impinger No. 2	109. H202 64. 41,103	738,0	737.8	~ .70	
Impinger No. 3	Empty	665.6	465.6	0.0	
Impinger No. 4	10% Hz Soy 4 kmaly	738.4	738.1	- 30	
lmpinger No. 5	lok histoy 4% km.bi	738.6	737.66	.20	
Impinger No. 6	Silica	964.2	964.2	0.0	
Impinger No. 7					
Additional Rinse					
			Not Woight (n)	÷ 25	

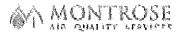
Net Weight (g) 🕒 、2つ

Run No.	ef				
Method No.	5/29	Train ID	18-16	Fifter No.	31457
	Contents	Tare with Contents (g)	Final (g)	Total (g)	Notes
lmpinger No. 1	10% 40,5% 1100	-7-16-E	741.5	53.7	687.8 mH
impinger No. 2	10% NO CHUO		777.6	12.4	765,2
impinger No. 3	Sully	609.1	(01).4	2.3	
impinger No. 4	10% 1/2014/Ran	6228	(624-3	i 5	
Impinger No. 5	10% 638 V47, Run		735.5	27	
Impinger No. 6	56	848,0	863.1	15.1	
mpinger No. 7					
Additional Rinse					· · · · · · · · · · · · · · · · · · ·
***			Not Weight (a)	\$2.7	

Net Weight (g) 87

Run No.	5,			_	
Method No.	5/29	Train ID	18-18	Filter No.	31460
	Contents	Tare with Contents (g)	Final (g)	Total (g)	Notes
Impinger No. 1	10% H2922 54, Hub.		800-3	57.1	
impinger No. 2	10% Hespes 5% Had,	738.0	349.5	11.5	
impinger No. 3	Empry	665.9	1668.9	3-0	
Impinger No. 4	15% H 2504 47 KANON	746.9	748.7	1-8	
Impinger No. 5	10% 4250441.1630004	744-2	745,4	1.7	
Impinger No. 6	Silver	964.4	976.2	11.8	
Impinger No. 7					
Additional Rinse					
			Net Weight (g)	\$10.4	

964.8


MONTROSE AIR QUALITY SERVICES, LLC

EPAMethod 3B Orsat Analyzer Datasheet

Client Plant Location Cal Gas	- Chicar Hammur		Project No. Pre Leak Check	451738			To the state of th
Location	Hannu		re Leak Check		8 B		
					— % Differen	ABS[Orsat Avg	-Cai Gas]
Cal Gas			ost Leak Check		7 Dilleleli	Cal G	ana ana da karanta 14. 1
Cal Gas	Shred						Carried States of the state of
	Trial No.	%CO ₂	%CO2+%O2	%O ₂	Analyst	Date	Time
	1	4.82	Arti.	20.85	BH/ML	6/13/18	9:40
	2	9.86		9.9%	%O ₂ Differenc	e %CO ₂ Difference	7-70
	3	0,00		0.00	1002 0111010110	c 75002 Dinerence	1
	Average						_
Run No.	Trial No.	%CO2	%CO ₂ +%O ₂	%0₂			
1	1	-40	The same of the sa	Marie 10 annie 10 marie 10 mar	Analyst	Date	Time
	2	-770	MA	20.8	B4	6/13/18	13:50
f	3					, ,	
F		1		1			
~ ~	Average	.46	<u> </u>	20.8	`		
	1	.30	<u>w</u>	20.5	134	6/13/18	17:20
}-	2	<u> </u>					
}-	3				j		
~ 3	Average	-30		20.5			
					4844	I-6/13/12	
L	2						l
· [_	3				TRUN VOID	ED, Failed L	eak Check
	Average				1 1100	,	
Cal Gas	Trial No.	%CO ₂	%CO2+%O2	%O ₂	Analyst	Date .	71
	1 1	10.		20.95	MH		Time
	2	4.9		9.96	%O _z Difference	6/14/18	13:00
	3	0.00	1		MO2 Difference	%CO₂ Difference	
	Average	<u> </u>	 	0.00	 	<u> </u>	
Run No.	Trial No.	%CO ₂	%CO2+%O2	%O ₂	Analyst		
4	1	. ĝ.Q.	2 7002			Date,	Time
	2		 	20.75	134	(0/14/18	14:15
	3		 	······································	-		
	Average	0.39	 	44 20	ł		
5	1	80	 	20,39			
	2	1 80	 	20.80	BH.	6/14/18	1540
	3		 - -			,	
<u> </u>	Average	.40	 	0 - 0 -			
	1	7-10		ીંગ- દેહ			
	2		 				
 	3		 -	·····		· · · · · · · ·	
 -	Average				!		
	Trial No.	0/00	W00 - 115				
		%CO₂	%CO ₂ +%O ₂	%0₂	Analyst	Date	Time
	1		-				
<u> </u>	2		 		%O ₂ Difference	%CO ₂ Difference	······································
-	3		 				
ينا	Average		<u> </u>		20.45-02/	4. BES- CO2 : XL	01000
Yang Lang.	-	·			9 47 - 1 - 1	wen to	~ 431 11 B
inder Number					1.11-02/7	. 854 - (02 : 0	C167397
ncentration (9	(a)		%O₂	%CO2	Calmela	er Numbers	
es: n an ambient all asurements mus ee different trai differences be n 0.2% overall.	st be made to t Is should be p	the nearest 0. efformed for	each samnle.	Wood Anthr Munic	cted F., Ranges Bark 1.000 acite/Lignite 1.015 ipal Waste 1.043	-7.120 Residual Ol -1.130 Distillate Ol -1.177 Nat. Gas -1.230	

General Iron Industries: Chicago, Illinois Hammermill Shredder PM and TSM Protected by the Attorney Client Privilege and Attorney Work Product Doctrine

APPENDIX F LABORATORY DATA

Montrose Air Quality Services, LLC

1371 Brummel Avenue Elk Grove, IL 60007

Project Number: 451738

Particulate Matter, Antimony, Arsenic, Barium, Beryllium, Cadmium, Chromium, Cobalt, Copper, Lead, Manganese, Nickel, Phosphorus, Selenium, Silver, Thallium, Zinc & Mercury

EPA Methods 5 & 29 Analyses

Analytical Report 31368

el₁

Element One, Inc. 6319-D Carolina Beach Rd., Wilmington, NC 28412 910-793-0128 FAX: 910-792-6853 e1lab@e1lab.com The following data for Analytical Report 31368 has been reviewed for completeness, accuracy, adherence to method protocol, and compliance with quality assurance guidelines.

Review by:

Katie Gattis, B.S. Chemist June 21, 2018

Report Reviewed and Finalized By:

Ken Smith, Laboratory Director June 21, 2018

element**O**ne

31368 MAQS M5 29 Report Packet Page 2 of 64

31368 MAQS M5 29 Report Packet Page 3 of 64

4

Summary of Analysis

Hammermill Shredder - Summary of Method 29 Mercury Analysis

				H ₂ O ₂	Empty		
		Average Total	Front Half	/HNO ₃	Impinger	KMnO ₄	HCI
Run Number		Catch, µg	hд	μg	μg	μg	μg
M29/5-R1	#1	250	< 0.1	< 0.5	< 0.2	232	17.5
	#2		< 0.1	< 0.5	< 0.2	233	, 17.5
M29/5-R2	#1	100	< 0.1	< 0.3	< 0.2	80.3	19.8
	#2		< 0.1	< 0.3	< 0.2	80.2	19.6
M29/5-R4	#1	309	< 0.1	< 0.3	< 0.2	205	101
	#2		< 0.1	< 0.3	< 0.2	211	101
M29/5-R5	#1	19.8	< 0.1	< 0.4	< 0.2	9.65	10.2
	#2		< 0.1	< 0.4	< 0.2	9.66	10.2
Field Blank	#1	< 0.5	< 0.1	< 0.2	< 0.2	< 0.5	< 0.4
	#2		< 0.1	< 0.2	< 0.2	< 0.5	< 0.4
Reagent Blank	#1	< 0.5	< 0.1	< 0.2	< 0.2	< 0.5	< 0.4
	#2		< 0.1	< 0.2	< 0.2	< 0.5	< 0.4

Hammermill Shredder - Summary of Method 5 Particulate Analysis

	-	- in the state of						
Fraction	M29/5-R1 e31368-1 Catch, mg	M29/5-R2 e31368-2 Catch, mg	M29/5-R4 e31368-3 Catch, mg	M29/5-R5 e31368-4 Catch, mg				
Filter	5.2	8.7	8.0	6.7				
Rinse	9.2	10.0	11.4	8.8				
Total PM	14.4	18.7	19.4	15.5				
	Fraction	Field Blank e31368-5 Catch, mg	Reagent Blank e31368-6 Catch, mg					
	Filter	1.3						
	Rinse	1.8	2.4					
	Total PM	3.1	2.4					

elementOne

31368 MAQS M5 29 Report Packet Page 4 of 64

Summary of Analysis

Front Half - Hammermill Shredder- Summary of Method 29 Metals Analysis

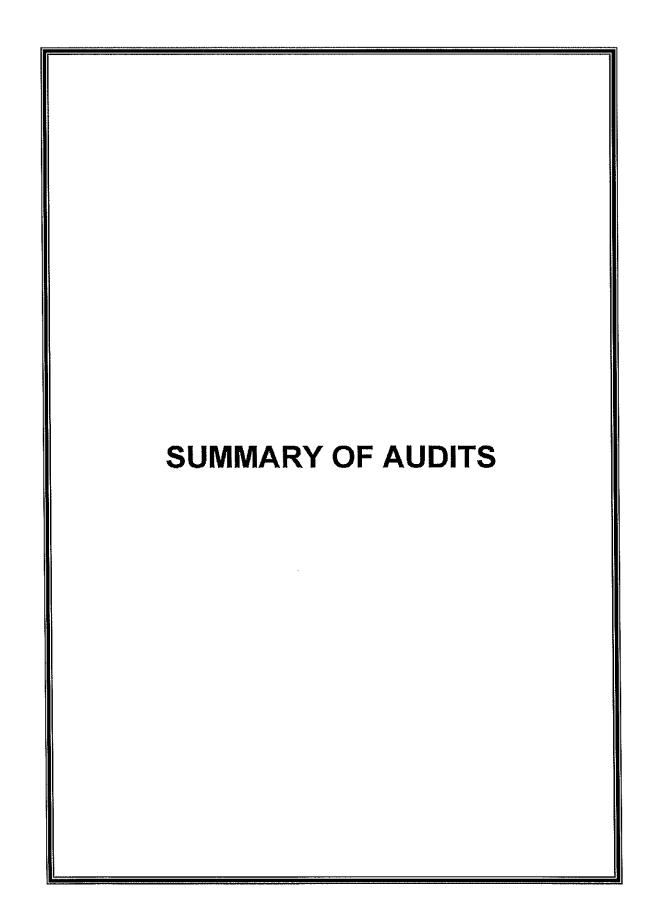
Element	M29/5-R1 e31368-1 FH Total µg	M29/5-R2 e31368-2 FH Total µg	M29/5-R2 e31368-2 FH dup Total µg	M29/5-R4 e31368-3 FH Total µg	M29/5-R5 e31368-4 FH Total μg
			## Month 64th/r Names American de de Minth 64th	-	***********
Antimony	0.472	0.621	0.624	0.388	0.326
Arsenic	0.157	0.194	0.208	< 0.1	< 0.1
Barium	3.95	4.04	3.88	2.80	2.73
Beryllium	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025
Cadmium	3.31	1.97	1.79	1.74	1.49
Chromium	2.01	2.16	2.11	1.76	1.58
Cobalt	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Copper	1.63	1.82	1.76	1.55	1.35
Lead	7.70	10.8	10.6	8.68	5.67
Manganese	4.04	4.64	4.40	3.97	4.02
Nickel	2.54	2.68	2.59	0.974	0.864
Phosphorus	5.96	8.88	8.83	5.22	4.46
Selenium	0.943	1.70	1.77	< 0.1	0.186
Silver	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Thallium	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Zinc	612	630	628	524	455

Back Half - Hammermill Shredder- Summary of Method 29 Metals Analysis

	M29/5-R1	M29/5-R2	M29/5-R2	M29/5-R4	M29/5-R5
	e31368-1 BH	e31368-2 BH	e31368-2 BH dup	e31368-3 BH	e31368-4 BH
Element	Total µg	Total µg	Total µg	Total µg	Total µg
Antimony	< 0.1	0.123	0.130	0.265	< 0.1
Arsenic	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Barium	0.774	5.49	5.26	1.14	0.741
Beryllium	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025
Cadmium	< 0.1	< 0.1	< 0.1	0.159	< 0.1
Chromium	0.460	1.022	0.972	0.664	0.404
Cobalt	< 0.1	0.177	0.169	< 0.1	< 0.1
Copper	1.07	4.44	4.23	1.55	7.87
Lead	1.33	4.01	3.94	0.884	0.471
Manganese	3.31	5.05	4.95	5.57	2.22
Nickel	0.452	2.44	2.38	1.41	0.805
Phosphorus	27.3	30.1	29.6	21.6	20,2
Selenium	0.336	0.593	0.545	< 0.1	0.101
Silver	< 0.1	< 0.1	< 0.1	2.726	< 0.1
Thallium	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Zinc	30.9	52.5	52.7	25.1	21.0

elementOne

31368 MAQS M5 29 Report Packet Page 5 of 64


Summary of Analysis

Blanks - Summary of Method 29 Metals Analysis

Element	Field Blank Front Half e31368-5 FH Total µg	Reagent Blank Front Half e31368-6 FH Total µg	Field Blank Back Half e31368-5 BH Total µg	Reagent Blank Back Half e31368-6 BH Total µg
Antimony	< 0.1	< 0.1	< 0.1	0.135
Arsenic	< 0.1	< 0.1	< 0.1	< 0.1
Barium	3.14	3.09	0.567	< 0.1
Beryllium	< 0.025	< 0.025	< 0.025	< 0.025
Cadmium	< 0.1	< 0.1	< 0.1	< 0.1
Chromium	1.21	1.21	0.318	0.371
Cobalt	< 0.1	< 0.1	< 0.1	< 0.1
Copper	0.375	0.220	0.539	0.394
Lead	0.346	0.216	0.348	< 0.1
Manganese	0.714	0.671	5.31	0.354
Nickel	2.00	2.14	0.324	0.257
Phosphorus	< 2	< 2	16.2	19.8
Selenium	1.11	< 0.1	< 0.1	< 0.1
Silver	< 0.1	< 0.1	< 0.1	< 0.1
Thallium	< 0.1	< 0.1	< 0.1	< 0.1
Zinc	6.02	2.70	7.57	3,38

element**O**ne

31368 MAQS M5 29 Report Packet Page 6 of 64

31368 MAQS M5 29 Report Packet Page 7 of 64

31368

Stationary Source Audit Testing Data Reporting Form Project #: 061318S

Lab Name: Element One Inc

ERA Customer Number: E533235

INSTRUCTIONS;

Please fill in the results, methods references and analysis dates for the analysis (a) you wish to report for Project #061318S. Questions? See the Data Reporting Instructions section of your Data Package or call ERA at 1-800-372-0122. Please photocopy this form if you are reporting multiple methods.

	Stationary Source /	Audit Testing M	etals on	Filter Paper (cat# 1425)
Math	od Description EPA 29			Rev/Ed	
Analysis	Date (mm-dd) OG - 19 An	DW6		w	orkgroup 100 minutes
TNI Code	Analyte	Units	PTAL	Concentration Hange	Reported Value
1005	Antimony	FG/Filler	19.0	25.0 to 250	© :40.7
1010	Anesic	µg/Filter	15.0	20.0 to 250	38.7
1015	Berium	µg/Filter	15.0	20.0 to 250	S 39.7
1020	Berytium	µg/Filter	7.50	10.0 to 250	~ 21.7
1030	Cadmium	pg/Filler	8.00	10,0 to 250	° 160
1040	Chromium	pgFlter	12.0	15.016250	C 26.7
1050	Coes	up Files	7,50	10.0 to 250	(a) 2(3)
1055	Copper	pg/Filter	7,50	10.0 to 250	9 30a
1075	Lead	pgiFiker	16.0	20.0 to 350	ロ・大声 の
1090	Manganese	pg/Filter	7.00	10.0 to 250	9 4 G
1105	Nickel	pg/Filler	14,0	20.0 to 250	° 38.6
1140	Selprèjm	γg/Fl/ker	14,0	20.0 to 250	9 38.7
1150	Silver	µg/FRer	21.0	30.0 to 250	© £9.5
1165	TheSun	l µg/Filter	22.0	\$0.0 to 250	538
1190	Zn:	µg/Filter	14.0	20.0 to 250	~ 459

4016

16341 Table Mountain Pkwy • Golden, CO 80403 • 800:372.0122 • 303.431,8454 • fax 303.421,0159 • www.sraqa.com

elementOne

31368 MAQS M5 29 Report Packet Page 152 64

Stationary Source Audit Testing Data Reporting Form Project #: 061318S

Lab Name: Element One Inc.

ERA Customer Number: E533235

INSTRUCTIONS:

Pivese fill in the results, methods references and analysis dates for the analyte(s) you wish to report for Project #0613185, Questions? See the Date Reporting instructions section of your Cata Pediage or call ERA at 1-800-372-0122. Please photocopy this form if you are reporting multiple methods.

	Stationary Source Audit	Testing Metal	s in Imp	inger Solutio	n (cat# 1426)
Meiho	d Description EPA 29			Rev/Ed	* * * * * * * * * * * * * * * * * * *
Analysis	Date (mm-dd) O: G - F Analys	DMP	TANKA TA	11 1 1 W	orkgroup : 22 et 22 tiet v
TNI Code	Analyte	Units	PTRL	Concentration Range	Reported Value
1005	Antimony	pg/mL	0.190	0.250 to 20.0	D.896
1010	Arsenic	#g/mL	0.150	0.200 to 20.0	19 1:13
1015	Banten	ug/mL	0.110	0.150 to 25.0	3.28
1020	Beryllian	µg/mL	0.0350	0.0500 to 20 0	9 1:41
1030	Cadmium	μg/mL	0,0800	0.100 to 20.0	15D.7
1946	Chlomium	ug/ml_	0.160	0.260 to 20.0	4.05
1050	Cosett	µg/ml_	0.0750	0,100 to 25.0	202
1055	Copper	µg/må_	0.150	0.200 to 20.0	9 3.44
1075	Lead	h8/ug	0.150	0.200 to 20.0	19 2.96
1090	Merganise	µg/må.	0.9750	0.100 to 20.0	1986
1105	Nickel	µg/ml.	0.120	0.150 to 30.0	9 2.65
1140	Selection	μ <u>ο</u> λπέ_	0,110	0.150 to 25.0	1:90
1150	Sho	pg/m².	0.385	0.500 to 20.0	19 H;7:1
1165	Thelfarm	ugimL	0.110	0.150 to 25.0	9 30A
1190	Zne	(A) part	R.110	0.150 to 25.0	10 2.86

3616

16341 Table Mountain Plwy • Golden, CO 80403 • 800.372.0122 • 393.431.8454 • fax 303.421.0159 • www.eragc.com

elementOne

31368 MAQS M5 29 Report Packet Page 9 of 64

31368

Stationary Source Audit Testing Data Reporting Form Project #: 061318S

Lab Name: Element One Inc

ERA Customer Number: E533235

INSTRUCTIONS:

Please till in the results, methods references and analysis diffes for the analyse(s) you wish to report for Project #061318S. Questions 7 See the Data Reporting Instructions section of your Data Package or cast ERA at 1-800-372-0122. Please photocopy this form if you are reporting multiple methods.

	Stationary	Source	Audit	Testing Me	ercury on	Filter Paper ((cat# 1427)	
Metho	d Description EP	7 29]	Hev/Ed		
Analysis	Date (mm-dd) 00	20	Analyst	MP	1 113.78.76	í i i i vo	orkgroup 3 3 4 4 4 4	ř.į
TNI Code	A	natyte		Units	PTRL	Concentration Range	Reported Value	٦
1095	Mercury			µg/Filter	0.750	1.00 to 75.0	1:162:	

\$ of 6

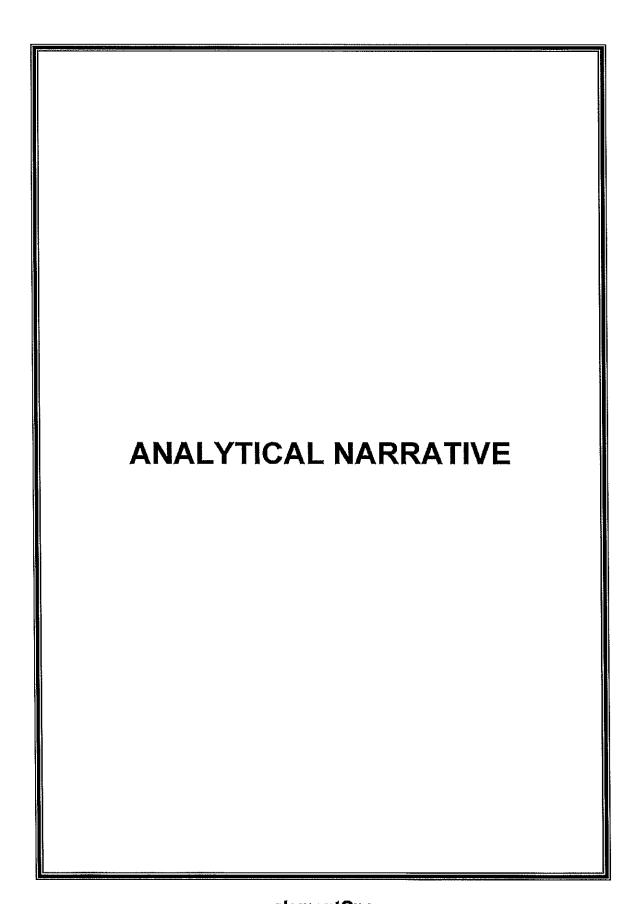
16341 Table Mountain Pkwy • Goldon, CO 80403 • 800.372.0122 • 303.431.8454 • tax 303.421.0159 • www.ereqs.com

elementOne

31368 MAQS M5 29 Report Packet Page 10 of 64

31368

Stationary Source Audit Testing Data Reporting Form


	A Waters Company				aut i somig s	Project #: 061318S
Lab Nam	ie: Elemént One Inc				ERA C	Lustomer Number: E533235
	IONS: 1 the results, methods references and as section of your Deta Padrage or call Efficiency Source August Description (F. P. A. 29)	Ani 1-800 s	for the analyte(s) you 172-0122. Please pho sting Mercu	ir wish to report olocopy this for Iry in Im	io Pojeci kogi 1195. Qu mili you are reporting mul pinger Solutio Bev/Ed	vessors? See the Data Reporting liple methods. In (cat# 1428)
	Date (mrn-del) D. G - [9]	Analyst (Y	nmP:	i Kilinia		rkgroup 1997
TNI Code	Analyte		Units	PŢŖL	Concentration Range	Reported Value
1095	Meany		ng/mL	0,680	0.900 to 200	133

16341 Table Mountain Pkwy • Golden, CO 60403 • 800.372.0122 • 303.431.8454 • fax 303.421.0159 • www.eraqc.com

elementOne

31368 MAQS M5 29 Report Packet Page 1156 64

31368 MAQS M5 29 Report Packet Page 12 of 64

Element One Analytical Narrative

Client:	Montrose Air Quality Services, LLC	Element One #:	31368
Client ID:	451738 General Iron	Analyst:	JGP, MMP, DMR
Method:	Methods 5 & 29	Dates Received:	06/15/18
Analytes:	PM, Sb, As, Ba, Be, Cd, Cr, Co, Cu, Pb, Mn, Ni, P, Se, Ag, Tl, Zn & Hg	Dates Analyzed:	06/18-21/18

Summary of Analysis

The Method 5 particulate samples were analyzed in accordance with EPA Method 5 guidelines. Particulate samples were weighed to a constant weight of ±0.5mg and reported to the nearest 0.1mg. The Method 29 samples were digested, prepared, and analyzed according to Method 29 protocol. Samples were analyzed for mercury on a PerkinElmer FIMS-100 CVAA mercury analyzer. The samples were analyzed for metals on a PerkinElmer Nexlon 350X ICP-MS.

Detection Limits

The FIMS-100 CVAA instrument reporting limit for mercury was 0.004 μg per aliquot analyzed. The ICP-MS instrument reporting limits were 0.25μg/L for beryllium, 20.0μg/L for phosphorus and 1.0μg/L for the other metals.

Analysis QA/QC

Duplicate analyses relative percent difference (RPD), spike sample recovery, and second source calibration verification data are summarized in the Quality Control Section.

*Ref. page 17; Hammermill Shredder-R4 spike recoveries for arsenic and selenium were outside of laboratory guidelines of 75-125% with 63% and 59%, respectively. Sample was reanalyzed at a five-fold dilution resulting in recoveries of 85% for arsenic and 83% for selenium.

All other QA/QC data was within the criteria of the method.

The audit results for the Stationary Source Audit Program have been reported to ERA for Project #061318S. Copies of the audit reporting forms are included in the Summary of Audits section of this report.

Additional Comments

The reported results have not been corrected for any blank values or spike recovery values. The Method 5 blank correction factor has not been implemented. The reported results relate only to the items tested or calibrated.

The ICP analysis of the blank samples revealed detectable traces of metals. The unprepared back half, c9 fraction was analyzed with similar results to the prepared fraction. The unprepared 0.1N HNO₃, c8a fraction was analyzed with detectable traces of selenium and zinc, suggesting the other metals were in the filter portion of the prepared front half sample.

elementOne

31368 MAQS M5 29 Report Packet Page 13.9f 64

31368 MAQS M5 29 Report Packet Page 14.8f 64

Hammermill Shredder - Mercury Duplicate Analysis RPD (Method 29 QC limits: < 10% for RPD)

∕InO₄ HCI
.5% 0.3%
.2% 0.9%
.1% 0.0%
.1% 0.2%
NA NA
NA NA

Hammermill Shredder - Mercury Spike Recoveries

Run Number		•	limits: 75-125% for S H ₂ O ₂ /HNO ₃	, ,	KMnO ₄	HCI
					** ** ** ** ** ** ** ** ** ** ** **	**************************************
M29/5-R4	#1	119%	99%	98%	90%	103%
	#2	118%	98%	97%	92%	101%

elementOne

31368 MAQS M5 29 Report Packet Page 15.9f 64

Hammermill Shredder - Metals Duplicate Analysis RPD

(Meth	od 29 QC limits: < 20% for .	RPD)
	M29/5-R2	M29/5-R2
	Front Half	Back Half
Element	RPD	RPD
Antimony	0.5%	6.0%
Arsenic	7.0%	NA
Barium	4.2%	4.3%
Beryllium	NA	NA
Cadmium	9.7%	NA
Chromium	2.4%	5.0%
Cobalt	NA	4.5%
Copper	3.2%	4.8%
Lead	1.8%	1.6%
Manganese	5.4%	2.1%
Nickel	3.2%	2.1%
Phosphorus	0.6%	1.7%
Selenium	3.9%	8.4%
Silver	NA	NA
Thallium	NA	NA
Zinc	0.3%	0.4%

element**One**

31368 MAQS M5 29 Report Packet Page 16 of 64

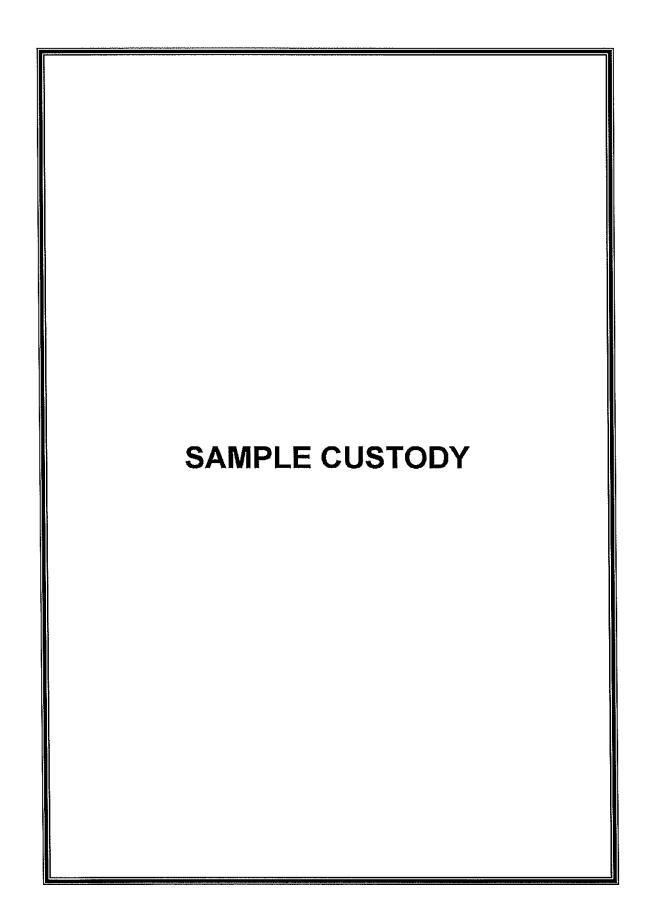
Hammermill Shredder - Metals Analysis Spike Recoveries (Method 29 QC limits: 75-125% for Spike Recoveries)

(2,00,00,00,00,00,00,00,00,00,00,00,00,00	M29/5-R4 Front Half	M29/5-R4 Back Half
Element	Recovery	Recovery
Antimony	106%	111%
Arsenic	79%	63%*
Barium	102%	104%
Beryllium	94%	84%
Cadmium	100%	99%
Chromium	100%	96%
Cobalt	101%	100%
Copper	101%	101%
Lead	100%	103%
Manganese	100%	92%
Nickel	99%	99%
Phosphorus	94%	83%
Selenium	76%	59%*
Silver	108%	107%
Thallium	98%	100%
Zinc	99%	97%

^{*}See Analytical Narrative, page 13.

elementOne

31368 MAQS M5 29 Report Packet Page 1761 64


Second Source Calibration Check Recoveries (Method 29 QC limits: ±10% for Second Source Continuing Check Standard*)

Element	0.25 ppb	1 ppb	50 ppb	100 ppb*	250 ppb
Antimony		102%	107%	101%	101%
Arsenic		118%	98%	100%	99%
Barium		92%	98%	100%	100%
Beryllium	101%	105%	102%	101%	101%
Cadmium		81%	98%	98%	98%
Chromium		101%	98%	101%	101%
Cobalt		97%	98%	100%	100%
Copper		102%	98%	101%	101%
Lead		97%	100%	98%	98%
Manganese		95%	100%	100%	100%
Nickel		110%	96%	99%	99%
Selenium		85%	103%	101%	99%
Silver		103%	100%	102%	102%
Thallium		100%	98%	100%	100%
Zinc		119%	104%	102%	101%

Element	21 ppb	250 ppb	1100 ppb*	2500 ppb
******			***************************************	
Phosphorus	113%	98%	103%	99%

elementOne

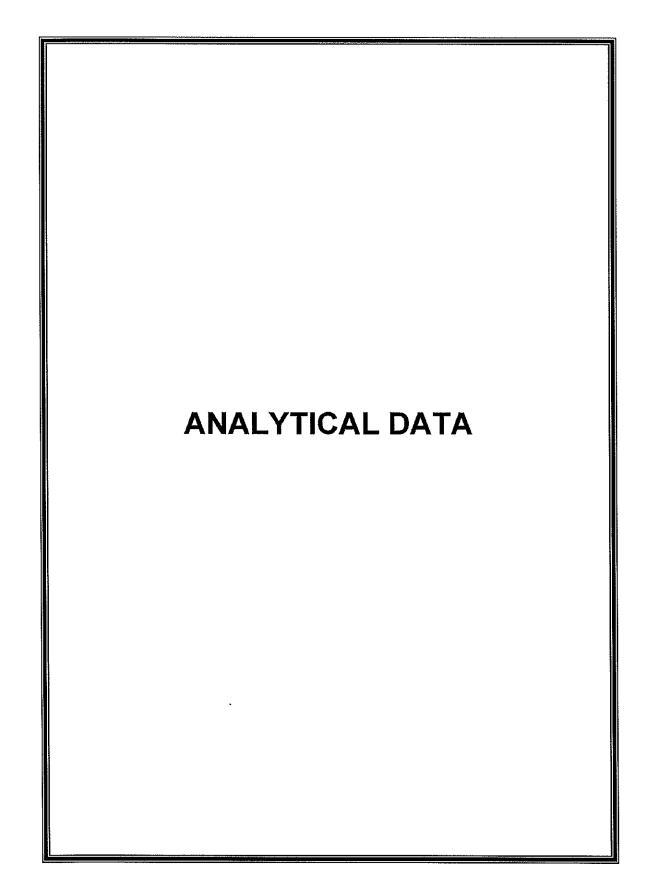
31368 MAQS M5 29 Report Packet Page 18 of 64

31368 MAQS M5 29 Report Packet Page 19 of 64

elementOne 31368 MAQS M5 29 Report Packet Page 20 of 64

		MONTROSE	CHAIN OF CUSTODY	RVICE	<u> </u>	5					00016
	451738	Location	Hansneimill Shredder		3	lyzės Re	quested		· Page	2	ા
	Seneral fron	Outer Street Control	6/14/2018								
n'i combine P Ag, Zn 150	Hand 6H 5a	piga Pisase, 300 TATIII TS	N-Sh, An, Be, Cd, Cr, Co, Cu	프 Method 29							
Run No.	Dyto-	Zampk	Description						-	3	Notes
-1	47372918	Method 20 Front	Half 0.1 N HNO, Ranse	×							
62	STOCK IVE	Method 20 Front	Hell 0.1 N HNO3 Rinsa	×							
۵	61,02,019	World at pound	Halfo.1 N HNO3 Ringe	×	L			L	Γ		
	BLCZ-PLFS	WOLF BZ POURIN	HBIF 0.1 N HWO3 RIMSO	×	_			┞	T		
RB	\$102VF110	Method 20 Front	Hat 0,1 N HRIO3 Rinso	×	_	T		-	T		
FB	2102013	Method 25 Hone		 ×		1	_	-			
						ļ		${f H}$			
								╫			
	-										
		Reinquist	NG By				*				
	the house of the same of the s	Relinquished By	Mapy 25 A			Carrier	Carrier				
Michael Heese		- (Postatol)	ed By By By Ben Higandorf			G I G G G G G G G G G G G G G G G G G G	R(O)				
Michael Hose	THOSE WAS A STATE OF THE STATE	Relinquished spendural lateral	ed By 23 M	7950		Carrier (Laborato Contag)	Carrier Laboratory Contact				
Monate Health		Reinquished B signature Dirinked DaradTine Accepted By		14350 H		Phoenic Communication Communic	e sa				
Michael Head Widness Head						Carrier Labora Gordad Gordad Address Phone	Carrier Laboratory Contact Address				
	Ag, Zn Ko	451728 General kon Glicasgo, IL. n't comsking FH and GH/San Ag, Zn Sc Z/G 6/15 Ag, Zn Sc Z/G 6/15 Silvazoris	AST238 Location City of the complete by Samply Please. JBU TATH TS Ag.Zn. BC 276 bil 5 AV A	Rum No. Date 1 A172311 Location Hammermitt Shredder Hammer H	451728 General from Chicago, IL Chicago, I	XXXXXX Metrod 29	××××× Method 29	X X X X X Method 29	RUNTAG: Date Sample Description A13728 Location Harmsmatt Shreider Analysis Requested General from Date Guilding Guilding A1, Zn SC ZnG (1) S / N Runtag Date Gample Description 1	X X X X X X Method 29 Analysis of the control of t	Analysis Requested Page

31368 MAQS M5 29 Report Packet Page 21 of 64


MONTROSE AIR QUALITY SERVICES, LLC GIAIN OF CUSTODY

31368

Project Number		451738	Location	- H	aramermiii Shraddar		A	nalysis	Rece	gsie (1	∵Page:	1	of	4
liont		Jeneral Iron	Date : 1/14/2018				П	\top					,		
lant		Chicago, IL	Completed By		_	1 1									
il/Bit Separate. i An, ilg. Iti. P. So,	Don't combine F TL, Ag, Zn _è <u>B</u> £	Hand Bli Sa LKI GAS	niples Please. 380 TATU il L	1 15 14-96, A	e, Ba, Gd, Gr, Go, Cu, Pb,	Vathod 29									
IO No.	flun No.	Date	5	iseed elams	ption	7	l		1				Mou	.9	
R1-84P-5-6	1	6/13/2018	Method 29 Back Half 1125	O4KMnO4 In	pinger Contents	×			7						
R2-HAP-8-6	2	6/13/2018	Method 20 Back Half H25	OAKIANO4 In	noinger Contents	X			1	П			•		
R4-02P-S-6	4	6/14/2018	Method 29 Back Haif H28	O4.80JAnO4 In	npinger Contents	X									
RS-WP-S-S	6	8/14/2018	Mellyod 20 Back Half H25	O4KIAnO4 k	nplinger Contonts	×									
RØ.	RB .	6/14/2018	Method 20 Back Half H2S	Q4/KJA+Q4 %	spinger Contents	×			\Box						
FTL-MP-S-6	FB	E/14/2018	Method 20 Back Half H25	×			\Box								
R1-BN-Rones	1	\$102UN\$	Method 29 Back Half HCI	Ţ			╅								
K2-BN-Rimer	2	8/13/2018	Method 29 Back Haff HC	x	\Box		1	$\overline{}$. , ,			
R4-BN-Rinse	4	6/14/2018	Method 29 Back Half HC	x	M		_	******	-	1					
RS-8H-Rings	5	8/14/2018	Method 29 Black Half HCI	х	1		1								
FD-HC1-29	FI3	6/14/2016	Method 29 Back Half HC	X	i		7				···				
RB	Rø	8/14/2018	Method 29 Back Half HO Rinse							匚					
						┪				 	┝╌┼╴	-			
	1/4	7	//			1									
Relinquished By signature)				Resinguished By (signature)					Carrier Laboratory						
(botniva	Kithael Hos	5		(printed) Ben Hilgendorf				Contact					Adam 10 11/1/10/0-4		
Date/Time	6/19/		Date/Time 6/14/18 /930					Address							
Accepted By	All			(algorities) Log Brate				Phone							
signature) orinted)	Des Manufact							Fax							
(pnn;co) Date(Time	Bon higendorf			Onto/Time 6.17.18 6455			Date/Time								
PARTAL ALLEIA	10/14/19 /200			ARTON MINE (21/2/11) Co.17			Terrarians.								

elementOne 31368 MAQS M5 29 Report Packet Page 22 of 64

ge 22 or B-166

31368 MAQS M5 29 Report Packet Page 23 of 64

Analytical Calculations

Metals-

Element Results (µg) =ICP Results (µg/L)*Dilution*Final Volume (L)

Where-

ICP Results= Raw sample concentration (ppb)-ICP-Data Sheet

Dilution= <u>Diluted Volume</u>—ICP-MS Run Sheet Aliquot

Final Volume=FH=Final Volume (FV)—Sample Submission

BH=Received Volume (BV)*Final Volume (FV)—Sample Submission

Aliquot (Used)

Mercury-

Mercury Results (μg) = CVAA Results (μg) *Final Volume (ml)
Aliquot (ml)

Where-

CVAA Results= Raw sample reading (µg)-Hg-Data Sheet

Aliquot= Sample Aliquot (Alq.)-Hg-Data Sheet

Final Volume=Final Volume (FV)*—Sample Submission

* With the exception of the BH fraction where-

=Received Volume (BV)--Sample Submission

elementOne

Analytical Calculations

Spike Recovery-

Spike (%) = (Spiked Result (μ g/L) – Sample Result (μ g/L) X100 Spike Amount (μ g/L)

Where-

Spike Result = Raw sample concentration (ppb)-ICP-Data Sheet

Sample Result = Raw sample concentration (ppb)--ICP-Data Sheet

Spike Amount—ICP-MS Spike Table

Duplicate Analysis RPD-

RPD (%) = (Duplicate Result (μ g/L) - Sample Result (μ g/L)) X100 Average (μ g/L)

Where-

Sample Result and Duplicate Results=Raw sample concentration (ppb)--ICP-Data Sheet

Average= (Duplicate + Sample Results)

2

elem	entOne	ė ,	AIR TE	STI	NG SAN	IPLE S	SUBMI	BMISSION FORM Lab ID									
FH/BH	Separa	ate					Analysis Due Date 06.18.18										
RUSH-3 DAY TAT								QA/QC Report Due Date 06.19.18									
Client	3	Aontrose	· Air Onati	v Ser	vices, LLC	(A):rtech)	1			Date		08.15.18					
Project I		51738	741 600	<u> </u>	11000, 440	(vestereis)	1		0955								
HNO ₃ Lo			HF	Lot: (511407	2	HCLLot	:4117	040	Time		viethod:					
Volume			Voi	ume t	oss Y/N	3	Acet		515	-		9/5					
Sample Identification											ı						
				₹1	l i	5 Field I	lank 7 061318S-Ce: \$426 Fil										
1 Hammerniii Shredder-M29/5-R1 5 Field B 2 Hammerniii Shredder-M29/5-R2 6 Reager										وها وروانها منا والمساوية	And the Contract within Contractor Contractor						
Hammermill Shredder-M29/5-R2 Duplicate										والمراش ومعاروبه والمحاودة	والمستردين والمتاريخ والمراجع والمتاريخ والمتناجع والمتناء والمتاء والمتناء والمتناء والمتناء والمتناء والمتناء والمتناء والمتاء والمتاء والمتاء والمتناء والمتاء والمتناء والمتاء والمتاء والمت						
3 Hammermilt Shredder-M29/5-R4										10 0613	A commence of the contract of						
			er-M29/5-I		ke												
4 Har	nmemil		er-M29/5-	manuscriptors		سيل		V	٠٠٠,	ومرسلب	La Land						
	_	1994	Samples 1	***********			Be, Cd, (Be, Cd, Cr, Co, Cu, Pb, Mrl Ni, P, Se, Ti, Ag, Zn									
Analyse	s Reque	-	Samples 1			Taxon	·				·	·					
		······	Samples :	*******	Pi	VI								ļ			
Runs /	FI/A	ce (FH)		(FH)		10*110** H			λ ₃ (Α)	· · · · · · · · · · · · · · · · · · ·	O# (B)		HCt (C)				
FB Lab ID	FIID	1 car 3	pH <2.0(Y) N				۱۱		Q Y N		PH<50 ØN		N(Q) 0.				
Labib	31347	BV mil	10 Mg	FV n		Used 253	FVm 50	BV mi GS	FV ml	BV ml	FV mi	BVml	FV ml 400				
2.D	31346	65	1118	Ť	36	165	130	100	300	405	000	210	1700				
3.S	31457	108	56		325	حعاا		116	 	375	 	220	 				
4	31460	84	62		<u> </u>	175		CH		310		225					
5	31344		160	<u>&</u>	<u> </u>	111.2	IW	011	_(لحا	380	₩	225					
M-29 Ro	Fraction		***********			I trousr	T=4 .	Ta									
6	C7	FH	Acetone	Riank		8V, mi	FV, ml	Comments									
1	C 8A	FH	0.1N HN		·	1225	lioo	used 100 mis 89A									
STOCKET STATE	C 8A	Α	0.1N HN	O ₂	A	1836	1	Combined wome CEA + 700 MISEGO									
	C 8B	Ð	DIHO				1										
<u></u>	C9 C10	BH	5% HNO			905	50	<u> </u>	~ 165	A 6:0							
	C11	C	4% KMin 8N HCI I			225	400	used	TOOK	<u>e cio</u>	I 33/	rl D					
	CAT ICH PAGE									······································							
Audits				S	ee Attach	ed Audi	t Instruc	tions	········	MILES	P*	····	Chekterman.				
Sample I	the state of the s									J's Bred	By / Date	3					
7		Gat 142		Ş	o, As, Ba, I	Be, Cd, C	r, Co, Cu,	Co, Cu, Pb, Mn Ni, P. Se, J Dur G/P/18									
8	A CONTRACTOR OF THE PARTY OF TH	1318S-Cat 1428 Imp Sb, As, Ba, Be, Cd, Cr,						******			$\mathcal{R}(\mathcal{A})$	9/18					
10	1.5							<u> </u>	100)	mw	(10)	918					
MIN (A 1XIV																	
Lab Communications US+Spixed wo Imis 25pm Hols H, B, C+F (021418-485F)																	
Fractions Received: Runs: C1.C2, C3, C4, C5A, C5B, C5C, RB: C12, C7, d6A, C9, C16, C11, 4 Audits—03.15.18 LB: H7+ SAV. LM O, Zmls, 25/M SS Page 1 of 1 S7 Page 1 of 1																	
SS Page 1 of 1 6/16/2018 11:04:42 AM SS Form By Labeled By/Date_1 L.																	
SS Form	n By	(LS			B)-	i Prep By. VEH Pren	Date[Yil] Rv/Datel	K HI	400	Prep By/D	ate TAT	6/11 5 /2/201	<u>888</u>				
Labeled	By/Date	7) 1	الطالب	8	PA	1 Prep By	Date_15	6-8-61	7:19 ID	Verificati	on By / D	ale Trak	B.Tr.Ir	٠			
HSPRP DEH WISH																	

Instructions for Catalog # 1425 Stationary Source Audit Program Air and Emissions Metals on Filter Paper Revision 051517

Description:

- This standard is packaged in a 50mm polystyrene petri dish containing a single 47mm glass fiber filter.
- This standard is designed for use with EPA Method 29.
- This standard is not preserved.
- This standard can be stored at room temperature.
- This standard will contain the following analytes in the concentration ranges shown;

Antimony	25 – 250 µg/filter	Lead,20 - 350 µg/filter
Arsenic		Manganese10 - 250 µg/filter
	20 – 250 μg/filter	Nickel 20 - 250 µg/filter
Beryllium		Selenium
Cadmium		Silver30 - 250 µg/filter
	15 - 250 µg/filter	Thailium30-250 µg/filter
Cobalt	10 - 250 µg/filter	Zinc20 - 250 μg/filter
Comer	10 250 up/filter	

- This standard is stable, unopened, for 1 year from receipt of the standard.
- NOTE: This standard MUST be analyzed at the same time, using the same personnel, and the same procedures as the test samples.

Before you begin:

- . This standard must be prepared and analyzed following the procedure specified in EPA Method 29.
- This standard should be analyzed as soon as possible after it is prepared,

Instructions:

- Carefully open the Metals on Filter Paper standard and using tweezers or a gloved hand place the filter into your digestion vessel.
- 2. Digest & analyze the standard following the procedure specified in EFA Method 29,
- 3. Report your results as µg/filter for each of the metals.
- 4. Report your results to 3 significant figures.

Safety:

ERA products may be hazardous and are intended for use by professional laboratory personnel trained in the competent handling of such materials. Responsibility for the safe use of these products rests entirely with the buyer and/or user. Material Safety Data Sheets (MSDS) for all ERA products are available by calling 1-800-372-0122.

31368

Instructions for Catalog # 1426 Stationary Source Audit Program Air and Emissions Metals in Impinger Solution

Description:

- This standard is packaged in a 15 mL screw top vial containing approximately 14 mL of standard concentrate.
- This standard is designed for use with EPA Method 29.
- . This standard is preserved with approximately 2% (v/v) nitric soid and 1% (w/v) tarrario acid.
- This standard can be stored at room temperature.
- This standard will contain the following analytes in the concentration ranges shown:

Antimony	0.25 – 20 μg/mL	Lead	
Arsenie		Manganese0.1 – 20 μg/ml	,
Barium		Nickel0.15 – 30 μg/ml	٤.
Beryllium	0.05 - 20 µg/mL	Selenium0.15 – 25 μg/ml	٠
Cadmium	0.1 - 20 µg/mL	Silver	4
Chromiun	0.2 – 20 μg/mL	Thallicam	[_
Çobalt	0.1 -25 μg/mL	Zinc0.15 – 25 μg/ml	جأ
Copper	0.2 - 20 µg/mL		

- This standard is stable, unopened, for 1 year from receipt of the standard.
- NOTE: This standard MUST be analyzed at the same time, using the same personnel, and the same procedures as the test samples.

Before you begin:

- The sample resulting from the dilution described below will have a nitric acid concentration of approximately 0.02% before any acid is added. You may add a volume of acid different from the 4 to 10 mL of HNO₃ suggested in order to matrix match your calibration standards or meet any other method criteria.
- This standard must be prepared and analyzed following the procedure specified in EPA Method 29.
- This standard should be analyzed as soon as possible after the concentrate is diluted.

Instructions:

- Add 100-200 mL of deionized water and approximately 4 to 10 mL of nitric acid to a clean 1000 mL class A
 volumetric flask.
- 2. Shake the Metals in Impinger Solution vial prior to opening,
- Using a clean, dry, class A pipet, volumetrically pipet 5.0 mL of the concentrate into the 1000 mL volumetric flask.
- 4. Dilute the flask to final volume with deionized water.
- 5. Cap the flask and mix well.
- 6. Immediately analyze the diluted sample by the procedures specified in EPA Method 29.
- 7. Report your results as µg/mL for the diluted sample.
- B. Report your results to 3 significant figures.

Safety:

ERA products may be hazardous and are intended for use by professional laboratory personnel trained in the competent handling of such materials. Responsibility for the safe use of these products rests entirely with the

31368

Instructions for Catalog # 1427 Stationary Source Audit Program Mercury on Filter Paper Revision 05/517

Description:

- This standard is packaged in a 2 mL flame-scaled ampule containing approximately 2 mL of standard concentrate and a 50 mm polystyrene point dish containing a single 47 mm glass fiber filter.
- This standard is designed for use with EPA Method 29.
- The standard concentrate is preserved with 2% (v/v) HNO3.
- This standard can be stored at room temperature.
- This standard will contain Mercury in the range of 1-75 µg/filter.
- This standard is stable, unopened, for 1 year from receipt of the standard.
- NOTE: This standard MUST be analyzed at the same time, using the same personnel, and the same
 procedures as the test samples.

Helpful Hints:

- This standard has been prepared as a concentrate intended for spiking onto the supplied glass fiber filler and must be prepared prior to use.
- This standard must be prepared and analyzed following the procedure specified in EPA Method 29.
- This standard should be digested and analyzed as soon as possible after it is prepared using these
 instructions.

instructions:

- Open the container and using tweezers or a gloved hand, place the glass fiber filter onto a clean surface for spiking.
- Carefully snap the top off the Mercury on Filter angents.
- 3. Using a clean, dry, class A pipet or syringe, transfer 100 uL of concentrate onto the glass fiber filter.
- 4. Piace the spiked filter into your digestion vessel.
- Digest & analyze the standard following the procedure specified in EPA Method 29.
- 6. Report your results as µg/filter.
- 7. Report your results to 3 significant figures.

Safety

ERA products may be hazardous and are intended for use by professional laboratory personnel trained in the competent handling of such materials. Responsibility for the safe use of these products resus entirely with the buyer and/or user. Material Safety Data Sheets (MSDS) for all ERA products are available by calling 1-800-372-0122

31568

Instructions for Catalog # 1428 Stationary Source Audit Program Mercury in Impinger Solution

Revision 051517

Description:

- This standard is packaged in a 15 mL screw-top vial containing approximately 14 ml, of standard concentrate.
- This standard is designed for use with EPA Method 29 and EPA Method 101A.
- This standard is preserved with approximately 2% (v/v) nitric acid.
- This standard can be stored at room temperature.
- The diluted standard will contain Mercury in the range of 0.9-200 ng/ml.
- . This standard is stable, unopened, for 1 year from receipt of the standard.
- NOTE: This standard MUST be analyzed at the same time, using the same personnel, and the same
 procedures as the test samples.

Before you begin:

- This standard has been prepared as a concentrate and must be diluted prior to analysis.
- Mercury is present as a mixture of organic and inorganic forms and must, therefore, be analyzed as Total Mercury.
- This standard must be prepared and analyzed following the procedure specified in EPA Method 29 or EPA Method 101A.
- This standard should be analyzed as soon as possible after the concentrate is diluted.

Instructions:

- Add 100-200 mL of deionized water and approximately 4 to 10 mL of nitric acid to a clean 1000 mL class A
 volumetric flask.
- Shake the Mercury in Impinger Solution vial prior to opening.
- 3. Using a clean, dry, class A pipet, volumetrically pipet 5.0 mL of the concentrate into the 1000 mL volumetric
- 4. Dilute the flask to final volume with deionized water.
- 5. Cap the flask and mix well.
- 6. Immediately analyze the diluted sample by the procedure specified in EPA Method 29 or EPA Method 101A.
- 7. Report your results as ng/ml. for the diluted sample.
- 8. Report your results to 3 significant figures.

Safety

ERA products may be hazardous and are intended for use by professional laboratory personnel trained in the competent handling of such materials. Responsibility for the safe use of these products rests entirely with the buyer and/or user. Material Safety Data Sheets (MSDS) for all ERA products are available by calling 1-800-372-0122.

Method 5 Particulate

Lab#31368 Page tof 1

Client Air Tech Balance checks

Date; 05,18.18

2g = 2,0000 2g =

Acetone Concentration 1,37E-05

Balance ch		Dale: 05, Dale: Dale:	10.10	2g ≈ 2,0(2g ≈ 2g =	200				E-05	mg/mg	
Filters											
			Α		В		В	1	3		
Sample ID#	Filter 10	द्या गाइ	Fäler	Dus - 06.1E. Irres - JGF	ja	Dass - CO.18. Inters - JOP	13	Dato Pitali		Catch Description	
			Tare. g	Tens	Files Weight,	Time	Pan Yingk Q	Tim⊭	Fri d Weight, B	and Leading	
31368-1	31347	1	0.4015	820	0.4067	1420	0.4069				
31368-2	31346	2	0.4031	820	0.4118	1420	0.4121				
31368-3	31457	3	0.3679	820	0.3759	1420	0.3761				
31368-4	31450	4	0.3551	820	0.3618	1420	0.3619				
31368-5	31344	5	0.4022	820	0.4035	1420	0.4037				
Calend B&											
E1 Bark											
Aceton	e Rinse	S						1	·		
			C		Ď		Þ	1	В		
Sample ID#	Sampis Volume, mi	Bag ID	žeg	Date - C6.18. Inter - JGP	13	Dale - CA IR Histo - XX	15	Date Intara		Catch Description	
			Tare, g	Time	us a Sample View a	Time	Bog & Samole Wealth, G	Time	Bing & Sample Yangar, g	and Loading	
31388-1	134	758	10.8814	820	10.8907	1420	10.8906			Olly Residue	
31368-2	88	737	11.0158	820	11.0258	1420	11,0260			Oily Residue	
31358-3	108	597	10.1119	820	10.1235	1420	18.1233	<u> </u>		Oily Residue	
31368-4	84	¥23	9.9149	820	9.9237	1420	9.9238			Olly Residue	
31368-5	102	528	9.8710	820	9.8728	1420	9.8728			Oily Residue	
Client Ace Bik	222	895	10.2526	820	10.2553	1420	10.2550			Olly Residue	
El Acesona Blank	100	987	9.9053	820	9.9057	1420	9.9054				
Total C	atches										
Sample ID#	Filter ID	Filter Tare, g	Final Filter + Catch, p			Acetore Esg ID	Bag Tare.g	Final Bag + Ace Catch, g	Acetone Catch, mg	Total Catch, mg	
31368-1	31347	0.4015	0.4087	5.2		758	10,8814	10.8906	9.2	14.4	
31368-2	31346	0.4031	0.4118	8.7		737	11.0158	11.0258	10.0	18.7	
31388-3	31457	0.3679	0.3759	8.0		597	10.1119	10.1233	11.4	19.4	
31388-4	31450	0.3551	0.3618	6.7		x23	9,9149	9.9237	8.8	15.5	
31388-5	31344	0.4022	0.4035	1.3		528	9.871	9.8728	1,8	3.1	
Client Bik						895	10.2528	10.2550	2.4	24	
Et Blank		İ				987	9.9053	9.9054	0.1	0.1	

Bement Che, Inc. Form 100 R O

elementOne

31368 MAQS M5 29 Report Packet Page 31, of 64

Lab ID#e 31 368 **Method 29 Microwave Worksheet** elementOne Client: Montrosc Date Digested: 6/19/18 Initials: 500 Worksheet Prepared by: MMP Auto # of filters digested Prep Volume Sample Sample Lab ID Spike Comments (ml) Loc. 41 ML LRBT 100 LRB 2 3 31368-1 4 10 - gaudit 1 13 MZ4 Clean 14 15 HNO3 Lot#: 1117100 mLs Used; HF Lot# 5116072 mLs Used: 25ppm

Element One, Inc. F214 R1 Microwave Sheet M29

elementOne

31368 MAQS M5 29 Report Packet Page 32,0f 64

Land Colors

Sample/Batch Report

User Name: r2d2
Computer Name: PESERVICE-PC
Sample File: C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\Sample\c2.sam
Report Date/Time: Wednesday, June 20, 2018 10:49:07

				•				mn	0.51.0.0.
A/S Loc.	Batch ID	Sample ID	Description	Sample Type	Init Quant.	Prep. Vol.	Aliquet Vol.	Dituted Vol.	Solids Ratio
5		QC Std 2		Sample					
1		QC S划 1		Sample					
401		LRB FH		Sample					
402	\$	LRB FH		Spike - 1 of 3					
403		31358-1 FH		Sample					
404		31368-2 FH		Sample					
405	d	31358-2 FH		Dup@cate of 6					
405		31358-3 FH		Sample					
407	s	31368-3 FH	Ì	Spike - 1 of 8					
408		31368-4 FH	l	Sample					
409		31368-5 FH	ł	Sample					
410		31369-6 FH	l	Sample					
411		LR8 BH		Sample					
412	\$	LR8 BH		Spike - 1 of 13					
413		31358-1 BH	1	Sample					
414		31358-2 BH	ł	Sample					
415	đ	31368-2 BI	ł	Duplicate of 16					
416		31368-3 BH	i	Sample					
417	\$	31368-3 BF	1	Spike - 1 of 18					
418		31359-4 BH	1	Sample					
419		31368-5 Bł	ł	Sample					
420		31368-8 Bi	i	Sample					
421	x10	31368-7		Sample					
422	x10s	31368-7		Spike - 1 of 23					
423	x500	31358-8		Sample					
424	x500s	31368-8		Spike - 1 of 25					
425	x50x50	31358-8		Sample					
426	x50x50s	31368-8		Spike - 1 of 27					
1		QC Std 1		Sample					
5		QC Std 2		Sample					
3		QC Std 3		Spike - 3 of 29					
5		QC Std 2		Sample					

Page 1

Dataset Report

User Name: r2d2

Computer Name: PESERVICE-PC

Dataset File Path: C:\Users\Public\Documents\PerkinElmer Syngistix\lCPMS\DataSet\061918-5e\ Report Date/Time: Wednesday, June 20, 2018 10:11:41

The Dataset

			HIE Dalas	51		
Tarie	Sample ID	Baich ID	Read Type	Description	Init. Quant Prep. Vol. Asquot Vol.	Dålsed Vol.
16:45:11 Tue 19-Jun-18	Black		Bank			
16:48:17 Tue 19-July 18	Standard 1		Standard #1			
16:51:24 Tue 19-Jun-18	Standard 2		Standard #2			
15:54:30 Tue 19-Jun-18	Standard 3		Standard #3			
16:57:37 Tue 19-Jun-18	QC Std 1		QC Std #1			
17:00:44 Tue 19-Jun-18	QC Std 2		QC Std #2			
17:03:50 Tue 19-Jun-18	QC SM 3		QC Std #3			
17:05:57 Tue 19-Jun-16	QC Std 4		QC Std #4			
17:10:05 Tue 15-Jun-18	OC Std 5		QC Std #5			
17:13:12 Tue 19-Jun-18	CC Std B		QC Std #6			
17,16:19 Tue 15-Jun-18	QC Std 7		QC SH #7			
17:19:25 Tue 19-Jun-18	OC SId 8		QC Std #8			
17,22,32 Tue 19-Jun-18	QC Std 2		Sample			
17:25:20 Tue 19-Jun-18	QC Std 1		Sample			
17:28:27 Tue 19-Jun-18	LRB FH		Sample			
17:31:34 Tue 19-Jun-18	LR3 FH	3-	Soller - 1 of 15			
17:34:40 Tue 19-Jun-18	31358-1 FH	•	Sample			
17,37,46 Tue 19-Jun-18	31358-2 FH		Sample			
17:40:53 Tue 19-Jun-16	31388-2 FH	ជ	Duplicate of 18			
17:43:59 Tue 19-Jun-18	31358-3 FH	••	Sample			
17:47:05 Tue 19-Jun-18	31368-3 FH	3	Spike - 1 of 20			
17:50:12 Tue 19-Jur-18	31369-4 FH	•	Sample			
17.53:20 Tue 19-Jur-18	QC Std 1		QC Std #1			
17:55:25 Tue 15-Jun-18	QC Std 4		CC Std #4			
17 59:35 Tue 19 Jun-18	31358-5 FH		Sample			
18:02:41 Tue 19-Jun-18	31368-8 FH		Sample			
18:05:48 Tue 19-Jun-18	LRS BH		Sample			
18 08:55 Tue 19-Jun-18	LRS BH	E	Scho - 1 of 27			
18:12:02 Tue 15-Jun-18	31358-1 BH	•	Sample			
18:15:08 Tue 19-Jun-18	31388-2 BH		Sample			
18:15:15 Tue 19-Jun-18	31368-2 BH	d	Duplicate of 30			
18:21:22 Tue 19-Jun-18	31368-3 BH	u	Sample			
18:24:28 Tue 19-Jun-18	31358-3 BH	\$	Solke • 1 of 32			
18,27:34 Tue 19-Jun-18	31368-4 BH	~	Sample			
18:30:43 Tue 19-Jun-18	QC Std 1		OC 5td #1			
18:33:49 Tue 19-Jun-18	QC Std 4		OC 5td #4			
18:35:57 Tue 19-Jun-18	31368-5 BH		Sample			
18:40:04 Tun 19-Jun-18	31368-6 BH		Sample			
18:43:10 Tue 19-Jun-18	31368-7	x10	Sample			
18:45:17 Tue 19-Jun-18	31388-7	x10s	Spike - 1 of 39			
18:49:23 Tue 19-Jun-18	31358-8	x300	Sample			
18:52:30 Tue 19-Jun-18	31358-8	x500s	Space 1 of 41			
18:55:37 Tue 19-Jun-18	31368-8	x50x50	Sample			
18:58:43 Tut: 19-Jun-10	31368-8	x50x50s	Spike + 1 of 43			
19:01:51 Tue 19-Jun-18	QC Std 1		Sample			
19:04:58 Tue 19-Jun-18	QC Std 2		Sample			
19:08:05 Tue 19-Jun-18	00 St42-4 2	IR6/200:	Spike - 3 of 45			
19:11:12 Tue 19-Jun-16	QC Std 1		OC Std #1			
19:14:19 Tue 19-Jur>18	QC Std 4		QC Std #4			
	- M - M - M - 1			-/-X		-/-756:

Page 1

elementOne

31368 MAQS M5 29 Report Packet Page 34 of 64

Method 6020 & 200.8 Metals Summary Report

Sample ID: Standard 3 Sample Date(Tune: Tuesday, June 19, 2018 16:54:30

Sample Description: Number of Replicates: 3

Batch ID:

Baten ID:
Dataset File: C:|Users|Public|Documents|PerkinElmer Synglistix|ICPMS|DataSet|061918-5a|Standard 3.004
Sample Prep Volume (mL):
Initial Sample Quantity (mg):
Aliquot Volume (mL):
Diluted To Volume (mL):
Au(osampler Position: 4

Calibration

	Oditol adoll			
Analyte	Curve Type	Slope	Constallen Coefficient	Intercept
LI	Linear Thru Zero			
8e	Linear Thru Zero	0,004	0.999911	0.00
₽	Linsar Thru Zero	0,002	0.999991	0.00
Sc	Linear Thru Zero			
Cr	Linear Thru Zero	0.032	0,999987	0,00
Çε	Linear Thru Zero	0.004	0.999982	0.00
Mn	Linear Thru Zelo	D,D54	0,999996	0.00
Co	Linear Thru Zero	0,036	0.999998	0.00
Ni	Linear Thru Zero	0,008	0.999996	0.0 0
Cil	Linear Thru Zero	0.019	0.999996	0.00
Cu	Linear Thru Zero	0.008	0.999984	0.00
Zn	Linear Thru Zero	D.004	0,999894	0,00
Zη	Linear Thru Zero	0.001	0.999985	0.00
Zη	Linear Thru Zero	0,003	0.999997	0.00
eΑ	Linear Thru Zero	0.004	0.999988	0.00
Se	Linear Thru Zero	0000	0,999447	0.00
Se	Linear Thru Zero	0.000	0,999775	0.00
Rh	Linear Thru Zero			
Ag	Linear Thru Zero	0.019	0,99998	0.00
Αg	Linear Thru Zero			
Cq	Linear Thru Zero	0.007	0.999993	ÓŒ.Ô
Cd	Linear Thru Zero	0,026	0.99998	0.00
Sb	Linear Thru Zero			
Sb	Linear Thru Zero	0,004	0.999995	0.00
Ba	Linear Thru Zero			
Ba	Linear Thru Zero	0.004	1.000000	0.00
Ho	Linear Thru Zero			
π	Linear Thru Zero	0.028	0.999999	0,00
Pb	Linear Thru Zero	0.037	1,000000	0,00
Κr	Linear Thru Zero			
	• •			

elementOne

31368 MAQS M5 29 Report Packet Page 35.9f 64

elementOne Analyst:-DMR--

ICP-MS RUN SHEET 6/20/2018

Job Number; 14

A/S Loc.	Dilution	Sample ID	Client	Туре	Weight (g)	Prep Vol (ml)
5	i	QC Std 2		Şample		
401		LR8 FH	V	Sample		100
402	s	LRB FH		Spike - 1 of 3		100
403		31368-1 FH		Sample		100
404		31368-2 FH		Sample		100
4D5	d	31358-2 FH	4500-400444-00	Duplicate of 6		100
405		31368-3 FH	The state of the s	Sample		100
407	S	31358-3 FH	Anna Landa de La Carta de La C	Spike - 1 of 8		100
408		31368-4 FH		Sample		100
409		31368-5 FH		Sample		100
410		31368-6 FH		Sample		100
411		LRB BH		Sample		50x2
412	\$	LABBH		Spike - 1 of 13		50x2
413		31368-1 BH		Sample		50x2
414		31368-2 BH		Sample		50x2
415	d	31368-2 BH		Duplicate of 16		50x2
416	W. Children S. Children and Assert Control	31368-3 BH		Sample	September 1995	50x2
417	5	31368-3 BH		Spike - 1 of 18	<i>1</i> -2-1	50x2
418	İ	31368-4 BH		Sample		50x2
419		31368-5 BH	2000 - 100 -	Sample	1	50x2
420		31368-6 BH		Sample		50x2
421	x10	31368-7		Sample		50
422	x10s	31368-7		Spike - 1 of 23		50
423	x500	31368-8		Sample		5/1000/1000
424	x500s	31368-8		Spike - 1 of 25		5/1000/1000
425	x50x50	31368-8	***************************************	Sample	- Zingiliya	5/1000/1000
426	x50x50s	31368-8		Spike - 1 of 27		5/1000/1000
					Marca Miles	
					×.	
Spil	os are post	at 0.02mL of 25ppn				
	for QC by:	Date/		QC Review By:		/Time:
	//R	6/20/18	/	1 KILD	6/20/18(<u> 1640 </u>
Re-Test	Required:	No:	Yes:	Comments:		
	ted for QC y:	Date/	Time:	QC Review:	Ву;	Date/Time:

S:\Forms\Slank Forms\F208 R2 ICP-MS Run Sheet

elementOne

31368 MAQS M5 29 Report Packet Page 36 of 64

Wednesday, Jun 20, 2018 10:49 AM

elementOne

31368 MAQS M5 29 Report Packet Page 37 of 64

Sample/Batch Report

User Name: r2d2
Computer Name: PESERVICE-PC
Sample File: C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\Sample\c3.sam
Report Date/Time: Wednesday, June 20, 2018 16:38:31

	Batch ID	Sample ID	Description	Sample Type	Init. Quant	Prep. Vol.	Aliquot Vol.	Diluted Vol.	Solicis Ratio
5		QC Std 2		\$ample					
421	×10	31368-7		Sample					
422	x10s	31368-7		Spike - 1 of 2					
423	x50	31358-7		Sample					
424	x50s	31368-7		Spike - 1 of 4					
425	x50x50	31368-8		Sample					
426	x50x50s	31358-\$		Soke - 1 of 6					
427	x50x100	31368-8		Sample					
428	x50x100s	31368-8		Spike - 1 of 8					
429		31368-5 FH		Sample					
430		31368-6 FH	1	Sample					
431		31368-6 C8	A	Sample					
432		31368-5 BH	I	Sample					
433		31368-5 BH	Unprep	Sample					
434		31368-6 BH	ł	Sample					
435		31368-6 C8	A-C9	Sample					

Page 1

elementOne

31368 MAQS M5 29 Report Packet Page 38 of 64

Dataset Report

User Name; r2d2

Computer Name: PESERVICE-PC

Dataset File Path: C:\Users\Public\Documents\PerkinElmer Syngistix\\CPMS\DataSet\062018-1a\\
Report Date/Time: Wednesday, June 20, 2018 16:37:53

The Dataset

1975	district d	laisada dés	Enter Time	Donarintan	Init, Quant Prep. Vol. Aljouet Vol. Dilúted Vol.
Time 12:11:56 Wed 20-Jun-18	Sample ID B		Read Type Blank	Description	list Kratt Liah: Anttalahk kati - Masaa kas
			Standard #1		
12-14-57 Wed 20-Jun-16 12-17:57 Wed 20-Jun-18	Standard 1 Standard 2		Standard #2		
12:20:58 Wed 20-Jun-18	Standard 3		Standard #3 QC Svd #1		
12:23:59 Wed 20-Jun-18	QC 5td 1				
12:27:00 Wed 20:Jun-18	QC Std 2		OC SH #2		
12:30:01 Wed 20-Jun-18	QC Std 3		OC SH#3		
1233:01 Wed 20-Jun-16	QC Std 4		QC Szi #4		
12:36;03 Wei 20-Jun-18	OC SIÐ 5		QC Std #5		•
12:39:03 Wod 20-Jun-18	oc sae		CC Std #5		. 07
12.42:04 Wed 20-Jun-18	QC Std 7		QC SH#7		50 1 6 7. 1.1
12-45:04 Wed 20-Jun-18	QC Std 8		QC Std #8		1 PICASIZUANIO
12:48;05 Wed 20-Jun-18	OC Std 2		Sample		No P. Cr. As, Se, Zn, Cd
12:50:44 Wed 20-Jun-18	· · · · · · · · · · · · · · · · · · ·		Sample		
12:53:44 Wed 20-Jun-18			Samola		
12.56:45 Wed 20-Jun-18			Sample.		
12:59:45 Wed 20-Jun-18	31368-7 x	(50 9	Sample		
13:02:46 Wed 20-Jun-18			Sample		
13:05:47 Wed 20-Jun-18	31368-B X	x50x50s	Sample		
15;08:47 Wed 20-Jun-18			Sample		•
13:11:46 Wed 20-Jun-18	31368-B	x50x100s	Sample		
13:14:49 Wed 20-Jun-18	31368-5 FH		Sample		
13:17:51 Wad 20-Jun-18	QC Std 1		QC Stipt		
13:20:51 Wood 20-Jun-18	QC Std 4		QC 51d #4		
13:23:53 Wed 20-Jun-18	31368-5 FH		Sample		
13:25:54 Wed 20-Jun-18	31368-6 CBA		Sample		
13:29:54 Wed 20-Jun-18	31368-5 BH		Sample		
13:32:65 Wed 20-Jun-18	31368-5 BH Unpre	វា	Sample		
13:35:55 Wed 20-Jun-18	31368-6 BH		Sample		
13:38:56 Wed 20-Jun-18	31368-6 G8A-C9		Sample		
13:41:58 Wed 20-Jun-18	Blank		Sample		
13:44;58 Wed 20-Jun-18	Standard 1		Sample		
13:47:59 Wed 20-Jun-18	Standard 2		Şamp'e		
13:51:00 Wed 20-Jun-18	QC Std 7		DC Std #1		
13:54:00 Wp# 20-Jun-18	QC Std 2		QC 5td #2		
13:57:01 Wed 20-Jun-18	QC Std 4		QC SH #4		
14:00:45 Wed 20-Jen-18	Blank		Blank		

Method 6020 & 200.8 Metals Summary Report

Sample ID: Standard 3

Sample Date/Time: Wednesday, June 20, 2018 12:20:58

Sample Description:

Number of Replicates: 3

Batch ID:

Dataset File: C:\Users\Public\Documents\PerkinElmer Syngistix\UCPMS\DataSet\062018-fa\Standard 3.004
Sample Prep Volume (mL):
Initial Sample Quantity (mg):

Aliquot Volume (mL):

Diluted To Volume (mL):

Autosampler Position: 4

Calibration

	Odithionous			
Analyt∈		Slope	Correlation Coefficient	Intercept
티	Linear Thru Zero	0 hor	0.000000	0.00
₿æ	Linear Thru Zero	0.005	0.999959	
P	Linear Thru Zerò	0.002	0.989600	0.00
-Sc	Linear Thru Zero		0.000004	2.02
Cr	Linear Trini Zero	0.030	0.99981	0.00
Cr .	Linear Thru Zero	0,003	0.999946	0.00
Mn	Linear Thru Zero	0.048	0.999991	0.00
Ni	Linear Toru Zero	0.008	0,999994	0.00
Ċu	Linear Thru Zero	0.018	0,999994	0.00
Cu	Linear Thru Zero	800,0	0.999987	0,00
Zn	Linear Thru Zero	0,004	0.999861	0.00
Zŋ	Linear Thru Zero	0,001	0,999895	υφο
Zη	Linear Thru Zero	0.003	0.999781	0.00
As	Linear Thru Zero	0.005	0,999994	0.00
Se	Linear Thru Zero	0.000	0,997326	0.00
Şe	Linear Thru Zero	0,000	0,999923	0.00
Rh	Linear Thru Zoro			
Αg	Linear Thru Zero	0.020	0.989995	0.00
Ag	Linear Thru Zero			
Cd	Linear Thru Zero	0.007	0.999996	0.00
Cd	Linear Thru Zero	0,026	1,000000	0.00
S 5	Linear Thru Zero			
Sb	Linear Thru Zero	0.004	0.999990	6.00
Ba	Linear Thru Zero			
Вa	Linear Thru Zero	0.004	0.999988	Đ.QQ
⊱lo	Linear Thru Zero			
Pb	Linear Thru Zero	0.038	1.000000	0.00
Kr	Linear Thru Zero		****	
	•			

elementOne

31368 MAQS M5 29 Report Packet Page 40 of 64

elementOne Analyst:--DMR--

ICP-MS RUN SHEET 6/20/2018

Job Number: 14

A/S Loc.	Dilution	Sample ID	Client	Туре	Weight (g)	Prep Vol (ml)
5		QC Std 2		Sample		
421	x10	31368-7		Sample		50
422	x10s	31368-7		Spike - 1 of 2	WARRING THE TAXABLE PROPERTY.	50
423	x50	31368-7		Sample	- Comment Comments	50
424	x50s	31368-7	discussion of the second	Spike - 1 of 4		50
425	x50x50	31368-8	the second section of the second seco	Sample		5/1000/1000
426	x50x50s	31358-8		Spike - 1 of 6		5/1000/1000
427	x50x100	31358-8		Sample		5/1000/1000
428	x50x100s	31368-8	***************************************	Spike - 1 of 8		5/1000/1000
429		31368-5 FH		Sample		100
430	1	31368-8 FH		Sample		100
431	<u> </u>	31368-6 C8A		Sample		
432	1	31368-5 BH		Sample		50x2
433	1	31368-5 BH Unprep		Sample		
434		31368-0 BH		Sample		50x2
435		31368-5 C8A-C9		Sample		
	# ************************************					
						- Jacobsonian Principal Pr
				1		
C _m	ilkae ara aa	st at 0.02mL of 25pp	m enikina soluti	ons lot 021418-ABC	ln a final volum	e of 10ml
Submitted	for QC by:	Date/		QC Review By:	Date	/Time:
	MR	6/20/18	16:39	KU	(2) 18 (0 1100
I	Required;	No:	Yes	Comments:	-19/17	
	ted for QC y:	Dale/	lme:	QC Review:	By:	Date/Time:

S:\Forms\Blank Forms\F208 R2 ICP-MS Run Sheet

elementOne

31368 MAQS M5 29 Report Packet Page 41 of 64

Sample/Batch Report

User Name: r2d2
Computer Name: PESERVICE-PC
Sumple File: C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\Sample\c4.sam
Report Date/Time: Thursday, June 21, 2018 14 08:50

A/S Loc.	Batch ID	Sample ID	Description	Sample Type	Init, Quant	Prep. Vol.	Aliquat Vol.	Diluted Vol.	Solids Ratio
5		QC Std 2		Sample		•	•		
1		QC Std 1		Sample					
401		LRB FH		Sample					
402	\$	LRB FH		Spike - 1 of 3					
411		LRB BH		Sample					
412	s	LRB BH		Spike - 1 of 5					
435		31368-1 FH		Sample					
437	x50	31388-2 FH		Sample					
	x50d	31368-2 FH		Duplicate of 8					
439		31368-3 FH		Sample					
440	x50s	31368-3 FH		Solke - 1 of 10					
441		31368-4 FH		Sample					
442	x10	31368-2 BH		Sample					
443	×10d	31368-2 BH		Duplicate of 13					
444	x5	31368-3 BH	l	Sample					
445	x5s	31368-3 BH	l	Spike - 1 of 15					
421	x10	31368-7		Sample					
422	x10s	31368-7		Spike - 1 of 17					
423	x50	31368-7		Sample					
	x50s	31358-7		Spike - 1 of 19					
	x50x50	31368-8		Sample					
426	x50x50s	31368-8		Spike - 1 of 21					
403		31368-1 FH		\$ample					
404		31368-2 FH		Sample					
405	đ	31368-2 FH		Duplicate of 24					
495		31368-3 FH		Sample					
407	5	31368-3 FH	ļ	Spike - 1 of 26					
408		31368-4 FH		Sample					
413		31368-1 BH		Sample					
414		31368-281		Sample					
415	đ	31368-2 BH		Duplicate of 30					
416		31368-3 BH		Sample					
417	\$	31368-3 BH		Spike - 1 of 32					
418		31368-4 Bh		Sample					
449	X5	31368-1 Bh		Sample					
418		31368-4 Bh	•	Sample Sample					
450		31368-2 Bt		Sample					
	x5d	31368-2 B)	1	Duplicate of 37					
	x10 x10s	31368-7		Sample					
	x50x50	31368-7 31368-8		Spike • 1 of 39 Sample					
	x50x50s	31368-8		Spike - 1 of 41					
452	ルンジルング	31368-6 B	ŧ	Sample					
427	x50x100		•	Sample					
	x50x100			Sample					
940	ABUX SUUS	21330-0		omithe					

Page 1

elementOne

31368 MAQS M5 29 Report Packet Page 42 of 64

6/81/18

Sample/Batch Report

User Name: r2d2

Computer Name: PESERVICE-PC

Sample File: C:\Usera\Public\Documents\PerkinElmer Syngistix\iCPMS\Sample\c9.sam

Report Date/Time: Thursday, June 21, 2018 15:02:45

A/S Loc.	Batch ID	Sample ID	Description	Sample Type	Init. Quant.	Prep. Vol.	Aliquet VcI.	Diluted Vol.	Solids Ratio
1		QC Std 1		Sample					
3		QC Std 4		Spike - 3 of 1					
201		31369-5 FH		Sample					
202		31369-6 FH		Sample					
203		31359-5 BH		Sample					
204		31369-6 FH		Sample					

Page 1

elementOne

31368 MAQS M5 29 Report Packet Page 43 of 64

Dataset Report

User Name: r2d2

Computer Name: PESERVICE-PC

Dataset File Path: C:\Users\Public\Documents\PerkinElmer Syngistix\ICPMS\DataSet\062118-1a\
Report Date/Time: Thursday, June 21, 2018 14:22:11

The Dataset

			ine Datas	et		
Time	Sample ID	Batch IO	Read Type	Description	Init Quant Prep. Vol.Aliquot Vo	l. Diluted Vol.
11:05:25 Thu 21-Jun-16	Blank		Blank	·		
11:07:22 Thu 21-Jun-18	Standard 1		Standard #1			
11:09:20 Thu 21-Jun-18	Standard 2		Standard #2			
11:11:17 โลย 21-มีมา-18	Standard 3		Standard #3			
11:13:15 Thu 21-Jun-18	QC Std 1		QC Std #1			
11:15:12 Thu 21-Jun-18	QC Std 2		QC Std #2			
11:17:09 Thu 21-Jun-18	QC Std 3		QC Std #3			
11:19:07 Thu 21-Jun-18	QC Std 4		QC Std #4			
11;21;04 Thu 21-Jun-18	QC Std 5		QC Sld #5			
11:23:01 Thu 21-Jun-18	QC Std 6		QC Std #8			
11:24:58 Thu 21-Jun-18	QC Std 7		QC Std #7			
11:26:55 Thu 21-Jun-18	QC Std 8		QC Std #8			
11:28:53 Thu 21-Jun-18	QC Std 2		Sample			
11:30:30 Thu 21-Jun-18	QC Std 1		Sample			
11:33:00 Thu 21-Jun-18	Blank		Blank			
11:34:57 Thu 21-Jun-18	Standard 1		Standard #1			
11:36:55 Thu 21-Jun-18	Standard 2		Standard #2			
11:38:52 Thu 21-Jun-18	Standard 3		Slandard #3			
11:40:50 Thu 21-Jun-18	QC Std 1		QC Skt#1			
11:42:48 Thu 21-Jun-18	QC Std 2		QC Std #2			
11:44:45 Thu 21-Jun-18	QC Std 3		QC Std #3			
11:46:43 Thu 21-Jun-18	QC Std 4		QC Std #4			
11:48:41 Thu 21-Jun-18	QC Std 5		QC Std #5			
11:50:38 The 21-Jan-18	QC Std 6		QC Std #6			
11:52:36 Tha 21-Jun-18	QC Std 7		QC Std #7			
11:54:33 Thu 21 Jun-18	QC Std 8		QC Std #8		- Duridallia	
11:56:31 Thu 21-Jun-18	QC Std 2		Sample	LINETEN	ank. Durld2V18	
11:58:08 Thu 21-Jun-18	QC Std 1		Sample - U.C	21-10		
12:00:05 Thu 21-Jun-18	LRBFH		Sample			
12:02:04 Thu 21-Jun-18	LRBFH	s	Spike - 1 of 29			
12:04:02 The 21-Jan-18	LRBBH		Sample			
12:05:59 Thu 21-Jun-18	LRB BH	5	Spike • 1 of 31			
12:07:58 Thu 21-Jun-18	31368-1 FH	x50	Sample			
12:09:55 Thu 21-Jun-18	31368-2 FH	x50	Sample			
12.11:53 Thu 21-Jun-18	31368-2 FH	x50d	Dup@cate of 34			
12:13:50 Thu 21-Jun-18	31368-3 FH	×50	Sample			
12:15:48 The 21-Jun-18	31368-3 FH	x50s	Spike - 1 of 36			
12:17:47 Thu 21-Jun-18	QC Std 1		QC Std #1			
12:19:44 Thu 21-Jun-18	QC Std 4		QC Std #4			
12:21:43 Thu 21-Jun-18	31368-4 FH	x50	Sample			
12:23:40 Thu 21-Jun-18	31368-2 BH	x10	Sample			
12:25:38 Thu 21-Jun-18	31368-2 BH	x10d	Duplicate of 41			
12:27:35 Thu 21-Jun-18	31368-3 BH	x5	Sample			
12:29:33 The 21-Jun-18	31368-3 BH	x5s	Spike - 1 of 43			
12:31:31 The 21-Jun-18	31368-7	xl0	Sample			
12:33:28 Thu 21-Jun-18	31368-7	X los	Spike - 1 of 45			
12:35:26 Thu 21-Jun-18	31368-7	x 50	Sample			
12:37:23 Thu 21-Jun-18	31368-7	x50s	Spike - 1 of 47			
12:39:20 Thu 21-Jun-18	31368-8	x50xsQ	Sample			
		AND AND SHAREST PROPERTY.				

Page 1

element**O**ne

31368 MAQS M5 29 Report Packet Page 44 of 64

ADVAGABITMENTS Line 10	31368-8	<u>7501</u>	5774	Spike - 1 of 49
12:41:18 Tru 21-Jun-19 12:43:17 Tru 21-Jun-18	GC Std 1	~~-		OC Sid #1
12:45:14 Tou 21-Jun-18	QC Std 4			QC Std #4
		ı		Sample
12:47:13 Thu 21-Jun-16	31358-1 FF			
12:49:10 Thu 21-Jun-18	31368-2 FF			Sample Suellanta de Ca
12:51:07 Thu 21-Jun-18	31369-2 FF			Duplicate of 54
12:53:05 Thu 21-Jun-18	31355-3 FI			Sample
12:55:02 Thu 21-Jun-16	31358-3 FI			Spēke - 1 of 56
12:57:00 Thu 21-Jun-18	31369-4 FI			Sample
12:58:58 Thu 21-Jun-18	31359-1 Bh			Sample
13:00:55 Thu 21-Jun-16	51358-2 Bh			Sample
13:02:53 Thu 21-Jun 16	31368-2 B			Duplicate of 60
13:04:51 Tnu 21-Jyn-16	31368-3 Bi			Sample
13:05:49 Tou 21-Jun-16	31368-3 BI	i :		50lke - 1 of 62
13:08:47 Thu 21-Jun-16	OC Std 1			QC 5id #1
13:10:45 Thu 21-Jun-16	DC Sld 4	_		QC 5td #4
13-13:22 Thu 21-Jun-1B	31368-1 BI			Sample
13,15:20 Tru 21-Jun 18	31368-4 Bi			Sample
13 17:18 Tau 21-Jun-18	31368-2 B	-	x5	Sample
13,19(16Thu 21-Jun-18	31368-5 B)	†	x\$d	Duplicate of 68
13:21:15Thu 21-Jun-18	QC Std 1			QC Sid#1
13:23:12 Thu 21-Jun-18	QC Std 2			QC Std #2
13.25:10 Titul 21-Jun-18	QC Std 4			QC 5td #4
13:27:10 Thu 21-3un-18	OC SId 4			Sample
13:29:17 Thu 21-Jun-16	Blank			Blank
13:31:05 Thu 21-Jun-18	Standard t			Standard #1
13:32:59 Thu 21-Jun-18	Standard 2			Standard #2
13:34:50 Thu 21-Jun-18	Standard 3	i		Standard #3
13:36:42 Thu 21-Jun-18	QC S(d 1			OC Std #1
13:38:34 Thu 21-Jun-18	QC Std 2			OC SIG #3
13:40:25 Thu 21-Jun-18	QC Std 3			QC Std #3
13.42:17 Thu 21-Jun-18	QC Std 4			QC 5td #4
13 44:05 Thu 21-Jun-18	QC Std 5			QC St3 #5
13 45:59 Thu 21 Jun-18	QC Sld B			QC SM#6
13:47:50 Thu 21-Jun-18	QC SH 7			QC Std#7
13:49:43 Thu 21-Jun-18	31368-7		x10	Sample
19.51:34 Thu 21-Jun-18	31368-7		x10s	Spike - 1 of 85
13:53:27 Tru 21-Jun-18	31356-8		x50x50	Sample:
13:55:15 Thu 21-Jun-18	31368-8		x50x5Ös	Spike - 1 of 87
13 57:11 Thu 21-Jun-18	31366-6 B	н		Sample
19:59:45 Tru 21-Jun-18	31368-8		x50x100	Sample
14:01:37 Thu 21-Jun-18	31368-8		x50x100s	
14.13:08 Tru 21-3/n-18	31369-8		x50x100	Sample
14.15:00 Thu 21-Jun-18	31358-8		x50x100s	Spike - 1 of 92
14-16:53 Thu 21-Jun-18	QC Std 1			QC S世#i
14:18:44 Thu 21-Jun-18	QC Std 2			QC Sp #2
14:20:35 Thu 21-Jun-18	QC Std 4			QC Sid #4
14:43:20 Thu 21-Jun-18	QC Std (Sample
14 44:45 Thu 21-Jun-18	QC Std 4			Spike - 3 of 97
14:46:31 Tru 21-Jun-18	31369-5 F			Semple
14.48.17 Thu 21-Jun-18	31369-6 F			Sample
14 50:02 Thu 21-Jun-10	31369-5 B			Sample
14.51:45 Thu 21-Jun-18	31359-6 F	t-i		Sample
14:53:55 Thu 21-Jun-18	QC Std 1			QC Std #1
14,55;20 Thu 21-Jun-18	QC Std 2			ØC 8/4 #\$
14:57:05 Thu 21-Jun-18	QC Std 4			QC 5td #4

Page 2

element**O**ne

31368 MAQS M5 29 Report Packet Page 45 of 64

Method 6020 & 200.8 Metals Summary Report

Sample ID: Standard 3

Sample Description:
Sample Description:
Number of Replicates: 3
Batch ID:

Dataset File: C:\Users\Public\Documents\PerkinElmerSyngletix\iCPMS\DataSet\062118-1a\Standard 3,018

Dataset Piles (citasens running)
Sample Prep Volume (mL):
Initial Sample Quantily (mg):
Aliquot Volume (mL):
Diluted To Volume (mL):
Autosampler Position: 4

Calibration

Analyte	Curve Type	Slope	Correlation Coefficient	Intercept
Łi	Linear Thru Zero			
₿e	Linear Thru Zero	D,004	1,000000	0,00
P	Linear Thru Zero	0,003	0.999962	0.00
Sc	Linear Thru Zero			
Za	Linear Thru Zero	0.004	0.699999	0.00
Zn	Linear Thru Zero	0.001	0,292999	0.00
Zn	Linear Thru Zero	0,003	0.599999	0,00
A۹	Linear Thru Zero	0.004	1.000000	0,00
Se	Linear Thru Zero	0.000	0.599930	0.00
Se	Linear Thru Zero	0.000	666669.0	0.00
Rh	Linear Thru Zeco			
Ho	Linear Thru Zero			
Ki-	Linear Thru Zero			

Method 6020 & 200.8 Metals Summary Report

Sample ID: Standard 3

Sample DateITime: Thursday, June 21, 2018 13:34:50 Sample Description:

Number of Replicates: 3

Batch ID:

Dataset File: C:\Users\Public\Documents\PerkinElmer Syegistix\CPMS\DataSet\052118-1a\Standard 3.077

Dataset File: (5:UsastaPublicus Sample Prep Volume (mL): Initial Sample Quantity (mg): Aliquot Yolume (mL): Diluted To Volume (mL): Autosampler Position: 4

Calibration

Analyte	Сигие Туре	Slope	Correlation Coefficient	Intercept
L)	Linear Thru Zero			
Ş¢	Linear Thru Zero			
Rñ	Linear Thru Zero			
Αg	Linear Thru Zero	0,022	D,999965	0.00
Ag	Linear Thru Zero			
Cd	Linear Thru Zero	0.013	0,99981	0,00
Cd	Linear Thru Zéro	0,041	180000,C	0.00
Ho	Linear Thru Zero			
Кr	Linear Thru Zero			

elementOne Analyst:-DMR-

ICP-MS RUN SHEET 6/21/2018

Job Number: 14

A/S Loc.	Dilution	Sample ID	Client	Туре	Weight (g)	Prep Vol (ml)
5		QC Std 2		Sample		7700/200
401		LRBFH		Sample		100
402	5	LRB FH		Spike - 1 of 3		100
411		LRB BH		Sample		50x2
412	s i	LRB BH		Spike - 1 of 5		50x2
436	x50	31368-1 FH	WWW.2001.100	Sample		100
437	x50	31368-2 FH		Sample		100
438	x50d	31368-2 FH		Duplicate of 8		100
439	x50	31368-3 FH		Sample		100
440	x50s	31368-3 FH		Spike - 1 of 10		100
441	x50	31368-4 FH		Sample	- 1/3.22 (11.35 to . 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	100
442	סוג	31368-2 BH		Sample		50x2
443	x10d	31368-2 BH	***************************************	Duplicate of 13	- Literate And recordal of Art 1 - (Article) Article	50x2
444	x5	31388-3 BH	***************************************	Sample	. 2040	50x2
445	x5s	31368-3 BH	~	Spike - 1 of 15		50x2
421	x10	31368-7	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Sample	······································	50
422	x10s	31368-7		Spike - 1 of 17		50
423	x50	31358-7		Sample		50
424	x50s	31368-7		Spike - 1 of 19		50
425	x50x50	31368-8		Sample		5/1000/1000
428	x50x50s	31365-8		Spike - 1 of 21		5/1000/1000
AD3	1	31368-1 FH		Sample	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	100
404		31368-2 FH	contribute Contribute	Sample		100
405	d	31368-2 FH	man control of a delication of the second	Duplicate of 24		100
406		31368-3 FH		Sample		100
407	5	31368-3 FH		Spike - 1 of 26		100
408	 	31368-4 FH		Sample		100
413	1	31368-1 BH		Sample		50x2
414	•	31368-2 BH		Sample		50x2
415	d	31368-2 BH		Duplicate of 30		50x2
416	1 1	31368-3 BH		Sample		50x2
417	s	31368-3 BH	xxxxxxxxxxx.	Spike - 1 of 32		50x2
418	1 3 1	31368-4 BH		Sample	<u> </u>	50x2
449	x5	31368-1 BH		Samole		50x2
418	 	31368-4 BH		Sample		50x2
450	х5	31368-2 BH		Sample		50x2
451	x5d	31368-2 BH	· · · · · · · · · · · · · · · · · · ·	Duplicate of 37		50x2
452	<u> </u>	31368-6 BH		Sample		50x2
427	x50x100	31368-8		Sample	 	5/1000/1000
428	x50x100s	31368-8		Spike - 1 of 44		5/1000/1000
-120	XJUX1003	31000-6		Opine - 1 01 44		37100371003
Spil	cs are post	at 0.02mL of 25ppr	n spiking solution:	s lot 021418-ABC&	F in a final volun	te of 10mL
	for QC by:	Date/		QC Review By:		/Time:
DI	AR .	6/21/18	113:59	1/1/2	42118	01500
Re-Test	Required:	No:	Y 0 %:	Comments:	1 11 5	
	ted for QC y;	Date/	Time:	QC Review:	Ву:	Date/Time:

S:\lobs\! Jobs - Active\31368 MAQS Alrisch General fron M29-5 4R, FB, RB, Audits---RUSH\062118-1a ICP-MS Run Sheet

elementOne

31368 MAQS M5 29 Report Packet Page 48 of 64 elementOne Analyst:-DMR-

ICP-MS RUN SHEET 6/21/2018

Job Number: 14

A/S Loc.	Dilution	Sample ID	Client	Туре	Weight (g)	Prep Vol (ml)
201	i	31369-5 FH		Sample		100
202		31369-6 FH	, , , , , , , , , , , , , , , , , , ,	Sample		100
202 203		31369-5 BH		Sample		50x2
204		31369-5 BH 31369-6 FH		Sample Sample		50x2
			the state of the s			
	ļ			La- \$1		
	I					
	 			<u> </u>		
	 			<u> </u>		
	 	<u></u>		1.000 1.000		1
	 	-	· 			
·/				***************************************		<u> </u>
		· · · · · · · · · · · · · · · · · · ·		- pcG-4 1200-2000 pc		
	I					
	l	•				
	1		***************************************			
				1		
						
	1					
]					
	<u> </u>					
		4			<u> </u>	
	<u> </u>				18 mb, co 6 max	_
	-					-
	<u> </u>					
	 					-
	.					
	.					_
					l	1
	 		- 3-9		 	
	-		The same of the sa	······ ·	<u> </u>	1
	 					<u> </u>
	1				1	
			······································			
Submitted	for QC by:	DateΓ	lime:	QC Review By:	Date	e/Time: /
	MR	6/21/18		Y(5)		C1500
	1		Yes:	Comments:	1 2/0,1/10	71700
169-1621	Required:	No:	1621	comments:		
Poculani	ited for QC	Date/	Time:	QC Review:	By:	Date/Time:
	y:	Deter	111181	## 1/04161U	l ~,.	
	'y'			<u> </u>		

\$:\Forms\Blank Forms\F208 R2 ICP-MS Run Sheet

elementOne

31368 MAQS M5 29 Report Packet Page 493 of 64

ICP-MS QC Values Table

Element or Test	(CP Sement Mass	Буппьск	Lowest Reported Value (ug)	Upper Reported Value (Ug)	Report Ing Unit	QC#t	QC #2	QC#3	QC ಕ್ಷಕ್ಕ	QC#S	QC#6 A	00#7 A5	QC#3 _25	QC#9 LRB	QC =10 LRS+	QC#11 LR8÷
Lithium Lithium	n 5 7	n n	1	503	man.	Ð	1	250	120	50				Ð	50	103
Beryttum	ģ	Be	1	500	mgi.	Õ	1	250	100	50 50			0.25	0	50 50	103
Eor	_	E	ŝ	500	und 7	ŏ	1	250	100	50			5.43	Ď	50	103
Boron	11	8	5	500	mail	Ď	ž	250	100	50				5	50	100
Sodium	23	Nз	20	5500	mgs_	0	21	2500	1103	250	5000	5000		ō	715	
Magnestum	24	Mg	20	5500	mq4	Q.	21	2500	1100	250	5800	5000		O·	550	
Magnesh		ьg	20	5500	uð.	D	21	2500	1100	250				Ð	550	
Auraira	27	Ϋ́J	1	503	mgs_	O	1	250	120	50	5000	5000		Đ	50	100
Phosphorus Potassium	31 39	P K	20 20	5000 5500	mar.	Ð	20 20	2500 2000	1993 1993	250 200	5000 5000	5000 5000		5 5	200 500	
Calcium	44	Ca	50	5500	mgs.	ā	25	2500	1100	250	5000	5000		ă	550	
Scandru		- Ou	-	0,00	****	•	~ 1	2000	1100	200	0000	5000			200	
Titanium	47	TI	1	500	mg1	ū	1	250	100	50	100	100	0.25	D	50	100
Titanium	49	n	1	500	mg1	6	1	250	100	50	150	100	0.25	D	53	100
Vanadum	51	ν	1	503	mgs.	ū	1	250	100	50	Ð	2	0.25	€	50	103
Vanadum	51	V	1.	501	ud _s	٥	1	250	100	58	Đ	2	0.25	ø	50	103
Chronium	52	CT CT	1	500	mgʻi	Q	1	250	100	50	O	1	0.25	0	50	100
Chromit Iron	n 53 54	ਪ F≥	1 20	500 5500	mg/L	0	1 21	250	100	50	5000	_	0,25	0	50	100
Manganese	55 55	Mn	20 1	500 500	mg₁r mg₁r	0	1	2500 250	1100 100	250 50	0	0 1	0.25	0	50	100
itou Mag idag idag	57	re Fe	20	5500	mg#.	ä	21	2500	1100	250	5000	ė	U.Z3	ů	20	11.0
Cobat	59	Co	1	500	WG.	ō	7	250	100	50	a	ž	0.25	Õ	50	100
Nickei	€Đ	M	1	503	mor.	ā	i	250	100	50	ā	2	0.25	ŏ	50	100
Copper	€3	Cu	1	503	กเฐิน	Ö	1	250	100	50	ō	1	0.25	á	50	100
Copper	£5	Cu	1	503	mg?.	ũ	1	250	100	50	Œ	1	0.25	a	50	100
Znc _	56	Zn	į	503	mgr.	0	1	250	100	50	0	1	0.25	Ō	50	100
_	nc 57	Ξn	1	500	mga_	ō	1	250	100	50			0.25	0	50	150
_	ne 68	Zη	1	500	mg".	٥	1	250	100	50			0.25	Ö	50	100
Germanium Arsenio	72 75	Ge As	1	500 500	mg% mg%	0	1	250 250	100 100	50 53	ā	1	0.25	O O	50 50	150 150
Seeni		Se	i	500	ude	ā	i	250	100	50	u	•	0.25	ō	50 50	100
Selenium	82	Se	i	503	mqi	ŏ	i	250	100	53	a	1	0.25	ō	50	100
Stronourn	58	S r	i	500	mgr	ō	i	250	100	53	-	•		ē	50	100
Motyodesum	55	140	1	500	mos	Đ.	1	250	100	53	100	100	0.25	6	50	100
Molybdenum	57	Mo	1	503	mg/L	ū	1	250	100	50	100	100	0.25	0	50	100
Molytoesium Rhodei	sa 58 San 103	Mo	1	503	ui₫g.	ច	1	250	100	50	100	100	D.25	0	50	100
Silver	107	Ag	1	503	mgs.	G	1	250	100	50	α	1		a	50	100
Str		Āģ	i	500	mo-	Ğ	i	250	100	50	•	•		ă	50	100
Cadmium	111	Cd	1	500	mgs	ā	1	250	100	50	0	0.5	0.25	õ	50	100
Cacmi		Co	1	500	mgq.	Ð	1	250	150	50			0.25	D.	50	103
T81	118	50	1	500	mg2	9	1	250	150	50				D.	53	103
Antimony Antimo	ny 121 123	<i>80</i> Sp	1	500 500	mga_	0	1	250 250	100 100	50 50			0.25 0.25	a 8	50 50	150 150
Telutum	125	Te	i	500	mq1	ă	i	250	100	53			V.23	6	50 50	100
Cest			•			_	•							•		
Earl		Ba	1	503	mo^{α}	a	1	250	100	50				0	50	100
Barium	137	Ba	1	503	mg <u>*</u> L	0	1	250	199	50				٥	50	100
Lanthanum Tantakum	139 159	La Ta	1	503 503	mgr mgr	0	1	250 250	100 100	50 50				0	50 50	100 100
Piatinum	195	Pt	i	500	mg/L	ă	i	250	100	50 50				ä	50 50	100
Gold	151	Âu	i	503	mg ^r	ŏ	i	250	100	53				ŏ	50	100
Thalium	205	Ti	1	500	ភាភិភ	ā	i	250	100	50				ā	50	100
Lead	206	25	1	503	uið.	Ó	1	250	100	50			0.25	O	50	100
Bismish This com	209 232	El	1	500 500	u.g.r	0	1	250	100	50				0	50	100
Thorson Uranium	232	Ta U	1	500 500	ma£ mā⊈	ū	1	250 250	100 100	50 50				C D	50 50	100 100
Кгура		u	ı	لبعاد	11st	u	1	230	100	au				U	20	iLU

elementOne 31368 MAQS M5 29 Report Packet Page 50 of 64

MERCURY BATCH DIGESTION - RUN WORKSHEET

Dinal		Or 18/18	Prep By:	mme/TAI		SIF File #:	
	1 Temperature:	98.87	Start Time:	8:52 AM	· N	lachine ID:	
	2 Temperature:	94.75	Stop Time:	9:52 A.M		ch Analyst:	
Block #	3 Temperature:		Typed By:	TAD	\	erified By:	MME
		0.4ug/ml			erro a		
A/S	Curve & QC's	working std		BV, ml	FV, ml	Standa	rd Lot Numbers
	Lab BLK					Standard :	#1 (for working std)
1	(3/ batch)	0		40	40	Lot #: 47	
2	0.004 ug	0.01ml		40	40	Working S	
3	0.04 ug	0.10ml		40	40	Lot #:462-	-012-1 by: Mmp
4	0.08 ug	0.20ml		40	40	Standard :	#2 (QC #2):
5	0.16 ug	0.40ml	-	40	40	Lot #: 4013	-012-2
6	0.20ug	0.50ml		40	40		#3 (QC #3):
	0,200					Lot #: 123	
7	QC #2= 0.08ug	0.2ml #2 std		40	40		
8	QC #3= 0.08ug	0.2ml #3 std		40	40	Curve pre	pared by: MMP
						Littlescontrol and the little	(A)
In	Itial Review By: 1/4	mP.	A	D	ate: 4/19	18'	Time: 17-3
Final	QC Review By: 1/	441		Da	ate: NL 18	18	Time: 5394
commen	ts: 31368-10	@0.05	3135	0-13@	0.025	31351	2-11/20/10.5
			Annual Contraction of the last		and the same of th	- Committee of the Comm	
AIS	LAR#	Method	Wt (g)/ FV	Prep Aliquot	Aliquot or	FV, mL or "1"	Comments
A/S	LAB#	Method	Wt (g)/ FV (mL)	Prep Aliquot Used, ml.	Calc Mass	for conc.	Comments
9	30811-31QC	1470A					TV=9.88
9 10	30811-31QC	17470A			Calc Mass 0 · Ø5	for conc.	Comments
9 10 11	30811-31QC -1L 31348-10	1470A			Calc Mass	for conc.	TV=9.88
9 10 11 12	30811-31QC -1C 31348-10	17470A			0.05 1 0.05 0.05	for conc.	TV=9.88
9 10 11	30811-31QC -1C 31348-10	17470A			0.05 1 0.05	for conc.	TV=9.88
9 10 11 12 13	30811-31QC -1C 31348-10 -10	77470A			0.05 1 0.05 0.05	for conc.	TV=9.88
9 10 11 12 13	30811-31QC -1C 31368-10 -10 -10 31368-1814	77470A			0.05 1 0.05 0.1 0.2	for conc. 5 1 5 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	TV=9.88
9 10 11 12 13 14	30811-31QC -1C 313U8-10 -10 -10 313U8-18H	/7470A			0.05 1 0.05 0.1 0.2	5 1 5 05 310	TV=9.88
9 10 11 12 13 14 15	30811-31QC -1C 313U8-10 -10 -10 313U8-1814 -2814 -2816	71470A			0.05 1 0.05 0.1 0.2	5 1 5 05 310 &	TV=9.88
9 10 11 12 13 14 15 16	30811-31QC -1C 313U8 - 1O -10 -10 313U8-18H -28H -38H	77470A 7m19			0.05 1 0.05 0.1 0.2	5 1 5 05 310 & 375	TV=9.88
9 10 11 12 13 14 15 16 17	30811-31QC -1C 31368-10 -10 -10 31368-18H -28H -38H -38H	/7470A /m19			0.05 1 0.05 0.1 0.2	5 1 5 05 310 2 325 2	TV=9.88
9 10 11 12 13 14 15 16	30811-31QC -1C 31368-10 -10 -10 31368-18H -28H -38H -38H -38H	/1410A /m19	(mL)	Used, mL	0.05 1 0.05 0.1 0.2 4	5 1 5 05 310 & 375 & 4 350	Comments TV=9.88' TV=0.008
9 10 11 12 13 14 15 16 17 18	30811-31QC -1C 313U8 - 1O -10 -10 313U8-18H -28H -38H -38H -48H NOTES: LE	m19	spikes must	Used, mL	0.05 1 0.05 0.1 0.2 4	5 1 5 05 310 & 375 & 4 350 batch dige	Comments TV=9.88' TV=0.008
9 10 11 12 13 14 15 16 17 18 19 "+" Den	30811-31 QC- -10 -10 -10 -10 -10 -10 -10 -1	ab blanks and se calibration working the added in or	spikes must	be prepared dard at the rate ollowing rate	Catc Mass 0.05 1 0.05 0.1 0.02 4 with each	for conc. 5 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Comments TV=9.88" TV=0.009 estion unless otherwise noted,
9 10 11 12 13 14 15 16 17 18 19 "+" Den Digestic	30811-31 QC -10 -10 -10 -10 -10 -10 -10 -10	ab blanks and a calibration working the added in on the call of th	spikes must g 0.4ug/ml stand rder at the fi 1.0ml 3 Lot #_[] T	be prepared dard at the rate of lowing rate Persulfate (Calc Mass 0.05 1 0.05 0.1 0.05 0.1 0.02 4 with each of 0.20ml per te per 40n	for conc. 5 1 5 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Comments TV=9.88' TV=0.008 Section unless otherwise noted, Co4 @ 6.0ml
9 10 11 12 13 14 15 16 17 18 19 "+" Den Digestic	30811-31 QC -10 -10 -10 -10 -10 -10 -10 -10	ab blanks and a calibration working the added in on the call of th	spikes must g 0.4ug/ml stand rder at the fi 1.0ml 3 Lot #_[] T	be prepared dard at the rate of lowing rate Persulfate (Calc Mass 0.05 1 0.05 0.1 0.05 0.1 0.02 4 with each of 0.20ml per te per 40n	for conc. 5 1 5 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Comments TV=9.88' TV=0.008 estion unless otherwise noted. C4 @ 6.0ml

Element One, Inc F209 R9

Page 1 of 63

MERCURY BATCH DIGESTION - RUN WORKSHEET

SIF File #: 04 1818-1

A/S	LAB#	Method	Wt (g)/ FV (mL)	Prep Aliquot Used, ml.	Aliquot or Calc Mass	FV, mL or "1" for conc.	Comments
20	31368-534.				4	230	
21	-484	1			1	205	
22	-18					200	
23	-2A			·			
24	-2AD	4			4		
25	-319						
26	-3A+		4				NAME OF THE PARTY
27	-4A						
28	-5A					1	
29	-10A	1				U	
30	139-18 X	/				500	
31	-2c					400	
32		1 1			V	1	
33	31350-12		1	2	0.05	5	100000000000000000000000000000000000000
34	-12				0.1		
35	1 (0.2	0	
36	31350-LEBPH				4	100	
37	-ULBPH	+ /			1.6		
38	F 1 41				LF		
39	001-11	1			1	1	
40			1			A	3 - 54-51 - 5 - 5
41	U112	.6.				124	
42	11 11		Eq. and	9 1		4	
43		1 0 0	7/2				e 3
44	7271			1 1			
45	53111		***************************************				
46	ATIL	12					
47	VIII.		1 /				c
48	1113			12.5			
49	03.17	17 0 1			W	3/1	(a)
50	* * * *			Tarpasa area	T		
51	1.5				2		
52		1 1 2 1 2	4-11-11	The same	4	V	·
53	· 工工 M. 2.1 A.M.	1 1 1			1	100	
54	-llang		Ti-		12	W.	

Element One, Inc F209 R9

Page 2 of 5 3

MERCURY BATCH DIGESTION - RUN WORKSHEET

SIF File #: 04 (8) 8-1

A/S	LAB#	/ Method	VVt (g)/ FV (mL)	Prep Aliquot Used, mL	Aliquot or Calc Mass	FV, mL or "1" for conc.	Comments
55	31350-11amp	HM101			14	100	
56	31351-1 \$4	1			0.1	7	
57	-2 PH				1		
58	-2日1						
59	-3 PH						
60	-3-111+					4	
61	-YFH						
62	-9 PH						***************************************
63	-10Pt						
64	-10問	0 .					
65	-11PH						
66	-1194-	- 4					
67	-1274						
68	-1784		72-22-2				
69	-1 8PH						1
70	-1884	b			14		
71	-1994						
72	-19-74	+					
73	-20FH	d			4	V	
74							
75	£			ļ			
.76					12.		
77						1	
78							
79					1		
80			do mesto:				
81							
82		1		-			
83					- X-1		
84					7-1 F 11-1		97.00
85	The state of the s						
86							
87	1		No. of The	12000 1			
88	the second secon				1		-
89			1101		1		

Element One, Inc F209 R9

Page 3 of \$\frac{1}{3}

		MERCURY BA	ATCH DIGE	STION - RU	N WORKS	SHEET	WW.
Data Da	pared/Digested:	01.119119	D D	namn O		OIT TO AL	06/1918-1
Date Pre	#1 Temperature:	Ulellatio	Prep By: Start Time:			Machine ID:	001191
	#2 Temperature:	92.19	Stop Time:			ch Analyst:	
	#3 Temperature:	495	Typed By:	8,000		Verified By:	
DIOCK	ro remperature.	0.4ug/ml	Typed by.	ta/lan	T	vernied by.	DU
A/S	Curve & QC's	working std		BV, ml	FV, ml	Standa	rd Lot Numbers
700	Carre a acc	Working Std		Detim	1.4, 1111	Otanua	IG LOCIVATIDEIS
	Lab BLK					Standard t	#1 (for working std)
1	(3/ batch)	0		40	40		105145
2	0.004 ug	0.01ml		40	40	Working S	tandard
3	0.04 ug	0.10ml		40	40		-OL2-1 by:nymf
4	0.08 ug	0.20ml		40	40		#2 (QC #2):
5	0.16 ug	0.40ml		40	40	Lot #: 423	
6	0.20ug	0.50ml		40	40		#3 (QC #3);
	0,2009	0.00111		-10			3-012-3
7	QC #2= 0.08ug	0.2ml #2 std		40	40	COL III. TIES	7012
8		0.2ml #3 std		40	40	Curve pres	pared by: DVH
		0.2.110 110 010				Curve pre	Jaica by. Dipy
In	itial Review By: M	me		D:	ate: 6 19	118	Time: 2:55
	QC Review By:				ate: 66.1		Time: 3!57
	ts: 31344- BIV		31364-2	60 5410	3 3 3 (8-18 als	36@0.4
	man Colombia State Chillie		and the last of the same of th	A. C.	3/3/01	C-UKOIO	1 31318-28POJE
A/S	LAB#	Method	Wt (g)/ FV (mL)	Prep Aliquot Used, mL			-
	30811-31000				0.05	5	TV=9.88
10	YL V	. 4			1		TV=0.008
1/4.20	31368-10	CONTRACTOR OF THE PARTY OF THE			0.05	5	14-0-009
12	Control of the Contro	17121			0.00	2	
	100						
13					1	V	
14	31348-18 1				4	500	
15	-28	1-11	1 7	199	1	GOIN C	
16	-28D	1-34			1019	1570	
17	-38	1					
18	-38+			-	-300	1 21 0 5	
19	331				1	1	
15		O.			W .	en	
W. W. Ch.	NOTES: La	b blanks and s	pikes must l	be prepared	with each	batch dige	stion
i	otes spike for Hg, Us	And make a company of the same					
Digestio	n chemicals to b	e added in on	der at the fo	llowing rat	e per 40m	l volumes.	
	12SO4@2.0ml				The state of the s	and the second second	
and the second second second	Lot# 17743						And the second of the second o
112304	1 7 57	TI ANO	Lot # 1117	100	HGI	LOT#: 41	7040
Persulfat	e Lot # 149-06	KM KM	nO 4 Lot # 1	0-00x-8		Hydrox Lott	#: Ha 3-009-Z
		amples after di					

Element One, Inc F209 R9

Page 1 of 3

MERCURY BATCH DIGESTION - RUN WORKSHEET

SIF File#: 041918-1

A/S	LAB#	, Method	Wt (g)/ FV (mL)	Prep Aliquot Used, mL	Aliquot or Calc Mass	FV, mL or "1" for conc.	Comments
20	31368-5B	/m29			4	500	
21	-UB				4	1	
22	31350-12				0.025	5	
23	-170	. (0			1	1	
24	-12+				0	4	
25	31350-11 0				0.5	100	
26	-IID	4/			1	1	
27	-11+	,			V	V	
28	-18				4	500	
29	-28				1	1	
30	-2BD						
31	-313	1				7	
32	-384	45			1 1	1	
33	-46				- II	14	1
34	-58				1 1		
35	-5BD	l all				1 1 2	
36	-leis				1		
37	-US+						
38	-78						
39	-813				Y	1	
40	-10				14	400	
41	-20	4 3					
42	-200		1.0	1	3 1 1	1112 -1	35 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
43	-3C						
44	-3c+	2		1 225	- 45	1 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
45	-4c				79!	The second	V
46	-5L	1	-		112		
47	-5CD	7_ 3					
48	-40				will a	100	
49	-60		7				-7
50	-7C	1 4 4 - 11				1 7	
51	-8c	V			V	V	7
52	31341 370-42	8 tot 7470A	I digital to the		24	114	
53	- Wesht				0.2	ALL	TV=0.100
54	31364-144	10	0.5053/50	4	0.0404	N	

Element One, Inc F209 R9

Page 2 of \$ 3

MERCURY BATCH DIGESTION - RUN WORKSHEET

SIF File #: 061918-)

A/S	LAB#	Method	W1 (g)/FV (mL) 0.5053/50	Prep Aliquot Used, mL	Calc Mass	FV, mL or "1" for conc.	Comments
55	31364-1 D+1	V,747019	0.5053/50	4	10.0404	1	
56	31364-1 DH 31370-16+		0.505/50	١	8.0404		
57	-1404-	t d	d d	d'	4	d	
58	31360-1	77470時		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0.4		
59	-g `	ŀ					
60	-20						
61	-3						
62	-34						
63							
64	-5	W			₩/	,\/	
65	31364-59.P-811	, 7470A			30		
66	E EILE T	<u> </u>		-		1	
67	31364-1			ļ			
68							
69	319,4-616	<u> </u>					
70	-644			<u> </u>			
71	31364-12-						
/2	-24	<u> </u>			<u> </u>	l or	
73	j			ļ			
74	1	ļ	ļ				
75		ļ		<u> </u>			
76	<u> </u>		<u> </u>				
77	ł		ļ	<u> </u>	ļ		
78	1		ļ			ļ	
79 80		<u> </u>	1	<u> </u>	-	<u> </u>	
81			<u> </u>	ļ		<u> </u>	
82	1	1	l				
83		 	<u> </u>			-	
84				 	-	 	
85		1	 	 		-	
86			1	1		<u> </u>	
87	1		1	-	-	 	
88	<u> </u>	 			_	<u> </u>	
89		-	<u> </u>	 		1	Sancery Santrage Control of the Cont
1	1	<u> </u>				1	1

Element One, Inc F209 R9

Page 3 of \$ 3

elementOne

31368 MAQS M5 29 Report Packet Page 56 of 64

MERCURY BATCH DIGESTION - RUN WORKSHEET									
Date Prepared/Digested: O(d)9/18 Prep By:MMP SIF File #: OLd 19/18									
	#1 Temperature:	dq.149	Start Time:			Machine ID:			
	#2 Temperature:	~95	Stop Time:	8100a	Bat	ch Analyst:			
Block	#3 Temperature:	93.84	Typed By:			Verified By:			
		0.4ug/ml		T		T T	9/4/11		
A/S	Curve & QC's	working std		BV, ml	FV, ml	Standa	ard Lot Numbers		
	Lab BLK					Standard	#1 (for working std)		
1	(3/ batch)	0		40	40	Lot #: 47	INCLUS		
2	0.004 ug	0.01ml		40	40	Working S			
3	0.04 ug	0.10ml		40	40		1-012-1 by: MMP		
4	0.08 ug	0.20ml		40	40	Standard:	#2 (QC #2):		
5	0.16 ug	0.40ml		40	40	Lot#: Ha2	L010 - 2		
6	0.20ug	0.50ml		40	40	Standard :	#3 (QC #3):		
	V.2009	0.00111			70		3-012-3		
Z	QC #2= 0.08ug	0.2ml #2 std		40	40	LUCTY. FIRE	2.01%-2		
8	QC #3= 0.08ug	0.2ml #3 std		40	40	Curve pre	pared by: NIMP		
	40 110 0.000g	O.L.III PO SIG		70		Cuive pie	Daled by. / Jak		
In	itial Review By: Mr	NP		D	ate: U 10	10	Time: 1: 3)		
Final	QC Review By: V	(M		Ds	te: 1-126	118	Time 9(V)		
Commen	ts: 31368-18	-4B WERE	tuned in	Wrong-	initial !	millions	wards to be almo		
31351-	29@0.5mls	31367	- Le audi	t l	THIP	roiville.	needs to becha		
A/S	LAB#	Method	Wt (g)/ FV (mL)	Prep Aliquot Used, mL	Aliquot or Calc Mass	FV, mL or "1" for conc.			
					E SARRO IVIELSA	E HOS CENTS.	L COMMENS I		
9	THE RESIDENCE OF THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN	CONTRACTOR OF THE PERSON NAMED IN COLUMN 2	VIII-7	Dodd, me	THE RESERVE TO A PERSON NAMED IN		Comments		
9	31304-17 OC	7470A	VIIIC	Dody, mc	0.05	5	1/2		
LA STREET, SQUARE, SQU	31304-1700	7470A	VIII-F	Cook mi	0.05	5	The same of the sa		
10	31304-170C	7470A		Cook All	0.05		1/2		
10	31304-170C	7470A	, , , , , , , , , , , , , , , , , , ,	2300,711	0.05	5 1 100	1/2		
10 11 12 13	31304-170C 4/L 31348-9 -90	7470A	VIII	0000,711	0.05	5 1 100	1/2		
10 11 12 13	31304-170C 4/L 31348-9	7470A	VIII	Odd, iii.	0.05	5 1 100	1/2		
10 11 12 13 14	31304-170C 4/L 31348-9 -9n -9 31368-1C	7470A	VIII.	0000,711	0.05	5 1 100	1/2		
10 11 12 13 14 15	31304-170C 4/L 31348-9 -90 -9 31368-1C -2C -2CD	7470A		Coot, inc	0.05	5 1 100	1/2		
10 11 12 13 14 15 16	31304-170C 4/L 31348-9 -90 -9 31368-1C -2C -2CD -3C	7470A	VIII.	Coot, III.	0.05	5 1 100	1/2		
10 11 12 13 14 15 16 17	31304-170C 4/L 31348-9 -90 -9 31368-1C -2C -2CD -3CH	7470A		Cood, Inc.	0.05	5 1 100	1/2		
10 11 12 13 14 15 16 17 18 19	31304-170C 416 31348-9 -90 -9 31368-16 -20 -20 -30 -30 -40 NOTES: La	m19	oikes must t	pe prepared	0.05	5 1 100 400	TV= 0.008		
10 11 12 13 14 15 16 17 18 19	31306-170C 4/L 31368-9 -90 -90 -31368-1C -20 -30 -30 -40	m19	oikes must t	pe prepared	0.05	5 1 100 400	TV= 0.008		
10 11 12 13 14 15 16 17 18 19	31304-170C 416 31348-9 -90 -9 31368-16 -20 -20 -30 -30 -40 NOTES: La	m19 b blanks and s	pikės must l 0.4ug/ml stand	pe prepared	0.05	5 1 100 400 400 batch dige:	TV= [I.] TV= 0.008 stion nless otherwise noted.		
10 11 12 13 14 15 16 17 18 19	31304-17 0C L L 31348-9 -9 -9 31348-1C -2C -2CD -3C -3C+ -4C NOTES: La otos spike for Hg. Use n chemicals to b	b blanks and secalibration working	pikes must t	pe prepared and at the rate of	o.oS 1 2 4 with each 1020ml per4	5 1 100 400 400 batch dige: 0ml sample, u	TV= II.\ TV= 0.008		
10 11 12 13 14 15 16 17 18 19 "+" Deni	31304-1700 4 L 31308-9 -90 -90 -30 -30 -30 -30 NOTES: La otos spike for Hg. Use n chemicals to b	b blanks and secalibration working e added in ord	pikes must to 0.4 yg/mi stand der at the for 1.0 ml	De prepared and at the rate of allowing rate	0.05 1 2 4 with each 10.20ml per4 per 40mr 3.2ml	5 1 100 400 400 batch diger 0ml sample, v	Stion Intess otherwise noted.		
10 11 12 13 14 15 16 17 18 19 "+" Deni	31304-1700 4 L 31308-9 -90 -90 -30 -30 -30 -30 NOTES: La otos spike for Hg. Use n chemicals to b	b blanks and secalibration working e added in ord	pikes must to 0.4 yg/mi stand der at the for 1.0 ml	De prepared and at the rate of allowing rate	0.05 1 2 4 with each 10.20ml per4 per 40mr 3.2ml	5 1 100 400 400 batch diger 0ml sample, v	TV= [I.] TV= 0.008 stion nless otherwise noted.		

Element One, Inc F209 R9

31368 MAQS M5 29 Report Packet Page 57 of 64 Page 1 of \$3

elementOne MERCURY BATCH DIGESTION - RUN WORKSHEET

SIF File #: 062018-1

AS	LAB#	Method	Wt (g)/ FV (mL)	Prep Aliquot Used, ml.	Aliquot or Calc Mass	FV, mL or *1* for conc.	Comments
/ 20	31368-5C	m19			4	400	
2	U - 1	t			1	4	***************************************
22	A Market Company of the Company of t	1			0.4	500	
23		1 1			0.5	1	
24	-280				4		
2	-313				0.4		***************************************
26	-38+	_ 1;			¥		
27	7 -48				1	V	
28	V41-51-61-1				4	100	
29	- LIEBFIHH				1.6		
30	- (PH				4		
3	1 -2PH				1		
32	2 - 2PHD	L T					
33	3 - 3PH	I I	1		13 13		
34	4 -3PH+						
35	5 -4PH						
36						11	
/37	1 (2)11				d	V	
V 38	3 3 3 5 1 - 29	1111			1	1000	
39	-290				1	24_	
40	-29+				1		
4	3/170	2 A 202		I there are a	0.5	570	
42	2 - 17BH	111			0.5	112	
4:	3 -198H	1 9			0.5	118	
4	4 -19BH+				V	4	
4	5 3 1367 - 6				4	100	
46	- 4D				1		
4	7 -6+	Emis	sed two		0	d	
48	8 -1 RH			1.75	4	900	
4	9 -2BH				- H 185	935	
50	0 - 78HD				A grand	W	
5	1 -384					970	
5	2 -3BH+		The say I	HOLELE	THE PARTY OF	4	East - Line - Line
5	3 -48H		1-124	Joseph Film	THE REAL PROPERTY.	930	
5	4 -5BH	W.	Training to A	Tagar - c-Y	J	220	

Element One, Inc F209 R9

Page 2 of \$ 3

MERCURY BATCH DIGESTION - RUN WORKSHEET

SIF File #: 062018-1

	A/S	LAB#	Me	thod	Wt (g)/ FV (mL)	Prep Aliquot Used, mil.	Aliquot or Calc Mass	FV, mil, or "1" for conc.	Comments
Γ	√ 55	31367-7	m3	q			0.05	5	
T	56	-71	1	**************************************			0.1		
r	57	-7	9	······································			0.2	W	
T	,/58	31354-2BIK	747	oA			20	ı	
╁	59	-81V.+		<u> </u>			1	1	
F	/60	-BIC+ 31354-2	0	<u>J</u>			j	J)	
ľ	/ 61	31364-816	74	79K			20	1	
r	62	- BYCH		1			J. J.	i	
ľ	,/63	31864-2					10		
T	64	-2+			İ		10		
ľ	65	-2		T T	İ		5		
ſ	/66	-2+		d_			5	1	
ľ	J/67		MZa	~			4	715	
T		313108-9	1	***************************************			0.5	100	
Γ	69	-90					1	1	
ľ	70	-9t						4	
Ŧ	71	-ac		'			2	400	gx dil
Ŧ	72	-2CD					2	400	1×11
Γ	73	-30					0.4	1	
Γ	74	<i>−</i> 3c+					0.4	4	
ľ	75								
Γ	76								
ľ	77								
	78								
ſ	79								
	80								
	81								
ľ	82								
ſ	83								
	84								
	85								
ľ	86								
	87								
	88	f							
ſ	89								

Element One, Inc F209 R9

Page 3 of \$3

elementOne

31368 MAQS M5 29 Report Packet Page 50 of 64

MERCURY BATCH DIGESTION - RUN WORKSHEET

	ed/Digested:	06/2018	Prep By:	mme	5	SIF File #:	062118-1
Block #	1 Temperature:	94.4	Start Time:	5145a	M	achine ID:	2
	2 Temperature:	92.7	Stop Time:	8000	Bato	ch Analyst:	mmp
	3 Temperature:	~95	Typed By:	MMP	V	erified By:	DKH
T		0.4ug/ml					•
A/S	Curve & QC's	working std		BV, ml	FV, ml	Standa	rd Lot Numbers
	Lab BLK						11 (for working std
1	(3/ batch)	0		40	40	Lot #: 47	
2	0.004 ug	0.01ml		40	40	Working S	
3	0.04 ug	0.10ml		40	40		012-1 by: MMY
4	0.08 ug	0.20ml		40	40		#2 (QC #2):
5	0.16 ug	0.40ml		40	40	Lot #: +33	
6	0.20ug	0.50ml		40	40		#3 (QC #3):
						Lot#:	3-012-3
	QC #2= 0.08ug	0.2ml #2 std		40	40	- 1	571
8	QC #3= 0.08ug	0.2ml #3 std		40	40	Curve pre	pared by: DVAt
					ate: 6 21	10	Time:
Ini	itial Review By: Y	WYL				170	Time:
	QC Review By: Y	<u> </u>	Antonia i i i i i i i i i i i i i i i i i i	De	ate: V	***************************************	THITE.
ommen	ls:			and the same of th			
			Wt (g)/ FV	Prep Aliquot	Aliquot or	FV, mL or *1*	l .
A/S	LAB#	Method	(mL)	Used, mL	Calc Mass	for conc.	Comments
9	31306-17 QC	7470A			0.05	5	TV=11.1
10		4			1	1	TV=0.008
11	31368-69	m29	A STATE OF THE STA		0.5	100	
12	-9D		***************************************		1 HOPE	7 7	
13	-9+		-	100	V	V	
14	31368-4A	1 15			4	200	
	31367-6	1 11 0	- Commence of the Commence of			100	
16	-60				1 5 5		
17							
	31367-1A		-		4	200	
19		18 VI	-		1		
10		ab blanks and	nnikaa must	ho propored		hatch diac	etion
"A" Don	NOTES: La	e calibration working	o 0 Aug/ml stan	dard at the rate	of 0.20ml pec	40ml sample, t	inless otherwise noted.
			7 4 4 7 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4				The second secon
	n chemicals to b						
	12SO4@2.0ml.						
12504	Lot# 17743	6 HNO	3 Lot # Ilf	7100	HC	Lot #: 4	17040
	te Lot # 1/2 00						
Christian	The state of the s	amples after d					
	Clears	ampies aner o	igestion with	1 2.4 mil Of M	yuroxyiam	me solution	4 4

Element One, Inc F209 R9

Page 1 of \$ 3

MERCURY BATCH DIGESTION - RUN WORKSHEET

SIF File #: 062118-1

A/S	LAB#	Method	Wt (g)/ FV (mL)	Prep Aliquot Used, mL	Aliquot or Calc Mass	FV, mL or "1" for conc.	Comments
20	31367-2AD	m79			4	200	
21	-3A	1		-	I		
22	-39+						
23	-419				1		
24	-5A	1				1	
25	-18					50060	0
26	-28						Anna Anna Anna Anna Anna Anna Anna Anna
27	-260					1	
28	-35					500	
29	-38+						
30	-43						
31	-5B	42			1	TA	
32	31367-10				4	500H	3
33	-2C	1.			1	1	- 77
34	-200						
35	-3C	1				14	
36	-3C+						
37	-4c						
38	-5C	117			J	9	
39	31367-7	4			0.05	5	
40	-70		1				
41					7	d	
42	31351-3A	1 1			4	200	-
43					d	de	
44	31351-29				0.5	1000	
45					2.0	The state of	
46	-29+	W.			9	at	
47	31346/370-1316	747014			20	V	
48	-BIV+					7	- dell'a company dell
49	31366						770
50	31370-1				1		
51	-2					Land Ly Statement	Lab distance in the second sec
52	-20	n dik	1		1 3	1 1 1 1 1 1 1 1	
53	-3	10 10				12 1 1 1 1 1	
54	-3+	W		74-	V	J	

Element One, Inc F209 R9

Page 2 of \$3

MERCURY BATCH DIGESTION - RUN WORKSHEET

SIF File #: 062/18/

55 31370-4 7470 A 20 1 56 -5 57 - 6 58 -6 -5 58 -7 5 58 -7 5 58 -7 5 58 -7 5 58 -7 5 58 58 58 58 58 58 58 58 58 58 58 58 5	A/S	LAB#	Method	W((g)/ FV (mL)	Prep Aliquat Used, ml.	Aliquot of Calc Mass	FV, mL or "1" for conc.	Comments
56		31370-4	74700	, , , , , , , , , , , , , , , , , , ,				
57	56		1			1		
58	57						t i i ""	
59	58						***	
61 -9 62 -9 + 63 -10 64 31371-1 65 -10 66 -2 67 -2 + 7 70 -38 + 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88	59							
61	60	-8						
63 -10 64 31371-1 65 -10 66 -2 67 -2+ 68 313(8-18 m29 69 -38/40 70 -38+ 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87	61	-9						
64 31371-1 65 -10 66 -2 67 -2+ 68 313(08-18 m29 69 -3660 70 -38+ 71 72 73 74 75 76 77 78 79 60 81 82 83 84 85 66 87		-9+	i					
65 -10 66 -2 67 -24 68 313(s\$-18 m29 69 -3g*** 70 -3g+ 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87		-10						
65 -10 66 -2 67 -2+ 68 313(-8-18 m29 27 500 69 -38+ 70 -38+ 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 88 88 88 88 88		31371-1						
67		-170						
70	1	<u>-2</u>				<u> </u>		
70					1	W		
70			m89		0.03	2	500	Comparing Advice Commence of the Commence of t
71	1	-38100		ļ	<u> </u>	1 1		
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86		-38+	<u> </u>		<u> </u>			***************************************
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87								
74 75 76 77 78 79 80 81 82 83 84 85 86 87	1							
75 76 77 78 79 80 81 82 83 84 85 86 87	1	I				<u> </u>		
76 77 78 79 80 81 82 83 84 85 86 87	1			<u> </u>	-			
77 78 79 80 81 82 83 84 85 86 87	<u> </u>							
78 79 80 81 82 83 84 85 86 87 88				<u> </u>				
79 80 81 82 83 84 85 86 87 88	1	,		<u> </u>				
80 81 82 83 84 85 86 87 88	Ī	.E	<u> </u>			-		
81 82 83 84 85 86 87 88	1	ž			-			
82 83 84 85 86 87 88	<u> </u>	3			-			
83 84 85 86 87 88	1	ţ			1		-	
84		1		1	 			
85 86 87 88		<u> </u>				<u> </u>		
86 87 88		•		+	 			
87 88		1				1		
88	ŧ	4	İ	†		 		
				- 	1	1		
	2		İ		<u> </u>	1		

Element One, Inc F209 R9

Page 3.01/67

PerkinElmer Nexlon 350X ICP-MS

Method 6020 & 200.8 Metals Summary Report Sample ID: Blank Sample DatTuesday, June 19, 2018 16:45:11 Sample Description: Concentration Results

Conce	Analyte	Mass	М	eas, IntensCon	c. Mear Report Unit
>	Li		6	3934.1	ppb
į-	Be		9	1.7	ppb
j-	Р		31	1596.7	ppb
j>	Sc		45	6083.1	ppb
i	Cr		52	575	ppb
į-	Cr		53	432.7	ppb
j-	Mn		55	107	ppb
i	Co		59	17.3	ppb
i	Ni		60	10.3	ppb
İ	Cu		63	54.3	ppb
i	Cu		65	24.7	ppb
i	Zn		66	24.7	ppb
İ	Zn		67	16	ppb
İ	Zn		68	99.7	ppb
ĺ	As		75	38.1	ppb
ĺ	Se		77	60.3	bbp
1	Se		82	8.0	ppb
 >	Rh		103	4735.1	ppb
ĺ	Ag		107	16	ppb
1	Ag		109	17	ppb
1	Cd		111	11.3	ррb
-	Cd		114	12.1	bbp
 -	Sb		121	43.7	ppp
1	Sb		123	28.2	ppb
1	Ba		135	20.7	ppb
ı	Ba		137	31	ppb
 >	Но		165	45790.2	ppb
ı	TI		205	87.3	ppb
[-	Pb		208	218.7	ppb
	Kr		83	25.3	ppb

Method 6020 & 200.8 Metals Summary Report Sample ID: Standard 1 Sample DalTuesday, June 19, 2018 16:48:17 Sample Description:

Concentration Results

OOMOCHMAL	Analyte	Mass	1	Meas. Intens Co	nc. Mear	Report Unit
>	Li		6	4121.4		ppb
j-	Be		9	17.3	0.86067	
 -	P		31	1782.1	8.46315	ppb
 >	Sc		45	6380.8		ppb
İ	Cr		52	766	0.78793	
 -	Cr		53	507,3	2.23881	ppb
i-	Mn		55	362.3	0.96919	ppb
i	Co		59	185.7	0.94774	ppb
i	Ni		60	42.7	0.83734	dqq
i	Cu		63	151	1.04471	ppb
i	Cu		65	64.3	0.96039	ppb
į	Zn		66	44.3	0.91436	ppb
i	Zn		67	14.7	-0.54654	ppb
i	Zn		68	115.7	0.9504	ppb
i	As		75	62.9	1.13953	ppb
i	Se		77	59.7	-2.06343	ppb
í	Se		82	3.1	1.45291	ppb
j>	Rh		103	4853.1		ppb
i	Ag		107	100.7	0.9166	
i	Ag		109	91.7		ppb
i	Cď		111	35.8	0.73273	
j-	Cd		114	135.1	0.98013	
i-	Sb		121	242.7		ppb
į	Sb		123	198.7	0.97724	ppb
i	Ba		135	104		ppb
İ	Ва		137	208.7	0,90205	ppb
j>	Но		165	47377.2		ppb
İ	TI		205	1413.4	0.9841	
j-	Pb		208	1907.7	0.95205	ppb
•	Kr		83	27		ppb

element One **e** 31368-Metals

ICP-Data 1 of 66

63.1

Method 6020 & 200.8 Metals Summary Report Sample ID: Standard 2 Sample Dal Tuesday, June 19, 2018 16:51:24 Sample Description: Concentration Results

	Analyte	Mass	Meas. Intens	Conc. Mear Report Unit
>	Li	6	4349.8	dqq
j-	Be	9	1788.4	
j-	Р	31	15679.9	1017.6585 ppb
>	Sc	45	6866.6	dqq
Ì	Cr	52	22294.3	97.43378 ppb
 -	Cr	53	2985.2	97.28293 ppb
-	Mn	55	27976	98.55799 ppb
	Co	59	19038.2	99.09757 ppb
1	Ni	. 60	4104	98.52348 ppb
	Cu	63	9804,6	98.54359 ppb
	Cu	65	4314.4	97.21147 ppb
	Zn	66	2248.1	98.34052 ppb
	Zn	67	347	97.72093 ppb
	Zn	68	1624.4	98.73451 ppb
	As	75	2232.6	
	Se	77	165	83.64266 ppb
	Se	82	152.8	89.39875 ppb
>	Rh	103	5261.6	ppb
1	Ag	107	9888.3	
	Ag	109	9205.4	1.1
ļ	Cd	111	3527.9	• • •
-	Cd	114	13725.1	100.94902 ppb
ļ-	Sb	121	24311,8	ppb
ļ	Sb	123		101.50503 ppb
Į	Ba	135	10810.3	ppb
1	Ba	137	20644.5	99.87348 ppb
>	Ho	165	49950.5	ppb
1	TI	205		100.80089 ppb
 -	Pb	208	186272.9	99.90119 ppb
	Kr	83	30.7	ppb

Method 6020 & 200.8 Metals Summary Report Sample ID: Standard 3 Sample DaiTuesday, June 19, 2018 16:54:30 Sample Description:

Concentration Results

Concentia	Ak-				O M	D 1116
I.	Analyte	Mass		Meas, Intens	Conc. Mear	
>	Li		6	4266.3		bbp
[-	Be		9	9409.4		
[-	P		31		4996.5145	• •
>	Sc		45	6630.9		ppb
1	Cr		52		500.51367	
 -	Cr		53		500.54094	
-	Mn		55		500.28846	• •
1	Co		59	93893.7	500.18059	dqq
1	Ni		60	20336.6	500.29563	ppb
1	Cu		63	48440.2	500.29119	ppb
1	Cu		65	21615	500.55779	ppb
1	Zn		66	11076.5	500.33207	ppb
1	Zn		67	1667.1	500.45891	ppb
1	Zn		68	7607.8	500.2532	ppb
1	As		75	11035.4	500.49763	ppb
Ī	Se		77	642	503,2776	ppb
l	Se		82	834.8	502.11935	ppb
j>	Rh		103	5145.5		ppb
1	Ag		107	48763.2	500.18923	
Ì	Ag		109	46576		ppb
İ	Cd		111	17546.3	500,38029	
j-	Cd		114	66410.7	499.81024	dqq
Ì-	Sb		121	119188.1		ppb
1	Sb		123	89452.1	499.69904	ppb
Ì	Ba		135	52099,6		ppb
İ	Ba		137	101099,7	500.0255	
j>	Но		165	48910.8		ppb
i	TI		205		499.83985	
j-	Pb		208		500.01986	
•	Kr		83	31.3		ppb

elementOne **e** 31368-Metals

ICP-Data 2 of 66

Method 6020 & 200.8 Metals Summary Report Sample ID: QC Std 1

Sample DatTuesday, June 19, 2018 16:57:37 Sample Description:

Concentration Results

	Analyte	Mass	Meas. Intens	Conc. Mear	Report Unit
j>	Li	€	3944		ppb
1-	Be	ç	3	0.07531	ppb
j-	P	31	1411.4	-17.95806	ppb
 >	Sc	45	6223.4		ppb
ĺ	Cr	52	638.3	0.24874	ppb
[-	Cr	53	485.3	1.82359	ppb
-	Mn	55	113	0.01533	ppb
1	Co	59	24.7	0.03981	ppb
1	Ni	60	14.3	0.10015	ppb
1	Cu	63	62.3	0.0771	ppb
Ì	Cu	65	23.3	-0.04416	ppb
	Zn	66		-0.05617	
	Zn	67	' 11.3	-1.60861	
1	Zn	68		0.22266	
	As	75		1.98229	
1	Se	77	' 51.7		
l	Se	82		1.92323	ppb
>	Rh	103			ppb
1	Ag	107		0.34669	
1	Ag	109			ppb
1	Cd	111		-0.10624	
 -	Cd	114		0.04679	ppb
 -	Sb	121			ppb
1	Sb	123			
1	Ba	135			ppb
1	Ba	137		0,0038	ppb
>	Но	169			ppb
1	Tl	20			ppb
 -	Pb	208		0,03661	ppb
	Kr	83	3 23.7		ppb

Method 6020 & 200.8 Metals Summary Report Sample ID: QC Std 2 Sample DalTuesday, June 19, 2018 17:00:44

Sample Description: Concentration Results

	Analyte	Mass	1	Meas. IntensC	onc. Mear Report Unit
>	Li		6	4003.5	ppb
j .	Be		9	18.7	0.96418 ppb
į-	Р		31	1607.7	-5.27464 ppb
>	Sc		45	6380.5	ppb
Ī	Cr		52	811.3	1,00869 ppb
j-	Cr		53	529.3	3.15843 ppb
ļ -	Mn		55	354.7	0,95042 ppb
İ	Co		59	187.3	0.96597 ppb
Ì	Ni		60	52.3	1.09982 ppb
Ì	Cu		63	147.3	1.01768 ppb
ĺ	Cu		65	72	1.16214 ppb
ĺ	Zn		66	33.7	0.41493 ppb
•	Zn		67	13	-1.06245 ppb
Ī	Zn		68	113	0.82913 ppb
Ì	As		75	101.5	3.04992 ppb
Ì	Se		77	60.7	-0.64747 ppb
ĺ	Se		82	0.1	-0.46167 ppb
j>	Rh		103	4815.5	ppb
ĺ	Ag		107	110.3	1.0315 ppb
İ	Ag		109	110	ppb
1	Cd		111	38	0.80585 ppb
 -	Cd		114	141.2	1.03705 ppb
1-	Sb		121	268.3	ppb
Ì	Sb		123	200.6	1.01706 ppb
Ì	Ba		135	107.3	ppb
1	Ba		137	207.7	0.92342 ppb
 >	Но		165	46229.4	ppb
	TI		205	1397.4	0.99814 ppb
-	Pb		208	1893.4	0.9704 ppb
	Kr		83	29.3	ppb

elementOne

e 31368-Metals 63.3 ICP-Data 3 of 66

Method 6020 & 200.8 Metals Summary Report Sample ID: QC Std 3 Sample DaiTuesday, June 19, 2018 17:03:50

Sample Description:

Sample D	escription.					
Concentra	ition Results					
	Analyte	Mass	N	leas. Intens	Conc. Mear	Report Unit
]>	Lī		6	4093.3		ppb
ļ -	Be		9	4409.7	244.55514	ppb
 -	P		31	31783,9	2365.4739	ppb
>	Sc		45	6406,8		ppb
	Cr		52	53092.3	253.20892	ppb
-	Cr		53	6506.5	252.65596	ppb
 -	Mn		55	66895.7	249.11229	ppb
1	Co		59	45660.7	250.76455	ppb
1	Ni		60	9739,6	246.92187	ppb
	Cu		63	23647.2	251.51075	ppb
1	Cu		65	10485.9	250.0511	ppb
l	Zn		66	5337.6	248.00151	ppb
1	Zn		67	818	250.56926	ppb
1	Zn		68	3885,3	260.03341	ppb
ì	As		75	5418	252,44451	ppb
1	Se		77	354	261,40207	ppb
1	Se		82	414.4	256.83518	ppb
>	Rh		103	4990.5		ppb
	Ag		107	24018.2	253,90043	ppb
1	Ag		109	22916.8		ppb
1	Cd		111	8363.4	245.80421	ppb
 -	Cd		114	31938.5	247.81755	ppb
	~.					

121

123

135

137

165

205 208

83

57797.7

25556.7

30.7

43843.4 251.70458 ppb

49021.7 249.18015 ppb

47579.9 ppb 337372.2 249.83664 ppb

435317.1 245.28197 ppb

ppb

ppb

Sb

Sb

Ва

Ва

Нο

Τl

Pb

Method 6020 & 200.8 Metals Summary Report Sample ID: QC Std 4 Sample DalTuesday, June 19, 2018 17:06:57

Sample Description:

Concentration Results

	Analyte	Mass		Meas. Intens	Conc. Mear	Report Unit
>	Li		6	4248.1		ppb
i-	Be		9	1766.4	94.35078	
 -	P		31	14896.1	989.18781	ppb
>	Sc		45	6687.9		ppb
j	Cr		52	22171.8	99.56037	ppb
j-	Cr		53	2937.8	98.47395	ppb
j-	Mn		55	27802.1	97.60709	dqq
Ì	Co		59	18955.2	98.32578	dqq
ĺ	Ni		60	4040	96.6452	ppb
ĺ	Cu		63	9596.2	96.10669	ppb
ĺ	Cu		65	4277.4	96.05555	ppb
ĺ	Zn		66	2252.8	98.197	ppb
1	Zn		67	338,3	94.79465	ppb
Ì	Zn		68	1635.7	99.12493	ppb
Ì	As		75	2335.2	101.70176	ppb
1	Se		77	179	95,05403	ppb
I	Se		82	163.4	95.35152	ppb
>	Rh		103	5279.6		ppb
1	Ag		107	9990	99.72632	
1	Ag		109	9480.8		ppb
1	Cd		111	3603.4	99.87654	ppb
 -	Cd		114	13363.9	97.9512	ppb
 -	Sb		121	23929.4		ppb
Į	Sb		123	17940	100.09717	ppb
1	Ва		135	10647.3		ppb
1	Ва		137	20170.8	99.65189	ppb
>	Но		165	48903.5		ppb
1	ΤI		205	139052.4	100.14122	ppb
-	Pb		208	183756.7	100.66229	ppb
	Kr		83	32.7		ppb

element One

ICP-Data 4 of 66 e 31368-Metals 63.4

Method 6020 & 200.8 Metals Summary Report Sample ID: QC Std 5 Sample Dai Tuesday, June 19, 2018 17:10:05

Sample Description:

Concentration Results

001100111111111	Analyte	Mass	Meas, Inten	Conc. Mear	Report Unit
 >	Li	6	4288		ppb
j-	Be	٤	956.4	50.54924	ppb
Í-	Р	31	3918.3	159,09649	ppb
j>	Sc	45	6777.9		ppb
İ	Cr	52	11421.6	49.17767	ppb
į-	Cr	53	3 1740.1	49.67159	ppb
-	Mn	55	14026.6	49.76277	ppb
Ì	Co	59	9303.1	48.91934	ppb
I	Ni	60	1978.1	47.87503	ppb
ĺ	Cu	63	3 4861.5	49.10553	ppb
1	Cu	65			
1	Zn	66	3 1114.7	48.70211	ppb
1	Zn	6			
ĺ	Zn	6	3 871		
	As	7!	5 1228. 6	53,42694	ppb
1	Se	7	7 120.7		
1	Se	8:	2 99.4	58.67938	ppb
>	Rh	10:	3 5202.9		ppb
ŀ	Ag	10			ppb
	Ag	10	9 4702.1		ppb
1	Cd	11			
-	Cd	11-	4 6688.9	49.69685	ppb
 -	Sb	12			ppb
	Sb	12			
1	Ba	13			ppb
1	Ba	13			ppb
>	Но	16			dqq
1	TI	20			
1-	₽b	20			
	Kr	8	3 _ 29	Ð	ppb

Method 6020 & 200.8 Metals Summary Report Sample ID: QC Std 6

Sample Dat Tuesday, June 19, 2018 17:13:12 Sample Description: Concentration Results

Concentia	Analyte	Mass		Meas. Intens	Conc. Mear	Report Unit
 >	Li		6	5735.5		ppb
i-	Be		9	3	0,02235	
i-	P		31	91832	4889.4066	
i>	Sc		45	9211.7		ppb
1	Cr		52	664.3	-0.69201	
i-	Cr		53	710.3	1.59725	
i-	Mn		55	142.7	-0.0405	
i	Co		59	20.3	-0.02045	ppb
i	Ni		60	11.7	-0.06498	ppb
i	Cu		63	60,3	-0.1517	ppb
i	Cu		65	22	-0.24624	
ì	Zn		66	47	0.35162	
ĺ	Zn		67	27.7	0.88748	ppb
İ	Zn		68	122.3	-1.21254	ppb
ĺ	As		75	101.2	1.51213	ppb
ĺ	Se		77	86.7	-1.59502	ppb
1	Se		82	-3.6	-2.11544	ppb
j>	Rh		103	6996		ppb
I	Ag		107	27.7	0.03048	ppb
1	Ag		109	18.7		ppb
1	Cd		111	4.9		
]-	Cd		114	11	-0.03764	ppb
 -	Sb		121	67		ppb
1	Sb		123	47.5	0.02498	ppb
1	Ba		135	21.7		ppb
	Ва		137	29		
>	Ho		165	66983.6		qqq
1	TI		205	45.3		
 -	Pb		208	195.3		
	Kr		83	33.7		ppb

element One e 31368-Metals

ICP-Data 5 of 66

Method 6020 & 200.8 Metals Summary Report Sample ID: QC Std 7

Sample Dal Tuesday, June 19, 2018 17:16:19 Sample Description: Concentration Results

Conconta	Analyte	Mass		Meas. Intens	Conc. Mear	Report Unit
>	Li		6	5704		ppb
i-	Be		9	3.7	0.05143	
Ì-	Р		31	90387.8	4850,1443	
i>	Sc		45	9135		ppb
i	Cr		52	948	0.28738	
j-	Cr		53	892.7	7.10172	
j-	Mn		55	477.3	0.84262	
Ì	Co		59	511.3	1.89166	
Ì	Ni		60	136.7	2.18454	ppb
Ì	Cu		63	202	0.91701	ppb
Ì	Ctr		65	82	0.76898	ppb
İ	Zn		66	73.3	1.216	ppb
İ	Zn		67	26.7	0.64647	
1	Zn		68	158.3	0.50203	ppb
1	As		75	112.6	1.86546	
l	Se		77	94.3	2.9861	ppb
1	Se		82	-2.9	-1.80809	ppb
j>	Rh		103	7035		ppb
1	Ag		107	11849.1	88.75013	ppb
	Ag		109	11313.2		ppb
	Cd		111	19.9	0.06306	ppb
-	Cd		114	97.9	0.44047	ppb
l-	Sb		121	50.7		ppb
1	Sb		123	39.9	-0.00374	
1	Ba		135	19.3		ppb
1	Ba		137	22.7	-0.08085	
>	Ho		165	66166.8		ppb
	TI		205	21.7	-0.05566	ppb
 -	Pb		208	160	-0.06322	
	Kr		83	31.3		ppb

Method 6020 & 200.8 Metals Summary Report

Sample ID: QC Std 8

Sample DatTuesday, June 19, 2018 17:19:25 Sample Description:

Concentration Results

Concentre	Analyte	Mass		Meas. Intens C	one Mear	Report Unit
>	Li	,,,,,,,,,	6	8218.3		ppb
j-	Be		9	9	0.15295	
į-	P		31	1228.4	-85.2174	
 >	Sc		45	13182.1	00.2171	ppb
1	Cr		52	826	-0.98221	
i-	Cr		53	1221.4	5.77839	
i-	Mn		55	352,3	0.22225	
i	Co		59	103	0.17625	
i	Ni		60	85.3	0.78319	
Ì	Cu		63	336	1.14177	
i	Cu		65	153	1.16783	
ĺ	Zn		66	323	6.16031	
i	Zn		67	68.3	5,18515	
i	Zn		68	334	4,00481	
Ī	As		75	66.7	-0.35473	ppb
i	Se		77	108.3	-9.5545	
ĺ	Se		82	3.1	0.42285	ppb
 >	Rh		103	10203.7		ppb
ĺ	Ag		107	18	-0.08528	ppb
•	Ag		109	18.7		ppb
1	Cd		111	27.8	0.04938	ppb
 -	Cd		114	75	0.18606	ppb
 -	Sb		121	196		ppb
1	Sb		123	143.2	0.24707	ppb
1	Ba		135	51		ppb
1	Ba		137	90	0.06738	ppb
>	Но		165	94191.1		ppb
	ΤI		205	665.3	0.18173	
 -	Pb		208	1699.4	0.35585	ppb
	Kr		83	28		ppb

element One

ICP-Data 6 of 66 e 31368-Metals 63.6

Method 6020 & 200.8 Metals Summary Report Sample ID: QC Std 2 Sample Dal Tuesday, June 19, 2018 17:22:32 Sample Description:

Concentration Results

	Analyte	Mass		Meas. Intens	Conc. Mear	Report Unit
>	Li		6	3790.7		ppb
j-	Be		9	20.3	1.12141	ppb
j-	Ρ		31	1433	-15.75893	ppb
j>	Sc		45	6202.4		ppb
Ì	Cr		52	833	1,23039	ppb
j .	Cr		53	680.7	10,33551	ppb
j-	Mn		55	347.3	0.89487	ppb
į	Co		59	191	0.9652	ppb
Ì	Ni		60	49	0.98683	
ĺ	Cu		63	146.3	0.97332	ppb
i	Cu		65	48.7	0.55949	ppb
i	Zn		66	39.3	0.65076	ppb
ĺ	Zn		67	13.7	-0,93629	
İ	Zn		68	109	0,38648	ppb
ì	As		75	89.7	2.39872	ppb
į	Se		77	71	7.65715	
Ì	Se		82	-3.3	-2.59239	ppb
>	Rh	1	103	4915.1		ppb
j	Ag	1	107	108.3	0.98527	ppb
Ì	Ag	1	109	104		ppb
Ì	Cd	1	111	35.3	0.7035	ppb
į-	Cd	1	114	126.9	0.90152	ppb
-	Sb		121	261		ppb
İ	Sb	•	123	189	0,98757	ppb
Ì	Ba	•	135	110.7		ppb
Ì	Ba	•	137	181	0.8156	ppb
>	Но	•	165	44718		ppb
ĺ	ΤI	2	205	1385,4	1.02475	ppb
ļ-	Pb	2	208	1754.7	0.92439	ppb
•	Kr		83	36.3		ppb
Advantage of Co	222 0 200 0	Makala O.				

Method 6020 & 200.8 Metals Summary Report Sample ID: QC Std 1

Sample Dal Tuesday, June 19, 2018 17:25:20 Sample Description: Concentration Results

	Analyte	Mass		Meas. Intens	Conc. Mear	Report Unit
>	Lì		6	3896.8		ppb
j-	Be		9	2.3	0.04001	ppb
j-	Р		31	1150.7	-38.59908	ppb
>	Sc		45	6194.1		ppb
j	Cr		52	611	0.12805	ppb
1-	Cr		53	674	10.09758	ppb
 -	Mn		55	86.3	-0.08584	
1	Co		59	11.7	-0.03359	
l	Ni		60	6.7	-0.10069	
1	Cu		63	46	-0.10104	ppb
1	Cu		65	17	-0.19938	ppb
1	Zn		66	28.7	0.17807	
1	Zn		67	13	-1.05406	ppb
Ì	Zn		68	99.7	-0.09574	ppb
į.	As		75	65.4	1.31523	ppb
1	Se		77	68.3	6.71819	ppb
	Se		82	1.1	0.19959	ppb
>	Rh		103	4800.5		ppb
[Ag		107	10.3	-0.0646	ppb
	Ag		109	12.7		ppb
1	Cd		111	2.2	-0.2846	
-	Cd		114	9	-0.02613	ppb
-	Sb		121	31		ppb
1	Sb		123	24.9	-0.01869	ppb
	Ba		135	8.3		ppb
1	Ba		137	15	-0.08344	ppb
>	Но		165	45181.8		ppb
	TI		205	14.7	-0.05578	
 -	Pb		208	83.3	-0.0786	ppb
	Kr		83	27.7		ppb

elementOne

ICP-Data 7 of 66 e 31368-Metals

Method 6020 & 200.8 Metals Summary Report Sample ID: LRB FH Sample DatTuesday, June 19, 2018 17:28:27 Sample Description:

		•
Concent	Iration	Results

	Analyte	Mass	Meas, Intens	Conc. Mear	Report Unit
>	Li	6	3959.4		ppb
j-	Be	9	4.3	0.15124	ppb
j-	Р	31	1240	-33.40788	ppb
į>	Sc	45	6322.1		ppb
i	Cr	52	587	-0.05127	
j-	Cr	53	112.3	-14.27394	ppb
j-	Mn	55	250.3	0.52874	
İ	Co	59	8.7	-0.05184	ppb
İ	Ni	60	13.7	0.07389	
İ	Cu	63	103	0.5053	ppb
ĺ	Cu	65	41.7	0.39145	ppb
1	Zn	66	54	1.34679	ppb
1	Zn	67	14	-0.77699	ppb
Ì	Zn	68	136	2.27747	
1	As	75	74	1.64652	ppb
	Se	77	' 13	-45.25413	
	Se	82	-4.3	-3.20133	ppb
>	Rh	103	4912.1		ppb
[Ag	107		-0.05709	ppb
•	Ag	109	10		ppb
1	Cd	111		-0.21794	
-	Cd	114	6.8	-0.04472	ppb
-	Sb	121			dqq
l	Sb	123	39.5	0.07035	ppb
[Ba	135			ppb
1	Ba	137	7 16.7	-0.0744	ppb
>	Но	165			ppb
	TI	205			ppb
 -	РЪ	208		-0.0059	ppb
	Kr	83	34		ppb

Method 6020 & 200.8 Metals Summary Report

Sample ID: LRB FH Sample DaiTuesday, June 19, 2018 17:31:34

Sample Description:

Concentration Results

OOHOCHLIE	Analyte	Mass		Meas. Intens	Conc. Mear	Report Unit
 >	Li		6	4169.8		ppb
í-	Be		9	855	46.46178	
i-	P		31	3574,3	149.65171	
i>	Sc		45	6387.1		ppb
i	Cr		52	10797.7		
<u> </u> -	Cr		53	1260.7	33,7458	ppb
i-	Mn		55	13183.8	48.57766	ppb
i	Co		59	8781.9		
i	Ni		60	1865,1	46,89031	ppb
į	Cu		63	4547.4	47,68644	ppb
İ	Cu		65	2072.8	48.75726	ppb
İ	Zn		66	1088	49.40012	ppb
İ	Zn		67	177	49.9005	ppb
İ	Zn		68	840	50.35116	ppb
ĺ	As		75	1040.8	46,79297	ppb
Ì	Se		77	72.3	7.53232	ppb
ĺ	Se		82	71.1	43,54737	ppb
 >	Rh		103	5009,8		ppb
1	Ag		107	4870.1	51.13864	ppb
ĺ	Ag		109	4648.1		ppb
i	Cd		111	1651.4	48.05175	ppb
 -	Cd		114	6199.5	47.82784	ppb
 -	Sb		121	11793.8		ppb
1	Sb		123	8834.1	52.02147	ppb
l	Ba		135	5056.2		ppb
1	Ba		137	9618.5	50.14534	ppb
 >	Но		165	46265.8		ppb
	Τł		205	64148.2	48.79891	ppb
 -	Pb		208	86757.6	50.17135	ppb
	Kr		83	31.3		ppb

element One

ICP-Data 8 of 66 e 31368-Metals

Method 6020 & 200.8 Metals Summary Report Sample ID: 31368-1 FH

Sample DalTuesday, June 19, 2018 17:34:40 Sample Description:

Concentration Results

	Analyte	Mass		Meas. Intens	Conc. Mear	Report Unit
>	Li		6	4113.7		ppb
j -	Be		9	3.7	0.10539	ppb
i-	P		31	1986.7	21.21745	ppb
[>	Sc		45	6528.2		ppb
ĺ	Cr		52	4847.5	20.05214	ppb
]-	Cr		53	572.7	4.46069	ppb
j -	Mn		55	11099,8	40.37435	ppb
Ì	Co		59	150.3	0.71376	ppb
	Ni		60	1026.7	25.3962	ppb
	Cu		63	1614.4	16.3456	ppb
1	Cu		65	727	16.49885	ppb
	Zn		66	136597.5	6281.9616	ppb
[Zn		67		6153.6025	
	Zn		68	92528.6	6262.7792	ppb
1	As		75	125.3	3.91513	ppb
1	Se		77	27.3	-32.99427	ppb
1	Se		82	21.8	12.79795	ppb
>	Rh		103	5065.2		ppb
	Ag		107	36.7	0.20346	ppb
Į.	Ag		109	48.7		ppb
l	Cd		111	1155.1	33.13585	ppb
[-	Cd		114	4208.1	32.08141	ppb
j -	Sb		121	1165		ppb
1	Sb		123	849.3	4.72213	ppb
I	Ba		135	4107.3		ppb
1	Ba		137	7788.2	39.54644	ppb
>	Но		165	47459		ppb
[TI		205	162.7	0.05359	
-	Pb		208	136426.6	76.97321	ppb
	Kr		83	31		ppb

Method 6020 & 200.8 Metals Summary Report

Sample ID: 31368-2 FH
Sample DafTuesday, June 19, 2018 17:37:46
Sample Description:

Concentration Results

	Analyte	Mass	M	leas. Intens	Conc. Mear	Report Unit
>	Li		6	4078.5		ppb
j -	Be		9	2,3	0.0338	ppb
 -	P	3	31	2437.5	59.19231	ppb
 >	Sc	4	15	6413.5		ppb
ĺ	Cr		52	5096.9	21.64156	ppb
 -	Cr		53	590.3	5.59574	ppb
j-	Mn		55	12667.9	46.44633	ppb
1	Co	ŧ	59	201.3	0.99585	ppb
1	Ni	(30	1074.4	26,75632	ppb
1	Cu	(33	1780.1	18.21636	
1	Cu	(35	784.3	17.97803	ppb
1	Zn	6	6		6544.8223	
1	Zn	(37	20719.9	6423.4359	
1	Zn		58	95361.9	6498.2276	ppb
1	As		75	98.9	2.71497	ppb
1	Se	•	77	36	-25.11006	ppb
[Se		32	28.7	17.13755	ppb
>	Rh	10	03	5031.8		ppb
1	Ag	10	07	38	0.21984	ppb
	Ag	10	09	34.7		ppb
	Cd	1	11	687.2	19.70545	ppb
-	Cd	1	14	2561.7	19.62546	ppb
[-	Sb	1:	21	1472.4		ppb
	Sb	1:	23	1094.6	6.21039	ppb
1	Ba	1:	35	4132		ppb
	Ba	1:	37	7870.2	40.43765	ppb
>	Ho		65	46909.3		ppb
	TI	2	05	119.7	0.02266	
-	Pb		80	189356.1	108.14814	ppb
	Kr		83	34.7		ppb

elementOne

ICP-Data 9 of 66 e 31368-Metals 63.9

Method 6020 & 200.8 Metals Summary Report Sample ID: 31368-2 FH Sample Dal Tuesday, June 19, 2018 17:40:53

Sample Description: Concentration Results

Concentia	Analyte	Mass		Meas. Intens	Conc Mear	Report Unit
[>	Li	11100	6	3996.1		ppb
	Be		9	3.7	0,11261	
1_	P		31	2322.4	50.28091	
- >	Sc		45	6410.5	30.20031	bbp
1	Cr		52	4986.2	21,12833	
i_	Cr		53	558	4.25545	
i_	Mn		55	12113.3	43.99032	
ł	Co		59	191.3	0.933	
1	Ni		60	1050.4		
i	Cu		63	1741.7	17.64218	
i	Cu		65	782.7	17.76982	
ì	Zn		66		6432,5081	
ì	Zn		67		6231.0752	
ì	Zn		68		6370.8553	
ì	As		75	108.3	3.11969	
i	Se		77	34.3		
i	Se		82	33.1	19.67719	
>	Rh		103	5077.2		ppb
i	Ag		107	40.7	0.24524	
i	Ag		109	23.3		ppb
i	Cq		111	630.6	17.8882	
i-	Cd		114	2482.4	18.83838	
i-	Sb		121	1487.7		ppb
ĺ	Sb		123	1103.8	6.23845	
İ	Ba		135	4050,3		ppb
İ	Ba		137	7571.5	38.75605	
 >	Но		165	47079.3		ppb
i	TI		205	124	0.02562	
i-	Pb		208	186670,7	106,23288	
•	Kr		83	31.3		ppb

Method 6020 & 200.8 Metals Summary Report Sample ID: 31368-3 FH

Sample DatTuesday, June 19, 2018 17:43:59 Sample Description: Concentration Results

CONCORNE	Analyte	Mass		Meas. Intens	Conc. Mear	Report Unit
 >	Li		6	3956.1		ppb
 -	Be		9	4.3	0.15254	
j-	P		31	1928,4	21,37242	
 >	Sc		45	6325.1		ppb
i	Cr		52	4196.7	17.58583	
i-	Cr		53	435,7	-0.59411	
j-	Mn		55	10546.9	39.67355	
i	Co		59	152.3	0.75265	
i	Ni		60	387.3	9,73932	ppb
i	Cu		63	1478.4	15.45744	ppb
İ	Cu		65	636.3	14.8926	ppb
İ	Zn		66	113721.4	5410.3323	
ì	Zn		67	16580.8	5281.8948	ppb
i	Zn		68	76645	5365.8812	ppb
i	As		75	107.2	3.23127	ppb
Ì	Se		77	12.3	-45.96379	ppb
1	\$e		82	5.4	2.86974	ppb
 >	Rh		103	4898.5		ppb
1	Ag		107	21.7	0.05565	ppb
1	Ag		109	18		ppb
Į	Cd		111	591	17.36972	ppb
j-	Cd		114	2194.5	17.25599	ppb
l-	Sb		121	837.3		ppb
1	Sb		123	687.7	3.87962	ppb
Į	Ba		135	2827.2		ppb
1	Ba		137	5398.2	27.97325	ppb
>	Но		165	46424.4		ppp
	Ti		205	86.7	-0.00136	
 -	Pb		208	150535	86,84033	ppb
	Kr		83	29.3		ppb

elementOne

ICP-Data 10 of 66 e 31368-Metals

Method 6020 & 200.8 Metals Summary Report Sample ID: 31368-3 FH Sample DalTuesday, June 19, 2018 17:47:05 Sample Description: Concentration Results

> Li 6 3969.5 ppb	
- Be 9 897.7 51.26987 ppb	
- P 31 4405.7 215.69977 ppb	
> Sc 45 6376.5 ppb	
Cr 52 14512.5 67.42324 ppb	
- Cr 53 1650.4 50.20846 ppb	
- Mn 55 23774.3 89.6743 ppb	
Co 59 9052 50.41179 ppb	
Ni 60 2304.4 59.13747 ppb	
Cu 63 6153,8 66,04698 ppb	
Cu 65 2788.8 67.1096 ppb	
Zn 66 116231.6 5511.27 ppb	
[Zn 67 16976.4 5389.7622 ppb	
Zn 68 78397.7 5470.2629 ppb	
As 75 1132 52.10587 ppb	
] Se 77 56.7 -5.40683 ppb	
Se 82 78.1 48.80033 ppb	
> Rh 103 4912.5 ppb	
Ag 107 5019.2 53.7641 ppb	
Ag 109 4707.1 ppb	
Cd 111 2260.9 67.24434 ppb	
[- Cd 114 8665 68.2298 ppb	
- Sb 121 12989.7 ppb	
Sb 123 9772.1 57.07894 ppb	
Ba 135 8133.3 ppb	
Ba 137 15249.7 78.95236 ppb	
> Ho 165 46653.8 ppb	
TI 205 65121.4 49.12765 ppb	
- Pb 208 237758,6 136,5811 ppb	
Kr 83 34.3 ppb	

Method 6020 & 200.8 Metals Summary Report

Sample ID: 31368-4 FH Sample Dal Tuesday, June 19, 2018 17:50:12 Sample Description:

Concentration Results

Concent	ration Result					
	Analyte	Mass		ileas, Intens	Conc. Mear	•
>	Li		6	4186.2		ppb
-	Be		9	3.7	0.10262	ppb
-	P		31	1818.4	5.38715	ppb
>	Sc		45	6656.9		ppb
1	Cr		52	4037.3	15.82462	ppb
j-	Cr		53	409.7	-2.56297	ppb
1-	Mn		55	11293.2	40,19191	ppb
Ì	Co		59	99.7	0.42737	ppb
1	Ni		60	364.3	8.63824	ppb
Ì	Cu		63	1370.4	13.4721	ppb
1	Cu		65	603.3	13.28406	ppb
İ	Zn		66	102218.9	4599.7897	ppb
1	Zn		67	15087.9	4544.9711	ppb
1	Zn		68	68895.8	4560,7237	ppb
1	As		75	114.5	3.3065	ppb
1	Se		77	15	-44.18829	ppb
1	Se		82	3.7	1.77442	
>	Rh		103	5177.2		ppb
	Ag		107	20.3	0.02848	ppb
	Ag		109	21		ppb
	Cd		111	538.4	14.92327	ppb
-	Cd		114	2138.8	15.90671	ppb
 -	Sb		121	763		ppb
1	ďS		123	600,5	3.26202	ppb
j	Ba		135	2859.5		ppb
1	Ba		137	5431.3	27.29864	ppb
>	Ho		165	47855.8		ppb
	TI		205	84.3	-0.00515	
 -	Рb		208	101437.4	56.72952	ppb
	Kr		83	35.3		ppb

elementOne

ICP-Data 11 of 66 e 31368-Metals 63,11

Method 6020 & 200.8 Metals Summary Report

Sample ID: QC Std 1

Sample DalTuesday, June 19, 2018 17:53:20

Sample Description:

Conce	ntration Results	ì				
	Analyte	Mass	ľ	Meas, Intensi	Conc. Mear	Report Unit
>	Li		6	4118.3		ppb
į-	Be		9	1.7	-0.00454	ppb
 -	Р		31	1201.7	-39.22355	ppb
>	Sc		45	6510.2		ppb
1	Cr		52	609	-0.03085	ppb
-	Cr		53	770	12.61333	ppb
-	Mn		55	108.7	-0.02588	ppb
ĺ	Co		59	7	-0.06301	ppb
1	Ni		60	8,3	-0.06987	ppb
1	Cu		63	55.7	-0.02911	ppb
ĺ	Cu		65	18.3	-0.19162	ppb
1	Zn		66	46.3	0.89478	ppb
	Zn		67	18.7	0.42942	ppb
1	Zn		68	119.7	0.82452	ppb
	As		75	69.4	1.28436	ppb
1	Se		77	72.3	6.45517	
1	Se		82	-6.6	-4.49673	ppb
>	Rh		103	5111.2		ppb
1	Ag		107	7.3	-0.10308	
[Ag		109	14.3		ppb
	Cd		111	2.4	-0.28322	ppb
 -	Cd		114	10.6	-0.01786	ppb
-	Sb		121	29.3		ppp
	Sb		123	21.6	-0.04117	ppb
1	Ba		135	13.3		ppb
1	Ва		137	22	-0.04886	ppb
 >	Но		165	46279.5		ppb
1	TI		205	18	-0.05348	
 -	₽b		208	101.3	-0.06936	ppb
	Kr		83	30		ppb

Method 6020 & 200.8 Metals Summary Report Sample ID: QC Std 4

Sample DatTuesday, June 19, 2018 17:56:26

Sample Description: Concentration Results

	Analyte	Mass	ħ.	Aeas. Intens	Conc. Mear	Report Unit
>	Li		6	4331.2		ppb
1-	Be		9	1781.7	93.38763	ppb
ļ -	Р		31	14785	957.0674	ppb
 >	Sc		45	6833.9		ppb
	Cr		52	22324	98.04267	ppb
j-	Cr		53	3246.2	108.04207	ppb
-	Mn		55	28024	96.75223	ppb
ĺ	Co		59	18969.5	96.76946	ppb
l	Ni		60	4159.7	97.86528	ppb
Į	Cu		63	9833.9	96.85152	ppb
1	Cu		65	4323.4	95.45555	ppb
1	Zn		66	2333.4	100.05253	ppb
1	Zn		67	350.7	96.6773	ppb
1	Zn		68	1600.7	95.11075	ppb
1	As		75	2285.9	97.86007	ppb
1	Se		77	181.3		
1	Se		82	155.7	89.37705	ppb
[>	Rh		103	5368.6		ppb
1	Ag		107	10288.5	101.01014	ppb
1	Ag		109	9675.9		ppb
	Cd		111	3582.3	97.63305	ppb
 -	Cd		114	13356.1	96.26622	ppb
 -	Sb		121	24219.4		ppb
1	Sb		123	18236	100.87648	ppb
	Ba		135	10808.7		ppb
	Ва		137	20418.3	100.00695	ppb
>	Но		165	49325.3		ppb
1	TI		205	139942.3		
 -	₽b		208	183299.3	99,54492	ppb
	Kr		83	35		ppb

elementOne

ICP-Data 12 of 66 e 31368-Metals

Method 6020 & 200.8 Metals Summary Report Sample ID: 31368-5 FH

Sample DatTuesday, June 19, 2018 17:59:35 Sample Description:

Concentration Results

Concentra	tion Results					
	Analyte	Mass		Meas. Intens	Conc. Mear	•
>	Li		6	3970.1		ppb
 -	Be		9	5.3	0.20932	ppb
 -	P		31	1467.4	-12.53805	ppb
>	Sc		45	6176.8		ppb
1	Cr		52	3002.5	12.10634	
1-	Cr		53	373	-2.87376	ppb
-	Mn		55	1956.1	7.13912	ppb
İ	Co		59	55.7	0.21543	ppb
Ì	Ni		60	772.3	20.04224	ppb
1	Cu		63	394.3	3.74538	ppb
l	Cu		65	160.3	3.34859	ppb
1	Zn		66	1411.4	67.08136	ppb
1	Zn		67	200.3	59.71646	ppb
1	Zn		68	1003	64.26601	ppb
İ	As		75	90.3	2.49893	ppb
1	Se		77	27.3	-31.7177	ppb
l	Se		82	26.1	16,20108	ppb
>	Rh		103	4817.5		ppb
I	Ag		107	24.7	0.0917	ppb
1	Ag		109	21		ppb
	Cd		111	8,9	-0:07934	ppb
 -	Cd		114	25,9	0.11047	ppb
-	Sb		121	181.7		ppb
l	Sb		123	137	0.66281	ppb
l	Ba		135	3065.9		ppb
İ	Ba		137	5878.7	31.3927	ppb
 >	Ho		165	45077.6		ppb
1	TI		205	39.7	-0.03618	
-	Pb		208	6034.9	3.46329	ppb
	Kr		83	28.7		ppb

Method 6020 & 200.8 Metals Summary Report

Sample ID: 31368-6 FH
Sample DalTuesday, June 19, 2018 18:02:41
Sample Description:

Concentration Results

Concent	4				O M	D4 11-4
1.	Analyte	Mass		Meas. Intens	Conc. Mear	•
>	Li		6	4001.8		bbp
-	Be		9	4.3	0.14964	
ļ-	P		31	1483.7	-14.22008	
>	Sc		45	6332.8		ppb
ļ	Cr		52	3082.9	12.12088	
[-	Cr		53	339.3	-4.6933	
 -	Mn		55	2345.4	8.28522	
1	Co		59	37.7	0.10639	
	Ni		60	859.3	21.42683	
	Cu		63	275.7	2.31069	
	Cu		65	117.7	2.17697	
1	Zn		66	706	31.56517	
1	Zn		67	126	33.94115	
1	Zn		68	572	31.8998	ppb
1	As		75	92.9	2.43784	ppb
1	Se		77	12.7	-45.91554	ppb
1	Se		82	11.1	6.26181	ppb
>	Rh		103	5017.8		dqq
1	Ag		107	16.7	-0.00263	ppb
1	Ag		109	11		ppb
	Cd		111	15.8	0.11439	ppb
-	Cd		114	16.2	0.02568	ppb
j-	Sb		121	161		ppb
İ	Sb		123	120.9	0.53978	ppb
i	Ba		135	3279.2		ppb
į	Ba		137	5999.7	30.93802	ppb
 >	Ho		165	46678.2		ppb
į	TI		205	22	-0.05054	ppb
 -	Ρb		208	3987.1	2.16344	
•	Kr		83	25		ppb

elementOne

e 31368-Metals ICP-Data 13 of 66

Method 6020 & 200.8 Metals Summary Report Sample ID: LRB BH

Sample DatTuesday, June 19, 2018 18:05:48

Sample Description: Concentration Results

	Analyte	Mass	Meas	. Intens	Conc. Mear	Report Unit
>	Li	;	3 .	4059,8		ppb
<u> -</u>	Be	:	9	3	0.07318	ppb
i -	Р	3	1	1325.7	-26.41223	ppb
 >	Sc	4	5	6322.1		ppb
1	Cr	5	2	639.7	0.20575	ppb
]-	Cr	5	3	65.7	-16.24241	ppb
1-	Mn	5	5	175.7	0.25059	ppb
Ì	Co	5	9	13.3	-0.02515	ppb
Ì	Ni	6	0	10.7	0.0013	ppb
	Cu	6	3	81.7	0.28221	ppb
ĺ	Cu	6	5	32.7	0.18075	ppb
	Zn	6	6	221	9.38225	ppb
	Zn	6	7	28.3	3.83411	ppb
Į.	Zn	6	В	246	10.1423	ppb
1	As	7	5	68.5	1.41994	ppb
]	Se	7	7	9.3	-48.64826	ppb
1	Se	8	2	8.0	0.04222	ppb
>	Rh	10	3	4866.8		ppb
1	Ag	10	7	12.7	-0.04082	ppb
1	Ag	10		9.7		ppb
	Cd	11	1	7.4	-0.12665	
-	Cd	11	4	9	-0.02705	ppb
-	Sb	12	1	21		ppb
]	Sb	12	3	15.5	-0.07489	ppb
1	Ba	13	5	22		ppb
1	Ba	13	7	38	0.03921	ppb
>	Ho	16		45291		ppb
1	TI	20	5	19.3	-0.05215	ppb
[-	Pb	20		287.7	0.04227	ppb
	Kr	8	3	30.3		ppb

Method 6020 & 200.8 Metals Summary Report

Sample ID: LRB BH

Sample DatTuesday, June 19, 2018 18:08:55

Sample Description: Concentration Results

Concentia	Analyte	Mass		Meas. Intens	Conc. Mear	Report Unit
>	Li		6	3991.6	00110. 111001	ppb
ļ-	Be		9	910	51.66258	
<u> </u> -	P		31	3638.9	164.39813	
>	Sc		45	6179.8	10-1.00010	ppb
i	Сг		52	10903	51.60859	
i_	Cr		53	1202	33.0178	
i-	Mn		55	13524	51.31677	
1	Co		59	9002	50.61945	
i	Ni		60	1910.4	49.45226	• •
i	Cu		63	4726,8	51.07394	
i	Cu		65	2100.4	50,88181	
i	Zn		66	1248.7	58,59084	
i	Zn		67	196.7	57.84853	
i	Zn		68	948.7	59.71224	
i	As		75	1110.9	51.58923	
i	Se		77	60.7	-1.14364	
i	Se		82	77.7	48.94389	ppb
j>	Rh		103	4866.8		ppb
İ	Ag		107	4780.8	51.6907	ppb
İ	Ag		109	4548.7		ppb
1	Cď		111	1625.4	48.69714	ppb
 -	Cd		114	6084.2	48.32564	ppb
 -	Sb		121	12135,3		ppb
I	Sb		123	9314	55.91584	ppb
[Ba		135	5151.5		ppb
1	Ba		137	9971	52,99289	ppb
>	Но		165	45395.5		ppb
	Τl		205	64384.5		
-	Pb		208	86061.4	50.72366	ppb
	Kr		83	32		ppb

elementOne

ICP-Data 14 of 66 e 31368-Metals

Method 6020 & 200.8 Metals Summary Report Sample ID: 31368-1 BH Sample DalTuesday, June 19, 2018 18:12:02 Sample Description: Concentration Results

	Analyte	Mass		Meas. Intens	Conc. Mear	Report Unit
>	Li		6	3988,3		ppb
j-	Be		9	3.7	0.11216	ppb
<u>i</u> -	P		31	4917.8	263.58449	ppb
j>	Sc		45	6257.8		ppb
j	Cr		52	1518.7	4.59635	ppb
j-	Cr		53	146.3	-12.77076	ppb
j-	Mn		55	8628,5	33.11626	ppb
İ	Co		59	155.3	0.78881	ppb
İ	Ni		60	181.3	4.52093	ppb
Ì	Cu		63	1015.7	10.67507	ppb
İ	Cu		65	455.7	10.73162	ppb
Ì	Zn		66	6381.8	309.25617	ppb
ĺ	Zn		67	944.7	302.67267	ppb
Ì	Zn		68	4383.1	306.80325	ppb
ĺ	As		75	88.9	2.45257	ppb
ĺ	Se		77	15	-43.17188	ppb
1	Se		82	11.1	6.66633	ppb
>	Rh		103	4789.8		ppb
1	Ag		107	77	0,67053	ppb
1	Ag		109	57		ppb
1	Cd		111	37.3	0.79002	ppb
-	Cd		114	113.3	0.81755	ppb
 -	Sb		121	165.7		ppb
	Sb		123	124.2	0.58721	ppb
	Ba		135	782.7		ppb
	Ba		137	1466.4	7.73901	ppb
>	Ho		165			ppb
1	ΤI		205	42	-0.03421	
-	Pb		208		13.31728	ppb
	Kr		83	30.3		ppb

Kr 83 30.3 Method 6020 & 200.8 Metals Summary Report Sample ID: 31368-2 BH Sample Dal Tuesday, June 19, 2018 18:15:08 Sample Description:

Concentration Results

-		Analyte	Mass		Meas, Intens	Conc. Mear	Report Unit
- Be	>	Li		6	3959.4		ppb
Sc	j -	Be		9	3.7	0.1146	ppb
Cr 52 2609.8 10.21721 ppb	j-	Ρ		31	5270.2	300.05335	ppb
- Cr 53 280.3 -6.81524 ppb Mn 55 12886 50.53794 ppb Co 59 320.7 1.76746 ppb Ni 60 915.4 24.3565 ppb Cu 63 3983.7 44.42098 ppb Cu 65 1723.4 43.06206 ppb Zn 66 11491.6 567.60381 ppb Zn 67 1711.7 562.38745 ppb Zn 68 7688.8 553.46142 ppb As 75 126 4.38107 ppb Se 77 17.7 -40.37433 ppb Se 82 22.4 14.23524 ppb Ph Ag 107 82.3 0.74568 ppb Ag 109 84 ppb Ag 109 84 ppb Cd 111 34.7 0.73013 ppb Cd 114 131.3 0.98132 ppb Cd 114 131.3 0.98132 ppb Sb 123 225.2 1.22741 ppb Ba 135 5139.5 ppb Ph Ba 137 10030 54.88303 ppb Ph Ho 165 44089.2 ppb Pb Co.2991 ppb Pb Co.2991 ppb Pb Co.2991 ppb Co	ĺ>	Sc		45	6139.4		ppb
- Mn 55	ĺ	Cr		52	2609,8	10.21721	ppb
Co 59 320.7 1.76746 ppb Ni 60 915.4 24.3565 ppb Cu 63 3983.7 44.42098 ppb Cu 65 1723.4 43.06206 ppb Cu 65 1723.4 43.06206 ppb Cn 66 11491.6 567.60381 ppb Cn 66 11491.6 567.60381 ppb Cn 68 7688.8 553.46142 ppb Cn 68 76888.8 553.46142 ppb Cn 68 76888.8 553.46142 ppb Cn 68 76888.8 553.46142 ppb Cn 68 76888.8 553.46142 ppb Cn 68 76888.8 553.46142 ppb Cn 68 76888.8 553.46142 ppb Cn 68 768888.8 553.46142 ppb Cn 68 768888.8 553.46142 ppb Cn 68 7688888.8 553.46142 ppb Cn 68 7688888888 ppb Cn 68 76888888 ppb Cn 68 76888888 ppb Cn 68 76888888 ppb Cn 68 76888888 ppb Cn 68 76888888 ppb Cn 68 76888888 ppb Cn 68 76888888 ppb Cn 68 76888888 ppb Cn 68 76888888 ppb Cn 68 7688888888 ppb Cn 68 76888888 ppb Cn 68 76888888 ppb Cn 68 76888888 ppb Cn 68 76888888 ppb Cn 68 76888888 ppb Cn 68 76888888 ppb Cn 68 76888888 ppb Cn 68 76888888 ppb Cn 68 76888888 ppb Cn 68 768888888 ppb Cn 68 7688888 ppb Cn 68 76888888 ppb Cn 68 76888888 ppb Cn 68 7688888 ppb Cn 68 7688888 ppb Cn 68 76888888 ppb Cn 68 76888	į-	Cr		53	280.3	-6.81524	ppb
Ni 60 915.4 24.3565 ppb Cu 63 3983.7 44.42098 ppb Cu 65 1723.4 43.06206 ppb Zn 66 11491.6 567.60381 ppb Zn 67 1711.7 562.38745 ppb Zn 68 7688.8 553.46142 ppb As 75 126 4.38107 ppb Se 77 17.7 -40.37433 ppb Se 82 22.4 14.23524 ppb P Rh 103 4707.1 ppb Ag 107 82.3 0.74568 ppb Ag 109 84 ppb Cd 111 34.7 0.73013 ppb Cd 111 34.7 0.73013 ppb Cd 114 131.3 0.98132 ppb Cd 114 131.3 0.98132 ppb Sb 121 305.3 ppb Sb 123 225.2 1.22741 ppb Ba 135 5139.5 ppb Ba 137 10030 54.88303 ppb P Ho 165 44089.2 ppb TI 205 46.7 -0.02991 ppb	-	Mn		55	12886	50.53794	ppb
Cu 63 3983.7 44.42098 ppb Cu 65 1723.4 43.06206 ppb I 7n 66 11491.6 567.60381 ppb I 7n 67 1711.7 562.38745 ppb I 7n 68 7688.8 553.46142 ppb I 7n 17n 17n 17n 17n 17n 17n 17n 17n 17n	Ì	Co		59	320,7	1.76746	ppb
Cu 65 1723.4 43.06206 ppb Zn 66 11491.6 567.60381 ppb Zn 67 1711.7 562.38745 ppb Zn 68 7688.8 553.46142 ppb As 75 126 4.38107 ppb Se 77 17.7 -40.37433 ppb Se 82 22.4 14.23524 ppb Rh 103 4707.1 ppb Ag 107 82.3 0.74568 ppb Ag 109 84 ppb Cd 111 34.7 0.73013 ppb Cd 114 131.3 0.98132 ppb Sb 121 305.3 ppb Sb 123 225.2 1.22741 ppb Ba 135 5139.5 ppb Ba 137 10030 54.88303 ppb Ho 165 44089.2 ppb TI 205 46.7 -0.02991 ppb Pb 208 66114.8 40.09176 ppb	Ì	Ni		60	915.4		
Zn 66 11491.6 567.60381 ppb Zn 67 1711.7 562.38745 ppb Zn 68 7688.8 553.46142 ppb As 75 126 4.38107 ppb Se 77 17.7 -40.37433 ppb Se 82 22.4 14.23524 ppb Rh 103 4707.1 ppb Ag 107 82.3 0.74568 ppb Ag 109 84 ppb Cd 111 34.7 0.73013 ppb Cd 111 34.7 0.73013 ppb Cd 114 131.3 0.98132 ppb Sb 121 305.3 ppb Sb 123 225.2 1.22741 ppb Ba 135 5139.5 ppb Ba 137 10030 54.88303 ppb Ho 165 44089.2 ppb TI 205 46.7 -0.02991 ppb Pb 208 66114.8 40.09176 ppb	ĺ	Cu		63	3983.7	44.42098	ppb
Zn 67 1711.7 562.38745 ppb Zn 68 7688.8 553.46142 ppb As 75 126 4.38107 ppb Se 77 17.7 -40.37433 ppb Se 82 22.4 14.23524 ppb Ppb Ag 107 82.3 0.74568 ppb Ag 109 84 ppb Ppb Cd 111 34.7 0.73013 ppb Ppb Cd 114 131.3 0.98132 ppb Ppb	1	Cu		65			
Zn 68 7688.8 553.46142 ppb	1	Zn		66	11491.6		
As	1	Zn		67			
Se	1	Zn					
Se 82 22.4 14.23524 ppb ppb ppb Ag 107 82.3 0.74568 ppb Ag 109 84 ppb ppb Cd 111 34.7 0.73013 ppb Cd 114 131.3 0.98132 ppb Cd 114 131.3 0.98132 ppb Cd 121 305.3 ppb Cd 121 305.3 ppb Cd 125.25.2 1.22741 ppb Cd Cd 125.25.2 1.22741 ppb Cd Cd Cd Cd Cd Cd Cd C	1	As			126	4.38107	ppb
Rh		Se			17.7		
Ag	1	Se				14.23524	ppb
Ag 109 84 ppb Cd 111 34.7 0.73013 ppb - Cd 114 131.3 0.98132 ppb - Sb 121 305.3 ppb Sb 123 225.2 1.22741 ppb Ba 135 5139.5 ppb Ba 137 10030 54.88303 ppb > Ho 165 44089.2 ppb Tl 205 46.7 -0.02991 ppb - Pb 208 66114.8 40.09176 ppb	>	Rh		103	4707.1		
Cd		Ag		107		0.74568	ppb
- Cd	1	Ag			84		
- Sb 121 305.3 ppb Sb 123 225.2 1.22741 ppb Ba 135 5139.5 ppb Ba 137 10030 54.88303 ppb > Ho 165 44089.2 ppb Tl 205 46.7 -0.02991 ppb - Pb 208 66114.8 40.09176 ppb	1						
Sb	 -	Cd		114	131.3	0.98132	ppb
Ba	 -						
Ba 137 10030 54.88303 ppb	l	Sb			225,2	1.22741	ppb
> Ho 165 44089.2 ppb Tl 205 46.7 -0.02991 ppb - Pb 208 66114.8 40.09176 ppb	[Ba					
TI 205 46.7 -0.02991 ppb - Pb 208 66114.8 40.09176 ppb	1	Ba				54.88303	ppb
- Pb 208 66114.8 40.09176 ppb	>	Но					
	1						
Kr 83 30 ppb	 -					40.09176	ppb
		Kr		83	30		ppb

elementOne

e 31368-Metals ICP-Data 15 of 66

Method 6020 & 200.8 Metals Summary Report Sample ID: 31368-2 BH Sample DatTuesday, June 19, 2018 18:18:15 Sample Description

Concentration Results

Concentia			Concentration Results									
	Analyte	Mass			Conc. Mear	Report Unit						
>	Li		6	3947.6		ppb						
 -	Be		9	2.7	0.05733							
[-	Р		31	5197.2	295.18599	ppb						
>	Sc	4	15	6123.1		ppb						
]	Cr		52	2504.5	9.71967	ppb						
]-	Cr		53	287	-6.4875	ppb						
1-	Mn		55	12599.8	49.50448	ppb						
	Co		59	306.7	1.68915	ppb						
	Ni	(50	894.7	23.84043	ppb						
	Cu	(33	3792.3	42.33158	ppb						
1	Cu	(35	1729.1	43.31103	ppb						
1	Zn	(36	11251.9	556.68399	ppb						
	Zn	(37	1650.7	543.05207	ppb						
Ī	Zn	(38	7624.5	549.59344	ppb						
	As	•	75	70.6	1.62035	ppb						
l	Se	•	77	21.3	-36.93827	ppb						
1	Se	ŧ	32	3.4	1.61215	ppb						
>	Rh	10)3	4700.4		ppb						
1	Ag	10	7	87	0.79889	ppb						
]	Ag	10	9	80		ppb						
1	Cd	11	11	39.8	0.89528	ppb						
 -	Cd	11	14	122	0.90762	ppb						
 -	Sb	13	21	291.7		ppb						
1	Sb	13	23	238.6	1.30299	ppb						
1	Ва	13	35	5193.9		ppb						
1	Ba	13	37	9661.2	52.59664	ppb						
>	Но	10	35	44311.9		ppb						
1	TI	20	05	45.3	-0.0312	ppb						
 -	Pb	20	08	65372.7	39.44154	ppb						
	Kr	i	33	31.3		ppb						

Method 6020 & 200.8 Metals Summary Report Sample ID: 31368-3 BH Sample DatTuesday, June 19, 2018 18:21:22

Sample Description:

Concentration Results

	Analyte	Mass]	Meas. Intens	Conc. Mear	Report Unit
>	Li		6	3974.1		ppb
-	Ве		9	3.3	0.09374	
j-	Р		31	4062	198.37903	
>	Sc		45	6187,8		ppb
ĺ	Cr		52	1914.4	6.64036	
İ-	Cr		53	203,3	-10.23923	
i-	Mn		55	14377.1	55.74108	
İ	Co		59	121	0.59591	ppb
į	Ni		60	542	14.12729	
<u> </u>	Cu		63	1446	15.53039	ppb
1	Cu		65	661	15,92209	ppb
1	Zn		66	5153.9	250.77432	ppb
I	Zn		67	772	247.58774	ppb
I	Zn		68	3559.9	249.14481	ppb
I	As		75	72	1.64332	ppb
I	Se		77	10	-47.80896	
[Se		82	1.8	0.61826	ppb
 >	Rh		103	4766.1		ppb
1	Ag		107	2476.8	27.26241	ppb
	Ag		109	2363.8		ppb
1	Cd		111	63	1.58549	
 -	Cd		114	280.8	2.18336	ppb
 -	Sb		121	589		ppb
1	Sb		123	462	2.64777	ppb
1	Ba		135	1144		ppb
1	Ba		137	2143.4	11,40168	ppb
>	Но		165	44861.2		ppb
	TI		205	22.3	-0.04966	
-	Pb		208	15004.4	8.84468	
	Kr		83	29.7		ppb

elementOne

ICP-Data 16 of 66 e 31368-Metals

Method 6020 & 200.8 Metals Summary Report Sample ID: 31368-3 BH Sample Dal Tuesday, June 19, 2018 18:24:28 Sample Description:

Concentrati	ion Results					
	Analyte	Mass		Meas, Intens	Conc. Mear	Report Unit
>	Li		6	4079.8		ppb
 -	Be		9	835	46,3609	ppb
-	P		31	6359.5	370.6895	ppb
>	Sc		45	6367.8		ppb
l	Cr		52	11833.8	54.5186	ppb
] -	Cr		53	1291.7	35,23022	ppb
]-	Mn		55	26531.4	101.81348	ppb
1	Co		59	8811.6	49,90566	ppb
I	Ni		60	2441.1	63.72608	ppb
Ì	Cu		63	6057.7	66.1076	ppb
ĺ	Cu		65	2663.1	65.15669	ppb
İ	Zn		66	6229.1	299.23003	ppb
1	Zn		67	919.4	291.82658	ppb
İ	Zn		68	4238.7	293.91091	ppb
I	As		75	1054.3	49.23399	ppb
İ	Se		77	54.3	-6.73169	ppb
I	Se		82	61.5	38.91039	ppb
>	Rh		103	4831.1		ppb
İ	Ag		107	7424.1	80.95906	ppb
1	Ag		109	7068.7		ppb
Ì	Cd		111	1690.6	51.03568	ppb
į-	Cd		114	6360.1	50.89424	ppb
 -	Sb		121	12313.7		ppb
İ	Sb		123	9415.4	57,93191	ppb
Ì	Ва		135	6306.5		ppb
Ì	Ba		137	11648	63.47998	ppb
 >	Но		165	44287.2		ppb
İ	TI		205	63094.2	50.14103	
j -	₽b		208	99672.5	60.23544	ppb
-	Kr		83	27.3		ppb
Markhaul CO	20 0 200 0 1	Antala C		D		

Kr 83 27.3

Method 6020 & 200.8 Metals Summary Report Sample ID: 31368-4 BH
Sample DatTuesday, June 19, 2018 18:27:34
Sample Description:
Concentration Results

	Analyte	Mass		Meas. Intens	Conc. Mear	Report Unit
>	Li		6	4122		ppb
i-	Be		9	3	0.07032	ppb
j -	Р		31	4002	190.81045	ppb
>	Sc		45	6238.8		ppb
Ì	Cr		52	1405	4.03935	ppb
ĺ-	Cr		53	135.3	-13,22339	ppb
Ì-	Mn		55	5915.4	22.24029	ppb
Ì	Co		59	73	0.3118	ppb
ĺ	Ni		60	319.3	8.04776	ppb
Ì	Cu		63	7243.7	78.71967	ppb
ĺ	Cu		65	3191.9	77.74452	ppb
I	Zn		66	4410.4	210.24945	ppb
	Zn		67	684.3	214.61487	ppb
İ	Zn		68	3091.5	211.14891	ppb
İ	As		75	92.2	2.55994	ppb
Ì	Se		77	12.7	-45.53938	ppb
1	Se		82	3.8	1.8968	ppb
>	Rh		103	4859.1		ppb
1	Ag		107	30	0.14716	ppb
1	Ag		109	30		ppb
1	Cd		111	9.7	-0.05833	
 -	Cd		114	51.8	0.31509	ppb
[-	Sb		121	80.3		ppb
1	Sb		123	56.7	0.17742	ppb
1	Ba		135	731.3		ppb
	Ba		137	1400	7.40556	ppb
>	Но		165	44757.7		ppb
1	TI		205		-0.04938	
 -	Pb		208	8065.5	4.70522	ppb
	Kr		83	28.7		ppb

elementOne

ICP-Data 17 of 66 e 31368-Metals

Method 6020 & 200.8 Metals Summary Report

Sample ID: QC Std 1 Sample DalTuesday, June 19, 2018 18:30:43

Sample Description:

Concentration Results

	Analyte	Mass		Meas. Intens	Conc. Mear	Report Unit
>	Li		6	4431.2		ppb
j-	Be		9	2	0.00529	
i-	Р		31	1195.4	-43.80503	
j>	Sc		45	6813.6		ppb
ĺ	Cr		52	625	-0.08588	ppb
į-	Cr		53	892.7	16.02609	ppb
-	Mn		55	104.7	-0.05577	ppb
j	Co		59	12	-0.03894	
1	Ni		60	8	-0.08618	ppb
1	Cu		63	47.7	-0.1372	ppb
1	Cu		65	19	-0.19792	
1	Zn		66	27.3	-0.02494	ppb
1	Zn		67	13	-1.51458	ppb
1	Zn		68	108.7	-0.24919	ppb
1	As		75	102.5	2.57735	ppb
l	Se		77	68.3	0.18122	ppb
	Se		82	5.5	2.49242	ppb
>	Rh		103	5350.2		ppb
1	Ag		107	11	-0.0698	ppb
	Ag		109	13		ppb
	Cd		111	12	-0.01889	ppb
 -	Cd		114	9.2	-0.03173	ppb
 -	Sb		121	21		ppb
	Sb		123	18.9	-0.0639	ppb
l	Ba		135	14		ppb
1	Ва		137	16.3	-0.08378	ppb
>	Но		165	49444.5		ppb
1	TI		205	24	-0.05011	
1-	Pb		208	86.7	-0.08109	ppb
	Kr		83	27.3		ppb

Method 6020 & 200.8 Metals Summary Report

Sample ID: QC Std 4

Sample DalTuesday, June 19, 2018 18:33:49

Sample Description:

Concentration Results

Contacture	Analyte	Mass		Meas. Intens	Conc. Mear	Report Unit
>	Li		6	4697.5		dad
j-	Be		9	1934.4		
i-	Р		31	15420.4	916.13984	
j>	Sc		45	7406.8		ppb
i	Cr		52	23891.4	96.78163	
j-	Cr		53	3592.3	110.71271	ppb
i-	Mn		55	29819.4	96.25475	ppb
ĺ	Co		59	20495.1	97.75759	ppb
ĺ	Ni		60	4362	95.93971	ppb
1	Cu		63	10444.2	96.17252	ppb
1	Cu		65	4717.8	97.4091	ppb
l	Zn		66	2413.1	96.69249	ppb
1	Zn		67	366	94.22938	ppb
1	Zn		68	1772.1	98.69976	ppb
1	As		75	2546.7	102.01122	ppb
1	Se		77	199	98,51068	
1	Se		82	176.7	94.8386	ppb
>	Rh		03	5742		ppb
1	Ag		07	11102.1	101.91101	ppb
1	Ag		09	10498,5		ppb
1	Cd		11	3804.8		
l -	Cd		14	14234.8	95.92249	ppb
 -	Sb		21	25526		ppb
	Sb		23		101.20321	
Į.	Ba		35	11597.4		bbp
ı	Ba		37		100.77668	
 >	Ho		65	52358.8		ppb
!	TI	_	205		100.09923	
 -	Pb	2	208	194759.6	99.64289	
	Kr		83	33.7		ppb

element One e 31368-Metals

ICP-Data 18 of 66

Method 6020 & 200.8 Metals Summary Report Sample ID: 31368-5 BH Sample Dal Tuesday, June 19, 2018 18:36:57

Sample Description:

Concentration Results

	Analyte	Mass	Meas, Intens	Conc. Mear	Report Unit
>	Li	6	4107.8		ppb
j -	Be	9	2.3	0.03149	ppb
 -	Р	31	3392.6	147.24713	ppb
 >	Sc	45	6113.1		ppb
ĺ	Cr	52	1207.4	3.1835	ppb
 -	Cr	53	192.7	-10.59615	ppb
 -	Mn	55	13820.2	53.06848	ppb
ĺ	Co	59	57	0.22463	ppb
Ì	Ni	60	133.3	3.2356	ppb
Ì	Cu	63	542	5.38757	ppb
Ì	Cu	65	239.3	5.31208	ppb
ĺ	Zn	66	1587.1	75.675	ppb
l	Zn	67	240.3	72.738	ppb
1	Zn	68	1150.4	74.87212	ppb
1	As	75	47.1	0.40135	ppb
Ì	Se	77	' 14	-44.20179	ppb
1	Se	82	-5.2	-3.91302	ppb
[>	Rh	103	4809.8		ppb
	Ag	107	7 15.7	-0.00673	ppb
1	Ag	109	16.3		ppb
1	Cd	111	7.7	-0.11475	ppb
 -	Cd	114	48.9	0.29562	ppb
 -	Sb	121			ppb
Į.	Sb	123	50.3	0.14121	ppb
1	Ba	135	5 557		ppb
1	Ba	137	7 1070.4	5.66988	ppb
>	Но	165	44403.4		ppb
	Tl	205	5 41		
[-	Pb	208	5969.9	3.47832	ppb
	Kr	83	30		ppb

Method 6020 & 200.8 Metals Summary Report Sample ID: 31368-6 BH

Sample DatTuesday, June 19, 2018 18:40:04

Sample Description: Concentration Results

CONCONTRA	Analyte	Mass		Meas. Intens	Conc. Mear	Report Unit
>	Li		6	3961		ppb
<u> -</u>	Be		9	2.3	0.0368	
j-	P		31	3860.3	191.0782	
>	Sc		45	6013.7		ppb
i	Cr		52	1290	3.70803	
Í-	Cr		53	148,3	-12.43361	ppb
Ì-	Mn		55	1007.4	3.54334	ppb
İ	Co		59	24	0.03901	ppb
i	Ni		60	106.3	2.56701	
j	Cu		63	404.3	3.93775	ppb
ì	Cu		65	186	4.06665	
ĺ	Zn		66	737.3	35,08458	ppb
ĺ	Zn		67	108.3	30.48297	ppb
İ	Zn		68	554	32.96347	ppb
1	As		75	61.5	1.18686	ppb
	Se		77	10.3	-47.44129	ppb
	Se		82	-4.9	-3.68903	ppb
>	Rh		103	4733.1		ppb
l	Ag		107	13.3	-0.02932	ppb
]	Ag		109	13.7		ppb
	Cd		111	8.6	-0.08361	
-	Cd		114	43.8	0.25704	ppb
] -	Sb		121	385.3		ppp
1	Sb		123	286.5	1.64979	ppb
1	Ва		135	49.7		ppb
	Ba		137	89.7	0.33973	
>	Но		165	43074.4		ppb
	TI		205	25.3		
-	Pb		208	710	0.31404	
	Kr		83	34.7		ppb

elementOne

ICP-Data 19 of 66 e 31368-Metals 63.19

Method 6020 & 200.8 Metals Summary Report Sample ID: 31368-7

Sample Dai Tuesday, June 19, 2018 18:43:10 Sample Description: Concentration Results

	Analyte	Mass		Meas. Intens	Conc. Mear	Report Unit
[>	Li		6	4652.3		ppb
j-	Be		9	866,3	42.20833	
i-	P		31	2302.8	31.89704	ppb
>	Sc		45	7070		ppb
ĺ	Cr		52	12900	53.47189	
j-	Cr		53	5657.3	195.0241	ppb
j-	Mn		55	23159.7	83,20925	dqq
Ì	Co		59	8708.2	46.2165	ppb
ĺ	Ni		60	3155.5	77,27087	ppb
İ	Cu		63	5915.7	60.45465	ppb
ĺ	Cu		65	2589.1	59.33643	ppb
ĺ	Zn		66	1997.1	89.06516	ppb
ĺ	Zn		67	327	93.68904	ppb
1	Zn		68	1442.7	88.83992	ppb
ì	As		75	1816.4	80.7037	ppb
1	Se		77	448.7	333.60688	ppb
1	Se		82	121.7	72.7355	ppb
 >	Rh		103	5154.9		ppb
1	Ag		107	11957.2	122.30326	ppb
1	Ag		109	11509		ppb
1	Cd		111	1171.2	33.01941	ppb
 -	Cd		1 14	4705.2	35.26124	ppb
[-	Sb		121	18741.7		ppb
ĺ	Sb		123	14150.1	81,34657	ppb
1	Ва		135	7877.6		ppb
1	Ba		137	15586.2	79.32334	ppb
 >	Ho		165	47449.3		ppb
	TI		205	145012.4	107.64233	
-	Pb		208	127400.9	71.88585	ppb
	Kr		83	_ 38.3		ppb

Method 6020 & 200.8 Metals Summary Report

Sample ID: 31368-7

Sample Dal Tuesday, June 19, 2018 18:46:17 Sample Description:

Concentration Results

Concentra	Analyte	Mass	1	Meas, Intens	Conc. Mear	Report Unit
>	Li	maoo	6	4760.5	COITO. IVICAI	ppb
<u> </u> -	Be		9	1944.7	92.6501	
į-	P		31		170.82102	
 >	Sc		45	7278.7	170.02102	ppb
1	Cr		52		100.53587	
i-	Cr Cr		53		234.71591	
i-	Mn		55		130.17454	
i	Co		59	18218.3		
i	Ni		60		124.71276	
i	Cu		63		109.28361	
ĺ	Cu		65		109.26679	
i	Zn		66		132.43505	
i	Zn		67		143,24223	
i	Zn		68		136.75507	
i	As		75		129.38565	
i	Se		77		345.92608	
i	Se		82		131.90979	• •
<i< td=""><td>Rh</td><td></td><td>103</td><td>5300.9</td><td></td><td>ppb</td></i<>	Rh		103	5300.9		ppb
i	Ag		107	17450,1	173.67026	
i	Αg		109	16864		ppb
i	Cd		111	2697	74.37253	
j-	Cd		114	10808.1	78,88638	
j-	Sb		121	30837.7		ppb
į	Sb		123	23517.6	132.40468	ppb
İ	Ва		135	12801.6		ppb
1	Ba		137	25415.6	126.68594	ppb
>	Ho		165	48483.6		ppb
	Ti		205	214199.8	155.63319	ppb
-	₽b		208	218389.7	120.68731	
	Kr		83	28		ppb

elementOne

ICP-Data 20 of 66 e 31368-Metals 63.20

Method 6020 & 200.8 Metals Summary Report Sample ID: 31368-8
Sample Dal Tuesday, June 19, 2018 18:55:37
Sample Description:

Concentration Results

	Analyte	Mass	Me	as. Intens	Conc. Mear	Report Unit
>	Li		6	4581.2		ppb
į-	Be		9	2228.1	110,34054	ppb
<u> </u>	Р	3	1	4144.7	160.85891	ppb
j>	Sc	4	5	7121.3		ppb
İ	Cr	5	2	75274.2	323.78666	ppb
j -	Cr	5	3	9058.3	321.24513	ppb
i-	Mn	5	5	44996.8	148.45118	ppb
ĺ	Co	5	9	33121.9	161.28235	ppb
1	Ni	6	O	9435.4	212.09576	ppb
İ	Cu	6	3	31662.7	298,82222	ppb
ĺ	Cu	6	5	14192.4	300.27455	ppb
İ	Zn	6	6	5562	229.08559	ppb
[Zn	6	37	814	220.51669	ppb
İ	Zn	6	8	3905.6	231.05191	ppb
1	As	7	' 5	2381.7	97.29162	ppb
Ì	Se	7	7	257.7	148.42239	ppb
ĺ	Se	8	32	288.8	158.5942	ppb
>	Rh	10)3	5628.3		ppb
1	Ag	10	7	39185.2	367.71917	ppb
1	Ag	10	9	39783,3		ppb
I	Cd	11	1	3284.2	85.35729	ppb
 -	Cd	11	4	12078.6	83.04527	ppb
-	Sb	12	21	17821		ppb
İ	Sb	12	23	13454.6	71.71829	ppb
1	Ba	13	35	29517.1		ppb
İ	Ba	13	37	56252.2	266.00547	ppb
>	Но	16	55	51164		ppb
	TI	20)5		241.85028	
j-	Pb	20	80	451736.5	236.73493	ppb
	Kr	8	33	29.3		ppb

Method 6020 & 200.8 Metals Summary Report Sample ID: 31368-8

Sample Dai Tuesday, June 19, 2018 18:58:43 Sample Description:

Concentration Results

•••••	Analyte	Mass	1	Meas. Intens	Conc. Mear	Report Unit
 >	Li		6	4500.6		ppb
Ì-	Be		9	3214.2	162.09	ppb
į-	P		31	6693.9	353.82527	ppb
>	Sc		45	6936		ppb
Ì	Cr		52	84843.4	375,20853	ppb
j-	Cr		53	10071	369.3922	ppb
Ì-	Mn		55	59033.3	200,22139	ppb
I	Co		59	42651	213.40015	ppb
ĺ	Ni		60	11209.8	258.98676	ppb
İ	Cu		63	36043	349.58092	ppb
ĺ	Cu		65	16069.8	349.43329	ppb
l	Zn		66	6586.5	279.01526	ppb
1	Zn		67	985.7	275.80753	ppb
ĺ	Zn		68		277,75561	
ĺ	As		75	3487.8	147.28989	ppb
1	Se		77	294	184.01902	ppb
1	Se		82		197.84587	ppb
>	Rh		103	5476.6		ppb
	Ag		107		425.02865	ppb
Į	Ag		109	44534		ppb
1	Cd		111	4974.3	133.01699	ppb
 -	Cq		114	18827.3	133.04396	ppb
l-	Sb		121	30618.4		ppb
1	Sb		123	23383,2	126.14758	ppb
1	Ba		135	34626.3		ppb
1	Ba		137	64827.9	309.89653	ppb
>	Но		165	50600.5		ppb
l	TI		205	414450.8	288.61392	
 -	Pb		208	535021	283.52104	ppb
	Kr		83	31.7		bbp

elementOne

ICP-Data 21 of 66 e 31368-Metals

Method 6020 & 200.8 Metals Summary Report Sample ID: QC Std 1 Sample DalTuesday, June 19, 2018 19:01:51 Sample Description:

Concentration Results

COTICCILIC	Analyte	Mass		Meas. Intens	Conc. Mear	Report Unit
>	Li		6	4337.7		ppb
j <u>-</u>	Be		9	3.3	0.07846	
j-	Р		31	1124.7	-46.79813	
i>	Sc		45	6631.9		ppb
i	Cr		52	651	0.11266	
i-	Cr		53	531.7	2.42379	
i-	Mn		55	124.3	0.01863	
İ	Co		59	23.7	0.02284	ppb
i	Ni		60	13	0.03622	ррь
j	Cu		63	60	-0.00461	
ĺ	Cu		65	20.7	-0.15328	ppb
ĺ	Zn		66	23	-0.19662	
1	Zn		67	17	-0.23781	ppb
ĺ	Zn		68	106.3	-0.29682	ppb
	As		75	66.4	1.06652	
	Se		77	58.3	-7.49203	ppb
l	Se		82	1.8	0.52086	ppb
[>	Rh	1	03	5268.2		ppb
1	Ag		07	390.7	3.73792	ppb
1	Ag		09	305.7		ppb
	Cd		11	5.8	-0.18963	
 -	Cd		14	8,6	-0.03516	ppb
 -	Sb		21	130.7		ppb
1	Sb		23	96.6	0.3838	ppb
l	Ba		35	21		ppb
I	Ba		37	36.7	0.02182	
>	Но		65	47817.4		ppb
1	TI		05	123.3	0.02365	
 -	Pb	2	80	227.7	-0.00037	
	Kr		83	28.3		ppb

Method 6020 & 200.8 Metals Summary Report

Sample ID: QC Std 2

Sample DalTuesday, June 19, 2018 19:04:58 Sample Description:

Concentration Results

CONCCIL	Analyte	Mass	N	Aeas, Intens	Conc. Mear Report Unit
>	Li		6	4399.3	ppb
j-	Be		9	21	0.98463 ppb
i-	Р		31	1391.4	-26.59712 ppb
j>	Sc		45	6636.2	ppb
i	Сг		52	829,3	0.94005 ppb
j-	Cr		53	555.3	3.36137 ppb
i-	Mn		55	382.7	0.93017 ppb
İ	Co		59	226.7	1.07778 ppb
ĺ	Ni		60	47	0.85404 ppb
Ì	Cu		63	159.7	1.00116 ppb
İ	Cu		65	61.3	0.769 ppb
Ì	Zn		66	51	1.03799 ppb
1	Zn		67	14.7	-0.92453 ppb
Ì	Zn		68	113.3	0.15204 ppb
İ	As		75	94.3	2.30335 ppb
1	Se		77	65	-1.85517 ppb
1	Se		82	4.5	2.1271 ppb
>	Rh		103	5273.2	ppb
1	Ag		107	224.3	2.06824 ppb
	Ag		109	361	ppb
1	Cd		111	42.6	0.83546 ppb
-	Cd		114	147.1	0.98178 ppb
 -	Şb		121	344.3	ppb
1	Sb		123	262.9	1.32549 ppb
	Ba		135	124.7	ppb
1	Ba		137	216.7	0.92671 ppb
>	Ho		165	48084.9	ppb
	TI		205	1424.4	0.97682 ppb
 -	Pb		208	1948.7	0.95899 ppb
	Kr		83	25.3	ppb

elementOne e 31368-Metals

ICP-Data 22 of 66

Method 6020 & 200.8 Metals Summary Report Sample ID: QC Std 4 Sample DaiTuesday, June 19, 2018 19:08:05 Sample Description

Concentration Results

	Analyte	Mass	Meas	. Intens	Conc. Mear	Report Unit
>	Li	6	;	4583		ppb
j-	Be	9	•	1898.7	93.99634	ppb
ì-	Р	31	1	5064.9	912,49343	ppb
 >	Sc	45	5	7261.1		ppb
1	Cr	52	2 2	3680.5	97.87472	ppb
j -	Cr	53	3	3148.2	96.97962	ppb
ĺ-	Mn	55	5 2	9348.9	96.27599	ppb
ĺ	Co	59	2	0091.7	97.38815	
l	Ni	60		4259.7	95,20792	ppb
1	Cu	63		0404.8		
1	Cu	65		4569.4		
ĺ	Zn	66			100.05807	
1	Zn	6		366.3	95.97632	
1	Zn	6		1771.1		
	As	7		2480.9		
	Se	7	7	177.3		
	Se	8:		165.8	90.43155	ppb
 >	Rh	10		5650		ppb
1	Ag	10			101.08189	ppb
l	Ag	10		0584.6		ppb
1	Cd	11		3774.2		
1-	Cd	11		4184.8	97.1412	ppb
 -	Sb	12		25708.5		ppb
l	Sb	12			101.55461	
1	Ba	13		1619.7		ppb
1	Ва	13		21866.6	101.73	
>	Но	16		51932.9		bbp
I	TI	20		16847.4		
 -	₽b	20		92474.7	99.27889	
	Kr	8	3 _	29.7		ppb

Method 6020 & 200.8 Metals Summary Report Sample ID: QC Std 1 Sample DatWednesday, June 20, 2018 12:23:59

Sample Description:

Concentration Results

Concentia	Analida	Mass		Meas. IntensConc.	Maar Danort Unit
15.	Analyte	141922	6	2430.2	•
>	Li Da		9	3.3	ppb
ļ-	Be		_	5.3 5423.6	ppb
[-	P		31		ppb
>	Sc		45	3683.3	ppb
ļ	Cr		52	490	ppb
ļ-	Cr		53	330.7	bbp
 -	Mn		55	82.7	ppb
1	Ni		60	8.3	ppb
	Cu		63	60.7	ppb
1	Cu		65	23.3	ppb
1	Zn		66	75.7	ppb .
1	Zn		67	22,3	ppb
1	Zn		68	102.3	ppb
İ	As		75	53	ppb
ĺ	Se		77	47	ррь
ì	Se		82	-0.2	ppb
 >	Rh		103	2965.5	ppb
ĺ	Ag		107	28	ppb
i	Ag		109	24.3	ppb
i	Cď		111	5,5	ppb
į-	Cd		114	14.2	ppb
j-	Sb		121	67.7	ppb
ĺ	Sb		123	56.7	ppb
i	Ba		135	12.7	ppb
i	Ba		137	18	ppb
>	Но		165	26296.2	ppb
j-	Pb		208	194.3	ppb
Ī	Kr		83	20.3	ppb

element**One** e 31368-Metals

B-229

ICP-Data 23 of 66

Method 6020 & 200.8 Metals Summary Report Sample ID: Standard 1 Sample Dal Wednesday, June 20, 2018 13:44:58 Sample Description:

Concentration Results

	Analyte	Mass	Meas.	Intens	Conc. Mear	Report Unit
>	Li		6	2801		ppb
j-	Be		9	18	1.01847	
 -	P	3	1 1	1539.4	-521.9543	ppb
 >	Sc	4	5 3	3929.3		ppb
Ì	Cr	5	2	556.3	0.28477	ppb
j -	Cr	5	3	295.7	-4.23904	ppb
-	Mn	5	5	219	0.89855	ppb
ĺ	Ni	6	0	26.3	0.77147	ppb
1	Cu	6	3	90	0.50075	ppb
1	Cu	6	5	37	0.53481	ppb
1	Zn	6	6	34.3	-3.4237	ppb
1	Zn	6	7	13,7	-5.02413	ppb
1	Zn	6	8	81.3	-2.85072	ppb
1	As	7	5	85.4	2.07538	ppb
I	Se	7	7	31,3	-30.91776	ppb
İ	Se	8	2	0.5	0.76234	ppb
[>	Rh	10	3 3	3077.9		ppb
1	Ag	10	7	70.3	0.66619	
i	Ag	10	9	64.3		ppb
1	Cd	11	1	29	1.06555	
 -	Cd	11	4	94.4	0.98581	dqq
-	Sb	12	1	164.3		ppb
	Sb	12	3	126.4	0.6171	ppb
	Ba	13	5	60.7		ppb
1	Ba	13		114.3	0.91508	ppb
>	Но	16	5 28	3395,8		ppb
-	Pb	20		1161	0.8818	ppb
	Kr	٤	3	21.3		ppb

Kr 83 21.3 Method 6020 & 200.8 Metals Summary Report Sample ID: Standard 2

Sample DatWednesday, June 20, 2018 13:47:59

Sample Description:

Concentration Results

	Analyte	Mass		Meas, Intens	Conc. Mear	Report Unit
>	Li		6	2918.8		ppb
j-	Be		9	1385.4	95.49706	
j-	P		31	10216.4	504.63693	ppb
j>	Sc		45	4061.3		ppb
i	Cr		52	13248.5	103.02362	dad
j -	Cr		53	1757.1	99.10782	ppb
j-	Mn		55	15531.5	97.83602	ppb
İ	Ni		60	2440.8	98.35558	ppb
İ	Cu		63	5753	98.28759	ppb
İ	Cu		65	2565.5	97.51925	ppb
į	Zn		66	1367	92,87956	
1	Zn		67	219	95.82645	ppb
1	Zn		68	955.4	90.22896	ppb
1	As		75	1609.3	101.41533	ppb
	Se		77	100.7	80.96985	ppb
Ì	Se		82	103.8	106.20265	ppb
>	Rh		103	3284.5		ppb
ĺ	Ag		107	6536,5	98,3948	ppb
1	Ag		109	6434.5		ppb
1	Cd		111	2304.6	98.66696	ppb
-	Cd		114	8703.4	100.41982	ppb
-	Sb		121	14668		ppb
1	Sb		123	10946.2	97.77022	ppb
•	Ва		135	5604.6		ppb
1	Ba		137	11225.9	102.45829	ppb
j>	Но		165	29936.2		ppb
-	Pb		208	114429	100.35868	ppb
	Kr		83	21.3		ppb

elementOne e 31368-Metals

ICP-Data 24 of 66

Method 6020 & 200.8 Metals Summary Report Sample ID: Standard 3

Sample Dai Wednesday, June 20, 2018 12:20:58

Sample Description: Concentration Results

	Analyte	Mass	M	leas. Intens	Conc. Mear	Report Unit
>	Li		6	2630.7		ppb
j -	Be		9	6538.5	500,90055	ppb
j -	Р		31	48652.6	5101.2404	dqq
j>	Sc		45	4046		ppb
ŀ	Cr		52	61913.9	499.39671	ppb
 -	Cr		53	7363.4	500.18891	ppb
1-	Mn		55	74862.3	500,433	ppb
İ	Ni	•	60	11722.1	500.32934	ppb
İ	Cu		63	27474.8	500.34348	ppb
ĺ	Cu		65	12366,1	500.49708	ppb
ĺ	Zn		66	6638.5	501.43294	ppb
1	Zn		67	984.7	500.84676	ppb
Ì	Zn		68	4545.1	501,96191	ppb
Ì	As		75	7293.9	499,71478	ppb
Ì	Se		77	336.7	503.86987	ppb
İ	Se		82	463.8	498.75995	ppb
>	Rh		103	3109.5		ppb
Ì	Ag		107	31359.3	500.32171	ppb
1	Ag		109	30360.8		ppb
ĺ	Cd		111	11041.2	500,26648	ppb
[-	Cd		114	40983	499.91607	dqq
j-	Sb		121	69843.1		ppb
Ì	Sb		123	52971.9	500.44672	ppb
Ì	Ba		135	25811.7		ppb
	Ba		137	51912.8	499,50851	ppb
>	Но		165	28437.5		ppb
j-	Pb		208	540655.7	499.9285	ppb
	Kr		83	24		ppb

Method 6020 & 200.8 Metals Summary Report Sample ID: QC Std 1 Sample Dal Wednesday, June 20, 2018 12:23:59

Sample Description:

Concentration Results

	Analyte	Mass		Meas. Intens	Conc. Mear	Report Unit
>	Li		6	2430.2		ppb
1-	Be		9	3.3	-0.00029	ppb
 -	Р		31	5423.6	0.55212	ppb
>	Sc		45	3683,3		ppb
1	Cr		52	490	0.00457	ppb
]-	Cr		53	330.7	-0.0042	ppb
ļ-	Min		55	82.7	0.00019	
İ	Ni		60	8.3	0.0006	ppb
	Cu		63	60.7	-0.00026	ppb
1	Cu		65	23.3	- 0.00025	ppb
Ì	Zn		66	75.7	-0.00088	ppb
Ì	Zn		67	22.3	-0.00917	dqq
Ì	Zn		68	102.3	0.0022	ppb
1	As		75	53	-0.00095	ppb
1	Se		77	47	0.04247	ppb
İ	Se		82	-0.2	-0.00763	ppb
>	Rh		103	2965.5		ppb
l	Ag		107	28	-0.00002	ppb
1	Ag		109	24.3		ppb
Ì	Cd		111	5.5	0.0001	ppb
j -	Cd		114	14.2	0.00001	ppb
-	Sb		121	67.7		dqq
1	Sb		123	56.7	-0,00002	ppb
1	Ba		135	12.7		ppb
	Ba		137	18	-0.00019	ppb
 >	Но		165	26296,2		ppb
j-	Pb		208	194.3	-0.00005	dqq
	Kr		83	20.3		ppb

elementOne e 31368-Metals

Method 6020 & 200.8 Metals Summary Report Sample ID: QC Std 2 Sample DatWednesday, June 20, 2018 12:27:00

Sample Description: Concentration Results

	Analyte	Mass		Meas. Intens	Conc. Mear	Report Unit
>	Li		6	2558.5		ppb
 -	Be		9	16	0.98256	ppb
j-	P		31	4854.5	-101.0308	ppb
]>	Sc		45	3843		ppb
1	Cr		52	567	0.47789	ppb
-	Cr		53	371.7	2.02069	ppb
-	Mn		55	216	0.88646	ppb
1	Ni		60	23	0.62114	ppb
	Cu		63	108.3	0.84363	ppb
	Cu		65	40.3	0.66457	dqq
	Zn		66	68	-0.80795	ppb
l	Zn		67	22.7	-0.21527	dqq
[Zn		68	112.7	0.79154	dqq
1	As		75	37.7	-1.21284	ppb
1	Se		77	52.3	6.44325	
1	Se		82	-4.5	-4.77262	ppb
>	Rh		103	3069.5		ppb
1	Ag	•	107	77	0.77724	ppb
1	Ag		109	67.7		ppb
1	Cd	•	111	28.3	1.0349	
-	Cd		114	97.5	1.02317	ppb
[-	Sb		121	194.7		ppb
Ţ	Sb		123	156.2	0.97013	ppb
1	Ba	•	135	62.7		ppb
1	Ba		137	119.7	1.01948	ppb
>	Но		165	27127		ppb
 -	Pb	:	208	1178.3	0.9484	ppb
	Kr		83	23		ppb

Method 6020 & 200.8 Metals Summary Report Sample ID: QC Std 3 Sample Dal Wednesday, June 20, 2018 12:30:01

Sample Description:

Concentration Results

	Analyte	Mass	Mea	as. Intens	Conc. Mear	Report Unit
>	Li		6	2598.3		ppb
j-	Be		9	3259.2	252.67229	ppb
[-	Р		31	24904.1	2326.8386	ppb
>	Sc		45	3961.3		ppb
1	Cr		52	31635	258.46822	ppb
-	Cr		53	3839	254.13358	ppb
-	Mn		55	37749.8	247.10575	ppb
l	Ni		60	5795.7	242.27234	ppb
1	Cu		63	13791.8	245.61576	ppb
	Cu		65	6255.1	247.70743	ppb
1	Zn		66	3348.6	244.94608	ppb
1	Zn		67	508.3	247.32578	ppb
	Zn		68	2333.4	246.62345	ppb
	As		75	3605	240.03694	ppb
1	Se		77	193.7	246.259	ppb
[Se		82	221.5	233.42068	ppb
 >	Rh	1	03	3173.2		ppb
1	Ag	1	07	15771.3	246,47865	ppb
1	Ag	1	09	16064.8		ppb
1	Cd	1	11	5595.9	248.38575	ppb
-	Cd	1	14	20853.8	249.25154	ppb
 -	Sb	1	21	34752.1		ppb
1	Sb	1	23	25979.7	246.37689	ppb
1	Ba	1	35	12842.3		ppb
1	Ba		37	25902.4	250.3653	ppb
>	Но	1	65	28298.7		ppb
-	₽b	2	208	267069	248.0635	ppb
	Kr		83	26		ppb

elementOne e 31368-Metals

ICP-Data 26 of 66

Method 6020 & 200.8 Metals Summary Report Sample ID: QC Std 4 Sample Dat Wednesday, June 20, 2018 12:33:01 Sample Description: Concentration Results

Analyte Mass Meas. Intens Conc. Mear Report Unit	Concentrat	Concentration Results										
		Analyte	Mass		Meas, Intens	Conc. Mear	Report Unit					
- P 31 12388.1 775.41356 ppb	>	Li			2717.2		ppb					
Sc	 -	Be		9	1306.4	96.67848	bbp					
Sc	 -	P		31	12388.1	775,41356	ppb					
- Cr 53 1789.4 102.50745 ppb - Mn 55 15519.8 99.12972 ppb - Ni 60 2378.1 97.203 ppb - Cu 63 5637.6 97.65254 ppb - Cu 65 2552.1 98.4089 ppb - Zn 66 1352.4 93.23026 ppb - Zn 67 223.7 99.61459 ppb - Zn 68 968.4 93.05026 ppb - Zn 68 968.4 93.05026 ppb - Se 77 121 117.46595 ppb - Se 82 96.1 99.13598 ppb - Pb - Cd 111 2363.6 102.69775 ppb - Cd 114 8623.1 100.86115 ppb - Sb 123 10963.6 99.86155 ppb - Sb 124 14547.9 ppb - Pb 208 111471.9 99.69004		Sc		45	4026		ppb					
	1	Cr		52	13188.5	103.43365	ppb					
Ni 60 2378.1 97.203 ppb Cu 63 5637.6 97.65254 ppb Cu 65 2552.1 98.4089 ppb Zn 66 1352.4 93.23026 ppb Zn 67 223.7 99.61459 ppb Zn 68 968.4 93.05026 ppb As 75 1522.3 97.04986 ppb Se 82 96.1 99.13598 ppb Se 82 96.1 99.13598 ppb Ph 103 3239.9 ppb Ag 107 6462.8 98.57794 ppb Ag 109 6385.8 ppb Cd 111 2363.6 102.69775 ppb Cd 114 8623.1 100.86115 ppb Sb 123 10963.6 99.86155 ppb Ba 135 5452.9 ppb Ba 137 10824 100.73444 ppb Pb 208 111471.9 99.69004 ppb	1-	Cr		53	1789.4	102.50745	ppb					
Cu 63 5637.6 97.65254 ppb Cu 65 2552.1 98.4089 ppb Zn 66 1352.4 93.23026 ppb Zn 67 223.7 99.61459 ppb Zn 68 968.4 93.05026 ppb As 75 1522.3 97.04986 ppb Se 77 121 117.46595 ppb Se 82 96.1 99.13598 ppb Ph 103 3239.9 ppb Ag 107 6462.8 98.57794 ppb Ag 109 6385.8 ppb Cd 111 2363.6 102.69775 ppb Cd 114 8623.1 100.86115 ppb Sb 123 10963.6 99.86155 ppb Ba 135 5452.9 ppb Ba 137 10824 100.73444 ppb Pb 208 111471.9 99.69004 ppb	-	Mn		55	15519.8							
Cu 65 2552.1 98.4089 ppb Zn 66 1352.4 93.23026 ppb Zn 67 223.7 99.61459 ppb Zn 68 968.4 93.05026 ppb As 75 1522.3 97.04986 ppb Se 77 121 117.46595 ppb Se 82 96.1 99.13598 ppb Rh 103 3239.9 ppb Ag 107 6462.8 98.57794 ppb Ag 109 6385.8 ppb Cd 111 2363.6 102.69775 ppb Cd 114 8623.1 100.86115 ppb Sb 121 14547.9 ppb Ba 135 5452.9 ppb Ba 137 10824 100.73444 ppb Pb 208 111471.9 99.69004 ppb		Ni		60	2378.1	97.203	ppb					
Zn 66 1352.4 93.23026 ppb Zn 67 223.7 99.61459 ppb Zn 68 968.4 93.05026 ppb As 75 1522.3 97.04986 ppb Se 77 121 117.46595 ppb Se 82 96.1 99.13598 ppb Ph	1	Cu			5637.6							
Zn 67 223.7 99.61459 ppb		Cu		65	2552.1							
Zn 68 968.4 93.05026 ppb	1				1352.4	93.23026	ppb					
As	1	Zn		67	223.7							
Se												
Se		As			1522.3							
> Rh		Se										
Ag	-	Se				99,13598	ppb					
Ag	}>				3239.9							
Cd	1	Ag		107		98.57794	ppb					
Cd	1	Ag										
- Sb 121 14547.9 ppb Sb 123 10963.6 99.86155 ppb Ba 135 5452.9 ppb Ba 137 10824 100.73444 ppb > Ho 165 29358.6 ppb - Pb 208 111471.9 99.69004 ppb	l	Cd		111	2363.6							
Sb 123 10963.6 99.86155 ppb Ba 135 5452.9 ppb Ba 137 10824 100.73444 ppb > Ho 165 29358.6 ppb - Pb 208 111471.9 99.69004 ppb	[-	Cd		114	8623.1	100.86115	ppb					
Ba]-	Sb		121	14547.9							
Ba 137 10824 100.73444 ppb	1	Sb				99.86155	ppb					
> Ho 165 29358.6 ppb - Pb 208 111471.9 99.69004 ppb		Ba		135	5452.9		dqq					
- Pb 208 111471.9 99.69004 ppb	1	Ba				100.73444	dqq					
	>	Но		165	29358.6							
Kr 83 24.3 ppb	-					99.69004	ppb					
		Kr		83	24.3		ppb					

83 24.3 Method 6020 & 200.8 Metals Summary Report Sample ID: QC Std 5 Sample Dal Wednesday, June 20, 2018 12:36:03 Sample Description: Concentration Results

Concentra	Market -			M 1-4	0 11	D 4 1 1 - 14
	Analyte	Mass		Meas. Intens		•
>	Li		6	2635.6		ppb
[-	Be		9	650.7	49.53112	
1-	P		31	4952.5	-118,7098	• • .
>	Sc		45	4038.3		ppb
	Cr		52	6676.9	50.05687	
 -	Cr		53	1086.7	51.83937	
 -	Mn		55	7694.2	49.62266	
1	Ni		60	1204	49.76658	
	Cu		63	2827.8	49.16536	ppb
	Cu		65	1306.4	50,67235	ppb
1	Zn		66	702.3	46.2827	ppb
İ	Zn		67	123.3	50,41663	ppb
i	Zn		68	538	47.20256	ppb
1	As		75	803.8	50.25026	ppb
1	Se		77	85.3	59.26702	ppb
Ì	Se		82	47.8	50.30527	ppb
>	Rh		103	3189.5		ppb
İ	Ag		107	3170.5	48,90124	ppb
ĺ	Ag		109	3020.5		ppb
Ì	Cd		111	1150,4	50.58969	ppb
 -	Cd		114	4207.7	49.87985	ppb
j-	Sb		121	7626.8		ppb
ĺ	Sb		123	5727.8	53.12434	ppb
į	Ba		135	2564.8		ppb
Ì	Ba		137	5327.6	50.64648	ppb
i >	Но		165	28687.5		ppb
i-	Pb		208	54787.8	50.04939	ppb
•	Kr		83	23.7		ppb

elementOne

e 31368-Metals 63.27 ICP-Data 27 of 66

B-233

Method 6020 & 200.8 Metals Summary Report Sample ID: QC Std 6

Sample DatWednesday, June 20, 2018 12:39:03 Sample Description:

Concentra	tion Results					
	Analyte	Mass		Meas. Intens	Conc. Mear	Report Unit
 >	Li		6	3055,1		ppb
j-	Be		9	2	-0.14493	
j-	Р		31	50233.8	4700.5543	ppb
 >	Sc		45	4488.1		ppb
Ì	Cr		52	514	-0.60995	ppb
j-	Cr		53	373,3	-1.89406	ppb
-	Mn		55	97.3	-0.00145	ppb
ĺ	Ni		60	8	-0.07066	ppb
I	Cu		63	54.3	-0.28334	ppb
1	Cu		65	21	-0.23708	ppb
1	Zn		66	46.7	-2.91032	ppb
1	Zn		67	18,3	-3.72203	ppb
1	Zn		68	88.3	-3.29374	ppb
1	As		75	41.8	-1 .2598	ppb
1	Se		77	52,3	-5.20261	ppb
1	Se		82	8.0	0.98851	ppb
>	Rh		103	3510.6		ppb
[Ag		107	15	-0.25764	ppb
1	Ag		109	17		ppb
1	Cd		111	8.1	0.06526	ppb
]-	Cd		114	13	-0.04244	ppb
 -	Sb		121	64.7		dqq
1	Sb		123	59.2	-0.07677	ppb
	Ba		135	13		ppb
	Ва		137	13.7	-0.06923	ppb
 >	Но		165	31649.7		ppb
 -	Pb		208	136.7	-0.08078	ppb
	1.4		~~	24.0		

83

21.3

ppb

Method 6020 & 200.8 Metals Summary Report Sample ID: QC Std 7

Kr

Sample Dai Wednesday, June 20, 2018 12:42:04

Sample Description: Concentration Results

	Analyte	Mass		Meas. Intens	Conc. Mear	Report Unit
>	Li		6	2833.9		ppb
Í-	Be		9	2	-0.13357	
j-	P		31	49138.6	4765.0735	ppb
j>	Sc		45	4336.7		ppb
ĺ	Сг		52	603	0.19892	ppb
j-	Cr		53	409.3	1.35283	ppb
1-	Mn		55	259.3	0.96522	ppb
ĺ	Ni		60	71	2.32781	
	Cu		63	123.7	0.84874	ppb
İ	Cu		65	53.3	0.93264	ppb
1	Zn		66	61.7	-1.87304	ppb
Ę	Zn		67	17	-4.30906	ppb
]	Zn		68	107.3	-1.32818	ppb
1	As		75	46.9	-0.95833	ppb
	Se		77	49	-9.94595	ppb
1	Se		82	3.8	3.89319	ppb
>	Rh		103	3493,6		ppb
Į.	Ag		107	6482.2	91.67444	ppb
i	Ag		109	6216.8		ppb
1	Cd		111	17.4	0.44133	ppb
-	Cd		114	67.5	0.55087	ppb
 -	Sb		121	59.7		ppb
1	Sb		123	50.9	-0.14135	ppb
1	Ba		135	14		ppb
1	Ва		137	17	-0.03844	ppb
>	Но		165	31192.4		ppb
-	Pb		208	152.3	-0.06595	ppb
	Kr		83	21		dqq

elementOne

e 31368-Metals ICP-Data 28 of 66 63.28

Method 6020 & 200.8 Metals Summary Report Sample ID: QC Std 8 Sample Dat Wednesday, June 20, 2018 12:45:04 Sample Description:

Concentration Results

	Analyte	Mass	Me	as. Intens	Conc. Mear	Report Unit
[> ·	Li		6	4356.4		ppb
j-	Be		9	11.3	0.24822	ppb
j-	Р		31	2494.1	-523.3384	ppb
j>	Sc		45	6401.2		ppb
İ	Cr		52	571.3	-1.44017	ppb
j <u>-</u>	Cr		53	810.7	10.64832	ppb
į-	Mn		55	183	0.15883	ppb
ĺ	Ni		60	38.3	0.61692	ppb
1	Cu		63	153	0.5246	ppb
Ì	Cu		65	70.3	0.73061	ppb
Ì	Zn		66	162.3	1.43025	ppb
Ì	Zn		67	41	0.69388	ppb
l	Zn		68	170	-0,5372	ppb
	As		75	16	-3.17502	ppb
1	Se		77	89.3	8.11884	ppb
1	Se		82	-3.5	-2.13081	ppb
>	Rh	1	03	5152.9		ppb
1	Ag	1	07	16.3	-0.31166	ppb
1	Ag	1	09	12.3		ppb
1	Cd	1	11	12.1	0.0716	ppb
]-	Cd	1	14	44.6	0.14512	ppb
 -	Sb	. 1	21	134.7		ppb
1	Sb	1	23	86	-0.0802	ppb
1	Ba	1	35	22		dqq
j	Ba	1	37	40.3	0.05126	ppb
j>	Но	1	65	46240.4		ppb
 -	Pb	2	208	868	0.29962	ppb
	Kr		83	23.7		ppb

Method 6020 & 200.8 Metals Summary Report Sample ID: QC Std 2 Sample Dat/Wednesday, June 20, 2018 12:48:05 Sample Description:

Concentration Results

	Analyte	Mass	Meas	s. Intens	Conc. Mear	Report Unit
j> - I	Li		3	2585.7		ppb
	Be		€	12.7	0.71302	ppb
j- F	Þ	3	1	2491.1	-393.7418	ppb
j> - 8	Sc	4	5	3792		ppb
j	Cr	5	2	564.3	0.52726	ppb
j- (Cr	5	3	533.3	14.75403	
- I	Mn	5	5	223,3	0,93957	
j 1	Ni	6	0	28.3	0.85866	
	Cu	6	3	100.3	0.70303	
j	Cu	6	5	46.3	0.91957	
2	Zn	6	6	44.7	-2.58795	ppb
1	Zn	6	7	20.3	-1.43304	ppb
į z	Zn	6		97.7	-0.90666	
1 4	As		5	63.1	0.60312	
1 :	Se	7	7	53,3	8.65925	
1 :	Se		2	2,8	3,3476	ppb
	Rh	10		3058.2		ppb
1 4	Ag	10		70.3	0.67471	ppb
1	Ag	10	9	75		ppb
1	Cd	11	1	26.9	0.9753	
- ·	Cd	11	4	93.5	0,97803	ppb
[-	Sb	12	1	193		ppb
	Sb	12	3	131.3	0.71015	ppb
1	Ва	13		66,3		ppb
	Ba	13		110	0.91206	ppb
>	Но	16		27411.7		ppb
	Pb	20		1104.3	0.86581	
	Kr	8	3	21.3		ppb

element One e 31368-Metals

ICP-Data 29 of 66

Method 6020 & 200.8 Metals Summary Report Sample ID: 31368-7

Sample Dat Wednesday, June 20, 2018 12:56:45

Sample Description: Concentration Results

00710011110	Analyte	Mass		Meas. Intens	Conc. Mear	Report Unit
>	Li		6	2623.3		ppb
j_	Be		9	117	8.69477	
i-	Р		31	2052.1	-454.578	
j>	Sc		45	3858.3		ppb
Ì	Cr		52	1853.1	11.42703	
j-	Cr		53	1068.7	54.10754	
j-	Mn		55	2532.5	16.52215	ppb
Ì	Ni		60	352	14.82061	ppb
Ì	Cu		63	729.3	12.28057	ppb
ĺ	Cu		65	324.7	12.29774	ppb
1	Zn		66	264.7	14.33885	ppb
j	Zn		67	67	23.01253	ppb
İ	Zn		68	245.7	15.87264	ppb
1	As		75	250.2	13.63158	ppb
1	Se		77	112.3	112.59571	ppb
1	Se		82	6.1	6.91613	ppb
[>	Rh	•	103	3084.5		ppb
	Ag	•	107	1391.7	21.97691	ppb
1	Ag	•	109	1438		ppb
1	Cd		111	175.7	7.77852	
-	Cd	•	114	685.9	8.25886	ppb
 -	Sb		121	2429.1		ppb
	Sb		123	1829.9	17.04967	ppb
	Ba		135	863		ppb
l	Ba		137	1723.1	16.7078	ppb
>	Но		165	27917.2		dqq
-	Pb	:	208	15826.9	14.71905	ppb
	Kr		83	24.3		ppb

Method 6020 & 200.8 Metals Summary Report Sample ID: 31368-7 Sample Dal Wednesday, June 20, 2018 12:59:45

Sample Description:

Concentration Results

	Analyte	Mass		Meas. Intens	Conc. Mear	Report Unit
>	Li		6	2558,8		ppb
j-	Be		9	765	59.9978	
i -	Р		31	2004.7	-451.8508	ppb
j>	Sc		45	3732.6		ppb
İ	Cr		52	7681.2	63.39811	ppb
į-	Cr		53	1614.1	99.12903	ppb
 -	Mn		55	9704.6	67.31403	ppb
Ì	Ni		60	1481	65,7537	ppb
ĺ	Cu		63	3346.6	62.68768	ppb
	Cu		65	1508.4	62.94066	ppb
ĺ	Zn		66	876.3	63.97697	ppb
•	Zn		67	150.7	69.89105	ppb
1	Zn		68	675.7	67.74766	ppb
1	As		75	916.8	62.31557	ppb
1	Se		77	134.7	160,46985	ppb
ĺ	Se		82	50.8	57.2412	ppb
>	Rh	•	103	2974.8		ppb
l	Ag	•	107	4395.1	72.90748	ppb
1	Ag	•	109	4330.4		ppb
1	Cd	•	111	1262.8	59.56197	ppb
 -	Cd	•	114	4658.7	59.24315	ppb
 -	Sb	•	121	9486.1		ppb
l	Sb	•	123	7165.6	69.8084	ppb
[Ba	•	135	3401.6		ppb
1	Ва		137	6644.9	66.2427	ppb
>	Ho		165	27381.3		ppb
 -	₽b	:	208	66984	64.1628	ppb
	Kr		83	23		dqq

elementOne e 31368-Metals

ICP-Data 30 of 66

Method 6020 & 200.8 Metals Summary Report Sample ID: 31368-8 Sample Dat Wednesday, June 20, 2018 13:02:46 Sample Description: Concentration Results

	Analyte	Mass	ì	Meas. Intens	Conc. Mear	Report Unit
>	Li		6	2563.8		ppb
j-	Be		9	1439.4	112.91286	ppb
j-	Ρ		31	3636,6	-257.1303	ppb
 >	Sc		45	3868.6		ppb
Ì	Cr		52	39395	331.11088	ppb
j -	Cr		53	4905.5	340.8911	ppb
1-	Mn		55	22430.7	152.25599	ppb
İ	Ni		60	5045.2	219.06618	ppb
į	Cu		63	16351.3	302.71473	dqq
l	Cu		65	7341.4	302.1569	ppb
1	Zn		66	2876.2	217.79353	ppb
Ì	Zn		67	471.7	237.8691	ppb
Ì	Zn		68	2049.8	223,8922	ppb
ĺ	As		75	1378.2	92,96486	ppb
l	Se		77	150.3	182.06869	dqq
j	Se		82	118.8	130.11527	ppb
 >	Rh		103	3054.9		ppb
Ì	Ag		107	20093.5	325.81454	ppb
I	Ag		109	21237.4		ppb
1	Cd		111	1836.8	84.52797	ppb
1-	Cd		114	6845.3	84.8372	ppb
j-	Sb		121	9260.4		ppb
ĺ	Sb		123	6879.1	67.20207	ppb
Ì	Ba		135	13141.5		ppb
1	Ba		137	26192.7	262.4112	ppb
>	Ho		165	27303.9		ppb
 -	Pb		208	245854.7	236.6859	ppb
	Kr		83	21.3		ppb

Method 6020 & 200.8 Metals Summary Report Sample ID: 31368-8 Sample DatWednesday, June 20, 2018 13:05:47

Sample Description:

Concentration Results

	Analyte	Mass		Meas. Intens	Conc. Mear	Report Unit
>	Li		6	2613.1		ppb
İ-	Be		9	2118.1	163.21367	ppb
-	Р		31	3525.2	-2 57.112	ppb
j>	Sc		45	3748,3		ppb
ì	Cr		52	46052.7	400.01939	ppb
į-	Cr		53	5488.3	397.20459	ppb
[-	Mn		55	30359.1	210.30097	ppb
i	Ni		60	6177.1	273.56903	ppb
İ	Cu		63	18988,2	358.72504	ppb
i	Cu		65	8546.1	358.91459	ppb
ĺ	Zn		66	3543.3	275.26302	ppb
İ	Zn		67	576.3	299.39954	ppb
j	Zn		68	2515.1	283.27419	ppb
ĺ	As		75	2079.7	145.21436	ppb
į	Se		77	172.7	227.91252	ppb
	Se		82	190.8	212.9626	ppb
 >	Rh		103	2996,2		dqq
ĺ	Ag		107	25673.5	425.11821	ppb
ĺ	Ag		109	25047.6		ppb
j	Cd		111	3025.9	142.14183	ppb
 -	Cd		114	11265.5	142.56984	dqq
 -	Sb		121	17017.1		ppb
Ĺ	Sb		123	12824.4	123,98967	ppb
1	Ba		135	15648.6		ppb
1	Ba		137	31811.6	314.29404	ppb
 >	Но		165	27688.7		ppb
 -	Pb		208	301006.5	285.76807	ppb
	Kr		83	23.7		ppb

elementOne e 31368-Metals

ICP-Data 31 of 66

Method 6020 & 200.8 Metals Summary Report Sample ID: 31368-5 FH Sample Dal Wednesday, June 20, 2018 13:14:49 Sample Description:

Concentration Results

	Analyte	Mass		Meas. Intens	Conc. Mear	Report Unit
>	Li		6	2683.1		ppb
i-	Be		9	2,3	-0.10174	
i-	P		31	1842.1	-481.0837	ppb
>	Sc		45	3861		ppb
Ì	Cr		52	1950.1	12.24534	ppb
j -	Cr		53	279	-5.04725	ppb
-	Mn		55	1164.4	7.3131	ppb
ĺ	Ni		60	497.7	21.17518	ppb
	Cu		63	274.3	3.91638	ppb
1	Cu		65	131.3	4.4025	ppb
1	Zn		66	855	60,21956	ppb
1	Zn		67	131.7	57,21068	ppb
l	Zn		68	632.3	60.35312	
1	As		75	77.3	1.6045	ppb
1	Se		77	21	-49.11776	ppb
İ	Se		82	10.8	12.20081	ppb
>	Rh		103	3068.9		ppb
1	Ag		107	118	1.44405	ppb
	Ag		109	282		ppb
1	Cd		111	6.9	0.05258	
 -	Cd		114	19.6	0,06035	ppb
 -	Sb		121	208,3		ppb
	Sb		123	165.5	1.02087	ppb
1	Ba		135	1573		ppb
1	Ba		137	3217.9	31.47037	ppb
>	Ho		165	27823.1		dqq
 -	Pb		208	3954.5	3.54409	ppb
	Kr		83	22		ppb

Method 6020 & 200.8 Metals Summary Report Sample ID: QC Std 1

Sample Dai Wednesday, June 20, 2018 13:17:51

Sample Description:

Concentration Results

Concentia	Analyte	Mass		Meas. Intens	Conc. Mear	Report Unit
>	Li	***************************************	6	2681		ppb
į-	Be		9	2.7	-0.07607	
<u>-</u>	Р		31	1657.4	-499.4706	
;>	Sc		45	3775		ppb
i	Cr		52	439.3	-0.54946	
j-	Cr		53	313.7	-1.90818	
Ì-	Mn		55	89,3	0.0493	ppb
j	Ni		60	7,3	-0.04288	
ì	Cu		63	47.3	-0.25265	ppb
i	Cu		65	18.7	-0.19547	ppb
į	Zn		66	25	-4.05594	ppb
]	Zn		67	12	-5.6097	dqq
Ì	Zn		68	77	-2.97615	ppb
1	As		75	44.8	-0.59802	
1	Se		77	31.7	-28.0043	
-	Se		82	-1.2	-1.2265	ppb
 >	Rh		103	2954.5		ppb
1	Ag		107	17.3	-0.17678	ppb
1	Ag		109	11		ppb
}	Cd		111	4.7	-0,04391	
]-	Cd		114	11.7	-0.03138	ppb
 -	Sb		121	49.7		ppb
l	Sb		123	42.9	-0.15449	ppb
	Ва		135	9		ppb
1	Ва		137	11	-0.07614	
>	Но		165	27078		ppb
[-	Рb		208	104.7		
	Kr		83	22.3		ppb

elementOne

e 31368-Metals 63.32 ICP-Data 32 of 66

Method 6020 & 200.8 Metals Summary Report Sample ID: QC Std 4 Sample Dal Wednesday, June 20, 2018 13:20:51 Sample Description:

Concentration Results

	Analyte	Mass	Me	as, Intens	Conc. Mear	Report Unit
>	Li		6	2733.2		ppb
[-	Be		9	1335.4	98.23644	ppb
-	P		31	10055.4	494.56135	ppb
>	Sc		45	4029		ppb
1	Cr		52	12886.7	100.92171	ppb
 -	Cr		53	1776.1	101.47747	
-	Mn		55	15033.5	100.04532	ppb
[Ni		60	2385.8	101.56631	ppb
I	Cu		63	5477.9	98.84819	ppb
j	Cu		65	2511.1	100.85127	ppb
1	Zn		66	1291.7		
1	Zn		67	214.3	99.56354	ppb
1	Zn		68	947.7	95.04831	ppb
[As		75	1469.1		
1	Se		77	95	80.34799	ppb
1	Se		82	85.5	92.01556	ppb
>	Rh	1	03	3109.5		ppb
l	Ag	1	07	6268.1	99,65985	ppb
	Ag	1	09	6166.8		ppb
1	Cd	1	11		105.17532	
1-	Cd	1	14	8273.1	100,78372	ppb
-	Sb	1	21	13692.4		ppb
1	Sb	1	23	10416.4	97.75169	ppb
[Ba	1	35	5279.9		ppb
	Ba	1	37	10506.5	100.74262	
>	Но		65	28493.9		ppb
 -	Pb	2	208	107952.2	99.46842	dqq
	Kr		83	25		ppb

Method 6020 & 200.8 Metals Summary Report Sample ID: 31368-6 FH Sample Dat Wednesday, June 20, 2018 13:23:53 Sample Description:

Concentration Results

	Analyte	Mass		Meas. Intens	Conc. Mear	Report Unit
>	Li		6	2558.1		ppb
i -	Be		9	1.3	-0.17107	ppb
-	Р		31	1745.4	-488,5891	ppb
 >	Sc		45	3780.6		ppb
	Cr		52	1907.1	12.22374	ppb
j -	Cr		53	263.3	-5.81213	ppb
]-	Mn		55	1015	6.71079	ppb
1	Ni		60	473.3	21.33558	ppb
I	Cu		63	171.3	2.19972	dqq
[Cu		65	67.7	1.94914	ppb
ı	Zn		66	403	27.00435	
1	Zn		67	58	20,23902	ppb
1	Zn		68	333.3	28.32865	ppb
İ	As		75	37.1	-1.09111	dqq
1	Se		77	13	-61.95975	
1	Se		82	-0.5	-0.34678	ppb
>	Rh		103	2896.8		ppb
1	Ag		107	14	-0.22831	ppb
1	Ag		109	28.3		dqq
l	Cd		111	6.9	0.06982	
]-	Cd		114	11.1	-0.0351	ppb
-	Sb		121	131		ppb
1	Sb		123	91.9	0.35153	ppb
	Ba		135	1532.7		ppb
1	Ba		137	3119.5	31.98244	ppb
>	Ho		165	26536.4		ppb
 -	Pb		208	2372	2.15725	ppb
	Kr		83	23		ppb

elementOne e 31368-Metals

ICP-Data 33 of 66

63,33

Method 6020 & 200.8 Metals Summary Report Sample ID: 31368-6 C8A

Sample Dal Wednesday, June 20, 2018 13:26:54

Sample Description: Concentration Results

	Analyte	Mass		Meas. Intens	Conc. Mear	Report Unit
>	Li		6	2704.8		ppb
j-	Be		9	2.7	-0.07781	
j -	P		31	1535	-502.0593	ppb
 >	Sc		45	3539.9		ppb
Ì	Cr		52	466,7	-0.03966	ppb
j-	Сг		53	69.7	-20,26539	ppb
į-	Mn		55	116.7	0.22626	ppb
Į.	Ni		60	6.3	-0.09407	ppb
1	Cu		63	62.7	0.02002	ppb
1	Cu		65	36	0.5152	ppb
	Zn		66	91	1.11867	ppb
	Zn		67	18,3	-2,33765	ppb
	Zn		68	119.3	1.79898	ppb
1	As		75	52.3	-0.11146	
1	Se		77	7.7	-72.51584	
1	Se		82	5.2	5.95857	
>	Rh		103	3011.2		ppb
	Ag		107	9.7	-0.30952	ppb
	Ag		109	10		ppb
	Cd		111	5.4	-0.00757	
-	Cd		114	9.5	-0.06274	ďqq
 -	Sb		121	41.7		ppb
1	Sb		123	38.5	-0.20394	ppb
1	Ba		135	13.7		ppb
1	Ва		137	14.7	-0.04133	
>	Ho		165	27580.9		ppb
 -	Pb		208	122	-0.07803	ppb
	Kr		83	16.3		ppb

Method 6020 & 200.8 Metals Summary Report

Sample ID: 31368-5 BH Sample Dal Wednesday, June 20, 2018 13:29:54 Sample Description:

Concentration Results

	Analyte	Mass		Meas. Intens	Conc. Mear	Report Unit
>	Li		6	2517.9		ppb
j-	Be		9	3.7	0.01725	ppb
i-	P		31	2968.5	-309.6197	ppb
[>	Sc		45	3568.9		ppb
İ	Cr		52	778.3	2,80615	
j-	Cr		53	105	-17.46464	ppb
j-	Mn		55	7614.2	56.01999	ppb
Ì	Ni		60	92	3.99325	ppb
ĺ	Cu		63	334	5.60901	ppb
1	Cu		65	142	5.40529	
1	Zn		66	945.4	74.20965	ppb
1	Zn		67	126.7	61.0906	ppb
1	Zn		68	700	75.81444	
[As		75	55.2	0.38702	
1	Se		77	9.7	-67.53684	
1	Se		82	2.2	2.68922	
>	Rh		103	2800.2		ppb
	Ag		107	14.3	-0.21441	ppb
[Ag		109	17.3		ppb
1	Cd		111	4.4	-0.04304	
1-	Cd		114	35.6	0.3001	ppb
-	Sb		121	64.3		ppb
l	Sb		123	52.7	-0.02167	ppb
-	Ba		135	274.3		ppb
1	Ва		137	514.3	5.37038	ppb
>	Ho		165	25329.5		ppb
-	Pb		208	3502.4	3.4425	ppb
	Kr		83	21.3		ppb

elementOne

ICP-Data 34 of 66 e 31368-Metals 63.34

Method 6020 & 200.8 Metals Summary Report Sample ID: 31368-5 BH Unprep Sample Dat/Wednesday, June 20, 2018 13:32:55

Sample Description:

Concentration Results

	Analyte	Mass	Meas	. Intens	Conc. Mear	Report Unit
[>	Li	1	3 2	2527.7		ppb
 -	Be	!	€	3.3	-0.01171	ppb
j-	P	3	1 :	2094.8	-417.1667	ppb
>	Sc	4	5 :	3439.9		ppb
İ	Cr	5	2	626.7	1.61883	ppb
j-	Cr	5	3	77.3	-19.44092	ppb
 -	Mn	5	5 :	3523.2	26.67416	ppb
1	Ni	6	0	39	1.55423	ppb
1	Cu	6	3	164.3	2.30511	ppb
Ì	Cu	6	5	65	2.05648	ppb
1	Zn	6	6	427.7	31.70198	ppb
1	Zn	6	7	67	28.06098	
1	Zn	6		320.3	29.73482	
1	As	7	5	43.4	-0.39181	
I	Se	7		8	-70.26333	
1	Se	8		-4.2	-5.0791	
>	Rh	10	3 :	2690,8		ppb
1	Ag	10	7	20.7	-0.08655	dqq
1	Ag	10	9	15.7		ppb
1	Cd	11	1	6.4	0.07251	
[-	Cd	11	4	27.4	0.20691	ppb
! -	Sb	12	1	43.7		ppb
1	Sb	12		38.7	-0.16135	ppb
1	Ba	13	5	126		ppb
[Ba	13		258.7	2.66583	
>	Ho	16		24827		ppb
1-	₽b	20		1612.7	1.5141	ppb
	Kr	8	3	22.3		dqq

Method 6020 & 200.8 Metals Summary Report Sample ID: 31368-6 BH Sample Dat Wednesday, June 20, 2018 13:35:55 Sample Description:

Concentration Results

	Analyte	Mass		Meas, Intens	Conc. Mear	Report Unit
>	Li		6	2554.6		ppb
i-	Be		9	1.3	-0.17249	ppb
İ-	Р		31	3350.2	-245.7817	ppb
 >	Sc		45	3476.6		ppb
1	Сг		52	815.3	3.34123	ppb
j- ·	Cr		53	90	-18.45506	ppb
j-	Mn		55	486.3	3,1343	ppb
Ì	Ni		60	59	2.50375	ppb
İ	Cu		63	255	4.15165	ppb
]	Cu		65	108.7	4.03735	ppb
i	Zn		66	456.3	33.75822	ppb
Ì	Zn		67	74.7	32.22678	ppb
1	Zn		68	362.3	34.65079	ppb
İ	As		75	46.1	-0.21379	ppb
ĺ	Se		77	7.7	-71.06822	ppb
ĺ	Se		82	-1.5	-1.67176	ppb
>	Rh		103	2723.8		ppb
1	Ag		107	14.3	-0.20793	ppb
1	Ag		109	11.3		ppb
	Cd		111	8.9	0.1987	ppb
-	Cd		114	33.2	0.28169	ppb
[-	Sb		121	244		dqq
i	Sb		123	180	1.34862	ppb
1	Ba		135	29		ppb
1	Ba		137	49.3	0.3508	ppb
 >	Но		165	25109.6		ppb
]-	Pb		208	467	0.29483	ppb
	Kr		83	19.7		ppb

elementOne e 31368-Metals

ICP-Data 35 of 66

Method 6020 & 200.8 Metals Summary Report Sample ID: 31368-6 C8A-C9 Sample Dai Wednesday, June 20, 2018 13:38:56 Sample Description: Concentration Results

	Analyte	Mass		Meas. Intens	Conc. Mear	Report Unit
>	Li		6	2494.1		ppb
j-	Be		9	3.3	-0.0066	ppb
<u>[</u> -	P		31	1965.7	-440.0187	ppb
>	Sc		45	3498.2		ppb
İ	Cr		52	518.3	0.50122	ppb
1-	Cr		53	61	-20.9097	ppb
j-	Mn		55	245	1.26029	ppb
1	Ni		60	20.7	0.62026	ppb
1	Cu		63	71.3	0.30059	ppb
Ì	Cu		65	33.7	0.54082	ppb
1	Zn		66	91.7	1.79539	ppb
į	Zn		67	17.3	-2.07134	ppb
1	Zn		68	118	2.84673	ppb
1	As		75	63.3	1.05322	ppb
1	Se		77	7	-72,60078	ppb
İ	Se		82	10.5	12.7856	ppb
>	Rh		103	2770.8		ppb
Į	Ag		107	10.3	-0.28436	ppb
1	Ag		109	11.7		ppb
1	Cd		111	2.4	-0.1421	
1-	Cd		114	18.1	0.06588	ppb
-	Sb		121	30.3		ppb
	Sb		123	25.7	-0.30329	ppb
	Ba		135	12		ppb
[Ba		137	17.3	0.00335	ppb
>	Но		165	24961.1		ppb
 -	Pb		208	125	-0.06261	ppb
	Kr		83	16.3		ppb

Method 6020 & 200.8 Metals Summary Report Sample ID: QC Std 1

Sample DaiWednesday, June 20, 2018 13:51:00

Sample Description:

Concentration Results

	Analyte	Mass		Meas. Intens	Conc. Mear	Report Unit
>	Lí		6	2712.1		ppb
j-	Be		9	1.7	-0.15152	ppb
i-	P		31	1313	-543.0006	ppb
 >	Sc		45	3761.3		ppb
1	Cr		52	464	-0.31515	ppb
j-	Cr		53	314.3	-1.7921	ppb
j-	Mn		55	83	0.00539	ppb
İ	Ni		60	4.7	-0.1646	ppb
1	Cu		63	39,3	-0.40495	ppb
j	Cu		65	17.7	-0.2408	ppb
1	Zn		66	23.7		
1	Zn		67	13.3		ppb
1	Zn		68	77.3		
l	As		75	59.4	0.47357	dqq
Į.	Se		77	32.3	-27.05931	ppb
1	Se		82	-6.2	-6.86418	
>	Rh		103	2957.2		ppb
1	Ag	•	107	10.3	-0.29434	ppb
1	Ag		109	13.7		ppb
Į	Cd	•	111	4.7		ppb
 -	Cd		114	8.8	-0.06918	ppb
 -	Sb		121	30.3		ppb
1	Sb		123	28.6	-0.29935	ppb
1	Ва		135	11.3		ppb
l	Ba		137	12		ppb
 >	Но		165	27399		dqq
1-	Pb	:	208	91.3	-0.10678	ppb
	Kr		83	26		ppb

elementOne e 31368-Metals

ICP-Data 36 of 66

Method 6020 & 200.8 Metals Summary Report Sample ID: QC Std 2 Sample DatWednesday, June 20, 2018 13:54:00

Sample Description: Concentration Results

Concer	tration Results	3				
	Analyte	Mass	M	eas.Intens	Conc. Mear	Report Unit
>	Li		6	2822		ppb
j <u>-</u>	Be		9	20.3	1.17321	ppb
i-	P		31	1525.4	-520.1207	ppb
j>	Sc		45	3848.6		dqq
İ	Cr		52	573.7	0.52842	ppb
j-	Cr		53	328	-1.30311	ppb
İ-	Mn		55	227.7	0.97038	ppb
j	Ni		60	28.3	0,85971	ppb
ì	Cu		63	94.3	0.59276	ppb
İ	Cu		65	41.7	0,72322	ppb
i	Zn		,66	30	-3.72174	ppb
i	Zn		67	13.3	-5.11178	bbp
Ĭ	Zn		68	80.7	-2.82	
į	As		75	62.4	0.58595	ppb
i	Se		77	36.3	-21.67855	ppb
ì	Se		82	3.2	3.79257	ppb
j>	Rh		103	3052.5		ppb
ì	Ag		107	209	2.8836	ppb
i	Ag		109	204.3		ppb
İ	Cd		111	130.9	5.68363	ppb
į-	Cd		114	218.3	2.49361	ppb
j-	Sb		121	321.7		ppb
i	Sb		123	255.2	1.96665	ppb
ĺ	Ba		135	201		ppb
İ	Ba		137	260.3	2,46337	ppb
j>	Но		165	27356.6		ppb
j-	Pb		208	1552	1.31055	ppb
-						

Method 6020 & 200.8 Metals Summary Report

Kr

Sample ID: QC Std 4
Sample Dal Wednesday, June 20, 2018 13:57:01
Sample Description:

Concentration Results		
Analyte	Mass	Meas, IntensConc. Mear Report Unit

83

18.7

ppb

>	Li	6	2848.1		ppb
i-	Be	9	1380	97.59129	
-	P	31	9822.9	505.27079	ppb
>	Sc	45	3902.3		ppb
į	Cr	52	12615.8	102.04487	
i-	Cr	53	1710.7	100.79465	ppb
Í-	Mn	55	14933.1	98.76724	ppb
į	Ni	60	2353.8	99.58932	ppb
Ī	Cu	63	5498.9	98,62733	ppb
İ	Cu	65	2469.8	98,57443	ppb
i	Zn	66	1301.7	92.8727	ppb
i	Zn	67	206	94.48057	ppb
i	Zn	68	922.7	91.62049	ppb
i	As	75	1447.9	95.52689	ppb
ì	-Se	77	91.7	73.29576	dqq
1	Se	82	83.8	89.75496	ppb
j>	Rh	103	3128.2		ppb
İ	Ag	107	6190.8	97.81248	ppb
į	Ag	109	6057.7		dqq
i	Cd	111		103.63002	
ĺ-	Cd	114	8297.2	100.46649	
j -	Sb	121	14012.3		ppb
İ	Sb	123	10387.5	97.40339	ppb
İ	Ba	135	5374.6		ppb
ĺ	Ba	137	10826.7	103,73964	dqq
 >	Ho	165	28516.6		ppb
j -	Pb	208	108872.2	100.23947	
	Kr	83	20.7		ppb

elementOne e 31368-Metals

ICP-Data 37 of 66

Method 6020 & 200.8 Metals Summary Report

Sample ID: QC Std 1
Sample Dal Thursday, June 21, 2018 11:58:08
Sample Description:

Concentration Results

	Analyte	Mass		Meas. IntensConc.	Mear Report Unit
>	Li		6	143958	ppb
į-	Be		9	3,7	ppb
j-	Ρ		31	2822.5	ppb
j>	Sc		45	93878.6	ppb
j-	Zn		66	216.3	ppb
Ì	Zn		67	103	ppb
1	Zn		68	280.7	ppb
Ì	As		75	141.3	ppb
1	Se		77	410.7	ppb
Ì	Se		82	-0.4	ppb
>	Rh		103	74251.8	ppb
	Ho	•	65	557874.5	ppb
	Kr		83	51.3	daa

Method 6020 & 200.8 Metals Summary Report

Sample ID: Standard 1

Sample Dal Thursday, June 21, 2018 11:34:57

Sample Description:

Concentration Results

	Analyte	Mass		Meas, Intens	Conc. Mear	Report Unit
 >	Li		6	167105		ppb
i-	Be		9	654	0.94169	
j-	Р		31	9710.9	21.38375	ppb
 >	Sc		45	106329.4		ppb
j-	Zn		66	631	1.14371	dqq
İ	Zn		67	150	0.58154	ppb
ĺ	Zn		68	526	0.8828	ppb
ĺ	As		75	489.4	1.01847	ppb
j	Se		77	439	-2.29917	ppb
Ì	Se		82	29.6	1.00692	ppb
j>	Rh		103	87413,2		ppb
•	Ho		165	607499.7		ppb
	Kr		83	56.3		ppb

Method 6020 & 200.8 Metals Summary Report

Sample ID: Standard 2

Sample DatThursday, June 21, 2018 11:36:55 Sample Description:

Concentration Results

CONCCINI	HOLL LEGING					
	Analyte	Mass	1	vleas. Intens	Conc. Mear	Report Unit
>	Li		6	165761.6		ppb
[-	Be		9	68418,8	99.96597	dqq
]-	P		31	321261.1	1045.4818	ppb
>	Sc		45	106205.8		ppb
 -	Zn		66	32183.4	100.72754	ppb
1	Zn		67	4903.8	100.32401	ppb
1	Zn		68	21785.8	100.59638	ppb
İ	As		75	30799,3	100.15484	ppb
1	Se		77	2425.5	105.05005	ppb
Ì	Se		82	2909.8	101.10746	рръ
 >	Rh		103	84244		ppb
	Но		165	616939.9		ppb
	Kr		83	45		ppb

Method 6020 & 200.8 Metals Summary Report

Sample ID: Standard 3

Sample Dal Thursday, June 21, 2018 11:38:52 Sample Description:

Concentration Results

	Analyte	Mass		Meas. Intens	Conc. Mear	Report Unit
>	Li		6	160840.4		ppb
j-	Be		9	332032	500.00692	ppb
j-	Ρ		31	1544265.3	4990,8981	ppb
į>	Sc		45	107812.7		ppb
 -	Zn		66	160440.6	499.8542	dqq
i	Zn		67	24231.1	499.93604	ppb
i	Zn		68	108152.1	499,88096	ppb
İ	As		75	154753.8	499,969	ppb
İ	Se		77	9880	498.99659	ppb
İ	Se		82	14539.5	499,77849	ppb
j>	Rh		103	85154.4		ppb
•	Но		165	632755.7		ppb
	Kr		83	50.7		ppb

Method 6020 & 200.8 Metals Summary Report

Sample ID: QC Std 1

Sample Dal Thursday, June 21, 2018 11:40:50 Sample Description:

Concentration Results

	Analyte	Mass	î	vieas. Intens (Conc. Mear	Report Unit
>	Li		6	143507.3		ppb
j-	Be		9	33.7	0.05063	ppb
j-	P		31	3100.2	0.84599	ppb
j>	Sc		45	95435.5		ppb
j-	Zn		66	247	0.09785	dqq
Ì	Zn		67	89	-0.36135	ppb
ĺ	Zn		68	273.3	-0.06029	ppb
Ī	As		75	210.6	0.24593	ppb
i	Se		77	586.7	10.21472	ppb
İ	Se		82	12.6	0.5048	ppb
 >	Rh		103	75333		ppb
-	Но		165	553104.8		ppb
	Kr		83	50		ppb

Method 6020 & 200.8 Metals Summary Report

Sample ID: QC Std 2

Sample Dal Thursday, June 21, 2018 11:42:48 Sample Description:

Concentration Results

		-				
	Analyte	Mass	N	vieas. Intens (Conc. Mear	Report Unit
>	Li		6	156716.6		ppb
j -	Be		9	682.7	1.04901	ppb
j-	Р		31	9508.8	22.65735	ppb
j>	Sc		45	100132.1		ppb
j-	Zn		66	601.3	1.27358	ppb
İ	Zn		67	162	1.21463	ppb
i	Zn		68	523.7	1.15722	ppb
i	As		75	482.4	1,17993	ppb
ĺ	Se		77	723	16.86353	ppb
ĺ	Se		82	22.3	0.85331	ppb
>	₽h		103	78041		ppb
•	Но		165	582788.2		ppb
	Kr		83	47		ppb

elementOne

Method 6020 & 200.8 Metals Summary Report

Sample ID: QC Std 3

Sample Dai Thursday, June 21, 2018 11:44:45 Sample Description:

Concentration Results

	Analyte	Mass		Meas. IntensConc. Mear Report Unit
>	Li		6	5 148477.6 ppb
 -	Be		9	154283.3 251.72184 ppb
-	P		31	699270.8 2468,828 ppb
 >	Sc		45	98456.9 ppb
 -	Zn		66	73775.4 252.16548 ppb
Ì	Zn		67	11067.8 249.69769 ppb
1	Zn		68	48895.1 247.5903 ppb
İ	As		75	70085.7 248,55395 ppb
İ	Se		77	4754.5 252.12397 ppb
1	Se		82	6540.1 246.96811 ppb
[>	Rh	1	03	3 77497.3 ppb
	Но	1	65	5 579451.4 ppb
	Kr		83	3 52.3 ppb

Method 6020 & 200.8 Metals Summary Report

Sample ID: QC Std 4

Sample Dat Thursday, June 21, 2018 11:46:43

Sample Description:

Concentration Results

	Analyte	Mass	Me	eas. Intens	Conc. Mear	Report Unit
>	Li		6	157892.1		ppb
1-	Be		9	66019.7	101.27188	ppb
 -	P		31	309993.7	1033.139	ppb
>	Sc		45	103702.1		ppb
j-	Zn		66	31188.4	102.42146	ppb
l	Zn		67	4804.8	103.19642	ppb
[Zn		68	21094.9	102.21322	ppb
1	As		75	29420	100.35171	ppb
1	Se		77	2420.1	111.1521	ppb
1	Se		82	2781.7	101.38656	dqq
>	Rh		103	80308.8		ppb
	Ho		165	610751.3		ppb
	Kr		83	53		ppb

Method 6020 & 200.8 Metals Summary Report

Sample ID: QC Std 5

Sample Dal Thursday, June 21, 2018 11:48:41

Sample Description:

Concentration Results

COMPONIC	Consciliation results								
	Analyte	Mass	N	leas. Intens	Conc. Mear Report Unit				
[>	Li		6	154290.5	ppb				
j-	Be		9	32585.9	51.14989 ppb				
j-	Р		31	58772.7	195,43836 ppb				
 >	Sc		45	99645.2	ppb				
 -	Zn		66	15292.7	51.78785 ppb				
ĺ	Zn		67	2338.4	50.96542 ppb				
1	Zn		68	10180.4	50.49869 ppb				
j	As		75	13852.4	48.82491 ppb				
Ì	Se		77	1578	67.20415 ppb				
Ì	Se		82	1365.6	51.72072 ppb				
>	Rh		103	77302.7	ppb				
-	Но		165	587508.8	ppb				
	Kr		83	50	dqq				

Method 6020 & 200.8 Metals Summary Report

Sample ID: QC Std 6

Sample DatThursday, June 21, 2018 11:50:38

Sample Description:

Concentration Results

	Analyte	Mass	1	Meas, Intens	Conc. Mear	Report Unit
>	Li		6	167268.4		ppb
i-	Be		9	22.3	0.02618	ppb
j-	P		31	1626655.9	4934.1557	ppb
j>	Sc		45	114837.5		ppb
j-	Zn		66	431.3	0,53736	ppb
ĺ	Zn		67	188.3	1.36103	ppb
ì	Zn		68	378	0.21503	ppb
i	As		75	136.1	-0.0929	ppb
İ	Se		77	535.7	2.70017	ppb
İ	Se		82	-5.1	-0.15326	ppb
j>	Rh		103	87399.2		ppb
•	Но		165	675252.9		ppb
	Kr		83	50		ppb

Method 6020 & 200.8 Metals Summary Report Sample ID: QC Std 7

Sample Dai Thursday, June 21, 2018 11:52:36

Sample Description: Concentration Results

	Analyte	Mass	1	Meas, Intens	Conc. Mear	Report Unit
1>	Li		6	166694.4		ppò
i-	Be		9	3.7	-0.00084	ppb
j-	P		31	1629531.5	4946.0963	ppb
i>	Sc		45	114759.2		ppb
j-	Zn		66	987.4	2.1918	ďqq
İ	Zn		67	293.7	3.41179	ppb
į	Zn		68	806.3	2.10642	ppb
Ì	As		75	492.7	1.00929	ppb
į	Se		77	584	4.84155	ppb
İ	Se		82	27.9	0.93852	ppb
 >	Rh		103	88461.9		ppb
•	Но		165	676120		ppb
	Kr		83	52		ppb

Method 6020 & 200.8 Metals Summary Report Sample ID: QC Std 8

Sample Dal Thursday, June 21, 2018 11:54:33

Sample Description:

Concentration Results

Concen	nanon Resum	5				
	Analyte	Mass	N	Aeas, Intenso	Conc. Mear	Report Unit
>	Li		6	279600.9		dqq
j-	Вe		9	297.7	0.25171	ppb
i-	Р		31	4149.7	-2.51245	ppb
>	Sc		45	181439.4		dqq
j-	Zn		66	3488.9	6.03593	ppb
i	Zn		67	600	5.33275	ppb
i	Zn		68	2393.1	5.44762	ppb
i	As		75	321,8	0.12626	ppb
i	Se		77	978.4	7.48231	ppb
i	Se		82	15.9	0.35834	ppb
i >	Rh		103	136129.3		ppb
•	Ho		165	1046807		ppb
	Kr		83	51.3		ppb

Method 6020 & 200.8 Metals Summary Report

Sample ID: QC Std 2

Sample Dal Thursday, June 21, 2018 11:56:31

Sample Description:

Concentration Results

	Analyte	Mass		Meas. Intens	Conc. Mear	Report Unit
>	Li		6	150100		ppb
j-	Be		9	646	1.0362	ppb
j-	Р		31	9133	21.16916	ppb
>	Sc		45	100685		ppb
j-	Zn		66	578	1.18502	ppb
İ	Zn		67	162	1.20012	ppb
Ì	Zn		68	514	1.09615	ppb
1	As		75	442.3	1.03071	ppb
1	Se		77	441.7	0.47121	ppb
ĺ	Se		82	23	0.87365	ppb
>	Rh		103	78380		ppb
	Ho		165	590990.5		ppb
	Kr		83	46		dad

Method 6020 & 200.8 Metals Summary Report

Sample ID: QC Std 1

Sample Dal Thursday, June 21, 2018 11:58:08

Sample Description:

Concentration Results

	Analyte	Mass		Meas, Intense	Conc. Mear	Report Unit
>	Li		6	143958		ppb
-	Be		9	3.7	-0.00001	ppb
į-	Р		31	2822.5	0.00122	ppb
>	Sc		45	93878.6		ppb
 -	Zn		66	216.3	0.00006	ppb
1	Zn		67	103	0.00015	ppb
Ì	Zn		68	280.7	0.00011	ppb
Ì	As		75	141.3	-0.00004	ppb
l	Se		77	410.7	0.00315	ppb
l	Se		82	-0.4	-0.00023	ppb
>	Rh		103	74251.8		ppb
	Но		165	557874.5		ppb
	Kr		83	51.3		ppb

Method 6020 & 200.8 Metals Summary Report

Sample ID: LRB FH

Sample Dai Thursday, June 21, 2018 12:00:06

Sample Description:

Concentration Results

Concen	nanon Result	•							
	Analyte	Mass	N	Meas, Intens Conc. Mear Report Uni					
>	Li		6	155595.4	dqq				
j-	Be		9	1.3	-0.00409 ppb				
į-	Р		31	3744.6	2.11362 ppb				
>	Sc		45	103687.9	ppb				
j-	Zn		66	769.3	1.41857 ppb				
Ì	Zn		67	124.7	-0.08854 ppb				
İ	Zn		68	617.7	1.12274 ppb				
ĺ	As		75	159.1	-0.05425 ppb				
	Se		77	35.7	-23.25084 ppb				
İ	Se		82	6.9	0.23412 ppb				
>	Rh		103	93230.2	ppb				
•	Но		165	602025	ppb				
	Kr		83	52	dad				

element**One** e 31368-Metals

ICP-Data 42 of 66

63.42

Method 6020 & 200.8 Metals Summary Report

Sample ID: LRB FH Sample Dal Thursday, June 21, 2018 12:02:04 Sample Description:

Concentration Results

+ + + + + +	++11										
	Analyte	Mass	٨	/leas. Intens	Conc. Mear Report Unit						
>	Li		6	161061.1	ppb						
j -	Be		9	30546	45.93023 ppb						
j-	Р		31	57658.7	178.23308 ppb						
 >	Sc		45	106652.7	ppb						
 -	Zn		66	14707.3	40.89717 ppb						
İ	Zn		67	2273.8	40.36159 ppb						
İ	Zn		68	9949.3	40,39204 ppb						
İ	As		75	13851.7	40.15649 ppb						
İ	Se		77	833.3	15.15623 ppb						
i	Se		82	1266,9	39.56179 ppb						
 >	Rh		103	93776.2	dqq						
	Но		165	614930.4	ppb						
	Kr		83	60.3	ppb						

Method 6020 & 200.8 Metals Summary Report

Sample ID: LRB BH
Sample Dai Thursday, June 21, 2018 12:04:02
Sample Description:

Concentration Results

	Analyte	Mass	Meas, Intens Conc. Mear Report Unit					
>	Li		6	189515.8		ppb		
] -	Be		9	3.7	-0.00149	ppb		
]-	Ρ	:	31	5987.7	6.82158	ppb		
>	Sc		45	120701.4		ppb		
[-	Zn	1	66	2954.8	6.41419	dqq		
l	Zn	1	67	439	4.64619	ppb		
j	Zn	1	68	2144.1	6,25702	ppb		
Ì	As		75	131.2	-0.19308	ppb		
İ	Se		77	24	-23.9842	ppb		
Ì	Se		82	-1.1	-0.01481	ppb		
>	Rh	1	03	109228.4		ppb		
	Но	1	65	676666.5		ppb		
	Kr		83	58.3		ppb		

Method 6020 & 200.8 Metals Summary Report

Sample ID: LRB BH Sample Dai Thursday, June 21, 2018 12:05:59

Sample Description:

Concentration Results

	Analyte	Mass	İ	Meas, Intens(Conc. Mear	Report Unit
>	Li		6	196662.8		ppb
ļ-	Be		9	35489.5	43.70419	ppb
Î-	P		31	63540.7	173.1261	ppb
 >	Sc		45	120797.8		ppb
j-	Zn		66	16871	40.0239	ppb
j	Zn		67	2585,8	39.09717	ppb
i	Zn		68	11565	40.06096	ppb
İ	As		75	14221.4	35.1155	ppb
į	Se		77	770	6.68975	ppb
İ	Se		82	1163.5	30.98238	ppb
>	Rh		103	109911.8		ppb
•	Ho		165	689560.9		ppb
	Kr		83	65,3		ppb

elementOne

ICP-Data 43 of 66 e 31368-Metals 63.43

Method 6020 & 200.8 Metals Summary Report Sample ID: 31368-1 FH

Sample Dal Thursday, June 21, 2018 12:07:58

Sample Description:

Concentration Results

	Analyte	Mass Meas. Intens Conc. Mear Report Unit								
>	Li		6	158741		ppò				
i-	Be		9	4.3	0.00044	ppb				
ļ-	Р		31	3337,9	0.91491	ppb				
>	Sc		45	102123.5		ppb				
<u> </u>	Zn		66	39492.2	122.43805	ppb				
	Zn		67	5814.3	118.06895	ppb				
İ	Zn		68	26026,5	119.13127	ppb				
	As		75	167.9	0.01709	ppb				
	Se		77	312.3	-8.43106	ppb				
	Se		82	10	0,35898	ppb				
>	Rh		103	85186.9		ppb				
•	Но		165	610579		ppb				
	Kr		83	48.7		ppb				

Method 6020 & 200.8 Metals Summary Report

Sample ID: 31368-2 FH

Sample Dai Thursday, June 21, 2018 12:09:55

Sample Description:

Concentration Results

	Analyte	Mass	N	/leas. Intens	Conc. Mear	Report Unit
>	Li		6	161364.6		ppb
-	Be		9	4	-0.00017	ppb
j-	P		31	3549.9	1.70484	ppb
>	Sc		45	101584		ppb
j-	Zn		66	40689.1	125.92311	ppb
	Zn		67	5942	120.49295	ppb
1	Zn		68	26620.8	121.66997	ppb
]	As		75	171,2	0.02823	ppb
Ì	Se		77	305	-8.83748	ppb
1	Se		82	25.3	0.88742	ppb
>	Rh		103	85335.1		ppb
	Ho		165	612084.2		ppb
	Kr		83	45.7		dqq

Method 6020 & 200.8 Metals Summary Report

Sample ID: 31368-2 FH

Sample Dat Thursday, June 21, 2018 12:11:53

Sample Description:

Concentration Results

Concen	ualion Result	>						
	Analyte	Mass	Meas, Intens Conc. Mear Report Unit					
[>	Li		6	161418.3		ppb		
 -	Be		9	2.7	-0.00216	ppb		
] -	P		31	3451.9	1.33465	ppb		
j>	Sc		45	101860.4		ppb		
 -	Zn		66	40950.8	125,52844	ppb		
İ	Zn		67	5978.4	120.07176	ppb		
İ	Zn		68	26788	121.26454	ppb		
Ì	As		75	137.8	-0.08344	ppb		
İ	Se		77	304	-9.03721	ppb		
ĺ	Se		82	-0.8	-0.01116	ppb		
 >	Rh		103	86148.9		ppb		
	Ho		165	609097.3		ppb		
	Kr		83	57.3		pph		

Method 6020 & 200.8 Metals Summary Report Sample ID: 31368-3 FH

Sample DatThursday, June 21, 2018 12:13:50

Sample Description:

Concentration Results

	Analyte	Mass	1	Meas. Intens	Conc. Mear	Report Unit
>	Li		6	162679.9		ppb
j-	Be		9	4	-0.00021	ppb
j-	P		31	3298.6	0.93885	ppb
 >	Sc		45	100719.5		ppb
]-	Zn		66	34094.9	104.78132	ppb
İ	Zn		67	4907.8	98.51143	ppb
İ	Zn		68	22270.2	100.94223	ppb
İ	As		75	133.2	-0.09718	ppb
İ	Se		77	288.3	-9.80374	ppb
İ	Se		82	-4.7	-0.14726	ppb
>	Rh		103	85822.7		ppb
-	Ho		165	612398.1		ppb
	Kr		83	52.7		ppb

Method 6020 & 200.8 Metals Summary Report

Sample ID: 31368-3 FH Sample Dai Thursday, June 21, 2018 12:15:48

Sample Description: Concentration Results

	Analyte	Mass	ì	Meas, Intens	Conc. Mear	Report Unit
>	Li		6	154259		ppb
į-	Be		9	31542.9	49.52161	ppb
 -	P		31	56923.8	192.78655	ppb
 >	Sc		45	97740.4		ppb
i -	Zn		66	47383.5	154.36081	ppb
İ	Zn		67	7017.3	150.23223	ppb
į	Zn		68	31143.1	149.98017	ppb
İ	As		75	14026.1	47.05976	ppb
1	Se		77	1146.7	38.78819	ppb
	Se		82	1365.6	49.26072	ppb
 >	Rh		103	81189		ppb
	Но		165	590131.9		ppb
	Kr		83	50		ppb

Kr 83 50 Method 6020 & 200.8 Metals Summary Report Sample ID: QC Std 1

Sample Dai Thursday, June 21, 2018 12:17:47

Sample Description:

Concentration Results

Conce	In anon nesun	•				
	Analyte	Mass	N	leas. IntensC	Conc. Mear l	Report Unit
>	Li		6	149761.3	ı	opb
j-	Be		9	12.3	0.01379	opb
<u> </u> -	P		31	2870.5	0.31351	ppb
>	Sc		45	92722	1	ppb
j-	Zn		66	227.3	-0.00311	ppb
ĺ	Zn		67	85.3	-0.52519	ppb
ĺ	Zn		68	256.7	-0.19811	ppb
Ì	As		75	105.3	-0.15506	ppb
i	Se		77	272.3	-9.28533	ppb
Ì	Se		82	9	0.3529	ppb
>	Rh		103	78353		ppb
•	Ho		165	568198,3		ppb
	Kr		83	46.7		oob

Method 6020 & 200.8 Metals Summary Report Sample ID: QC Std 4

Sample DaiThursday, June 21, 2018 12:19:44

Sample Description: Concentration Results

	Analyte	Mass	ı	∕leas. Intens	Conc. Mear	Report Unit
[>	Li		6	154910.5		ppb
 -	Be		9	61804.3	96.64489	ppb
-	P		31	280509,9	1004.9433	ppb
>	Sc		45	96425		ppb
 -	Zn		66	28810.6	93.17313	ppb
1	Zn		67	4445.1	93.83881	ppb
	Zn		68	19260.1	91.81443	ppb
Ì	As		75	27106.1	91.08014	ppb
Ì	Se		77	2022.4	87.10264	ppb
	Se		82	2682.1	96.34575	ppb
>	Rh		103	81491		ppb
	Но		165	604856.6		ppb
	Kr		83	44.3		ppb

Method 6020 & 200.8 Metals Summary Report Sample ID: 31368-4 FH

Sample Dat Thursday, June 21, 2018 12:21:43

Sample Description: Concentration Results

	Analyte	Mass		Meas, Intenso	Conc. Mear	Report Unit
>	Li		6	147740.4		ppb
 -	Ве		9	10.7	0.01132	ppb
[-	P		31	3211.5	1.63299	ppb
>	Sc		45	92435.6		ppb
 -	Zn		66	27434.7	91.03863	ppb
1	Zn		67	3907.6	84.4463	ppb
1	Zn		68	17888.7	87.45782	ppb
	As		75	152.1	0.00205	ppb
	Se		77	311	-7.28221	ppb
1	Se		82	-7.4	-0.26121	ppb
[>	Rh		103	79392.2		ppb
	Но		165	577561.6		ppb
	Kr		83	56		dag

Method 6020 & 200.8 Metals Summary Report Sample ID: 31368-2 BH

Sample Dai Thursday, June 21, 2018 12:23:40

Sample Description:

Concentration Results

Cottrelitie	HOH KESHIK	>							
	Analyte	Mass	Meas, Intens Conc. Mear Report Ur						
j>	Li		6	151725.6		ppb			
 -	Be		9	6.3	0.00394	ppb			
 -	Р		31	12459.4	34.56154	ppb			
>	Sc		45	96546.8		ppb			
[-	Zn		66	16511.8	52.4517	ppb			
1	Zn		67	2434.5	49.69462	ppb			
]	Zn		68	10910.4	50.76084	ppb			
Ì	As		75	121.7	-0.11748	ppb			
Ì	Se		77	313	-7.83388	ppb			
Ì	Se		82	26	0.93736	ppb			
>	Rh		103	82427.3		ppb			
	Но		165	591948		ppb			
	Kr		83	44.7		ppb			

element One

ICP-Data 46 of 66 e 31368-Metals 63.46

Method 6020 & 200.8 Metals Summary Report Sample ID: 31368-2 BH Sample Dal Thursday, June 21, 2018 12:25:38

Sample Description:

Concentration Results

	Analyte	Mass	Meas. IntensConc. Mear Report Un					
>	Li		6	155497.8		ppb		
j-	Be		9	5.3	0.00214	ppb		
j-	P		31	12580,8	34.4922	ppb		
j>	Sc		45	97623.9		ppb		
j-	Zn		66	16710.6	52.65052	ppb		
j	Zn		67	2491.1	50.46827	ppb		
İ	Zn		68	11092.8	51,19787	ppb		
İ	As		75	85,6	-0.23953	ppb '		
į	Se		77	301	-8.61927	ppb		
i	Se		82	29,3	1.04754	ppb		
j>	Rh		103	83117.3		ppb		
•	Ho		165	600917.6		ppb		
	Kr		83	46.3		ppb		

Method 6020 & 200.8 Metals Summary Report

Sample ID: 31368-3 BH Sample Dai Thursday, June 21, 2018 12:27:35

Sample Description:

Concentration Results

		-							
	Analyte	Mass	Meas, Intens Conc, Mear Report Ur						
>	Li		6	162208.7	ppb				
j-	Be		9	3.7	-0.0007 ppb				
j-	Р		31	17411.1	48.95686 ppb				
 >	Sc		45	102255.1	ppb				
i-	Zn		66	14798	44.49029 ppb				
İ	Zn		67	2207.4	42.41883 ppb				
i	Zn		68	9799,3	43.04518 ppb				
İ	As		75	135.1	-0.09492 ppb				
İ	Se		77	253	-11.80652 ppb				
į	Se		82	-2.8	-0.08285 ppb				
>	Rh		103	86876	ppb				
-	Ho		165	616940.5	ppb				
	Kr		83	57	daa				

Method 6020 & 200.8 Metals Summary Report

Sample ID: 31368-3 BH Sample Dat Thursday, June 21, 2018 12:29:33 Sample Description:

Concentration Results

001101		•				
	Analyte	Mass		Meas, Intens	Conc. Mear	Report Unit
>	Li		6	163358.9		ppb
j-	Be		9	31949.1	47.36451	ppb
j-	P	:	31	71387.8	230.78318	ppb
>	Sc		45	103296.3		ppb
j -	Zn	1	3 6	28406.1	86.66489	ppb
ĺ	Zn	1	67	4090,3	81.21158	ppb
ĺ	Zn	(68	18763	84.31071	ppb
Ì	As	•	75	13460.8	42.41731	ppb
i	Se	•	77	1003.7	27.53739	ppb
ĺ	Se	į	82	1218.6	41.33102	ppb
j>	Rh	1	03	86323.5		ppb
•	Ho	11	65	614041.6	i	ppb
	Kr		83	50.3	ı	nnh

Method 6020 & 200.8 Metals Summary Report Sample ID: 31368-7

Sample DaiThursday, June 21, 2018 12:31:31

Sample Description: Concentration Results

	Analyte	Mass		Meas Intens	Conc. Mear Report Unit	
 >	Li	141400	6	166518.3	ppb	
j-	Be		9	29901.9		
j-	P		31	18203	• • •	
j>	Sc		45	94763.6	ppb	
j-	Zn		66	23148.7	91.76749 ppb	
İ	Zn		67	3634.9	94.09572 ppb	
ĺ	Zn		68	15358	89.73018 ppb	
İ	As		75	18796.2	77.3551 ppb	
	Se		77	2518.8	146.19415 ppb	
İ	Se		82	1755.7	77.32069 ppb	
>	Rh		103	66473.6	ppb	
	Но		165	566229.8	ppb	
	Kr		83	49.7	daa	

Method 6020 & 200.8 Metals Summary Report Sample ID: 31368-7

Sample Dat Thursday, June 21, 2018 12:33:28

Sample Description: Concentration Results

	Analyte	Mass	Meas, Intens Conc. Mear Report Unit					
>	Li		6	172186.1		ppb		
[-	Be		9	67047.5	94.30926	ppb		
 -	P		31	18659,3	56.47624	ppb		
>	Sc		45	97258.5		ppb		
1-	Zn		66	35668.1	139.64115	ppb		
1	Zn		67	5511.6	141.72751	dqq		
ĺ	Zn		68	23887.1	138.223	ppb		
1	As		75	30319.4	123.18302	ppb		
1	Se		77	3236.5	191.5665	ppb		
1	Se		82	2880.8	124.94146	ppb		
>	Rh		103	67494.7		ppb		
	Но		165	573951		ppb		
	Kr		83	41.3		ppb		

Method 6020 & 200.8 Metals Summary Report Sample ID: 31368-8

Sample Dat Thursday, June 21, 2018 12:39:20

Sample Description:

Concentration Results

OUTIOCHE.	Conocini anon recails								
	Analyte	Mass	Λ	/leas. Intens	Conc. Mear Report Unit				
>	Li		6	156064.1	ppb				
j-	Be		9	70408.7	109.27587 ppb				
 -	Р		31	60490.1	215.05302 ppb				
>	Sc		45	93626.3	ppb				
-	Zn		66	62714.6	205.94217 ppb				
ĺ	Zn		67	9504.5	205.70842 ppb				
	Zn		68	42575.9	206.98819 ppb				
1	As		75	26587.9	90.30722 ppb				
ĺ	Se		77	2944.8	140.02309 ppb				
ĺ	Se		82	4192.3	152.24311 ppb				
>	Rh		103	80618.8	ppb				
	Нο		165	590306.2	ppb				
	Kr		83	49.7	ppb				

Method 6020 & 200.8 Metals Summary Report

Sample ID: 31368-8

Sample Dai Thursday, June 21, 2018 12:41:18

Sample Description:

Concentration Results

	Analyte	Mass	Meas. IntensConc. Mear Report Unit						
>	Li		6	151016.9		ppb			
j-	Be		9	97719.3	156,72004	ppb			
j-	P	3	31	59256.5	210.3908	ppb			
>	Sc	4	15	93656.4		ppb			
-	Zn	6	6	75231	252.30254	ppb			
ĺ	Zn	€	37	11351.2	251.27509	ppb			
ĺ	Zn	6	8	50769.2	252.26231	ppb			
1 .	As	7	75	39066.7	135.69011	ppb			
İ	Se	7	77	3611.3	181.50145	ppb			
İ	Se	8	32	5345.8	198.10778	ppb			
>	Rh	10)3	78982.6		ppb			
•	Но	16	35	583556.5		ppb			
	Kr	8	33	53,7		ppb			

Method 6020 & 200.8 Metals Summary Report

Sample ID: QC Std 1

Sample Dat Thursday, June 21, 2018 12:43:17

Sample Description: Concentration Results

	Analyte	Mass	Meas	. IntensC	onc. Mear	Report Unit
>	Li		6 1	145146		ppb
j -	Be		9	29.7	0.04321	ppb
j-	P	3	1	2653.5	-0.3162	ppb
[>	Sc	4	5 9	0989.3		ppb
j -	Zn	6	6	218.3	-0.00925	ppb
i	Zn	6	7	77.3	-0.64779	ppb
ĺ	Zn	6	8	261.7	-0.12951	ppb
	As	7	5	127.3	-0.06197	ppb
ĺ	Se	7	7	251	-10.02138	ppb
ĺ	Se	8	2	-0.7	-0.01121	ppb
>	Rh	10	37	5801.1		ppb
	Но	16	5 56	0669.3		ppb
	Kr	8	3	46.3		ppb

Method 6020 & 200.8 Metals Summary Report

Sample ID: QC Std 4

Sample Dai Thursday, June 21, 2018 12:45:14

Sample Description:

Concentration Results

00110011		-							
	Analyte	Mass	Meas. Intens Conc. Mear Report U						
>	Li		6	151839.2		ppb			
-	Be		9	61492.9	98.11273	ppb			
i-	P		31	272095.3	997.07193	ppb			
>	Sc		45	94284.9		рро			
j-	Zn		66	27466.4	97.86353	ppb			
i	Zn		67	4209	97.95786	ppb			
i	Zn		68	18388.1	96.61411	ppb			
i	As		75	25763.5	95.3629	ppb			
i	Se		77	1956.7	94.45269	ppb			
i	Se		82	2506	99.12571	ppb			
 >	Rh		103	74014.4		ppb			
•	Ho		165	597006.9		ppb			
	Kr		83	53.3		nnh			

Method 6020 & 200.8 Metals Summary Report

Sample ID: 31368-1 FH

Sample Dal Thursday, June 21, 2018 12:47:13 Sample Description:

Concentration Results

	Analyte	Mass		Meas. Intens	Conc. Mear	Report Unit
[>	Li		6	178084.1		ppb
[-	Be	!	9	64	0.08075	ppb
-	Р	3	1	21295.1	59.55813	ppb
>	Sc	4	5	106117.4		ppb
j -	Zn	6	6	1656898.3	4649.3139	ppb
1	Zn	6	7	245293.7	4571.7301	ppb
İ	Zn	6	8	1099866.9	4584.6518	ppb
İ	As	7	5	719.6	1.56907	ppb
Ì	Se	7	7	237	-13.67144	ppb
1	Se	8	2	304.6	9.43231	ppb
>	Rh	10	3	94674.3		ppb
	Но	16	5	647362.3		ppb
	Kr	8	3	52.7		ppb

Method 6020 & 200.8 Metals Summary Report

Sample ID: 31368-2 FH

Sample Dal Thursday, June 21, 2018 12:49:10 Sample Description:

Concentration Results

	Analyte	Mass	N	leas. Intens	Conc. Mear	Report Unit
[>	Li		6	172419.6		ppb
[-	Be		9	33.7	0.04115	ppb
[-	P	3	31	29498.1	88.77444	ppb
>	Sc		15	103739.1		ppb
j-	Zn	6	66	1810497.4	5222.8203	ppb
1	Zn	(37	265124.4	5080,386	ppb
1	Zn	(38	1190212	5100.5951	ppb
1	As	7	75	823.6	1.94108	ppb
į	Se	7	77	380.7	-6.30629	ppb
1	Se	{	32	535.2	17.03136	ppb
 >	Rh	10	03	92094.3		ppb
	Ho	16	35	629962.1		ppb
	Kr	8	33	59.7		ppb

Method 6020 & 200.8 Metals Summary Report Sample ID: 31368-2 FH

Sample Dai Thursday, June 21, 2018 12:51:07

Sample Description: Concentration Results

Concern	nanon kesun	>				
	Analyte	Mass		Meas. Intens	Conc. Mear	Report Unit
>	Li		6	177322.8		ppb
 -	Be		9	36.3	0.04351	ppb
 -	P		31	29996.3	88.28029	ppb
>	Sc		45	106020.4		ppb
 -	Zn		66	1800710.2	5077.3281	ppb
1	Zn		67	267701.3	5013.7591	ppb
İ	Zn		68	1187635.7	4974,5281	dqq
İ	As		75	892.1	2.08291	ppb
ĺ	\$e		77	380	-6.76114	ppb
ĺ	Se		82	569.6	17.70826	ppb
>	Rh		103	94218.9		ppb
	Ho		165	648929.9		ppb
	Kr.		83	40.3		nnh

Method 6020 & 200.8 Metals Summary Report Sample ID: 31368-3 FH Sample Dat Thursday, June 21, 2018 12:53:05 Sample Description:

Concentration Results

	Analyte	Mass	1	Meas, Intens	Conc. Mear	Report Unit
!>	Li		6	184846.5		ppb
j-	Be		9	31.3	0.03485	
i-	P		31	19558	52,20774	ppb
j>	Sc		45	108887.3		ppb
j-	Zn		66	1455734.1	3949.7912	ppb
i	Zn		67	214111.4	3858.5921	ppb
i	Zn		68	948947.1	3824.6013	ppb
İ	As		75	378.2	0.53954	ppb
İ	Se		77	24	-23.87145	ppb
İ	Se		82	0.9	0.0457	ppb
>	Rh		103	97919.4		ppb
	Но		165	665254		ppb
	Kr		83	54.7		daa

Method 6020 & 200.8 Metals Summary Report Sample ID: 31368-3 FH Sample Data Description Sample Description

Concentration Results

	Analyte	Mass	- 1	Meas. Intens	Conc. Mear	Report Unit
>	Li		6	179351.2		ppb
j -	Be		9	34748.8	46.92214	ppb
Î-	Р		31	76441	240.61277	ppb
j>	Sc		45	106271.1		ppb
j -	Zn		66	1437798.2	4041.8217	ppb
İ	Zn		67	212304.8	3964.0104	ppb
İ	Zn		68	945521.8	3948.4183	ppb
1	As		75	13657.8	39.27404	ppb
ĺ	Se		77	785	12.54075	ppb
ĺ	Se		82	1230.7	38.13596	ppb
>	Rh		103	94504.6		ppb
·	Но		165	642834		ppb
	Kr		83	47.3		dad

Method 6020 & 200.8 Metals Summary Report Sample ID: 31368-4 FH

Sample DalThursday, June 21, 2018 12:57:00 Sample Description:

Concentration Results

Conc. Mear Report Unit
Cons. Medi Nepoli omi
ppb
0.04287 ppb
44.57939 ppb
dqq
3529.8765 ppb
3412.8287 ppb
3451.4174 ppb
0.87364 ppb
-22.10143 ppb
1.85785 ppb
dqq
ppb
ppb

Method 6020 & 200.8 Metals Summary Report Sample ID: 31368-1 BH

Sample Dai Thursday, June 21, 2018 12:58:58

Sample Description: Concentration Results

	Analyte	Mass	N	Aeas. Intens	Conc. Mear	Report Unit
>	Li		6	229405.9		ppb
-	Be		9	11	0.00547	ppb
 -	Р		31	98905.3	272,51945	ppb
>	Sc		45	122018.8		ppb
-	Zn		66	81249.2	190.16531	ppb
ĺ	Zn		67	11873.2	182.97369	ppb
ĺ	Zn		68	53613.4	185,707	ppb
1	As		75	361.3	0.35506	ppb
1	Se		77	95.3	-21.16755	ppb
1	Se		82	129.3	3.3575	ppb
>	Rh		103	113065.1		ppb
	Ho		165	715585.2		ppb
	Kr		83	52		anh

Method 6020 & 200.8 Metals Summary Report Sample ID: 31368-2 BH Sample Dal Thursday, June 21, 2018 13:00:56

Sample Description: Concentration Results

	Analyte	Mass		Meas. Intens	Conc. Mear	Report Unit
>	Li		6	217680.7		ppb
j-	Be		9	15.7	0.01124	ppb
j-	P		31	106766.5	301.2354	ppb
 >	Sc		45	119579.7		ppb
ĺ-	Zn		66	145141.8	347.84863	ppb
ŀ	Zn		67	21242	336.57314	ppb
	Zn		68	95220,3	338.31044	ppb
1	As		75	499.4	0.71901	ppb
İ	Se		77	150.3	-18.83978	ppb
Ì	Se		82	223.5	5.92839	ppb
>	Rh		103	110620.2		ppb
•	Ho		165	703141.6		ppb
	Kr		83	61.3		ppb

Method 6020 & 200.8 Metals Summary Report Sample ID: 31368-2 BH

Sample DaiThursday, June 21, 2018 13:02:53

Sample Description:

Concentration Results

Concen	manon Result	5				
	Analyte	Mass	V	Aeas. Intens	Conc. Mear	Report Unit
>	Li		6	212921.8		ppb
 -	Be		9	16.7	0.01281	ppb
 -	P		31	104054.8	296.28412	ppb
>	Sc		45	118405.1		ppb
j-	Zn		66	143473.5	344.47103	ppb
ĺ	Zn		67	21113.6	335.13282	ppb
ĺ	Zn		68	95566.3	340.18369	ppb
ĺ	As		75	373.7	0.40793	ppb
Ì	Se		77	170	-18.02499	ppb
Ì	Se		82	204.9	5.4503	ppb
 >	Rh		103	110419		ppb
	Ho		165	696678.6		ppb
	Kr		83	49.3		ppb

elementOne

ICP-Data 52 of 66 e 31368-Metals 63.52

Method 6020 & 200.8 Metals Summary Report Sample ID: 31368-3 BH

Sample Dal Thursday, June 21, 2018 13:04:51 Sample Description:

Concentration Results

	Analyte	Mass	N	ileas, Intens	Conc. Mear	Report Unit
[>	Li		6	202535.5		ppb
<u>i</u> -	Be		9	5.7	0.00059	ppb
Ī-	P		31	74607.5	215.62928	ppb
j>	\$c		45	115181.7		ppb
j-	Zn		66	64927.5	163.6739	ppb
İ	Zn		67	9351.1	154.94794	ppb
1	Zn		68	42058	156.8156	ppb
i	As		75	186.6	-0.03335	ppb
ĺ	Se		77	28	-23,77067	ppb
ĺ	Se		82	14.3	0.41222	ppb
 >	Rh		103	104911.7		ppb
-	Ho		165	688561.6		ppb
	Kr		83	49.7		dqq

Method 6020 & 200.8 Metals Summary Report Sample ID: 31368-3 BH

Sample DatThursday, June 21, 2018 13:06:48 Sample Description:

Concentration Results

	Analyte	Mass	M	eas. Intens	Conc. Mear	Report Unit
>	Li		6	202405.2		ppb
1-	Be		9	35147	42.06419	ppb
j-	P		31	128467.2	381.42791	ppb
 >	Sc		45	114428.6		ppb
 -	Zn		66	75495.2	189.46152	ppb
1	Zn		67	10989.7	181.56363	ppb
İ	Zn		68	49851	185.18592	ppb
i	As		75	12338.9	31.71304	ppb
İ	Se		77	688,3	4,51941	ppo
İ	Se		82	1055	29.32131	ppb
>	Rh		103	105451.3		ppb
	Но		165	687342.9		ppb
	Kr		83	48.3		ppb

Method 6020 & 200.8 Metals Summary Report

Sample ID: QC Std 1

Sample Dai Thursday, June 21, 2018 13:08:47

Sample Description:

Concentration Results

	Analyte	Mass		Meas. Intens	Conc. Mear	Report Unit
>	Li		6	156929.3		ppb
j-	Be		9	6.3	0.00362	ppb
j-	Р		31	2571.8	-0.7061	ppb
j>	Sc		45	91708.6		dqq
j-	Zn		66	202.3	-0.07157	ppb
Ì	Zn		67	76.3	-0.68755	ppb
İ	Zn		68	257	-0.16589	ppb
İ	As		75	117.8	-0.09986	ppb
İ	Se		77	228	-11.52677	ppb
ì	\$e		82	1.3	0.06441	ppb
j>	Rh		103	76506.9		ppb
•	Но		165	581944.2		ppb
	Kr		83	41.7		ppb

elementOne

e 31368-Metals 63,53 ICP-Data 53 of 66

B-259

Method 6020 & 200.8 Metals Summary Report

Sample ID: QC Std 4

Sample Dal Thursday, June 21, 2018 13:10:45 Sample Description:

Concentration Results

	Analyte	Mass	Me	eas. Intens	Conc. Mear	Report Unit
]>	Li		6	163638,6		ppb
j-	Be		9	64904.2	96,06968	ppb
j-	P		31	281076.7	1000.6377	ppb
 >	Sc		45	97059.8		ppb
j-	Zn		66	27723,4	90.05582	ppb
Ì	Zn		67	4153,7	87.97966	ppb
İ	Zn		68	18519.9	88.66044	ppb
ĺ	As		75	26931.2	90.9227	ppb
ĺ	Se		77	1856.7	78.41039	ppb
İ	Se		82	2642.1	95.37193	ppb
 >	Rh	1	03	81104.7		ppb
•	Но	1	65	621335.1		ppb
	Kr		83	48.3		ppb

Method 6020 & 200.8 Metals Summary Report

Sample ID: 31368-4 BH

Sample Dai Thursday, June 21, 2018 13:15:20 Sample Description:

Concentration Results

	Analyte	Mass	Me	eas. Intens	Conc. Mear	Report Unit
 >	Li		6	219150.9		ppb
-	Be		9	5	-0.00065	ppb
 -	P		31	72978.7	201.65602	ppb
>	Sc		45	120092.8		ppb
-	Zn		66	55146.4	130.59026	ppb
Į	Zn		67	8144.7	126.471	ppb
1	Zn		68	36489.3	127.65142	ppb
1	As		75	303.4	0.22518	ppb
1	Se		77	47.3	-23.06058	ppb
1	Se		82	37.9	1.00934	ppb
>	Rh	1	03	111542.3		ppb
	Но	1	65	716024.7		ppb
	Kr		83	60		ppb

Method 6020 & 200.8 Metals Summary Report

Sample ID: QC Std 1

Sample DatThursday, June 21, 2018 13:21:15

Sample Description: Concentration Results

Conscilla	Concentration recours								
	Analyte	Mass	İ	Meas, Intens	Conc. Mear	Report Unit			
>	Li		6	148886.5		ppb			
-	Be		9	2.7	-0.00182	ppb			
j-	Р		31	2407.8	-0.87314	ppb			
>	Sc		45	87348.3		ppb			
 -	Zn		66	204.3	-0.02773	ppb			
1	Zn		67	68.7	-0.78271	ppb			
l	Zn		68	218	-0.30927	ppb			
ĺ	As		75	103	-0.13389	ppb			
Ì	Se		77	222	-11.19678	ppb			
Ì	Se		82	-2	-0.06861	ppb			
 >	Rh		103	72755.4		ppb			
	Но		165	562227.7		ppb			
	Kr		83	47.7		ppb			

elementOne e 31368-Metals

ICP-Data 54 of 66

63.54

Method 6020 & 200.8 Metals Summary Report

Sample ID: QC Std 2

Sample Dal Thursday, June 21, 2018 13:23:12 Sample Description: Concentration Results

Concer	itration Results	5					
	Analyte	Mass	N	Aeas. Intens	Conc. Mear	Report U	rit
>	Li		6	155852.2		ppb	
j-	Be		9	610.7	0,94289	ppb	
j-	Р		31	8164.7	20.63553	ppb	
 >	Sc		45	91552.3		ppb	
į-	Zn		66	481.7	0.88911	ppb	
j	Zn		67	117.3	0.24389	ppb	
ĺ	Zn		68	430.3	0.71556	ppb	
İ	As		75	334.4	0.67377	ppb	
İ	Se		77	212.7	-12.49772	ppb	
İ	Se		82	20.6	0.80059	ppb	
 >	Rh		103	76942.6		ppb	
•	Ho		165	586059		ppb	
	Kr		83	48.3		ppb	

Kr 83 48.3 Method 6020 & 200.8 Metals Summary Report

Sample ID: QC Std 4 Sample Dal Thursday, June 21, 2018 13:25:10

Sample Description:

Concentration Results

	Analyte	Mass		Meas. Intens	Conc. Mear	Report Unit
>	Li		6	154843.8		ppb
-	Be		9	62068.6	97.07677	ppb
j-	Р		31	266341.8	992.03153	ppb
j>	Sc		45	92742.8		ppb
 -	Zn		66	26233.1	88,76075	ppb
Ì	Zn		67	4032.7	89.00826	ppb
ĺ	Zn		68	17745	88.47886	ppb
İ	As		75	25613.8	90.07591	ppb
İ	Se		77	1814.7	80.28936	ppb
İ	Se		82	2590.1	97.3871	ppb
 >	Rh		103	77847.7		ppb
-	Но		165	603963.4		ppb
	Kr		83	44.7		dqq

Method 6020 & 200.8 Metals Summary Report

Sample ID: QC Std 4
Sample Dat Thursday, June 21, 2018 13:27:10
Sample Description:

Concentration Results

-	01100111101101111110				
	Апаlyte	Mass	Meas, Intens	Conc. Mear	Report Unit
>	Li	6	151109.6		ppb
i-	Be	9	60957.6	97.70412	ppb
j-	P	31	257884.3	980.28517	ppb
j>	Sc	45	90865,8		ppb
j-	Zn	66	25910.1	96.81333	dqq
i	Zn	67	3894	94.99477	ppb
Ĺ	Zn	68	17234.3	94.95524	ppb
i	As	75	24193.6	93.9302	ppb
Ĺ	Se	77	1816.4	91.31162	ppb
ĺ	Se	82	2317.1	96.15107	ppb
į۶	Rh	103	70546.1		ppb
	Но	165	592682.2		ppb
	Kr	83	45.3		daa

elementOne

Method 6020 & 200.8 Metals Summary Report

Sample ID: Blank

Sample Dai Thursday, June 21, 2018 13:29:17

Sample Description:

Concentration Results

	Analyte	Mass	ĭ	Meas. IntensCond	. Mear Report Unit
	Li		6	146502.1	ppb
	Sc		45	84260.1	ppb
>	Rh		103	67604.6	ppb
İ	Ag		107	115.3	ppb
1	Ag		109	109	ppb
Ì	Cd		111	26	ppb
j-	Cd		114	73.5	ppb
	Ho		165	548864.6	ppb
	Kr		83	41.3	ppb

Method 6020 & 200.8 Metals Summary Report

Sample ID: Standard 1

Sample Dal Thursday, June 21, 2018 13:31:08

Sample Description:

Concentration Results

	Analyte	Mass	N	Лeas. IntensC	onc. Mear Report Unit
	Li		6	154808	ppb
	Sc		45	89451.8	ppb
>	Rh		103	71154.5	ppb
Ì	Ag		107	1699.4	1.01611 ppb
[Ag		109	1764.1	ppb
1	Cd		111	938.2	1.02355 ppb
-	Cd		114	3105.3	1.04307 ppb
	Но		165	583082,3	ppb
	Kr		83	39.7	nnb

Method 6020 & 200.8 Metals Summary Report Sample ID: Standard 2

Sample Dai Thursday, June 21, 2018 13:32:59

Sample Description:

Concentration Results

		_				
	Analyte	Mass	M	Meas. Intens	Conc. Mear	Report Unit
	Li		6	156832.1		dqq
	Sc		45	92777.2		ppb
>	Rh		103	72559.1		ppb
ĺ	Ag		107	165067	104.15659	ppb
l	Ag		109	177212.9		ppb
1	Cd		111	93551.2	103.04509	ppb
]-	Cd		114	305327.6	103.09996	ppb
	Ho		165	604535		ppb
	Kr		83	36.3		ppb

Method 6020 & 200.8 Metals Summary Report

Sample ID: Standard 3 Sample Dal Thursday, June 21, 2018 13:34:50

Sample Description:

Concentration Results

001100	madon Nosuk	,				
	Analyte	Mass		Meas. Intens	Conc. Mear	Report Unit
	Li		6	154065.5		ppb
	Sc		45	94144.6		ppb
>	Rh		103	70726.2		ppb
i	Ag		107	770579.8	499.16865	ppb
ĺ	Ag		109	802246,5		ppb
ĺ	Cd		111	441790.5	499.39093	ppb
ĺ-	Cd		114	1441153.1	499.37992	ppb
	Но		165	608044		ppb
	Kr		83	38.7		daa

elementOne

ICP-Data 56 of 66 e 31368-Metals 63.56

```
PerkinElmer Nexlon 350X ICP-MS
```

Method 6020 & 200.8 Metals Summary Report

Sample ID: QC Std 1

Sample Dal Thursday, June 21, 2018 13:36:42 Sample Description:

Concentration Results

	Analyte	Mass	1	vieas. IntensC	onc. Mear Report Unit
	Li		6	145200.9	ppb
	Sc		45	86158.5	ppb
>	Rh		103	65168.2	ppb
İ	Ag		107	942.4	0.58479 ppb
i	Ag		109	903.7	ppb
ĺ	Cď		111	126	0.12367 ppb
 -	Cd		114	413.2	0.12862 ppb
•	Ho		165	551514.8	ppb
	Kr		83	38.3	ppb

Method 6020 & 200.8 Metals Summary Report

Sample ID: QC Std 2

Sample Dal Thursday, June 21, 2018 13:38:34

Sample Description:

Concentration Results

	Analyte	Mass		Meas. IntensC	onc. Mear Re	port Unit
	Li		6	150053.8	pp	b
	Sc		45	87194.8	pp	b
[>	Rh		103	65320.6	pp	b
ĺ	Ag		107	1713.1	1.12371 pp	b
1	Ag		109	1747.4	pp	b
	Cd		111	883.5	1.05075 pp	b
j-	Cd		114	2910.9	1.0656 pp	b
	Но		165	561879.2	pp	b
	Kr		83	36	pp	b

Method 6020 & 200.8 Metals Summary Report

Sample ID: QC Std 3

Sample DatThursday, June 21, 2018 13:40:25

Sample Description:

Concentration Results

	Analyte	Mass	Meas, IntensConc, Mear Report Unit				
	Li		6	138190.8		ppb	
	Sc		45	84318.3		ppb	
>	Rh	1	03	62201		ppb	
Ì	Ag	1	07	337722.7	248.77938	ppb	
ĺ	Ag	1	09	348936.4		ppb	
l	Cd	1	11	197709.5	254,08201	ppb	
1-	Cd	1	14	648308.1	255.43595	ppb	
	Но	1	65	546642.5		ppb	
	Kr		83	34.3		ppb	

Method 6020 & 200.8 Metals Summary Report

Sample ID: QC Std 4

Sample Dal Thursday, June 21, 2018 13:42:17

Sample Description: Concentration Results

Concent	ration Results	Š				
	Analyte	Mass	N	/leas. Intens	Conc. Mear	Report Unit
	Li		6	148726.8		ppb
	Sc		45	90252.6		ppb
>	Rh		103	66161.4		ppb
Ì	Ag		107	152772.8	105.72726	ppb
ĺ	Ag		109	160486		ppb
Ī	Cd		111	85529.2	103.32465	ppb
Ī-	Cd		114	287218	106.36492	ppb
•	Ho		165	580957.9		ppb
	Kr		83	47.7		ppb

elementOne

ICP-Data 57 of 66 e 31368-Metals 63.57

Method 6020 & 200.8 Metals Summary Report

Sample ID: QC Std 5

Sample Dat Thursday, June 21, 2018 13:44:08

Sample Description:

Concentration Results

	Analyte	Mass		Meas. Intens@	Conc. Mear	Report Unit
	Li		6	142098.1		ppb
	Sc		45	84237		ppb
[>	Rh		103	63200.8		ppb
	Ag		107	70739.9	51.21627	ppb
1	Ag		109	72460,5		ppb
İ	Cd		111	40259.4	50.90615	ppb
j-	Cd		114	134003	51.94159	ppb
-	Ho		165	548744.5		ppb
	Κr		83	37.3		ppb

Method 6020 & 200.8 Metals Summary Report

Sample ID: QC Std 6 Sample Dal Thursday, June 21, 2018 13:45:59

Sample Description:

Concentration Results

	Analyte	Mass		Meas. IntensC	onc. Mear Report Ur	ıit
	Li		6	155192.7	ppb	
	Sc		45	96451.1	ppb	
>	Rh		103	70087.4	ppb	
1	Ag		107	140.7	0.01384 ppb	
İ	Ag		109	139.7	ppb	
I	Cd		111	25.6	-0.00155 ppb	
[-	Cd		114	88.7	0.00435 ppb	
	Ho		165	627691.3	ppb	
	Kr		83	37	daa	

Kr 83 3 Method 6020 & 200.8 Metals Summary Report

Sample ID: QC Std 7

Sample Dai Thursday, June 21, 2018 13:47:50

Sample Description:

Concentration Results

	Analyte	Mass	N	Meas. Intens	Conc. Mear Report Unit
	Li		6	156307.8	ppb
	Sc		45	98834	ppb
>	Řh		103	71351.7	dqq
İ	Ag		107	152240.5	97.68816 ppb
İ	Ag		109	157706.9	ppb
Ì	Cd		111	499	0.52834 ppb
j -	Cd		114	1590.4	0.51966 ppb
	Но		165	640133.5	ppb
	Kr		83	48	ppb
	1 4444 4 444		_	- ·	• • • • • • • • • • • • • • • • • • • •

Method 6020 & 200.8 Metals Summary Report

Sample ID: 31368-7

Sample DatThursday, June 21, 2018 13:49:43

Sample Description: Concentration Results

Сопсе	ntration Result	S				
	Analyte	Mass	ľ	Meas. Intens	Conc. Mear	Report Unit
	Li		6	152251.2		ppb
	Sc		45	84467.5		ppb
[>	Rh		103	53823.6		ppb
İ	Ag		107	139869.6	118.99567	ppb
Ī	Ag		109	141788		ppb
1	Cd		111	21532,2	31.96142	ppb
İ-	Cd		114	87737.1	39.92709	ppb
	Ho		165	508096.7		ppb
	Kr		83	38.7		ppb

element One

ICP-Data 58 of 66 e 31368-Metals 63.58

B-264

```
PerkinElmer Nexlon 350X ICP-MS
```

Method 6020 & 200.8 Metals Summary Report

Sample ID: 31368-7 Sample DaiThursday, June 21, 2018 13:51:34

Sample Description:

Concentration Results

	Analyte	Mass	Meas. IntensConc, Mear Report				
	Li		6	163211.3	ppb		
	Sc		45	87895.6	ppb		
>	Rh		103	55802.2	ppb		
i	Ag		107	210606.1	172.88748 ppb		
İ	Ag		109	212408.9	ppb		
ì	Cd		111	53619.4	76.80042 ppb		
j -	Cd		114	211361	92.81371 ppb		
-	Но		165	529561.8	ppb		
	Kr		83	41.3	ppb		

Method 6020 & 200.8 Metals Summary Report

Sample ID: 31368-6 BH Sample Dal Thursday, June 21, 2018 13:57:11

Sample Description:

Concentration Results

	Analyte	Mass		Conc. Mear	Report Unit	
	Li		6	197221.1		ppb
	Sc		45	114200.3		ppb
>	Rh		103	104510		ppb
i	Ag		107	3659.3	1.52628	ppb
ĺ	Ag		109	3708.9		ppb
İ	Cd		111	75	0.02655	ppb
j-	Cd		114	-2123.5	-0.52469	ppb
•	Но		165	689629		ppb
	Kr		83	55		ppb

Method 6020 & 200.8 Metals Summary Report Sample ID: 31368-8

Sample Dai Thursday, June 21, 2018 14:13:08

Sample Description:

Concentration Results

	Analyte	Mass	Mea	s. Intens	Conc. Mear	Report Unit
	Li	ϵ	; 1	47171.6		ppb
	Sc	45	;	86151.2		ppb
 >	Rh	103	3	66372		ppb
i	Ag	107	2	72894.3	188.29844	ppb
i	Ag	109) 2	91655.9		ppb
i	Cď	111		36382.6	43.80073	ppb
j-	Cd	114	. 1	20521.1	44.48606	ppb
•	Но	165	5 5	70332.6		ppb
	Kr	83	3	35		ppb

Method 6020 & 200.8 Metals Summary Report Sample ID: 31368-8

Sample Dal Thursday, June 21, 2018 14:15:00

Sample Description:

Concentration Results

	Analyte	Mass		Meas, Intens	Conc. Mear	Report Unit
	Li		6	145334.6		ppb
	Sc		45	85740.8		ppb
>	Rh		103	65954.2		ppb
ĺ	Ag		107	350615.9	243.50278	ppb
İ	Ag		109	369606.8		ppb
j	Cd		111	36613.2	44.34943	ppb
 -	Cd		114	120894.8	44.8946	ppb
	Но		165	561550.1		ppb
	Kr		83	46.3		ppb

Method 6020 & 200.8 Metals Summary Report

Sample ID: QC Std 1

Sample Dal Thursday, June 21, 2018 14:16:53

Sample Description:

Concentration Results

	o,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	•				
	Analyte	Mass		Meas. IntensC	onc. Mear	Report Unit
	Li		6	148600.2		dqq
	Sc		45	84422.3		dqq
>	Rh		103	69775,5		ppb
i	Ag		107	432.3	0,2054	ppb
i	Ag		109	380.7		ppb
i	Cd	•	111	57.2	0.03513	ppb
j-	Cd		114	163.7	0.03069	ppb
•	Ho		165	563634.7		ppb
	Kr		83	41.3		ppb

Method 6020 & 200.8 Metals Summary Report

Sample ID: QC Std 2

Sample Dal Thursday, June 21, 2018 14:18:44

Sample Description:

Concentration Results

	Analyte	Mass		Meas, IntensCo	onc. Mear	Report Unit
	Li		6	152424.9		ppb
	Sc		45	84899.3		dqq
>	Rh		103	72768.8		ppb
1	Ag		107	1878.7	1.10478	ppb
j	Ag		109	2113.1		ppb
1	Cd		111	1050.6	1.12317	ppb
 -	Cd		114	3200.1	1.05119	ppb
	Но		165	575807.2		ppb
	Kr		83	45		ppb

Method 6020 & 200.8 Metals Summary Report Sample ID: QC Std 4

Sample DatThursday, June 21, 2018 14:20:36

Sample Description:

Concentration Results

	Analyte	Mass	Meas. Intens Conc. Mear Report Unit					
	Li		6	147390.2	dqq			
	Sc		45	88611.4	dqq			
>	Rh		103	66226.3	ppb			
İ	Ag		107	152187.7	105.24755 ppb			
İ	Ag		109	160841.7	dqq			
ĺ	Cd		111	88362.8	106.67043 ppb			
j-	Cd		114	293878,3	108.78983 ppb			
	Ho		165	580843.6	ppb			
	Kr		83	37.7	ppb			
			_					

Method 6020 & 200.8 Metals Summary Report

Sample ID: QC Std 1

Sample Dal Thursday, June 21, 2018 11:58:08

Sample Description: Concentration Results

COLICC	induction result				
	Analyte	Mass	٨	Aeas, Intens Conc	. Mear Report Unit
	Li		6	143958	ppb
1-	Р		31	2822.5	ppb
 >	Sc		45	93878.6	ppb
]-	As		75	141.3	ppb
i	Se		77	410.7	ppb
İ	Se		82	-0.4	ppb
 >	Rh		103	74251.8	ppb
	Нο		165	557874.5	ppb
	Kr		83	51.3	ppb

elementOne e 31368-Metals

ICP-Data 60 of 66

63.60

```
PerkinElmer Nexlon 350X ICP-MS
```

Method 6020 & 200.8 Metals Summary Report

Sample ID: Standard 1

Sample Dai Thursday, June 21, 2018 11:34:57

Sample Description:

Concentration Results

	Analyte	Mass	- 1	Meas. Intense	Conc. Mear	Report Unit
	Li		6	167105		ppb
 -	P		31	9710.9	21.38375	ppb
j>	Sc		45	106329.4		ppb
j <u>-</u>	As		75	489.4	1.01847	ppb
İ	Se		77	439	-2.29917	ppb
ì	Se		82	29.6	1,00692	ppb
 >	Rh		103	87413.2		ppb
•	Ho		165	607499.7		ppb
	Кг		83	56,3		ppb

Method 6020 & 200.8 Metals Summary Report

Sample ID: Standard 2

Sample Dal Thursday, June 21, 2018 11:36:55

Sample Description:

Concentration Results

	Analyte	Mass	Meas. Intens Conc. Mear Report Unit				
	Li		6	165761.6		ppb	
 -	P		31	321261.1	1045,4818	ppb	
 >	Sc		45	106205.8		ppb	
İ-	As		75	30799.3	100.15484	ppb	
Ī	Se		77	2425.5	105.05005	ppb	
Ī	Se		82	2909.8	101.10746	ppb	
j>	Rh		103	84244		ppb	
•	Ho		165	616939.9		ppb	
	Kr		83	45		ppb	

Method 6020 & 200.8 Metals Summary Report

Sample ID: Standard 3

Sample Dal Thursday, June 21, 2018 11:38:52

Sample Description:

Concentration Results

	Analyte	Mass		Meas. Intens Conc. Mear Report Unit				
	Li		6	160840.4		ppb		
j -	P		31	1544265.3	4990.8981	ppb		
 >	Sc		45	107812,7		ppb		
j-	As		75	154753,8	499,969	ppb		
ĺ	Se		77	9880	498.99659	ppb		
İ	Se		82	14539.5	499.77849	ppb		
>	Rh		103	85154.4		ppb		
	Ho		165	632755.7		ppb		
	Kr		83	50.7		ppb		

Method 6020 & 200.8 Metals Summary Report

Sample ID: QC Std 1

Sample Dal Thursday, June 21, 2018 11:40:50 Sample Description:

Concentration Results

	Analyte	Mass		Meas, IntensC	onc. Mear	Report Unit
	Li		6	143507.3		ppb
 -	Р		31	3100.2	0.84599	ppb
j>	Sc		45	95435.5		ppb
i-	As		75	210.6	0.24593	ppb
ĺ	Se		77	586.7	10.21472	ppb
İ	Se		82	12.6	0.5048	ppb
>	Rh		103	75333		ppb
•	Но		165	553104.8		ppb
	Kr		83	50		ppb

Method 6020 & 200.8 Metals Summary Report

Sample ID: QC Std 2

Sample Dai Thursday, June 21, 2018 11:42:48

Sample Description:

Concentration Results

	Analyte	Mass		Meas, Intens	Conc. Mear	Report Unit			
	Li		6	156716.6		ppb			
-	P		31	9508.8	22.65735	ppb			
>	Sc		45	100132.1		ppb			
j-	As		75	482.4	1.17993	ppb			
İ	Se		77	723	16.86353	ppb			
Ì	Se		82	22.3	0.85331	ppb			
>	Rh		103	78041		ppb			
	Ho		165	582788,2		ppb			
	Kr		83	47		ppb			
	14 U 10000 0 000 0 11 U D								

Method 6020 & 200.8 Metals Summary Report

Sample ID: QC Std 3

Sample Dal Thursday, June 21, 2018 11:44:45

Sample Description:

Concentration Results

	Analyte	Mass		Meas, Intens	Conc. Mear	Report Unit
	Li		6	148477.6		ppb
 -	P		31	699270.8	2468.828	ppb
>	Sc		45	98456.9		ppb
]-	As		75	70085.7	248,55395	ppb
i	Se		77	4754.5	252,12397	ppb
i	Se		82	6540.1	246.96811	ppb
 >	Rh		103	77497.3		ppb
	Но		165	579451.4		ppb
	Kr		83	52.3		nnh

Method 6020 & 200.8 Metals Summary Report Sample ID: QC Std 4

Sample Dat Thursday, June 21, 2018 11:46:43

Sample Description:

Concentration Results

	Analyte	Mass	ī	Meas. IntensConc. Mear Report Unit							
	Li		6	157892.1		ppb					
 -	Р		31	309993.7	1033,139	ppb					
>	Sc		45	103702.1		ppb					
j-	As		75	29420	100.35171	ppb					
i	Se		77	2420.1	111.1521	ppb					
İ	Se		82	2781.7	101.38656	ppb					
 >	Rh		103	8,8008		ppb					
	Но		165	610751.3		ppb					
	Кr		83	53		ppb					
Mathad S	222 6 202 6	Method 6020 2 200 9 Metals Summary Bornet									

Method 6020 & 200.8 Metals Summary Report

Sample ID: QC Std 5

Sample Dai Thursday, June 21, 2018 11:48:41

Sample Description:

Concentra	lion results						
	Analyte	Mass	Meas. IntensConc. Mear Report Uni				
	Li		6	154290.5		ppb	
1-	P		31	58772.7	195.43836	ppb	
 >	Sc		45	99645.2		ppb	
-	As		75	13852.4	48.82491	ppb	
İ	Se		77	1578	67.20415	ppb	
ĺ	Se		82	1365.6	51.72072	ppb	
 >	Rh		103	77302.7		ppb	
	Но		165	587508.8		ppb	
	Kr		83	50		ppb	

elementOne e 31368-Metals

ICP-Data 62 of 66

63.62

```
PerkinElmer Nexlon 350X ICP-MS
```

Method 6020 & 200.8 Metals Summary Report

Sample ID: QC Std 6

Sample Dai Thursday, June 21, 2018 11:50:38

Sample Description:

Concentration Results

	Analyte	Mass		Meas. Intens	Conc. Mear	Report Unit
	Li		6	167268.4		dqq
-	Р		31	1626655.9	4934.1557	ppb
j>	Sc		45	114837.5		ppb
j-	As		75	136.1	-0.0929	ppb
İ	Se		77	535.7	2,70017	ppb
i	Se		82	-5.1	-0.15326	ppb
į>	Rh		103	87399.2		ppb
•	Но		165	675252.9		ppb
	Kr		83	50		ppb

Method 6020 & 200.8 Metals Summary Report

Sample ID: QC Std 7

Sample DatThursday, June 21, 2018 11:52:36 Sample Description:

Concentration Results

	Analyte	Mass	ass Meas, IntensConc, Mear R				
	Li		6	166694.4		ppb	
 -	P		31	1629531.5	4946.0963	ppb	
 >	Sc		45	114759.2		ppb	
j-	As		75	492.7	1.00929	ppb	
i	Se		77	584	4.84155	ppb	
ĺ	Se		82	27.9	0.93852	ppb	
[>	Rh		103	88461.9		ppb	
•	Но		165	676120		ppb	
	Kr		83	52		ppb	

Method 6020 & 200.8 Metals Summary Report Sample ID: QC Std 8

Sample Dal Thursday, June 21, 2018 11:54:33

Sample Description:

Concentration Results

	Analyte	Mass	I.	deas. Intens(Conc. Mear	Report Unit
	Li		6	279600.9		ppb
I -	P		31	4149.7	-2.51245	ppb
>	Sc		45	181439.4		dqq
j-	As		75	321.8	0.12626	ppb
İ	Se		77	978.4	7.48231	ppb
ĺ	Se		82	15.9	0.35834	ppb
>	Rh		103	136129.3		ppb
	Но		165	1046807		ppb
	Kr		83	51.3		ppb

Method 6020 & 200.8 Metals Summary Report

Sample ID: QC Std 2

Sample Dal Thursday, June 21, 2018 11:56:31

Sample Description:

Concentration Results

0011001	Manager Hooding	-				
	Analyte	Mass	N	/leas. Intens(Conc. Mear	Report Unit
	Li		6	150100		ppb
1-	P		31	9133	21.16916	ppb
 >	Sc		45	100685		ppb
-	As		75	442.3	1.03071	ppb
Ì	Se		77	441.7	0.47121	ppb
İ	Se		82	23	0.87365	ppb
>	Rh		103	78380		ppb
	Но		165	590990.5		ppb
	Kr		83	46		ppb

elementOne

63.63 ICP-Data 63 of 66 e 31368-Metals

Method 6020 & 200.8 Metals Summary Report

Sample ID: QC Std 1

Sample Dal Thursday, June 21, 2018 11:58:08

Sample Description:

Concentration Results

		_					
	Analyte	Mass	Meas. IntensConc. Mear Report				
	Li		6	143958	dqq		
-	P		31	2822.5	0.00122 ppb		
]>	Sc		45	93878.6	dqq		
]-	As		75	141.3	-0.00004 ppb		
1	Se		77	410.7	0.00315 ppb		
ĺ	Se		82	-0.4	-0.00023 ppb		
>	Rh		103	74251,8	dqq		
	Ho		165	557874.5	ppb		
	Kr		83	51.3	ppb		

Method 6020 & 200.8 Metals Summary Report

Sample ID: QC Std 1

Sample Dal Thursday, June 21, 2018 14:43:20

Sample Description:

Concentration Results

	Analyte	Mass	Ŋ	Conc. Mear Report Unit	
	LĬ		6	137691	ppb
[-	P		31	2350,8	-0.48624 ppb
>	Sc		45	81986,5	ppb
] -	As		75	112.1	0.01026 ppb
1	Se		77	442.3	9.88131 ppb
1	Se		82	3.1	0.17111 ppb
 >	Rh		103	57320.3	ppb
	Ho		165	538423.9	dqq
	Kr		83	35	nnb

Method 6020 & 200.8 Metals Summary Report Sample ID: QC Std 4

Sample Dat Thursday, June 21, 2018 14:44:45

Sample Description:

Concentration Results

	in an an an an an an an an an an an an an	•					
	Analyte	Mass	Meas, Intens Conc. Mear Report Unit				
	Li		6	144581.4	dqq		
 -	P		31	256501.4	1017.6215 ppb		
>	Sc		45	87099.8	dqq		
-	As		75	21459.7	97.32006 ppb		
1	Se		77	1786.1	108.55434 ppb		
l	Se		82	2086.8	101.13835 ppb		
[>	Rh		103	60406.9	ppb		
	Но		165	576075.9	ppb		
	Kr		83	33.7	ppb		

Method 6020 & 200.8 Metals Summary Report

Sample ID: 31368-5 FH

Sample Dal Thursday, June 21, 2018 14:46:31

Sample Description:

Concentration Results

	Analyte	Mass	i	Meas, Intens	Conc. Mear	Report Unit
	Li		6	156975.3		dqq
]-	Р		31	7979.6	18.46844	ppb
>	Sc		45	96181.3		ppb
j-	As		75	410	0.88823	ppb
ĺ	Se		77	230	-11.97123	ppb
ĺ	Se		82	302.3	11.09113	ppb
[>	Rh		103	79862.7		ppb
	Ho		165	606444.3		ppb
	Kr		83	43.3		ppb

elementOne e 31368-Metals

ICP-Data 64 of 66

63.64

Method 6020 & 200.8 Metals Summary Report Sample ID: 31368-6 FH Sample Dal Thursday, June 21, 2018 14:48:17

Sample Description:

Concentration Results

	Analyte	Mass	Meas. Intens Conc. Mear Report Unit				
	Li		6	160263.1		ppb	
 -	P		31	7938.3	18.68471	ppb	
>	Sc		45	94971.7		ppb	
ļ -	As		75	160.4	0.03472		
1	Se		77	21	-23.77796	ppb	
ĺ	Se		82	4.6	0.1854	ppb	
>	Rh		103	79010.3		ppb	
	Но		165	601309.2		ppb	
	Kr		83	47.7		ppb	

Method 6020 & 200.8 Metals Summary Report

Sample ID: 31368-5 BH Sample Dai Thursday, June 21, 2018 14:50:02

Sample Description:

Concentration Results

	Analyte	Mass	Meas. Intens Conc. Mear Report Unit				
	Li		6	202726.5		ppb	
 -	P		31	53557	161.85816	ppb	
>	Sc		45	108476.5		dqq	
j-	As		75	155.9	-0.08244	ppb	
	Se		77	46	-22.83755	ppb	
1	Se		82	30.3	0.92622	ppb	
>	Rh		103	97057.1		ppb	
	Но		165	683778.1		ppb	
	Кг		83	52.3		dqq	

Method 6020 & 200.8 Metals Summary Report

Sample ID: 31368-6 BH

Sample Dal Thursday, June 21, 2018 14:51:48

Sample Description:

Concentration Results

	Analyte	Mass	Meas. IntensConc. Mear Report Unit				
	Li		6	205551,8		ppb	
-	P		31	66469,2	198.06365	ppb	
>	Sc		45	111272.8		ppb	
j-	As		75	116.6	-0.19917	ppb	
ĺ	Se		77	14.7	-24.30429	ppb	
ĺ	Se		82	-6.4	-0.17579	ppb	
>	Rh		103	98680,4		ppb	
	Ho		165	691653.1		ppb	
	Kr		83	56		ppb	

Method 6020 & 200.8 Metals Summary Report

Sample ID: QC Std 1

Sample Dal Thursday, June 21, 2018 14:53:35 Sample Description:

Concentration Results

		_					
	Analyte	Mass	Meas, Intens Conc. Mear Report Unit				
	Li		6	152147		ppb	
-	P		31	2784.8	0.64645	ppb	
 >	Sc		45	87248.7		ppb	
 -	As		75	130.9	-0.00505	ppb	
i	Se		77	230	-10.00336	ppb	
ĺ	Se		82	-5.3	-0.21052	ppb	
 >	Rh		103	69367.8		ppb	
•	Но		165	581706		ppb	
	Kr		83	42		ppb	

elementOne

63.65 ICP-Data 65 of 66 e 31368-Metals

Method 6020 & 200.8 Metals Summary Report Sample ID: QC Std 2

Sample Dal Thursday, June 21, 2018 14:55:20 Sample Description:

Concentration Results

	Analyte	Mass	i	Meas, Intens(Conc. Mear	Report Unit			
	Li		6	157175.9		ppb			
 -	P		31	8469.8	22.84839	ppb			
>	Sc		45	88669.3		ppb			
j-	As		75	323.1	0.71651	ppb			
Ì	Se		77	256	-8.85407	ppb			
İ	Se		82	24.7	1.02295	ppb			
>	Rh		103	71684.6		ppb			
	Ho		165	597138.4		ppb			
	Kr		83	39.3		ppb			

Method 6020 & 200.8 Metals Summary Report

Sample ID: QC Std 4

Sample Dal Thursday, June 21, 2018 14:57:06

Sample Description: Concentration Results

	Analyte	Mass		Meas. Intens	Conc. Mear	Report Unit
	Li		6	163934.3		dqq
-	Р		31	270912.6	1013.5002	ppb
>	Sc		45	92368.3		ppb
-	As		75	24476	90.94526	ppb
1	Se		77	1727.7	80.9151	ppb
i	Se		82	2471.5	98.15579	ppb
>	Rh		103	73710.2		ppb
	Ho		165	626013.3		ppb
	Kr		83	42		ppb

elementOne e 31368-Metals

ICP-Data 66 of 66

63.66

PerkinElmer FIMS-100 CVAA Mercury Analyzer

	Perkiliciii	ger Filvio- it	O CVAA Meit	any Analyze	i											
	Sample_ID Da	ate	Tîme		Mean_Rd	Mean_Rt	Units	Alq.	Vol.	Sig 1	Reading-1	Result-1		Reading-2	Result-2	Cor. Coeff.
	•	6/18/2018	10:18:46 AM	0.0003108			μg			0.0002852			0.0003363			
		6/18/2018 6/18/2018	10:20:29 AM 10:22:12 AM	0.0016067 0.0165419			hā hā			0.0016231 0.0167294			0.0015904 0.0163543			
	•	6/18/2018	10:24:07 AM	0.0327106			hā			0.0331139			0.0323072			
		6/18/2018	10:26:02 AM	0.064227			μg			0.0647892			0.0636647			
	•	6/18/2018	10;27;56 AM	0.0775815	0.045.00	0.045.00	μg			0.0789415	E 24E 06	E 24E 66	0.0762215	1.10=.00	1.105.00	
		6/18/2018 6/18/2018	10:29:49 AM 10:31:31 AM	-1.28E-06 0,0016736	-3.24E-06 0.0042352	-3.24E-06 0.0042352	ha ha			-2.10E-06 0.0017145	-5.31E-06 0.0043389	-5.31E-06 0.0043389	-4.60E-07 0.0016326	-1.16E-06 0,0041315	-1.16E-06 0.0041315	0.99941919
-	0.004ug = DL 0.080ug ≈ QC STD 3	6/18/2018	10:33:14 AM		0.0732643	0.0732643	µg			0.0293242	0.074209	0.074209	0.0285776	0,0723197	0.0723197	0.99941919
		6/18/2018	10:35:08 AM	0.0315163	0.0797564	0.0797564	μg			0.0318639	0.0806362	0.0806362	0.0311686	0.0788767	0.0788767	0.99941919
	Reagent Blank	6/18/2018	10:37:00 AM			-0.0001858	μg	0.05	_	-6,91E-05	-0.000175	-0.000175	-7.77E-05		-0.0001967	0.99941919
	31368-10	6/18/2018 6/18/2018	10:42:21 AM 10:48:07 AM	0.0511265 0.0002902	0.1293861 0.0007377	12.938607	μg	0,05 4	5 505	0.0510464 0,0003056	0.1291833 0.0007766	12.918335 0.0980442	0.0512066 0.0002749	0.1295888	12.95888 0.0882359	0.99941919 0.99941919
	31368-1 BH 31368-2 BH	6/18/2018	10:49:49 AM	0.0002302	0,0007377	0.05514		4	310	0.0007879	0.0019972	0.1547798	0.0007818	0.0019817	0.1535802	0.99941919
	31368-2 BH DUP	6/18/2018	10:51:31 AM	0.0004349	0.0011037	0,0855396		4	310	0.0004366	0.0011082	0.0858864	0.0004331	0.0010993	0.0851929	0.99941919
	31368-3 BH	6/18/2018	10:53:14 AM	0.0003628	0.0009214	0.0748638		4	325	0.0003753	0,0009529	0.0774261	0.0003504	0.0008899	0.0723014	0.99941919
	31368-3 BH SPK	6/18/2018	10:54:56 AM 10:56:50 AM	0,0310989 0,0016403	0.0787035	6.39466 0.0041509		4	325	0,0313066 0.0016514	0.079229 0.0041792	6.4373552 0.0041792	0.0308913	0,078178 0,0041226	6.3519648 0.0041226	0.99941919 0.99941919
	0.004ug = DL 0.080ug = QC STD 2	6/18/2018 6/18/2018	10:58:32 AM	0.0310667	0.0786186	0.0041303				0.0311703	0.0041782	0.078881	0.030963	0.0783562	0.0783562	0.99941919
	Reagent Blank	6/18/2018	11:00:25 AM			-0.0001686				-9.57E-05		-0.0002421	-3.76E-05	-9.51E-05	-9.51E-05	0.99941919
	31368-4 BH	6/18/2018	11:02:07 AM	0.0002971	0.0007551	0.0660692		4	350	0.0003063	0.0007783	0.0681046	0.0002879	0.0007318	0.0640337	0.99941919
	31368-5 BH	6/18/2018	11:03:49 AM	0.0001904	0.0004851	0.0278947		4	230 205	0.0001866	0.0004755 0.000303	0.0273432 0.0155304	0.0001942 -1.98E-05	0.0004947 -4.69E-05	0.0284462 -0.0024035	0.99941919 0.99941919
	31368-6 BH 31368-1 A	6/18/2018 6/18/2018	11:05:32 AM 11:07:15 AM	4.93E-05 -3.91E-05		0.0065635 -0.0047893		4	200	-4.32E-05		-0,0053028	-3.51E-05		-0.0024055	0.99941919
	31368-2 A	6/18/2018	11:08:59 AM			-0.0052224		4	200	-5.15E-05	-0.0001272	-0.0063607	-3.36E-05		-0.0040841	0.99941919
	31368-2 A DUP	6/18/2018	11:10:43 AM	-6.13E-06		-0.0006132		4	200	-1.52E-05		-0.0017593	2.93E-06	1.07E-05	0,0005329	0.99941919
	31368-3 A	6/18/2018	11:12:28 AM 11:14:11 AM		-0.0001786 0.0779723	-0.0089305 3,8986143		4	200 200	-9.08E-05 0.0309555		-0.0113211 3.9170256	-5.30E-05 0.0306645	-0,0001308 0.0776041	-0.0065398 3.880203	0.99941919 0.99941919
	31368-3 A SPK 31368-4 A	6/18/2018 6/18/2018	11:14:11 AM 11:16:05 AM	0.03081 -7.47E-05		-0.0092945	, ,	4	200	-5.59E-05		-0.0069153	-9.35E-05		-0.0116736	0.99941919
	31368-5 A	6/18/2018	11:17:47 AM			-0.0092263		4	200	-9.75E-05		-0.0121757	-5,09E-05		-0.0062769	0.99941919
	0.004ug = Đi.	6/18/2018	11:19:30 AM	0.0016301	0.0041253	0.0041253				0.0016526		0.0041821	0.0016077	0.0040686	0.0040686	0.99941919
	0.080ug = QC STD 2	6/18/2018	11:21:12 AM	0.0311272	0,0787718 -0.0002752	0.0787718				0.0313464		0.0793266 -0.0003198	0.0309079 -9.11E-05	0.0782169 -0.0002306	0.0782169 -0.0002306	0.99941919 0.99941919
	Reagent Blank 31368-6 A	6/18/2018 6/18/2018	11:23:05 AM 11:24:47 AM	-0.0001088 9.70E-05	0.0002752	-0.0002752 0.0124387		4	200	9.12E-05		0.0117029	0.0001028	0.0002535	0.0131744	0.99941919
	0.004ug = DL	6/18/2018	11:42:45 AM	0.0015948	0.0040357	0.0040357				0,0015787		0.0039952	0.0016108	0,0040763	0.0040763	0.99941919
	0.080ug = QC STD 2	6/18/2018	11:44:27 AM	0.0308811	0.0781491	0.0781491	,			0.0308864		0,0781624	0.0308759	0.0781358	0.0781358	0.99941919
	Reagent Blank	6/18/2018	11:46:20 AM	-8.25E-05	-0.0002088	-0.0002088				-0.0001026 0.0012991	-0.0002597	-0.0002597	-6.24E-05 0,0011308	-0.0001579	-0.0001579	0.99941919
	Calib Blank STD1 = .004ug	6/19/2018 6/19/2018	10:23:29 AM 10:25:11 AM	0.001215 0.0013815			րց Մպ			0.0012331			0.0011365			
	STD2 = .04ug	6/19/2018	10:26:54 AM	0.0153157			μg			0,015336			0.0152954			
	STD3 = .08ug	6/19/2018	10:28:48 AM	0.0306179			μg			0.030669			0.0305668			
	STD4 = .16ug	6/19/2018	10:30:42 AM	0.0612689			'nд			0.0612672			0.0612706 0.0767878			
	STD5 = ,2ug Reagent Blank	6/19/2018 6/19/2018	10:32:36 AM 10:34:28 AM	0.0766977 -0.000183	-0.0004775	-0.0004775	pgų č			-0.0002268	-0.0005918	-0.0005918		-0.0003632	-0.0003632	
	0.004ug = DL	6/19/2018	10:36:09 AM	0.0013828	0.0036085	0.0036085				0.0013822	0.003607	0.003607	0.0013834	0.00361	0.00361	0.99999622
	0.080ug = QC STD 3	6/19/2018	10:37:52 AM	0.0283737	0.0740426	0,0740426				0.0283633		0.0740154	0.0283842	0.0740699	0.0740699	0.99999622
	0.080ug = QC STD 2	6/19/2018	10:39:44 AM	0.0293522 -0.0001871	0.076596 -0.0004883	0.076598 -0.0004883				0.0293403 -0.0002377		0.0765649 -0,0006203	0.0293641 -0.0001365	0.0766271 -0.0003562	0.0766271 -0.0003562	0.99999622 0.99999622
	Reagent Blank 31368-10	6/19/2018 6/19/2018	10:41:37 AM 10:46:57 AM	0.0510971	0.1338178	13.381779	,	0.05	5			13.39306	0.0510538	0.133705	13,370499	0.99999622
	31368-10 DUP	6/19/2018	10:48:52 AM	0.050834	0.1331314	13.313138		0.05	5	0.0508362	0.1331371	13.313705	0.0508318	0,1331267	13.31257	0.99999622
	31368-10 SPK	6/19/2018	10:50:47 AM		0.2044304	20.443043		0.05	5			20.410215	0.0782822		20.475871	0.99999622
	0.004ug = DL 0.000uc = OC STD 3	6/19/2018 6/19/2018	11:02:04 AM 11:03:46 AM	0.001405 0.02921	0.0036665 0.076225	0.0036665	,			0.0013919		0.0036323 0.0760994	0.0014182 0.0292582		0.0037008	0.99999622 0.99999622
	0.080ug = QC STD 2 Reagent Blank	6/19/2018	11:05:38 AM	-8,86E-05	-0.0002311	-0.000231				4.37E-05		0.0001142			-0.0005764	0,99999622
	31368-5 B	6/19/2018	11:09:14 AM		0.0009378	0.117226		4	500	0.0001851	0.0009605	0.120059	0.0001677	0.0009152	0.1143946	0.99999622
	31368-6 B	6/19/2018	11:10:56 AM	-1.23E-05	0.0004455	0,055686		4	500			0.0675535	-4.87E-05		0.0438191	0.99999622
	0.004ug = DL	6/19/2018 6/19/2018	11:25:44 AM 11:27:26 AM		0.0035804					0.0013461		0.0035128 0.0764642		0.003648 0.0764076	0.003648	
	0.080ug = QC STD 2 Reagent Blank	6/19/2018		-0.0001229						-0.0001841		-0.0004805		-0.0001609		
	Calib Blank	6/20/2018	9:12:41 AM				μg			0.0002248			0.0002409			
	STD1 = .004ug	6/20/2018		0.0013591			μg			0.0013564			0.0013618			
	STD2 = .04ug STD3 = .08ug	6/20/2018 6/20/2018	9:16:05 AM 9:18:00 AM	0.0134926 0.0269172			ha ha			0.0135189			0.0134663 0.0268404			
	STD4 = .16ug	6/20/2018	9:19:54 AM				μg			0.0543094			0.0538748			
	STD5 = .2ug	6/20/2018	9:21:48 AM				μg			0.067114			0.0670037			
	Reagent Blank	6/20/2018	9:23:40 AM		6.73E-05	6.73E-0				1.14E-05		3.38E-05			0.0001007	0.99997981
	0.004ug = DL 0.000ug = OC STD 3	6/20/2018 6/20/2018	9:25:21 AM 9:27:04 AM							0.0014013					0.0041467	0.99997981
	0.080ug = QC STD 3 0.080ug = QC STD 2		9:28:57 AM							0.025711		0.076427				
-	Reagent Blank	6/20/2018	9:30:49 AM	4.36E-05	0.0001296					4.87E-0	5 0.0001447					
	31368-9	6/20/2018	9:36:09 AM												16.165878	
	31368-1 C	6/20/2018 6/20/2018	9:41:53 AM	0.0588858 0.0014801					400	0.0589819					17.468833 0.0044799	
	0.004ug = DL 0.080ug = QC STD 2		9:53:00 AM							0.028276						
,	Reagent Blank	6/20/2018	9:54:53 AM	2.41E-05	7.17E-05	7.17E-0	5 µg			3.13E-0	5 9.29E-05	9.29E-05	1.70E-05	5,05E-05	5.05E-05	0.99997981
	31368-4 C	6/20/2018	9:56:34 AM		0.1017051										10.160049	
	31368-5 C	6/20/2018 6/20/2018	9:58:27 AM 10:00:10 AM													
	31368-6 C 31368-2 B	6/20/2018		0.0270274												
	31368-2 B DUP	6/20/2018		0.0262673		9.751650	17 µg	0.5	5 500	0.026150	2 0,077665	77.665045	0.0263844	0.0783614	78.361366	0.99997981
	31368-4 B	6/20/2018		0.0260035		9.65363										
	31368-LRB FH	6/20/2018 6/20/2018	10:13:17 AM 10:14:59 AM		0.0003295 0.0046787				100	0.000154 0.001577						
	0.004ug = DL 0.080ug = QC STD 2			0.001374						0.028151						
4	Reagent Blank	6/20/2018	10:18:34 AM		0.0004158					0.000138			0.0001411		0.0004212	0.99997981

PerkinElmer FIMS-100 CVAA Mercury Analyzer

Sample ID D	Date	Time	Mean Sig	Mean Rd	Mean_Rt	Unite	۸la	Vol.	Cin A	Deading 4	Result-1	c:- o	Deading 2	Danulé 9	0
31368-LRB FH SPK	6/20/2018	10:20:16 AM	0.0252578	0.0750126	4.6882869		1.6	100	Sig 1 0.0253153	Reading-1 0.0751834	4.6989595	Sig 2 0.0252004	Reading-2 0.0748418	Result-2 4,6776143	Cor. Coeff. 0.99997981
31368-1 FH	6/20/2018	10:22:09 AM	0.0006871	0.0019752	0.0493792		4	100	0.0203103	0.0019554	0.0488854	0.0232004	0.0019949	0.049873	0.99997981
31368-2 FH	6/20/2018	10:23:51 AM	0.0010339	0.0030059	0.0751486		4	100	0.0010163	0.0019537	0.0738426	0.0010514	0.0030582	0.0764545	0.99997981
31368-2 FH DUP	6/20/2018	10:25:34 AM	0.0010568	0.0030742	0.0768551	hа	4	100	0.0010100	0.0030297	0.0757425	0.0010718	0.0030382	0.0779678	0.99997981
31368-3 FH	6/20/2018	10:27:17 AM	0.0011456	0.0033381	0.0834526		4	100	0.0011486	0.003347	0.0836739	0.00111426	0.0031107	0.0832313	0.99997981
31368-3 FH SPK	6/20/2018	10:29:00 AM	0.0318873	0.0947188	2.3679703		4	100	0.0319312	0.0948493	2.3712325	0.0318434	0.0945883	2.3647081	0.99997981
31368-4 FH	6/20/2018	10:30:54 AM	0.0005225	0.0014859	0.0371475		4	100	0.0005278	0.0015017	0.0375429	0.0005172	0.0014701	0.0367521	0.99997981
31368-5 FH	6/20/2018	10:32:38 AM	0.0002848	0.0007794	0.0194854	ug	4	100	0.0002839	0.0007765	0.0194126	0.0002858	0.0007823	0.0195582	0.99997981
31368-6 FH	6/20/2018	10:34:22 AM	0.0004788	0.001356	0.0338998	μg	4	100	0.0004768	0.00135	0.0337512	0.0004808	0.0013619	0.0340484	0.99997981
0.004ug = DL	6/20/2018	10:37:58 AM	0.0015919	0.0047318	0.0047318		-		0.0016049	0.0047705	0.0047705	0.0015788	0.0046931	0.0046931	0.99997981
0.080ug = QC STD 2	6/20/2018	10:39:40 AM	0.0285349	0.084821	0.084821	μg			0.0285812	0.0849585	0.0849585	0.0284886	0.0846835	0.0846835	0.99997981
Reagent Blank	6/20/2018	10:41:32 AM	0.0001354	0.0004024	0.0004024				0.0001435	0.0004264	0.0004264	0.0001273	0.0003784	0.0003784	0.99997981
Calib Blank	6/20/2018	11:05:19 AM	0.0005793			μg			0.0002706	0,000 140 1	0,000 ,00	0.000888	3.50507.57	0.0000101	2.00001001
STD1 = .004ug	6/20/2018	11:07:02 AM	0.0019935			μg			0.0020501			0.0019369			
STD2 = .04ug	6/20/2018	11:08:44 AM	0.0163529			μg			0.0163667			0.0163391			
STD3 = .08ug	6/20/2018	11:10:39 AM	0.0320206			μg			0.0321378			0.0319033			
STD4 = .16ug	6/20/2018	11:12:34 AM	0.063096			μg			0.0630141			0.0631778			
STD5 = .2ug	6/20/2018	11:14:27 AM	0.0782141			μg			0.0781116			0.0783165			
Reagent Blank	6/20/2018	11:16:19 AM	0.0003454	0.0008779	0.0008779				0.0003158	0.0008027	0.0008027	0.000375	0.0009531	0.0009531	
0.004ug = DL	6/20/2018	11:18:01 AM	0.0018703	0.0047536	0.0047536				0.0018805	0.0047796	0.0047796	0.0018601	0.0047276	0.0047276	0.99986748
0.080ug = QC STD 3	6/20/2018	11:19:43 AM	0.0300584	0.0763958	0.0763958				0.0300879	0.0764707	0.0764707	0.0300289	0.0763208	0.0763208	0.99986748
0.080ug = QC STD 2	6/20/2018	11:21:36 AM	0.0299669	0,0761631	0.0761631	μg			0.0298781	0.0759374	0.0759374	0.0300557	0.0763888	0.0763888	0.99986748
Reagent Blank	6/20/2018	11:23:28 AM	0.0003718	0.000945	0.000945	рg			0.0003477	0.0008837	0.0008837	0.0003959	0.0010063	0.0010063	0.99986748
0.004ug = DL	6/20/2018	12;32;28 PM	0.0018329	0.0046584	0.0046584				0.0018454	0.0046903	0.0046903	0.0018204	0,0046266	0.0046266	0.99986748
0.080ug = QC STD 2	6/20/2018	12:34:10 PM	0.0321148	0.0816222	0.0816222	μg			0.0323356	0.0821833	0.0821833	0.0318941	0,0810612	0.0810612	0.99986748
Reagent Blank	6/20/2018	12:36:02 PM	0.0001575	0.0004004	0.0004004	μg			0.0001806	0.000459	0.000459	0.0001345	0.0003418	0.0003418	0.99986748
31368-2 C	6/20/2018	12:43:27 PM	0.0391313	0.0985774	19.715484	μg	2	400	0.0392966	0.0989975	19.799505	0.0389661	0.0981573	19.631463	0.99986748
31368-2 C DUP	6/20/2018	12:45:22 PM	0.0379677	0.09562	19.124002	μg	2	400	0.0377195	0.0949892	18.997842	0.0382159	0.0962508	19.250163	0.99986748
31368-3 C	6/20/2018	12:47:18 PM	0.0400097	0.1008099	100.80989	μg	0.4	400	0.0400159	0.1008255	100.82554	0.0400036	0.1007942	100.79424	0.99986748
31368-3 C SPK	6/20/2018	12:49:13 PM	0,0720337	0.1822014	182.20138	μg	0.4	400	0.0723684	0.1830518	183.05184	0.0716991	0.1813509	181,35091	0.99986748
0.004ug ≃ DL	6/20/2018	12:51:06 PM	0.0018594	0.0047258	0.0047258	μg			0.0018475	0.0046955	0.0046955	0.0018713	0.0047561	0.0047561	0.99986748
0.080ug = QC STD 3		12:52:48 PM	0.0317486	0.0806916	0.0806916				0.031729	0.0806418	0.0806418	0.0317682	0.0807414	0.0807414	0.99986748
Reagent Blank	6/20/2018	12:54:41 PM	0,0002111	0.0005364	0.0005364	þд			0.0002168	0.0005511	0.0005511	0.0002053	0.0005218	0.0005218	0.99986748
Calib Blank	6/21/2018	10:45:40 AM	0.0002303			µд			0.0002167			0.0002438			
STD1 = .004ug	6/21/2018	10:47:22 AM	0.0014462			μg			0.001486			0.0014064			
STD2 = .04ug	6/21/2018	10:49:05 AM	0.0150542			μg			0.0153235			0.0147849			
STD3 = .08ug	6/21/2018	10:50:59 AM	0.0291811			μg			0.0295606			0.0288017			
STD4 = .16ug	6/21/2018	10:52:54 AM	0.0607169			μg			0.0616011			0.0598328			
STD5 = .2ug	6/21/2018	10:54:49 AM	0.0743148			μg			0.075114			0.0735157			
Reagent Blank	6/21/2018	10:56:41 AM	-6.60E-05	-0.0001765	-0.0001765				-6.89E-05		-0.0001843	-6.31E-05		-0.0001688	
0.004ug = DL	6/21/2018	10:58:23 AM	0.0014443	0.0038629	0.0038629				0.0014635	0.0039142	0.0039142	0.0014251	0,0038116	0.0038116	0.99979153
0.080ug = QC STD 3		11:00:06 AM	0.0276693	0.0740037	0.0740037				0.0280462		0.0750118	0.0272923	0.0729956	0.0729956	0.99979153
0.080ug = QC STD 2		11:05:44 AM	0.0286836	0.0767167	0.0767167				0.0288845	0.0772539	0.0772539	0.0284828		0.0761796	0.99979153
Reagent Blank	6/21/2018	11:07:37 AM		-0.0001802	-0.0001802				-6.56E-05		-0.0001754	-6.92E-05		-0.0001851	0.99979153
31368-1 B	6/21/2018	11:20:26 AM	0.0034082	0.0092921	23.23029		0.02	500	0.003399	0.0092675	231.68806	0.0034174		232.91775	0.99979153
31368-3 B	6/21/2018	11:22:10 AM	0.0030445	0.0083193	20.798197		0.02	500	0.0029965	0.008191	204.77598	0.0030924	0.0084475	211.18797	0.99979153
31368-3 B SPK	6/21/2018	11:23:53 AM	0.0301869	0.0809139	202.2847		0.02	500	0.0298943	0.0801313	2003.2822	0.0304795	0.0816965	2042.4119	0.99979153
0.004ug = DL	6/21/2018	11:27:40 AM	0.0013639	0.0036478	0.0036478				0.0013775		0.0036842	0.0013502		0.0036113	0.99979153
0.080ug = QC STD 2		11:33:08 AM	0.0282898	0.0756634	0.0756634				0.0284427	0.0760724	0.0760724	0.0281369	0.0752543	0.0752543	0.99979153
Reagent Blank	6/21/2018	11:35:01 AM	-1.0UE-UO	-0.0002033	-0.0002033	; µд			-/.84E-U5	-0.0002097	-0.0002097	-7.36E-05	-0.0001968	-0.0001968	0.99979153

June 21, 2018

Ben Hilgendorf Montrose Environmental Services 1371 Brummel Ave. Elk Grove Village, IL 60007

Enclosed is your final report for ERA's Stationary Source Audit Sample (SSAS) Program. Your final report includes an evaluation of all results submitted by your laboratory to ERA.

Data Evaluation Protocols: All analytes in ERA's SSAS Program have been evaluated comparing the reported result to the acceptance limits generated using the criteria contained in the TNI SSAS Table.

For any "Not Acceptable" results, please contact your state regulator for any corrective action requirements.

Thank you for your participation in ERA's SSAS Program. If you have any questions, please contact our Proficiency Testing Department at 1-800-372-0122.

Sincerely,

Matthew Seebeck Quality Officer

cc: Project File Number 061318S

Recipient Type	Report Recipient	Contact	Project ID
Agency	IL EPA Des Plains (SSAS) 9511 Harrison Street Des Plaines, IL 60016 USA	Kevin Mattison kevin.mattison@illinois.gov Phone: 847-294-4019	
Facility	General Iron Industries 1909 N Clifton Ave Chicago, IL 60614 USA	John Pinion jpinion@rka-inc.com Phone: 630-393-9000 x 208	
Lab	Element One Inc 6319-D Carolina Beach Road Wilmington, NC 28412 USA	Paula Smith paula.smith@e1lab.com Phone: 910-793-0128	
Tester	Montrose Environmental Services 1371 Brummel Ave. Elk Grove Village, IL 60007 USA	Ben Hilgendorf bhilgendorf@montrose-env.com Phone: 630-860-4740	General Iron Industries

061318S Laboratory Exception Report

Paula Smith Element One Inc 6319-D Carolina Beach Road Wilmington, NC 28412 910-793-0128

EPA ID: **ERA Customer Number:** Not Reported E533235

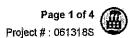
Evaluation Checks

There are no values reported with < where the assigned value was greater than 0.

Not Acceptable Evaluations

	TNI Analyté Code	Analýté	Units	Reported Value	Assigned Value	Acceptance Limits	Performance Evaluation	Method Description			
. '	SSAP Metals on Filter Paper (cat# 1425, lot# 061318S) Study Dates: 06/13/18 - 06/21/18										
	1030 Cadmiun		µg/Filter	16.0	20.6	16.5-24.7	Not Acceptable	EPA Method 29 2000			

G10000454

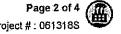


Final Report Results For Laboratory Element One Inc

R 001588

SSAP Evaluation Report

Project Number: 061318S


ERA Customer Number: E533235

Laboratory Name: Element One Inc

Inorganic Results

G10000456

061318S Evaluation Final Complete Report

Paula Smith Element One Inc 6319-D Carolina Beach Road Wilmington, NC 28412 910-793-0128 EPA ID: ERA Customer Number:

6/19/2018

6/19/2018

EPA Method 29 2000

EPA Method 29 2000

DMR

DMR

Not Reported E533235

Analyte	Units	Reported Value	Assigned Value	Acceptance Limits	Performance Evaluation	Method Description	Analysis Date	Analyst Name
etals in Impinger Solution (cat# 1426, I	ot# 061318S) Study	/ Dates: 06/	13/18 - 06/2	1/18				
Ánllmony	μg/mL	0.896	1.05	0.788 - 1.31	Acceptable	EPA Menod 29 2000	6/19/2018	DMR
Arsenic	μg/mL	1,13	1.20	0.900 - 1.50	Acceptable	EPA Method 29 2000	6/19/2018	DMR
Barium	μg/mL	3,28	3/19	2:39 - 3:99	Acceptable	EPA Metrod 20 2000	6/19/2018	DMR
Beryllium -	μg/ml_	1.41	1,40	1.05 - 1.75	Acceptable	EPA Method 29 2000	6/19/2018	DMR
Cadinium	jµg/mĿ	§1,07	1.06	0.848 - 1.27	Acceptable	EPA Matrod 28 2000	6/19/2018	DMR
Chromium	μg/mL	4,05	3.99	3.19 - 4.79	Acceptable	EPA Method 28 2000	6/19/2018	DMR
Coball	pg/mL	2.02	1:99	1,49 - 2,49	Acceptable	EPA Mathod 29 2000	6/19/2018	DMR
Copper	µg/mL	3.74	3.83	2.87 - 4.79	Acceptable	EPA Method 29'2000	6/19/2018	DMR
Lead	μg/mL	2,96	2.94	2/20-3,68	Acceptable	EPA Metjod 29 2000	6/19/2018	DMR
Manganese	μg/mL	1.86	1:96	1.47-2.45	Acceptable	EPA Method 29 2000	6/19/2018	DMR
Nickel))µg/mL	2.65	2.74	2:19-3:29	Acceptable	EPA Method 25/2000	6/19/2018	DMR
Selenium	µg/mL	1.90	1.97	1.48 - 2.46	Acceptable	EPA Method 29 2000	6/19/2018	DMR
Silver	μg/m⊑	4.71	A;77.	3.58 - 5.96	Acceptable	EPA Method 29 2000	6/19/2018	DMR
	Antimony Arsenic Baritim Beryllium Cadmium Coball Copper Lead Manganese Nickel	etals in Impinger Solution (cat# 1426, lot# 051318S) Study Additionly µg/mL Arsenic µg/mL Baritim µg/mL Beryillium µg/mL Cadmium µg/mL Chromium µg/mL Coball µg/mL Lead µg/mL Manganese µg/mL Nickel µg/mL Selenium µg/mL	Analyte Units Value etals in Impinger Solution (cat# 1426, Iot# 051318S) Study Dates: 06/ Antimony	Analyte Units Value Value Value Value etals in Impinger Solution (cat# 1426, lot# 051318S) Study Dates: 05/13/18 - 05/2 Antimony pg/mL 0.896 1.05 Arsenic pg/mL 1.13 1.20 Baritim pg/mL 3.28 3/19 Beryllium pg/mL 1.41 1.40 Cadmium pg/mL 1.07 1.06 Chromium pg/mL 4.05 3:99 Coball pg/mL 3.74 3.83 Lead pg/mL 2.96 2.94 Manganese pg/mL 1.86 1.96 Nickel pg/mL 2.65 2.74 Selenium pg/mL 1.90 1.97	Analyte Units Value Value Limits etals in Impinger Solution (cat# 1426, lot# 061318S) Study Dates: 06/13/18 - 06/21/18 Anilmony µg/mL 0.896 1.05 0.788 - 131 Arsenic µg/mL 1.13 1.20 0.900 - 1.50 Barium µg/mL 3.28 3.19 2.39 - 3.99 Beryllium µg/mL 1.41 1.40 1.05 - 1.75 Cadmium µg/mL 4.05 3.99 3.19 - 4.79 Chromium µg/mL 4.05 3.99 3.19 - 4.79 Coball µg/mL 3.74 3.83 2.87 - 4.79 Lead µg/mL 3.74 3.83 2.87 - 4.79 Lead µg/mL 1.86 1.96 1.47 - 2.45 Nickel µg/mL 1.90 1.97 1.48 - 2.46 Selenium µg/mL 1.90 1.97 1.48 - 2.46	Analyte Units Value Value Limits Evaluation atals in Impinger Solution (cat# 1426, lot# 0613185) Study Dates: 06/13/18 - 06/21/18 Antimony pg/mL 0.896 1.05 0.788 -1.31 Acceptable Arsenic pg/mL 1.13 1.20 0.900 - 1.50 Acceptable Banium pg/mL 3.28 3.19 2.39 - 3.99 Acceptable Beryillium pg/mL 1.41 1.40 1.05 - 1.75 Acceptable Cadmium pg/mL 1.07 1.06 0.848 - 1.27 Acceptable Chromium pg/mL 2.02 1.99 1.49 - 2.49 Acceptable Copper pg/mL 3.74 3.83 2.87 - 4.79 Acceptable Lead pg/mL 2.96 2.94 2.20 3.88 Acceptable Manganese pg/mL 1.86 1.96 1.47 - 2.45 Acceptable Nickel pg/mL 2.65 2.74 2.19 - 3.29 Acceptable Selenium pg/mL 1.90 1.97 1.48 - 2.46 Acceptable	Analyte	Analyte

3.06

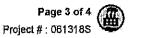
2.84

µg/mL

µg/mL

3.02

2.86


WEST TO THE PARTY OF THE PARTY

1165

1190

Thallium.

Žino

2.30 - 3.82

2.13 - 3.55

Acceptable

Acceptable

061318S Evaluation Final Complete Report

Paula Smith Element One Inc 6319-D Carolina Beach Road Wilmington, NC 28412 910-793-0128

EPA ID: **ERA Customer Number:** Not Reported E533235

TNI Analyte Code	Analyte	Units	Reported Value	Assigned Value	Acceptance Limits	Performance Evaluation	Method Description	Analysis Date	Analyst Name
SSAP Me	etals on Filter Paper (cat# 1425, lot#	061318S) Study Date	s; 06/13/18	- 06/21/18					
1005	Anthriony	µg/Filter	40.7	42;5	31.9 - 53.1	Acceptable	EPA Metura 29 2000	6/19/2018	DMR
1010	Arsenic	µg/Filter	38.7	39.7	29.8 - 49.6	Acceptable	EPA Metrod 29 2000	6/19/2018	DMR
1015	Barium)µg/Filter	39.7	41.8	31.4-52.2	Acceptable	EPA Memos 29 2000	6/19/2018	DMR
1020	Beryllium	µg/Filter	21.7	21.6	16,2 - 27.0	Acceptable	*EPA Method 29 2000	6/19/2018	DMR
1030	Cadmium	µg/Filter	16.0	20.6	16.5 - 24.7	Not Acceptable	EPA Method 29 2000	6/19/2018	ĎMŘ
1040	Čhromium.	μg/Filter	26.7	28.2	22.6 - 33.8	Acceptable	EPA Method 29 2000	6/19/2018	DMR
p ₁₀₅₀	Coball	μg/Filter	23.1	22:1	16.6-27.6	Acceptable	EPA Method 29 2000	6/19/2018	DMR
2 1055	Соррег	μg/Fifter	30.2	30.9	23,2 - 38.6	Acceptable	EPA Method 29 2000	6/19/2018	DMR
1075	Lead	μg/Filter	35.9	36.9	129.5 - 44.3	Acceptable	rEPA Method 29 2000	6/19/2018	DMR
1090	Manganese	µg/Filter	41.6	42.9	34.3 - 51.5	Acceptable	EPA Method 29 2000	6/19/2018	DMR
1105	Nickeli	μg/Filter	38.6	38.3	30,6 - 46,0	Acceptable	EPA Method 20 2000	6/19/2018	DMR
1140	Selenium	μg/Filter	38.7	40.7	30,5 - 50,9	Acceptable	EPA Method 29 2000	6/19/2018	DMR
1150	Silver	μg/Filter	59,5	57:2	40,0 - 74.4	Acceptable	EPA Method 29 2000	6/19/2018	DMR
1165	Thaillum	μg/Filter	53.8	55,5	41.6 - 69:4	Acceptable	EPA Method 20 2000	6/19/2018	DMR
1190	Žinc	μg/Filter	45.9	45:2	33,9 - 56.5	Acceptable	EPA Method 29 2000	6/19/2018	DMR
SSAP Me	ercury on Filter Paper (cattl 1427, Jo	t# 061318S) Study Da	tes: 06/13/1	8 - 06/21/18	3				
200000 20000 2000	Mercury	ug/Filter	16.2,	8,8	13.7 - 22.9	Acceptable	EPA Method 29 2000	6/20/2018	MMP
SSAP M	ercury in Impinger Solution (cat#14	128. lot# 061318S) Stu	dy Dates: 0	6/13/18 - 06	/21/18	A STATE OF THE STA			
whitewasters to the September 1	Метситу	ng/mL	13.3	15:1	11:3 - 18:9	Acceptable	* EPA Method 29 2000 * -	6/19/2018	MMP

GI0000458

General Iron Industries: Chicago, Illinois Hammermill Shredder PM and TSM Protected by the Attorney Client Privilege and Attorney Work Product Doctrine

APPENDIX G CALIBRATION DATA

G10000460

Montrose Air Quality Services, LLC Meter Box Full Test Calibration

Date:

1/30/2018

Operator: [burton

Meter Box ID M-39 Me		Meter Box A	ox ΔH@ 1.899 Meter Box Y _d				0.9987	Barometric Pressure (in. Hg.)		Hg.)	29.70				
Time		Orifics Dat	ä					Meter Box	Deta					Results	
θ (min)	ĸ	Vecuum	Temb	V _{er}	V _{ritel}	V _{finet}	V₄	ΔH	T,	T,	Ting	V _{anelul}	a	Ys	ΔH@
5,0	0.7904	18.0	69	5.103	561.60	566.77	6.17	3.60	79	72	75.5	5.103	1.021	1.0000	1.942
5.0	0.7904	18.0	69	5.103	566.77	571.93	5.18	3.60	81	73	77.0	5.078	1.021	1.0048	1.955
5.0	0.7904	18.0	69	5,103	571.83	577.11	5.18	3,80	82	73	77.5	5.094	1.021	1.0018	1.941
5.0	0,5959	20.0	69	3.847	579.00	582,89	3.89	2,00	82	74	78.0	3.807	0.769	1.0107	1.914
5.0	0.5959	20.0	69	3.847	582,89	586.78	3.89	2.00	82	75	78.5	3.803	0.769	1.0118	1.916
5.0	0.5959	20.0	69	3.847	588.76	590.67	3.89	2.00	82	75	78.5	3.803	0.769	1.0116	1.916
5.0	0.4418	22.0	69	2.852	691.60	594.56	2.96	1.10	81	76	78.5	2.888	0.570	0.9878	1.820
5.0	0.4418	22.0	69	2.852	594.66	597.53	2.97	1.10	81	77	79.0	2.895	0.570	0.9854	1.810
5.0	0.4418	22.0	69	2.852	597.53	600.48	2.95	1.10	81	77	79,0	2.875	0.570	0.9921	1.834
5.0	0.3452	24,0	69	2.229	800.90	603.20	2.30	0.70	80	77	78,5	2.242	0.446	0.9943	1.918
5.0	0.3452	24.0	69	2.229	803.20	805.51	2.31	0.70	80	77	78.5	2.251	0.446	0.9900	1.902
5.0	0.3452	24.0	69	2.229	605.51	607.81	2.30	0.70	80	77	78.5	2.242	0.446	0.9943	1.918
5.0				0.000			0.00				#DIV/01	#DIVA01	0.000	#DIV/01	#DIV/0!
5.0				0.000			0.00				#D/V/0!	#DIV/01	0.000	#DIV/01	#DIV/0I
5.0				0.000			0.00				#DIV/0I	#DIV/0I	0.000	#C)V/01	#DIV/0I
						·····						•	Average	0.9987	1.899

	Nomenclature
K,	Critical Orifice Coefficient
T _{amb}	Ambient Temperature (°F)
Ver	Volume Through Orllice (scf)
V ₄	Gas Meter Volume (ft³)
ΔH	Orlfice Pressure Differential (in. H ₂ O)
T _i	Meter inlet Temperature (°F)
T _o	Meter Outlet Temperauture (°F)
Tavo	Average Meter Box Temperature (°F)
Valet	Volume Metered Standardized (scf)
ď	Flow Rate (scfm)
Yd	Meter Correction Factor (dimensionless)
ΔH@	ΔH yielding 0.75 scfm

Vacuum G (In. H)		1	Thermometers (°F)			
Standard	Vacuum Geuge	BS293300000000000000000000000000000000000	. Ch/No.	°Ch. No:	Ch. No.	
5	5.0	32	32	32	32	
10	10.0	50	50	51	50	
15_	15.0	100	100	101	101	
20	20.0	150	151	151	151	
25	25.0	212	213	213	214	
		250	251	252	252	
		300	301	302	302	
		350	351	352	352	
		400	401	402	402	
		500	501	502	502	
		600	601	602	602	

Montrose Air Quality Services, LLC Meter Post Calibration

Average Field Sample Rate (cfm)	1.600	Date	6/18/2018
Highest Field Vacuum (Inches Hg)	11	Client	Iron Ind. Inc.
Critical Orifice ID	AA-63	Project No.	023AS-383040
Orifice Flow Rate (cfm)	0.790	Meter ID	M-39

and the second s	The state of the s		
	Run 1	Run 2	Run 3
Initial Volume (ft³)	211.40	215.35	219.30
Final Volume (ft³)	215.35	219.30	223.25
Volume Metered (ft ³)	3.95	3.95	3.95
DGM Inlet Temperature (°F)	83	84	85
DGM Outlet Temperature (°F)	78	78	79
Average DGM Temperature (°F)	80.5	81.0	82.0
Ambient Temperature (°F)	73	73	73
Elapsed Time (min.)	5	5	5
ΔH (inches H₂O)	2.00	2,00	2.00
Barometric Pressure (inches Hg)	29.14	29.14	29.14
Pump Vacuum (inches Hg)	21	21	21
	0.5909	0.5909	0.5909
Vcr (ft ³)	3.729	3.729	3.729
Vmstd (ft ³)	3.776	3.772	3.765
Post Test Yc	0.9877	0.9886	0.9905
Full Test Yd	0,9987	0.9987	0.9987
% Difference	1.10	1.01	0.82
	Average % Differe	псе	0.98

Montrose Air Quality Services, LLC S-Type Pitot Tube Inspection Form

Date	3/9/18	
Pitot ID	AE5-6-7	
Operator	DD	

	Measured	Allowed
Outside Tube Diameter - Dt (inches)	0.250	NA
Base To Opening Distance - Pa (inches)	0.356	NA
Base To Opening Distance - Pb (inches)	0.356	NA
Pa/Dt	1.42	1.05-1.50
Pb/Dt	1.42	1.05-1.50
Angle α1(°)	0.3	10
Angle α2(°)	0.7	10
Angle B1(°)	1.3	5
Angle B2(°)	0.7	5
Opening to Opening Distance Pa+Pb (inches)	0.712	NA
Angle Z (°)	0.9	NA
z (inches)	0.0112	0.125
Angle W (°)	0.1	NA
w (inches)	0.001	0.031

Note Any Da	amage, Nicks or	Dents to the P	itot Tube	
			., .	
1				

Is the Pitot Tube Part of an Assembly
If Yes, Complete the Section Below

Yes

Pitot	Measured	Minimum
Distance From Nozzle (inches)	NA	0.75 in.
Pitot to Thermocouple Distance (inches)	2.25	2 in.
Pitot to Sample Probe Distance (inches)	6.25	3 in.

Does the Pitot Tube Meet the Above Requirements
Is the Pitot Tube Free of Damage
Yes

If Yes to Both, a Pitot Tube Coefficient of 0.84 is Assigned If No to Either, then the Pitot Tube Must be Calibrated

MONTROSE AIR QUALITY SERVICES, LLC

Nozzle Calibration Datasheet

Oncire	From Industries lac J	OD No.	451738
Plant	Chicago, IC		

	Nozzle 1	Nozzle 2	Nozzle 3	
Date	6/13/18	and the second s	annes and consideration of the second	
Operator	B4.			
Test Location	Hummer Mill Shredler			
Run Number (s)	1,2,3,4,5			
Diameter 1	,170			
Diameter 2	. i69			
Diameter 3	.171			
Average	170			

	Nozzle 4	Nozzle 5	Nozzle 6
Date	· · · · · · · · · · · · · · · · · · ·	and the second s	C. C. CONTROL OF THE
Nozzie ID			
Operator	,		
Test Location			
Run Number (s)			
Diameter 1			
Diameter 2			
Diameter 3			
Average			

Notes:

Measurements must be made to the nearest 0.001 inches.

Three different diameters should be measured.

The difference between the high and low measurement must be less than 0.004 inches.

Signed

Date 6/13/18

Airtech Environmental Services Inc. Field Balance Daily Calibration Check

Project No.	451 73 8
Project Name	Fron Industries
Balance ID	Scale 2

Date	Actual Weight Value (grams)	Measured Weight Value (grams)	Difference (grams)
6/13/18	500	499.9	
6/14/18	500	500.1	- 1
	-		
•			
		, , , , , , , , , , , , , , , , , , ,	

3.1	- 1	L	_
N	വ	ro	Q

At least one weight that is 500 grams or within 50 grams of the weight of a loaded impinger must be used for the daily calibration check.

The difference between the actual and measured value of the weight must be no more than 0.5 grams.

Signed: Bull 24	Date: 6/13/18
	6/14/18

CERTIFICATE OF ANALYSIS Grade of Product: EPA Protocol

Part Number: Cylinder Number:

PGVP Number:

Laboratory:

Gas Code:

E03NI74E15A2VT6

XC025171B

CO2,O2,BALN

ASG - Chicago - IL B12016

Reference Number: 54-124542331-1

Cylinder Volume: Cylinder Pressure:

149.0 CF 2015 PSIG

Valve Outlet: 590

Certification Date:

Mar 08, 2016

Expiration Date: Mar 08, 2024

Certification performed in accordance with "EPA Traceability Protocol for Assay and Certification of Gasecus Calibration Standards (May 2012)" document EPA 600/R-12/531, using the assay procedures listed, Analytical Methodology does not require correction for analytical interference. This cylinder has a total analytical uncertainty as stated below with a confidence level of 95%. There are no significant impurities which affect the use of this calibration mixture. All concentrations are on a volume/volume basis unless otherwise noted.

Do Not Use This Cylinder below 100 psig, i.e. 0.7 magapascals.

			The second secon	AL RESULTS	and the state of t	
Compon	ient	Requested Concentration	Actual Concentration	Protocol Method	Total Relative Uncertainty	Assay Dates
CARBON OXYGEN NITROGE	_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	5.000 % 21.00 % Balance	4.885 % 20.95 %	G1 G1	+/- 1.0% NIST Traceable +/- 0.5% NIST Traceable	The same of the sa
Туре	Lot ID	Cylinder No	CALIBRATION Concentration	N STANDARDS	Uncertainty	
NTRM NTRM	97050816 12062016	SG9167630BAL CC367570		N DIOXIDE/NITROGEN NITROGEN		Expiration Date May 01, 2016 Apr 24, 2018
Instrume	ent/Make/Mod	el	ANALYTICAL Analytical Prin	EQUIPMENT	Last Multipoint Calib	ration
)RIBA VIA-510 V IIBA MPA-510 3		NDIR Paramagnetic		Feb 16, 2016 Feb 16, 2016	

Triad Data Available Upon Request

Approved for Release

Page 1 of 54-124542331-1

Airgus Specially Gases Airgus USA, LLC 12722 S. Wentworth Ave. Chicago, IL 60628 -Airgas com

CERTIFICATE OF ANALYSIS **Grade of Product: EPA Protocol**

Part Number: Cylinder Number: E03N/80E15A0138

CC167397

124 - Chicago (SAP) - IL

Laboratory: PGVP Number: Gas Code:

B12017

CO2,02,8ALN

Reference Number: 54-401086478-3

Cylinder Volume: Cylinder Pressure:

Valve Outlet: Certification Date:

150,9 CF 2015 PSIG

590 Dec 26, 2017

Expiration Date: Dec 26, 2025

Certification performed in accordance with "EPA Traceability Protocol for Assay and Certification of Gaseous Calibration Standards (May 2012)" document EPA 600/R-12/591, using the assay procedures listed. Analytical Mathodology does not require correction for analytical interference. This cylinder has a total analytical uncertainty as stated below with a comidence level of 95%. There are no algorithmal impurities which affect the use of this childrent mixture. All concentrations are on a wolumn. Avoiume basis unless otherwise noted.

Do Not Use This Cyander below 100 psic. i.e. 0.7 measures

	•		ANALYTICA	L RESULTS		
Compor	ient	Requested Concentration	Açtual Concentration	Protocol Method	Total Relative Uncertainty	Assay Dates
CARBON OXYGEN NITROGE		10.00 % 10.00 % Balance	9.859 % 9.971 %	G1 G1	+/- 0.9% NIST Traceable +/- 0.8% NIST Traceable	
: Type	Lot ID	Cylinder No	CALIBRATION Concentration	STANDARDS	Uncertainty	Expiration Date
NTRM NTRM	12061358 98051005	CC361050 SG9161123BAL	11.002 % CARBON 12.05 % OXYGEN	N DIOXIDE/NITROGEN NITROGEN	+/-0.6% +/-0.7%	Jan 11, 2018 Dec 14, 2023
	ent/Make/Mod		ANALYTICAL Analytical Prince	EQUIPMENT	Last Multipoint Calib	ration
	ORIBA VIA-510 \ NBA MPA-510 3		NDIR Paramagnetic		Dec 03, 2017 Dec 03, 2017	

Triad Data Available Upon Request

Approved for Release

Page 1 of 54-401086478-1

General fron Industries: Chicago, Illinois
Hammermill Shredder PM and TSM
Protected by the Attorney Client Privilege and Attorney Work Product Doctrine

THIS IS THE LAST PAGE OF THIS DOCUMENT

If you have any questions, please contact one of the following individuals by email or phone.

Name: Mr. Matthew Libman

Title: District Manager

Region: Great Lakes Region

Email: mlibman@Montrose-env.com

Phone: (630) 860-4740

Name: Mr. Michael Hess

Title: Client Project Manager

Region: Great Lakes Region

Email: mhess@Montrose-env.com

Phone: (630) 860-4740

Construction Permit Application for New Scrap Metal Recycling Facility

General III, LLC 11600 South Burley Chicago, Illinois 60614

September 20, 2019

APPENDIX C

INSTITUTE IF SCRAP RECYCLING INDUSTRIES
TITLE V WORKBOOK
SELECT EMISSION FACTOR TABLES

Title V Applicability

Workbook

Prepared for:

INSTITUTE OF SCRAP RECYCLING INDUSTRIES, INC.

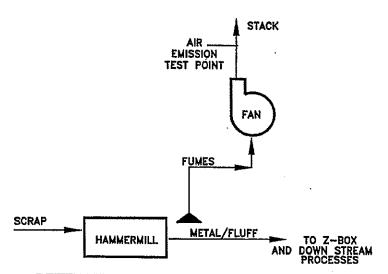
1325 G Street, NW Washington, DC 20005-3104 (202) 737-1770

Prepared by:

Versar, Inc. 200 West 22nd Street, Suite 250 Lombard, IL 60148

© 1996 Institute of Scrap Recycling Industries Second Printing, 1998

Table D-9. Conveyor Transfer Point Emission Factors (1)(2)


	Total PM ⁽³⁾		Criteria Air	Pollutant Factor	s (lb pollutant/	ton transferred)		Hazardous Air Pollutant Factors (lb pollutant/ton transferred)
	,	PM-10 (Incl. in total PM)	NO _x	VOC	со	SO ₂	Lead (included in total PM)	НАР
Dry Operation	по data ⁽⁴⁾	0.0014	0.0	0.0	0.0	0.0	по data	по data
Wet Operation	no data ⁽⁴⁾	0.00048	0.0	0.0	0.0	0.0	no data	no data

Emission factors applicable to conveyor transfer points for scrap in feed materials or products are not available. A conservative estimate of PM-10 emissions can be made using emission factors derived from the handling of crushed stone products. The factors in this table were adapted from AP-42, Crushed Stone Processing, Section 11.19.2, Table 11.19.2-2 for uncontrolled and controlled transfer points.

Note: Some states classify transfer points as fugitive sources. In the case that they are considered fugitive, transfer point emissions would not be included in determining major source classification. However, contact your state or local Agency to verify whether transfer point emissions are considered fugitive or point source.

Recent EPA guidance states that only PM10 is to be included for Title V applicability. However, individual states may require reporting total PM.

(4) Emission factors available for PM-10 only. Guidance in AP-42, Section 11.19.2 indicates that total PM may be estimated by multiplying the PM-10 factor by 2.1.

		Emission =	Emission
VOC's	HAPT	HGG (b)/fic	Factor (B)/ton fee
Methylene Chloride	Yes	0.009	0.00006
Acetone (1)	No	0.002	0.0000133
1,1-Dichloroethene	No	0.002	0.0000133
2—Butanone (MEK)	Yes	0.0008	0.00000533
1,1,1—Trichloroethane	Yes	0.03	0.0002
Benzene	Yes	0.06	0.0004
Tetrachioroethene	Yes	0.0004	0.00000267
Trichioroethene	Yes	0.01	0.0000667
Toluene	Yes	0.05	0.000333
Ethylbenzene	Yes	0.01	0.0000667
Styrene	Yes	0.002	0.0000133
O-Xylana	Yes	0.01	0.0000667
M-/P-Xylene	Yes	0.02	0.000133
or a complete that the complet		0.2042	0.00136
Total PCB's	Yes	0.0131	0.0000873
0.000			
Cadmium	Yes	0.000174	0.00000116
Chromium	Yes	0.000192	0.00000128
Lead	Yes	0.00118	0.00000789
260 NA64		0.001546	0.0014456

Total HAPs (VOC, PCB, Metals)

0.214846 0.00143

3 Run Average Total

Hydrocarbon (THC) =

7.53 lb/hr

(1) = DELISTED AS A VOC PER USEPA GUIDANCE

% of THC that is VOC =

2.71% % of THC that is HAP = 2.85%

FEED MIX - 75% AUTO BODIES, 25% MIXED SCRAP AND WHITE GOODS.
ALL AUTO BODIES HAVE BATTERIES, GAS TANKS, TIRES, RADIATORS, AND TRANSMISSIONS
REMOVED. ABOUT 50% OF AUTO BODIES HAVE ENGINES REMOVED. 75% OF AUTOS FULLY DRAINED,
OTHER 25% OF AUTOS AT LEAST 60% DRAINED. TEMPORARY HOOD, FAN, AND STACK CONSTRUCTED FOR TEST.

NOTE: SCRAP THROUGHPUT OF SHREDDER = 150 TONS/HR

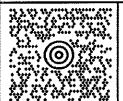
TABLE D-11.F

ORGANICS AND METALS EMISSION TEST FOR: MILL DEFUMER W/NO CONTROLS.

KATHY PINION 630-393-9000 RK & ASSOCIATES, INC. 28631 STATE ROUTE 59 WARRENVILLE IL 60555

8 LBS

1 OF 1


DWT: 18,13,3

SHIP TO:

BUREAU OF AIR 217-782-3397 ILLINOIS EPA P.O. BOX 19276

1021 NORTH GRAND AVE., EAST

SPRINGFIELD IL 62702

IL 627 0-01

UPS NEXT DAY AIR

TRACKING #: 1Z 455 4W3 01 9123 9512

BILLING: P/P

Reference #1: Mr. Ray Pilapal Reference #2: R17421-7

XOL 19.09.23 NV45 15.0A 07/2019

0316003FX

January 27, 2020

R17421-7

Mr. Bob Bernoteit Illinois Environmental Protection Agency - Bureau of Air 1021 North Grand Avenue East Springfield, IL 62702

Updated Emission Estimates Construction Permit Application 19090021 for a **New Scrap Metal Recycling Facility** General III, LLC - 11600 South Burley - Chicago, Illinois Site ID No. 031600SFX

RECENTED STATE OF IL 'NOIS

JAN 2 8 2020

Environmental Protect in Agency BUREAU OF MR

Dear Mr. Bernoteit:

Please find attached an updated copy of facility emission estimates for the above referenced construction permit application. This updated Section 3.0 Facility Emissions Estimates of the original GIII construction permit application has been prepared to include the following updates.

- Incorporation of the November 2019 RTO/Scrubber Emissions Test results documented in the January 16, 2020 RTO/Scrubber Emissions Test report (provided as Appendix D, attached to these updated emission estimates).
- Addition of six supplemental conveyors for the Ferrous material handling system and six supplemental conveyors for the Non-Ferrous material handling system. These supplemental conveyors have been added to meet the potential need for a limited number of additional conveyors beyond the number of conveyors identified in the original system designs.
- Incorporation of updated metal emission rates identified in a recent air dispersion modeling assessment provided to IEPA. These updated values are used to update facility-wide metal HAP emissions.

IEPA-DIVISION OF RECORDS MANAGEMENT If you have any questions or need any additional information, please don't hesitate to contact us at 630-393-9000.

Yours very truly, **RK & Associates**

cc: Mr. Jim Kallas - General III, LLC - Chicago, Illinois (via e-mail)

MAR 13 2020 REVIEWER: JMR

IEPA - DIVISION OF RECORDS MANAGEMENT RELEASABLE

031 600 SFX

MAR 13 2020

REVIEWER: JMR

Updated Emission Estimates
Construction Permit Application 19090021 for a
New Scrap Metal Recycling Facility
General III, LLC - Chicago, Illinois

January 27, 2020

R17421-7

Prepared for:

General III, LLC 1909 North Clifton Avenue Chicago, Illinois 60614 Attn: Mr. Jim Kallas

Prepared by:

John G. Pinion Principal Engineer RK & Associates, Inc.

2 South 631 Route 59 Suite B Warrenville, Illinois 60555 Phone: 630-393-9000 Fax: 630-393-9111

TABLE OF CONTENTS

3.0	FAC	CILITY	EMISSIONS ESTIMATES	21				
	3.1	Shredd	Shredder Emissions Controlled by Cyclone, Roll-Media Filter,					
	2000		erative Thermal Oxidizer, and Packed Tower Scrubber	23				
		3.1.1	Shredder VOM and CO Emissions	24				
		3.1.2	Shredder Particulate Emissions	25				
		3.1.3	Shredder Hazardous Air Pollutant Emissions	26				
		3.1.4	Shredder RTO Natural Gas Combustion Emissions	27				
		3.1.5	Shredder Emissions Summary	27				
	3.2	Ferrous	s Material Processing System Emissions	27				
		3.2.1	Particulate Emissions	28				
		3.2.2	Metal HAP Emissions	30				
	3.3	Non-Ferrous Material Processing System Emissions						
		3.3.1	Particulate Emissions	32				
		3.3.2	Metal HAP Emissions	33				
	3.4	Stockpile Fugitive Emissions						
		3.4.1	Particulate Emissions	34				
		3.4.2	Metal HAP Emissions	35				
	3.5	Fugitiv	e Emissions from Paved and Unpaved Roads	35				
		3.5.1	Particulate Emissions	35				
		3.5.2	Metal HAP Emissions	38				
	3.6		laneous Natural Gas Combustion Emissions	39				
	3.7		y-Wide Criteria Pollutant Emissions	39				
			y-Wide HAP Emissions	39				
	J.6 I denity wide In the Emissions							

Table of Contents

-	 	
-	 , ,	= 0
		_

Table 3-1A	Summary of Controlled Shredder VOM and CO Emissions
Table 3-1B	Summary of Controlled Shredder Filterable Particulate Emissions
Table 3-1C	Summary of Controlled Shredder HAP Emissions
Table 3-1D	Shredder RTO Natural Gas Combustion Emissions
Table 3-1E	Summary of Controlled Shredder Emissions
Table 3-2	Ferrous Material Processing - Particulate Emissions
Table 3-3	Non-Ferrous Material Processing - Particulate Emissions
Table 3-4	Summary of Estimated Fugitive Particulate Emission from Stockpile Operation
Table 3-5A	Fugitive PM Emissions Paved Roads
Table 3-5B	Fugitive PM Emissions – Unpaved Roads
Table 3-6	Miscellaneous Natural Gas Fired Environmental Heaters
Table 3-7	Summary of Facility-Wide Criteria Pollutant Emissions
Table 3-8	Summary of Facility-Wide HAP Emissions
FIGURES	
Figure 3-1	Facility Roadways

APPENDICES

Appendix D	Emissions Test Report Shredder RTO/Scrubber (November 2019)	D-1
Appendix E	Proposed Changes to Condition 11 (Emission Limits) of	
	Draft Construction Permit 19090021	E-1

3.0 FACILITY EMISSIONS ESTIMATES - Updated January 22, 2020

Updated Information

This updated Section 3.0 Facility Emissions Estimates of the original GIII construction permit application has been prepared to include the following updates.

- Incorporation of the November 2019 RTO/Scrubber Emissions Test results documented in the January 16, 2020 RTO/Scrubber Emissions Test report (provided as Appendix D, attached to these updated emission estimates).
- Addition of six supplemental conveyors for the Ferrous material handling system and six supplemental conveyors for the Non-Ferrous material handling system. These supplemental conveyors have been added to meet the potential need for a limited number of additional conveyors beyond the number of conveyors identified in the original system designs.
- Incorporation of updated metal emission rates identified in a recent air dispersion modeling assessment provided to IEPA. These updated values are used to estimate of facility-wide metal HAP emissions.

As described in this application, GIII will install a state-of-the-art emissions control system on the hammermill shredder. The shredder will be located inside of a partial enclosure with walls and a vented metal roof to help contain debris and particulate matter (PM) generated during the shredding process. The shredder will be equipped with an integral water injection system to minimize the potential for fires and deflagrations inside the shredder. As established in previous permits, the water injection system is integral to the process and is not a pollution control device for the purposes of this permit application.

GIII has taken other significant measures to limit emissions, and potential impacts, from this facility, including:

- GIII's proposed facility will be a state-of-the-art recycling facility located in the heart of an
 industrial district well-buffered from residential properties with at least 1,500 feet between the
 facility property line and the nearest residential area.
- Approximately 95% of interior plant roadways are paved with concrete or asphalt. The remaining approximately 5% of interior plant roadways consist of crushed slag or similar materials and are only lightly traveled.
- The shredder will be one of the first shredders in the nation to install a comprehensive emissions capture and control system to control VOM, PM, and HAPs.

- Many of the conveyors in the Non-Ferrous Material Processing System will be equipped with covers to prevent windblown emissions.
- The majority of the fines processing equipment is located within a building and controlled with dust collectors.
- GIII will implement a fugitive operating program that will require periodic watering and sweeping of traffic areas to minimize fugitive particulate emissions.
- GIII will use a network of dust boss water atomizing cannons to apply water into the ambient air
 to wet suspended particulate to increase settling.
- The facility has received all necessary zoning approvals from the City of Chicago.

Emission units identified in the application include:

- Shredder controlled by cyclone, roll-media filter, RTO, and packed tower scrubber;
- · Ferrous Material Processing System;
- Non-Ferrous Material Processing System;
 - o Dust Collector for control of select exhaust streams from the fines handling building;
- Stockpiles (fugitive emissions);
- · Paved and Unpaved Roads (fugitive emissions); and
- Miscellaneous Natural Gas Fired Environmental Heaters (exempt from permitting).

Each of the above emission units are discussed in the sections below and emissions for each are summarized in Tables 3-1A through 3-1E and Tables 3-2 through 3-6. Facility-wide criteria and HAP pollutant emissions are summarized in Tables 3-7 and 3-8. The emissions estimates presented in this application demonstrate that the proposed Facility is a minor source with respect to new source review, and Title V permitting requirements and is also a minor source of HAP emissions.

3.1 Shredder Emissions Controlled by Cyclone, Roll-Media Filter, Regenerative Thermal Oxidizer, and Packed Tower Scrubber

Updated Information

As described herein, emission estimates for the proposed Shredder have been updated to incorporate the results from the November 2019 emissions testing performed on the RTO/Scrubber at GII that will be relocated to GIII as part of this project.

This section provides shredder emissions estimates for captured/controlled emissions routed through the proposed emission control system consisting of a cyclone, roll-media filter, RTO, and packed tower scrubber.

GIII will install a new shredder at the proposed facility and will relocate the existing cyclone, roll-media filter, RTO and packed tower scrubber from the existing GII facility to the proposed facility. The raw scrap feed stream received at the existing GII facility is essentially the same feed stream that will be received at GIII's proposed facility. For these reasons, for the purposes of this application, the emission data from the existing shredder and emission control system at the GII facility is assumed to reasonably represent the anticipated emissions from GIII's new shredder at the proposed facility.

The shredder will be located inside of a partial enclosure with walls and a vented metal roof to help contain debris and particulate matter (PM) generated during the shredding process. The shredder will be equipped with an integral water injection system to minimize the potential for fires and deflagrations inside the shredder.

VOM emission estimates presented herein assume an RTO control efficiency of 98% based on the design of the RTO. The RTO/Scrubber currently in use at GII, will be moved to GIII. Compliance demonstration testing of the existing RTO/Scrubber at GII was completed on November 14, 15, and 18, 2019.

The captured shredder emissions identified in this application are based on demonstrated emission factors in units of pounds-of-emissions per ton of gross feed to the shredder derived from November 2019 emissions testing of the existing GII RTO/Scrubber.

The emissions estimates presented in this updated section are calculated using demonstrated emission factors and proposed maximum monthly and annual material throughput rates. This construction permit application does not rely on operating hours to estimate monthly or annual emissions; therefore, no operating hour limits are requested.

This construction permit application requests an annual shredder throughput limit of 1,000,000 tons/year and a monthly throughput limit of 10% of the annual, or 100,000 tons/month.

Visual observations of the shredder capture hood by USEPA representatives during the November 2019 emissions testing indicated that the hood over the shredder achieved an estimated capture efficiency of greater than >90%. The nature of the shredding operation and related safety concerns prevents a direct measurement of emissions capture efficiency using a permanent or temporary total enclosure; therefore, the GII RTO/Scrubber compliance demonstration testing did not require capture efficiency testing.

The Shredder PM/PM₁₀, metals, HCl, HF and total HAPs in this application includes a safety factor applied to the product of November 2019 emission factors multiplied by the maximum projected monthly and annual material throughputs. No safety factor is applied to VOM because permitted emissions are calculated using 98% VOM removal efficiency whereas the demonstrated VOM removal efficiency was 99%.

3.1.1 Shredder VOM and CO Emissions

For the purposes of these emission calculations, it is assumed that THC, as referenced in November 2019 RTO/Scrubber emissions testing report (see Appendix D) is equivalent to VOM.

The proposed VOM and CO emission limits for the proposed Shredder, controlled by a cyclone, roll-media filter, RTO and packed tower scrubber, are presented in Table 3-1A.

The uncontrolled VOM emission factor, was adjusted to subtract methane and ethane pursuant to USEPA Method 25A. It should be noted that the November 2019 VOM emissions testing was performed at a significantly elevated shredder feed rate (444 tph) and End of Live Vehicle (ELV) feed rate (50.9%) in order to maximize VOM loading to the RTO. These operating rates yielded an uncontrolled VOM emission factor of 0.5119 pounds of VOM per ton of gross shredder feed (see test report in Appendix D).

The monthly Shredder RTO/Scrubber VOM emissions rate is calculated using the following equation:

$$100,000 \frac{ton}{month} \times 0.5119 \frac{lb \, VOM}{ton \, shredder \, feed} \times \frac{1 \, ton}{2,000 \, lbs} \times (1-0.98) = 0.51 \frac{ton}{month}$$
maximum adjusted VOM convert minimum monthly emission factor lb/ton VOM VOM shredder (captured emissions) removal emissions throughput November 2019 efficiency

The annual Shredder RTO/Scrubber VOM emissions rate is calculated using the following equation:

$$1,000,000 \frac{ton}{year} \quad x \quad 0.5119 \frac{lb\ VOM}{ton\ shredderfeed} \quad x \quad \frac{1\ ton}{2,000\ lbs} \quad x \quad (1-0.98) = 5.12 \frac{tons}{year}$$

$$\begin{array}{cccc} \text{maximum} & \text{adjusted VOM} & \text{convert} & \text{minimum} & \text{annual} \\ \text{shredder} & \text{(captured emissions)} & \text{(captured emissions)} \\ \text{throughput} & \text{November 2019} & \text{emissions} \end{array}$$

CO emissions are estimated by multiplying the proposed monthly and annual shredder material throughput rates by the CO emission factor measured during the November 2019 RTO/Shredder Emissions Test and the application of a safety factor.

The monthly Shredder RTO/Shredder CO emissions rate is calculated using the following equation:

$$100,000 \frac{ton}{month} \times 0.0219 \frac{lb\ CO}{ton\ shredder\ feed} \times \frac{1\ ton}{2,000\ lbs} \times 2.00 = 1.29 \frac{ton}{month}$$
maximum
monthly
shredder
monthly
shredder
November 2019

CO
emissions
monthly
November 2019

The annual Shredder RTO/Scrubber CO emissions rate is calculated using the following equation:

$$1,000,000 \frac{ton}{year} \times 0.0219 \frac{lb\ CO}{ton\ shredderfeed} \times \frac{1\ ton}{2,000\ lbs} \times 2.0 = 12.86 \frac{tons}{year}$$

$$\frac{\text{maximum}}{\text{annual}} \quad \text{CO emission factor} \quad \text{convert} \quad \text{safety} \quad \text{annual} \quad \text{CO} \quad \text{emissions} \quad \text{lbs to tons} \quad \text{factor} \quad \text{CO} \quad \text{emissions}$$

$$\frac{\text{shredder}}{\text{throughput}} \quad \text{November 2019} \quad \text{shredder} \quad \text{convert} \quad \text{safety} \quad \text{convert} \quad \text{convert} \quad \text{convert} \quad \text{convert} \quad \text{safety} \quad \text{convert} \quad$$

3.1.2 Shredder Particulate Emissions

The estimated shredder PM/PM₁₀ emissions are presented in Table 3-1B. A PM/PM₁₀ emission factor was developed from filterable PM emissions testing conducted on November 18, 2019, performed in the scrubber exhaust stack. The emissions test report for this testing event is presented in Appendix D of this application.

The demonstrated PM/PM_{10} emission factor from the November 18, 2019, emissions test was 0.0032 lb/ton of gross shredder feed (see Appendix D).

For the purposes of this permit application, the filterable PM/PM₁₀ emission factor of 0.0047 lb/ton from the original application is used herein to conservatively calculate the proposed filterable PM/PM₁₀ emissions limits. For the purposes of this application, filterable PM is conservatively assumed to be PM_{10} .

A safety factor of 4.0 (consistent with the original permit application) has also been included in the estimated PM/PM_{10} emission calculations below.

The annual shredder PM/PM₁₀ emissions limit (measured in the scrubber discharge stack) is calculated using the following equation:

3.1.3 Shredder Hazardous Air Pollutant Emissions

Shredder HAP emissions are summarized in Table 3-1C below. HAP emissions estimates are provided for captured HAP emissions emitted through the RTO/Scrubber stack. Proposed metal HAP and inorganic acid HAPs are based on metals and HCl/HF emission testing performed on November 14, 2019. Organic HAP emissions are estimated based on uncontrolled organic compound emission rates, identified in the Institute of Scrap Recycling Industry, Inc. (ISRI) Title V Applicability Workbook, Table D-11F (Appendix C of the original construction permit application) and adjusted for 98% removal efficiency in the RTO.

For the purposes of this permit application, a safety factor of 4.0 has been applied to the November 2019 measured emission factors for metal HAPs, HCl and HF (consistent with the PM/PM₁₀ safety factor) and a safety factor of 2.0 been applied to organic HAPs.

Shredder metal HAP, organic HAP, and inorganic acid HAP emissions are summarized in Table 3-1C.

3.1.4 Shredder RTO Natural Gas Combustion Emissions

The estimated shredder RTO natural gas combustion emissions are presented in Table 3-1D. Emissions are calculated using a maximum RTO natural gas firing rate of 15 MMBtu/hr, a natural gas higher heating value (HHV) of 1,020 Btu/scf, and standard USEPA natural gas emission factors from AP-42; Chapter 1.4; Tables 1.4-1 and 1.4-2.

Natural gas combustion emission estimates are presented for criteria pollutants, Greenhouse Gases (GHG), and metal and organic HAPs.

3.1.5 Shredder Emissions Summary

Table 3-1E presents a summary of total estimated shredder emissions controlled by the cyclone, roll-media filter, RTO and packed tower scrubber. The values identified in Table 3-1E identify the updated emissions limits and shredder throughput limits requested in this permit application. The proposed emission limits are in units of tons/month and tons/year and correspond to shredder gross feed rates of 100,000 tons/month and 1,000,000 tons/year.

The updated emissions information in this submittal is limited to the addition of six supplemental conveyor transfer points so up to six additional transfer points can be added during construction without requiring revision of the construction permit.

3.2 Ferrous Material Processing System Emissions

Emissions from the Ferrous Material Processing System include PM, PM₁₀, PM_{2.5} and metal HAPs. There is no combustion or high temperature processing performed, so emissions of VOM and other products of combustion are not anticipated.

Updated Information

As described herein, particulate emissions from the Ferrous Material Processing System have been increased slightly by the addition of six supplemental material transfer points. Including these 'extra' material transfer points will allow the addition of up to six additional transfer points (as may be needed) during construction of this system without requiring a modification of the construction permit issued for this project.

Updated estimates of metal HAP emissions from the Ferrous Material Processing System are also incorporated herein.

3.2.1 Particulate Emissions

A review of AP-42 emission factors did not identify any published emission factors for processing shredded scrap metal or ASR using feed hoppers, conveyors, magnetic separators, screens, vibratory feed tables, eddy current separators, wind sifters, induction sorters, polishers, Air Vibe separators, or material transfer to stockpiles or storage containers. RKA is also not aware of any other source of published emission factors for this equipment processing shredded scrap metal or ASR.

In the Institute of Scrap Recycling Industries (ISRI) Title V Applicability Workbook (1996), Footnote 1 on Table D-9, states that;

"Emission factors applicable to conveyor transfer points for scrap in feed material or products are not available. A conservative estimate of PM_{10} emission scan be made using emission factors derived from the handling of crushed stone products. The factors in this table were adapted from AP-42, Crushed Stone Processing, Section 11.19.2, Table 11.19.2-2 for uncontrolled and controlled transfer points."

The AP-42 emission factors for crushed stone (Section 11.19.2; Table 11.19.2.2) have been uniformly adopted by the metal recycling industry as evidenced by their use in numerous permit applications for metal recycling facilities and have been accepted by IEPA and other state regulatory agencies throughout the United States.

ASR separation processes include only one small low speed high torque shredder used for size reduction of clean metal. All other ASR equipment is designed for material separation. This fact limits the potential generation of total suspended particulate matter (TSP) to only the fines present in the ASR being processed. Based on the above, the application of AP-42 particulate matter emission factors for crushed stone processing to ASR processing is likely to result in estimated emissions that are greater than actual emissions from ASR separation processes.

The following table identifies emission factors from AP-42, Table 11.19.2-2 that are typically used in metal recycling emission calculations. The identifiers in the first column of the table are used in Tables 3-2 and 3-3 to document the specific emission factors used to estimate emissions for each piece of equipment or operation.

Particulate Emission Factors from AP 42; Table 11.19.2-2 Crushed Stone Processing (8/2004) Used in Estimating PM Emissions in Scrap Metal Material Handling and ASR Separation Operations.

	Uncontrolled			1	Controlled ¹			
Identifer Used in Tables 2 & 3	Equipment	Material	PM lb/ton	PM10 lb/ton	PM2.5 lb/ton	PM lb/ton	PM10 lb/ton	PM2.5 lb/ton
А	Conveyor Transfer Point	Crushed Stone	0.0030	0.0011	0.000167 2	0.00014	0.000046	0.000013
В	Screening	Crushed Stone	0.0250	0.0087	0.001317 2	0.00220	0.000740	0.000050
С	Truck loading	Fragmented Stone	0.000033 3	0.000016	0.000002 ²			
D	Truck Loading	Crushed Stone	0.000204 3	0.00010	0.000015 ²			

- 1. Use controlled emission factors when the moisture content of the materials being processed are greater than 1.5% by weight.
- Where PM2.5 emission factors are not provided in AP-42, 11-19.2-2, a ratio of aerodynamic particle size multipliers from AP-42, 13.2.4 are used to estimate PM2.5 emission factors. PM2.5 EF = (PM10 EF/.035) x .0053.

Aerodynamic Particle sizes from AP-42, 13.2.4					
<30 um	<15 um	<10 um	<5 um	<2.5 um	
0.74	0.48	0.35	0.2	0.053	

3. PM emissions estimated as % of PM10 pursuant to Appendix A of SCAQMD Methodology to Calculate Particulate Matter (PM) 2.5 and PM 2.5 Significance Thresholds , October 2006.

Particulate emissions from the Ferrous Material Processing System are generated from material transfer points and material drops (dropping materials onto stockpiles).

Material transfer emissions are calculated by applying selected PM, PM₁₀ and PM_{2.5} emission factors, in units of pounds of particulate matter per ton of material processed, to the projected material throughput rates (tons per hour and tons per year) at each material transfer point. Material transfer points include the points at which material is transferred from one device to another, such as conveyor to conveyer transfers, conveyor to equipment transfers, and equipment to conveyor transfers. Material throughput rates at each transfer point have been estimated by the equipment supplier.

Material drop emissions are calculated using the material drop equation from AP-42 Section 13.2.4.3 for all locations where material is dropped from a conveyor onto a stockpile or into a container.

M = 1.5 % for light materials - AP-42, Table 13.2.4-1 for crushed limestone - (conservative)

The mean wind speed is annual average wind speed recorded at Midway Airport in Chicago, Illinois. Material discharged from the shredder is sprayed by water due the water injection system. The moisture content of material is conservatively assumed to be 1.5% for most applications (unless otherwise specified in table footnotes) because this is the moisture content that triggers the use of controlled emission factors for material transfer points in AP-42, Section 11.19.2 (Crushed Stone Processing).

Table 3-2 presents a summary of estimated PM/PM₁₀/PM_{2.5} from the Ferrous Material Processing System and has been updated to has six supplemental material transfer points.

3.2.2 Metal HAP Emissions

Detailed metal and metal HAP emissions from the Ferrous Material Processing, Non-Ferrous Material Processing, Stockpile operations, and fugitive road dust were estimated using metals analyses data from samples of material deposition collected from GII. The results of the GII metals analyses were applied to emission units and activities at GIII that correspond to the location of the GII samples. The following table summarizes the results of the metals analyses from GII samples and describes how these results were applied to GIII emission units and activities.

For the purpose of modeling potential off site metal impacts, the Ferrous Material Processing System was divided into several volume sources. Particulate emissions from each volume source were assigned sample results from the GII material deposition sample that represents the emission unit or activity in each volume source.

Summary of Metal Concentrations in Material Deposition¹ at GII

		Materal Deposition Samples Collected from GII				
HAP	Metals (Method 29)	Ferrous Roadway mg/kg	ASR Roadway mg/kg	General Roadway mg/kg	Ferrous Transfer mg/kg	Non-Ferrous Transfer mg/kg
Υ	Lead	763	1,610	525	4,230	4,720
Υ	Manganese	960	1,030	729	2,210	1,760
Y	Mercury	1.77	6.95	2.22	18.8	9.34
Y	Nickel	125	463	106	304	311
Y	Antimony	< 1.23	< 1.22	< 1.16	< 1.17	< 1.21
Υ	Arsenic	2.28	1.75	2.70	2.75	4.51
Υ	Beryllium	< 5.90	< 1.30	< 5.50	< 1.17	< 1.21
Y	Cadmium	9.63	18.4	5.42	47.6	34.6
Υ	Chromium	220	991	173	402	425
Υ	Cobalt	15.7	38.5	10.7	52.0	55.8
Υ	Phosphorus	598	561	270	833	934
Υ	Selenium	< 1.23	< 1.22	< 1.16	< 1.17	< 1.21
N	Zinc	5,470	13,300	3,080	37,300	34,000
N	Barium	388	673	232	984	684
N	Copper	1,110	1,080	841	2,100	1,650
N	Silver	< 12.3	< 12.2	< 11.6	< 11.7	< 12.1
N	Thallium	< 1.23	< 1.22	< 1.16	< 1.17	< 1.21

 Bulk material samples from designated areas were transported to Environmental Monitoring and Technologies, Inc. (EMT) and sieved to remove oversized material. The resulting materials were analyzed for metals using the analytical methods identified in USEPA Method 29 (Metals Emissions from Stationary Sources).

Deposition Sample Name	Sample Description and Application of Results to GIII Emission Units and Activities
Ferrous Roadway	Sample collected at GII from the vehicle roadway adjacent to the shredded ferrous metal stockpile. Sample results represent anticipated metals content of fugitive particulate emissions from vehicular traffic near the shredded ferrous material stockpiles at GIII.
ASR Roadway	Sample collected at GII from the vehicle roadway adjacent to the ASR handling and stockpile area. Sample results represent anticipated metals content of fugitive particulate emissions from vehicular traffic near the bulk ASR handling and ASR

stockpile areas at GIII.

GII Material

Gli Material Deposition Sample Name	Sample Description and Application of Results to GIII Emission Units and Activities
General Roadway	Sample collected from the entrance to GII. Sample results represent anticipated metals content of fugitive particulate emissions from vehicular traffic between the facility entrance gate and the raw scrap unloading area at GIII.
Ferrous Transfer	Sample collected at GII from the pavement adjacent to ferrous material transfer conveyors. Sample results represent anticipated metals content of particulate emissions from the Ferrous Material Processing System from the outlet of the shredder to the ferrous material stockpiles and barge loading area at GIII.
Non-Ferrous Transfer	Sample collected at GII from fines deposited on horizontal surfaces (i.e. beams, pipes, etc.) inside the ASR processing building. Sample results represent anticipated metals content of particulate emissions from the Non-Ferrous Processing System at GIII.

The summary of facility-wide HAP emissions presented in Table 3-8 identifies total metal HAP emissions from the Ferrous Material Processing System.

3.3 Non-Ferrous Material Processing System Emissions

Updated Information

Particulate emissions from the Non-Ferrous Material Processing System have been increased slightly by the addition of six supplemental material transfer points. Including these 'extra' material transfer points will allow the addition of up to six additional transfer points (as may be needed) during construction of this system without requiring a modification of the construction permit issued for this project.

Updated estimates of metal HAP emissions from the Ferrous Material Processing System are also incorporated herein.

Emissions from the Non-Ferrous Material Processing System include PM, PM₁₀, PM_{2.5} and metal HAPs. There is no combustion or high temperature processing performed, so emissions of VOM and other products of combustion are not anticipated.

3.3.1 Particulate Emissions

Particulate emissions from the Non-Ferrous Material Processing System are generated from material transfer points, screening, truck loading, and material drops.

Material transfer emissions are calculated by applying selected PM, PM₁₀ and PM_{2.5} emission factors in units of pounds of particulate matter per ton of material processed, to the projected material throughput rates (tons per hour and tons per year) at each material transfer point. Material transfer points include the points at which material is transferred from one device to another, such as conveyor to conveyer transfers, conveyor to equipment transfers and equipment to conveyor transfers. Material throughput rates at each transfer point have been estimated by the applicant and the supplier.

Truck loading emissions are calculated by applying selected PM, PM₁₀ and PM_{2.5} emission factors in units of pounds of particulate matter per ton of material loaded, to the projected truck loading rates (tons per hour and tons per year).

Material drop emissions are calculated using the material drop equation from AP-42 Section 13.2.4.3 (see Section 3.2 above) for all locations where material is dropped from a conveyor onto a stockpile or into a container.

Equipment located in the Fines Building are controlled by one of four identical dust collectors. Each dust collector has a design flow rate of 12,000 cfm. Three of the dust collectors (DC-02, DC-03 and DC-04) will discharge treated air back into the building and therefore, have no emissions and are not emission units with respect to permitting requirements.

One of the dust collectors (DC-01) does vent to the outside atmosphere and its emissions represent emissions from all of the equipment located inside of the fines processing building. Particulate emissions from the dust collector are calculated by multiplying the design air flow rate by a clean side particulate concentration of 0.005 gr/dscf. The result of this calculation is shown on Table 3-3.

Table 3-3 presents a summary of estimated PM/PM₁₀/PM_{2.5} from the Non-Ferrous Material Processing System. This table has been updated to include six supplemental material transfer points.

3.3.2 Metal HAP Emissions

As described in Section 3.2.2 above, detailed metal and metal HAP emissions from the Ferrous Material Processing, Non-Ferrous Material Processing, Stockpile operations, and fugitive road dust were estimated using metals analyses data from samples of material deposition collected from GII. The results of the GII metals analyses were applied to emission units and activities at GIII that correspond to the location of the GII samples. Section 3.2.2 above summarizes the results of the metals analyses from GII samples and describes how these results were applied to GIII emission units and activities.

For the purpose of modeling potential off site metal impacts, the Non-Ferrous Material Processing System was divided into several volume sources. Particulate emissions from each volume source were assigned

sample results from the GII material deposition sample that represents the emission unit or activity in each volume source.

The summary of facility-wide HAP emissions presented in Table 3-8 identifies total metal HAP emissions from the Non-Ferrous Material Processing System.

3.4 Stockpile Fugitive Emissions

Updated Information

Estimates of metal HAP emissions associated with fugitive stockpile particulate emissions were updated by using the results of metal analyses from samples of material deposition at GII (see Section 3.2.2 above).

Fugitive emissions from stockpiles include particulate matter and metal HAPs.

3.4.1 Particulate Emissions

Fugitive particulate emissions from stockpiles are estimated in accordance with procedures recommended by the Texas Commission on Environmental Quality (TCEQ) for calculation of emissions from crushed stone processing. Fugitive emissions from stockpiles are calculated using the following equation:

PM Emission		[(inactive day PM EF x No. of inactive days) x (stockpile area/2000) x control factor] $+$
Rate (tpy)	=	[(active day PM EF x No. of active days) x (stockpile area/2000) x control factor]

Stockpile control factors are identified as follows:

Stockpile Control Method	Control Eff. (%)	Control Factor (1 - ctrl eff)
None	0	1
Wet material	50	0.5
Water	70	0.3
Chemicals/foam	80	0.2
Partial enclosure	50-85	0.5-0.15
Full enclosure	90	0.1
Enclosed by building	90	0.1
Washed sand/gravel	95	0.05
Washed sand/gravel with water spray	98.5	0.015
Manufacturer rating	0	0

A summary of stockpile fugitive particulate emissions is presented in Table 3-4.

3.4.2 Metal HAP Emissions

As described in Section 3.2.2 above, detailed metal and metal HAP emissions from the Ferrous Material Processing, Non-Ferrous Material Processing, Stockpile operations, and fugitive road dust were estimated using metals analyses data from samples of material deposition collected from GII. The results of the GII metals analyses were applied to emission units and activities at GIII that correspond to the location of the GII samples. Section 3.2.2 above summarizes the results of the metals analyses from GII samples and describes how these results were applied to GIII emission units and activities.

For the purpose of modeling potential off site metal impacts, the various material stockpiles were designated as volume sources associated with either the Ferrous or Non-Ferrous Material Processing Systems. Estimated fugitive particulate emissions from each stockpile were assigned sample results from the GII material deposition sample that represents the material managed in each stockpile.

The summary of facility-wide HAP emissions presented in Table 3-8 identifies total metal HAP emissions from stockpile fugitive emissions.

3.5 Fugitive Emissions from Paved and Unpaved Roads

Updated Information

Estimates of metal HAP emissions included in fugitive particulate emissions from paved and unpaved roads were updated by using the results of metal analyses of samples of material deposition at GII.

Fugitive emissions from paved and unpaved roads include particulate and metal HAPs.

3.5.1 Particulate Emissions

Facility roadways were divided into segments based on the type(s) of materials being transported for the purposes of estimating segment-specific particulate emissions to support an air dispersion modeling assessment of off-site metals impacts. The particulate emissions estimates described herein are greater than the estimated emissions included in the original application and have been updated to be consistent with emissions data used in the modeling assessment.

Fugitive emissions from vehicular traffic on paved and unpaved roadways were estimated by identifying the material streams delivered to the site, transferred internally, and transported from the site. These material streams consist of:

- Peddler Scrap Deliveries;
- Truck Scrap Delivery to the North Scrap Stockpile;
- Truck Scrap Delivery to the South Scrap Stockpile;
- Ferrous Scrap Shipment from the North Ferrous Stockpile;
- Ferrous Scrap Shipments from the South Ferrous Stockpile;
- Ferrous Waste Shipped Off-Site;
- Non-Ferrous Products Shipped Off-Site;
- Non-Ferrous Waste Shipped Off-Site; and,
- Internal Material Transfer by Facility End Loaders.

Facility roadways were divided into segments representing the primary routes taken by vehicles hauling each material stream identified above as shown in Figure 3-1. The number of trips over each segment for each material were estimated by dividing the estimated daily quantity of each material stream handled (tons/day) by the average weight of vehicles used (average of loaded and unloaded weight). The results of this analysis provided an estimate of daily miles traveled for vehicles hauling each material stream.

As described in Tables 3-5A and 3-5B (particulate emissions from paved and unpaved roadways respectively), the average vehicle weights were combined with site-specific parameters to estimate the uncontrolled particulate emissions in units of lb of particulate/vehicle mile traveled. A control efficiency (also identified in Tables 3-5A and 3-5B) was then applied to identify a controlled emission factor (lbs/vehicle mile traveled) for paved and unpaved roads. The facility will employ a program of sweeping and watering described in the facility's Fugitive Particulate Operating Program to minimize generation of fugitive emissions from facility roadways.

The controlled particulate emission factors were then combined with the estimated daily miles traveled for each material/vehicle type to calculate daily emissions of PM, PM₁₀ and PM_{2.5}. Daily emissions were multiplied by annual operating days (6 days per week and 52 weeks per year) to estimate annual emissions. Monthly emissions were assumed to be 10% of annual emissions.

The estimated number and weight of vehicles required to operate the facility at its maximum throughput was calculated, and the mean vehicle weight was used in the fugitive particulate calculations for both paved and unpaved roads. The total daily vehicle miles traveled on-site for each type of vehicle was provided by facility personnel.

Facility Emissions Estimates (Updated January 22, 2020)

Approximately 95% of interior plant roadways will be paved with concrete or asphalt. The remaining approximately 5% of interior plant roadways, consisting of compacted crushed slag or similar materials, will be lightly traveled.

Fugitive particulate emissions from vehicular traffic on paved roadways are calculated pursuant to AP-42, Section 13.2.1 Paved Roads, using the following equation:

$E_{\text{ext}} = (k * (sL)^{0.91} * (W)$) ^{1.02}) * (1 - (P/(4N	Equation 2, AP42, Section 13.2.1 Paved Roads (Jan 2011)
E _{ext} =		Size specific annual average particulate emission factor (lb/VMT)
	0.011 PM	
K =	0.0022 PM ₁₀	Particle size multiplier lb/VMT (AP-42 Table 13.2.1-1)
	0.0054 PM _{2.5}	
sL =	9.7	Mean controlled silt content, % (AP42 Table 13.2.1-3 Jan 2011 -
JE -	5	Iron & Steel Range: 0.09 to 79; mean 9.7-g/m2)
W =		Mean vehicle weight, tons (use weighted average where available)
D	120	Number of precipitation days (>0.01 in) per year (AP42 Fig 13.2.1.2 Jan
P =	120	2011 - Chicago, IL)
N =	365	Averaging Period, annual
Control Efficiency =	%	Estimated Control Efficiency for periodic sweeping and watering
•		

Table 3-5A presents a summary of the estimated fugitive particulate emissions from paved roadways.

Fugitive particulate emissions from vehicular traffic on unpaved roadways are calculated pursuant to AP-42, Section 13.2.2 Unpaved Roads, using the following equation:

$E_{ext} = (k * (s/12)^a * (W/s)^a)^a$	3) ^b) * ((N-P)/P)	Equation 1a & 2, AP42, Section 13.2.2 Paved Roads (Nov 2006)
E _{ext} =		Size specific annual average particulate emission factor (lb/VMT)
	4.9 PM	D. C. H. A/AAT (AB A) T-L(a 10 3 2 3)
K =	1.5 PM ₁₀ 0.15 PM _{2.5}	Particle size multiplier lb/VMT (AP-42 Table 13.2.2-2)
s =	6	Mean controlled silt content, % (AP42 Table 13.2.2-2 Nov 2006 - Iron & Steel Production (%)
W =		Mean vehicle weight, tons (use weighted average where available)
P =	120	Number of precipitation days (>0.01 in) per year – Chicago, IL (AP42 Fig 13.2.2-2 Nov 2006)
N =	365	Averaging Period, annual
Control Efficiency =	%	Estimated Control Efficiency for periodic watering or chemical treatment

Table 3-5B presents a summary of the estimated fugitive particulate emissions from unpaved roadways.

Facility Emissions Estimates (Updated January 22, 2020)

3.5.2 Metal HAP Emissions

As described in Section 3.2.2 above, detailed metal and metal HAP emissions from the Ferrous Material Processing, Non-Ferrous Material Processing, Stockpile operations, and fugitive road dust were estimated using metals analyses data from samples of material deposition collected from GII. The results of the GII metals analyses were applied to emission units and activities at GIII that correspond to the location of the GII samples. Section 3.2.2 above summarizes the results of the metals analyses from GII samples and describes how these results were applied to GIII emission units and activities.

For the purpose of modeling potential off site metal impacts, each identified roadway segment was assigned representative sample results from the GII material deposition samples.

The summary of facility-wide HAP emissions presented in Table 3-8 identifies total metal HAP emissions from roadway fugitive emissions.

3.6 Miscellaneous Natural Gas Combustion

Updated Information

There are no updates to estimated emissions from miscellaneous natural gas combustion.

Miscellaneous natural gas combustion sources will consist of environmental heaters.

The estimated miscellaneous natural gas combustion emissions are presented in Table 3-6. Emissions are calculated using a maximum natural gas firing rate of 10 MMBtu/hr, a natural gas higher heating value (HHV) of 1,020 Btu/scf, and standard USEPA natural gas emission factors from AP-42; Chapter 1.4; Tables 1.4-1 and 1.4-2.

Emission estimates are presented for criteria pollutants, greenhouse gas (GHG), and metal and organic HAPs.

3.7 Facility-Wide Criteria Pollutant Emissions

An updated summary of facility-wide criteria pollutant emissions is presented in Table 3-7.

3.8 Facility-Wide HAP Emissions

An updated summary of facility-wide HAP emissions is presented in Table 3-8.

Updated Emission Estimates Construction Permit Application 19090021 for a New Scrap Metal Recycling Facility

General III, LLC 11600 South Burley Chicago, Illinois 60614

Updated Emission Estimates
January 27, 2020

FIGURES

Figure 3-1 – Facility Roadways

This Page Left Blank

This Page Left Blank

Updated Emission Estimates
Construction Permit Application 19090021 for a
New Scrap Metal Recycling Facility

General III, LLC 11600 South Burley Chicago, Illinois 60614

Updated Emission Estimates
January 27, 2020

TABLES

This Page Left Blank

Table 3-1A Summary of Controlled Shredder VOM and CO Emissions
General III, LLC - Chicago, Illinois

Parameter	Units	Values	Comment					
Captured VOC Emissions Controlled by R	TO and Emitted Through the	RTO/Scrubb	er Stack					
Demonstrated Captured Shredder VOM Emission Factor ^e	ibs of VOM ton of gross shredder feed	0.5119	Worst case value with \$1% ELFs from November 18, 2019 testing by Method 25A (as propane). (Assume VOM = THC)					
Maximum Gross Shredder Feed Rate	tons/month	100,000	Permitted maximum shredder feed rates requested in shredder RT					
Maximum Annual Shredder Throughput	tons/year	1,000,000	construction permit.					
RTO VOM Control Eff.	%	98.0%	RTO manufacturer's guarantee. The November 2019 testing demonstrated a VOM control efficiency of 99%. Using 98% to calculate permit limits results in incorporating a safety factor of 2.0					
VOM emission safety factor		1.00	Safety factor used to establish permitted shredder VOM emission limit.					
	tons/month	0.51	Maximum VOM emission rates requested in construction permit					
Shredder VOM Emissions *	tons/year	5.12	application.					

Parameter	Units	Units	Comment
CO Emissions (from combustion of natura	I gas and VOM)		
CO emission factor measured at scrubber stack	lb/ton	0.0129	CO Emission Factor measured from November 14, 2019 emission testing
CO emissions safety factor		2.00	Safety factor applied to establish permitted shredder CO emission limits.
Total Shredder CO Emissions	tons/month	1.29	Maximum CO emission rates requested in construction permit
lotal suleddel CO Eurzziouz	tons/year	12.86	application.

a. VOM emissions measured by USEPA Method 25A minus methane, ethane, and compounds exempt from the federal definition of VOC and reported as propane.

Table 3-18 Summary of Controlled Shredder Filterable Particulate Emissions
General III, LLC - Chicago, Illinois

Parameter	Units	Values	Comment
Captured PM/PM ₁₀ Emissions Controlled	by Cyclone and Roll Media	Filter and Emi	itted Through the RTO/Scrubber Stack
Demonstrated Filterable PM Emission Factor ^a	lbs of filterable PM ton of gross shredder feed	0.0047	Measured value from November 18, 2019 emission testing.
Maximum Annual	tons/month	100,000	Permitted maximum shredder feed rates requested in shredde
Shredder Throughput ^b	tons/year	1,000,000	RTO construction permit.
Filterable PM Emissions Safety Factor		4.00	Safety factor used to establish permitted shredder PM emissio rates.
Controlled Shredder Filterable PM	tons/month	0.94	Permitted filterable PM/PM ₁₀ emission rates requested in
Emission Rates	tons/year	9.40	shredder RTO/Scrubber construction permit.
Controlled Shredder Filterable PM ₁₀	tons/month	0.94	Assumes that all PM is PM10. Estimates assume no PM/PM10 emission reductions in
Emission Rates	tons/year	9.40	RTO/Scrubber.

a. Filterable PM emission rate measured by USEPA Methods 1 through 4 and Method 29.

b. Maximum annual shredder throughput requested in shredder RTO construction permit application based on recent operating data

b. Maximum annual shredder throughput requested in shredder RTO construction permit application based on recent operating data

Table 3-1C Summary of November 2019 Shredder RTO/Scrubber HAP Emissions

General III, LLC - Chicago, Illinois

		Permitted Shredo	der Thruput Rates		
		100,000 ton/mo	1,000,000 tpy		
	Emission Factor Nov 2019 RTO/ Scrubber Emis Testin	Maximum Hourly g Emissions	Maximum Annual Emissions		
Pollutant	lb/ton	ton/month	tpy		
Metal HAPs ¹			0.775.00		
Lead	1.38E-06 ¹	2.77E-04	2.77E-03		
Manganese	1.99E-06 ¹	3.98E-04	3.98E-03		
Mercury	≤ 4.46E-05 ¹	≤ 8.93E-03	≤ 8.93E-02		
Nickel	3.30E-06 ¹	6.59E-04	6.59E-03		
Antimony	≤ 1.12E-06 ¹	≤ 2.25E-04	≤ 2.25E-03		
Arsenic	≤ 3.97E-07 ¹	≤ 7.94E-05	≤ 7.94E-04		
Beryllium	≤ 8.90E-08 ¹	≤ 1.78E-05	≤ 1.78E-04		
Cadmium	≤ 4.26E-07 ¹	≤ 8.51E-05	≤ 8.51E-04		
Chromium 3	≤ 3.45E-06 ¹	<u>≤</u> 6.90E-04	≤ 6.90E-03		
Cobalt	≤ 1.06E-07 ¹	≤ 2.13E-05	≤ 2.13E-04		
Phosphorus	<u>≤</u> 1.21E-04 ¹	≤ 2.43E-02	≤ 2.43E-01		
Selenium	≤ 6.05E-06 ¹	≤ 1.21E-03	≤ 1.21E-02		
Volatile HAPs ²	. <u>-</u>		_		
Ethylbenzene	6.67E-05 ²	1.33E-04	1.33E-03		
Styrene	1.33E-05 ²	2.66E-05	2.66E-04		
Toluene	3.33E-04 ²	6.66E-04	6.66E-03		
Tetrachloroethane (PCE)	2.67E-06 ²	5.34E-06	5.34E-05		
m,p-Xylene	1.33E-05 ²	2.66E-05	2.66E-04		
Benzene	4.00E-04 ²	8.00E-04	8.00E-03		
1,1,1-Trichloroethane	2.00E-04 ²	4.00E-04	4.00E-03		
Methylene Chloride	6.00E-05 ²	1.20E-04	1.20E-03		
Trichloroethene (TCE)	6.67E-05 ²	1.33E-04	1.33E-03		
o-Xylene	6.67E-05 ²	1.33E-04	1.33E-03		
Acid HAPs					
Hydrochloric Acid	7.72E-04 ¹	1.54E-01	1.54E+00		
Hydrofluoric Acid	3.18E-04 ¹	6.36E-02	6.36E-01		
Total Metal HAF	Ps	< 4.40E-02	≤ 4.40E-01		
Total Organic HA	.Ps	2.44E-03	2.44E-02		
Total Acid HAP	S	2.18E-01	2.18E+00		
Total HAPs		≤ 2.64E-01	≤ 2.64E+00		
Maximum Individual HAP	Hydrochloric Acid	1.54E-01	1.54E+00		
Trianitiani individual (IIII	,	_,_,,,,,,,,,	2.3 .0.03		

^{1.} Measured metal emission rates from hammermill shredder controlled by RTO/Scrubber from November 2019.

^{2.} Uncontrolled organic compound emission rates, as presented in ISRI Title V Applicability Workbook, Table D-11F, adjusted for RTO with 98% destruction efficiency.

^{3.} Chromium (metal) and compounds other than Chromium VI

Table 3-1D Shredder RTO Natural Gas Combustion Emissions
General III, LLC - Chicago, Illinois

	Pollutant Emission Factor *	RTO Max Firing Rate 15.0 MMBtu/hr NG HHV = 1,020-Btu/scf Annual Gas Consumption 52,500 MMBtu/y						
Pollutant	lb/MMscf	ton/month ^b	tpy					
Nitrogen Oxide (NOx)	100	0.26	2.57					
Carbon Monoxide (CO)	84	0.22	2.16					
Total Filterable PM	1.9	0.00	0.05					
Total Condensable PM	5.7	0.01	0.15					
Total Particulate Matter	7.6	0.02	0.20					
Sulfur Dioxide (SO ₂)	0.6	0.00	0.02					
Volatile Organic Compounds (VOC)	5.5	0.01	0.14					
Greenhouse Gas Emissions								
Carbon Dioxide (CO ₂)	120,174	309.27	3,092.72					
Methane (CH ₄)	2.2649	0.0058	0.06					
Nitrous Oxide (N ₂ O)	0.2265	0.0006	0.01					
Carbon Dioxide Equivalents (CO ₂ e) ^c		309.59	3,095.91					

a. AP-42 Emission factors from Tables 1.4-1 and 1.4-2.

b. Monthly emissions are assumed to be 10% of annual emissions.

c. Global Warming Potentials (GWPs) for CO₂, CH₄ and N₂O are 1, 25, and 298 respectively (40 CFR 98 Subpart A).

Table 3-1D Shredder RTO Natural Gas Combustion Emissions General III, LLC - Chicago, Illinois

Summary of HAP Emissions from Natural Gas Combustion

НАР ^Ь		Emission Factor ^a		
Y/N	Pollutant	(lb/10° scf)	ton/month*	tpy
	Metal HAPs ^c			
Υ	Lead	0.0005	1.29E-06	1.29E-05
Υ	Manganese	3.80E-04	9.78E-07	9.78E-06
Υ	Mercury	2.60E-04	6.69E-07	6.69E-06
Υ	Nickel	2.10E-03	5.40E-06	5.40E-05
Υ	Arsenic	2.00E-04	5.15E-07	5.15E-06
Υ	Beryllium	< 1.20E-05	3.09E-08	3.09E-07
Υ	Cadmium	1.10E-03	2.83E-06	2.83E-05
Υ	Chromium	1.40E-03	3.60E-06	3.60E-05
Υ	Cobalt	8.40E-05	2.16E-07	2.16E-06
Υ	Selenium	< 2.40E-05	6.18E-08	6.18E-07
	Volatile HAPs ^d			
Υ	Toluene	3.40E-03	8.75E-06	8.75E-05
Υ	Hexane	< 1.80E+00	< 4.63E-03	< 4.63E-02
Υ	Anthracene	< 2.40E-06	< 6.18E-09	< 6.18E-08
Υ	Pyrene	5.00E-06	1.29E-08	1.29E-07
Y	Benzo(g,h,i)perylene	< 1.20E-06	< 3.09E-09	< 3.09E-08
Υ	Indeno(1,2,3-cd)pyrene	< 1.80E-06	< 4.63E-09	< 4.63E-08
Υ	Acenaphthylene	< 1.80E-06	< 4.63E-09	< 4.63E-08
Υ	Benzo(b)fluoranthene	< 1.80E-06	< 4.63E-09	< 4.63E-08
Υ	Fluoranthene	3.00E-06	7.72E-09	7.72E-08
Υ	Benzo(k)fluoranthene	< 1.80E-06	< 4.63E-09	< 4.63E-08
Υ	Chrysene	< 1.80E-06	< 4.63E-09	< 4.63E-08
Υ	Dichlorobenzene	1.20E-03	3.09E-06	3.09E-05
Υ	Formaldehyde	7.50E-02	1.93E-04	1.93E-03
Υ	Benzo(a)pyrene	< 1.20E-06	< 3.09E-09	< 3.09E-08
Υ	Dibenzo(a,h)anthracene	< 1.20E-06	< 3.09E-09	< 3.09E-08
Υ	3-Methylcholanthrene	< 1.80E-06	< 4.63E-09	< 4.63E-08
Υ	Benz(a)anthracene	< 1.80E-06	< 4.63E-09	< 4.63E-08
Υ	7,12-Dimethylbenz(a)anthracene	< 1.60E-05	< 4.12E-08	< 4.12E-07
Υ	Benzene	< 2.10E-03	< 5.40E-06	< 5.40E-05
Υ	Acenaphthene	< 1.80E-06	< 4.63E-09	< 4.63E-08
Υ	Phenanathrene	1.70E-05	4.38E-08	4.38E-07
Υ	Fluorene	2.80E-06	7.21E-09	7.21E-08
Υ	Naphthalene	6.10E-04	1.57E-06	1.57E-05
Υ	2-Methylnaphthalene	2.40E-05	6.18E-08	6.18E-07
	Total HAPs		4.86E-03	4.86E-02
	Maximum Individual HAP	Hexane	4.63E-03	4.63E-02

a. Criteria pollutant emission factors for natural gas combustion - AP-42 Tables 1.4-1 and 1.4-2.

b. Hazardous Air Pollutant (HAP) as defined by Section 112(b) of the Clean Air Act.

c. Metal HAP emission factors from natural gas combustion - AP-42 Emission factors from Tables 1.4-4.

d. Organic HAP emission factors from natural gas combustion - AP-42 Emission factors from Tables 1.4-3.

e. Monthly emissions are assumed to be 10% of annual emissions.

Table 3-1E Summary of Controlled Shredder Emissions General Iron Industries, Inc. - Chicago, Illinois

	Shredder RT0 Stack Em	•	Shreddo Natural Gas (Emissio	Combustion	Total Shredder RTO/Scrubber Stack Emissions				
Pollutant	ton/mo	ton/yr	ton/mo	ton/yr	ton/mo	ton/yr			
NOx	-	-	0.26	2.57	0.26	2.57			
CO°	1.29	12.86	0.22	2.16	1.50	15.02			
PM ^a	0.94	9.40	0.02	0.20	0.96	9.60			
PM10 ^a	0.94	9.40	0.02	0.20	0.96	9.60			
SO2	-	-	0.00	0.02	0.00	0.02			
VOM ^{a,b}	0.51	5.12	0.01	0.14	0.53	5.26			
Total HAPs	0.26	2.64	0.00	0.05	0.27	2.69			
Max Single HAP (HCl)	0.15	1.54			0.15	1.54			
GHG (CO₂e)	309.6	3,095.9	309.6	3,095.9	619.2	6,191.8			

a. VOM and PM/PM $_{10}$ emission rates in the above table are based on a maximum monthly feed rate of 100,000 tons/month and a maximum annual feed rate of 1,000,000 tons/year.

d. Natural gas emissions are based on a maximum RTO firing rate of

15.00

MMBtu/hr.

e. CO emissions are based on a measured November 2019 emission factor and an applied safety factor.

b. VOM emissions are based on Method 25A testing performed in November 2019.

c. See Table 1A for VOM emission estimates, Table 1B for PM/PM10 emission estimates, Table 1C for HAP emission estimates, and Table 1D for RTO natural gas combustion emission estimates.

Max Monthly Thruput 100,000 tpm Annual Throughput 1,000,000 tpy

A		c	D	ę	F	G	н			K	M	N	0 7	R	5	1	V	₩	X		AA .
Row	Equipmen	t Generating Emissions	Material Conveyed	Moisture >	Transfer Point Location (Inside /	Transfer Point Controlled (Y/N)	Type of Transfer Point Control	Dust Pickup Capture Eff.	Dust Control Eff. (%)	Emission Factor Source				PM Emissions		E	PM10 missions		E	PM2.5 missions	
	ID#	Description		Y/N	Outside)	"""	Conicon	(%)			tpm	tpy	lb/ton	ton/mo	tpy	lb/ton	ton/mo	tpy	lb/ton	ton/mo	tру
1	Barge 1	Ferrous Transfer	Shred	A 15	Qutside	N		NA		A	73,400	734,000	0.00014 #	0.0051	0.0514	0.000046 4	0.0017	0.0169	0.000013 #	0.0005	0.0048
		Conveyor								1	·	,									1
2	Barge 2	Ferrous Transfer Conveyor	Shred	γ »2 ·	Outside	N		NA		A	73,400	734,000	0.00014 4	0.0051	0.0514	0.000046 4	0.0017	0.0169	0.000013 d	0.0005	0.0048
3	Barge 3	Ferrous Transfer Conveyor	Shred	5.4% *2	Outside	N				Drop	73,400	734,000	0.00127 °	0.0465	0.4645	0.00060 *	0.0220	0.2197	0.00009 *	0.0033	0.0333
4	C-001	Shredded Material Transfer Conveyor	Shred	Y	Outside	N		NA		A	100,000	1,000,000	0.00014 *	0.0070	0.0700	0.000046 *	0.0023	0.0230	0.000013 #	0.0007	0.0065
5	C-002	Shredded Material Transfer Conveyor	Shred	Y	Outside	N		NA		^	200.0	2,000	0.00014 =	0.0000	0.0001	0.000046 *	0.0000	0.0000	0.000013 #	0.0000	0.0000
6	C-002	Mat'l Not Removed by Poker Picker	Shred	Y	Outside	N		NA.		^	99,800	998,000	0.00014 4	0.0070	0.0699	0.000046 °	0.0023	0.0230	0.000013 4	0.0006	0.0065
7	C-003	Ferrous Transfer Conveyor	Residue	Y	Outside	N		NA		^	26,000	260,000	0.00014 4	0.0018	0.0182	0.000046 0	0.0006	0.0060	0.000013 4	0.0002	0.0017
8	C-003	Ferrous Transfer Conveyor	Ferrous	Y	Outside	N		NA		A	73,800	738,000	0.00014 4	0.0052	0.0517	0.000046 °	0.0017	0.0170	0.000013 4	0.0005	0.0048
9	C-006	Ferrous Transfer Conveyor	Shred	Y	Outside	Y	Z-Box Air Loop	100%	100%	^	36,600	366,000	0.00014 d	0.0026	0.0000	0.000046 °	0.0008	0.0000	0.000013	0.0002	0.0000
10	C-007	Ferrous Transfer Conveyor	Shred	Y	Outside	Y	Z-Box Air Loop	100%	100%	^	36,600	366,000	0.00014 4	0.0026	0.0000	0.000046 °	0.0008	0.0000	0.000013	0.0002	0.0000
11	C-008	Ferrous Transfer Conveyor	Shred	A "5	Outside	N		NA		^	11,200	112,000	0.00014 4	0.0008	0.0078	0.000046 °	0.0003	0.0026	0.000013 4	0.0001	0.0007
12	C-009	Ferrous Transfer Conveyor	Shred	Y *2	Outside	N		NA		^	25,600	256,000	0.00014 4	0.0018	0.0179	0.000046 °	0.0006	0.0059	0.000013 4	0.0002	0.0017
13	C-010	Ferrous Transfer Conveyor	Shred	¥ 42	Outside	N		NA		A .	25,600	256,000	0.00014 ^d	0.0018	0.0179	0.000046 °	0.0006	0.0059	0.000013 ^d	0.0002	0.0017
14	C-011	Ferrous Transfer Conveyor	Shred	A +5	Outside	N		NA		^	11,000	110,000	0.00014 4	8000.0	0.0077	0.000046 °	0.0003	0.0025	0.000013 d	0.0001	0.0007
15	C-012	Ferrous Transfer Conveyor	Shred	y =2	Outside	N		NA		A .	25,600	112,000	0.00014 4		0.0078	0.000046 °	0.0003	0.0026	0.000013 d	0.0001	0.0007
16	C-013	Ferrous Transfer Conveyor	Shred	A 25	Outside	N		NA		^		256,000	0.00014 4	0.0018	0.0179		0.0006	0.0059			0.0017
17	C-014	Ferrous Transfer Conveyor Ferrous Transfer	Shred	γ •2	Outside	N		NA NA		A	25,600	256,000	0.00014 ^d	0.0018	0.0179	0.000046 °	0.0003	0.0059	0.000013 4	0.0002	0.0007
19	C-016	Conveyor Ferrous Transfer	Shred	γ +2	Outside	" N		NA .		A	73,400	734,000	0.00014 d	0.0051	0.0514	0.000046 9	0.0017	0.0169	0.000013 4	0.0002	0.0048
20	C-020	Conveyor Ferrous Transfer	Shred	Α11	Outside	,,		NA NA			73,400	734,000	0.00014 4	0.0051	0.0514	0.000046 °	0.0017	0.0169	0.000013 4	0.0005	0.0048
21	C-020	Conveyor Ferrous Transfer	Shred	A 43	Outside	N		NA NA		^	11,000	110,000	0.00014	0.0001	0.0077	0.000046	0.0003	0.0025	0.000013 4	0.0001	0.0007
22	C-022	Conveyor Ferrous Transfer	Shred	7.1	Outside	N N		NA NA			11,000	110,000	0.00014 4	0.0008	0.0077	0.000046 °	0.0003	0.0025	0.000013 d	0.0001	0.0007
23	C-023	Conveyor Non-metallic transfer	Ferrous	Y	Outside	N N		NA NA		Â	800	8,000	0.00014 4	0.0001	0.0006	0.000046 °	0.0000	0.0023	0.000013 d	0.0000	0.0001
24	C-025	conveyor Non-metallic not	Ferrous	, ,	Outside	N		NA NA		A	400	4,000	0.00014 4	0.0000	0.0003	0.000046 *	0.0000	0.0001	0.000013	0.0000	0.0000
25	C-025	removed by magnet E- material removed by	Ferrous	y +2	Outside	N N		NA NA			200	2,000	0.00014 4	0.0000	0.0001	0.000046 °	0.0000	0.0000	0.000013 d	0.0000	0.0000
	Ç-049	first magnet to second	, (1100)		CHANGE			1975			200	2,000	0.00024	0.000		2.0000	0.0000	0.000	5.000025	2.000	2

Table 3-2 - Ferrous Material Processing - Particulate Emissions General III, LLC - Chicago, Illinois

Max Monthly Thruput 100,000 tpm **Annual Throughput** 1,000,000 tpy

			D	E	F	6	- 11		1	K	м	N_	0 P	Ř	\$	ī	٧	w	x	2	
Row	Equipment	t Generating Emissions	Material Conveyed	Moisture >	Transfer Point Location (Inside /	Transfer Point Controlled (Y/N)	Type of Transfer Point Control	Dust Pickup Capture Eff.	Dust Control Eff. (%)	Emission Factor Source				PM Emissions		E	PM10 missions		E:	PM2.5 missions	-
	ID#	Description	_	Y/N	Outside)	,,,		(%)			tpm	tpy	lb/ton	ton/mo	tpy	lb/ton	ton/mo	tpy	lb/ton	ton/mo	tpy
26	C-026	Ferrous Transfer Conveyor	Ferrous	Å =3.						^	200	2,000	0.00014 4	0.0000	0.0001	0.000046 °	0.0000	0.0000	0.000013 4	0.0000	0.0000
27	C-027	Ferrous Transfer Conveyor	Ferrous	γ »2	Outside	N		NA.		A	200	2,000	0.00014 d	0.0000	0.0001	0.000046 0	0.0000	0.0000	0.000013 4	0.0000	0.0000
28	C-028	Non-metallic Transfer Conveyor	Ferrous	¥.	Outside	N		NA NA		٨	200	2,000	0.00014	0.0000	0.0001	0.000046 0	0.0000	0.0000	0.000013	0.0000	0.0000
29	C-029	Non-metallic Transfer Conveyor	Ferrous	Y						A	200	2,000	0.00014 4	0.0000	0.0001	0.000046	0.0000	0.0000	0.000013	0.0000	0.0000
30	C-031	ASR Transfer Conveyor	Residue	Y	Outside	N		NA		A	800	8,000	0.00014 4	0.0001	0.0006	0.000046	0.0000	0.0002	0.000013 4	0.0000	0.0001
31	C-032	ASR Transfer Conveyor	Residue	Y	Outside	N		NA		^ A	800	8,000	0.00014 #	0.0001	0.0006	0.000046	0.0000	0.0002	0.000013 4	0.0000	0.0001
32	C-033	Magnetic Material	Shred	Y	Outside	N		NA		^	1,000	10,000	0.00014 d	0.0001	0.0007	0.000046	0.0000	0.0002	0.000013	0.0000	0.0001
33	C-033	ASR Not Removed by Magnet E-12	Residue	Y	Outside	N		NA		^	25,800	258,000	0.00014 4	0.0018	0.0181	0.000046	0.0006	0.0059	125	0.0002	0.0001
34	C-034	Ferrous Transfer Conveyor	Shred	Y	Outside	N		NA		^_	1,000	10,000	0.00014 d	0.0001	0.0007	0.000046	0.0000	0.0002	0.000013 *	0.0000	0.0001
35	C-035	Ferrous Transfer Conveyor	Shred	Y	Outside	N		NA		^	1,000	10,000	0.00014 4	0.0001	0.0007	0.000046	0.0000	0.0002	0.000013	0.0002	0.0017
36	C-036	ASR Transfer Conveyor	Residue	Y	Outside	N		NA.		^	25,800	258,000	0.00014	0.0018	0.0181	0.000046	0.0006	0.0230	0.000013 4	0.0007	0.0065
37	E-01	Drop Raw Scrap onto Shredder Feed Chute	Unprepared	y at	Outside	N _		NA		^_	100,000	1,000,000	0.00014 4	0.0070	0.0700	0.000046	0.0023	0.0001	0.000013	0.0000	0.0000
38	E-015	Z-Box Separator Cyclone	Ferrous	Y	Outside	N		NA	_	^	400	4,000	0.00014	0.0000	0.0003	0.000046	0.0000	0.0001	0.000013	0.0000	0.0000
39	E-016	Z-Box Separator Cyclone	Ferrous	Y	Outside	N		NA.		^	400	4,000	0,00014	0.0000	0.0003	0.000046	0.0003	0.0230	0.000013	0.0007	0.0065
40	E-05	Shredder Under Mill Vibratory Conveyor	Shred	Y	Inside	N		NA.		^	100,000	1,000,000	0.00014	0.0070	0.0760	0.000046	0.0023	0.0086	0.000013	0.0002	0.0024
41	E-07	Magnet Discharge to Chute	Shred	Y	Outside	N		NA.		^	37,400	374,000	0.00014 4	0.0026	0.0262	0.000046 9	0.0009	0.0086	0.000013	0.0002	0.0024
42	E-07	Magnet Discharge to Chute	Shred	Y	Outside	N		NA	<u> </u>	^	37,400	374,000	0.00014	0.0000	0.0003	0.000046	0.0000	0.0001	0.000013	0.0000	0.0000
43	E-08	ASR Not Removed by Magnet	Shred	Y	Outside	N		NA .		^	400	4,000	0.00014 ^d	0.0006	0.0259	0.000046 *	0.0009	0.0085	0.000013 d	0.0002	0.0024
44	E-08	Ferrous Removed by Magnet E-7	Residue	Y	Outside	N		NA.		^	37,000	370,000	0.00014 *	0.0028	0.0239	0.000046 *	0.0006	0.0059	0.000013 *	0.0002	0.0017
45	£-10	Ferrous Removed by Magnet	Shred	Α ν3	Outside	N		NA	1	^	25,600	256,000	0.00014	0.0018	0.0179	0.000046 *	0.0006	0.0059	0.000013 4	0.0002	0.0017
46	E-11	Ferrous Removed by Magnet	Shred	Α •,		N		NA .		^	25,600	256,000	0.00014	0.0018	0.0077	0.000046 *	0.0003	0.0025	0.000013 4	0.0001	0.0007
47	E-11	Ferrous Removed by Magnet	Shred	¥ 42	_	N		NA	1	A .	11,000	110,000	0.00014	0.0008	0.0077	0.000046	0.0003	0.0025	0.000013	0.0001	0.0007
48	E-11	Ferrous Removed by Magnet	Shred	Α *,		N		NA.		^	1,000	10,000	0.00014	0.0001	0.0007	0,000046	0.0000	0.0002	0.000013 *	0.0000	0.0001
49	E-12	Ferrous Removed by Magnet	Ferrous	Y	Outside	N	<u> </u>	NA			200	2,000	0.00014	0.0000	0.0001	0.000046 *	0.0000	0.0000	0.000013 *	0.0000	0.0000
50	E-13	Ferrous Removed by E-	Ferrous	Υ •	Outside	N		NA		^	200	2,000		0.5000		0.000				L	

Max Monthly Thruput

100,000 tpm

Annual Throughput

Table 3-2 - Ferrous Material Processing - Particulate Emissions General III, LLC - Chicago, Illinois

Α	- 1				,	G	н		- 1		M	М		R	5		v	w	×	Z	- 44
Row	Equipmer	nt Generating Emissions	Material Conveyed	Moisture >	Transfer Point Location {Inside /	Transfer Point Controlled (Y/N)	Type of Transfer Point Control	Dust Pickup Capture Eff.	Dust Control Eff. (%)	Emission Factor Source				PM Emissions		ı	PM10 Emissions			PM2.5 imissions	
#	ID#	Description		Y/N	Outside)	(17.0)	Colloca	(%)			tpm	tpy	lb/ton	ton/mo	tpy	lb/ton	ton/mo	tpy	lb/ton	ton/mo	tpy
51	€-13	Ferrous Removed by E- 13	Ferrous	Y	Outside	N		NA	X	^	200	2,000	0.00014 4	0.0000	0.0001	0.000046	0.0000	0.0000	0.000013 d	0.0000	0.0000
52	E-14	Mat'l Not removed by Separator	Ferrous	Y	Outside	N		NA	Ì	A	50.00	500	0.00014 ^d	0.0000	0.0000	0.000046 0	0.0000	0.0000	0.000013 d	0.0000	0.0000
53	€-7	ASR Not Removed by Magnet	Shred	An	Outside	N		NA	ļ.,	^	400	4,000	0.00014 4	0.0000	0.0003	0.000046 0	0.0000	0.0001	0.000013 4	0.0000	0.0000
54	E-7	Ferrous Removed by Magnet E-7	Residue	Y	Outside	N		NA		A	37,000	370,000	0.00014	0.0026	0.0259	0.000046	0.0009	0.0085	0.000013 4	0.0002	0.0024
55		Truck Dumping of Raw Feed	Unprepared	5.4 11	Outside	N				Orop	100,000	1,000,000	0.00127 *	0.0633	0.6328	0.00060 1	0.0299	0.2993	0.00009 4	0.0045	0.0453
56	704-3	Raw Feed from Ground after Truck Dumping	Unprepared	5.4 42	Outside	N				Drop	100,000	1,000,000	0.00127 *	0.0633	0.6328	0.00060 +	0.0299	0.2993	0.00009 1	0.0045	0.0453
57		Non-metallic Loadout	Non-metallic	N	Outside	N	12.			9	37,400	374,000	0.000204 '	0.0038	0.0382	0.000100 '	0.0019	0.0187	0.000015 1	0.0003	0.0028
58		Poker Loadout	Pokers	N	Outside	N				0	200	2,000	0.000204	0.0000	0.0002	0.000100 '	0.0000	0.0001	0.000015 1	0.0000	0.0000
59	Magnet/ Clam	Drop Raw Scrap to Infeed Conveyor	Unprepared	N at	Outside	N		NA		0	100,000	1,000,000	0.000204 1	0.0102	0.1022	0.000100 '	0.0050	0.0500	0.000015 1	0.0008	0.0076
60	C-030	Mat'l not Removed by Separator	Ferrous	1.5% **	Outside	Y	Cover	0%		Drop	450.00	4,500	0.00761 *	0.0017	0.0171	0.00360 '	0.0008	0.0081	0.00054 4	0.0001	0.0012
61	C-037	ASR Transfer Conveyor to Stockpile	Residue	10.0% **	Outside	N		0%	ongo Syriya Id	Drop	25,800	258,000	0.00053 4	0.0069	0.0689	0.00025 *	0.0033	0.0326	0.00004 *	0.0005	0.0049
62	E-06	Poker Picker Chute to Stockpile	Shred	1.5% 43	Outside	N		0%		Orop	200	2,000	0.00761 °	0.0008	0.0076	0.00360 °	0.0004	0.0036	0.00054 *	0.0001	0.0005
63	E-14	Final Discharge from Mat'l Separator	Ferrous	1.5% *1	Outside	N		0%		Orop	150.00	1,500	0.00761 °	0.0006	0.0057	0.00360 °	0.0003	0.0027	0.00054 <	0.0000	0,0004
64	SC-001	Supplemental Conveyor	Shred	Y	Outside	N		NA	1	A	36,600	366,000	0.00014 *	0.0026	0.0256	0.000046 4	0.0008	0.0084	0.000013 #	0.0002	0.0024
65	SC-009	Supplemental Conveyor	Ferrous	Y	Outside	N		NA		A	400	4,000	0.00014 *	0.0000	0.0003	0.000046 4	0.0000	0.0001	0.000013 #	0.0000	0.0000
66	SC-002	Supplemental Conveyor	Shred	Y	Outside	N		NA		A	36,600	366,000	0.00014 #	0.0026	0.0256	0.000046 *	8000.0	0.0084	0.000013 4	0.0002	0.0024
67	SC-010	Supplemental Conveyor	Ferrous	Y	Outside	N		NA		^	400	4,000	0.00014 *	0.0000	0.0003	0.000046	0.0000	0.0001	0.000013 4	0.0000	0.0000
68	SC-005	Supplemental Conveyor	Shred	Y	Outside	N		NA		^	25,600	256,000	0.00014	0.0018	0.0179	0.000046	0.0006	0.0059	0.000013 4	0.0002	0.0017
69	SC-008	Supplemental Conveyor	Shred	Y	Outside	N		NA		^	25,600	256,000	0.00014 *	0.0018	0.0179	0.000046 4	0.0006	0.0059	0.000013 4	0.0002	0.0017
70	C-004	Ferrous Transfer Conveyor	Shred	Y	Outside	N		NA	- 10	A	37,000	370,000		E	missions cap	tured by Inwar		1000	lox separator		
71	C-014	Ferrous Transfer Conveyor	Shred	Aus	Outside	N	FE	NA		A	73,400	734,000				Alternate t 0% of material	throughpu	t assigned t		6.	
72	C-005	Ferrous Transfer Conveyor	Shred	A	Outside	N	To be to	NA	1 00000	A	37,000	370,000									
73	C-012	Ferrous Transfer Conveyor	Shred	y 42	Outside	N		NA		A	73,400	734,000	Alternate to C-012 to C-015. Emissions from 100% of material throughput assigned to C-012 to C-016.						Ma.		
74	C-015	Ferrous Transfer Conveyor	Shred	Α +1	Outside	N	4 5 3	NA		^	73,400	734,000	Emissions from 100% of material throughput assigned to C-015 to C-016.								
75	C-019	Ferrous Transfer Conveyor	Shred	Ass	Outside	N	3750	NA		A	73,400	734,000	Alternate to C-016 top C-017. Emissions from 100% of material throughout assigned to C-016 to C-017.					Manage Co			

Table 3-2 - Ferrous Material Processing - Particulate Emissions General III, LLC - Chicago, Illinois

Max Monthly Thruput 100,000 tpm Annual Throughput 1,000,000 tpy

Row	Equipme	ent Generating Emissions	Material Conveyed	Moisture >	Transfer Point Location (Inside /	Transfer Point Controlled (Y/N)	Type of Transfer Point Control	Dust Pickup Capture Eff.	Dust Control Eff. (%)	Emission Factor Source				PM Emissions						PM2.5 Emissions	
· R	ID#	Description		Y/N	Outside)	(1714)	Control	(%)			tpm	tpy	lb/ton	ton/mo	фу	#b/ton	ton/mo	tpy	lb/ton	ton/mo	tpy
76	C-013	Ferrous Transfer Conveyor	Shred	A +5	Outside	N		NA	H 85	A	73,400	734;000		Emis	sions from 10				to C-013 to C-1	16.	
77	C-017	Ferrous Transfer Conveyor	Shred	Za Y	Outside	N		NA		A	73,400	734,000			Al	ternate to C-020,	/C-021 or	C-017/C-01	8.		788 8
78	C-020	Ferrous Transfer Conveyor	Shred	A 45	Outside	N		NA	1 3 3 3	A	73,400	734,000			5 9/10	Alternate to	C-017 to	C-018.			
79	E-02	Shredder Bottom Distharge	Shred	Y	shredder e	missions capti by	red by shree RTO/Scrubb		nd controlled	A	100,000	1,000,000	1	Emissions Emissions Emissions Emissions Emissions Emissions Emissions Emissions Emissions Emissions Emissions Emissions Alternate to C-013 to C-016. Emissions from 100% of material throughput assigned to C-013 to C-016. Alternate to C-021 to C-017/C-018. Emissions from 100% of material throughput assigned to C-017 to Barge 1. Alternate to C-017 to C-018. Emissions from 100% of material throughput assigned to C-017 to C-018. Emissions from 100% of material throughput assigned to C-017 to C-018. Emissions captured and controlled by shredder emission control system Alternate to C-018 to N Ferrous Stockpile or Barge 2 to Barge. Emissions captured and controlled by shredder emission control system Alternate to C-021 to S Ferrous Stockpile or Barge 2 to Barge. Emissions from 100% of material throughput assigned to Barge 2 to Barge. Emissions from 100% of material throughput assigned to Barge 2 to Barge. Emissions from 100% of material throughput assigned to Barge 2 to Barge.							
80	C-21	Ferrous Transfer Conveyor	Shred	5.4% 42	Outside	N	TOP STATE	NA	189	Drop	73,400	734,000								rge.	
81	E-02	Shredder Chute	Unprepared	Y	shredder e	missions capti	red by shree RTO/Scrubb		nd controlled	A	100,000	1,000,000								Emissions Ib/ton ton/mo 013 to C-016. 217 to Barge 1. 017 to C-018. sontrol system o Barge. rge 2 to Barge. rge 2 to Barge. rge 2 to Barge. rge 2 to Barge. rge 2 to Barge. rge 2 to Barge. rge 2 to Barge. rge 2 to Barge.	R PA
82	C-018	Ferrous Transfer Conveyor	Shred	5.4% *2	Outside	N		NA	SIE	Drop	73,400	734,000								rye.	
							4		Totals For Material Hand	rrous Plant ing PM Emissi	one	8		0.30	2.93		0.13	1.25		Emissions o/ton ton/mo 3 to C-016. 7 to Barge 1. 7 to C-018. trol system large. 2 to Barge. trol system large. 12 to Barge. 12 to Barge. 12 to Barge. 13 to Barge. 14 to Barge. 15 to Barge. 16 to Barge. 17 to C-018 to Barge. 18 to Barge. 19 to Barge. 19 to Barge. 19 to Barge.	0.23
								Ma	Totale Fed teriol Handling I		deslova		0.49%	0.0000	0.0143	Ratio of H					est of

- a1 Controlled particulate matter emission factors from AP-42, Table 11.19.2-2 for conveying used based on conservative assumption that moisture content is greater than 1.5% due to water added in the shredden
- a2 Material moisture was assumed to be the mean of material moisture contents identified in AP42, Table 13.2.4-1-
- a3 Northern Metals (Minneapolis, MN) found moisture content of ASR in the range of 20 to 10% from MPCA Construction Permit Technical Support Document for Northern Metals in Secker MN, Stream COMG-2. Calculations for the ASR stacking conveyor drop point conservatively assumes 10% moisture
- 44 Moisture content of raw materials is assumed to be >1.5% based on application of water from water atomization cannoes used for fugitive dust control.
- b Uncontrolled emission factor calculated according to material drop equation in AP-42, Section 13.2.4.3. Emissions calculated with control Eff. factor included for source being inside of a building.
- Uncontrolled emission factor calculated according to material drop equation in AP-42, Section 13.2.4.3.
- d Uncontrolled particulate matter emission factors from AP-42, Table 11.19.2-2 for conveying, If moisture content is greater than 1.5% by weight, controlled emission factors are used.
- e Uncontrolled particulate matter emission factors from AP-42, Table 11:19:2-2 for screening. If moisture content is greater than 1.5% by weight, controlled emission factors are used.
- f Uncontrolled particulate matter emission factors from AP-42, Table 11-19.2-2 for truck loading of curshed stone. Use uncontrolled emisson factor to be conservative.
- g Particulate matter emission factors from AP-42, Table 11.19.2-2 for conveying. For sources controlled by a dust willector the emission factor is multiplied by the identified capture Eff. and then by the quantity of 1-control Eff... Dust collectors vent back into to the building. These emission
- h Modeled total metal HAPs emission rate expressed as as percent of estimated PM from Ferrous material handling.

Table 3-2 - Ferrous Material Processing - Particulate Emissions General III, LLC - Chicago, Illinois

Max Monthly Thruput 100,000 tpm **Annual Throughput** 1,000,000 tpy

A		D			6	**	11	1	K	м		,	<u>P</u> R			v	w			
Row	Equipment Generating Emis	ons Material	Moisture :	Location (Inside /	Transfer Point Controlled (Y/N)	Type of Transfer Point Control	Eff.	Dust Control Eff. (%)	Emission Factor Source				PM Emissions			PM10 Emissions			PM2.S Emissions	
	tD# Description		Y/N	Outside)	''''		(%)			tpm	тру	lb/ton	ton/mo	tpy	lb/ton	ton/mo	tpy	lb/ton	ton/mo	tpy

Material Drop PM Equations (AP-42, Section 13.2.4.3)

E = emission factor (lb/ton of material dropped)

 $E = k (0.0032) \times (U/5)^{1.3}$ $(M/2)^{1.4}$ k = particle size multiplier (dimensionless)

U = mean wind speed

https://www.timeanddate.com/weather/usa/chicago/climate

M = material moisture content (%)

U = 9.0 mph - annual average wind speed for Chicago (Midway Airport)

PM - AP-42, Section 13.2.4, for particle size < 30 um k = 0.74

PM - AP-42, Section 13.2.4, for particle size < 10 um 0.35 PM - AP-42, Section 13.2.4, for particle size < 2.5 um 0.053

Moisture content for use of controlled emission factors for crushed sstone processing - Conveyor Transfer Points - AP-42, Table 11.19.2-2, M = 1.5

The material moisture content for stockpile drop emission calculations varies by material - see Column E above.

Summary of Ferrous Material Processing System Emission Points and Emissions by Emission Factor Type

				1	M Emissions		PN	410 Emissi	ons	PI	42.5 Emissions	
# of	Ferrous Material Processing System	Pro	cess Rate	Factor			Factor			Factor		
Pts	Emission Points	tpm	tpy	lb/ton	tpm	tργ	lb/ton	tpm	tpy	lb/ton	tpm	τрγ
59	Conveyor Transfer Points	1,444,050	14,440,500	0.00014	0.10	0.96	0.000046	0.03	0.31	0.000013	0.01	0.09
3	Truck/Barge Loadout	137,600	1,376,000	0.000204	0.01	0.14	0.0001	0.01	0.07	0.000015	0.00	0.01
7	Stockpile Drops	300,000	3,000,000	Varies	0.18	1.83	Varies	0.09	0.87	Varies	0.01	0.13
			Total Emissions		0.30	2.93	•	0.13	1.25		0.02	0.23

Table 3-3 - Non-Ferrous Material Processing - Particulate Emissions General III, LLC - Chicago, Illinois

Max Monthly Thruput 25,800 ton/mo	ECS Enc. PM Control Eff	80.00%	ECS Enc. PM Control Eff	80.00%	ECS Enc. PM Control Eff	a0.00%
Annual Throughput 258,000 tpy	DC PM Control Eff	99.90%	DC PM ₃₆ Control Eff	39.00%	DC PM _{2.9} Control Eff	98.00%

tow	Equipmen	nt Generating Emissions Description	Material Conveyed	Moisture > 1.5% Y / N	Point Location (inside / Outside)	Conveyor	Transfer Point Controlled (Y/N)	Type of Transfer Point Control	Dust Pickup Capture Eff. (%)	1	Emission Factor Source	Mate Throug Rat ton/mo	thout	lb/ton	Pf Ermiss Itb/hr		tpy	lb/ton	PM10 missions ton/mo	tpy	Ib/ton	PM2.5 missions ton/mo	tpy
1	Shaker	Description	Residue	N N	Inside	COVETEG	γ	Dust	100%	DC	В —	92.1	921	0.002200	Note f	Note f	Note f.	0.000740	Note f	Note f	0.000050	Note f	Note f
2	Shaker		Residue	N	Inside		γ	Collector	100%	Eff.	В	92.1	921	0.002200	Note f	Note f	Note f.	0.000740	Note f	Note f	0.000050	Note f	Note f
								Collector		EM.													
3	Shaker		Residue	N	Inside		γ	Dust Collector	100%	DC Eff.	8	368.6	3,686	0.002200	Note f	Note f	Note f.	0.000740	Note f	Note f	0.000050	Note f	Note f
4	Shaker		Residue	N	Inside		Y	Dust Collector	100%	DC Eff.	В	368.6	3,686	0.002200	Note f	Note f	Note f.	0.000740	Note f	Note f	0.000050	Note f	Note f
5	Shaker		Residue	N	Inside	-	Υ	Dust Collector	100%	DC Eff.	8	154.8	1,548	0.002200	Note f	Note f	Note f.	0.000740	Note f	Note f	0.000050	Note f	Note f
6	Shaker	_	Residue	N	Inside		Y	Dust Collector	100%	DC Eff,	8	154.8	1,548	0.002200	Note f	Note f	Note f.	0.000740	Note f	Note f	0.000050	Note f	Note f
7	Shaker		Residue	N	Inside		Y	Dust Collector	100%	DC Eff.	В	154.8	1,548	0.002200	Note f	Note f	Note f	0.000740	Nate f	Note f	0.000050	Note f	Note f
8	Shaker		Residue	N	Inside		Y	Dust Collector	100%	DC Eff.	В	154.8	1,548	0.002200	Note f	Note f	Note f.	0.000740	Note f	Note f	0.000050	Note f	Note f
9	E-19	Induction Sorter	Residue	N	Inside	_	Y	Dust Collector	100%	DC Eff	A	2,152.5	21,525	0.000140	Note f	Note f	Note f.	0.000046	Note f	Note f	0.000013	Note f	Note f
10	E-19	Induction Sorter	Wire Fuzz	N	Inside		Y	Dust Collector	100%	DC Eff.	A	552.9	5,529	0.000140	Note f	Note f	Note f.	0.000046	Note f	Note f	0.000013	Note f	Note f
11	E-20	Induction Sorter	Residue	2	Inside		٧	Dust Collector	100%	DC Eff	A	368.6	3,686	0.000140	Note f	Note f	Note f	0.000046	Note f	Note f	0.000013	Note f	Note f
12	E-20	Induction Sorter	Wire	2	inside		Y	Dust Collector	100%	DC Eff.	A	184.3	1,843	0,000140	Note f	Note f	Note f	0.000046	Note f	Note f	0.000013	Note f	Note f
13	E-25	Induction Sorter	Residue	N	Inside		Y	Dust Collector	100%	DC Eff.	A .	2,152.5	21,525	0.000140	Note f	Note f	Note f.	0.000046	Note f	Note f	0.000013	Note f	Note f
14	€-25	Induction Sorter	Wire Fuzz	N	inside		٧	Dust Collector	100%	DC Eff.	Α	552.9	5,529	0.000140	Note f	Note f	Note f.	0.000046	Note f	Note f	0.000013	Note f	Note f
15	Ę-26	Induction Sorter	Residue	z	Inside		Y	Dust Collector	100%	DC Eff.	A	368.6	3,686	0.000140	Note f	Note f	Note f.	0.000046	Note f	Note f	0.000013	Note f	Note f
16	E-26	Induction Sorter	Wire	N	Inside		Y	Dust Collector	100%	EFF.	A	184.3	1,843	0.000140	Note f	Note f	Note f.	0.000046	Note f	Note f	0.000013	Note f	Note f
17	E-30	Induction Sorter	Residue	N	Inside		٧	Dust Collector	100%	DC Eff.	^_	2,395.7	23,957	0.000140	Note f	Note f	Note f.	0.000046	Note f	Note f	0.000013	Note f	Note f
18	E-30	Induction Sorter	Zuric	N	Inside		٧	Dust Collector	100%	DC Eff.		239.6	2,396	0.000140	Note f	Note f	Note f.	0.000046	Note f	Note f	0.000013	Note f	Note f
19	E-31	Induction Sorter	Zuric	N	Inside		Y	Dust Collector	100%	DC Eff.	A	239.6	2,396	0.000140	Note f	Note f	Note f	0.000046	Note f	Note f	0.000013	Note f	Note f
20	£-37	Induction Sorter	Zone	N	Inside		Y	Dust Collector	100%	DC Eff	A .	552.9	5,529	0.000140	Note f	Note f	Note f.	0.000046	Note f	Note f	0.000013	Note f	Note f
21	E-37	Induction Sorter	Residue	N	Inside		Υ	Dust Collector	100%	DC Eff.	A .	1,308.4	13,084	0.000140	Note f	Note f	Note f.	0.000046	Note f	Note f	0.000013	Note f	Note f
22	E-39	Induction Sorter	Drops Zuric Recov Finder	N	Inside		Y	Dust Collector	100%	DC Eff.	_ ^	110.6	1,106	0.000140	Note f	Note f	Note f.	0.000046	Note f	Note f	0.000013	Note f	Note f
23	E-39	Induction Sorter	Zone	N	Inside		Y	Dust Collector	100%	DC Eff.	A	442.3	4,423	0.000140	Note f	Note f	Note f.	0.000046	Note f	Note f	0.000013	Note f	Note f
24	Material Separator	Transfer Conveyor	Residue	N	Inside		Y	Dust Collector	100%	DC Eff.	^	81.1	811	0.000140	Note f	Note f	Note f.	0.000046	Note f	Note f	0.000013	Note f	Note f
25	Material Separator	Transfer Conveyor	Residue	N	Inside		Y	Dust Collector	100%	DC Eff.	^	81.1	811	0.000140	Note f	Note f	Note f.	0.000046	Note f	Note f	0.000013	Note f	Note f
26	Material Separator	Drop to container	Residue	1.5%	Inside		Y	Dust Collector	100%	DC Eff.	Drop	11.1	111	0.00760	Note f	Note f	Note f.	0.00360	Note f	Note f	0.00050	Note f	Note f
27	Material Separator	Orop to container	Residue	1.5%	Inside		Y	Dust Collector	100%	DC Eff.	Drep	11.1	111	0.00760	Note f	Note f	Note f	0.00360	Note f	Note f	0.00050	Note f	Note f

Table 3-3 - Non-Ferrous Material Processing - Particulate Emissions General III, LLC - Chicago, Illinois

ECS Enc. PM Control Eff ECS Enc. PM Control Eff Max Monthly Thruput ECS Enc. PM Control Eff 80.00% 200.00% 25,800 ton/mo DC PM Control Eff DC PM_{2.5} Control Eff **Annual Throughput** DC PM₁₀ Control Eff 258,000 tpy

Row	1D #	ent Generating Emissions Description	Material Conveyed	Moisture > 1.5% Y/N	Location (Inside / Outside)	Conveyor Covered	Point Controlled (Y/N)	Transfer Point Control	Oust Pickup Capture Eff. (%)	(%)	Emission Factor Source	Throu Rai ton/mo	tes tpy	lb/ton	Emis:		tpy	lb/ton	PM10 Emissions ton/mo	tpy	lb/ton	PM2.5 Emissions ton/mo	tpy
28	Material Separator	Transfer Conveyor	Residue	N	Inside		Y	Dust Collector	100%	DC Eff.	A	346.5	3,465	0.000140	Note f	Note f	Note f.	0.000046	Note f	Note f	0.000013	Note f	Note f
29	Material Separator	Transfer Conveyor	Residue	N	Inside		Y	Dust Collector	100%	DC Eff.	A	346.5	3,465	0.000140	Note f	Note f	Note f.	0.000046	Note f	Note f	0.000013	Note f	Note f
30	Material Separator	Drop to container	Zorba	1.5% *	Inside		Y	Oust Collector	100%	DC Eff.	Drop	22.1	221	0.00760	Note f	Note f	Note f.	0.00360	Note f	Note f	0.00050	Note f	Note f
31	Material Separator	Orop to container	Zorba	1.5% *	Inside		Y	Dust Collector	100%	DC Eff.	Drop	22.1	221	0.00760	Note f	Note f	Note f.	0.00360	Note f	Note f	0.00050	Note f	Note f
32	Shaker Fines		Zorba	N	Inside		Y	Dust Collector	100%	DC Eff.	A	70.0	700	0.000140	Note f	Note f	Note f	0.000046	Note f	Note f	0.000013	Note f	Note f
33	Shaker Mids		Zorba	N	Inside		Y	Dust Collector	100%	DC Eff.	A	44.2	442	0.000140	Note f	Note f	Note f.	0,000046	Note f	Note f	0.000013	Note f	Note f
34	Shaker Mids		Zorba	N	Inside		Y	Dust	100%	DC Eff.	A	44.2	442	0.000140	Note f	Note f	Note f.	0.000046	Note f	Note f	0.000013	Note f	Note f
35	Material Separator	Drop to container	Zorba	1.5% *	Inside		Y	Qust Collector	100%	DC Eff.	Drop	7.4	74	0.00760	Note f	Note f	Note f.	0.00360	Note f	Note f	0.00050	Note f	Note f
36	Material Separator	Orop to container	Zorba	1.5% *	Inside		Y	Dust Collector	100%	DC Eff.	Drop	7.4	74	0.00760	Note f	Note f	Note f.	0.00360	Note f	Note f	0.00050	Note f	Note f
37	Material Separator	Drop to container	Zorba	1.5% *	Inside		Y	Dust Collector	100%	DC Eff.	Drop	36.9	369	0.00760	Note f	Note f	Note f.	0.00360	Note f	Note f	0.00050	Note f	Note f
38	Material Separator	Drop to container	Zorba	1.5% *	Inside		Y	Dust Collector	100%	DC Eff.	Orop	36.9	369	0.00760	Note f	Note f	Note f.	0.00360	Note f	Note f	0.00050	Note f	Note f
39	Material Separator	Drop to container	Zorba	1.5% *	Inside		Y	Dust Collector	100%	DC Eff.	Orop	18.4	184	0.00760	Note f	Note f	Note f.	0.00360	Note f	Note f	0.00050	Note f	Note f
40	Material Separator	Transfer Conveyor	Residue	N	Inside		Y	Durst Collector	100%	DC Eff.	A	151.1	1,511	0.000140	Note f	Note f	Note f.	0.000046	Note f	Note f	0.000013	Note f	Note f
41	Material Separator	Transfer Conveyor	Residue	N	Inside		γ	Dust Collector	100%	DC Eff.	A	151.1	1,511	0.000140	Note f	Note f	Note f.	0.000046	Note f	Note f	0.000013	Note f	Note f
42	Material Separator	Transfer Conveyor	Residue	N	inside		Y	Dust Collector	100%	DC Eff.	A	151.1	1,511	0.000140	Note f	Note f	Note f.	0.000046	Note f	Note f	0.000013	Note f	Note f
43	Material Separator	Transfer Conveyor	Residue	N	inside		Y	Dust Collector	100%	DC Eff.	A	151.1	1,511	0.000140	Note f	Note f	Note f.	0.000046	Note f	Note f	0.000013	Note f	Note f
44	Material Separator	Drop to container	Zorba	1.5% *	Inside		Y	Dust Collector	100%	DC Eff.	Drop	51.6	516	0.00760	Note f	Note f	Note f.	0.00360	Note f	Note f	0.00050	Note f	Note f
45	Material Separator	Transfer Conveyor	Product	N	Inside		Y	Dust Collector	100%	DC Eff.	۸	3.1	31	0.000140	Note f	Note f	Note f.	0.000046	Note f	Note f	0.000013	Note f	Note f
46	Material Separator	Transfer Conveyor	Product	N	Inside		Y	Dust	100%	DC Eff.	A	3.1	31	0.000140	Note f	Note f	Note f.	0.000046	Note f	Note f	0.000013	Note f	Note f
47	Material Separator	Transfer Conveyor	Product	N	Inside		Y	Dust Collector	100%	DC Eff.	A	3.1	31	0.000140	Note f	Note f	Note f.	0.000046	Note f	Note f	0.000013	Note f	Note f
48	Material Separator	Transfer Conveyor	Product	N	Inside		Y	Dust Collector	100%	DC Eff.	^	3.1	31	0.000140	Note f	Note f	Note f.	0.000046 4	Note f	Note f	0.000013 4	Note f	Note f
49	Shaker		Residue	N	Inside		N	Dust Collector	100%	DC Eff.	6	516.0	5,160	0.025000	Note f	Note f	Note f	0.008700	Note f	Note f	0.001317	Note f	Note f
50	Shaker		Residue	N	Inside		N	Dust Collector	100%	DC Eff.	В	516.0	5,160	0.025000	Note f	Note f	Note f	0.008700	Note f	Note f	0.001317	Note f	Note f
51	Shaker		Residue	N	Inside		N	Dust Collector	100%	DC Eff.	В	387.0	3,870	0.025000	Note f	Note f	Note f.	9.908790	Note f	Note f	0.001317	Note f	Note f
52	Shaker		Residue	N	Inside		N	Dust Collector	100%	DC Eff.	8	387.0	3,870	0.025000	Note f	Note f	Note f	0.008700	Note f	Note f	0.001317	Note f	Note f
53	Shaker		Residue	N	inside		N	Dust Collector	100%	DC Eff.	8	387.0	3,870	0.025000	Note f	Note f	Note f.	0.008700	Note f	Note f	0.001317	Note f	Note f
54	Shaker		Residue	N	Inside		R	Oust Collector	100%	OC Eff.	8	387.0	3,870	0.025000	Note f	Note f	Note f	0.008700	Note f	Note f	0.001317	Note f	Note f

Table 3-3 - Non-Ferrous Material Processing - Particulate Emissions General III, LLC - Chicago, Illinois

Max Monthly Thruput ECS Enc. PM ECS Enc. PM ECS Enc. PM 80.00% Control Eff Control Eff Control Eff 25,800 ton/mo DC PM₃₀ Annual Throughput DC PM DC PM_{2.5} 99.90% 258,000 tpy Control Eff Control Eff

Α		С	в	ŧ	Fransfer		*	Т.	, , , , , , , , , , , , , , , , , , , 	<u> </u>		N	0	,	q				V.	- 4	X	Z	AA
Row	Equipme	ent Generating Emissions	Material	Moisture	Point Location (Inside /	Conveyor .	Transfer Point Controlled	Type of Transfer Point	Dust Pickup Capture Eff.	Control Eff.	Emission Factor	Throu	erial ghput tes		P# Emiss			E	PM10 missions		E	PM2.5 missions	
88	ID #	Description	Conveyed	Y/N	Outside)	Covered	(Y/N)	Control	(%)	(%)	Source	ton/mo	tpy	lb/ton	lb/hr	tan/mo	tpy	lb/ton	ton/mo	tpy	lb/ton	ton/mo	tpy
55	Shaker	Drop to container	Residue	N	Inside		N	Dust Collector	100%	DC Eff.	A	36.9	369	0.003000	Note f	Note f	Note f.	0.001100 *	Note f	Note f	0.000167 ^a	Note f	Note f
56	Shaker	Drop to container	Residue	N	Inside		N	Dust Collector	100%	DC Eff.	A	36.9	369	0.003000 0	Note f	Note f	Note f.	0.001100 *	Note f	Note f	0.000167	Note f	Note f
\$7	Shaker	Transfer Conveyor	Residue	N	Inside		N	Dust Collector	100%	DC Eff.	A	154.8	1,548	0.003000 0	Note f	Note f	Note f	0.001100 0	Note f	Note f	0.000167	Note f	Note f
58	Shaker	Transfer Conveyor	Residue	N	Inside		N	Oust Collector	100%	DC Eff.	A	154.8	1,548	0.003000 0	Note f	Note f	Note f	0.001100 0	Note f	Note f	0.000167	Note f	Note f
59	Shaker	Transfer Conveyor	Residue	N	inside		N	Dust Collector	100%	DC Eff.	A	154.8	1,548	0.003000 **	Note f	Note f	Note f.	0.001100 *	Note f	Note f	0.000167	Note f	Note f
60	Shaker	Transfer Conveyor	Residue	N	Inside		N	Dust Collector	100%	DC Eff.	A	154.8	1,548	0.003000	Note f	Note f	Note f.	0.001100 0	Note f	Note f	0.000167 *	Note f	Note f
61	Shaker	Transfer Conveyor	Residue	N	Inside		N	Dust Collector	100%	DC Eff.	A	77.4	774	0.003000	Note f	Note f	Note f.	0.001100 0	Note f	Note f	0.000167 *	Note f	Note f
62	Shaker	Transfer Conveyor	Residue	N	Inside		N	Dust Collector	100%	DC Eff.	Α.	77.4	774	0.003000 9	Note f	Note f	Note f.	0.001100 °	Note f	Note f	0.000167 *	Note f	Note f
63	Shaker	Transfer Conveyor	Residue	N	Inside		N	Dust Collector	100%	DC Eff.	A	77.4	774	0.003000 *	Note f	Note f	Note f.	0.001100 0	Note f	Note f	0.000167 *	Note f	Note f
64	Shaker	Transfer Conveyor	Residue	N	Inside		N	Dust Collector	100%	DC Eff.	A	77.4	774	0.003000 *	Note f	Note f	Note f.	0.001100 0	Note f	Note f	0.000167	Note f	Note f
65	C-031	Conveyor	Wire	N	Inside	Y	N	Dust Collector	100%	DC Eff.	A	368.6	3,686	0.003000 *	Note f	Note f	Note f.	0.001100 0	Note f	Note f	0.000167	Note f	Note f
66	C-025	Conveyor	Residue	N	Inside	Y	N	Dust Collector	100%	DC Eff,	A	2,635.3	26,353	0.003000	Note f	Note f	Note f.	0.001100 °	Note f	Note f	0.000167	Note f	Note f
67	C-026	Conveyor	Residue	N	Inside	Y	N	Dust Collector	100%	DC Eff.	A	1,861.3	18,613	0.003000	Note f	Note f	Note f.	0.001100	Note f	Note f	0.000167 *	Note f	Note f
68	C-027	Conveyor	Residue	N	Inside	Y	N	Dust Collector	100%	DC Eff.	A	2,705.3	27,053	0.003000	Note f	Note f	Note f.	0.001100	Note f	Note f	0.000167	Note f	Note f
69	C-028	Conveyor	Residue	N	Inside	Y	N	Dust Collector	100%	DC Eff.	^	2,705.3	27,053	0.003000	Note f	Note f	Note f.	0.001100	Note f	Note f	0.000167	Note f	Note f
70	C-032	Conveyor	Zone	N	Inside		N	Dust Collector	100%	Eff.	^	552.9	5,529	0.003000	Note f	Note f	Note f.:	0.001100	Note f	Note f	0.000167	Note f	Note f
71	C-053	Conveyor	Wire	N	Inside		N	Dust Collector	100%	DC Eff.	A	368.6	3,686	0.003000	Note f	Note f	Note f.	0.001100	Note f	Note f	0.000167	Note f	Note f
72	C-069	Conveyor	Lights Zuric	N	Inside		N	Dust Collector	100%	DC Eff.	A .	129.0 2,705.3	1,290	0.003000	Note f	Note f	Note f.	0.001100	Note f	Note f	0.000167	Note f	Note f
73	€-18	Vibratory Feeder	Residue	N	Inside		N	Collector	100%	DC Eff.	A	2,705.3	27,053	0.003000	Note f	Note f	Note f.	0.001100	Note f	Note f	0.000167	Note f	Note f
74	E-24	Vibratory Feeder	Residue	N	tnside		N	Dust Collector	100%	DC Eff. DC		2,705.3	26,353	0.003000	Note f	Note f	Note f.	0.001100	Note f	Note f	0.000167	Note f	Note f
75	E-29	Vibratory Feeder	Residue	N N	Inside		N	Collector Dust	100%	Eff.	^ A	1,861.3	18,613	0.003000	Note f	Note f	Note f.	0.001100	Note f	Note f	0.000167	Note f	Note f
76	E-36	Vibratory Feeder	Residue	N	Inside		N	Collector	100%	Eff.		552,9	5,529	0.003000	Note f	Note f	Note f.	0.001100	Note f	Note f	0.000167	Note f	Note f
77	E-38 E-51	Vibratory Feeder	Zone Heavles Zurie	ļ	Inside		N	Collector	100%	Eff.	В	110.6	1,106	0.025000	Note f	Note f	Note f	0.008700	Note f	Note f	0.001317	Note f	Note f
78 79	E-51	Separator	Lights Zuric	N	Inside		N N	Collector	100%	Eff.	B	129.0	1,290	0.025000	Note f	Note f	Note f.	0.008700	Note f	Note f	0.001317	Note f	Note f
80	ECS	Eddy Current Separator	Residue/Dro	N	Inside		n N	Collector	100%	Eff.	A	1.231.0	12,310	0.003000	Note f	Note f	Note f.	0.001100	Note f	Note f	0.000167	Note f	Note f
81	ECS	Eddy Current Separator	ps Residue	N N	Inside		N	Collector	100%	Eff.	A	1,231.0	1,474	0.003000	Note f	Note f	Note f.	0.001100	Note f	Note f	0.000167	Note f	Note f
	L	coop current separator	, veside		wished.	L		Collector	1	Eff											-		

R 0016

Table 3-3 - Non-Ferrous Material Processing - Particulate Emissions General III, LLC - Chicago, Illinois

Max Monthly Thruput 25,880 ten/mo	ECS Enc. PM Control Eff	80.00%	ECS Enc. PM Control Eff	80.00%	ECS Enc. PM Control Eff	80.00%
Annual Throughput 258,000 tpy	DC PM Control Eff	99.90%	DC PM ₃₆ Control Eff	99,00%	DC PM _{2.9} Control Eff	98.00%

		τ		t		6	- 19								4				<u>, </u>				
Row	Equipme	ent Generating Emissions Description	Material Conveyed	Maisture > 1.5% Y / N	Transfer Point Location (inside / Outxide)	Conveyor	Transfer Point Controlled (Y/N)	Type of Transfer Point Control	Dust Pickup Capture Eff. (%)	Dust Control Eff. (%)	Ermission Factor Source	Throu	ierlal ighput ites tpy	lb/ton	Pi Emis		tpy	lb/ton	PM10 missions	tpy	lb/ton	PM2.5 Emissions ton/mo	tpy
82	Elevator	Transfer Conveyor	Residue	N	Inside		N	Dust	100%	DC	Α	162.2	1,622	0.003000	Note f	Note f	Note f.	0.001100	Note f	Note f	0.000167	Note f	Note f
83	Elevator	Transfer Conveyor	Residue	N	Inside	<u> </u>	N	Collector Dust Collector	100%	Eff. DC Eff.	Α	1,297.4	12,974	0.003000	Note f	Note f	Note f.	0.001100	Note f	Note f	0.000167	Note f	Note f
84	FC-01	Conveyor	Zorba	N	Inside	Y	N	Dust	100%	DC Eff.	^	184.3	1,843	0.003000	Note f	Note f	Note f.	0.001100	Note f	Note f	0.000167	Note f	Note f
85	FC-02	Conveyor	Residue	N	Inside	Y	N	Dust Collector	100%	DC Eff.	A	1,032.0	10,320	0.003000	Note f	Note f	Note f.	0.001100	Note f	Note f	0.000167	Note f	Note f
86	FC-03	Conveyor	Residue	N	Inside		N	Dust Collector	100%	DC Eff.	A	692.9	6,929	6.003000	Note f	Note f	Note f.	0.001100	Note f	Note f	0.000167	Note f	Note f
87	FC-04	Conveyor	Residue	N	Inside		N	Dust Collector	100%	DC Eff.	Α	162.2	1,622	0.003000	Note f	Note f	Note f.	0.001100	Note f	Note f	0.000167	Note f	Note f
88	FC-05	Conveyor	Residue	N	Inside		N	Dust Collector	100%	DC EH.	A	692.9	6,929	0.003000	Note f	Note f	Note f.	0.001100	Note f	Note f	0.000167	Note f	Note f
89	FC-06	Conveyor	Residue	N	Inside		N	Dust Collector	100%	DC Eff.	A	1,297.4	12,974	0.003000	Note f	Note f	Note f.	0.001100	Note f	Note f	0.000167	Note f	Note f
90	FC-07	Conveyor	Residue	N	Inside	٧	N	Dust Collector	100%	DC Eff.	^	1,548.0	15,480	0.003000	Note f	Note f	Note f.	0.001100	Note f	Note f	0.000167	Note f	Note f
91	FC-08	Conveyor	Residue	N	Inside		N	Dust Collector	100%	DC Eff.	A .	1,548.0	15,480	0.003000	Note f	Note f	Note f.	0.001100	Note	Note f	0.000167	Note f	Note f
92	FC-09	Conveyor	Residue	N	Inside		N	Dust Collector	100%	DC Eff.	A	619.2	6,192	0.003000	Note f	Note f	Note f,	0.001100	Note f	Note f	0.000167	Note f	Note f
93	FC-10	Conveyor drop to stockpile	Residue	1.5% *	Inside		N	Dust Collector	100%	DC Eff.	Drop	154.8	1,548	0.00760	Note f	Note f	Note f.	0.00360	Note f	Note f	0.00050	Note f	Note f
94	FC-11	Conveyor drop to stockpile	Residue	1.5%	Inside		N	Dust Collector	100%	DC Eff.	Drop	154.8	1,548	0.00760	Note f	Note f	Note f.	0.00360	Note f	Note f	0.00050	Note f	Note f
95	FC-12	Conveyor	Product	N	Inside		N	Dust Collector	100%	Eff.	^	6.2	62	0.003000	Note f	Note f	Note f.	0.001100	Note f	Note f	0.000167	Note f	Note f
96	FC-13	Conveyor	Product	N	Inside		N	Dust Collector	100%	DC Eff.	A .	6.2	62	0.003000	Note f	Note f	Note f.	0.001100	Note f	Note f	0.000167	Note f	Note f
97	FC-14	Conveyor	Product	N	inside		N	Dust Collector	100%	DC Eff.	^	12.4	124	0.003000	Note f	Note f	Note f.	0.001100	Note f	Note f	0.000167	Note f	Note f
98	FC-15	Conveyor	Product	N	Inside		N	Dust Collector	100%	DC Eff.	^	12.4	124	0.003000	Note f	Note f	Note f.	0.001100	Note f	Note f	0.000167	Note f	Note f
99	FC-16	Conveyor drop to container	Product	1.5% *	Inside		N	Dust Collector	100%	DC Eff.	Drop	12.4	124	0.00760	Note f	Note f	Note f.	0.00360	Note f	Note f	0.00050	Note f	Note f
100	FC-17	Conveyor	Residue	N	Inside		N	Dust Collector	100%	Eff.	^	604.5	6,045	0.003000	Note f	Note f	Note f.	0.001100	Note f	Note f	0.000167	Note f	Note f
101	FC-18	Conveyor transfer to shaker	Residue/ Drops	N	Inside		N	Dust Collector	100%	DC Eff.	^	1,231.0	12,310	0.003000	Note f	Note f	Note f.	0.001100	Note f	Note f	0.000167	Note f	Note f
102	FC-20	Conveyor	Residue	N	Inside		N	Dust Collector	100%	DC Eff.	^	1,231.0	12,310	0.003000	Note f	Note f	Note f.	0.001100	Note f	Note f	0.000167	Note f	Note f
103	FC-21	Conveyor	Residue	N	Inside		N	Dust Collector	100%	Eff.	A	840.3	8,403	0.003000	Note f	Note f	Note f.	0.001100	Note f	Note f	0.000167	Note f	Note f
104	FC-22	Conveyor	Residue	N	Inside		N	Dust Collector	100%	DC Eff.	^	420.2	4,202	0.003000	Note f	Note f	Note f.	0.001100	Note f	Note f	0.000167	Note f	Note f
105	FC-23	Conveyor	Residue	N	Inside		N	Dust Collector	100%	DC Eff.	A .	420.2	4,202	0.003000	Note f	Note f	Note f.	0.001100	Note f	Note f	0.000167	Note f	Note f
106	Feeder	Discharge to conveyor	Residue	N	Inside		N	Dust Collector	100%	DC Eff.	A .	3,350.3	33,503	0.003000	Note f	Note f	Note f.						
107	Feeder	Transfer to Eddy Current Separator	Residue	N	Inside		N	Dust Collector	100%	DC Eff.	^	162.2	1,622	0.003000	Note f	Note f	Note f.	0.001100	Note f	Note f	0.000167	Note f	Note f
108	Feeder	Transfer to Eddy Current Separator	Residue	N	Inside		N	Dust Collector	100%	DC Eff.	A	1,297.4	12,974	0.003000	Note f	Note f	Note f.	0.001100	Note I	NoteT	0.000167	Note 1	Note

Table 3-3 - Non-Ferrous Material Processing - Particulate Emissions General III, LLC - Chicago, Illinois

ECS Enc. PM Control Eff ECS Enc. PM Max Monthly Thruput ECS Enc. PM 80.00% 80.00% Control Eff Control Eff 25,800 ton/mo DC PM₃₀ DC PM2.5 DC PM Annual Throughput 99.90% Control Eff Control Eff Control Eff 258,000 tpy

		ent Generating Emissions	Material Conveyed	Moisture >1.5%	Location (Inside / Outside)	Conveyor	Point Controlled (Y/N)	Transfer Point Control	Dust Pickup Capture Eff. (%)	Dust Control Eff. (%)	Emission Factor Source	Throug Rat		lb/ton	Emiss Ib/hr	*	tpy		PM10 nissions ton/mo	tpy	lb/ton	missions ton/mo	tpy
#	ID#	Description	Residue	Y/N	Inside	Covered	N	Dust	100%	DC	A	1,083.6	10,836	0.003000	Note f	Note f	Note f.	0.001100	Note f	Note f	0.000167	Note f	Note f
109	Shaker Fines	Transfer Conveyor	Residue	N	Inside		N N	Collector	100%	Eff.	A	147.4	1,474	D.003000	Note f	Note f	Note f.	0.001100	Note f	Note f	0.000167	Note f	Note f
110	Shaker Overs	Transfer Conveyor		10.51			N N	Collector	100%	Eff.	Drop	25.8	258	0.00760	Note f	Note f	Note f.	0.00360	Note f	Note f	0.00050	Note f	Note f
111	Shaker Overs	Drop to container	Zorba	1.5% *	Inside		. "	Collector	100%	Eff	3,500					-	275						
11.2			_						Sources Insid	ie Building				0.0000.00.4	0.5143	0.1444	0.0181	0.000046 ^d	0.1444	0.0059	0.000013 4	0.1444	1.4441 0.0017
113	C-001	Conveyor	Residue	Y	Outside	Υ	N _	NA.			A	25,800.0	258,000	0.000146 4	0.0098	0.0018					0.000167	0.0021	0.0208
114	C-002	Conveyor	Residue	N	Outside	Y	N	NA			A .	25,026.0	250,260	0.003000	0.2037	0.0375	0.3754	0.001100	0.0138	0.1376	900		0.0006
115	C-002	Conveyor	Ferrous	N	Qutside	Y	N	NA			^ _	774.0	7,740	0.003000 *	0.0063	0.0012	0.0116	0.001100	0.0004	0.0043	0.000167	0.0001	
116	C-003	Conveyor	Residue	N	Outside	Y	N	NA.			^_	25,026.0	250,260	0.003000 *	0.2037	0.0375	0.3754	0.001100 *	0.0138	0.1376	0.000167	0.0021	0.0208
117	C-004	Conveyor	Residue	N	Outside	Y	N	NA			۸	22,446.0	224,460	0.003000 9	0.1827	0.0337	0.3367	0.001100 0	0.0123	0.1235	0.000167	0.0019	0.0187
118	C-005	Conveyor	Residue	N	Outside	Y	N	NA			A	11,223.0	112,230	0.003000	0.0914	0.0168	0.1583	0.001100 °	0.0062	0.0617	0.000167	0.0009	0.0093
119	C-006	Conveyor	Residue	N	Outside		N	NA			^	11,223.0	112,230	0.003000	0.0914	0.0168	0.1683	0.001100	0.0062	0.0617	0.000167	0.0009	0.0093
120	C-007	Conveyor	Residue	N	Inside	Y	N	ECS Enclosure	100%	Bldg Eff.	Α	5,805.0	58,050	0.003000	0.0095	0.0017	0.0174	0.001100 *	0.0006	0.0064	0.000167 *	0.0001	0.0010
121	C-008	Conveyor	Residue	N	Inside		N	ECS Enclosure	100%	Bldg Eff.	^	5,805.0	58,050	0.003000 0	0.0095	0.0017	0.0174	0.001100	0.0006	0.0064	0.000167	0.0001	0.0010
122	C-009	Conveyor	Residue	N	Outside		N	NA			A	3,368.7	33,687	0.003000 **	0.0274	0.0051	0.0505	0.001100 *	0.0019	0.0185	0.000167 *	0.0003	0.0028
123	C-010	Conveyor	Residue	N	Outside		N	NA NA			^	3,368.7	33,687	0.003000 9	0.0274	0.0051	0.0505	0.001100 °	0.0019	0.0185	0.000167	0.0003	0.0028
124	C-011	Conveyor	Residue	N	Outside	Y	N	NA			^	3,096.0	30,960	0.003000 *	0.0252	0.0046	0.0464	0.001100	0.0017	0.0170	0.000167	0.0003	0.0026
125	C-012	Conveyor	Residue	N	Inside	Y	N	ECS Enclosure	100%	Bidg Eff.	A	3,368.7	33,687	0.003000 0	0.0055	0.0010	0.0101	0.001100 *	0.0004	0.0037	0.000167 *	0.0001	0.0006
126	C-013	Conveyor	Residue	N	Inside	٧	N	ECZ	100%	Bldg	A	3,368.7	33,687	0.003000	0.0055	0.0010	0.0101	0.001100 6	0.0004	0.0037	0.000167 9	0.0001	0.0006
127	C-014	Conveyor	Residue	N	Inside	Y	N	Enclosure	100%	Eff. Bidg	A	3,096.0	30,960	0.003000 *	0.0050	0.0009	0.0093	0.001100 °	0.0003	0.0034	0.000167 °	0.0001	0.0005
128	C-015	Conveyor	Ferrous	N	Inside	 v	N	Enclosure	100%	Eff. Bidg	A -	92.1	921	0.003000 0	0.0002	0.0000	0.0003	0.001100 °	0.0000	0.0001	0.000167 °	0.0000	0.0000
129	C-016	Conveyor	Residue	N	Outside	Y	N	Enclosure NA		Eff.	A	995.1	9,951	0.003000 0	0.0081	0.0015	0.0149	0.001100 °	0.0005	0.0055	0.000167 °	0.0001	8000.0
130		Conveyor	Ferrous	N	Outside	-	N	NA			A	645.0	6,450	0.003000 °	0.0053	0.0010	0.0097	0.001100 °	0.0004	0.0035	0.000167 °	0.0001	0.0005
131		Conveyor	Ferrous	N	Outside	Y	N	NA.	 		A	645.0	6,450	0.003000 °	0.0053	0.0010	0.0097	0.001100 °	0.0004	0.0035	0.000167 °	0.0001	0.0005
132		Conveyor	Lights	N	Outside	Y	N	NA NA	-	-	A	92.1	921	0.003000 °	0.0008	0.0001	0.0014	0.001100 °	0.0001	0.0005	0.000167 0	0.0000	0.0001
133	 	Conveyor	Residue	N	Outside	Y	N	NA.		+	A	4,098.5	40,985	0.003000	0.0334	0.0061	0.0615	0.001100 °	0.0023	0.0225	0.000167 °	0.0003	0.0034
134		Conveyor	Residue	N	Outside	Α .	N	NA NA	-	-	A .	4,098.5	40,985	0.003000	0.0334	0.0061	0.0615	0.001100 °	0.0023	0.0225	0.000167 °	0.0003	0.0034
iii.		Conveyor to Wind Sifter	Mixed	N N	Outside	Y	Y	Wind Sifte	r 100%	100%	A	294.9	2,949	0.003000 9	0.0024	0.0004	0.0000	0.001100 0	0.0002	0.0000	0.000167	0.0000	0.0000
135	C-022	Courselot to Asura Sutes.	Non-Ferrous	"	Jame	<u> </u>						1				L			1	<u> </u>	1	ب ال	ables - h

Table 3-3 - Non-Ferrous Material Processing - Particulate Emissions
General III, LLC - Chicago, Illinois

 Max Monthly Thruput
 ECS Enc. PM
 B0.00%
 ECS Enc. PM
 B0.00%
 ECS Enc. PM
 B0.00%
 ECS Enc. PM
 B0.00%
 ECS Enc. PM
 B0.00%
 ECS Enc. PM
 B0.00%
 Control Eff
 B0.00%
 ECS Enc. PM
 B0.00%
 Control Eff
 B0.00%
 Control Eff
 B0.00%
 DC PM_18
 B0.00%
 DC PM_25
 DC PM_25
 DC PM_25
 DC PM_25
 DC PM_25
 DC PM_25
 DC PM_25
 DC PM_25
 DC PM_25
 DC PM_25
 DC PM_25
 DC PM_25
 DC PM_25
 DC PM_25
 DC PM_25
 DC PM_25
 DC PM_25
 DC PM_25
 DC PM_25
 DC PM_25
 DC PM_25
 DC PM_25
 DC PM_25
 DC PM_25
 DC PM_25
 DC PM_25
 DC PM_25
 DC PM_25
 DC PM_25
 DC PM_25
 DC PM_25
 DC PM_25
 DC PM_25
 DC PM_25
 DC PM_25
 DC PM_25
 DC PM_25
 DC PM_25
 DC PM_25
 DC PM_25
 DC PM_25
 DC PM_25
 DC PM_25
 DC PM_25
 DC PM_25
 DC PM_25
 DC PM_25
 DC PM_25
 DC PM_25
 DC PM_25
 DC PM_25
 DC PM_25
 DC PM_25
 DC PM_25
 DC

Row		ent Generating Emissions	Material Conveyed	Moisture > 1.5%	Point Location (Inside / Outside)	Conveyor	Point Controlled (Y/N)	Type of Transfer Point Control	Dust Pickup Capture Eff. (%)	Dust Control Eff. (%)	Emission Factor Source	Thro	erial ighput tes			M sions			PM10 Emissions			PM2.5 Emission	
	ID#	Description		Y/N		Covered	(1,7.47	<u> </u>				ton/mo	tpy	lb/ton	lb/hr	ton/mo	tpy	lb/ton	ton/mo	tpy	lb/ton	ton/r	ī
136	C-023	Conveyor to Wind Sifter	Residue	N	Outside	Y	٧	Wind Sifter	100%	100%	A	2,686.9	26,869	0.000140 *	0.0010	0.0002	0.0000	0.000046 *	0.0001	0.0000	0.000013	0.000	X
137	C-024	Conveyor to Wind Sifter	Residue	N	Outside	Y	γ	Wind Sifter	100%	100%	A	2,686.9	26,869	0.000140 6	0.0010	0.0002	0.0000	0.000046 *	0.0001	0.0000	0.000013	0.000	K
138	C-034	Conveyor	Material Separator	N	Outside	٧	N	NA.	301		A	202.7	2,027	0.003000 0	0.0017	0.0003	0.0030	0.001100 *	0.0001	0.0011	0.000167 °	0.000	ľ
139	C-035	Conveyor	Residue	N N	Inside	٧	N	ECS Endosure	100%	Bidg Eff.	A	995.1	9,951	0.003000 *	0.0016	0.0003	0.0030	0.001100 4	0.0001	0.0011	0.000167 *	0.000	•
140	C-039	Conveyor	Mixed Non-Ferrous	N	Outside		N	NA.			A	294.9	2,949	0.003000 *	0.0024	0.0004	0.0044	0.001100	0.0002	0.0016	0.000167 *	0.000	•
141	C-040	Conveyor	Residue	N	Outside		N	NA			A	1,032.0	10,320	0.003000	0.0084	0.0015	0.0155	0.001100	0.0006	0.0057	0.000167	0.000	-
142	C-040	Conveyor	Mids	N	Outside		N	NA.			A	2,580.0	25,800	0.003000 0	0.0210	0.0039	0.0387	0.001100 °	0.0014	0.0142	0.000167 °	0.000	**
143	C-040	Conveyor	Residue	N	Outside		N	NA	7		A	1,548.0	15,480	0.003000 0	0.0126	0.0023	0.0232	0.001100 °	0.0009	0.0085	0.000167 °	0.000	ĵ
144	C-041	Conveyor	Zorba	N	Outside		N	NA			A	184.3	1,843	0.003000 °	0.0015	0.0003	0.0028	0.001100 °	0.0001	0.0010	0.000167 °	0.000	ŗ
145	C-042	Conveyor	Zorba	N	Outside		N	NA .			A	552.9	5,529	0.0030 00 °	0.0045	0.0008	0.0083	0.001100 °	0.0003	0.0030	0.000167 °	0.000	
146	C-043	Сопуеуог	Zorba	N	Outside		N	NA			A	1,105.7	11,057	0.003000 °	0.0090	0.0017	0.0166	0.001100 °	0.0006	0.0061	0.000167 0	0.000	
147	C-044	Conveyor	Residue	N	Outside	Y	N	NA			A	9,166.4	91,664	0.003000 ⁰	0.0746	0.0137	0.1375	0.001100 °	0.0050	0.0504	0.000167 °	0.000	
148	C-044	Conveyor	Lights Zuric	N	Outside	Y	N	NA			A	110.6	1,106	0.003000 0	0.0009	0.0002	0.0017	0.001100 °	0.0001	0.0006	0.000167 °	0.0000	
149	C-045	Сопчеуог	Residue	N	Outside	γ	N	NA			A	9,166.4	91,664	0.003000 °	0.0746	0.0137	0.1375	0.001100 °	0.0050	0.0504	0.000167 °	0.0008	j
150	C-047	Conveyor	To SSI	N	Outside		N	NA			A	202.7	2,027	0.003000 °	0.0017	0.0003	0.0030	0.001100 °	0.0001	0.0011	0.000167 °	0.0000	
151	C-048	Conveyor	Out of SSI	N	Outside		N	NA			A	202.7	2,027	0.003000 °	0.0017	0.0003	0.0030	0.001100 0	0.0001	0.0011	0.000167	0.0000	,
152	C-050	Conveyor	Residue	N	Outside	Y	N	NA			A	9,240.1	92,401	0.003000 °	0.0752	0.0139	0.1386	0.001100 °	0.0051	0.0508	0.000167 0	0.0008	
153	C-052	Conveyor	Residue	N	Outside		N	NA			A	829.3	8,293	0.003000 °	0.0068	0.0012	0.0124	0.001100 °	0.0005	0.0046	0.000167°	0.0001	
154	C-055	Conveyor	Wire	N	Outside	Y	N	NA			A	368.6	3,686	0.003000 °	0.0030	0.0006	0.0055	0.001100°	0.0002	0.0020	0.000167 °	0.0000	1
155	C-058	Conveyor	Zuric drops	N	Outside	Υ	N	NA			A	110.6	1,106	0.003000 °	0.0009	0.0002	0.0017	0.001100 °	0.0001	0.0006	0.000167 °	0.0000	
156	C-060	Conveyor	Zone	N	Outside	Y	N	NA.			А	442.3	4,423	0.003000 °	0.0036	0.0007	0.0066	0.001100 °	0.0002	0.0024	0.000167 0	0.0000	i
157	C-061	Conveyor drop to stockpile	Heavies Zuric	1.5% *	Outside		N	NA			Drop	353.8	3,538	0.00761 4	0.0073	0.0013	0.0135	0.00360 4	0.0006	0.0064	0.00054 4	0.0001	
158	C-061	Conveyor drop to stockpile	Heavies Zuric	1.5% *	Outside		N	NA			Drop	110.6	1,106	0.00761 4	0.0023	0.0004	0.0042	0.00360 4	0.0002	0.0020	0.00054 4	0.0000	,
159	C-062	Conveyor	Heavier Zorba	N	Outside		N	NA.			Α .	460.7	4,607	0.003000 d	0.0038	0.0007	0.0069	0.001100 d	0.0003	0.0025	0.000167 d	0.0000	1
160	C-063	Conveyor drop to stockpile	Zorba	1.5% *	Outside		N	NA			Drop	995.1	9,951	0.00761 °	0.0205	0.0038	0.0378	0.00360 °	0.0018	0.0179	0.00054 °	0.0003	•
161	C-063	Conveyor drop to stockpile	Heavies Zorba	1.5% *	Outside		N	NA			Drop	313.3	3,133	0.00761 4	0.0065	0.0012	0.0119	0.00360 *	0.0006	0.0056	0.00054 *	0.0001	
162	C-064	Conveyor drop to container	Zorba	1.5% *	Outside		N	NA NA		$\neg \neg$	Orop	258.0	2,580	0.00761 °	0.0053	0.0010	0.0098	0.00360 °	0.000\$	0.0046	0.00054 °	0.0001	

Table 3-3 - Non-Ferrous Material Processing - Particulate Emissions General III, LLC - Chicago, Illinois

Max Monthly Thruput 25,800 ton/mo	ECS Enc. PM Control Eff	80.00%	ECS Enc. PM Control Eff	80.00%	ECS Enc. PM Control Eff	90.00%
Annual Throughput 258,000 tpy	DC PM Control Eff	99.90%	OC PM ₃₆ Control Eff	99.00%	DC PM _{2,3} Control Eff	98.00%

^		<u> </u>	B	Moisture	Transfer Point Location (inside /	Conveyor	Transfer Point Controlled	Type of Transfer Point	Dust Pickup Capture Eff.	Dust Control Eff.	Emission Factor	Mate Through	ghput	<u> </u>	PM Emissi				PM10 missions			M2.5 distions	
Row	Equipme	ent Generating Emissions	Material Conveyed	l 1	Outside)		(Y/N)	Control	(%)	(%)	Source	ton/mo	tpy	lb/ton	lb/hr	ton/ma	tpy	lb/ton	ton/mo	tpy	100,000	ton/mo	tpy
*	ID#	Description	Conveyed	Y/N		Covered	N	NA.			A	810.9	8,109	0.003000 4	0.0066	0.0012	0.0122	0.001100 d	0.0004	0.0045	0.000167 4	0.0001	0.0007
163	C-065	Conveyor	Residue	N	Outside		N	NA NA			A	20,046.6	200,466	0.003000	0.1632	0.0301	0.3007	0.001100 d	0.0110	0.1103	0.000167 4	0.0017	0.0167
164	C-066	Conveyor	Residue	N	Outside	Υ		NA NA			A	20.046.6	200,466	0.003000 d	0.1632	0.0301	0.3007	0.001100 *	0.0110	0.1103	0.000167 *	0.0017	0.0167
165	C-067	Conveyor	Residue	N	Outside	Y	N				Drop	20,046.6	200,466	0.00761 *	0.4137	0.0762	0.7624	0.00360 4	0.0361	0.3606	0.00054 4	0.0055	0.0546
166	C-068	Conveyor drop to stockpile	Residue	1.5% 4	Outside	Y	N	NA			Drop	202.7	2,027	0.00761 4	0.0042	0.0008	0.0077	0.00360	0.0004	0.0036	0.00054 *	0.0001	0.0006
167	C-070	Conveyor drop to stockpile	Waste to Stockpile	1.5%	Outside		N	NA	ļ —	ļ	A	11.1	111	0.000140 *	0.0000	0.0000	0.0000	0.000046 *	0.0000	0.0000	0.000013 d	0.0000	0.0000
168	C-071	Conveyor	Lights	N	Outside	٧	Y	Cover			<u> </u>	11.1	111	0.000140 4	0.0000	0.0000	0.0000	0.000046 *	0.0000	0.0000	0.000013 *	0.0000	0.0000
169	C-072	Conveyor	Lights	N	Outside	Y	Y	Cover				2.9	29	0.000140 d	0.0000	0.0000	0.0000	0.000046 4	0.0000	0.0000	0.000013 4	0.0000	0.0000
170	DC-01 Cyc	DC-01 fines discharge to covered coneyor	Lights	N	Outside		Y	Cover	<u> </u>			2.9	29	0.000140 d	0.0000	0,0000	0.0000	0.000046 #	0.0000	0.0000	0.000013 4	0.0000	0.0000
171	DC-03	DC-02 fines discharge to covered coneyor	Lights	N	Outside		Y	Cover			A A	2.9	29	0.000140 *	0.0000	0.0000	0.0000	0.000046 4	0.0000	0.0000	0.000013 d	0.0000	0.0000
172	DC-03 Cvc	DC-03 fines discharge to covered coneyor	Lights	N	Outside	Г	Υ	Cover				2.9	29	0.000140 #	0.0000	0.0000	0.0000	0.000045 *	0.0000	0.0000	0.000013 *	0.0000	0.0000
173	DC-04 Cyc	DC-04 fines discharge to covered coneyor	Lights	N	Qutside		Υ	Cover		ļ	^	25,800.0	258,000	0.000140 4	0.0098	0.0018	0.0181	0.000046 4	0.0006	0.0059	0.000013	0.0002	0.0017
174	E-01	Vibratory Batch Feeder	Residue	Y	Outside		N	NA			^		224,460	0.002200 *	0,1340	0.0247	0.2469	0.000740 *	0.0083	0.0831	0.000050 *	0.0006	0.0056
175	E-03	Screener	Residue	Y	Outside		N	NA .			B B	2,506.3	25,063	0.002200 *	0.0150	0.0028	0.0276	0.000740 °	0.0009	0.0093	0.000050 *	0.0001	0.0006
176	E-03	Screener	Residue	Y	Outside		N	NA .			8		9,951	0.002200 *	0.0059	0.0011	0.0109	0.000740 *	0.0004	0.0037	0.000050 *	0.0000	0.0002
177	E-03	Screener	Residue	Y	Outside		N	NA.	<u> </u>			995.1	58,050		0.0347	0.0064	0.0639	0.000740 *	0.0021	0.0215	0.000050 °	0.0001	0,0015
178	E-04	Screener	Residue	Y	Outside		N _	NA					33,687	0.002200 *	0.0201	0.0037	0,0371	0.000740 *	0.0012	0.0125	0.000050 °	0.0001	0.0008
179	E-04	Screener	Residue	Y	Outside		N	NA.			•	3,368.7	<u> </u>		0.0092	0.0017	0.0170	0.000740	0.0006	0.0057	0.000050 *	0.0000	0.0004
180	E-04	Screener	Residue	Y	Outside		N N	NA .			8				0.0089	0.0016	0.0164	0.001100	0.0006	0.0060	0.000167	0.0001	0.0009
181	E-05	Magnetic Separation	Residue	N	Inside	T	N	Enclosur		Bldg Eff.	A	5,480.7			0.0059	0.0011	0.0109	0.001100	0.0004	0.0040	0.000167	0.0001	0.0006
182	E-05	Magnetic Separation	Residue	N	Inside		N	Enclosur	100% e	Bldg Eff.	^_	3,637.8	ļ		0.0026	0.0005	0.0049	0.001100	0.0002	0.0018	0.000167	0.0000	0.0003
183	E-05	Magnetic Separation	Ferrous	N	Inside		N	NA.			^	324.3			0.0150		0.0276	0.001100	0.0010	0.0101	0.000167	0.0002	0.0015
184	E-05	Magnetic Separation	Ferrous	N	Inside		N	NA			^	1,842.9			0.0184	0.0034	0.0338	0.001100	4 0.0012	0.0124	0.000167	0.0002	0.0019
185	£-06	Eddy Current Separator	Residue	N	Outside		N	NA			^	2,255.7			0.0105	0.0019	<u> </u>	0.001100		0.0071	0.000167	0.0001	0.0011
186	E-06	Eddy Current Separator	Mids	N	Outside		N	NA			^	1,290.0					0.0014	0.001100			0.000167	0.0000	0.0001
187	E-06	Eddy Current Separator	Zorba	N	Outside		N	NA			_ ^	92.1										0.0000	0.0000
188	E-07	Wind Sifter	Lights	N	Outside	 	٧	Cover			8	92.:										0.0002	
189	E-07	Wind Sifter	Heavies	1.5%	Outside		Υ -	Wind Sif	ter 90%	100%	Drop	552.	5,529	0.00761	0.0103	0.0021	0.0000	0.00360	0.001				Tables -

Table 3-3 - Non-Ferrous Material Processing - Particulate Emissions	
General III, LLC - Chicago, Illinois	

Max Monthly Thruput | ECS Enc. PM ECS Enc. PM Control Eff ECS Enc. PM 80.00% 80.00% 25,800 ton/mo Control Eff **Control Eff** DC PM_{2.3} Control Eff **Annual Throughput** DC PM DC PM₃₆ 99.90% 99,00% 98.00% 258,000 tpy Control Eff Control Eff

					Transfer Point		Transfer	Type of				Ma	terial										
Row	Equipm	nent Generating Emissions	Material	Moisture > 1.5%	Location (Inside /	Conveyor	Point Controlled	Transfer Point	Dust Pickup Capture Eff.	Dust Control Eff.	Emission Factor		ughput ites			M slons			PM10 Emissions			PM2.5 Emissions	
H.	ID#	Description	Conveyed	Y/N	Outside)	Covered	(Y/N)	Control	(%)	(%)	Source	ton/mo	tpy	lb/ton	lb/hr	ton/mo	tpy	lb/ton	ton/mo	9===			
190	E-11	Screener	Residue	N	Outside		N	NA			В	5,805.0	58,050	0.025000 4	0.3938	0.0726	0.7256	0.008700 4	0.0253	0.2525	0.001317 ⁴	0.0038	0.0382
191	E-11	Screener	Residue	N	Outside		N	NA			В	3,368.7	33,687	0.025000 d	0.2285	0.0421	0.4211	0.008700 4	0.0147	0.1465	0.001317 4	0.0022	0.0222
192	E-11	Screener	Residue	N	Outside		N	NA	-		8	1,548.0	15,480	0.025000 d	0.1050	0.0194	0.1935	0.008700 4	0.0067	0.0673	0.001317 ^d	0.0010	0.0102
193	E-12	Magnetic Separation	Residue	N	Inside		N	ECS Endosure	100%	Bldg Eff,	^	5,480,7	54,807	0.003000	0.0089	0.0036	0.0164	0.001100	0.0006	0.0060	0.000167	0.0001	0.0009
194	E-12	Magnetic Separation	Residue	N	Inside		N	ECS Enclosure	100%	Bldg Eff.	A	3,637.8	36,378	0.003000	0.0059	0.0011	0.0109	0.001100	0.0004	0.0040	0.000167	0.0001	0.0006
195	E-12	Magnetic Separation	Ferrous	N	Inside		N	NA			A	324.3	3,243	0.003000	0.0026	0.0005	0.0049	0.001100	0.0002	0.0018	0.000167	0.0000	0.0003
196	E-1.2	Magnetic Separation	Ferrous	N	Inside		N	NA.			A	1,842.9	18,429	0.003000	0.0150	0.0028	0.0276	0.001100	0.0010	0.0101	0.000167	0.0002	0.0015
197	E-12	Magnetic Separation	Zorba	N	Outside		N	NA			A	92.1	921	0.003000 4	0.0008	0.0001	0.0014	0.001100 d	0.0001	0.0005	0.000167 d	0.0000	0.0001
198	E-13	Eddy Current Separator Eddy Current Separator	Residue	N	Outside	<u> </u>	N	NA			A	2,255.7	22,557	0.003000 4	0.0184	0.0034	0.0338	0.001100 d	0.0012	0.0124	0.000167 d	0.0002	0.0019
200	E-14	Wind Sifter	Lights	N	Outside		N	NA .			A	1,290.0	12,900	0.003000 4	0.0105	0.0019	0.0194	0.001100 d	0.0007	0.0071	0.000167 d	0.0001	0.0011
201	E-14	Wind Sifter	Heavies	1.5%	Outside		Y	Cover Wind Sifter	1000		В	73.7	737	0.002200 4	0.0004	0.0001	0.0008	0.000740 4	0.0000	0.0003	0.000050 4	0.0000	0.0000
202	E-15	Magnetic Separation	Residue	N	Inside		N T	ECS ECS	100%	100% Bldg	Drop	221.1 3,350.3	2,211	0.00761 4	0.0046	0.0008	0.0000	0.00360 °	0.0004	0.0000	0.00054 5	0.0001	0.0000
203	E-15	Magnetic Separation	Residue	N	Inside	<u> </u>	N N	Enclosure	100%	Eff. Bldg	- A	3,055.5	33,503	0.003000	0.0055	0.0010	0.0101	0.001100	0.0004	0.0037	0.000167	0.0001	0.0006
204	E-15	Magnetic Separation	Ferrous	N	Outside		N	Enclosure NA		Eff.	- A	18.4	184	0.003000 4	0.0002	0.0009	0.0092	0.001100	0.0003	0.0034	0.000167	0.0001	0.0005
205	E-15	Magnetic Separation	Mixed Non-	N	Outside		N	NA NA			Α	147.4	1,474	0.003000 d	0.0012	0.0002	0.0022	0.001100 4	0.0001	0.0008	0.000167 4	0.0000	0.0001
206	E-16	Eddy Current Separator	Ferrous Residue	N	Outside		N	NA NA			Α	2,686.9	26,869	0.003000 d	0.0219	0.0040	0.0403	0.001100 d	0.0015	0.0148	0.000167 d	0.0002	0.0022
207	E-16	Eddy Current Separator	Zorba	N	Outside		N	NA			A .	368.6	3,686	0.003000 d	0.0030	0.0006	0.0055	0.001100 d	0.0002	0.0020	0.000167 *	0.0000	0.0003
208	€-17	Wind Sifter	Lights	N	Outside		Y	Cover	-		8	401.7	4,017	0.002200 4	0.0024	0.0004	0.0044	0.000740 4	0.0001	0.0015	0.000050-4	0.0000	0.0001
209	E-17	Wind Sifter	Residue	N	Outside		γ	Wind Sifter	100%	100%	8	2,285.1	22,851	0.002200 d	0.0136	0.0025	0.0000	0.000740 ^d	0.0008	0.0000	0.000050 d	0.0001	0.0000
210	E-21	Magnetic Separation	Residue	N	Inside		N	ECS Enclosure	100%	Bldg Eff.	Α .	3,055.5	30,555	0.003000	0.0050	0.0009	0.0092	0.001100	0.0003	0.0034	0.000167	0.0001	0.0005
211	E-21	Magnetic Separation	Ferrous	N	Outside		N	NA			A	18.4	184	0.003000 4	0.0002	0.0000	0.0003	0.001100 d	0.0000	0.0001	0.000167 4	0.0000	0.0000
212	E-21	Magnetic Separation	Mixed Non- Ferrous	N	Outside		N	NA .			A	147.4	1,474	0.003000 d	0.0012	0.0002	0.0022	0.001100 d	0.0001	0.0008	0.000167 d	0.0000	0.0001
213	E-22	Eddy Current Separator	Zorba	N	Outside		N	NA			A	368.6	3,686	0.003000 4	0.0030	0.0006	0.0055	0.001100 d	0.0002	0.0020	0.000167 d	0.0000	0.0003
214	E-22	Eddy Current Separator	Residue	N	Outside		N	NA			A	2,686.9	26,869	0.003000 4	0.0219	0.0040	0.0403	0.001100 4	0.0015	0.0148	0.000167 4	0.0002	0.0022
215	E-23	Wind Sifter	Lights	N	Outside		٧	Cover			В	401.7	4,017	0.002200 4	0.0024	0.0004	0.0044	0.000740 ^d	0.0001	0.0015	0.000050 ^d	0.0000	0.0001
216	E-23	Wind Sifter	Residue	N	Outside		٧	Wind Sifter	100%	100%	В	2,285.1	22,851	0.002200 d	0.0136	0.0025	0.0000	0.000740 ^d	0.0008	0.0000	0.000050 ^d	0.0001	0.0000

Table 3-3 - Non-Ferrous Material Processing - Particulate Emissions General III, LLC - Chicago, Illinois

Max Monthly Thruput ECS Enc. PM ECS Enc. PM ECS Enc. PM 80.00% 80.00% 80.00% Control Eff Control Eff Control Eff 25,800 ton/mo Annual Throughput DC PM_{2.5} DCPM DC PM₁₈ 99.90% 99.00% 98.00% Control Eff **Control Eff Control Eff** 258,000 tpy

A		c	0	T.		<u> </u>	н			ĸ	L.	N_		F	Q_	A	5		V	W	<u> </u>		AA
Row		ent Generating Emissions	Material Conveyed	Moisture > 1.5% Y / N	Transfer Point Location (Inside / Outside)	Conveyor	Transfer Point Controlled (Y/N)	Type of Transfer Point Control	Dust Pickup Capture Eff. (%)	Dust Control Eff. (%)	Emission Factor Source	Mate Throug Rat	ghput	lb/ton	PR Emiss		tpy	E lb/ton	PM10 missions ton/mo	tpy		PM2.5 missions ton/mo	tpy
<u> </u>	ID#	Description				Covered								0.003000	0.0049	0.0009	0.0090	0.001100	0.0003	0.0033	0.000167	0.0001	0.0005
217	E-27	Magnetic Separation	Residue	N N	Inside		N	ECS Enclosure	100%	Bldg Eff.	^	3,003.9	30,039	0.003000	0.0049	0.0009	0.0090	0.001100	0.0003	0.0033	0.000167	0.0001	0.0003
218	E-27	Magnetic Separation	Ferrous	N	Outside		N	NA		E11.	Α	92.1	921	0.003000 4	0.0008	0.0001	0.0014	0.001100 4	0.0001	0.0005	0.000167 d	0.0000	0.0001
219	E-28	Eddy Current Separator	Residue	N	Outside		N	NA			A	2,635.3	26,353	0.003000 4	0.0215	0.0040	0.0395	0.001100 4	0.0014	0.0145	0.000167 4	0.0002	0.0022
220	E-28	Eddy Current Separator	Zorba	N	Outside		N	NA.			A	368.6	3,686	0.003000 4	0.0030	0.0006	0.0055	0.001100 d	0.0002	0.0020	0.000167 ^d	0.0000	0.0003
221	E-34	Magnetic Separation	Residue	N	Inside		N	ECS Enclosure	100%	Bldg Eff.	A	2,414.1	24,141	0.003000	0.0039	0.0007	0.0072	0.001100	0.0003	0.0027	0.000167	0.0000	0.0004
222	E-34	Magnetic Separation	Residue	N	Inside		N	ECS Enclosure	100%	Bldg Eff.	^	2,414.1	24,141	0.003000	0.0039	0.0007	0.0072	0.001100	0.0003	0.0027	0.000167	0.0000	0.0004
223	E-35	Eddy Current Separator	Zorba	N	Outside		N	NA .			^	552.9	5,529	0.003000 d	0.0045	0.0008	0.0083	0.001100 4	0.0003	0.0030	0.000167 d	0.0002	0.0005
224	E-35	Eddy Current Separator	Residue	N	Outside		N	NA			A	1,861.3	18,613 885	0.003000 4	0.0152	0.0028	0.0279	0.008700 4	0.0004	0.0038	0.001317 4	0.0001	0.0006
225	E-40	Separator	Lights Zuric	N	Outside	ļ	N N	NA.			8	353.8	3,538	0.025000 4	0.0240	0.0011	0.0442	0.008700 4	0.0015	0.0154	0.001317 d	0.0002	0.0023
226	E-40	Separator	Fleavies Zuric	N	Outside		N	NA			<u> </u>	129.0	1,290	0.025000	0.0240	0.0016	0.0161	0.008700 4	0.0006	0.0056	0.001317 d	0.0001	0.0008
227	€-40	Separator	Lights Zuric	N	Outside		N	NA			,	350.1	3,501	0.025000 d	0.0238	0.0044	0.0438	0.008700 4	0.0015	0.0152	0.001317 4	0.0002	0.0023
228	E-41	Separator	Lights	1.5% °	Outside		N	NA NA			Drop	18.4	184	0.00761 4	0.0004	0.0001	0.0007	0.00360 *	0.0000	0.0003	0.00054 °	0.0000	0.0001
229	E-41 E-42	Separator drop to container	Heavies Out of SSI	1.5% ·	Outside		N N	NA NA	<u> </u>		A	202.7	2,027	0.003000 *	0.0017	0.0003	0.0030	0.001100 4	0.0001	0.0011	0.000167 d	0.0000	0.0002
230	E-42	Low speed shredder for size reduction Vibratory Feeder	Residue	N	Inside		 N	ECS	100%	Bldg	A	995.1	9,951	0.003000	0.0016	0.0003	0.0030	0.001100 1	0.0001	0.0011	0.000167 1	0.0000	0.0002
232	E-44		Zorba	1.5% *	Inside		N	Enclosure		Eff.	Orop	184.3	1,843	0.00760	0.0038	0.0007	0.0070	0.00360	0.0003	0.0033	0.00050	0.0000	0.0005
	E-44	Eddy Current Separator drop to stockpile	Residue	N N	Outside		N N	NA NA		ļ	A	810.9	8,109	0.003000 4	0.0066	0.0012	0.0122	0.001100 d	0.0004	0.0045	0.000167 4	0.0001	0.0007
233	<u> </u>	Eddy Current Separator	Heavier	N	Outside	_	n n	NA NA			. 8	460.7	4,607	0.025000 *	0.0313	0.0058	0.0576	0.008700 d	0.0020	0.0200	0.001317	0.0003	0.0030
234	E-46	Separator	Zorba Lights Zorba		Outside	ļ.—	N N	NA NA		ļ	3	92.1	921	0.025000 4	0.0063	0.0012	0.0115	0.008700 d	0.0004	0.0040	0.001317 d	0.0001	0.0006
235	E-47	Separator	Zorba	N N	Outside		N N	NA NA	ļ		В	995.1	9,951	0.025000 d	0.0675	0.0124	0.1244	0.008700 4	0.0043	0.0433	0.001317 4	0.0007	0.0066
236	E-47	Separator Separator	Heavles	N	Outside		N N	NA NA			8	313.3	3,133	0.025000 d	0.0213	0.0039	0.0392	0.008700 4	0.0014	0.0136	0.001317 d	0.0002	0.0021
237	E-47	Separator	Zorba Lights Zorba	N	Outside	ļ	N	NA.		 	8	55.3	553	0.025000 °	0.0038	0.0007	0.0069	0.008700 4	0.0002	0.0024	0.001317 d	0.0000	0.0004
	E-47		Light Zorba	N	Outside		N N	NA NA			В	110.6	1,106	0.025000 d	0.0075	0.0014	0.0138	0.008700 d	0.0005	0.0048	0.001317 ⁴	0.0001	0.0007
239		Separator Transfer Consumor	Residue	Ň	Inside	<u> </u>	N N	ECS	100%	Bldg	A	3,003.9	30,039	0.003000	0.0049	0.0009	0.0090	0.001100	0.0003	0.0033	0.000167	0.0001	0.0005
240	E-49	Transfer Conveyor	onto ECS To infeed SS		Outside	<u> </u>	- "	Enclosure	1007	Eff	Α	202.7	2,027	0.000140 d	0.0001	0.0000	0.0001	0.000046 4	0.0000	0.0000	0.000013 4	0.0000	0.0000
241	E-50	Air Vibe		1.5%			N	NA NA	-		Drop	14.7	147	0.00760	0.0003	0.0001	0.0006	0.00360	0.0000	0.0003	0.00050	0.0000	0.0000
242	ECS	Eddy Current Separator drop to container	Zorba		Inside						Orop	66.3	663	0.00760	0.0014	0.0003	0.0025	0.00360	0.0001	0.0012	0.00050	0.0000	0.0002
243	ECS	Eddy Current Separator drop to container June - 0 1/27/20	Zorba	1.5% *	Inside		N	NA_			Urop)	00.3	903	0.00760	0.0014	0.0003	0.0025	0.00300	0.0001	0.0012	0.0000		ibles - F

Max Monthly Thruput 25,800 ton/mo	ECS Enc. PM Control Eff	80.00%	ECS Enc. PM Control Eff	80.00%	ECS Enc. PM Control Eff	80.00%
Annual Throughput 258,900 tpy	DC PM Control Eff	99.90%	DC PM ₃₀ Control Eff	99.00%	DC PM ₂₃ Control Eff	98.00%

A_		ć	Ď	ξ	F	6	н	- 1	1		L.	- 4	0	P	a	R	5	ī	٧	w_	., х	- 2	AA
Row	Equipme	ent Generating Emissions	Material	Moisture > 1.5%	Point Location (Inside /	Conveyor	Transfer Point Controlled	Point	Dust Pickup Capture Eff.	Control Eff.	Emission Factor	Throu	terial ghput tes		Pi Emis:				PM10 missions			PM2.5 Emissions	
	1D#	Description	Conveyed	Y/N	Outside)	Covered	(Y/N)	Control	(%)	(%)	Source	ton/mo	tpy	lb/ton	lb/hr	ton/mo	tpy	lb/ton	ton/mo	tpy	lb/ton	ton/mo	tpy
244	End Loader	Orop ASR into feed hopper	Residue into Hopper	N	Outside		Y	Cover			D	25,800.0	258,000	0.000204 4	0.0143	0.0026	0.0264	0.000100 d	0.0013	0.0129	0.000015 d	0.0002	0.0020
245	End Loader	load waste to truck	Waste	N	Outside		N	NA			D	20,046.6	200,466	0.000204	0.0111	0.0020	0.020\$	0.000100	0.0010	0.0100	0.000015	0.0002	0.0015
246	SC-001	Supplemental Conveyor	Residue								A	5,805.0	58,050	0.003000	0.0473	0.0087	0.0871	0.001100	0.0032	0.0319	0.000167	0.0005	0.0048
247	SC-002	Supplemental Conveyor	Residue								A	5,805.0	58,050	0.003000	0.0473	0.0087	0.0871	0.001100	0.0032	0.0319	0.000167	0.0005	0.0048
248	SC-003	Supplemental Conveyor	Residue								A	2,705.3	27,053	0.003000	0.0220	0.0041	0.0406	0.001100	0.0015	0.0149	0.000167	0.0002	0.0023
249	SC-004	Supplemental Conveyor	Residue								A	2,705.3	27,053	0.003000	0.0220	0.0041	0.0406	0.001100	0.0015	0.0149	0.000167	0.0002	0.0023
250	SC-005	Supplemental Conveyor	Residue								Α	20,046.6	200,466	0.003000	0.1632	0.0301	0.3007	0.001100	0.0110	0.1103	0.000167	0.0017	0.0167
251	SC-006	Supplemental Conveyor	Residue								A	20,046.6	200,466	0.003000	0.1632	0.0301	0.3007	0.001100	0.0110	0.1103	0.000167	0.0017	0.0167
										Totals Honf Material Handili					4.58	0.89	8.84		0.42	4.21		0.19	1.85
									Mat	Totals Noni terial Handling F		ilons		0.83% 5	0.04	0.01	0.07				om June 2018 (ferrous plant P		

a Material moisture content (%) for light materials - AP-42, Table 13.2.4-1 for crushed limestone - (conservative).

b Uncontrolled emission factor calculated according to material drop equation in AP-42, Section 13.2.4.3. Emissions calculated with control Eff. factor included for source being inside of a building.

c Uncontrolled emission factor calculated according to material drop equation in AP-42, Section 13.2.4.3.

d Uncontrolled particulate matter emission factors from AP-42, Table 11.19.2-2 for conveying. If moisture is greater than 1.5% by weight, use controlled emission factors.

Uncontrolled particulate matter emission factors from AP-42, Table 11.19.2-2 for screening. If moisture is greater than 1.5% by weight, use controlled emission factors.

f Sources located inside the Fines Building emit to atmosphere through Dust Collection DC-01. Emissions are estimated by multiplying the DC air flow rate of 12,000 c/m by a grain loading of 0.005 gr/dscf.

g Modeled total metal HAPs emissions rate expressed as as percent of estimated PM emissions from Non-Ferrous material handling.

Table 3-3 - Non-Ferrous Material Processing - Particulate Emissions General III, LLC - Chicago, Illinois

Point

Location

(Inside /

Outside)

	Max Monthly Thruput 25,800 ton/mo	ECS Enc. PM Control Eff		80.00%	ECS Enc. PM Control Eff	80.0	10%	ECS Enc. PM Control Eff	•	0.00%
	Annual Throughput 258,000 tpy	DC PM Control Eff		99.90%	DC PM ₃₈ Control Eff	99.0	10%	DC PM _{2,3} Control Eff	•	4.00%
ι	N 0		Q	R	\$ 1	¥	w	X	l	AA
Ernission	Material Throughput		PfV	4		PM10			PM2.5	

Emissions

tpy lb/ton ton/mo tpy

Emissions

lb/ton ton/mo tpy

Emissions

lb/hr ton/mo

lb/ton

Material D	Drop PM E	guations (AP-42,	Section	13.

Material

 $E = k (0.0032) \times (U/5)^{1.3}$

ID#

E = emission factor (lb/ton of material dropped)

k = particle size multiplier (dimensionless)

Description

U = mean wind speed

> 1.5%

Y/N

 $(M/2)^{1.4}$

https://www.timeanddate.com/weather/usa/chicago/climate

M * material moisture content [%]

9.0

mph - annual average wind speed for Chicago (Midway Airport)

0.74

PM - AP-42, Section 13.2.4, for particle size < 30 um

0.35

PM - AP-42, Section 13.2.4, for particle size < 10 um

0.053

PM - AP-42, Section 13.2.4, for particle size < 2.5 um

1.5

% for light materials - AP-42, Table 13.2.4-1 for crushed limestone - (conservative)

Transfer

Point

{Y/N}

Type of

Transfer

Point

Control

Dust Pickus

(%)

Dust

(%)

Factor

Source

Rates

tpy

ton/mo

Capture Eff. Control Eff.

The material moisture content for stockpile drop emission calculations varies by material - see Column E above.

Summary of Non-Ferrous Material Processing System Emission Points and Emissions by Emission Factor Type

					PM Emission	B	P	M10 Emissios	15	PI	VI2.5 Emissio	ns
# of	Non-Ferrous Processing System	Pro	cess Ratu	Factor			Factor			Factor		
Pts	Emission Points	tpm	tpy	lb/ton	tpm	tpy	lb/ton	tpm	tpm	lb/ton	tpm	tpy
88	Conveyor Transfer Points Uncontrolled	338,876	3,388,757	0.0030	0.4334	4.3339	0.0011	0.1589	1.5888	0.000167	0.0241	0.2406
11	Conveyor Transfer Points Controlled	57,210	572,103	0.00014	0.0036	0.0363	0.000046	0.0012	0.0118	0.000013	0.0003	0.0034
13	Screening - Uncontrolled	13,670	136,702	0.0250	0.1709	1.7088	0.0087	0.0594	0.5944	0.001317	0.0090	0.0900
12	Screening Controlled	42,209	422,085	0.0022	0.0414	0.4140	0.00074	0.0139	0.1394	0.00005	0.0009	0.0093
2	Truck Loadout	45,847	458,466	0.000204	0.0047	0.0469	0.0001	0.0023	0.0229	0.00001\$	0.0004	0.0035
13	Stockpile Drops	23,338	233,378	Varies	0.0858	0.8581	Varies	0.0406	0.4058	Varies	0.0062	0.0616
			Total Emissions		0.75	7.40	-	0.28	2.76	-	0.04	0.41

Non-Ferrous Processing Building # of Pts	Dust Co Emiss PM/PM1	ions
51	,	
30	All emi controlled	
8	collector as	nd vented
8.	to atmos	•
0	PIM:	10.
14		
	0.14	1.44

Table 3-4 - Summary of Estimated Fugitive Particulate Emissions from Stockpile Operations* General III, LLC - Chicago, Illinois

		Stock Pile		No of	Ina	ctive Emissi	ons	Ac	tive Emissio	ins	Tot	el PM Emiss	lons
Plant	Stock Pile	Area Acres	Control Factor ^b	Active Days day/yr ^c	PM tpy ^{d,h}	PM10 tpy ^{e,h}	PM2.5 tpy ^{f,h}	PM tpy ^{d,h}	PM10 tpy ^{s,h}	PM2.5 tpy ^{t/h}	PM tpy ^{sh}	PM10 tpy ^{sch}	PM2.5 tpy ^{£h}
	Poker North	0.0115	0.33	312	0.0004	0.0002	0.0000	0.0078	0.0039	0.0006	0.0082	0.0041	0.0006
	Poker South	0.0115	0.33	312	0.0004	0.0002	0.0000	0.0078	0.0039	0.0006	0.0082	0.0041	0.0006
	ASR	0.2541	1.00	312	0.0236	0.0118	0.0018	0.5232	0.2616	0.0396	0.5468	0.2734	0.0414
ŧ	Ferrous North	0.3630	1.00	312	0.0337	0.0169	0.0026	0.7475	0.3738	0.0566	0.7812	0.3907	0.0592
Plant	Ferrous South	0.3630	1.00	312	0.0337	0.0169	0.0026	0.7475	0.3738	0.0566	0.7812	0.3907	0.0592
Ferrous	Fluff (Bin)	0.0161	0.33	312	0.0005	0.0003	0.0000	0.0109	0.0055	0.0008	0.0114	0.0058	0.0008
Ferr	Raw Material Truck Dumping (Drop 1)	0.3630	1.00	312	0.0337	0.0169	0.0026	0.7475	0.3738	0.0566	0.7812	0.3907	0.0592
	Raw Material Movement from Truck Dumping Area to Stockpile (Drop 2)	0.1815	1.00	312	0.0168	0.0084	0.0013	0.3737	0.1869	0.0283	0.3905	0.1953	0.0296
	FE from E-02	0,0047	0.33	312	0.0001	0.0001	0.0000	0.0032	0.0016	0.0002	0.0033	0.0017	0.0002
	5* + Zorba	0,0189	0.33	312	0.0006	0.0003	0.0000	0.0128	0.0064	0.0010	0.0134	0.0067	0.0010
펕	2-1/2" - 5" Zorba	0.0189	0.33	312	0.0006	0.0003	0.0000	0.0128	0.0064	0.0010	0.0134	0.0067	0.0010
Plant	5/8" - 2-1/2" Zorba	0.0189	0.33	312	0.0006	0.0003	0.0000	0.0128	0.0064	0.0010	0.0134	0.0067	0.0010
Nonferrous	Tailings	0.0195	0.33	312	0.0006	0.0003	0.0000	0.0133	0.0067	0.0010	0.0139	0.0070	0.0010
lferi	Open	0.0195	0.33	312	0.0006	0.0003	0.0000	0.0133	0.0067	0.0010	0.0139	0.0070	0.0010
2	Wire	0.0195	0.33	312	0.0006	0.0003	0.0000	0.0133	0.0067	0.0010	0.0139	0.0070	0.0010
	Wire Rich Solids	0.0195	0.33	312	0.0006	0.0003	0.0000	0.0133	0.0067	0.0010	0.0139	0.0070	0.0010
	Zurick	0.0195	0.33	312	0.0006	0.0003	0.0000	0.0133	0.0067	0.0010	0.0139	0.0070	0.0010
	Waste	0.0868	0.33	312	0.0027	0.0014	0.0002	0.0590	0.0295	0.0045	0.0617	0.0309	0.0047
	·			Totals							3.4834	1.7425	0.2635

a. Stockpile emissions calculation from TCEQ for crushed stone downloaded August 2019.

https://www.tc-q.texas.gov/assets/public/permitting/air/Guidance/NewSource/leview/em/ss-calc-rock1.xlsx

3.3087

b. Control Factor of 0.33 (67.5% control) for partial enclosure consisting of walls on three sides of bin. Control Factor of 1.0 for no control.

0.1747

c. Assume number of active days to be 6 days per week and 52 weeks per year and inactive days to be 1 day per week and 52 weeks per year.

3.4834

d. From TCEQ Guidance

Stockpile emission calculation:

PM Emission Rate (tpy) = [(inactive day PM EF x No. of inactive days) x stockpile area/2000 x control factor] + [(active day PM EF x No. of active days) x (stockpile area/2000) x control factor]

Inactive Day PM Emission Factor = 3.50 lb-PM/acre-day from TCEQ rock crushing emission calculation spreadsheet

Active Day PM Emission Factor • 13.20 lb-PM/acre-day from TCEQ rock crushing emission calculation spreadsheet.

e. PM10 emissions are half of PM emission per TCEQ Air Permits Division, Rock Crushing Emission Calculation spreadsheet.

f. Where PM2.5 emission factors are not provided in AP-42, 11-19.2-2, a ratio of aerodynamic particle size multipliers from AP-42, 13.2.45 is used to estimate PM2.5 emission factors. PM2.5 EF = {PM10 EF/.035) x .0053

g. Total particulate emissions is the sum of inactive day emissions plus active day emissions.

h. Hourly emissions, if required, would be based on 8,760 hr/yr.

Control Method	Control Eff. (%)	Control Factor (1 - ctrl eff)
None	0	1
Wet material	50	0.5
Water	70	0.3
Chemicals/foam	80	0.2
Partial Enclosure®	50-85 = average of 67.5	0.5-0.15 = average of 0.33
Full enclosure*	90	0,1
Enclosed by building*	90	0.1
Washed Sand/gravel	95	0.05
Washed Sand/gravel with water spray	98.5	0.015
Manufacturer Rating	0	0

Table 3-5A - Fugitive PM Emissions - Paved Roads General III, LLC - Chicago, Illinois

Paved Road Fugitive Emission Calculation Procedure

 $E_{\text{ext}} = (k * (sL)^{0.91} * (W)^{1.02}) * (1 - (P/(4N))$ equation does not include brake and tire wear.

where:

Size specific annual average particulate emission factor (lb/VMT) k = See Below Particle size multiplier lb/VMT (AP-42 Table 13.2.1-1) mean controlled silt content, % sl= (AP42 Table 13.2.1-3 Jan 2011 - Iron & Steel Range: 0.09 to 79; mean 9.7-g/m2) Mean vehicle weight, tons (use weighted average where available) W = See Below Number of precipitation days (>0.01 in) per year (AP42 Fig 13.2.1.2 Jan 2011 - Chicago, IL) Averaging Period, annual N= 365 Control Eff % = 75.00% Emission Control Efficiency for sweeping or watering **Daily Operating Hours** 18 Hours per Year Days /Week **Weekly Operating Days** 6 Weeks/Year Annual Operating Weeks = 52 Annual Operating hours = 5,616 Hours per Year

Material Hauling				PM	Particle size mu	itiptier (k) =	0.011
	Mean Vehicle Weight	Miles Traveled	Uncontrolled	Controlled	Annual Average Controlled Emissions		Annual PM Emissions
Vehicle Type	(tons)	per Day	lb/VMT	Ib/VMT	(lb/day)	(ton/month)	tpy
Peddler Scrap Deliveries	3.45	133.23	0.2823	0.0706	9.406	0.147	1.47
Truck Scrap Delivery to North Scrap Stockpile	24.50	23.24	2.0848	0.5212	12.113	0.189	1.89
Truck Scrap Delivery to South Scrap Stockpile	24.50	39.99	2.0848	0.5212			3.25
Ferrous Scrap Shipment from North Stockpile	26.75	14.34	2.2802	0.5701			1.28
Ferrous Scrap Shipment from South Stockpile	26.75	21.20	2.2802	0.5701	12.089	0.189	1.89
Ferrous Waste Shipped Off Site by Truck	27.75	0.29	2.3672	0.5918	0.170	0.003	0.03
Non Ferrous Products Shipped Off Site by Truck	26.75	1.25	2.2802	0.5701	0.714	0.011	0.11
Non Ferrous Waste Shipped Off Site by Truck	27.75	9.72	2.3672	0.5918	5.752	0.090	0.90
WA500 Loaders	36.49	10.45	3.1302	0.7826	8.178	0.128	1.28
WA300 Loaders	16.60	4.75	1.4015	0.3504	1.664	0.026	0.26
Weighted Average Weight:	14.44	Subtotals:	College College		79.104	1.234	12.34

Aaterial Hauling				PM ₁₀	Particle size m	ultiplier (k) =	0.0022
	Vehide Weight	Miles Traveled	Uncontrolled	Controlled	1	Average d Emissions	Annual PM ₁₀ Emissions
Vehicle Type	(tons)	per Day	Ib/VMT	lb/VMT	(lb/day)	(ton/month)	tργ
Peddler Scrap Deliveries	3.45	133.23	0.0565	0.0141	1.879	0.029	0.29
Truck Scrap Delivery to North Scrap Stockpile	24.50	23.24	0.4170	0.1043	2.424	0.038	0.38
Truck Scrap Delivery to South Scrap Stockpile	24.50	39.99	0.4170	0.1043	4.171	0.065	0.65
Ferrous Scrap Shipment from North Stockpile	26.75	14.34	0.4560	0.1140	1.634	0.026	0.26
Ferrous Scrap Shipment from South Stockpile	26.75	21.20	0.4560	0.1140	2.417	0.038	0.38
Ferrous Waste Shipped Off Site by Truck	27.75	0.29	0.4734	0.1184	0.034	0.001	0.01
Non Ferrous Products Shipped Off Site by Truck	26.75	1.25	0.4560	0.1140	0.143	0.002	0.02
Non Ferrous Waste Shipped Off Site by Truck	27.75	9.72	0.4734	0.1184	1.151	0.018	0.18
WASOO Loaders	36.49	10.45	0.6260	0.1565	1.635	0.026	0.26
WA300 Loaders	16.60	4.75	0.2803	0.0701	0.333	0.005	0.05
Weighted Average Weight:	14.44	Subtotals:			15.821	0.247	2.47

Material Hauling				PM _{2.5}	Particle size mu	iltiplier (k) =	0.00054
	Vehicle Weight	Miles Traveled	Uncontrolled	Controlled		Average I Emissions	Annual PM ₂₃ Emissions
Vehicle Type	(tons)	per Day	Ib/VMT	lb/VMT	(lb/day) (ton/month) 0.466 0.007 0.595 0.009		tpy
Peddler Scrap Deliveries	3.45	133.23	0.0139	0.0035	0.466	0.007	0.07
Truck Scrap Delivery to North Scrap Stockpile	24.50	23.24	0.1023	0.0256	0.595	0.009	0.09
Truck Scrap Delivery to South Scrap Stockpile	24.50	39.99	0.1023	0.0256	1.024 0.016		0.16
Ferrous Scrap Shipment from North Stockpile	26.75	14.34	0.1119	0.0280	0.401 0.006		0.06
Ferrous Scrap Shipment from South Stockpile	26.75	21.20	0.1119	0.0280	0,594	0.009	0.09
Ferrous Waste Shipped Off Site by Truck	27.75	0.29	0.1162	0.0291	0.008	0.000	0.00
Non Ferrous Products Shipped Off Site by Truck	26.75	1.25	0.1119	0.0280	0.035	0.001	0.01
Non Ferrous Waste Shipped Off Site by Truck	27.75	9.72	0.1162	0.0291	0.283	0.004	0.04
WA500 Loaders	36.49	10.45	0.1537	0.0384	0.401	0.006	0.06
WA300 Loaders	16.60	4.75	0.0688	0.0172	0.082	0.001	0.01
Weighted Average Weight:	14.44	Subtotals:	Secretary St.	0	3,889	0.061	0.61

Table 3-5B - Fugitive PM Emissions - Unpaved Roads General III, LLC - Chicago, Illinois

Unpaved Industrial Road Fugitive Emission Calculation Procedure

5% of loader miles are assumed to be on unpaved roads

 $E_{ext} = [(k * (s/12)^a * (W/3)^b]*[(N-P)/N]$

Equation 1a & 2, AP-42 13.2.2-2 (Nov 2006)

where:

E _{ext} =		Size specific annual ave	rage particulate emissio	on factor (lb/Vi	VIT)	
k =	See Below	Particle size multiplier I	b/VMT (AP-42 Table 13.	2.2-2)		
s=	6	mean material silt cont (AP42 Table 13.2.2-1 N		roduction: mea	ın = 6.0%)	
W =	See Below	Mean vehicle weight, t	ons (use weighted average	age where ava	ilable)	
P =	120	Number of precipitation	n days (>0.01 in) per yea	or (AP42 Fig 13	.2.1.2 Jan 2011	- Chicago, IL)
N =	365	Averaging Period, annu	al			
Control Eff % =	50.00%	Emission Control Efficie	ency for watering			
Daily Operating Hours	18	Hours per Year				
Weekly Operating Days	6	Days /Week	(AP42 Table :	13.2.2-2 Nov 20	06 - Industrial Ro	ads (Eq. 1a)
Annual Operating Weeks =	52	Weeks/Year	EQ 1a Constants	PM	PM10	PM2.5
Annual Operating hours =	5,616	Hours per Year	a =	0.7	0.9	0.9
		-	b=	0.45	0.45	0.45

Material Hauling				PM	Particle size mu	iltiplier (k) =	4.9
	Vehicle Weight	Miles Traveled	Uncontrolled	Controlled		Average I Emissions	Annual PM Emissions
Vehicle Type	(tons)	per Day	lb/VMT	Ib/VMT	(lb/day)	(ton/month)	tpy
WA500 Loaders	36.49	0.55	6.2323	3.1162	1.714	0.027	0.27
WA300 Loaders	16.60	0.25	4.3721	2.1861	0.547	0.009	0.09
Weighted Average Weight:	30.28	Subtotals:	8 // (000)		2.260	0.035	0.35

Material Hauling				PM ₁₀	Particle size mu	ultiplier (k) =	1.5
	Vehicle Weight	Miles Traveled	Uncontrolled	Controlled		Average d Emissions	Annual PM, Emissions
Vehicle Type	(tons)	per Day	lb/VMT	Ib/VMT	(lb/day)	(ton/month)	tpy
WA500 Loaders	36.49	0.55	1.6609	0.8305	0.457	0.007	0.07
WA300 Loaders	16.60	0.25	1.1651	0.5826	0.146	0.002	0.02
Weighted Average Weight:	30.28	Subtotals:			0.602	0.009	0.09

Naterial Hauling				PM _{2.5}	Particle size m	ultiplier (k) =	0.15
****	Vehicle Weight	Miles Traveled	Uncontrolled	Controlled		Average d Emissions	Annual PM., Emissions
Vehicle Type	(tons)	per Day	lb/VMT	Ib/VMT	(lb/day)	(ton/month)	tpy
WAS00 Loaders	36.49	0.55	0.1661	0.0831	0.046	0.001	0.01
WA300 Loaders	16.60	0.25	0.1165	0.0583	0.015	0.000	0.00
Weighted Average Weight:	30.28	Subtotals:		-	0.060	0.001	0.01

Table 3-6 Miscellaneous Natural Gas Fired Environmental Heaters
General III, LLC - Chicago, Illinois

10

1	Pollutant Emission Factor ^a	Total Max Firing Ra NG HHV = 1 Annual Gas Consumpt	
Pollutant	lb/MMscf	ton/mo ^e	tpy
Nitrogen Oxide (NOx)	100	0.32	3.22
Carbon Monoxide (CO)	84	0.27	2.71
Total Filterable PM	1.9	0.01	0.06
Total Condensable PM	5.7	0.02	0.18
Total Particulate Matter	7.6	0.02	0.24
Sulfur Dioxide (SO ₂)	0.6	0.00	0.02
Volatile Organic Compounds (VOC)	5.5	0.02	0.18
Greenhouse Gas Emissions			
Carbon Dioxide (CO ₂)	120,174	387.03	3,870.31
Methane (CH₄)	2.2649	0.0073	0.07
Nitrous Oxide (N ₂ O)	0.2265	0.0007	0.01
Carbon Dioxide Equivalents (CO₂e) c		387.43	3,874.31

a. AP-42 Emission factors from Tables 1.4-1 and 1.4-2.

b. Unit heaters are estimated to operate 6,570 hr/year.

c. Global Warming Potentials (GWPs) for CO₂, CH₄ and N₂O are 1, 25, and 298 respectively (40 CFR 98 Subpart A).

Table 3-6 Miscellaneous Natural Gas Fired Environmental Heaters
General III, LLC - Chicago, Illinois

Summary of HAP Emissions from Natural Gas Combustion

HAP ^b	Summary of HAP Emi	Emission Factor ^a		
Y/N	Pollutant	(lb/10 ⁶ scf)	ton/mo	tpy
	Metal HAPs ^c			
Υ	Lead	0.0005	1.61E-06	1.61E-05
Υ	Manganese	3.80E-04	1.22E-06	1.22E-05
Υ	Mercury	2.60E-04	8.37E-07	8.37E-06
Υ	Nickel	2.10E-03	6.76E-06	6.76E-05
Υ	Arsenic	2.00E-04	6.44E-07	6.44E-06
Υ	Beryllium	< 1.20E-05	3.86E-08	3.86E-07
Υ	Cadmium	1.10E-03	3.54E-06	3.54E-05
Υ	Chromium	1.40E-03	4.51E-06	4.51E-05
Υ	Cobalt	8.40E-05	2.71E-07	2.71E-06
Υ	Selenium	< 2.40E-05	7.73E-08	7.73E-07
	Volatile HAPs ^d			
Υ	Toluene	3.40E-03	1.10E-05	1.10E-04
Υ	Hexane	< 1.80E+00	< 5.80E-03	< 5.80E-02
Υ	Anthracene	< 2.40E-06	< 7.73E-09	< 7.73E-08
Υ	Pyrene	5.00E-06	1.61E-08	1.61E-07
Υ	Benzo(g,h,i)perylene	< 1.20E-06	< 3.86E-09	< 3.86E-08
Υ	Indeno(1,2,3-cd)pyrene	< 1.80E-06	< 5.80E-09	< 5.80E-08
Υ	Acenaphthylene	< 1.80E-06	< 5.80E-09	< 5.80E-08
Υ	Benzo(b)fluoranthene	< 1.80E-06	< 5.80E-09	< 5.80E-08
Υ	Fluoranthene	3.00E-06	9.66E-09	9.66E-08
Υ	Benzo(k)fluoranthene	< 1.80E-06	< 5.80E-09	< 5.80E-08
Υ	Chrysene	< 1.80E-06	< 5.80E-09	< 5.80E-08
Υ	Dichlorobenzene	1.20E-03	3.86E-06	3.86E-05
Ý	Formaldehyde	7.50E-02	2.42E-04	2.42E-03
Υ	Benzo(a)pyrene	< 1.20E-06	< 3.86E-09	< 3.86E-08
Υ	Dibenzo(a,h)anthracene	< 1.20E-06	< 3.86E-09	< 3.86E-08
Υ	3-Methylcholanthrene	< 1.80E-06	< 5.80E-09	< 5.80E-08
Υ	Benz(a)anthracene	< 1.80E-06	< 5.80E-09	< 5.80E-08
Υ	7,12-Dimethylbenz(a)anthracene	< 1.60E-05	< 5.15E-08	< 5.15E-07
Υ	Benzene	< 2.10E-03	< 6.76E-06	< 6.76E-05
Υ	Acenaphthene	< 1.80E-06	< 5.80E-09	< 5.80E-08
Υ	Phenanathrene	1.70E-05	5.48E-08	5.48E-07
Υ	Fluorene	2.80E-06	9.02E-09	9.02E-08
Υ	Naphthalene	6.10E-04	1.96E-06	1.96E-05
Υ	2-Methylnaphthalene	2.40E-05	7.73E-08	7.73E-07
	Total HAPs		6.08E-03	6.08E-02
	Maximum Individual HAP	Hexane	5.80E-03	5.80E-02

a. AP-42 Emission factors from Tables 1.4-1 and 1.4-2.

b. Hazardous Air Pollutant (HAP) as defined by Section 112(b) of the Clean Air Act.

c. Metal HAP emission factors from natural gas combustion - AP-42 Emission factors from Tables 1.4-4.

d. Organic HAP emission factors from natural gas combustion - AP-42 Emission factors from Tables 1.4-3.

e. Monthly emissions are assumed to be 10% of annual emissions.

Table 3-7 - Summary of Facility Wide Criteria Pollutant Emissions General III, LLC - Chicago, Illinois

											Facility	Fugitive		Fugitive 1	missions	Facility Wide Emissions
			R'	то					N	lisc	Wide	From S	tockpile	from F	'aved/	with
	R	ro"	Natur	al Gas ^b	Ferrou:	: Plant ^c	Nonferro	us Plant ^d	Natu	ral Gas [£]	Potential ^h	Opera	itions ⁴	Unpave	d Roads [*]	Fugitivies
Pollutant	ton/mo	tpy	ton/mo	tpy	ton/mo	tpy	ton/mo	tpy	ton/mo	tpy	tpy	ton/mo	tpy	ton/mo	tpy	tpy
Oxides of Nitrogen - NOx			0.26	2.57					0.32	3.22	5.79					5.79
Carbon Monoxide - CO	1.29	12.86	0.22	2.16					0.32	2.71	17.72					17.72
Total Particulate Matter - PM	0.94	9.40	0.02	0.20	0.30	2.93	0.89	8.84		0.24	21.61	0.35	3.48	1.27	12.69	37.79
filterable PM less than 10 microns in diameter - PM ₁₀	0.94	9.40	0.02	0.20	0.13	1.25	0.42	4.21	0.00	0.24	15.30	0.17	1.74	0.26	2.56	19.60
Filterable PM less than 2.5 microns in diameter - PM _{2.5}		_	0.02	0.20	0.02	0.23	0.19	1.85	0.00	0.24	2.52	0.03	0.26	0.06	0.62	3.40
Sulfur Dioxide - SO ₂				0.02					0.00	0.02	0.03		1			0.03
Volatile Organic Material - VOM	0.51	5.12		0.14					0.02	0.18	5.44					5.44
Total - HAPs	0.2573	2.5733	0.0049	0.0486	0.0015	0.0143	0.0074	0.0730	0.0061	0.0608	2.7700	0.0021	0.0210	0.0028	0.0281	2.8191
Max Individual HAP		1.5442		0.0463		0.0069		0.0417		0.0580			0.0108	ļ	0.0098	
HAP		HCI		Hexane		Lead		Lead		Hexane	The state of		Mercury		Mercury	
Hexane			1	0.0463	\Box				0.0000	0.0580	0.1043	<u>l</u>				0.1043
Greenhouse Gas Emissions			<u> </u>								0.00					0.00
Carbon Dioxide - CO ₂	—	3,095.91		3,092.72	1					3,870.31	10,058.94					10,058.94
Methane - CH4	†	0.0583		0.0583						0.0729	0.1895		<u> </u>			0.1895
Nitrous Oxide - N ₂ O	 	0.0058		0.0058						0.0073	0.0190	1	l			0.0190
Carbon Dioxide Equivalents - CO ² e		3,099.10		3,095.91						3,874.31	10,069.33		1			10,069.33

a. See Tables 3-1A (VOM and CO), Table 3-1B (PM), and Table 3-1C (HAPs). For the purposes of this application, GHG from combustion of VOM in the RTO is assumed to be equal to GHG from maximum natural gas combustion in RTO.

b. See Table 3-10.

c. See Table 3-2.

d. See Table 3-3.

e. See Table 3-4.

f. See Table 3-5.

g. See Table 3-6.

h. Scrap metal recycling is not one included in one of the 28 industrial quantities identified in PSD rules, there for purposes of PSD, fugitive emissions are not included in PTE.

Table 3-8 - Summary of Facility Wide HAP Emissions General III, LLC - Chicago, Illinois

		roª	1	TO al Gas ⁱ		- DI4 ⁵	N6	Bl¢	Paratra"	0	I	Unpaved		lisc al Gas ^b		ty Wide
Hazardous Air Pollutant	ton/mo	tpy	ton/mo	al Gas"	ton/mo	s Plant ^c tpy	ton/mo	tpy	ton/mo	Operations' tpy	ton/mo	e Road ^e tpy	ton/mo	al Gas"	Tota Ton/mo	I HAP
	1011/1110	47	2011/1110	47	tonymo	7.7	1011/1110	41	(01)1110	47	tony mo	77	tonymo	, , , , , , , , , , , , , , , , , , ,		- 4-7
Volatile HAPs							1								4.005.04	1 225 /
Ethylbenzene	1.33E-04	1.33E-03		-	-				1				-		1.33E-04	1.33E-C
Styrene	2.66E-0S	2.66E-04		 					-						2.66E-05	2.66E-0
Toluene	6.66E-04	6.66E-03	8.75E-06	8.75E-05			ļ		ļ	ļ <u>-</u>		ļ	1.10E-05	1.10E-04	6.86E-04	6.86E-0
Hexane			4.63E-03	4.63E-02									5.80E-03	5.80E-02	1.04E-02	1.04E-0
Anthracene			6.18E-09	6.18E-08									7.73E-09	7.73E-08	1.39E-08	1.39E-0
Tetrachloroethane (PCE)	5.34E-06	5.34E-05	ļ							ļ	ļ			ļ	5.34E-06	5.34E-0
Pyrene			1.29E-08	1.29E-07					<u> </u>			<u> </u>	1.61E-08	1.61E-07	2.90E-08	2.90E-0
m,p-Xylene	2.66E-05	2.66E-04				İ	1	L	1			<u> </u>	<u> </u>	ļ	2.66E-05	2.66E-0
Benzo(g,h,i)perylene			3.09E-09	3.09E-08			<u> </u>		1			<u> </u>	3.86E-09	3.86E-08	6.95E-09	6.95E-0
indeno(1,2,3-cd)pyrene			4.63E-09	4.63E-08									5.80E-09	5.80E-08	1.04E-08	1.04E-0
Acenaphthene	<u> </u>		4.63E-09	4.63E-08]				5.80E-09	5.80E-08	1.04E-08	1.04E-0
Benzo(b)fluoranthene			4.63E-09	4.63E-08				T]				5.80E-09	5.80E-08	1.04E-08	1.04E-0
Fluoranthene			7.72E-09	7.72E-08									9.66E-09	9.66E-08	1.74E-08	1.74E-0
Benzo(k)fluoranthene		1	4.63E-09	4.63E-08	I		1			1			5.80E-09	5.80E-08	1.04E-08	1.04E-0
Chrysene			4.63E-09	4.63E-08			1			1			5.80E-09	5.80E-08	1.04E-08	1.04E-0
Dichlorobenzene	İ		3.09E-06	3.098-05	1		1		1	1		i	3.86E-06	3.86E-05	6.95E-06	6.95E-0
Formaldehyde			1.93E-04	1.93E-03	1		Ì		1	1			2.42E-04	2.42E-03	4.35E-04	4.35E-0
Benzo(a)pyrene			3.09E-09	3.09E-08					1				3.86E-09	3.86E-08	6.95E-09	6.95E-0
Dibenzo(a,h)anthracene	-	 	3.09E-09	3.09E-08	 	 			1			 	3.86E-09	3.86E-08	6.95E-09	6.95E-0
3-Methylcholanthrene			4.63E-09	4.63E-08	 	 	 		_				5.80E-09	5.80E-08	1.04E-08	1.04E-0
Benz(a)anthracene			4.63E-09	4.63E-08		 	_		-				5.80E-09	5.80E-08	1.04E-08	1.04E-0
			4.03E-09 4.12E-08	4.03E-08 4.12E-07	-		 		-		ļ	-	5.15E-08	5.15E-07	9.27E-08	9.27E-0
7,12-Dimethylbenzene(a)anthracen		8.00E-03			 				-							
Benzene	8.00E-04		5.40E-06	5.40E-05	-							-	6.76E-06	6.76E-05	8.12E-04	8.12E-0
_1,1,1-Trichloroethane	4.00E-04	4.00E-03		-	-				1			<u> </u>	-		4.00E-04	4.00E-0
Methylene Chloride	1.20E-04	1.20E-03										!	ļ	ļ	1.20E-04	1.20E-0
Trichloroethene (TCE)	1.33E-04	1.33E-03					ļ					ļ			1.33E-04	1.33E-0
Acenaphthylene			4.638-09	4.63E-08		<u> </u>	ļ <u> </u>						5.80E-09	5.80E-08	1.04E-08	1.04E-0
Phenanthrene			4.38E-08	4.38E-07									5.48E-08	5.48E-07	9.85E-08	9.85E-0
Fluorene		I	7.21E-09	7.21E-08									9.02E-09	9.02E-08	1.626-08	1.62E-0
Naphthalene	I		1.57E-06	1.57E-05									1.96E-06	1.96E-05	3.53E-06	3.53E-C
2-Methylnaphthalene		I	6.18E-08	6.18E-07									7.73E-08	7.73E-07	1.39E-07	1.39E-0
o-Xylene	1.33E-04	1.33E-03	_	1	1		1			1					1.33E-04	1.33E-0
Metal HAPs		•														
			1		T = ====				1							
Lead	2.77E-04	2.77E-03	1.29E-06	1.29E-05	7.09E-04	6.86E-03	4.22E-03	4.17E-02	1.08E-03	1.08E-02	8.42E-04	8.42E-03	1.61E-06	1.61E-05	7.12E-03	7.06E-0
Manganese	3.98E-04	3.98E-03	9.78E-07	9.78E-06	4.31E-04	4.19E-03	1.57E-03	1.56E-02	5.63E-04	5.63E-03	9.79E-04	9.79E-03	1.22E-06	1.22E-05	3.95E-03	3.92E-0
Mercury	8.93E-03	8.93E-02	6.69E-07	6.69E-06	3.01E-06	2.91E-05	8.34E-06	8.26E-05	3.91E-06	3.91E-05	3.40E-06	3.40E-05	8.37E-07	8.37E-06	8.95E-03	8.95E-0
Nickel	6.59E-04	6.59E-03	5.40E-06	5.40E-05	6.09E-05	5.93E-04	2.78E-04	2.75E-03	8.32E-05	8.32E-04	1.875-04	1.87E-03	6.76E-06	6.76E-05	1.28E-03	1.28E-0
Antimony	2.25E-04	2.25E-03		4.7	3.48E-07	3.42E-06	1.08E-06	1.07E-05	4.09E-07	4.09E-06	1.46E-06	1.46E-05			2.28E-04	2.288-0
Arsenic	7.94E-05	7.94E-04	5.15E-07	5.15E-06	8.32E-07	8.17E-06	4.03E-06	3.99E-05	1.08E-06	1.08E-05	3.16E-06	3.16E-05	6.44E-07	6.44E-06	8.97E-05	8.96E-0
Beryllium	1.78E-05	1.78E-04	3.09E-08	3.09E-07	1.00E-06	9.96E-06	1.08E-06	1.07E-05	9.18E-07	9.18E-06	6.268-06	6.26E-05	3.86E-08	3.86E-07	2.71E-05	2.71E-0
Cadmium	8.51E-05	8.51E-04	2.83E-06	2.83E-05	7.70E-06	7.45E-05	3.09E-05	3.06E-04	1.07E-05	1.07E-04	9.17E-06	9.17E-05	3.54E-06	3.54E-05	1.50E-04	1.49E-0
Chromium	6.90E-04	6.90E-03	3.60E-06	3.60E-05	8.57E-05	8.35E-04	3.80E-04	3.76E-03	1.15E-04	1.15E-03	3.42E-04	3.42E-03	4.51E-06	4.51E-05	1.62E-03	1.61E-
Cobalt	2.13E-05	2.13E-04	2.16E-07	2.16E-06	9.33E-06	9.05E-05	4.98E-05	4.93E-04	1.36E-05	1.36E-04	1.80E-05	1.80E-04	2.71E-07	2.71E-06	1.12E-04	1.12E-0
	2.43E-02	2.43E-04	2.102-0/	2.101-00	1.65E-04	1.60E-03	8.34E-04	8.26E-03	2.32E-04	2.32E-03	4.19E-04	4.19E-03	2./10-0/	2.716-06	2.59E-02	2.59E-0
Phosphorus		1.21E-02	6.18E-08	6.18E-07			1.08E-06	1.07E-05	4.09E-07	4.09E-06	1.46E-06	1.46E-05	7.73E-08	7.73E-07	1.21E-03	1.21E-0
Selenium	1.21E-03	1.216-02	0.100-08	0.186-07	3.48E-07	3.42E-06	1.000-00	1.U/E-U3	T-4.03E-07	4.03E-00	1.400-00	1.400-03	7.735-08	1./36-0/	1.215-05	1.2164
Inorganic Acid HAPs		La gamino												r	4.545.00	4.545.4
Hydrochloric Acid	1.54E-01	1.54E+00	ļ				-								1.54E-01	1.54E+0
Hydrofluoric Acid	6.36E-02	6.36E-01			<u> </u>		<u> </u>		<u> </u>						6.36E-02	6.36E-0
Total HAPs	2.57E-01	2.57E+00	4.86E-03	4.86E-02	1.47E-03	1.43E-02	7.37E-03	7.30E-02	2.10E-03	2.10E-02	2.81E-03	2.81E-02	6.08E-03	6.08E-02	2.82E-01	2.82E+
									111	M	aximum Indh	vidual HAP	P	hosphorus	2.59E-02	2.59E-0

a. Uncontrolled organic compound emission factors (lb/ton), as presented in ISRI Title V Applicability Workbook, Table D-21F, were multiplied by proposed permit throughput limits, adjusted for

for 98% control by the RTO. Metal HAP emission factors were taken from the November 2018 emission testing of the RTO at Gil, LLC in Chicago, Illinois.

b. HAP emissions from natural gas combustion as identified in AP-42, Tables 1.4-3 and 1.4-4.

c. Metal HAP emissions calculated by multilying the weight % of metal HAP in RTO particulate emission by the total PM emissions from identified emission unit...

d. HAP emission factors from natural gas combustion from AP-42, Tables 1.4-3 and 1.4-4 adjusted to propane on the basis of 1,020 Btw/cf (see footnotes on Table 5).

Updated Emission Estimates Construction Permit Application 19090021 for a New Scrap Metal Recycling Facility

General III, LLC 11600 South Burley Chicago, Illinois 60614

January 27, 2020

APPENDIX D

SHREDDER RTO/SCRUBBER EMISSIONS TEST REPORT (TESTING PERFORMED NOVEMBER 2019)

HARD COPY of This Document Contains a CD ROM with the above referenced test report.

Updated Emission Estimates Construction Permit Application 19090021 for a New Scrap Metal Recycling Facility

General III, LLC 11600 South Burley Chicago, Illinois 60614

January 27, 2020

APPENDIX E

PROPOSED CHANGES TO CONDITION 11 (EMISSION LIMITS) OF CONSTRUCTION PERMIT 19090021

This Page Left Blank

January 27, 2020: Note from John Pinion of RKA:

The changes identified herein corresponded to the updated emission estimates submitted to IEPA dated January 22. 2020. The values below should be included in the draft final construction permit.

Emissions from and operation of the Hammermill Shredder System shall not exceed the following limits:

VOM emissions:

Page 13

Emission VOM Emission Process Rate Factor (Tons/Mo) (Tons/Yr) (lb/Ton) (Tons/Mo) (Tons/Yr) Emission Unit

Hammermill Shredder 5.122.43 100,000 1,000,000 0.5119243 0.5124RTO/Scrubber Stack

These limits are based upon maximum shredder material throughput, an uncontrolled emission factor derived from a stack test, and 98% removal efficiency by the RTO/Scrubber. All measured total hydrocarbon (THC) emissions are assumed to be VOM.

ii. HAP emissions:

Combined HAPs Single HAP (Tons/Mo) (Tons/Yr) (Tons/Mo) (Tons/Yr) Emission Unit

Metal Shredder

0.150.03 1.540.30 0.270.06 2.690.61RTO/Scrubber Stack

These limits are based upon measured emission rates from a stack test adjusted by safety factor of 4.0 at maximum shredder material throughput in Condition 11(a)(i) above., combined HAPs comprising 25% of the THC emissions and any single HAP comprising no more than 50% of the combined HAPs (12.5% of the THC emissions).

iii. Filterable PM, PM10, and PM2.5 emissions:

PM, PM₁₀, and PM_{2.5} Emission Emissions Process Rate Factor (Tons/Mo) (Tons/Yr) (Tons/Mo) (Tons/Yr) (lb/Ton) Emission Unit

Metal Shredder

9.402.36 100,000 1,000,000 0.0047 0.9424 RTO/Scrubber Stack

These limits are based upon maximum shredder material throughput, emission factors derived from stack test adjusted by a safety factor of 4.0 -captured and measured filterable PM emissions, and all measured filterable PM assumed to be PM10 and PM2.1.

- Emissions from fuel combustion in the Regenerative Thermal Oxidizer (RTO) associated with the Hammermill Shredding System shall not exceed the following limits:
 - Natural gas Usage: 6.57 mmscf/month, 52.5 mmscf/year

Commented [R11]: Hydrochloric acid (HC1) at scrubber outlet from November 2019 emission testing with safety factor of 4 included.

Page 13

ii. Emissions from the combustion of natural gas:

	Emission Factor	Emiss	sions
Pollutant	(lbs/mmscf)	(Tons/Mo)	(Tons/Yr)
Carbon Monoxide (CO)	-131,43 583,55	1.500.43	15.02 3.45
Nitrogen Oxides (NO _x)	100.0	0.28	2.5720
Particulate Matter (PM)	7.6	0.02	0.20
Sulfur Dioxide (SO₂)	0.6	0.01	0.02
Volatile Organic Material (VOM)	5.5	0.02	0.14

c. Emissions from and operation of the Ferrous Material Separation Process shall not exceed the following limits:

i. 4-Filterable Particulate Matter Emissions

a. PM, PM, and PM, emissions:

	Proce:	ss Rate	Emission Factor		and PMa.s
Emission Unit	(Tons/Mo)	(Tons/Yr)	(lb/Ton)	(Tons/Mo)	(Tons/Yr)
594 Conveyor Transfer Points	1,245,450	12,454,500 14,440,500	0.00014	0.08 0.10	0.82 0.96
3 Truck, Railcar, & Barge Loading Points	174,000 137,600	1,740,000 1,376,000	0.000204	0.02 0.01	0.18
7 Stockpile Loading Points	300,000	3,000,000	0.00122 varies	0.18	1.83
			valles	Total:	2.83 2.93

b. PM₁₀ emissions:

Emission Unit	Proces (Tons/Mo)	ss Rate (Tons/Yr)	Emission Factor (lb/Ton)		issions (Tons/Yr)
59 Conveyor Transfer Points	1,444,050	14,440,500	0.000046	0.03	0.31
3 Truck & Barge Loading Points 7 Stockpile Loading Points	137,600 300,000	1,376,000 3,000,000	0.0001 Varies	0.01	0.07
				Total:	1.25

c. PM_{2.5} emissions:

Page 13

	Proces	ss Rate	Emission Factor		issions
Emission Unit	(Tons/Mo)	(Tons/Yr)	(lb/Ton)	(Tons/Mo)	(Tons/Yr)
59 Conveyor Transfer Points	1,444,050	14,440,500	0.000013	0.01	0.09
3 Truck & Barge Loading Points 7 Stockpile Loading Points	137,600 300,000	1,376,000 3,000,000	0.000015 Varies	$\frac{0.01}{0.01}$	0.01
				Total:	0.23

The above filterable PM/PM₁₀/PM_{2.5} seclimits are based upon maximum material throughput, Standard emission factors from AP-42 (Table 11.19.2-2, Fifth Edition, Volume I, Update 2004, August 2004) for conveyors transfer points and Truck/Barge Loading, stockpile loadings emission factor derived using AP-42, Section 13.2.4.3 (Table 13.2.4, AP-42, Fifth Edition, Volume I, November 2006) using coefficients of K=0.74 (PM), K=0.35 (PM₁₀), and K=0.053 (PM_{2.5}); U (mean windspeed) = 9.0 mph, and M (minimum moisture content) = 1.5% applied to light material stockpile, 5.4% applied to raw scrap metal handling, 10% applied to ASR stockpile loading.

Combined HAP emissions from Ferrous Material Separation Process shall not exceed the following limits:

Combined HAPs
(Tons/Mo) (Tons/Yr)

Ferrous Material Separation Process

Emission Unit

0.01 0.020.04

PM, PM--- and PM---

These limits are based upon metal HAPs being 0.491.33% of the total PM emissions measured at the discharge of existing roll media filter during June 2018 metal emission test at General Living 10.10 metal emission test at General Emission test at General Emission test at General Emission test at General Emission test at General Emission test at General Emission test at General Emision test at General Emission test at General Emission test at General Emission

- d. Emissions from and operation of the Non-Ferrous Material Separation Process and Fines Processing System shall not exceed the following limits:
 - i. Filterable PM, PM₁₀, and PM_{2.5} emissions for sources inside building controlled by a baghouse shall be limited to 0.15 tons/month and 1.44 tons/yead*.*

	Process Rate		Factor	Emissions	
Emission Unit	(Tens/Ne)	(Tens/YE)	(1b/Ton)	(Tens/Mo)	(Tons/Yr)
74 Conveyor Transfer Points (Uncontrolled)	110,624	1,106,236	0.00300	0.17	1.66
74 Conveyor Transfer Points (Controlled)	13,436	134,361	0.00014	0.01	0.01

Commented [R12]: The baghouse PM emission calculations, as described, are completely independent of the number of emission points or the total material throughput.

Eminaina

₽			3

S Screening Points					
(Uncontrolled)	2,820	28,196	0.02500	0.04	0.35
8 Screening Points					
(Controlled)	1,541	15,406	0.00220	0.01	0.02
17 Stockpile Loading					
Pointo	838	-8,381	0.00761	0.01	0-03
				Totale	2 07*

* These sources located inside building exhaust to the atmosphere through Dust Collector DC-01, estimated emissions may be calculation by using the stack flow rate (12,000 cfm) and grain loading of 0.005 gr/dscf and hours of operation (1.36 tens/year).

Those limits are based upon maximum material throughput, Standard emission factors from AP-42 (Table-11.19.2-2, Fifth Edition, Volume I, Update 2004, August 2004) for conveyors transfer points escening and Truck Loading, stockpile leading emission factor derived using AP-42, Scotlen 13.2.4.3 (Table 13.2.4, AP-42, Fifth Edition, Volume I, Nevember 2006) using coefficients of K-0.74 (PM), K-0.35 (PM₁₀), and K-0.053 (PM_{2.4}), U (mean windspeed) - 9.0 mph, and M (minimum moisture content) = 1.54 applied to light material stockpile leading.

ii. Filterable Particulate Matter EmissionsPM, PM, er and PM, and PM, emissions from outdoor emission united

a. PM emissions from outdoor emission units:

Emission Unit	Proces (Tons/Mo)	s Rate (Tons/Yr)	Emission Factor (lb/Ton)	PM -6 PM₁₀ (Tons/Mo)	Emission (Tons/Yr)
8859 Conveyor Transfer Points (Uncontrolled)	215,368 338,876	2,153,675 3,338,757	0.00300	0.32 0.43	3.23 4.34
11 Conveyor Transfer Points (Controlled)	57,210	572,103	0,00014	0.01	0.04
13 Screening Points (Uncontrolled)	13,670	136,702	0.02500	0.17	1.71
<pre>12 Screening Points (Controlled)</pre>	42,209	422,085	0.00220	0.04	0.41
2 Truck Loading Points	26,003 45,847	260,027 458,466	0.000204	0.01	0.03
<pre>130 Stockpile Loading Points</pre>	23,073 23,338	230,725 233,378	0.00761 Varies	0.098	0.865
				Total:	7.41

b. PM_{10} emissions from outdoor emission units:

		Emission		
	Process Rate	Factor	PM ₁₀ En	nission
Emission Unit	(Tons/Mo) (Tons/Yr)	(lb/Ton)	(Tons/Mo)	(Tons/Yr)

	а		

88 Conveyor Transfer	338,876	3,338,757	0.0011	0.16	1.59
Points (Uncontrolled) 11 Conveyor Transfer	57,210	572,103	0.000046	0.01	0.01
Points (Controlled) 13 Screening Points	13,670	136,702	0.0087	0.06	0.60
(Uncontrolled) 12 Screening Points	42,209	422,085	0.00074	0.01	0.14
(Controlled) 2 Truck Loading Points	45,847	458,466	0.0001	0.01	0.02
13 Stockpile Loading Points	23,338	233,378	Varies	0.04	0.41
FOTHES				Total:	2.77

c. PM2.5 emissions from outdoor emission units:

	B	- 0	Emission Factor	DM Fr	mission	
B t star Hell	(Tons/Mo)	(Tons/Yr)	(lb/Ton)	(Tons/No)	(Tons/Yr)	
Emission Unit	TOUSTMOL	(10115/11)	1107 10117	12011071107	(20114)	
88 Conveyor Transfer	338,876	3,338,757	0.000167	0.02	0.24	
Points (Uncontrolled)				0 01	0.01	
11 Conveyor Transfer	57,210	572,103	0.000013	0.01	0.01	
Points (Controlled) 13 Screening Points	13,670	136,702	0.001317	0.01	0.09	
(Uncontrolled)	13,0.0	2007.02	12 12			
12 Screening Points	42,209	422,085	0.00005	0.01	0.01	
(Controlled)						
2 Truck Loading Points	45,847	458,466	0.000015	0.01	0.01	
13 Stockpile Loading	23,338	233,378	Varies	0.01	0.06	
Points	23,330	23373.0	<u> </u>			
2021140				Total:	0.42	
				100011	0144	

Thee above $PM/PM_{10}/PM_{2.5}$ limits are based upon maximum material throughput, Standard emission factors from AP-42 (Table 11.19.2-2, Fifth Edition, Volume I, Update 2004, August 2004) for conveyors transfer points screening and Truck Loading, stockpile loading emission factor derived using AP-42, Section 13.2.4.3 (Table 13.2.4, AP-42, Fifth Edition, Volume I, November 2006) using coefficients of K=0.74 (PM), K=0.35 (PM₁₀), and PM_{2.5} U (mean windspeed) = 9.0 mph, and M (minimum moisture content) = 1.5% applied to light material stockpile loading.

iii. Combined HAP emissions from Ferrous Material Separation Process shall not exceed the following limits:

Emission Unit

Combined HAPs
(Tons/Mo) (Tons/Yr)

Page 13

Non-Ferrous Material Separation Process

0.01 0.01

These limits are based upon metal HAPs being 0.831.331 of the total PM emissions. measured at the discharge of existing roll media filter during June 2018 metal emission test at General II, bCr.

- c. This permit is issued based on negligible emissions of particulate matter (PM, PM, a) and PM, a) from the raw material receiving and hondling, one Vibratory Feeder, and # Belt Conveyors (skirted on troughing). For this purpose, emissions from each emission unit shall not exceed nominal emission rate of 0.1 lb/hour and 0.44 ton/year for PM, PM, and PMa.s.
- ef. Compliance with the annual limits of this permit shall be determined on a monthly basis from the sum of the data for the current month plus the preceding 11 months (running 12 month total).

Commented [R13]: These emission points described in this condition consist of: E01 (conv.) discharge to shredder feed chute; Shredder discharge to E05 vibratory conv.; E05 vibratory conv. discharge to C001; C001 discharge to C002; and. C002 discharge to Poker Picker stockpile(s).

Thesse emission points are included in the Ferrous Material Handling System PM emissions

EXHIBIT 8

March 20, 2020

R17421-7.2

Mr. Eric Jones Illinois Environmental Protection Agency - Bureau of Air 1021 North Grand Avenue East Springfield, IL 62702

Fugitive Particulate Operating Program for a Scrap Metal Recycling Facility General III, LLC – 11600 South Burley - Chicago, Illinois

Dear Mr. Jones:

Please find attached a revised copy of the Fugitive Particulate Operating Program for the proposed General III, LLC (GIII) Scrap Metal Recycling Facility located in Cook County at 11600 South Burley Avenue in Chicago, Illinois. This revised copy of the Program addresses your verbal comments from March 19, 2020.

An electronic copy of the above referenced document has also been forwarded to you and Mr. Barria.

If you have any questions or need any additional information, please don't hesitate to contact us at 630-393-9000.

Yours very truly, **RK & Associates**

John G. Pinion Associate Engineer

cc: Mr. Jim Kallas – General III, LLC – Chicago, Illinois (via e-mail) Mr. German Barria – IEPA – Springfield, Illinois (hard copy and via-e-mail)

Fugitive Particulate Operating Program General III, LLC – 11600 S Burley Avenue - Chicago, Illinois March 20, 2020

R17421-7.2

Prepared for:

General III, LLC 1909 North Clifton Avenue Chicago, Illinois 60614 Attn: Mr. Jim Kallas

Prepared by:

John G. Pinion Principal Engineer RK & Associates, Inc.

2 South 631 Route 59 Suite B Warrenville, Illinois 60555 Phone: 630-393-9000

Fax: 630-393-9111

TABLE OF CONTENTS

1.0	INTRODUCTION							
	1.1	Facility Location and Contact Information						
	1.2	Illinois Environmental Protection Agency Fugitive Emission Regulatory Requirements.						
		1.2.1 General Limitation for Fugitive Particulate Matter – 35 IAC 212.301						
		1.2.2 Requirement to Prepare and Implement a Fugitive Particulate Operating Program						
	1.3	Definition of Visible Emissions						
	1.4	Site Boundaries						
2.0	FAG	CILITY SITE MAP						
3.0		FACILITY OPERATIONS AND APPLICATION OFBEST MANAGEMENT PRACTICES FOR FUGITIVE PARTICULATE CONTROL						
	3.1	Raw Material Unloading/Handling						
	3.2	Shredder Enclosure						
	3.3	Material Transfer Points						
	3.4	Intermediate and Product Stockpiles						
	3.5	Non-Ferrous Processing Building						
	3.6	Material Loadout						
	3.7	Paved Areas						
	3.8	Unpaved Areas						
	3.9	Downwind Property Line and Barge Loading Area						
4.0	ADDITIONAL DESCRIPTION OF BEST MANAGEMENT PRACTICES FOR FUGITIVE PARTICULATE CONTROL							
	4.1	Periodic Visible Emissions Observations						
		4.1.1 Employee Observations						
	4.2	Meteorological Data Station						
	4.3	Dust Boss						
	4.4	Paved and Unpaved Areas						
		4.4.1 Water Truck for Paved and Unpaved Areas						
		4.4.2 Sweeper for Paved Areas						
		4.4.3 Wheel Cleaning Station						

Table of Contents

	4.5	Other 1	Fugitive Particulate Control Measures	17									
		4.5.1	Shredder Water Injection	17									
		4.5.2	Shredder Emission Control System	17									
		4.5.3	Non-Ferrous Building Baghouse	17									
		4.5.4	Conveyor Covers	18									
	4.6	Maintenance of Fugitive Particulate Control Equipment											
5.0 RECORDKEEPING													
	5.1	Meteo	eteorological Data										
	5.2	Visible	sible Emissions Observation and Control Form										
	5.3	Water	Truck Log	19									
5.4 Sweeper Log													
	5.5	Dust B	Boss Log	20									
	5.6	ve Particulate Control Equipment Maintenance	20										
6.0	PR	PROGRAM AMENDMENT											
TAI	BLES	8											
Table 3-1			nmary of Facility Operations and Best Management Practices for	6									
FIG	URE	S											
Figure 2-1		·1 Fac	Facility Location Map										
Figure 2-2		2 Fac	Facility Layout Map										
Figu	ıre 2-	3 Fac	cility Layout Drawing										
Figu	ıre 4-	·1 Ant	ticipated Dust Boss Locations										
Figu	ıre 4-	2 Des	signated Areas for Routine Watering and Sweeping										

1.0 INTRODUCTION

This Fugitive Particulate Operating Program (Program) has been prepared for the General III, LLC (GIII) scrap metal recycling facility as a condition of Illinois Environmental Protection Agency (IEPA) Construction Permit No. 19090021 (Condition 9.e.).

GIII is a state-of-the-art recycling facility located in the heart of an existing established industrial district well buffered from residential areas. GIII is configured to process 1,000,000 tons per year of shreddable recyclables in various forms to produce uniform grades of ferrous and non-ferrous metals. GIII will receive and shred mixed recyclable metal in various forms to produce uniform grades of ferrous and non-ferrous metals. Proposed scrap handling and processing activities include raw material receiving, sorting, shredding, metal separation, recovery of ferrous and non-ferrous metals, and shipment of finished products to customers.

The objective of this Program is to identify, monitor, and treat (as may be necessary) sources of fugitive particulate emissions. GIII is implementing this Program as part of GIII's commitment to be a good neighbor, a good steward of the environment, and to meet or exceed applicable environmental standards (identified in Section 1.2) to be protective of human health and the environment.

1.1 Facility Location and Contact Information

Business Name: General III, LLC

Source Location: 11600 South Burley – Chicago, Illinois 60617

Hyde Park Township, Cook County Illinois

Latitude/Longitude 41.685201° N / -87.545847" W –

Approximate Location of Front Gate

Office/Mailing Address: 1909 N. Clifton Avenue – Chicago, Illinois 60614

<u>Authorized Representative</u> Mr. Jim Kallas - Environmental Manager 847-508-9170 - jimkallas@general-iron.com

IEPA Site ID No.: 031600SFX

SIC Code: 5093 – Scrap and Waste Materials

NAICS Code: 423930 – Recyclable Material Merchant Wholesalers

1.2 Illinois Environmental Protection Agency – Fugitive Emission Regulatory Requirements

1.2.1 General Limitation for Fugitive Particulate Matter - 35 IAC 212.301

GIII is subject to the general limitation for fugitive particulate matter identified in 35 IAC 212.301, which requires that:

No person shall cause or allow the emission of fugitive particulate matter from any process, including any material handling or storage activity, that is visible by an observer looking generally toward the zenith at a point beyond the property line of the source.

1.2.2 Requirement to Prepare and Implement a Fugitive Particulate Operating Program

Pursuant to 35 IAC 212.302, a Fugitive Particulate Operating Program is required for any facility with operations belonging to specified groups of Standard Industrial Classification (SIC) Codes <u>and</u> that are located within a specified area. GIII is located in Cook County, which is a specified area under 35 IAC 212.302; however, GIII's SIC Code (5093 Scrap and Waste Materials) is <u>not</u> among the specified SIC codes. Therefore, GIII is not subject to a requirement to have a Fugitive Particulate Operating Program.

Although not required by IEPA regulations, GIII has voluntarily agreed to prepare and implement this Fugitive Particulate Operating Program to describe the best management practices that will be used to minimize potential fugitive particulate emissions and ensure compliance with 35 IAC 212.301.

1.3 Definition of Visible Emissions

For the purposes of this Program, the presence of Visible Emissions means the existence of a visible fugitive particulate plume that threatens to cross the Industrial Campus property line.

Fugitive particulate does not include steam (water vapor), engine combustion exhaust, and particulate matter emitted from a properly permitted exhaust stacks with or without a pollution control device because each permitted exhaust point has a separate opacity limit and particulate mass emission limit included in the facility construction/operation permit.

1.4 Site Boundaries

For the purposes of this Program, the 'property line,' as referenced in 35 IAC 212.301, is the Site Boundary identified in Figure 2-2 (i.e. property line of the industrial campus).

2.0 FACILITY SITE MAP

The location of GIII is shown on Figures 2-1 and 2-2. GIII operates on approximately 25 acres of leased property within an existing industrial campus located at 11600 South Burley Avenue in Chicago, Illinois. Four other affiliated material recycling businesses are located within the industrial campus.

The GIII scrap metal recycling facility is shown on Figure 2-3. The Facility Site Map indicates the locations of the Facility boundaries, buildings, location of material handling and processing areas, shredder enclosure, shredder emission control system, stockpiles, truck scales and facility vehicle entrance.

The vast majority of the Facility is paved with concrete or asphalt pavement. The limited area that is not paved is covered with compacted asphalt grindings or similar material.

This Page Left Blank

3.0 FACILITY OPERATIONS AND APPLICATION OF BEST MANAGEMENT PRACTICES FOR FUGITIVE PARTICULATE CONTROL

GIII is a state-of-the-art recycling facility located in the heart of an existing established industrial district well buffered from residential areas. GIII is configured to process up to 1,000,000 tons per year of shreddable recyclables in various forms to produce uniform grades of ferrous and non-ferrous metals. Proposed scrap handling and processing activities include raw material receiving, sorting, shredding, metal separation, recovery of ferrous and non-ferrous metals, stockpiling and off-site shipment of finished products.

Raw materials are delivered to the facility from a variety of sources including retail, commercial/industrial accounts via trucks or contract haulers and peddlers via peddler vehicles. Peddlers and semi-trucks entering the facility first pass through a truck scale.

Semi-trucks are then directed to a material staging area near the raw material stockpiles. Designated Facility personnel inspect all loads for unauthorized materials in accordance with Facility procedures. After unloading, the semi-trucks and peddler vehicles exit the Facility after passing over the appropriate truck scale.

The shredding process produces ferrous metal and Automobile Shredder Residue (ASR) which contains non-metallic material, non-ferrous metal and a limited amount of ferrous metal. Ferrous metal is processed to remove non-metallic material through a series of material handling steps in the Ferrous Metal Processing system to produce clean ferrous metal.

The ASR is directed to a stockpile for temporary storage prior to processing. ASR is transferred a short distance from the ASR stockpile to the Non-Ferrous Metal Processing system using a rubber-tired loader. ASR is processed by a variety of advanced material handling and separation equipment in the Non-Ferrous Metal Processing system to recover various sizes and grades of non-ferrous metals. Non-metallic material removed by the Non-Ferrous Metal Processing system is directed to a stockpile prior to being loaded into semi-trucks for off-site disposal at an appropriately licensed landfill.

Table 1 summarizes facility operations with the potential to generate fugitive particulate and the Best Management Practices (BMPs) that will be utilized to achieve compliance with 35 IAC 212.301. For the purposes of this Program, compliance with 35 IAC 212.301 is determined at the Site Boundary (i.e. the property line of the industrial campus as shown on Figure 2-2). Detailed descriptions of the BMPs are presented in Section 4.0.

Table 1 – Summary of Facility Operations and Best Management Practices for Fugitive Particulate Control

	Best Management Practices						
Operation	Periodic Inspections/ Observations	Water Atomizing Dust Bosses	Sweeping/ Watering of Paved Areas	Watering of Unpaved Areas	Potential Additional BMPs That May Be Used		
Raw Material Unloading/Handling	Х	Х	Х				
Shredder Enclosure	Х				Water injection/shredder emissions capture and control system		
Material Transfer Points	Х	Х			Conveyor covers on selected conveyors		
Material Stockpiles	Х	Х	Х		Partial enclosures (side walls) on selected stockpiles		
Non-Ferrous Processing Building					Enclosed in a building with building exhaust treated by dust collectors		
Material Loadout	Х	Х	Х		Dedicated water spray if needed		
Traffic Areas – Paved Areas	Х	Х	Х		Water truck as needed		
Traffic Areas – Unpaved Areas	Х	Х		Х	Water truck as needed		
Property Lines	Х				Identify the source(s) of visible emissions and take corrective actions as described above.		

3.1 Raw Material Unloading/Handling

Raw scrap in bulk trucks (semi-trailers) is dumped on the ground near the shredder infeed conveyor where cranes equipped with magnets or grapples sort through the material and place it on a raw material stockpile or onto the shredder infeed conveyor of the shredder. These or other cranes equipped with magnets or grapples then transfer the material from the stockpiles to the shredder infeed conveyor.

The space available for stockpiling raw material is limited, and therefore, the material is typically processed within several days of its receipt. The raw material stockpiles will not be used for long term storage.

Facility Operations and Application of Best Management Practices for Fugitive Particulate Control

The following BMPs will be used to identify and control (as needed) Visible Emissions from raw material unloading and handling.

A. <u>Inspections/Observations</u>:

i. Trained personnel will conduct visual observations of the raw material unloading and handling areas for the presence of Visible Emissions three times per day and record the results on a Visible Emissions Observation and Control (VEOC) form. If Visible Emissions are identified, observers will notify the Facility Manager who will be responsible for deployment of fugitive particulate control measures.

B. Fugitive Particulate Control Measures:

- i. Dust Boss water atomizers will be positioned to mist the raw material handling area and will be utilized as needed. The water applied by the Dust Boss will increase the moisture content of the material being transferred to minimize the potential for Visible Emissions.
- ii. Areas adjacent to raw material handling operations will be included in the watering and sweeping of paved areas described in Section 3.7.

3.2 Shedder Enclosure

The shredder is located in a partial enclosure with solid wall panels, open metal grating on the roof and an open area at ground level. Shredder emissions are captured by a hood located over the top of the shredder. Captured emissions are routed to the emission control system. Captured emissions are not fugitive emissions.

Potential sources of fugitive emissions inside the shredder enclosure are limited to three conveyor transfer points and potential uncaptured emissions from the shredder operation.

A. <u>Inspections/Observations</u>:

Trained personnel will conduct visual observations of the shredder enclosure for the
presence of Visible Emissions three times per day and record the results on a VEOC form.
If Visible Emissions are identified, observers will notify the Facility Manager who will be
responsible for deployment of fugitive particulate control measures.

B. Fugitive Particulate Control Measures:

i. If Visible Emissions are observed exiting the shredder enclosure, operators will perform a system inspection to identify the potential source and cause of the Visible Emissions and take appropriate corrective actions, which may include a change in the shredder water injection rate or shredder emissions capture and control system operating parameters.

3.3 Material Transfer Points

Material is primarily transported through the Ferrous and Non-Ferrous processes on a series of belt conveyors. A material transfer point is the point at which material from an upstream conveyor is transferred to a downstream conveyor, the point at which an upstream conveyor feeds a piece of processing equipment, or the point at which a piece of processing equipment discharges material onto a takeaway conveyor. Visible Emissions from a transfer point may occur when the material being transferred has a high concentration of fine material and low moisture content.

Select conveyors that transfer streams containing significant amounts of light material that could easily become windblown will be equipped with covers.

A. <u>Inspections/Observations</u>:

i. Trained personnel will conduct visual observations of specific areas that include material transfer points for the presence of Visible Emissions three times per day and record the results on a VEOC form. If Visible Emissions are identified, observers will notify the Facility Manager who will be responsible for deployment of fugitive particulate control measures.

B. Fugitive Particulate Control Measures:

 Dust Boss water atomizers will be positioned to mist the facility areas with the highest potential for fugitive particulate. The water applied by the Dust Boss will increase the moisture content of the material being transferred to minimize the potential for Visible Emissions.

ii.

3.4 Intermediate and Product Stockpiles

The space available for stockpiling intermediates and products is limited and, therefore, these materials are typically processed or shipped off site regularly. These stockpiles will not be used for long term storage of materials.

A. <u>Inspections/Observations:</u>

i. Trained personnel will conduct visual observations of material stockpiles for the presence of Visible Emissions three times per day and record the results on a VEOC form. If Visible Emissions are identified, observers will notify the Facility Manager who will be responsible for deployment of fugitive particulate control measures.

B. Fugitive Particulate Control Measures:

- i. Dust Boss water atomizers will be positioned to mist stockpiles if Visible Emissions are observed. The water applied by the Dust Boss will increase the moisture content of the material being transferred to minimize the potential for Visible Emissions.
- ii. With the exception of the Raw Material stockpiles, the two Ferrous Metal Stockpiles, and the ASR stockpile, all stockpiles identified in facility emission estimates will have solid partitions on three sides.
- iii. Areas adjacent to stockpiles will be included in the watering and sweeping of paved areas described in Sections 3.7.

3.5 Non-Ferrous Processing Building

Non-Ferrous material processing is performed in the Non-Ferrous Processing Building. The building is equipped with four identical baghouses that collect dust from specific points in the process using a network of duct work and hoods. Dust captured in the collection system is routed to a baghouse filter. Treated air from three of the four baghouses is exhausted back into the building. The treated air from the fourth baghouse is discharged to the atmosphere. Particulate emissions in the baghouse exhaust stream that is discharged to the atmosphere are not fugitive emissions.

A. <u>Inspections/Observations</u>:

i. Trained personnel will conduct visual observations of conveyor wall openings, personnel doors, and other openings in the Non-Ferrous Processing Building for the presence of Visible Emissions three times per day and record the results on a VEOC form. If Visible Emissions are identified, observers will notify the Facility Manager who will be responsible for deployment of fugitive particulate control measures.

B. Fugitive Particulate Control Measures:

i. If Visible Emissions are observed from the building openings, the building will be inspected to ensure that personnel and service doors are closed when not in use and that the baghouses are functioning properly. Material removed by the baghouses is collected on a covered conveyor and transferred to the waste material stockpile.

3.6 Material Loadout

Material loadout occurs when stockpiled material is transferred to trucks using a rubber-tired loader, or material handler.

A. <u>Inspections/Observations</u>:

Trained personnel will conduct visual observations of material loadout areas for the
presence of Visible Emissions three times per day and record the results on a VEOC form.
If Visible Emissions are identified, observers will notify the Facility Manager who will be
responsible for deployment of fugitive particulate control measures.

B. Fugitive Particulate Control Measures:

- i. Dust Boss water atomizers will be positioned to mist stockpiles and adjacent loadout areas if Visible Emissions are observed. The water applied by the Dust Boss will increase the moisture content of the material to minimize the potential for Visible Emissions.
- ii. Areas adjacent to material loadout activity will be included in the watering and sweeping of paved areas described in Sections 3.7.

3.7 Paved Areas

The majority of the facility is paved with concrete or asphalt. The areas with the highest potential for fugitive particulate are the primary traffic routes used by vehicles delivering raw material or transporting materials from the site.

Application of water will be limited on days when precipitation exceeds ¼" or when temperatures are near freezing and water application may create unsafe conditions.

A. <u>Inspections/Observations</u>:

i. Trained personnel will conduct visual observations of paved vehicle traffic routes for the presence of Visible Emissions and record the results on a VEOC form. Heavily traveled routes will be observed three times per day and less traveled routes and non-traffic paved areas will be observed once per day.

B. Fugitive Particulate Control Measures:

Water will be applied to heavily used paved areas at least once per day, subject to the
weather conditions identified above. Additional applications may be made in response to
Employee Observations.

Operation of the water truck will documented in a water truck log that will identify the area(s) where water is applied, the approximate amount of water applied, the time of application, the name of the person operating the water truck, and the reason for application (i.e., routine daily application or in response to an Employee Observation).

- ii. Sweeping of designated heavy traffic areas will occur at least once every other day, based on daily observations and subject to the weather conditions identified above.
 - Operation of the sweeper will be documented in a sweeper log that will identify the area(s) swept, the date/time sweeping was performed, the name of the person operating the sweeper, and the reason for sweeping (i.e., routine daily sweeping or in response to an Employee Observation).
- iii. Rumble strips will be installed at the entrance to the outgoing scale to remove loose material from exterior of vehicle trailers and vehicle tires.

3.8 Unpaved Areas

Limited areas within the Facility that are not paved with concrete or asphalt are covered with compacted asphalt grindings or similar material. Fugitive particulate emissions from unpaved areas are associated with vehicle use.

Application of water will be limited on days when precipitation exceeds ¼" or when temperatures are near freezing and water application may create unsafe conditions.

A. <u>Inspections/Observations</u>:

i. Trained personnel will conduct visual observations of unpaved areas for the presence of Visible Emissions and record the results on a VEOC form. Heavily used areas will be observed three times per day and lightly used areas will be observed once per day.

B. Fugitive Particulate Control Measures:

i. Water will be applied to heavily used unpaved areas at least once per day subject to the weather conditions identified above. Additional applications may be made in response to Employee Observations.

Operation of the water truck will documented in a water truck log that will identify the area(s) where water is applied, the approximate amount of water applied, the time of application, the name of the person operating the water truck, and the reason for application (i.e., routine daily application or in response to an Employee Observation).

Facility Operations and Application of Best Management Practices for Fugitive Particulate Control

ii. If Visible Emissions are observed from unpaved areas during weather conditions that prohibit water application, alternative control measures will be evaluated. Evaluation and potential application of alternative control measures will be based on operating experience and routine observations. Alternative control measures may include, but are not limited to minimizing activity in unpaved areas, application of surfactant or oil-based coatings prior to winter conditions, or placement of additional asphalt grindings or similar material.

3.9 Downwind Property Line and Barge Loading Area

For the purposes of this Program, the 'property line,' as referenced in 35 IAC 212.301, is the Site Boundary identified in Figure 2-2 (i.e. property line of the industrial campus).

Property line observations will be limited to the portion(s) of the industrial campus property lines that are, at the time of the observation, downwind from GIII operations and the barge loading area (when a barge is actively being loaded at the time of the observation).

A. Inspections/Observations:

i. Trained personnel will conduct visual observations at least once per day of the barge loading area (when barge loading is occurring at the time of the observation) and the downwind property line(s) of the industrial campus for the presence of Visible Emissions and record the results on a VEOC form.

This Page Left Blank

4.0 ADDITIONAL DESCRIPTION OF BEST MANAGEMENT PRACTICES FOR FUGITIVE PARTICULATE CONTROL

The following provides an additional description of the BMPs that will be implemented under this Program.

4.1 Periodic Visible Emissions Observations

As described in Section 3, designated trained personnel will make periodic observations three times per day for the presence of Visible Emissions and have the authority to implement fugitive particulate control measures as may be required. Observations will be made three times per day

Records of observations and dust control measures implemented (if any), are recorded on a VEOC form (see Section 5.2).

4.1.1 Employee Observations

In addition to the designated observations described above, other employees will be trained to identify Visible Emissions when performing their assigned duties. If Visible Emissions are identified, the employee will notify the Facility Manager who will be responsible for deployment of fugitive particulate control measures. Employee Observations will not be recorded on a VEOC form.

4.2 Meteorological Data Station

An onsite meteorological data station (met station) will be installed and operated to record hourly temperature, wind speed, wind direction, barometric pressure, relative humidity, and precipitation amounts. The met station will be centrally located at a minimum height pursuant to applicable USEPA protocols and guidance. Met data will be periodically downloaded and stored electronically at the Facility.

4.3 Dust Boss

Dust Bosses are water atomizing cannons like those pictured to the right. The barrel of the cannon is equipped with a fan to force air through the barrel of the cannon at an elevated velocity. Water is injected into the air stream at the discharge of the barrel through specially designed atomizing nozzles. The velocity of the air stream directs the water droplets toward the source of the fugitive particulate matter. Water droplets impact suspended particulate,

increasing the density of the particulate matter causing it to settle to the ground via gravity. Dust Bosses are used to control fugitive particulate emissions from conveyors, stockpiles and roadways.

Facility Operations and Application of Best Management Practices for Fugitive Particulate Control

The cloud of atomized water above a particulate emission source may be mistaken for particulate matter by uninformed observers. The cloud of water droplets should not be read as particulate matter if crossing the property line. Dust Bosses can be located at ground level, building rooftops or on supported columns in order to distribute the atomized water over the desired area(s). Figure 4-1 identifies the anticipated location of Dust Bosses. The deployment of Dust Bosses will be modified as may be required based on Facility operating experience.

4.4 Paved and Unpaved Areas

Paved and unpaved areas (including traffic routes) are routinely treated using water application and sweeping unless observed pavement conditions indicate it is unnecessary, such as following a precipitation event.

Application of water will be limited by near freezing temperatures in order to maintain safe operating conditions.

4.4.1 Water Truck for Paved and Unpaved Areas

A water truck owned and operated by GIII will be used to periodically apply water to accessible paved and unpaved areas. The water truck will make routine rounds in the areas identified in Figure 4-2. Application of water to paved and unpaved areas will be documented on a log.

4.4.2 Sweeper for Paved Areas

A motorized sweeper owned and operated by GIII will be used to periodically sweep paved areas. The sweeper will make routine rounds approximately every other day in accessible areas.

Routine sweeping of paved areas will be supplemented by additional sweeping as indicated by Visible Emissions observations described in Section 4.1.

Sweeping of paved areas will be documented in a log.

4.4.3 Wheel Cleaning Station

Rumble strips will be installed on the approach to the outbound truck scale requiring large vehicles to pass over the control device before entering the scale. The purpose of the rumble strips is to reduce the amount of loose dirt and debris on truck and trailer tires to reduce potential for vehicle track out.

The wheel cleaning station will be routinely inspected, and accumulated material removed on a regular basis to ensure effective operation of the cleaning station.

4.5 Other Fugitive Particulate Control Measures

The following identifies other fugitive particulate control measures that will be implemented at this Facility.

4.5.1 Shredder Water Injection

The shredder will be equipped with water injection as a mitigation measure for deflagrations in the shredder. Water injected into the shredder flashes steam and fills the voids in the shredder body displacing oxygen in ambient air. Removal of oxygen from the shredder will reduce the potential for deflagrations. Although it is not used as a control measure, wetting the material in the shredder has a secondary effect of minimizing the potential for fugitive particulate emissions from the shredder material discharge conveyor and other downstream conveyors.

The shredder operator will adjust the water injection rate as indicated by the rate, type and characteristics of the material being processed. Adjustments to the shredder water injection rate are part of routine shredder operation and will not be recorded under this Program.

4.5.2 Shredder Emission Control System

The shredder emission control system consists of an emissions collection hood, cyclone for removal of large pieces of solid matter, a roll media filter for particulate control, and a regenerative thermal oxidizer and packed tower scrubber. Potential particulate emissions from the shredder emission control system are not fugitive emissions, because the shredder emission control system is assigned a permitted emission rate, and is subject to specific opacity and mass emission limits identified in the Facility construction/operation permit.

4.5.3 Non-Ferrous Processing Building Baghouse

Potential particulate emissions from the equipment located in the Non-Ferrous Processing Building are collected and controlled by four identical cartridge style baghouses. Three of the baghouses collect particulate emissions from various dust pickup points in the process, remove entrained particulate, and exhaust treated air back into the building. There are no emissions to the atmosphere from the three baghouses that exhaust back into the building. The fourth baghouse collects particulate emissions from various dust pickup points in the process, removes entrained particulate and exhausts treated air to the outside atmosphere.

Particulate emissions from the baghouse that exhausts to the outside atmosphere are not considered fugitive emissions because the dust collector is assigned a permitted emission rate and is subject to specific opacity and mass emission limits identified in the facility construction/operation permits.

Facility Operations and Application of Best Management Practices for Fugitive Particulate Control

Fine particulate matter removed by the baghouses is collected in sealed hoppers and periodically conveyed to the Non-Ferrous waste material stockpile via covered conveyor.

4.5.4 Conveyor Covers

Select conveyors are be equipped with covers to minimize the potential for windblown material.

4.6 Maintenance of Fugitive Particulate Control Equipment

Maintenance of equipment used for fugitive particulate control, including Dust Bosses, water truck and sweeper, is performed by on-site personnel in accordance with manufacturers recommendations.

5.0 RECORDKEEPING

It should be noted that the description of the information to be captured in the forms described herein are considered preliminary. This Program will be updated to reflect as-built conditions.

The following records will be maintained pursuant to this Program in accordance with permit recordkeeping requirements.

5.1 Meteorological Data

Meteorological data will be recorded and maintained electronically on site. Data will include hourly temperature, wind speed, wind direction, barometric pressure, relative humidity, and precipitation amounts.

5.2 Visible Emissions Observation and Control Form

A Visible Emissions Observation and Control (VEOC) Form will be used to record the results of routine Visible Emissions observations and corresponding control measures applied. Employee Observations will not be recorded.

The VEOC form will include the following information:

- Date/Time
- Name of Observer
- Area(s) Observed
 - Time of Observation
 - Visible Emissions Observed Yes/No
 - > Approximate migration distance from source (ft)
 - Controls Required (Yes/No)
 - > If Yes, identify Control(s) Implemented

The VEOC form is not attached to this document and will be included in an amended program that will reflect as-built site conditions.

5.3 Water Truck Log

A log of water truck use will be maintained by the operator to record water applications to paved and unpaved areas. This log will include:

- Date/Time
- Name of Water Truck Operator
- Reason for Water Application
 - Scheduled or
 - Corrective Action in response to an Employee Observation

Facility Operations and Application of Best Management Practices for Fugitive Particulate Control

- Area(s) of Water Application
 - Time of Application
 - Approximate Amount of Water Applied (gallons)

5.4 Sweeper Log

A log of sweeper operation will be maintained by the operator to record sweeping events. This log will include:

- Date/Time
- Name of Sweeper Operator
- Reason for Sweeping
 - Scheduled or
 - Corrective Action in response to an Employee Observation
- Area(s) Swept
 - Time of Sweeping

5.5 Dust Bosses

A log of Dust Boss operation will be maintained. This log will include:

- Date/Time(s) of Dust Boss Operation
- Reason for Operation
 - Proactive or
 - Corrective Action in response to an Employee Observation

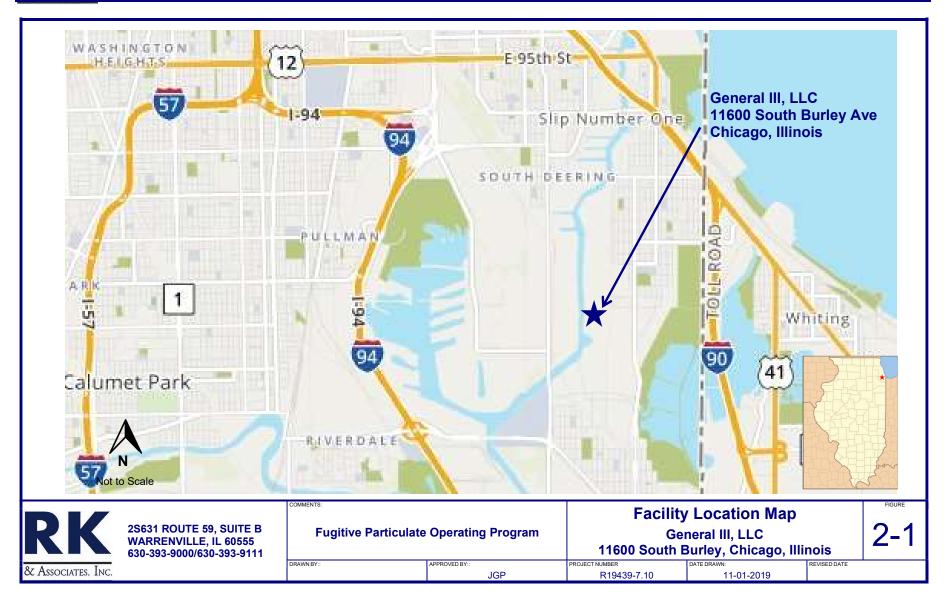
5.6 Fugitive Particulate Control Equipment Maintenance

Records of maintenance performed on fugitive particulate control equipment will be maintained by the Facility in accordance with permit recordkeeping requirements.

6.0 PROGRAM AMENDMENT

This Fugitive Particulate Operating Program shall be amended from time to time so that the operating program is current. Program amendments will be submitted to the Illinois EPA within thirty (30) days of such amendment. Any future revision to this Program made by GIII is automatically incorporated by reference as an enforceable condition of the Facility construction/operation permit, unless it is expressly disapproved, in writing, by the Illinois EPA. In the event that the Illinois EPA notifies GIII of a deficiency with any revision to the Program, GIII will revise and re-submit the Fugitive Particulate Operating Program within thirty (30) days of receipt of notification to address the deficiency.

This Page Left Blank

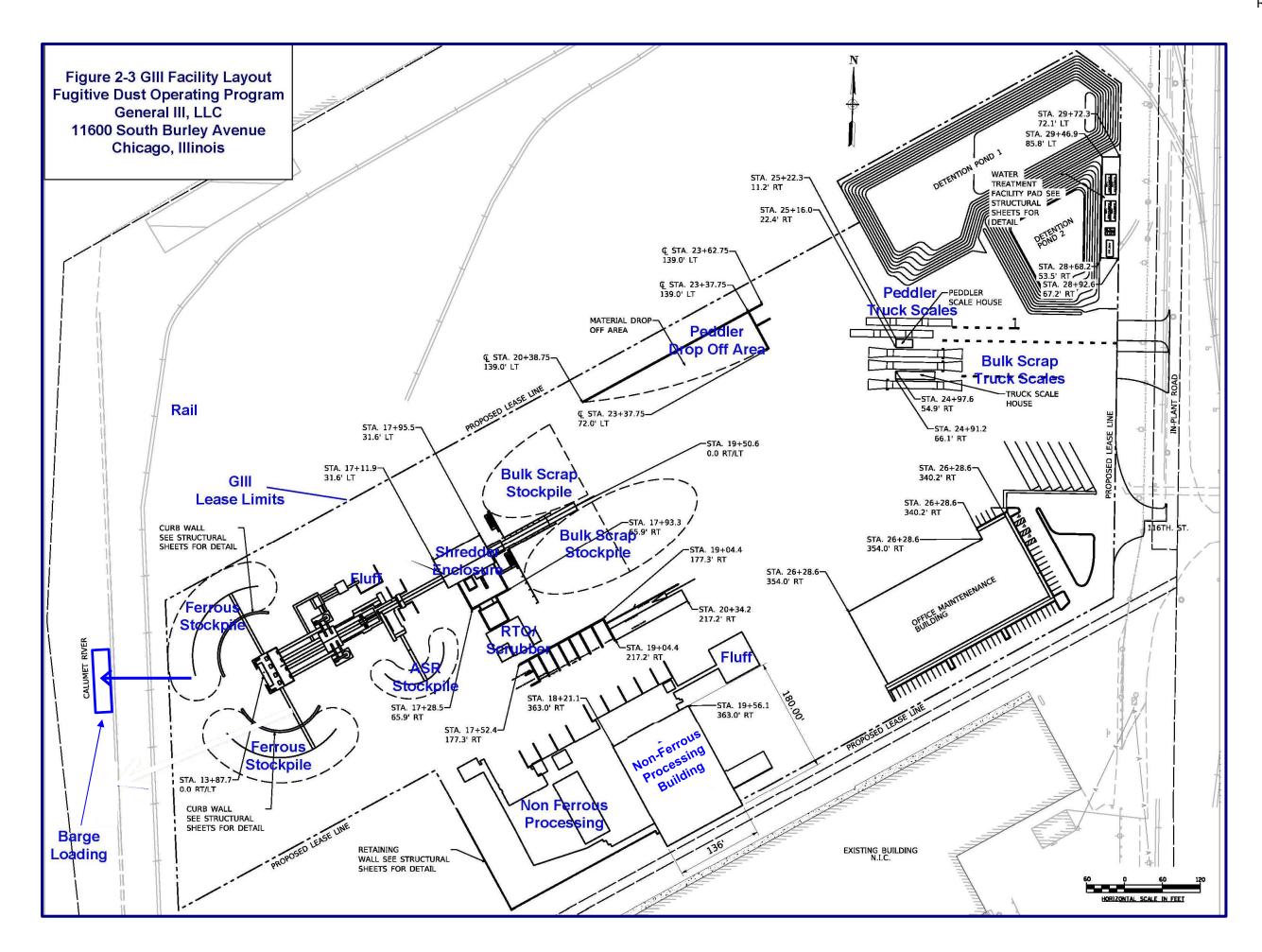

Fugitive Particulate Operating Program

General III, LLC 11600 South Burley Chicago, Illinois 60614

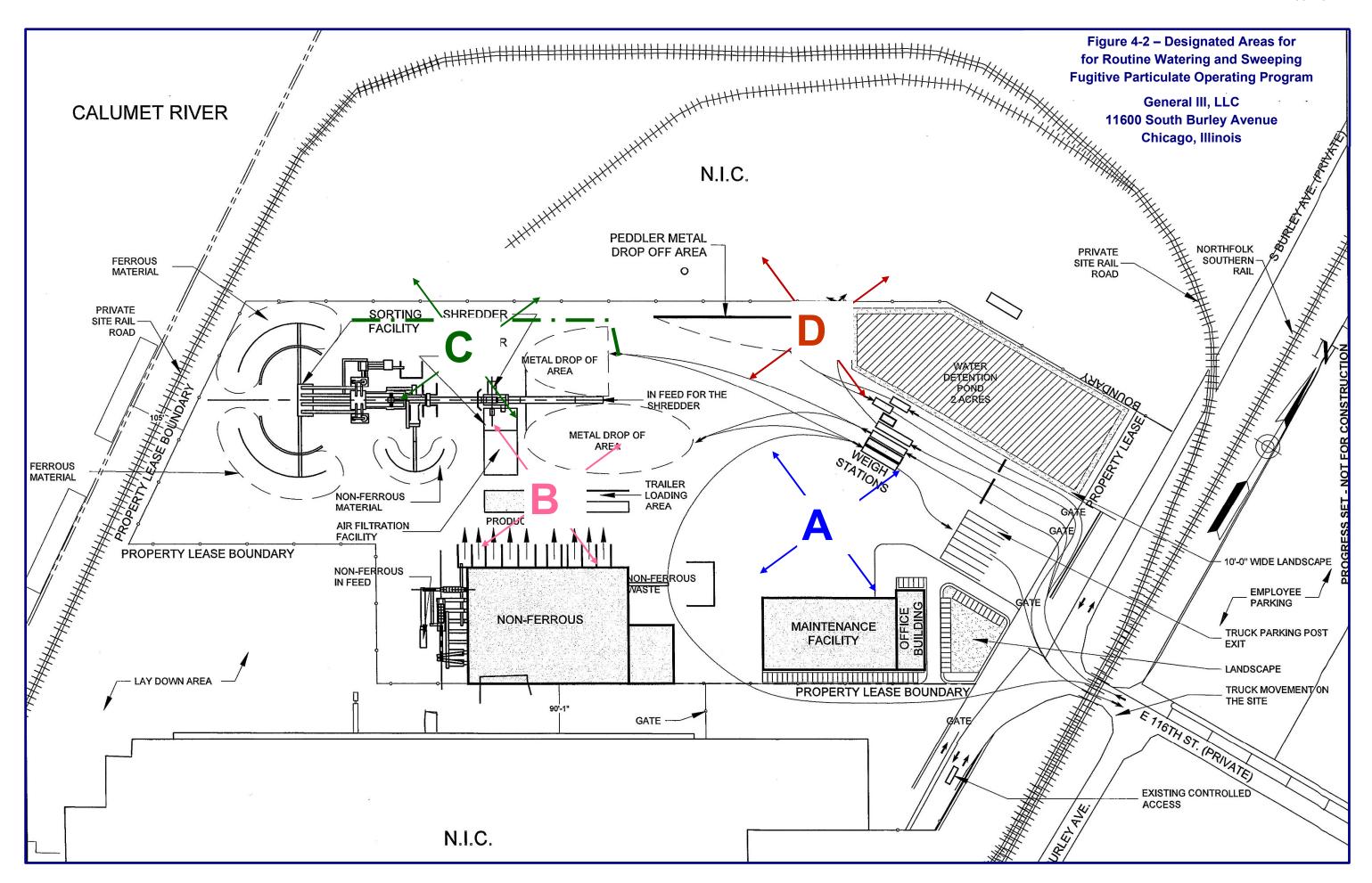
FIGURES

This Page Left Blank

& Associates. Inc.


2S631 ROUTE 59, SUITE B WARRENVILLE, IL 60555 630-393-9000/630-393-9111 **Fugitive Particulate Operating Program**

APPROVED BY: JGP


Facility Layout Map General III, LLC 11600 South Burley, Chicago, IL DATE DRAWN:

R19439-7.10

11-01-2019

R 001705

EXHIBIT 9 AL PROTECTION AGENCY

1021 North Grand Avenue East, P.O. Box 19276, Springfield, Illinois 62794-9276 · (217) 782-3397

JOHN J. KIM, DIRECTOR

Inspection Report

	GENERAL INFORMATION							
Report Date: 3/20/2020 Report Author Eric E. Jones								
	SOURCE INFO	RMATION						
	LOCATI	ON						
Facility ID #:	031600SFX							
Company Name:	General Iron III							
Street Address:	11600 South Burley							
City, County:	Chicago, Cook County							
State, Zip Code:	Illinois, 60617							
Contact/Title:	Jim Kallas							
Contact Phone/Fax:	847/508-9170							
Contact Email:								

SCOPE OF INSPECTION

Review of Fugitive Dust Plan dated March 20, 2020.

JB PRITZKER, GOVERNOR

EVALUATION #1

Fugitive Particulate Matter Operating Program

INSPECTION FOCUS

- Name and address of the source, owner and operator.
- Map of source showing locations of storage piles, conveyor loading operations and traffic patterns.
- Location of unloading and transporting operations.
- Description of best management practices (BMP).
- Description of air pollution control equipment.
- Frequency of application of dust suppressants.

REVIEW FINDINGS

The source is not required to submit a Operating Program under 35 III. Adm Code 212.302. Therefore I am reviewing this under the risk of violation of 35 III. Adm. Code 212.301.

Raw material unloading/handling:

Monitoring: Trained personnel will conduct visual observations of the raw material unloading and handling areas for the presence of Visible Emissions three times per day and record the results on a Visible Emissions Observation and

Control (VEOC) form. If Visible Emissions are identified, observers will notify the Facility Manager who will be responsible for deployment of fugitive particulate control measures.

Control measures: Dust Boss water atomizers will be positioned to mist the raw material handling area and will be utilized as needed. The water applied by the Dust Boss will increase the moisture content of the material being transferred to minimize the potential for Visible Emissions.

Shredder enclosure:

Monitoring: Trained personnel will conduct visual observations of the shredder enclosure for the presence of Visible Emissions three times per day and record the results on a VEOC form. If Visible Emissions are identified, observers will notify the Facility Manager who will be responsible for deployment of fugitive particulate control measures.

Control measures: If Visible Emissions are observed exiting the shredder enclosure, operators will perform a system inspection to identify the potential source and cause of the Visible Emissions and take appropriate corrective actions, which may include a change in the shredder water injection rate or shredder emissions capture and control system operating parameters.

Material Transfer Points:

Monitoring: Trained personnel will conduct visual observations of specific areas that include material transfer points for the presence of Visible Emissions three times per day and record the results on a VEOC form. If Visible Emissions are identified, observers will notify the Facility Manager who will be responsible for deployment of fugitive particulate control measures.

Control Measures: Dust Boss water atomizers will be positioned to mist the facility areas with the highest potential for fugitive particulate. The water applied by the Dust Boss will increase the moisture content of the material being transferred to minimize the potential for Visible Emissions.

Intermediate and Product Storage Piles:

Monitoring: Trained personnel will conduct visual observations of specific areas that include material transfer points for the presence of Visible Emissions three times per day and record the results on a VEOC form. If Visible Emissions are identified, observers will notify the Facility Manager who will be responsible for deployment of fugitive particulate control measures.

Control Measures: Dust Boss water atomizers will be positioned to mist stockpiles if Visible Emissions are observed. The water applied by the Dust Boss will increase the moisture content of the material being transferred to minimize the potential for Visible Emissions. With the exception of the Raw Material stockpiles, the two Ferrous Metal Stockpiles, and the ASR stockpile, all stockpiles identified in facility emission estimates will have solid partitions on three sides.

Non-Ferrous Processing Building:

Monitoring: Trained personnel will conduct visual observations of conveyor wall openings, personnel doors, and other openings in the Non-Ferrous Processing Building for the presence of Visible Emissions three times per day and record the results on a VEOC form. If Visible Emissions are identified, observers will notify the Facility Manager who will be responsible for deployment of fugitive particulate control measures.

Control Measures: If Visible Emissions are observed from the building openings, the building will be inspected to ensure that personnel and service doors are closed when not in use and that the baghouses are functioning properly. Material removed by the baghouses is collected on a covered conveyor and transferred to the waste material stockpile.

Material Loadout:

Monitoring: Trained personnel will conduct visual observations of material loadout areas for the presence of Visible Emissions three times per day and record the results on a VEOC form. If Visible Emissions are identified, observers will notify the Facility Manager who will be responsible for deployment of fugitive particulate control measures.

Control Measures: Dust Boss water atomizers will be positioned to mist stockpiles and adjacent loadout areas if Visible Emissions are observed. The water applied by the Dust Boss will increase the moisture content of the material to minimize the potential for Visible Emissions.

Paved Areas:

Monitoring: rained personnel will conduct visual observations of paved vehicle traffic routes for the presence of Visible Emissions and record the results on a VEOC form. Heavily traveled routes will be observed three times per day and less traveled routes and non-traffic paved areas will be observed once per day.

Control Measures Water will be applied to heavily used paved areas at least once per day, subject to the weather conditions identified above. Additional applications may be made in response to Employee Observations. Operation of the water truck will documented in a water truck log that will identify the area(s) where water is applied, the approximate amount of water applied, the time of application, the name of the person operating the water truck, and the reason for application (i.e., routine daily application or in response to an Employee Observation). Sweeping of designated heavy traffic areas will occur at least once every other day, based on daily observations and subject to the weather conditions identified above. Operation of the sweeper will be documented in a sweeper log that will identify the area(s) swept, the date/time sweeping was performed, the name of the person operating the sweeper, and the reason for sweeping (i.e., routine daily sweeping or in response to an Employee Observation). Rumble strips will be installed at the entrance to the outgoing scale to remove loose material from exterior of vehicle trailers and vehicle tires.

Unpaved Areas:

Monitoring: Trained personnel will conduct visual observations of unpaved areas for the presence of Visible Emissions and record the results on a VEOC form. Heavily used areas will be observed three times per day and lightly used areas will be observed once per day.

Control Measures: Water will be applied to heavily used unpaved areas at least once per day subject to the weather conditions identified above. Additional applications may be made in response to Employee Observations. Operation of the water truck will documented in a water truck log that will identify the area(s) where water is applied, the approximate amount of water applied, the time of application, the name of the person operating the water truck, and the reason for application (i.e., routine daily application or in response to an Employee Observation).

Downwind Property Line/Barge Loading:

Monitoring: Trained personnel will conduct visual observations at least once per day of the barge loading area (when barge loading is occurring at the time of the observation) and the downwind property line(s) of the industrial campus for the presence of Visible Emissions and record the results on a VEOC form.

It is the determination of this reviewer that the revised FPOP as submitted on July 17, 2019, meets the criteria of a FPOP and is acceptable. No issues are anticipated to arise from the implementation of this revised FPOP as written.

General Checklist	YES	NO	N/A
What is the purpose of this review? FPOP review for Permits			
Is this review being done on site or in the office (desk top)? Office Review			
 Is the facility in an area of Granite City as defined by 35 Ill. Adm. Code 212.324(a)(1)(C) and engaged in one of these operations? Mining operations (SIC major groups 10 through 14) Manufacturing operations (SIC major groups 20 through 39 including grainhandling and grain-drying operations, portable grain-handling equipment and one-turn storage space) Transportation, communications, electric, gas, and sanitary services (SIC major groups 40 through 49) Wholesale trade-farm supplies (SIC Industry No. 5191) If yes, answer 4-9 then go to the Granite City check list. Is the facility in the area of McCook defined by 35 Ill. Adm. Code 212.324(a)(1)(A) or the 		x	
 area of Lake Calumet defined by 35 Ill. Adm. Code 212.324(a)(1)(B) and engaged in one of these operations? Mining operations (SIC major groups 10 through 14) Manufacturing operations (SIC major groups 20 through 39 including grainhandling and grain-drying operations, portable grain-handling equipment and one-turn storage space) Transportation, communications, electric, gas, and sanitary services (SIC major groups 40 through 49) If yes, answer 4-9 then go to the McCook/Lake Calumet check list. 	x		
 3. Is the facility in one of the other geographical areas of application defined by 35 Ill. Adm. Code 212.302(a) and engaged in one of these operations? Mining operations (SIC major groups 10 through 14) Manufacturing operations (SIC major groups 20 through 39 except for grainhandling and grain-drying operations, portable grain-handling equipment and one-turn storage space) Electric generating operations (SIC group 491) If yes, answer 4-9 then go to the Other Geographical Areas check list. 		x	
If the answers to 1, 2, and 3 are no, the facility is not required to have an operating program pursual Subpart K. They may have an operating program pursuant to permit conditions, compliance comm ("CCA's"), or facility may choose to submit on their own accord. If this is the case please answer review as outlined in the General Guidance document (as applicable) and document the review in NOTE: The review should include compliance determinations in reference to any permit condition applicable.	nitment 4-9 and a Tier 1	agreem conducter report. A's as	
4. Do they have an Operating Program?		X	
If yes, when was it originally prepared? See GIR Report	37		
5. Was the Operating Program submitted to the Agency? If we when was it submitted? See GIP Penert.	X		
If yes, when was it submitted? If yes, when was it reviewed? See GIR Report See GIR Report			
6. Has the program been incorporated into a permit?		X	
If yes, what is the permit and when was it issued? Has not been incorporated as of this review	but wil	1	luded
when Joint Construction and Lifetime Operating Permit is issued.		1	
7. Does it have the name and address of the source?	X		
8. Does it have the name and address of the owner or operator in charge of the source and the program?	X		
9. Has it been updated recently?	X		

Other Geographic Areas Check List

	YES	NO	N/A
Property Line			
1. Are there emissions of fugitive particulate matter, as defined by 35IAC2112490, that are			
visible by an observer looking generally toward the zenith at a point beyond the property line			X
of the source?			
If yes, provide more information:			•
2. Does the source conduct observations for visible emissions and are records kept of such?	X		
Storage Piles		ı	ı
3. Does the facility have a potential to emit in excess of 100 T/yr of particulate emissions from all			
sources?			
If so, how was this determination made?		X	
Is the potential to emit limited by a permit(s)?			
If no, go to 8			
a) If yes, does the storage pile have uncontrolled fugitive particulate matter emissions in			
excess of 50 T/yr? Explain basis for answer.			X
If no storage piles apply, go to 8			
b) If yes, are all storage piles protected by a cover or sprayed with a surfactant solution or			
water on a regular basis, as needed, or treated by an equivalent method, in accordance with			X
the operating program?			
c) If any are not, then can it be proved that the storage pile does not have fugitive particulate			
matter emissions that cross the property line by either direct wind action or re-entrainment			
(i.e., cleaning of spills, moving of equipment, etc.)?			
Identify the storage pile and provide more information if visible emissions are observed or indicated:		ı	ı
4. Are all conveyor loading operations to the storage pile utilizing spray systems, telescopic	X		
chutes, stone ladders or other equivalent methods in accordance with the operating program?			
Identify the operation and provide more information if visible emissions are observed or indicated:		Г	П
5. Are all normal traffic pattern access areas surrounding the storage pile either paved and cleaned			
regularly or treated with water, oils or chemical dust suppressants and have the treatment	X		
applied on a regular basis, as needed, in accordance with the operating program?			
Identify the area and provide more information if visible emissions are observed or indicated:		ı	ı
6. Are the above control methods detailed in the Fugitive Dust Plan?	X		
7. Are the storage piles, conveyor loading operations, and normal traffic pattern access areas	X		
surrounding the storage pile shown on a map of the facility?			
Provide more information on methods, frequencies, and any deviations:			
Traffic Areas		ı	ı
8. Is the facility a mining or manufacturing facility?		X	
a) If yes, are all normal traffic pattern roads and parking facilities either paved and cleaned			X
regularly or treated with water, oils or chemical dust suppressants and have the treatment			
applied on a regular basis, as needed, in accordance with the operating program?			
Identify the area and provide more information if visible emissions are observed or indicated:		Г	П
9. Are these control methods detailed in the Fugitive Dust Plan?	X		
10. Are the normal traffic pattern roads and parking facilities shown on a map of the facility?	X		
Provide more information on methods, frequencies, and any deviations:			
Pollution Control Equipment	1	Г	П
11. If pollution control equipment is used for controlling particulate matter emissions according to			
an Fugitive Dust Plan, are emissions from that equipment below or equal to 68 mg/dscf (0.03			X
gr/dscf) as demonstrated by a stack test?			
If no for any equipment, identify equipment and provide more information:			

12. Are all unloading and transporting operations of materials collected by pollution control equipment enclosed or utilize spraying, pelletizing, screw conveying or other equivalent methods?			x
If no for any operation, identify operation and provide more information:			
13. Are these pollution control equipment and control methods detailed in the Operating Program?			X
14. Are the locations of all the unloading and transporting operations of materials collected by pollution control equipment shown on a map of the facility?			X
Provide more information on methods, frequencies, and any deviations: Materials are returned to sile	os and 1	not off	site.
Crushing, Grinding, Conveying, Bagging, and Loading Operations			
15. Are all crushers, grinding mills, screening operations, bucket elevators, conveyor transfer points, conveyors, bagging operations, storage bins and fine product truck and railcar loading operations being sprayed with water or a surfactant solution, utilizing choke-feeding or being treated by an equivalent method in accordance with the operating program?	X		
Identify the operation and provide more information if visible emissions are observed or indicated: C points.	only Tra	nsfer	
16. Are these control methods detailed in the Fugitive Dust Plan?	X		
Provide more information on methods, frequencies, and any deviations:. Water injection at the shrede observations of other processes for visible emissions and additional watering.	der and	daily	
1. Are there any additional Federal standards or permit conditions?		X	
If yes, list them:			

	SIGNATURE
REPORT CERTIFICATION:	X Eric E. Jones Reviewer

cc: DAPC – Division File DAPC/FOS –

EXHIBIT 10

Air Dispersion Modeling Protocol to Assess Metal Emission Impacts General III, LLC – Chicago, Illinois

November 18, 2019

R17421-7.1

Prepared for:

General III, LLC 1909 North Clifton Avenue Chicago, Illinois 60614 Attn: Mr. Jim Kallas

This Document Contains Redacted TRADE SECRET Information

Figures A-1, A-2, B-1, and B-3 Contain Trade Secret Information and Have Been Redacted from this Document.

Prepared by:

John G. Pinion Principal Engineer RK & Associates, Inc.

2 South 631 Route 59 Suite B Warrenville, Illinois 60555

Phone: 630-393-9000 Fax: 630-393-9111 This Page Left Blank

TABLE OF CONTENTS

1.0	INTRODUCTION	1
	1.1 Facility Location and Contact Information	2
2.0	EMISSION SOURCES	5
	2.1 Shredder Emissions	5
	2.2 Ferrous Material Processing	6
	2.3 Non-Ferrous Material Processing	6
	2.4 Vehicle Traffic	7
3.0	DISPERSION MODELING	9
	3.1 Meteorological Data	9
	3.2 Terrain Data	9
	3.3 Receptor Network	9
	3.4 Building Downwash	9
	3.5 Lead Modeling	9
	3.6 Manganese Modeling	11
	3.7 Modeling Other Metals	13
	3.8 Adjustments to Background Data	14
TAE	BLES	
Tab	e 3-1 Offsite Lead Sources	10
Tab	e 3-2 Lead Background Concentrations	10
Tab	e 3-3 Offsite Manganese Sources	12
Tab	e 3-4 Manganese Background Concentrations	13
Tab	e 3-5 NR 445 Standards For Other Metals	13
Tab	e A-1a Ferrous Material Processing- Metal Emissions in Active Hours	Appendix A
Tab	e A-1b Ferrous Material Processing – Metal Emissions in Inactive Hours	Appendix A
Tab	e A-2 Ferrous Material Processing – Particulate Emissions	. Appendix A
Tab	e A-3 Ferrous Plant Stockpile – Particulate Emissions	Appendix A
Tab	e A-4 Ferrous Material Processing – PM Emission Summary	Appendix A
Tab	e B-1 Non-Ferrous Material Processing – Particulate Emissions	Appendix B
Tab	e B-2 Non-Ferrous Plant Stockpile – Particulate Emissions	Appendix B
Tab	e B-3 Non-Ferrous Material Processing – PM Emission Summary	Appendix B
Tab	e B-4a Non-Ferrous Material Processing – Metal Emissions in Active Hours	Appendix B
Tab	e B-4b Non-Ferrous Material Processing – Metal Emissions in Inactive Hours	Appendix B

FIGURES

Figure 1-2	Site Location Map	3
Figure 1-2	Facility Map	4
Figure A-1	Ferrous Processing System Flow Diagram TRADE SECRET Redacted	Appendix A
Figure A-2	Ferrous Processing System Layout TRADE SECRET Redacted	Appendix A
Figure B-1	Non-Ferrous Processing System Flow Diagram TRADE SECRET Redacted	Appendix E
Figure B-2	Non-Ferrous Processing System Layout TRADE SECRET Redacted	Appendix E
Figure C-1	Anticipated Traffic Routes	Appendix C

APPENDIXES

Appendix B Non-Ferrous Material Processing Figures and Tables

Appendix C Vehicle Traffic

1.0 INTRODUCTION

General III, LLC (GIII), is proposing to construct and operate a new scrap metal recycling facility (Facility) in Cook County at 11600 South Burley Avenue in Chicago, Illinois. A Site Location Map and Facility Layout Map are presented in Figures 1-1 and 1-2.

GIII's proposed facility will be a state-of-the-art metal recycling facility located in the heart of an industrial district well buffered from residential properties. The proposed new metal shredder and material processing operations will utilize the latest technology to create a clean, efficient, and environmentally sensitive plant.

GIII will receive and shred mixed recyclables in various forms to produce uniform grades of ferrous and non-ferrous metals. Proposed scrap handling and processing activities include receiving, sorting, shredding, metal separation, and recovery of ferrous and non-ferrous metals.

The proposed GIII facility will be a minor source with respect to federal and state nonattainment area new source review (NA NSR), prevention of significant deterioration (PSD) requirements and Title V permitting requirements. The proposed facility will also be an area source with respect to hazardous air pollutants (HAPs).

As part of the air permitting process, Illinois Environmental Protection Agency (IEPA) has requested that GIII perform air dispersion modeling of metal emissions from the proposed facility. Emission testing was conducted at the existing GII facility (formally General Iron Industries, Inc.) located at 1909 North Clifton Avenue in Chicago, on June 13 and 14, 2018, that measured metal emissions from the discharge of the roll media filter used to control particulate emissions from the existing shredder operation, in accordance with USEPA Methods 1-4 and Method 29. Test results were submitted to IEPA in June 2018. Pursuant to USEPA Method 29, the emissions of seventeen metals were reported. IEPA requested that GIII evaluate the offsite impacts from those seventeen metals.

There are no IEPA or USEPA regulations limiting emissions of specific metals or requiring an ambient impact analysis. There is a National Ambient Air Quality Standard (NAAQS) for lead (Pb). In an effort to identify a standard for metals, RKA reviewed the Wisconsin Department of Natural Resources (WDNR's) rule regulating the emissions of air toxic pollutants (including metals) that is applicable to facilities that are not subject to other state or federal rules for metals emissions. WDNR's Air Toxics Rule (NR 445) sets health-based emission standards for about 550 air toxics, including metals. The standards in NR 445 are based on threshold limit values established by American Conference of Governmental Industrial Hygienists (ACGIH) and USEPA or California Air Resources Board risk factors. Wisconsin's NR 445 will be used to assess the potential impacts for the estimated emissions of the 17 identified metals as described in Section 3 of this document.

1.1 Facility Location and Contact Information

Business Name: General III, LLC.

Source Location: 11600 South Burley – Chicago, Illinois 60617

Hyde Park Township, Cook County Illinois

<u>Latitude/Longitude</u> 41.685201° N / -87.545847" W –

Approximate Location of Front Gate

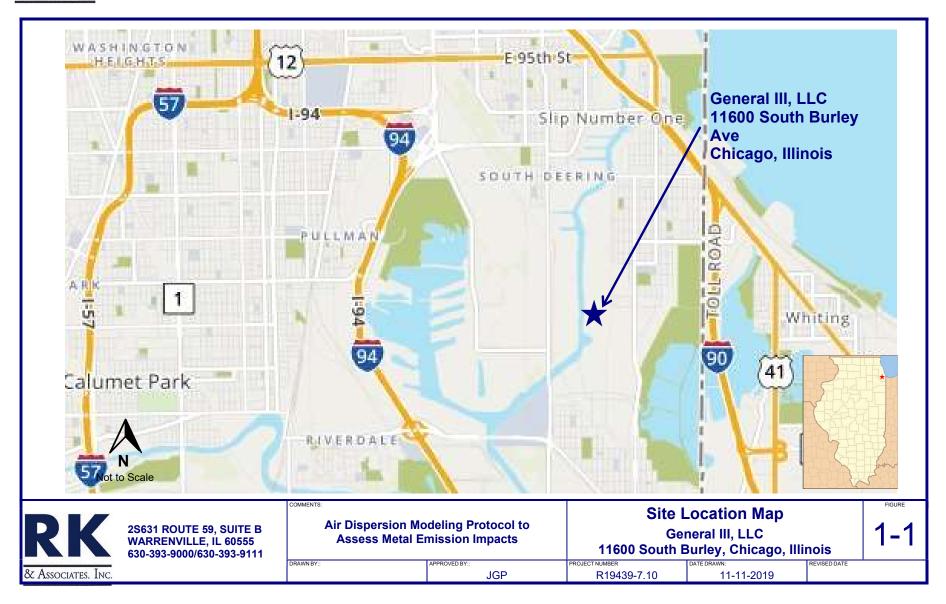
Office/Mailing Address: 1909 N. Clifton Avenue – Chicago, Illinois 60614

General III, LLC Mr. Jim Kallas - Environmental Manager

847-508-9170 – <u>jim@general-iron.com</u>

IEPA Site ID No.: Not yet assigned

SIC Code: 5093 – Scrap and Waste Materials


NAICS Code: 423930 – Recyclable Material Merchant Wholesalers

RKA Contact for John Pinion - Principal Engineer

<u>Application Preparation</u> 2S631 Route 59, Suite B - Warrenville, Illinois 60555

630-393-9000 - jpinion@rka-inc.com

2.0 EMISSION SOURCES

Emission sources, emission factors, and emission rates are described in detail in the Construction Permit Application submitted to IEPA dated September 24, 2019. The new proposed GIII facility will consist of the following operations:

- Raw material receiving and handling;
- Hammermill shredder;
- Ferrous separation and material processing; and,
- Non-ferrous separation and material processing.

The following emission sources are identified:

- Shredder controlled by roll-media filter, RTO, and quench packed tower scrubber;
- Ferrous Material Processing System –conveyors, magnetic separators, stockpiles, and material loadout;
- Non-Ferrous Material Processing System feed hopper, conveyors transfer points, magnetic separators, screens, vibratory feed tables, stockpiles and material loadout, and a baghouse for control of emission sources located in the fines processing building;
- Stockpiles (fugitive emissions); and,
- Paved and Unpaved Roads (fugitive emissions)

2.1 Shredder Emissions

Emissions from the shredder will be collected and controlled by a hood located over the top of the shredder and ducted through a control system consisting of a roll media filter, RTO, and a quench/ packed tower scrubber. Emissions from the shredder (scrubber exhaust stack) will be modelled as a point source. Point source parameters are as follows:

Stack Height: 41 ft Stack Diameter: 6 ft

Exhaust Flow Rate: 73,500 acfm

Exhaust Temperature: 100°F

Emission testing conducted at the existing GII facility in Chicago on June 13 and 14, 2018 measured metals from the exhaust of the existing roll media filter pursuant to USEPA Methods 1-4 and Method 29. Due to the similarities in shredder material feed streams, the metals partitioning in filterable particulate measured at the discharge of the roll media filter at GII are assumed to be the representative of the metals partitioning in the estimated filterable particulate in shredder emissions discharged from the scrubber exhaust stack.

Metal emissions from the proposed shredder are presented in Appendix A, Table A-1a and A-1b.

2.2 Ferrous Material Processing

The Ferrous Material Processing System consists of multiple emissions sources as described in the construction permit application. Emission sources include conveyors, magnetic separators, stockpiles and material loadout.

For the purpose of modeling, emission sources that are spatially close together are combined into separate volume sources. The Ferrous Material Processing System emission sources have been grouped into thirteen (13) volume sources, V-1 through V-13, as shown in Figure A-1 in Appendix A. A layout drawing of the Ferrous Material Processing System is presented in Figure A-2 in Appendix A. Figures A-1 and A-2 contain TRADE SECRET information and have been reducted from this document.

Individual metal emission rates are calculated by multiplying the estimated particulate emission rate for each modeled source by the metal partitioning factor for each metal, expressed as a percentage of the total filterable particulate measured during the June 2018 GII shredder emission testing.

The type of emission source, the emission source identification number, and corresponding PM emissions are shown in Table A-2 in Appendix A.

Stockpile sources and their appropriate volume source group are shown in Table A-3. Emissions from stockpiles are different during the time piles are active and when piles are inactive. Table A-4 identifies the individual metal emission rates from material handling sources and stockpile sources. For the purpose of this modeling assessment, the stockpiles in the Ferrous Material Handling System are assumed to be active for 12 hours per day Monday through Saturday.

2.3 Non-Ferrous Material Processing

The Non-Ferrous Material Processing System consists of multiple emissions sources as described in the construction permit application. Emission sources include feed hopper, conveyors transfer points, magnetic separators, screens, vibratory feed tables, stockpiles and material loadout. Emission sources have been grouped into six (6) volume sources, VN-1 through VN-6, as shown in Figure B-1 in Appendix B. A layout drawing of the Non-Ferrous Material Processing System is presented in Figure B-2 in Appendix B. Figures B-1 and B-2 contain TRADE SECRET information and have been redacted from this document.

Individual metal emission rates are calculated by multiplying the estimated particulate emission rate for each modeled source by the metal partitioning factor for each metal, expressed as a percentage of the total filterable particulate measured during the June 2018 GII shredder emission testing.

The type of emission source, the emission source identification number, and corresponding PM emissions are shown in Table B-1 in Appendix B.

Stockpile sources and their appropriate volume source group are shown in Table B-2. Emissions from stockpiles are different during the time piles are active and when piles are inactive. Table B-3 contains combined emissions from material handling sources and stockpile sources. For the purpose of this modeling assessment, the stockpiles in the Non-Ferrous Material Handling System are assumed to be active for 24 hours per day Monday through Saturday.

Individual metal emission rates are shown in Table B-4a for active facility hours and in Table B-4b for inactive hours.

The Non-Ferrous Material Processing System includes a Fines Processing System that is located in a building. Emissions from the fines processing equipment are ducted to one of four identical dust collectors. Three of the dust collectors exhaust treated air back into the building and the fourth dust collector exhausts treated air to the outside atmosphere. Emissions from the single dust collector that exhausts to the atmosphere will be modeled as a point source with the following parameters:

Stack Height: 47 ft Stack Diameter: 2 ft

Exhaust Flow Rate: 12,000 acfm
Exhaust Temperature: Ambient

Metal emissions from the dust collector are shown in Table B-4 in Appendix B.

2.4 Vehicle Traffic

The vast majority of material received at the proposed facility will be delivered by semi-trailers and the remaining portion will enter the facility in pickup truck sized vehicles driven by peddlers. Vehicles will enter the facility through a controlled gate and travel over a weigh scale before being routed to a designated unloading area.

Proposed vehicle routes are presented in Figure C-1 in Appendix C. Vehicle emissions will be modeled as a line of adjacent volume sources, representing each of the vehicle routes in the facility. Estimated roadway fugitive emissions will be distributed to reflect the frequency of the vehicle traffic on each road.

This Page Left Bla*nk*

3.0 DISPERSION MODELING

Dispersion modeling will be performed to predict the maximum impact from General III sources. AERMOD dispersion model Version 19191, AIRMET Version 19191, AERMINUTE Version 15272, AERMAP Version 18081, and AIRSURFACE Version 13016 will be used in this modeling analysis.

3.1 Meteorological Data

Surface meteorological data used in the modeling is obtained from the National Weather Service at the Midway Airport Station for the years 2014 through 2018. Wind data was downloaded as 1-minute average ASOS data and processed in AERMINUTE. Upper air data for the same period is obtained from nearest upper air Lincoln-Logan County station. Surface and upper air data is preprocessed with AERMET using surface parameters from AIRSURFACE.

3.2 Terrain Data

Receptor elevations, source elevations, and building elevations were obtain by running AERMAP, using National Elevation Dataset (NED) files downloaded from USGS website.

3.3 Receptor Network

A Cartesian receptor grid is placed around the property lines up to 5 km from the property line as follows:

- 50 m apart along the property line
- 100 m extending from the fence line to 2 km
- 500 m apart from 2 km to 5 km

3.4 Building Downwash

Downwash parameters will be developed based on detailed building information provided by GIII for proposed buildings, and information derived from aerial photos from Google Earth for nearby buildings.

3.5 Lead Modeling

Lead modeling will be performed to identify off site impacts for comparison to the National Ambient Air Quality Standard (NAAQS) for lead, which is $0.15 \ \mu g/m^3$ on a rolling three-month average.

GIII lead emission sources described in Section 2 of this protocol will be modeled along with other, non-GIII offsite lead sources. IEPA has provided a list of offsite lead sources to be included in this modeling assessment. The list of offsite sources is included in Table 3-1.

031600AFV

031600GWV

30

184791 Feed handling system

234365 Boiler

				Lead	Stack	Stack					
	Stack			Emissions	Diameter	Height	Flow Rate	Temperature	UTM	UTM	UTM
ID Number	Number	Stack Id	Stack Description	(lb/hr)	(ft)	(ft)	(acfm)	(F)	Zone	Northing	Easting
031600AAR	109	250881	4 Big foot air houses (19.4 million BTU/hr each)	0.00000335	1.76	37	3000	442	16	4612420	453419
031600FGT	3	195877	Cement silo loading	0.000069	2.80	36	10266	80	16	4617532	451809
031600FGT	6	195880	Mixer and/or truck loading	0.0002292	2.90	32	10220	80	16	4617532	451809
031600FHQ	1	121260	Portland cement terminal: Cement silo loading	0.000368	5.30	50	3000	70	16	4612185	452489
031600FHQ	2	121261	Portland cement terminal: Truck loading/unloading	0.002208	7.92	20	3000	70	16	4612185	452489
031600GKE	9	222736	Backup generator EDG A	0.000277144	3.00	12	16200	895	16	4618584	454708
031600GKE	10	222737	Backup generator EDG B	0.000277144	3.00	12	16200	895	16	4618571	454708
031600GKE	11	222738	Backup generator EDG C	0.000277144	3.00	12	16200	895	16	4618559	454708
031600AFV	5	118896	Kiln #2	0.144	15.85	16	4115	356	16	4615216	453823
031600AFV	27	184788	Crude zinc oxide bin loadout (bag collector 5)	0.009	29.87	30	123228	300	16	4615216	453823

0.0018

0.00019

22.86

22.56

23

23

4101

19740

301

487

16

453823

TABLE 3-1. OFFSITE LEAD SOURCES

AERMOD will be run for five years of meteorological data to predict the first-high monthly average concentration. AERMOD post files will be created and processed with LEADPOST, which outputs the rolling three-month averages. LEADPOST identifies the receptor of maximum impact based on a three-month rolling average.

Background lead ambient concentration will be added to the predicted maximum 3-month average concentration. The nearest statewide air monitoring site for lead is located at Washington High School, AQS ID 17-031-0022. The three-month rolling means for the past three years are shown in Table 3-2. The maximum three-month rolling mean from the latest three-year period will used as a background concentration.

Predicted modeled concentrations plus background concentration will be compared to the NAAQS.

TABLE 3-2. LEAD BACKGROUND CONCENTRATIONS

	Three-Month	
	Rolling Mean	Design Value*
Year	$(\mu g/m^3)$	(μg/m3)
2018	0.01	
2017	0.02	0.02
2016	0.02	

^{*} The design value is the maximum three-month rolling mean over the latest three-year period.

3.6 Manganese Modeling

There is no NAAQS for manganese. Modeling will be performed to identify predicted offsite impacts for comparison to Wisconsin's NR 445 standard of 4.8 μ g/m³ on a 24-hour average basis and USEPA's chronic inhalation Minimal Risk Level (MRL) of 0.3 μ g/m³ on an annual average basis.

GIII manganese sources described in Section 2 of this protocol will be modeled along with other, non-GIII offsite manganese sources. IEPA provided a list of offsite manganese sources to be included in this modeling assessment. The list of offsite manganese emission sources is included in Table 3-3.

AERMOD will be run for five years of meteorological data to predict the first-high 24-hour average concentration (for comparison to the NR 445 standard) and the annual concentration (for comparison the USEPA MRL).

Background manganese ambient concentration will be added to the predicted first-high 24-hour average concentration. The nearest statewide air monitoring site for manganese is located at Washington High School, AQS ID 17-031-0022. The maximum 24-hour and annual manganese concentrations measured during the past three years are shown in Table 3-4. The maximum 24-hour concentration among the last three years is 0.370 $\mu g/m^3$, which will be used as a the 24-hour background concentration. The maximum annual average among the three years is 0.070 $\mu g/m^3$, which will be used as the annual background concentration.

TABLE 3-3. OFFSITE MANGANESE SOURCES

				Mn	Stack						
	Stack			Emissions	Diameter	Stack	Flow Rate	Temperature	UTM	UTM	UTM
ID Number		Stack Id	Stack Description	(lb/hr)	(ft)	Height (ft)	(acfm)	(F)	Zone	Northing	Easting
	0003	115247	Boiler #3	0.00000152	2.00	25	2752	300	16	4610011	454809
	0003	115247	Boiler #2	0.00000132	2.00	25	2752	300	16	4610011	454809
	0002	115246	Boiler stack #1	0.000000589	3.50	95	2600	220	16	4610011	454809
	0046	118716	60 million BTU/hr boiler	0.000000383	3.30	117	19319	300	16	4612420	453419
	0055	118725	Air supply	0	2.30	55	8000	225	16	4612420	453419
	0056	118726	Air supply	0	1.00	45	2000	245	16	4612420	453419
	0088	156582	2 Natural gas fired hot water heaters	0.000001026	3.70	85	17345	361	16	4612420	453419
	0109	250881	4 Big foot air houses (19.4 million BTU/hr each)	0.000001526	1.76	37	3000	442	16	4612420	453419
	0110	250882	2 Hot water stations	0.000001026	1.84	37	3300	430	16	4612420	453419
	0111	250883	Paint line water heater	0.000001026	1.84	37	3300	430	16	4612420	453419
	0112	250884	Other natural gas combustion (curing ovens, oxidize	0.0000039976	1.92	39	4860	258	16	4612420	453419
	0114	250886	Emergency generator	7.4565E-06	2.02	36	12960	692	16	4612420	453419
031600AFV	0005	118896	Kiln #2	0.033000178	6.40	52	4115	181	16	4615216	453823
031600AFV	0005	118896	Kiln #2	0.032776655	6.40	52	4115	181	16	4615216	453823
031600AFV	0035	184796	Engine	0.032770033	4.80	56	73901	503	16	4615216	453823
031600ALC	0002	118971	Boiler	0.000009272	2.50	112	9520	470	16	4613531	454085
	0002	209976	Natural gas combustion	0.000009272	3.40	30	25373	324	16	4617392	450256
031600AUL 031600BIY	00013	119521	Boiler #1	0.000002964	5.00	90	7970	565	16	4613129	450236
	0001						4936	395	16		
031600BIY		241900 119770	Boiler #3	0.00000209	2.00	28 35		350	16	4613129	451612
031600BRA	0001		Gas heater	0.00000171	2.50		700			4618594	454528
031600DPK	0001	120674	Silo loading	0.000505	2.20	32	12424	113	16	4619060	454722
	0021	173045	Centrifuge Boilers #1 and #2	1.38624E-06	1.83	46	2050	450	16	4613049	450146
031600FDK	0002		2 Steam generators	0.000001482	2.60	34	1 10000	400	16	4617978	453577
	0003	195877	Cement silo loading	0.0189375	2.80	36	10266	80	16	4617532	451809
031600FGT	0006	195880	Mixer and/or truck loading	0.03672	2.90	32	10220	80	16	4617532	451809
031600FGT	0007	195881	Natural gas combustion	0.00000342	2.70	50	8859	341	16	4617532	451809
031600FHQ	0001	121260	Portland cement terminal: Cement silo loading	0.000101	5.30	50	3000	70	16	4612185	452489
031600FHQ	0002	121261	Portland cement terminal: Truck loading/unloading	0.000606	7.92	20	3000	70	16	4612185	452489
031600FHQ	0003	190764	Portland cement terminal: Barge unloader	0	2.80	36	10266	80	16	4612185	452489
	0004	215253	Slag dryer	0	5.33	157	74700	183	16	4612141	452468
	0004	215253	Slag dryer	0.000011704	5.33	157	74700	183	16	4612141	452468
	0017	188346	Product collector from shaft dryers (T51-HG1), Cyclo	6.65E-09	2.20	90	20000	205	16	4617602	454330
031600FLD	0016	188345	Polymers (Y-Chutes, top of T61-RP2 bin and T61-RP2	1.672E-09	2.20	90	3336	205	16	4617602	454330
	0023	233161	Natural gas combustion	0.000005852	3.40	58	15060	436	16	4613979	453740
	0003	193349	Natural gas combustion	0.000006194	2.47	49	9240	331	16	4617336	450418
	0001	219682	Turbine CT-01	0.106666	20.00	90	1658000	997	16	4614792	453654
	0001	219682	Turbine CT-01	0	20.00	90	1658000	997	16	4614792	453654
	0003	222391	Turbine CT-02	0.10025	20.00	90	1658000	997	16	4614792	453697
	0003	222391	Turbine CT-02	0	20.00	90	1658000	997	16	4614792	453697
	0005	189629	2 Boilers	0.000005434	1.50	35	4700	330	16	4612395	452774
	0005	189629	2 Boilers	0.000004712	1.50	35	4700	330	16	4612395	452774
031600GKE	0001	219577	Turbine CTG-5	0.0429471	12.14	84	611000	1050	16	4618643	454621
031600GKE	0009	222736	Backup generator EDG A	0.01563884	3.00	12	16200	895	16	4618584	454708
031600GKE	0010	222737	Backup generator EDG B	0.01563884	3.00	12	16200	895	16	4618571	454708
031600GKE	0011	222738	Backup generator EDG C	0.01563884	3.00	12	16200	895	16	4618559	454708
031600GKE	0002	219591	Turbine CTG-6	0.04244986	12.14	84	611000	1050	16	4618616	454621
031600GKE	0003	219592	Turbine CTG-7	0.04277066	12.14	84	611000	1050	16	4618590	454621
031600GKE	0004	219593	Turbine CTG-8	0.04341226	12.14	84	611000	1050	16	4618564	454621
031600GKE	0005	219594	Turbine CTG-9	0.04197668	12.14	84	611000	1050	16	4618643	454672
031600GKE	0006	219595	Turbine CTG-10	0.0420248	12.14	84	611000	1050	16	4618617	454672
031600GKE	0007	219596	Turbine CTG-11	0.04220926	12.14	84	611000	1050	16	4618590	454672
031600GKE	0008	219597	Turbine CTG-12	0.04207292	12.14	84	611000	1050	16	4618564	454672
	0001	209195	Combined boilers stack	0.00000494	3.00	30	5150	350	16	4617728	451623
	0007	234365	Boliler	0.000127848	3.78	74	19740	416	16	4613685	454218

Year	1st High 24-Hour Concentration (µg/m³)	Annual Mean (µg/m³)	Maximum 24-Hour Concentration (µg/m³)
2018	0.197	0.048	
2017	0.235	0.070	0.370
2016	0.370	0.068	

TABLE 3-4. MANGANESE BACKGROUND CONCENTRATIONS

3.7 Modeling Other Metals

There are no NAAQS for other metals. Wisconsin's Air Toxics Rule (NR 445) sets health-based emission standards. The metal impacts predicted by this modeling analysis will be compared to the NR 445 standards.

Table 3-5 includes a list of the other metals and their corresponding NR 445 limits.

TARIF 3-5	NR 445	STANDARD	IS FOR (OTHER	METALS
IADLL 3-3.	. 1417 446	JUNIOARD		UIILK	MILIALS

	Ambient A	ir Standard		
Metals	24 Hour (ug/m³)	Annual (ug/m³)	Unit Risk Factor (ug/m³) ⁻¹	Source
Antimony	12.00	NA		
Arsenic	NA	Carcinogen	0.00430	IRIS
Barium	12.00	NA		
Beryllium		Carcinogen	0.00240	IRIS
	NA	0.02		
Cadmium	NA	Carcinogen	0.00180	IRIS
Chromium (1)	12.00	NA		
Cobalt	0.48	NA		
Copper	24.00	NA		
Nickel	NA	Carcinogen	0.00026	CAL
Phosphorus	2.43	NA		
Selenium	4.80	NA		
Thallium	2.40	NA		
Silver ⁽²⁾	NA	NA		
Zinc ⁽²⁾	NA	NA	_	
Mercury	2.40	0.30		

⁽¹⁾ Chromium (metal) and compounds other than Chromium VI.

⁽²⁾ Silver, and zinc compounds are not in NR445 and no inhalation RfC is reported on the EPA Integrated Risk Information System (IRIS).

For other metals, AERMOD will be run only with GIII sources described in Section 2. Five years of meteorological data will be used.

For non-carcinogenic metals, the predicted first-high 24-hour average will be compared to the NR 445 24-hour limit. For beryllium and mercury, the predicted maximum annual concentration will be compared to the NR 445 annual limit. There is no NR 445 limit for silver and zinc and there is no inhalation exposure dose reported on the Integrated Risk Information System. The predicted 24-hour average and predicted annual concentration for these two metals will be reported but not compared to any limits.

According to NR 445.08(2)(c), emissions of carcinogenic air contaminants having a unit risk factor established by either the EPA or the California Air Resources Board, shall not result in an ambient air concentration off the source property corresponding to an inhalation impact (or risk) greater than 1 in $1,000,000 (1 \times 10^{-6})$.

The inhalation impact is determined by the following equation:

Inhalation impact = (Inhalation impact concentration annual average) x (Unit risk factor)

where:

the inhalation impact concentration is the annual average concentration of a contaminant in $(\mu g/m^3)$; and,

the unit risk factor for the contaminant is the unit risk factor value established by either EPA or the California Air Resources Board and is expressed in $(\mu g/m^3)^{-1}$.

The predicted maximum annual concentrations will be multiplied by the compounds corresponding unit risk factor, and then compared to a value of 1 in 1,000,000.

The IEPA monitoring station located at Washington High School [AQS ID 17-031-0022] also reported ambient concentrations arsenic, beryllium, cadmium, chromium, and nickel. Published design values for these metals, if available, will be incorporated into the modeling results as background concentrations.

3.8 Adjustments to Background Data

The prevailing wind direction at the proposed GIII site is from the southwest to the northeast. A portion of the identified offsite lead and manganese emission sources are located upwind of the Washington High School Monitoring Station that is used to identify background concentrations. To the extent this spatial relationship exists, the lead and manganese impacts from these offsite sources would be double counted by first adding their modeled impacts to the predicted GIII impacts in the modeling analysis and then adding the offsite impacts a second time by including their contribution to the background concentrations.

If the modeling analysis shows that these offsite sources significantly contribute to the measured background concentrations at the Washington High School monitoring station, the following procedure will be used to adjust the background concentrations that will be added to the modeled impacts.

Measured concentrations at the monitoring station will be sorted into 36 groups by wind direction. Wind directions are divided into 36 sectors. Wind directions from 0° to 9° are included in Sector 1; wind directions from 10° to 19° are included in Sector 2, etc. The monitoring station data will be adjusted to subtract data measured on days when the wind direction indicates that the monitoring station is located downwind from significant offsite sources.

If modeling results show that adjustment of the lead and manganese background concentrations is warranted, RKA will work with IEPA to develop an acceptable procedure for this purpose.

This Page Left Blank

Air Dispersion Modeling Protocol to Assess Metal Emission Impacts

General III, LLC - Chicago, Illinois

November 18, 2019

Appendix A

Ferrous Material Processing

Figures A-1 and A-2 contain TRADE SECRET information and have been redacted from this document.

This Page Left Blank

TRADE SECRET

Figure A-1 Redacted

Figure A-1 - Ferrous Processing System Flow Diagram
Air Dispersion Modeling Protocol

General III, LLC
11600 South Burley Avenue - Chicago, Illinois

TRADE SECRET

Figure A-2 Redacted

Figure A-2 - Ferrous Processing System Layout
Air Dispersion Modeling Protocol

General III, LLC
11600 South Burley Avenue - Chicago, Illinois

Table A-1a - Ferrous Material Processing - Metal Emissions in Active Hours (7 AM - 7 PM, Mon-Sat)

General III, LLC - Chicago, Illinois

	Metal as %														
Volume Source	of Total PM ^a	V-1	V-2	V-3	V-4	V-5	V-6	V-7	V-8	V-9	V-10	V-11	V-12	V-13	RTO
PM (Active)		1.1610000	0.1400000	0.1400000	0.0462000	0.1881000	0.2087000	0.1458000	0.0244000	0.0391000	0.2412000	0.1996000	0.1996000	0.5673000	2.4704690
Lead ^b	0.0665%	0.0007722	0.0000931	0.0000931	0.0000307	0.0001251	0.0001388	0.0000970	0.0000162	0.0000260	0.0001604	0.0001328	0.0001328	0.0003773	0.0016432
Manganese	0.0535%	0.0006217	0.0000750	0.0000750	0.0000247	0.0001007	0.0001118	0.0000781	0.0000131	0.0000209	0.0001292	0.0001069	0.0001069	0.0003038	0.0013229
Mercury	1.2866%	0.0149373	0.0018012	0.0018012	0.0005944	0.0024201	0.0026851	0.0018758	0.0003139	0.0005031	0.0031033	0.0025680	0.0025680	0.0072988	0.0317848
Nickel	0.0207%	0.0002405	0.0000290	0.0000290	0.0000096	0.0000390	0.0000432	0.0000302	0.0000051	0.0000081	0.0000500	0.0000413	0.0000413	0.0001175	0.0005118
Antimony	0.0040%	0.0000462	0.0000056	0.0000056	0.0000018	0.0000075	0.0000083	0.0000058	0.0000010	0.0000016	0.0000096	0.0000079	0.0000079	0.0000226	0.0000983
Arsenic	0.0015%	0.0000179	0.0000022	0.0000022	0.0000007	0.0000029	0.0000032	0.0000022	0.0000004	0.0000006	0.0000037	0.0000031	0.0000031	0.0000087	0.0000380
Beryllium	0.0003%	0.0000036	0.0000004	0.0000004	0.0000001	0.0000006	0.0000006	0.0000005	0.0000001	0.0000001	0.0000007	0.0000006	0.0000006	0.0000018	0.0000076
Cadmium	0.0147%	0.0001704	0.0000205	0.0000205	0.0000068	0.0000276	0.0000306	0.0000214	0.0000036	0.0000057	0.0000354	0.0000293	0.0000293	0.0000833	0.0003625
Chromium ^c	0.0163%	0.0001888	0.0000228	0.0000228	0.0000075	0.0000306	0.0000339	0.0000237	0.0000040	0.0000064	0.0000392	0.0000325	0.0000325	0.0000923	0.0004018
Cobalt	0.0014%	0.0000160	0.0000019	0.0000019	0.000006	0.0000026	0.0000029	0.0000020	0.0000003	0.0000005	0.0000033	0.0000027	0.0000027	0.0000078	0.0000340
Phosphorus	0.2000%	0.0023217	0.0002800	0.0002800	0.0000924	0.0003761	0.0004173	0.0002916	0.0000488	0.0000782	0.0004823	0.0003991	0.0003991	0.0011344	0.0049402
Selenium	0.0074%	0.0000858	0.0000103	0.0000103	0.0000034	0.0000139	0.0000154	0.0000108	0.0000018	0.0000029	0.0000178	0.0000148	0.0000148	0.0000419	0.0001826
Zinc	3.7272%	0.0432723	0.0052180	0.0052180	0.0017219	0.0070108	0.0077786	0.0054342	0.0009094	0.0014573	0.0089899	0.0074394	0.0074394	0.0211442	0.0920783
Barium	0.0360%	0.0004182	0.0000504	0.0000504	0.0000166	0.0000677	0.0000752	0.0000525	0.0000088	0.0000141	0.0000869	0.0000719	0.0000719	0.0002043	0.0008898
Copper	0.0266%	0.0003083	0.0000372	0.0000372	0.0000123	0.0000499	0.0000554	0.0000387	0.0000065	0.0000104	0.0000640	0.0000530	0.0000530	0.0001506	0.0006560
Silver	0.0064%	0.0000746	0.0000090	0.0000090	0.0000030	0.0000121	0.0000134	0.0000094	0.0000016	0.0000025	0.0000155	0.0000128	0.0000128	0.0000364	0.0001587
Thallium	0.0012%	0.0000143	0.0000017	0.0000017	0.0000006	0.0000023	0.0000026	0.0000018	0.0000003	0.0000005	0.0000030	0.0000025	0.0000025	0.0000070	0.0000305

a. Percentage of metal as % of total PM caculated based on measured metal emission rates from hammermill shredder controlled by cyclone and a roll media filter from June 2018.

b. Uncontrolled organic compound emission rates, as presented in ISRI Title V Applicability Workbook, Table D-11F, adjusted for RTO with 98% destruction efficiency.

c. Chromium (metal) and compounds other than Chromium VI

Table A-1b - Ferrous Material Processing - Metal Emissions in Inactive Hours (7 PM - 7 AM, Mon-Sat, All Day, Sun)

General III, LLC - Chicago, Illinois

	Metal as %														
Volume Source	of Total PM ^a	V-1	V-2	V-3	V-4	V-5	V-6	V-7	V-8	V-9	V-10	V-11	V-12	V-13	RTO
PM (Inactive)		0.0794000	-	-	0.0004000	-	0.0371000	-	-	0.0002000	-	0.0529000	0.0529000	-	
Lead ^b	0.0665%	0.0000528			0.0000003		0.0000247			0.0000001		0.0000352	0.0000352		
Manganese	0.0535%	0.0000425			0.0000002		0.0000199			0.0000001		0.0000283	0.0000283		ĺ
Mercury	1.2866%	0.0010216			0.0000051		0.0004773			0.0000026		0.0006806	0.0006806		
Nickel	0.0207%	0.0000164			0.0000001		0.0000077			0.0000000		0.0000110	0.0000110		ĺ
Antimony	0.0040%	0.0000032			0.0000000		0.0000015			0.0000000		0.0000021	0.0000021		
Arsenic	0.0015%	0.0000012			0.0000000		0.0000006			0.0000000		0.0000008	0.0000008		
Beryllium	0.0003%	0.0000002			0.0000000		0.0000001			0.0000000		0.0000002	0.0000002		
Cadmium	0.0147%	0.0000117			0.0000001		0.0000054			0.0000000		0.0000078	0.0000078		
Chromium ^c	0.0163%	0.0000129			0.0000001		0.0000060			0.0000000		0.0000086	0.0000086		
Cobalt	0.0014%	0.0000011			0.0000000		0.0000005			0.0000000		0.0000007	0.0000007		
Phosphorus	0.2000%	0.0001588			0.0000008		0.0000742			0.0000004		0.0001058	0.0001058		
Selenium	0.0074%	0.0000059			0.0000000		0.0000027			0.0000000		0.0000039	0.0000039		
Zinc	3.7272%	0.0029594			0.0000149		0.0013828			0.0000075		0.0019717	0.0019717		
Barium	0.0360%	0.0000286			0.0000001		0.0000134			0.0000001		0.0000191	0.0000191		
Copper	0.0266%	0.0000211			0.0000001		0.0000099			0.0000001		0.0000140	0.0000140		
Silver	0.0064%	0.0000051			0.0000000		0.0000024			0.0000000		0.0000034	0.0000034		
Thallium	0.0012%	0.0000010			0.0000000		0.0000005			0.0000000		0.0000007	0.0000007		

a. Percentage of metal as % of total PM caculated based on measured metal emission rates from hammermill shredder controlled by cyclone and a roll media filter from June 2018.

b. Uncontrolled organic compound emission rates, as presented in ISRI Title V Applicability Workbook, Table D-11F, adjusted for RTO with 98% destruction efficiency.

c. Chromium (metal) and compounds other than Chromium VI

Table A-2 - Ferrous Material Processing - Particulate Emissions General III, LLC - Chicago, Illinois

	1	2	3	6	7 8	9	10	11	12	13	18	19	22 #	24
Volume					Moisture	Transfer Point Location	Transfer Point	Type of Transfer	Dust Pickup Capture	Dust Control	Emission	Material Throughp ut	PM	Filterable PM
Source	Row		quipment Generating Emissions	Material	> 1.5%	(Inside /	Controlled	Point	Eff.	Eff.	Factor	Rates	Emissions	Emissions
Grouping	No.	ID#	Description	Conveyed	Y/N	Outside)	(Y/N)	Control	(%)	(%)	Source	tph	lb/ton	lb/hr
V-1	55		Truck Dumping of Raw Feed	Unprepare d	5.4 ^{a2}	Outside	N	-	0%	0%	Drop	300	0.00127 ^c	0.3797
V-1	56		Raw Feed from Ground after Truck Dumping	Unprepare d	5.4 ^{a2}	Outside	N	-	0%	0%	Drop	300	0.00127 ^c	0.3797
V-1	59	Magnet/ Clam	Drop Raw Scrap to Infeed Conveyor	Unprepare d	N ^{a4}	Outside	N	-	NA	0%	D	500	0.00020 f	0.1022
									,	Total Filter	able PM E	missions		0.8616
V-2	37	E-01	Drop Raw Scrap onto Shredder Feed Chute	Unprepare d	γ a4	Outside	N	-	NA	0%	А	500	0.00014 ^d	0.0700
V-2	40	E-05	Shredder Under Mill Vibratory Conveyor	Shred	Υ 0	Inside	N	-	NA	0%	Α	500	0.00014 d	0.0700
V-2	79	E-02	Shredder Bottom Discharge	Shred	γ ο	shredder	0	-	0%	0%	Α	500	Emissions o	aptured and
						emissions								redder emission
V-2	81	E-02	Shredder Chute	Unprepare	γ ο	shredder	0	-	0%	0%	Α	500		aptured and
				d		emissions				Total Ciltar	able PM E		controlled by sh	redder emission 0.1400
										i Otal Filter	able Fivi E	11115510115		0.1400
V-3	4	C-001	Shredded Material Transfer Conveyor	Shred	Υº	Outside	N	-	NA	0%	А	500	0.00014 ^d	0.0700
V-3	5	C-002	Shredded Material Transfer Conveyor	Shred	Υº	Outside	N	-	NA	0%	А	1	0.00014 ^d	0.0001
V-3	6	C-002	Mat'l Not Removed by Poker Picker	Shred	Υº	Outside	N	-	NA	0%	Α	499	0.00014 ^d	0.0699
							•	•		Total Filter	able PM E	missions		0.1400
V-4	58	-	Poker Loadout	Pokers	N º	Outside	N	-	0%	0%	D	183	0.00020 ^f	0.0374
V-4	62	E-06	Poker Picker Chute to Stockpile	Shred	1.5% ^{a1}	Outside	N	-	0%	0%	Drop	1	0.00761 ^c	0.0076
					<u> </u>		<u>. </u>			Total Filter	able PM E	missions		0.0450

Table A-2 - Ferrous Material Processing - Particulate Emissions General III, LLC - Chicago, Illinois

	1	2	3	6	7 8	9	10	11	12	13	18	19	22 #	24
Volume Source	Row		Equipment Generating Emissions	Material	Moisture > 1.5%	Transfer Point Location (Inside /	Transfer Point Controlled	Type of Transfer Point	Dust Pickup Capture Eff.	Dust Control Eff.	Emission Factor	Material Throughp ut Rates	PM Emissions	Filterable PM Emissions
Grouping	No.	ID#	Description	Conveyed	Y/N	Outside)	(Y/N)	Control	(%)	(%)	Source	tph	lb/ton	lb/hr
V-5	7	C-003	Ferrous Transfer Conveyor	Residue	Υº	Outside	N	-	NA	0%	А	130	0.00014 d	0.0182
V-5	8	C-003	Ferrous Transfer Conveyor	Ferrous	Υº	Outside	N	-	NA	0%	А	369	0.00014 ^d	0.0517
V-5	31	C-032	ASR Transfer Conveyor	Residue	Υº	Outside	N	-	NA	0%	А	4	0.00014 ^d	0.0006
V-5	32	C-033	Magnetic Material	Shred	Υº	Outside	N	-	NA	0%	А	5	0.00014 ^d	0.0007
V-5	33	C-033	ASR Not Removed by Magnet E-12	Residue	Υº	Outside	N	-	NA	0%	Α	129	0.00014 ^d	0.0181
V-5	34	C-034	Ferrous Transfer Conveyor	Shred	Υº	Outside	N	-	NA	0%	Α	5	0.00014 ^d	0.0007
V-5	35	C-035	Ferrous Transfer Conveyor	Shred	Υº	Outside	N	-	NA	0%	A	5	0.00014 ^d	0.0007
V-5	36	C-036	ASR Transfer Conveyor	Residue	Υº	Outside	N	-	NA	0%	A	129	0.00014 ^d	0.0181
V-5	41	E-07	Magnet Discharge to Chute	Shred	Υ 0	Outside	N	-	NA	0%	А	187	0.00014 ^d	0.0262
V-5	42	E-07	Magnet Discharge to Chute	Shred	Υ 0	Outside	N	-	NA	0%	Α	187	0.00014 ^d	0.0262
V-5	49	E-12	Ferrous Removed by Magnet	Ferrous	Y 0	Outside	N	-	NA	0%	Α	5	0.00014 ^d	0.0007
V-5	53	E-7	ASR Not Removed by Magnet	Shred	γ a3	Outside	N	-	NA	0%	A	2	0.00014 d	0.0003
V-5	54	E-7	Ferrous Removed by Magnet E-7	Residue	Υº	Outside	N	-	NA	0%	А	185	0.00014 d	0.0259
	•			•			•	•		Total Filter	rable PM E	missions		0.1881
V-6	61	C-037	ASR Transfer Conveyor to Stockpile	Residue	10 a3	Outside	N	-	0%	0%	Drop	129	0.00053 ^c	0.0689
				1			1	1		l .				

Table A-2 - Ferrous Material Processing - Particulate Emissions General III, LLC - Chicago, Illinois

	1	2	3	6	7 8	9	10	11	12	13	18	19	22 #	24
Volume Source	Row		Equipment Generating Emissions	Material	Moisture > 1.5%	Transfer Point Location (Inside /	Transfer Point Controlled	Type of Transfer Point	Dust Pickup Capture Eff.	Dust Control Eff.	Emission Factor	Material Throughp ut Rates	PM Emissions	Filterable PM Emissions
Grouping	No.	ID#	Description	Conveyed	Y/N	Outside)	(Y/N)	Control	(%)	(%)	Source	tph	lb/ton	lb/hr
V-7	9	C-006	Ferrous Transfer Conveyor	Shred	Υº	Outside	Y	Z-Box Air Loop	100%	100%	А	183	0.00014 d	0.0000
V-7	10	C-007	Ferrous Transfer Conveyor	Shred	Υº	Outside	Y	Z-Box Air Loop	100%	100%	Α	183	0.00014 d	0.0000
V-7	21	C-022	Ferrous Transfer Conveyor	Shred	γ a2	Outside	N	-	NA	0%	А	55	0.00014 d	0.0077
V-7	22	C-023	Ferrous Transfer Conveyor	Shred	Y ^{a2}	Outside	N	-	NA	0%	Α	55	0.00014 d	0.0077
V-7	23	C-024	Non-metallic transfer conveyor	Ferrous	Υº	Outside	N	-	NA	0%	А	4	0.00014 d	0.0006
V-7	30	C-031	ASR Transfer Conveyor	Residue	Υ 0	Outside	N	-	NA	0%	А	4	0.00014 d	0.0006
V-7	38	E-015	Z-Box Separator Cyclone	Ferrous	Υº	Outside	N	-	NA	0%	Α	2	0.00014 d	0.0003
V-7	39	E-016	Z-Box Separator Cyclone	Ferrous	Υº	Outside	N	-	NA	0%	А	2	0.00014 d	0.0003
V-7	43	E-08	ASR Not Removed by Magnet	Shred	Υº	Outside	N	-	NA	0%	А	2	0.00014 d	0.0003
V-7	44	E-08	Ferrous Removed by Magnet E-7	Residue	Υ 0	Outside	N	-	NA	0%	А	185	0.00014 d	0.0259
V-7	45	E-10	Ferrous Removed by Magnet	Shred	γ a2	Outside	N	-	NA	0%	А	128	0.00014 d	0.0179
V-7	46	E-11	Ferrous Removed by Magnet	Shred	γ a2	Outside	N	-	NA	0%	А	128	0.00014 d	0.0179
V-7	47	E-11	Ferrous Removed by Magnet	Shred	γ a2	Outside	N	-	NA	0%	А	55	0.00014 d	0.0077
V-7	48	E-11	Ferrous Removed by Magnet	Shred	γ a2	Outside	N	-	NA	0%	А	55	0.00014 d	0.0077
V-7	64	SC-001	Supplemental Conveyor	Shred	Υ 0	Outside	N	-	NA	0%	А	183	0.00014 d	0.0256
V-7	66	SC-002	Supplemental Conveyor	Shred	Υ 0	Outside	N	-	NA	0%	А	183	0.00014 d	0.0256
V-7	70	C-004	Ferrous Transfer Conveyor	Shred	Υ 0	Outside	N	-	NA	0%	А	185		red by inward air Z-Box separator
V-7	72	C-005	Ferrous Transfer Conveyor	Shred	Υ 0	Outside	N	-	NA	0%	А	185	Emissions captu	red by inward air Z-Box separator
										Total Filter	rable PM E	missions	now at inlet to	<u>2-Box separator</u> 0.1458

Table A-2 - Ferrous Material Processing - Particulate Emissions General III, LLC - Chicago, Illinois

	1	2	3	6	7 8	9	10	11	12	13	18	19	22 #	24
Volume Source Grouping	Row No.	E ID#	quipment Generating Emissions Description	Material Conveyed	Moisture > 1.5% Y/N	Transfer Point Location (Inside / Outside)	Transfer Point Controlled (Y/N)	Type of Transfer Point Control	Dust Pickup Capture Eff. (%)	Dust Control Eff. (%)	Emission Factor Source	Material Throughp ut Rates tph	PM Emissions Ib/ton	Filterable PM Emissions Ib/hr
V-8	24	C-025	Non-metallic not removed by magnet E-	Ferrous	Y 0	Outside	N	-	NA	0%	А	2	0.00014 d	0.0003
V-8	25	C-025	material removed by first magnet to second magnet	Ferrous	γ a2	Outside	N	-	NA	0%	А	1	0.00014 ^d	0.0001
V-8	26	C-026	Ferrous Transfer Conveyor	Ferrous	γ a2	0	0	-	0%	0%	А	1	0.00014 ^d	0.0001
V-8	27	C-027	Ferrous Transfer Conveyor	Ferrous	γ a2	Outside	N	-	NA	0%	А	1	0.00014 ^d	0.0001
V-8	28	C-028	Non-metallic Transfer Conveyor	Ferrous	Υ 0	Outside	N	-	NA	0%	Α	1	0.00014 ^d	0.0001
V-8	29	C-029	Non-metallic Transfer Conveyor	Ferrous	Υ 0	0	0	-	0%	0%	Α	1	0.00014 ^d	0.0001
V-8	50	E-13	Ferrous Removed by E-13	Ferrous	γ a2	Outside	N	-	NA	0%	А	1	0.00014 ^d	0.0001
V-8	51	E-13	Ferrous Removed by E-13	Ferrous	Υ 0	Outside	N	-	NA	0%	Α	1	0.00014 ^d	0.0001
V-8	52	E-14	Mat'l Not removed by Separator	Ferrous	Υ 0	Outside	N	-	NA	0%	Α	0.25	0.00014 ^d	0.0000
V-8	60	C-030	Mat'l not Removed by Separator	Ferrous	1.5 ^{a1}	Outside	Y	Cover	0%	0%	Drop	2.25	0.00761 ^c	0.0171
V-8	63	E-14	Final Discharge from Mat'l Separator	Ferrous	1.5 ^{a1}	Outside	N	-	0%	0%	Drop	0.75	0.00761 ^c	0.0057
V-8	65	SC-009	Supplemental Conveyor	Ferrous	Υ 0	Outside	N	-	NA	0%	А	2	0.00014 d	0.0003
V-8	67	SC-010	Supplemental Conveyor	Ferrous	Υ 0	Outside	N	-	NA	0%	Α	2	0.00014 d	0.0003
	<u> </u>			<u> </u>	<u> </u>		<u> </u>	ı		Total Filter	able PM E	missions		0.0244
V-9	57	-	Non-metallic Loadout	Non- metallic	N ⁰	Outside	N	-	0%	0%	D	187	0.00020 f	0.0382

Table A-2 - Ferrous Material Processing - Particulate Emissions General III, LLC - Chicago, Illinois

	1	2	3	6	7 8	9	10	11	12	13	18	19	22 #	24
Volume Source Grouping	Row No.	ID#	Equipment Generating Emissions Description	Material Conveyed	Moisture > 1.5% Y/N	Transfer Point Location (Inside / Outside)	Transfer Point Controlled (Y/N)	Type of Transfer Point Control	Dust Pickup Capture Eff. (%)	Dust Control Eff. (%)	Emission Factor Source	Material Throughp ut Rates tph	PM Emissions lb/ton	Filterable PM Emissions lb/hr
V-10	11	C-008	Ferrous Transfer Conveyor	Shred	Y a2	Outside	N	-	NA	0%	Α	56	0.00014 d	0.0078
V-10	12	C-009	Ferrous Transfer Conveyor	Shred	γ a2	Outside	N	-	NA	0%	A	128	0.00014 ^d	0.0179
V-10	13	C-010	Ferrous Transfer Conveyor	Shred	Υ a2	Outside	N	-	NA	0%	А	128	0.00014 ^d	0.0179
V-10	14	C-011	Ferrous Transfer Conveyor	Shred	Υ a2	Outside	N	-	NA	0%	А	55	0.00014 ^d	0.0077
V-10	15	C-012	Ferrous Transfer Conveyor	Shred	γ a2	Outside	N	-	NA	0%	А	56	0.00014 ^d	0.0078
V-10	16	C-013	Ferrous Transfer Conveyor	Shred	γ a2	Outside	N	-	NA	0%	А	128	0.00014 d	0.0179
V-10	17	C-014	Ferrous Transfer Conveyor	Shred	Y a2	Outside	N	-	NA	0%	Α	128	0.00014 ^d	0.0179
V-10	18	C-015	Ferrous Transfer Conveyor	Shred	Y ^{a2}	Outside	N	-	NA	0%	А	55	0.00014 d	0.0077
V-10	19	C-016	Ferrous Transfer Conveyor	Shred	Y a2	Outside	N	-	NA	0%	Α	367	0.00014 ^d	0.0514
V-10	20	C-020	Ferrous Transfer Conveyor	Shred	Y a2	Outside	N	-	NA	0%	А	367	0.00014 d	0.0514
V-10	68	SC-005	Supplemental Conveyor	Shred	Υ 0	Outside	N	-	NA	0%	А	128	0.00014 ^d	0.0179
V-10	69	SC-008	Supplemental Conveyor	Shred	Υ 0	Outside	N	-	NA	0%	А	128	0.00014 d	0.0179
V-10	71	C-014	Ferrous Transfer Conveyor	Shred	γ a2	Outside	N	-	NA	0%	А	367		C-014 to C-016. 100% of material
V-10	73	C-012	Ferrous Transfer Conveyor	Shred	γ a2	Outside	N	-	NA	0%	А	367		C-012 to C-016. 100% of material
V-10	74	C-015	Ferrous Transfer Conveyor	Shred	Y ^{a2}	Outside	N	-	NA	0%	А	367		C-015 to C-016. 100% of material
V-10	75	C-019	Ferrous Transfer Conveyor	Shred	Y a2	Outside	N	-	NA	0%	А	367		-016 top C-017. 100% of material
V-10	76	C-013	Ferrous Transfer Conveyor	Shred	Y a2	Outside	N	-	NA	0%	А	367	Alternate to 0	C-013 to C-016. 100% of material
V-10	77	C-017	Ferrous Transfer Conveyor	Shred	Y a2		N	-	NA	0%	А	367		020/C-021 or C- C-018.
V-10	78	C-020	Ferrous Transfer Conveyor	Shred	Y ^{a2}	Outside	N	-	NA	0%	Α	367		C-017 to C-018. 100% of material
										Total Filte	rable PM E	missions		0.2412

Table A-2 - Ferrous Material Processing - Particulate Emissions General III, LLC - Chicago, Illinois

	1	2	3	6	7 8	9	10	11	12	13	18	19	22 #	24
Volume Source Grouping	Row No.	E ID#	quipment Generating Emissions Description	Material Conveyed	Moisture > 1.5% Y/N	Transfer Point Location (Inside / Outside)	Transfer Point Controlled (Y/N)	Type of Transfer Point Control	Dust Pickup Capture Eff. (%)	Dust Control Eff. (%)	Emission Factor Source	Material Throughp ut Rates tph	PM Emissions Ib/ton	Filterable PM Emissions Ib/hr
V-11	82	C-018	Ferrous Transfer Conveyor to stockpile	Shred	5.4% a2	Outside	N	-	NA	0%	Drop	367		021 to S Ferrous arge 2 to Barge.
V-12	80	C-21	Ferrous Transfer Conveyor	Shred	5.4% ^{a2}	Outside	N	-	NA	0%	Drop	367	Alternate to C-C	018 to N Ferrous
			to stockpile										<u> Зтоскріїе от ва</u>	arge 2 to Barge.
V-13	1	Barge 1	Ferrous Transfer Conveyor	Shred	γ a2	Outside	N	-	NA	0%	Α	367	0.00014 ^d	0.0514
V-13	2	Barge 2	Ferrous Transfer Conveyor	Shred	γ a2	Outside	N	-	NA	0%	Α	367	0.00014 ^d	0.0514
V-13	3	Barge 3	Ferrous Transfer Conveyor to barge (stockpile)	Shred	5.4% ^{a2}	Outside	N	-	0%	0%	Drop	367	0.00127 ^c	0.4645
		_								Total Filter	able PM Ei	missions		0.5673

- a1 Controlled particulate matter emission factors from AP-42, Table 11.19.2-2 for conveying used based on conservative assumption that moisture content is
- a2 Material moisture was assumed to be the mean of material moisture contents identified in AP42, Table 13.2.4-1.
- a3 Northern Metals (Minneapolis, MN) found moisture content of ASR in the range of 20 to 30%; from MPCA Construction Permit Technical Support Document for Northern Metals in Becker MN, Stream COMG-2. Calculations for the ASR stacking conveyor drop point conservatively assumes 10% moisture.
- a4 Moisture content of raw materials is assumed to be >1.5% based on application of water from water atomization cannons used for fugitive dust control.
- b Uncontrolled emission factor calculated according to material drop equation in AP-42, Section 13.2.4.3. Emissions calculated with control Eff. factor included for source being inside of a building.
- Uncontrolled emission factor calculated according to material drop equation in AP-42, Section 13.2.4.3.
- d Uncontrolled particulate matter emission factors from AP-42, Table 11.19.2-2 for conveying. If moisture content is greater than 1.5% by weight, controlled emission factors are used.
- e Uncontrolled particulate matter emission factors from AP-42, Table 11.19.2-2 for screening. If moisture content is greater than 1.5% by weight, controlled emission factors are used.
- f Uncontrolled particulate matter emission factors from AP-42, Table 11.19.2-2 for truck loading of curshed stone. Use uncontrolled emisson factor to be conservative.
- particulate matter emission factors from AP-42, Table 11.19.2-2 for conveying. For sources controlled by a dust collector the emission factor is multiplied by the identified capture Eff. and then by the quantity of 1-control Eff..

 Dust collectors vent back into to the building. These emission calculations conservatively assume dust collector emission are vented to the atmosphere.
- h Metal HAPs as percent of total PM measured at the discharge of the existing roll media filter in June 2018.

Table A-3 Ferrous Plant Stockpile - Particulate Emissions General III, LLC - Chicago, Illinois

Volume Source Grouping	Stock Pile	Stock Pile Area Acres	Control Factor ^b	Inactive Emissions ^{a,d} PM Ib/hr	Active Emissions ^{a,d} PM lb/hr
V-1	Raw Material Truck Dumping (Drop 1)	0.3630	1.0	0.0529	0.1996
V-1	Raw Material Movement from Truck Dumping Area to Stockpile (Drop 2)	0.1815	1.0	0.0265	0.0998
			Total	0.0794	0.2994
V-4	Poker North	0.0115	0.1	0.0002	0.0006
V-4	Poker South	0.0115	0.1	0.0002	0.0006
			Total	0.0004	0.0012
V-6	ASR	0.2541	1.0	0.0371	0.1398
V-9	Fluff (Bin)	0.0161	0.1	0.0002	0.0009
V-11	Ferrous North	0.3630	1.0	0.0529	0.1996
V-12	Ferrous South	0.3630	1.0	0.0529	0.1996

a. Stockpile emissions calculation from TCEQ for crushed stone downloaded August 2019. https://www.tceq.texas.gov/assets/public/permitting/air/Guidance/NewSourceReview/emiss-calc-rock1.xlsx

- b. Control Factor of 0.1 (90% control) for partial enclosure consisting of walls on three sides of bin. Control Factor of 1.0 for no control.
- c. Assume number of active days to be 6 days per week and 52 weeks per year and inactive days to be 1 day per week and 52 weeks per year.
- d. From TCEQ Guidance

Stockpile emission calculation:

PM Emission Rate (tpy) = [(inactive day PM EF x No. of inactive days) x stockpile area/2000 x control factor] +

[(active day PM EF x No. of active days) x (stockpile area/2000) x control factor]

Inactive Day PM Emission Factor = 3.50 lb-PM/acre-day
Active Day PM Emission Factor = 13.20 lb-PM/acre-day

Table A-4 - Ferrous Material Processing - PM Emission Summary
General III, LLC - Chicago, Illinois

			Filterable P	M Emissions		
	Matl Ha	ındling	Stoc	kpile	To	tal
Volume Source	Active lb/hr	Inactive lb/hr	Active lb/hr	Inactive lb/hr	Active lb/hr	Inactive Ib/hr
V-1	0.8616		0.2994	0.0794	1.1610	0.0794
V-2	0.1400				0.1400	
V-3	0.1400				0.1400	
V-4	0.0450		0.0012	0.0004	0.0462	0.0004
V-5	0.1881				0.1881	
V-6	0.0689		0.1398	0.0371	0.2087	0.0371
V-7	0.1458				0.1458	
V-8	0.0244				0.0244	
V-9	0.0382		0.0009	0.0002	0.0391	0.0002
V-10	0.2412				0.2412	
V-11	0.0000		0.1996	0.0529	0.1996	0.0529
V-12	0.0000		0.1996	0.0529	0.1996	0.0529
V-13	0.5673				0.5673	
Totals	2.46050	·	0.84050	0.22290	3.30100	0.22290

Air Dispersion Modeling Protocol to Assess Metal Emission Impacts

General III, LLC - Chicago, Illinois

November 18, 2019

Appendix B

Non-Ferrous Material Processing Figures and Tables

Figures B-1 and B-2 contain TRADE SECRET information and have been redacted from this document.

TRADE SECRET

Figure B-1 Redacted

Figure B-1 - Non-Ferrous Processing System Flow Diagram
Air Dispersion Modeling Protocol

General III, LLC 11600 South Burley Avenue - Chicago, Illinois

TRADE SECRET

Figure B-2 Redacted

Figure B-2 - Non-Ferrous Processing System Layout
Air Dispersion Modeling Protocol

General III, LLC
11600 South Burley Avenue - Chicago, Illinois

Table B-1 - Non-Ferrous Material Processing - Particulate Emissions General III, LLC - Chicago, Illinois

Grouping	Row No.	Equipment Generating Emissions ID#	Description	Material Conveyed	Moisture > 1.5% Y/N	Transfer Point Location (Inside / Outside)	Conveyor Covered Y/N	Transfer Point Controlled (Y/N)	Type of Transfer Point Control	Dust Pickup Capture Eff. (%)	Dust Control Eff. (%)	Material Throughput Rates tph	PM Emissions Factor lb/ton	Filterate PM Emission
VN-1	113	C-001	Conveyor	Residue	γ ο	Outside	Y	N	NA		0%	70	0.000140 ^d	0.009
VN-1	114	C-002	Conveyor	Residue	N 0	Outside	Y	N	NA		0%	68	0.003000 0	0.20
VN-1	115	C-002	Conveyor	Ferrous	N 0	Outside	Y	N	NA		0%	2	0.003000 0	0.00
VN-1	116	C-003	Conveyor	Residue	N ⁰	Outside	Y	N	NA		0%	67.90	0.003000 °	0.20
VN-1	117	C-004	Conveyor	Residue	N ⁰	Outside	Y	N	NA		0%	60.90	0.003000 °	0.18
VN-1	118	C-005	Conveyor	Residue	N ⁰	Outside	Y	N	NA		0%	30.45	0.003000 °	0.09
VN-1	119	C-006	Conveyor	Residue	N ⁰	Outside		N	NA		0%	30.45	0.003000 °	0.09
VN-1	122	C-009	Conveyor	Residue	N 0	Outside		N	NA		0%	9.14	0.003000 0	0.02
VN-1	123	C-010	Conveyor	Residue	N 0	Outside		N	NA		0%	9.14	0.003000 0	0.02
VN-1	124	C-011	Conveyor	Residue	N 0	Outside	Y	N	NA		0%	8.40	0.003000 0	0.02
VN-1	129	C-016	Conveyor	Residue	N ⁰	Outside	Y	N	NA		0%	2.7	0.003000 °	0.00
VN-1	174	E-01	Vibratory Batch Feeder	Residue	γ ο	Outside		N	NA		0%	70	0.000140 d	0.00
VN-1	175	E-03	Screener	Residue	Y 0	Outside		N	NA		0%	60.90	0.002200 e	0.13
VN-1	176	E-03	Screener	Residue	Υ 0	Outside		N	NA		0%	6.80	0.002200 e	0.01
VN-1	177	E-03	Screener	Residue	Y 0	Outside		N	NA		0%	2.70	0.002200 ^e	0.00
VN-1	178	E-04	Screener	Residue	Y 0	Outside		N	NA		0%	15.75	0.002200 ^e	0.03
VN-1	179	E-04	Screener	Residue	Υ 0	Outside		N	NA		0%	9.14	0.002200 ^e	0.02
VN-1	180	E-04	Screener	Residue	Υ 0	Outside		N	NA		0%	4.20	0.002200 ^e	0.00
VN-1	190	E-11	Screener	Residue	N 0	Outside		N	NA		0%	15.75	0.025000 ^d	0.39
VN-1	191	E-11	Screener	Residue	N 0	Outside		N	NA		0%	9.14	0.025000 d	0.22
VN-1	192	E-11	Screener	Residue	N 0	Outside		N	NA		0%	4.20	0.025000 d	0.10
VN-1	244	End Loader	Drop ASR into feed hopper	Residue into Hopper	N 0	Outside		Y	Cover		0%	70.00	0.000204 d	0.01
VN-1	246	SC-001	Supplemental Conveyor	Residue	0 0	0		0	0		0%	15.75	0.003000	0.04
VN-1	247	SC-002	Supplemental Conveyor	Residue	0 0	0		0	0		0%	16	0.003000	0.04

Table B-1 - Non-Ferrous Material Processing - Particulate Emissions General III, LLC - Chicago, Illinois

Grouping	Row No.	Equipment Generating Emissions ID#	Description	Material Conveyed	Moisture > 1.5% Y/N	•	Transfer Point Location (Inside / Outside)	Conveyor Covered Y/N	Transfer Point Controlled (Y/N)	Type of Transfer Point Control	Dust Pickup Capture Eff. (%)	Dust Control Eff. (%)	Material Throughput Rates tph	PM Emissions Factor Ib/ton	Filterable PM Emissions lb/hr
VN-2	120	C-007	Conveyor	Residue	N	0	Inside	Y	N	ECS	100%	Bldg	15.75	0.003000 0	0.0095
						0				Enclosure	1000/	Eff.			
VN-2	121	C-008	Conveyor	Residue	N	U	Inside		N	ECS Enclosure	100%	Bldg Eff.	15.75	0.003000 0	0.0095
VN-2	125	C-012	Conveyor	Residue	N	0	Inside	Y	N	ECS Enclosure	100%	Bldg Eff.	9.14	0.003000 0	0.0055
VN-2	126	C-013	Conveyor	Residue	N	0	Inside	Y	N	ECS Enclosure	100%	Bldg Eff.	9.14	0.003000 0	0.0055
VN-2	127	C-014	Conveyor	Residue	N	0	Inside	Υ	N	ECS Enclosure	100%	Bldg Eff.	8.40	0.003000 0	0.0050
VN-2	128	C-015	Conveyor	Ferrous	N	0	Inside	Υ	N	ECS Enclosure	100%	Bldg Eff.	.25	0.003000 0	0.0002
VN-2	130	C-017	Conveyor	Ferrous	N	0	Outside		N	NA		0%	1.75	0.003000 0	0.0053
VN-2	131	C-018	Conveyor	Ferrous	N	0	Outside	Y	N	NA		0%	1.75	0.003000 0	0.0053
VN-2	132	C-019	Conveyor	Lights	N	0	Outside	Y	N	NA		0%	0.25	0.003000 0	0.0008
VN-2	133	C-020	Conveyor	Residue	N	0	Outside	Y	N	NA		0%	11.12	0.003000 0	0.0334
VN-2	134	C-021	Conveyor	Residue	N	0	Outside	Y	N	NA		0%	11.12	0.003000 0	0.0334
VN-2	135	C-022	Conveyor to Wind Sifter	Mixed Non-Ferrous	N	0	Outside	Y	Y	Wind Sifter	100%	100%	0.80	0.003000 0	0.0024
VN-2	136	C-023	Conveyor to Wind Sifter	Residue	N	0	Outside	Y	Y	Wind Sifter	100%	100%	7.29	0.000140 0	0.0010
VN-2	137	C-024	Conveyor to Wind Sifter	Residue	N	0	Outside	Y	Y	Wind Sifter	100%	100%	7.29	0.000140 0	0.0010
VN-2	139	C-035	Conveyor	Residue	N	0	Inside	Y	N	ECS Enclosure	100%	Bldg Eff.	2.7	0.003000 0	0.0016
VN-2	147	C-044	Conveyor	Residue	N	0	Outside	Y	N	NA		0%	24.87	0.003000 0	0.0746
VN-2	181	E-05	Magnetic Separation	Residue	N	0	Inside		N	ECS Enclosure	100%	Bldg Eff.	14.87	0.003000	0.0089
VN-2	182	E-05	Magnetic Separation	Residue	N	0	Inside		N	ECS Enclosure	100%	Bldg Eff.	9.87	0.003000	0.0059
VN-2	183	E-05	Magnetic Separation	Ferrous	N	0	Inside		N	NA		0%	0.88	0.003000	0.0026
VN-2	184	E-05	Magnetic Separation	Ferrous	N	0	Inside		N	NA		0%	5.00	0.003000	0.0150
VN-2	185	E-06	Eddy Current Separator	Residue	N	0	Outside		N	NA		0%	6.12	0.003000 d	0.0184
VN-2	186	E-06	Eddy Current Separator	Mids	N	0	Outside		N	NA		0%	3.50	0.003000 d	0.0105
VN-2	187	E-06	Eddy Current Separator	Zorba	N	0	Outside		N	NA		0%	0.25	0.003000 d	0.0008
VN-2	188	E-07	Wind Sifter	Lights	N	0	Outside		Y	Cover		0%	0.25	0.002200 d	0.0006
VN-2	189	E-07	Wind Sifter	Heavies	1.5	a	Outside		Y	Wind Sifter	90%	100%	1.50	0.007606 ^c	0.0103

Table B-1 - Non-Ferrous Material Processing - Particulate Emissions General III, LLC - Chicago, Illinois

Grouping	Row No.	Equipment Generating Emissions ID#	Description	Material Conveyed	Moisture > 1.5% Y/N	Transfer Point Location (Inside / Outside)	Conveyor Covered Y/N	Transfer Point Controlled (Y/N)	Type of Transfer Point Control	Dust Pickup Capture Eff. (%)	Dust Control Eff. (%)	Material Throughput Rates tph	PM Emissions Factor Ib/ton	Filterable PM Emissions lb/hr
VN-2	193	E-12	Magnetic Separation	Residue	N º	Inside		N	ECS	100%	Bldg	14.87	0.003000	0.0089
VN-2	194	E-12	Magnetic Separation	Residue	N ⁰	Inside		N	Enclosure ECS	100%	Eff. Bldg	9.87	0.003000	0.0059
VN-2	195	E-12	Magnetic Separation	Ferrous	N ⁰	Inside		N	Enclosure NA		Eff. 0%	0.88	0.003000	0.0026
VN-2	196	E-12	Magnetic Separation	Ferrous	N ⁰	Inside		N	NA		0%	5.00	0.003000	0.0150
VN-2	197	E-12	Magnetic Separation	Zorba	N ⁰	Outside		N	NA		0%	0.25	0.003000 d	0.0008
VN-2	198	E-13	Eddy Current Separator	Residue	N ⁰	Outside		N	NA		0%	6.12	0.003000 d	0.0184
VN-2	199	E-13	Eddy Current Separator	Mids	N ⁰	Outside		N	NA		0%	3.50	0.003000 d	0.0105
VN-2	200	E-14	Wind Sifter	Lights	N ⁰	Outside		Υ	Cover		0%	0.20	0.002200 d	0.0004
VN-2	201	E-14	Wind Sifter	Heavies	1.5 a	Outside		Y	Wind Sifter	100%	100%	0.60	0.007606 ^c	0.0046
VN-2	202	E-15	Magnetic Separation	Residue	N O	Inside		N	ECS	100%	Bldg Eff.	9.09	0.003000	0.0055
VN-2	203	E-15	Magnetic Separation	Residue	N ⁰	Inside		N	Enclosure ECS Enclosure	100%	Bldg Eff.	8.29	0.003000	0.0050
VN-2	204	E-15	Magnetic Separation	Ferrous	N ⁰	Outside		N	NA		0%	0.05	0.003000 d	0.0002
VN-2	205	E-15	Magnetic Separation	Mixed Non-	N º	Outside		N	NA		0%	0.40	0.003000 d	0.0012
VN-2	206	E-16	Eddy Current Separator	Ferrous Residue	N º	Outside		N	NA		0%	7.29	0.003000 d	0.0219
VN-2	207	E-16	Eddy Current Separator	Zorba	N 0	Outside		N	NA		0%	1.00	0.003000 d	0.0030
VN-2	208	E-17	Wind Sifter	Lights	N ⁰	Outside		Y	Cover		0%	1.09	0.002200 d	0.0024
VN-2	209	E-17	Wind Sifter	Residue	N ⁰	Outside		Y	Wind Sifter	100%	100%	6.20	0.002200 d	0.0136
VN-2	210	E-21	Magnetic Separation	Residue	N ⁰	Inside		N	ECS Enclosure	100%	Bldg Eff.	8.29	0.003000	0.0050
VN-2	211	E-21	Magnetic Separation	Ferrous	N ⁰	Outside		N	NA		0%	0.05	0.003000 d	0.0002
VN-2	212	E-21	Magnetic Separation	Mixed Non- Ferrous	N 0	Outside		N	NA		0%	0	0.003000 d	0.0012
VN-2	213	E-22	Eddy Current Separator	Zorba	N º	Outside		N	NA		0%	1.00	0.003000 d	0.0030
VN-2	214	E-22	Eddy Current Separator	Residue	N 0	Outside		N	NA		0%	7.29	0.003000 d	0.0219
VN-2	215	E-23	Wind Sifter	Lights	N 0	Outside		Y	Cover		0%	1	0.002200 d	0.0024
VN-2	216	E-23	Wind Sifter	Residue	N °	Outside		Y	Wind Sifter	100%	100%	6.20	0.002200 d	0.0136
VN-2	217	E-27	Magnetic Separation	Residue	N 0	Inside		N	ECS Enclosure	100%	Bldg Eff.	8.15	0.003000	0.0049

Table B-1 - Non-Ferrous Material Processing - Particulate Emissions General III, LLC - Chicago, Illinois

Grouping	Row No.	Equipment Generating Emissions ID#	Description	Material Conveyed	Moisture > 1.5% Y/N	Transfer Point Location (Inside / Outside)	Conveyor Covered Y/N	Transfer Point Controlled (Y/N)	Type of Transfer Point Control	Dust Pickup Capture Eff. (%)	Dust Control Eff. (%)	Material Throughput Rates tph	PM Emissions Factor Ib/ton	Filterable PM Emissions lb/hr
VN-2	219	E-28	Eddy Current Separator	Residue	N °	Outside		N	NA		0%	7.15	0.003000 d	0.0215
VN-2	221	E-34	Magnetic Separation	Residue	N 0	Inside		N	ECS Enclosure	100%	Bldg Eff.	6.55	0.003000	0.0039
VN-2	222	E-34	Magnetic Separation	Residue	N 0	Inside		N	ECS Enclosure	100%	Bldg Eff.	6.55	0.003000	0.0039
VN-2	224	E-35	Eddy Current Separator	Residue	N ⁰	Outside		N	NA		0%	5.05	0.003000 d	0.0152
VN-2	231	E-43	Vibratory Feeder	Residue	N ⁰	Inside		N	ECS Enclosure	100%	Bldg Eff.	2.70	0.003000	0.0016
VN-2	232	E-44	Eddy Current Separator drop to stockpile	Zorba	1.5 a	Inside		N	NA		0%	0.50	0.007600	0.0038
VN-2	240	E-49	Transfer Conveyor	Residue onto ECS	N ⁰	Inside		N	ECS Enclosure	100%	Bldg Eff.	8.15	0.003000	0.0049
VN-2	242	ECS	Eddy Current Separator drop to container	Zorba	1.5 a	Inside		N	NA		0%	0.04	0.007600	0.0003
VN-2	243	ECS	Eddy Current Separator drop to container	Zorba	1.5 a	Inside		N	NA		0%	0.18	0.007600	0.0014
VN-2	248	SC-003	Supplemental Conveyor	Residue	0 0	0		0	0		0%	7.34	0.003000	0.0220
VN-2	249	SC-004	Supplemental Conveyor	Residue	0 0	0		0	0		0%	7.34	0.003000	0.0220
	-									Tot	al Filterable	PM Emissions		0.5395

Table B-1 - Non-Ferrous Material Processing - Particulate Emissions General III, LLC - Chicago, Illinois

Grouping	Row No.	Equipment Generating Emissions ID#	Description	Material Conveyed	Moisture > 1.5% Y/N	:	Transfer Point Location (Inside / Outside)	Conveyor Covered Y/N	Transfer Point Controlled (Y/N)	Type of Transfer Point Control	Dust Pickup Capture Eff. (%)	Dust Control Eff. (%)	Material Throughput Rates tph	PM Emissions Factor Ib/ton	Filterable PM Emissions lb/hr
VN-3	138	C-034	Conveyor	Material	N	0	Outside	Y	N	NA		0%	0.55	0.003000 0	0.0017
VN-3	140	C-039	Conveyor	Separator Mixed Non-Ferrous	N	0	Outside		N	NA		0%	0.80	0.003000 0	0.0024
VN-3	141	C-040	Conveyor	Residue	N	0	Outside		N	NA		0%	2.80	0.003000 0	0.0084
VN-3	142	C-040	Conveyor	Mids	N	0	Outside		N	NA		0%	7	0.003000 °	0.0210
VN-3	143	C-040	Conveyor	Residue	N	0	Outside		N	NA		0%	4.20	0.003000 °	0.0126
VN-3	144	C-041	Conveyor	Zorba	N	0	Outside		N	NA		0%	0.50	0.003000 0	0.0015
VN-3	145	C-042	Conveyor	Zorba	N	0	Outside		N	NA		0%	1.50	0.003000 °	0.0045
VN-3	146	C-043	Conveyor	Zorba	N	0	Outside		N	NA		0%	3	0.003000 °	0.0090
VN-3	148	C-044	Conveyor	Lights Zuric	N	0	Outside	Υ	N	NA		0%	0.30	0.003000 °	0.0009
VN-3	149	C-045	Conveyor	Residue	N	0	Outside	Υ	N	NA		0%	24.87	0.003000 °	0.0746
VN-3	150	C-047	Conveyor	To SSI	N	0	Outside		N	NA		0%	0.55	0.003000 °	0.0017
VN-3	151	C-048	Conveyor	Out of SSI	N	0	Outside		N	NA		0%	0.55	0.003000 0	0.0017
VN-3	152	C-050	Conveyor	Residue	N	0	Outside	Y	N	NA		0%	25.07	0.003000 0	0.0752
VN-3	153	C-052	Conveyor	Residue	N	0	Outside		N	NA		0%	2	0.003000 0	0.0068
VN-3	154	C-055	Conveyor	Wire	N	0	Outside	Y	N	NA		0%	1.00	0.003000 0	0.0030
VN-3	155	C-058	Conveyor	Zuric drops	N	0	Outside	Y	N	NA		0%	0.30	0.003000 ⁰	0.0009
VN-3	156	C-060	Conveyor	Zone	N	0	Outside	Υ	N	NA		0%	1.20	0.003000 °	0.0036
VN-3	162	C-064	Conveyor drop to container	Zorba	1.5	a	Outside		N	NA		0%	0.70	0.007606 ^c	0.0053
VN-3	163	C-065	Conveyor	Residue	N	0	Outside	Υ	N	NA		0%	2.2	0.003000 d	0.0066
VN-3	164	C-066	Conveyor	Residue	N	0	Outside	Υ	N	NA		0%	54.39	0.003000 d	0.1632
VN-3	165	C-067	Conveyor	Residue	N	0	Outside	Υ	N	NA		0%	54.39	0.003000 d	0.1632
VN-3	168	C-071	Conveyor	Lights	N	0	Outside	Υ	Υ	Cover		0%	0.03	0.000140 d	0.0000
VN-3	169	C-072	Conveyor	Lights	N	0	Outside	Y	Y	Cover		0%	0	0.000140 d	0.0000
VN-3	170	DC-01 Cyc	DC-01 fines discharge to covered coneyor	Lights	N	0	Outside		Y	Cover		0%	0.01	0.000140 d	0.0000
VN-3	171	DC-02 Cyc	DC-02 fines discharge to covered coneyor	Lights	N	0	Outside		Y	Cover		0%	0.01	0.000140 d	0.0000

Table B-1 - Non-Ferrous Material Processing - Particulate Emissions General III, LLC - Chicago, Illinois

Grouping	Row No.	Equipment Generating Emissions ID#	Description	Material Conveyed	Moisture > 1.5% Y/N	Transfer Point Location (Inside / Outside)	Conveyor Covered Y/N	Transfer Point Controlled (Y/N)	Type of Transfer Point Control	Dust Pickup Capture Eff. (%)	Dust Control Eff. (%)	Material Throughput Rates tph	PM Emissions Factor lb/ton	Filterable PM Emissions lb/hr
VN-3	172	DC-03 Cyc	DC-03 fines discharge to	Lights	N 0	Outside		Y	Cover		0%	0.01	0.000140 d	0.0000
VN-3	173	DC-04 Cyc	covered coneyor DC-04 fines discharge to covered coneyor	Lights	N 0	Outside		Y	Cover		0%	0.01	0.000140 d	0.0000
VN-3	218	E-27	Magnetic Separation	Ferrous	N 0	Outside		N	NA		0%	0.25	0.003000 d	0.0008
VN-3	220	E-28	Eddy Current Separator	Zorba	N 0	Outside		N	NA		0%	1.00	0.003000 d	0.0030
VN-3	223	E-35	Eddy Current Separator	Zorba	N ⁰	Outside		N	NA		0%	1.50	0.003000 d	0.0045
VN-3	225	E-40	Separator	Lights Zuric	N 0	Outside		N	NA		0%	0.24	0.025000 d	0.0060
VN-3	226	E-40	Separator	Heavies Zuric	N 0	Outside		N	NA		0%	0.96	0.025000 ^d	0.0240
VN-3	227	E-40	Separator	Lights Zuric	N 0	Outside		N	NA		0%	0.35	0.025000 d	0.0088
VN-3	228	E-41	Separator	Lights	N 0	Outside		N	NA		0%	0.95	0.025000 d	0.0238
VN-3	229	E-41	Separator	Heavies	1.5 a	Outside		N	NA		0%	0.05	0.007606 ^c	0.0004
VN-3	230	E-42	drop to container Low speed shredder for size reduction	Out of SSI	N ⁰	Outside		N	NA		0%	0.55	0.003000 d	0.0017
VN-3	234	E-46	Separator	Heavier Zorba	N ⁰	Outside		N	NA		0%	1.25	0.02500 d	0.0313
VN-3	235	E-46	Separator	Lights Zorba	N º	Outside		N	NA		0%	0.25	0.02500 d	0.0063
VN-3	236	E-47	Separator	Zorba	N º	Outside		N	NA		0%	2.70	0.02500 d	0.0675
VN-3	237	E-47	Separator	Heavies Zorba	N º	Outside		N	NA		0%	0.85	0.02500 d	0.0213
VN-3	238	E-47	Separator	Lights Zorba	N ⁰	Outside		N	NA		0%	0.15	0.02500 ^d	0.0038
VN-3	239	E-47	Separator	Light Zorba	N 0	Outside		N	NA		0%	0.30	0.02500 d	0.0075
VN-3	241	E-50	Air Vibe	To Infeed SSI	N 0	Outside		Y	Cover		0%	0.55	0.00014 ^d	0.0001
VN-3	250	SC-005	Supplemental Conveyor	Residue	0.0% 0	0		0	0		0%	54.39	0.00300	0.1632
		ı			0.0% 0	0		0	0		0%	54.39		0.1632

Table B-1 - Non-Ferrous Material Processing - Particulate Emissions General III, LLC - Chicago, Illinois

Grouping	Row No.	Equipment Generating Emissions ID#	Description	Material Conveyed	Moisture > 1.5% Y/N	Transfer Point Location (Inside / Outside)	Conveyor Covered Y/N	Transfer Point Controlled (Y/N)	Type of Transfer Point Control	Dust Pickup Capture Eff. (%)	Dust Control Eff. (%)	Material Throughput Rates tph	PM Emissions Factor Ib/ton	Filterab PM Emissio Ib/hr
VN-4	159	C-062	Conveyor	Heavier Zorba	N 0	Outside		N	NA		0%	1.25	0.003000 d	0.003
VN-4	160	C-063	Conveyor drop to stockpile	Zorba	1.5 a	Outside		N	NA		0%	2.70	0.007606 ^c	0.020
VN-4	161	C-063	Conveyor drop to stockpile	Heavies Zorba	1.5% a	Outside		N	NA		0%	0.85	0.00761 ^c	0.0065
VN-4	233	E-44	Eddy Current Separator	Residue	N 0	Outside		N	NA		0%	2.2	0.00300 d	0.0066
										Tot	al Filterable	PM Emissions		0.0374
VN-5	157	C-061	Conveyor drop to stockpile	Heavies Zuric	1.5% ^a	Outside		N	NA		0%	0.96	0.00761 ^c	0.0073
VN-5	158	C-061	Conveyor drop to stockpile	Heavies Zuric	1.5% a	Outside		N	NA		0%	0.30	0.00761 ^c	0.0023
VN-5	167	C-070	Conveyor drop to stockpile	Waste to Stockpile	1.5% a	Outside		N	NA		0%	0.55	0.00761 ^c	0.0042
												Total		0.0138
VN-6	166	C-068	Conveyor drop to stockpile	Residue	1.5 a	Outside	Y	N	NA		0%	54.39	0.007606 ^c	0.4137
VN-6	245	End Loader	load waste to truck	Waste	N 0	Outside		N	NA		0%	0.00	0.00020 0	0.0000
	-			•	•	•						Total		0.4137

- a Material moisture content (%) for light materials AP-42, Table 13.2.4-1 for crushed limestone -
- Uncontrolled emission factor calculated according to material drop equation in AP-42, Section 13.2.4.3.
 Emissions calculated with control Eff. factor included for source being inside of a building.
- c Uncontrolled emission factor calculated according to material drop equation in AP-42, Section 13.2.4.3.
- d Uncontrolled particulate matter emission factors from AP-42, Table 11.19.2-2 for conveying. If moisture is greater than 1.5% by weight, use controlled emission factors.
- e Uncontrolled particulate matter emission factors from AP-42, Table 11.19.2-2 for screening. If moisture is greater than 1.5% by weight, use controlled emission factors.
- f Sources located inside the Fines Building emit to the atmosphere through Dust Collection DC-01. Emissions are estimated by 12,000
- g Metal HAPs as percent of total PM measured at the discharge of the existing roll media filter in June 2018.

Table B-2 - Non-Ferrous Plant Stockpile - Particulate Emissions General III, LLC - Chicago, Illinois

Volume Source Grouping	Stock Pile	Stock Pile Area Acres	Control Factor	Inactive Emissions ^{a,d} PM Ib/hr	Active Emissions ^{a,d} PM Ib/hr
VN-1	FE from E-02	0.0047	0.1	0.0001	0.0003
VN-4	5" + Zorba	0.0189	0.1	0.0003	0.0010
VN-4	2-1/2" - 5" Zorba	0.0189	0.1	0.0003	0.0010
VN-4	5/8" - 2-1/2" Zorba	0.0189	0.1	0.0003	0.0010
			Total	0.0009	0.0030
VN-5	Tailings	0.0195	0.1	0.0003	0.0011
VN-5	Open	0.0195	0.1	0.0003	0.0011
VN-5	Wire	0.0195	0.1	0.0003	0.0011
VN-5	Wire Rich Solids	0.0195	0.1	0.0003	0.0011
VN-5	Zurick	0.0195	0.1	0.0003	0.0011
			Total	0.0015	0.0055
VN-6	Waste	0.0868	0.1	0.0013	0.0048

- a. Stockpile emissions calculation from TCEQ for crushed stone downloaded August 2019. https://www.tceq.texas.gov/assets/public/permitting/air/Guidance/NewSourceReview/emiss-calc-rock1.xlsx
- b. Control Factor of 0.1 (90% control) for partial enclosure consisting of walls on three sides of bin. Control Factor of 1.0 for no control.
- c. Assume number of active days to be 6 days per week and 52 weeks per year and inactive days to be 1 day per week and 52 weeks per year.
- d. From TCEQ Guidance

Stockpile emission calculation:

PM Emission Rate (tpy) = [(inactive day PM EF x No. of inactive days) x stockpile area/2000 x control factor] +
[(active day PM EF x No. of active days) x (stockpile area/2000) x control factor]

Inactive Day PM Emission Factor = 3.50 lb-PM/acre-day

Active Day PM Emission Factor = 13.20 lb-PM/acre-day

Table B-3 - Non-Ferrous Material Processing - PM Emission Summary General III, LLC - Chicago, Illinois

				PM Emission		
Srouces	Matl Ha	ındling	Stock	pile	Tot	
	Active lb/hr	Inactive lb/hr	Active lb/hr	Inactive Ib/hr	Active lb/hr	Inactive Ib/hr
VN-1	1.9420	1.9420	0.0003	0.0001	1.9423	1.9421
VN-2	0.5395	0.5395			0.5395	0.5395
VN-3	1.1050	1.1050			1.1050	1.1050
VN-4	0.0374	0.0374	0.003	0.0009	0.0404	0.0383
VN-5	0.0138	0.0138	0.0055	0.0015	0.0193	0.0153
VN-6	0.4137	0.4137	0.0048	0.0013	0.4185	0.4150

Table B-4a - Non-Ferrous Material Processing - Metal Emissions in Active Hours
(7 AM - 7 PM, Mon-Sat)
General III, LLC - Chicago, Illinois

	Metal as % of							
Volume Source	Total PM ^a	VN-1	VN-2	VN-3	VN-4	VN-5	VN-6	DC-1
PM		1.9423000	0.5395280	1.1050000	0.0404000	0.0193000	0.4185000	0.5143000
Lead ^b	0.0665%	0.001291882	0.000358856	0.000734968	0.000026871	0.000012837	0.000278357	0.000342076
Manganese	0.0535%	0.001040081	0.000288912	0.000591716	0.000021634	0.000010335	0.000224102	0.000275402
Mercury	1.2866%	0.024989429	0.006941511	0.014216815	0.000519782	0.000248312	0.005384377	0.006616930
Nickel	0.0207%	0.000402342	0.000111762	0.000228898	0.000008369	0.000003998	0.000086691	0.000106536
Antimony	0.0040%	0.000077309	0.000021475	0.000043982	0.000001608	0.000000768	0.000016657	0.000020470
Arsenic	0.0015%	0.000029897	0.000008305	0.000017009	0.000000622	0.000000297	0.000006442	0.000007916
Beryllium	0.0003%	0.000006004	0.000001668	0.000003416	0.000000125	0.000000060	0.000001294	0.000001590
Cadmium	0.0147%	0.000285034	0.000079176	0.000162160	0.000005929	0.000002832	0.000061415	0.000075474
Chromium ^c	0.0163%	0.000315879	0.000087744	0.000179708	0.000006570	0.000003139	0.000068061	0.000083641
Cobalt	0.0014%	0.000026711	0.000007420	0.000015196	0.000000556	0.000000265	0.000005755	0.000007073
Phosphorus	0.2000%	0.003884029	0.001078897	0.002209675	0.000080788	0.000038594	0.000836877	0.001028449
Selenium	0.0074%	0.000143533	0.000039870	0.000081658	0.000002985	0.000001426	0.000030926	0.000038006
Zinc	3.7272%	0.072392600	0.020109064	0.041185102	0.001505772	0.000719342	0.015598159	0.019168776
Barium	0.0360%	0.000699570	0.000194325	0.000397995	0.000014551	0.000006951	0.000150734	0.000185239
Copper	0.0266%	0.000515713	0.000143254	0.000293396	0.000010727	0.000005124	0.000111119	0.000136555
Silver	0.0064%	0.000124735	0.000034649	0.000070963	0.000002594	0.000001239	0.000026876	0.000033028
Thallium	0.0012%	0.000024006	0.000006668	0.000013657	0.000000499	0.000000239	0.000005172	0.000006356

a. Percentage of metal as % of total PM caculated based on measured metal emission rates from hammermill shredder controlled by cyclone and a roll media filter from June 2018.

b. Uncontrolled organic compound emission rates, as presented in ISRI Title V Applicability Workbook, Table D-11F, adjusted for RTO with 98% destruction efficiency.

c. Chromium (metal) and compounds other than Chromium \mbox{VI}

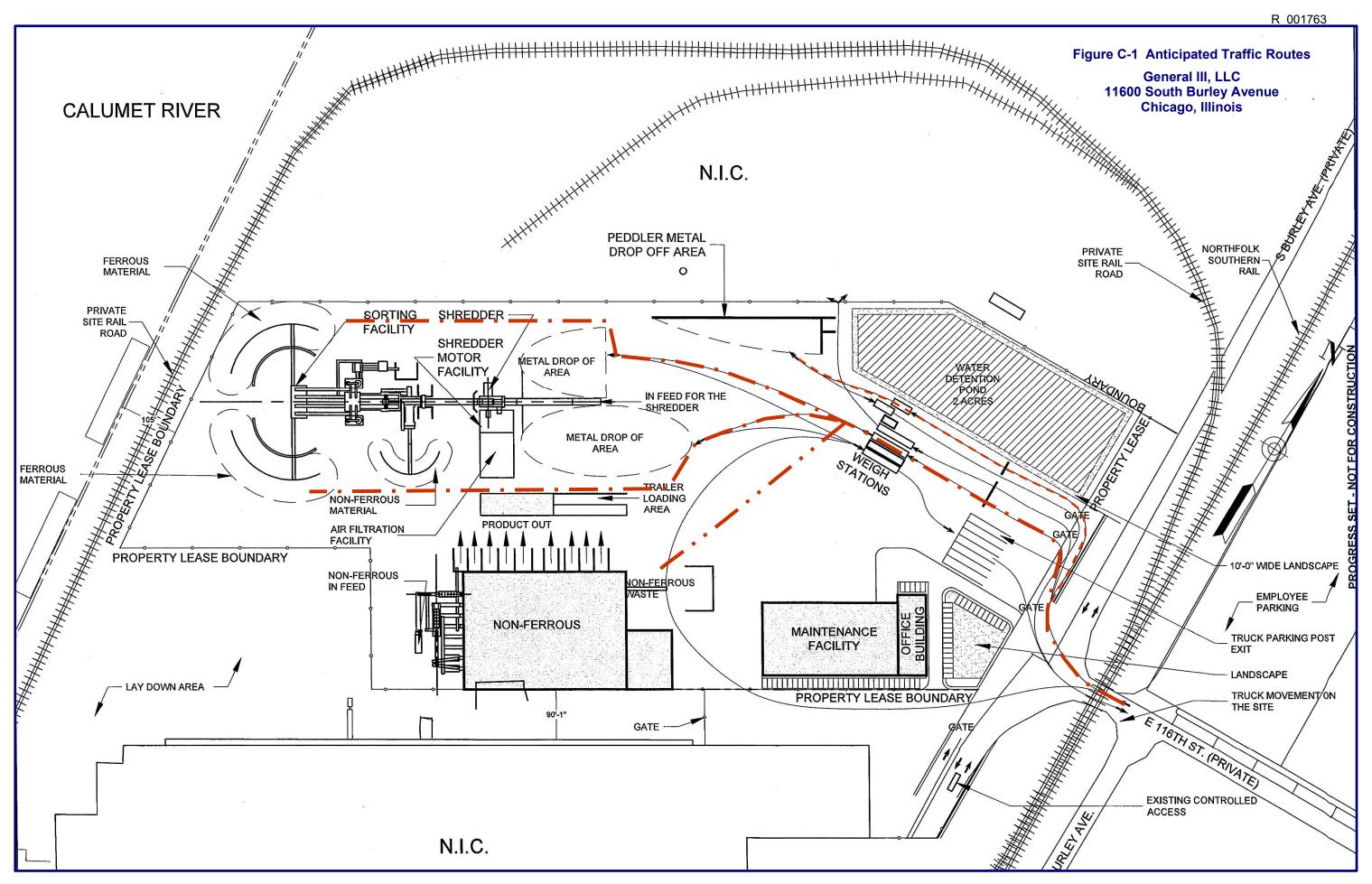
Table B-4b - Non-Ferrous Material Processing - Metal Emissions in Inactive Hours
(7 PM - 7 AM, Mon-Sat, All Day, Sun)
General III, LLC - Chicago, Illinois

	Metal as % of							
Volume Source	Total PM ^a	VN-1	VN-2	VN-3	VN-4	VN-5	VN-6	DC-1
PM		1.9421000	0.5395280	1.1050000	0.0383000	0.0153000	0.4150000	0.5143000
Lead ^b	0.0665%	0.001291749	0.000358856	0.000734968	0.000025474	0.000010176	0.000276029	0.000342076
Manganese	0.0535%	0.001039974	0.000288912	0.000591716	0.000020509	0.000008193	0.000222228	0.000275402
Mercury	1.2866%	0.024986856	0.006941511	0.014216815	0.000492764	0.000196848	0.005339347	0.006616930
Nickel	0.0207%	0.000402300	0.000111762	0.000228898	0.000007934	0.000003169	0.000085966	0.000106536
Antimony	0.0040%	0.000077301	0.000021475	0.000043982	0.000001524	0.000000609	0.000016518	0.000020470
Arsenic	0.0015%	0.000029894	0.000008305	0.000017009	0.000000590	0.000000236	0.000006388	0.000007916
Beryllium	0.0003%	0.000006004	0.000001668	0.000003416	0.000000118	0.000000047	0.000001283	0.000001590
Cadmium	0.0147%	0.000285005	0.000079176	0.000162160	0.000005621	0.000002245	0.000060902	0.000075474
Chromium ^c	0.0163%	0.000315847	0.000087744	0.000179708	0.000006229	0.000002488	0.000067492	0.000083641
Cobalt	0.0014%	0.000026709	0.000007420	0.000015196	0.000000527	0.000000210	0.000005707	0.000007073
Phosphorus	0.2000%	0.003883629	0.001078897	0.002209675	0.000076589	0.000030595	0.000829878	0.001028449
Selenium	0.0074%	0.000143518	0.000039870	0.000081658	0.000002830	0.000001131	0.000030668	0.000038006
Zinc	3.7272%	0.072385146	0.020109064	0.041185102	0.001427502	0.000570255	0.015467708	0.019168776
Barium	0.0360%	0.000699498	0.000194325	0.000397995	0.000013795	0.000005511	0.000149473	0.000185239
Copper	0.0266%	0.000515660	0.000143254	0.000293396	0.000010169	0.000004062	0.000110189	0.000136555
Silver	0.0064%	0.000124722	0.000034649	0.000070963	0.000002460	0.000000983	0.000026651	0.000033028
Thallium	0.0012%	0.000024003	0.000006668	0.000013657	0.000000473	0.00000189	0.000005129	0.000006356

a. Percentage of metal as % of total PM caculated based on measured metal emission rates from hammermill shredder controlled by cyclone and a roll media filter from June 2018.

b. Uncontrolled organic compound emission rates, as presented in ISRI Title V Applicability Workbook, Table D-11F, adjusted for RTO with 98% destruction efficiency.

c. Chromium (metal) and compounds other than Chromium \mbox{VI}


Air Dispersion Modeling Protocol to Assess Metal Emission Impacts

General III, LLC - Chicago, Illinois

November 18, 2019

Appendix C

Vehicle Traffic

EXHIBIT 11

January 24, 2020

STATE OF ILLINOIS

JAN 2 7 2020

Environmental Processon Agency
BUREAU OF AIR

R17421-7.1

Mr. Jeff Sprague Illinois Environmental Protection Agency - Bureau of Air 1021 North Grand Avenue East Springfield, IL 62702

Air Dispersion Modeling Report for Assessment of Metal Emission Impacts Proposed Scrap Metal Recycling Facility General III, LLC – 11600 South Burley - Chicago, Illinois Construction Permit Application 19090021; Site ID No.: 031600SFX

Dear Mr. Sprague:

Please find attached a copy of the air dispersion modeling report for assessment of metal emission impacts for the proposed General III, LLC (GIII) Scrap Metal Recycling Facility located in Cook County at 11600 South Burley Avenue in Chicago, Illinois.

A copy of all AERMOD input and output files are included on a CD ROM included in Appendix E of the attached report.

Two copies of the report are attached, one containing information claimed as Trade Secret and one with the claimed Trade Secret information redacted.

A separate letter providing GIII's justification for the Claim of Trade Secret information is included with this submittal.

If you have any questions or need any additional information, please don't hesitate to contact me at 630-393-9000 or by e-mail at jpinion@hotmail.com.

Yours very truly, RK & Associates

cc: Mr. Bob Bernoteit – IEPA Bureau of Air – Springfield, Illinois – (Hard Copies)

Mr. Jim Kallas - General III, LLC - Chicago, Illinois (via e-mail)

IEPA - DIVISION OF RECEASABLE

MAR 13 2020

REVIEWER: JMR

January 24, 2020

VIA OVERNIGHT DELIVERY

Mr. Jeff Sprague
Illinois Environmental Protect Agency
Division of Air Pollution Control
PO Box 19506 - 1021 North Grand Avenue East
Springfield, IL 62794-9506

Justification for Claim of TRADE SECRET Information
Air Dispersion Modeling Report for Assessment of Metal Emission Impacts
General III, LLC – 11600 South Burley Avenue – Chicago, Illinois
Construction Permit Application 19090021; Site ID No.: 031600SFX

Mr. Sprague:

Please find attached two copies of the Air Dispersion Modeling Report for Assessment of Metal Emission Impacts (Report) from the proposed General III, LLC (GIII) scrap metal recycling facility at 11600 South Burley Avenue in Chicago, Illinois. The Report includes detailed equipment layout drawings for the proposed scrap metal recycling facility described in the above-referenced construction permit application.

GIII is claiming the detailed equipment layout drawings for the Ferrous Material Processing System (Figures A-1 and A-2 included in Appendix A of the attached Report) and the Non-Ferrous Material Processing System (Figures B-1 and B-2 included in Appendix B of the attached Report) as Trade Secret information as defined in 35 IAC 101.202 and Section 3.490 of the Illinois Environmental Protection Act [415 ILCS 5/3.490].

The above referenced drawings included in the attached Report are claimed as Trade Secret information in accordance with 35 IAC 130 and are clearly marked with the words "Trade Secret" in red letters on each page of the drawings (total of four pages). Two copies of the Report are attached to this claim, one including the clearly marked drawings claimed as Trade Secret and one copy with the drawings redacted noting that they have been claimed as Trade Secret information.

Pursuant to 35 IAC 130.203, GIII is providing the following information as its statement of justification for the claim of Trade Secret information. Each specific element, identified in 35 IAC 130.203(a) through (e), required for a statement of justification for a claim of Trade Secret claim is identified below.

§130.203(a) A detailed description of the procedures used by the owner to safeguard the article from becoming available to persons other than those selected by the owner to have access thereto for limited purposes;

The equipment layout drawings, prepared under a strict confidentiality agreement between GIII and a prospective equipment manufacturer, have only been provided to select GIII management personnel and outside consultants as required for preparation of facility permit applications and other information required for local governmental approval. This information is maintained on a password protected server at GIII with limited access. All equipment drawings produced to date have been labeled as confidential to protect this information and prevent its public dissemination.

§130.203(b) A detailed statement identifying the persons or class of persons to whom the article has been disclosed;

This information has only been disclosed to the top management of GIII and select outside consultants.

§130.203(c) A certification that the owner has no knowledge that the article has ever been published or disseminated or has otherwise become a matter of general public knowledge;

GIII hereby certifies that it has no knowledge that these identified articles claimed as trade secret information have been published or disseminated or have otherwise become a matter of general public information.

§130.203(d) A detailed discussion of why the owner believes the article to be of competitive value; and

The equipment drawings claimed as trade secret information were produced at great expense to GIII and represent months of intense effort by GIII and a prospective equipment manufacturer. The final design is a product of GIII's over 60 years of experience recycling scrap metal in the Chicago market and the considerable technological expertise of the prospective equipment manufacturer and represents a state-of-the-art recycling process that will maximize recovery and production of high value ferrous and non-ferrous metals in a sustainable and economic manner. GIII believes that the specific design and equipment layout will provide GIII with a significant competitive advantage over its competitors by providing increased metal recovery at reduced operating expense.

§130.203(e) Any other information that will support the claim.

The equipment layout drawings represent a process design that is unique to GIII and is not available in any market.

We believe that the above information is sufficient to justify a claim of trade secret for the equipment layout drawings described herein. If you believe that additional information is required to approve this designation, please contact Mr. Adam Labkon of GIII at 773-868-3491 (adamlabkon@general-iron.com).

Yours very truly, General III, LLC

Mr. Adam Labkon

adam Jakkow /sk

cc: Ms. Ann Zwick - Freeborn & Peters - Chicago, Illinois

70491

Agency ID: 170002390446

Media File Type: AIR

Bureau ID: 031600SFX

Site Name: General III LLC

Site Address1: 11600 S Burley Ave

Site Address2:

Site City: Chicago

State: IL

Zip: 60617-

This record has been determined to be partially or wholly exempt from public disclosure

Exemption Type:

Portion Removed

Exempt Doc #: 3

Document Date: 1/27/2020

Staff: JMR

Document Description: AIR DISPERSION MODELING REPORT FOR ASSESSMENT OF METAL

EMISSION IMPACTS (TRADE SECRET COPY)

Category ID: 03M

Category Description:

AIR PERMIT - CONSTRUCTION/JOINT

Exempt Type: Portion Removed

Permit ID: 19090021

Date of Determination:

3 /13/2020

REVIEWER: JMR

TRADE SECRET INFORMATION - REDACTED

Air Dispersion Modeling Report for Assessment of Metal Emission Impacts

General III, LLC - Chicago, Illinois IEPA DWSION OF PELLAGABLE

January 24 2020

R17421-7.1

Prepared for:

General III, LLC 1909 North Clifton Avenue Chicago, Illinois 60614 Attn: Mr. Jim Kallas

This Document Contains Redacted **TRADE SECRET Information**

Figures A-1, A-2, B-1, and B-3 Contain Trade Secret Information and have been Redacted from this Document.

Prepared by:

John G. Pinion Principal Engineer RK & Associates, Inc.

2 South 631 Route 59 Suite B Warrenville, Illinois 60555 Phone: 630-393-9000 Fax: 630-393-9111

This Page Left Blank

TABLE OF CONTENTS

1.0	INT	RODUCTION	1
	1.1	Facility Location and Contact Information	2
2.0	EM	ISSION SOURCES	5
	2.1	Shredder Emissions	5
	2.2	Ferrous Material Processing	6
	2.3	Non-Ferrous Material Processing	6
		Vehicle Traffic	7
	2.5	Metal Emission Rates for Emission Units Other Than the Metal Shredder	8
3.0	DIS	PERSION MODELING	11
	3.1	Meteorological Data	11
		Terrain Data	11
	3.3	Ambient Air Boundaries	11
	3.4	Receptor Network	11
	3.5	Building Downwash	12
	3.6	Lead Modeling	12
	3.7	Manganese Modeling	13
	3.8	Modeling Other Metals	16
4.0	МО	DELING RESULTS	19
	4.1	Predicted Lead Impacts	19
		Predicted Manganese Impacts	19
		Predicted Impacts for Other Metals	20

Table of Contents

TABLES

Table 2-1	Summary of Metal Concentrations in Material Deposition at GII	8
Table 3-1	Offsite Lead Sources Identified by IEPA	12
Table 3-2	Lead Background Concentrations	13
Table 3-3	Offsite Manganese Sources Identified by IEPA	14
Table 3-4	Manganese Background Concentrations	15
Table 3-5	NR 445 Standards for Other Metals	16
Table 4-1	Summary of Predicted Impacts for Lead	19
Table 4-2	Summary of Predicted Impacts for Manganese	
Table 4-3	Comparison of Predicted Maximum Metal Impacts to Identified Standards	21
	Ferrous Material Processing-Metal Emissions in Active Hours	Appendix A
	Ferrous Material Processing - Metal Emissions in Inactive Hours	Appendix A
	Ferrous Material Processing - Particulate Emissions	Appendix A
	Ferrous Plant Stockpile - Particulate Emissions	Appendix A
	Ferrous Material Processing - PM Emission Summary	Appendix A
Table B-1	Non-Ferrous Material Processing – Particulate Emissions	Appendix B
Table B-2	Non-Ferrous Plant Stockpile – Particulate Emissions	Appendix B
Table B-3	Non-Ferrous Material Processing – PM Emission Summary	Appendix B
	Non-Ferrous Material Processing – Metal Emissions in Active Hours	Appendix B
Table B-4b	Non-Ferrous Material Processing – Metal Emissions in Inactive Hours	Appendix B
FIGURES		
Figure 1-1	Site Location Map	
Figure 1-2	Facility Map	4
Figure A-1	Ferrous Processing System Flow Diagram TRADE SECRET Redacted	Appendix A
Figure A-2	Ferrous Processing System Layout TRADE SECRET Redacted	Appendix A
Figure B-1	Non-Ferrous Processing System Flow Diagram TRADE SECRET Redacted	Appendix B
Figure B-2	Non-Ferrous Processing System Layout TRADE SECRET Redacted	Appendix B
Figure C-1	Anticipated Traffic Routes	Appendix C
APPENDI	CES	
Appendix A	A Ferrous Material Processing Figures and Tables	
Appendix E	Non-Ferrous Material Processing Figures and Tables	
Appendix C	Vehicle Traffic Routes	
Appendix I	Laboratory Analytical Report for GII Material Deposition Samples	

Appendix E

Modeling Input and Output Files (CD ROM)

1.0 INTRODUCTION

General III, LLC (GIII), is proposing to construct and operate a new scrap metal recycling facility (Facility) in Cook County at 11600 South Burley Avenue in Chicago, Illinois. A Site Location Map and Facility Layout Map are presented in Figures 1-1 and 1-2.

GIII's proposed facility will be a state-of-the-art metal recycling facility located in the heart of an industrial district well buffered from residential properties. The proposed new metal shredder and material processing operations will utilize the latest technology to create a clean, efficient, and environmentally sensitive plant.

GIII will receive and shred mixed recyclables in various forms to produce uniform grades of ferrous and non-ferrous metals. Proposed scrap handling and processing activities include receiving, sorting, shredding, metal separation, and recovery of ferrous and non-ferrous metals.

The proposed GIII facility will be a minor source with respect to federal and state nonattainment area new source review (NA NSR), prevention of significant deterioration (PSD) requirements and Title V permitting requirements. The proposed facility will also be an area source with respect to hazardous air pollutants (HAPs).

As part of the air permitting process, Illinois Environmental Protection Agency (IEPA) has requested that GIII perform an air dispersion modeling analysis for metal emissions from the proposed facility. Emission rates for the proposed GIII facility have been estimated based on data obtained from the existing GII, LLC (GII) metal recycling facility (formerly General Iron Industries, Inc.) located at 1909 N. Clifton Avenue in Chicago, Illinois.

With the exception of Lead (Pb), for which there is a National Ambient Air Quality Standard (NAAQS), there are no IEPA or USEPA regulations limiting emissions of other metals. In an effort to identify standards for metals, RKA reviewed the Wisconsin Department of Natural Resources (WDNR's) rule regulating the emissions of air toxic pollutants (including metals). WDNR's Air Toxics Rule (NR 445) sets health-based emission standards for about 550 air toxics, including metals. The standards in NR 445 are based on threshold limit values established by American Conference of Governmental Industrial Hygienists (ACGIH) and USEPA or California Air Resources Board risk factors. Wisconsin's NR 445 will be used to assess the potential off-site impacts from the estimated emissions of 17 metals as described in Section 3 of this report.

Introduction

1.1 Facility Location and Contact Information

Business Name: General III, LLC

Source Location: 11600 South Burley – Chicago, Illinois 60617

Hyde Park Township, Cook County Illinois

Latitude/Longitude 41.685201° N / -87.545847" W –

Approximate Location of Front Gate

Office/Mailing Address: 1909 N. Clifton Avenue – Chicago, Illinois 60614

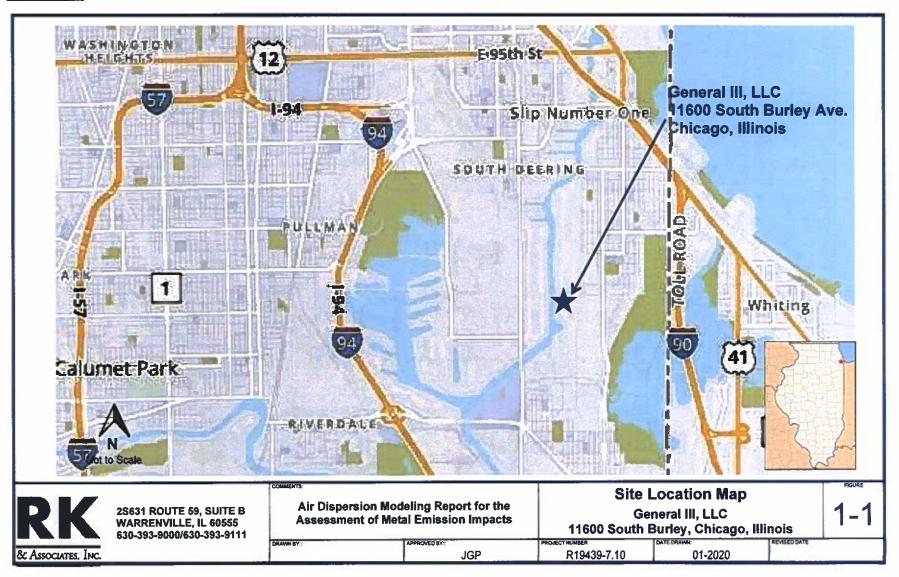
General III, LLC Mr. Jim Kallas - Environmental Manager

847-508-9170 - jimkallas@general-iron.com

IEPA Site ID No.: 031600SFX

IEPA Draft Construction Permit: 19090021

SIC Code: 5093 – Scrap and Waste Materials


NAICS Code: 423930 - Recyclable Material Merchant Wholesalers

RKA Contact for John Pinion - Principal Engineer

Modeling Analysis 2S631 Route 59, Suite B - Warrenville, Illinois 60555

630-393-9000 - jpinion@rka-inc.com

Introduction

2.0 EMISSION SOURCES

Emission sources, emission factors, and emission rates are described in detail in the Construction Permit Application 19010021 submitted to IEPA dated September 24, 2019 and as amended by updated emission estimates. The proposed GIII facility will consist of the following operations:

- Raw material receiving and handling;
- Hammermill shredder;
- Ferrous separation and material processing; and,
- Non-ferrous separation and material processing.

GIII emission sources will include:

- Metal shredder controlled by roll-media particulate filter, Regenerative Thermal Oxidizer (RTO), quench, and packed tower scrubber;
- Ferrous Material Processing System -conveyor transfer points, magnetic separators, stockpiles, and material loadout;
- Non-Ferrous Material Processing System feed hopper, conveyor transfer points, magnetic separators, screens, vibratory feed tables, stockpiles and material loadout, and a baghouse for control of emission sources located in the fines processing building;
- Stockpiles (fugitive emissions); and,
- Vehicular emissions from Paved and Unpaved Areas (fugitive emissions)

2.1 Shredder Emissions

The existing metal shredder at GII is equipped with a roll-media particulate filter installed in 2014. A Regenerative Thermal Oxidizer (RTO), quench, and packed tower scrubber were added downstream of the roll-media particulate filter in 2019. The GII shredder emission control system (including an emission capture hood, cyclone, roll-media particulate filter, RTO, quench, and packed tower scrubber) will be moved from GII to the proposed GIII facility and will be used to control emissions from the new GIII metal shredder.

GIII shredder emissions will be discharged through the scrubber discharge stack and are modeled as a point source having the following parameters:

Stack Height:

41 ft

Stack Diameter:

6ft

Exhaust Flow Rate:

73,500 acfm

Exhaust Temperature:

100°F

Metal emission rates from the proposed GIII shredder are estimated based upon the results of November 14, 2019, metal emission testing performed at the existing GII metal shredder controlled by the roll-media

particulate filter, RTO, quench and packed tower scrubber. Metal testing was performed pursuant to EPA Methods 1 through 4 and Method 29. Metal emission factors (in units of pounds of metal emitted per ton of shredder feed) were applied to the proposed shredder feed rate for the new GIII shredder. Metal emission rates for the proposed GIII shredder are presented in Appendix A, Table A-1a and A-1b.

2.2 Ferrous Material Processing

The Ferrous Material Processing System consists of multiple emission sources as described in the construction permit application. Emission sources include conveyors, magnetic separators, stockpiles and material loadout.

For the purpose of modeling, emission sources that are spatially close together are combined into separate volume sources. The Ferrous Material Processing System emission sources have been grouped into thirteen (13) volume sources, V-1 through V-13, as shown in Figure A-1 in Appendix A. A layout drawing of the Ferrous Material Processing System is presented in Figure A-2 in Appendix A. Figures A-1 and A-2 contain TRADE SECRET information.

Individual metal emission rates were estimated using the procedures described in Section 2.5 below. Table A-2, in Appendix A, identifies each emission unit, the emission unit identification number, and corresponding PM emissions.

Stockpile sources and their appropriate volume source group are shown in Table A-3. Emissions from stockpiles are different during the time piles are active and when piles are inactive. Table A-4 identifies the individual metal emission rates from material handling sources and stockpile sources. For the purpose of this modeling assessment, the stockpiles in the Ferrous Material Handling System are assumed to be active for 12 hours per day Monday through Saturday.

2.3 Non-Ferrous Material Processing

The Non-Ferrous Material Processing System consists of multiple emission sources as described in the construction permit application. Emission sources include feed hopper, conveyor transfer points, magnetic separators, screens, vibratory feed tables, stockpiles and material loadout. Emission sources have been grouped into six (6) volume sources, VN-1 through VN-6, as shown in Figure B-1 in Appendix B. A layout drawing of the Non-Ferrous Material Processing System is presented in Figure B-2 in Appendix B. Figures B-1 and B-2 contain TRADE SECRET information.

Individual metal emission rates were estimated using the procedures described in Section 2.5 below. Table B-1, in Appendix B, identifies each emission unit, the emission unit identification number, and corresponding PM emissions.

Emission Sources

Stockpile sources and their appropriate volume source group are shown in Table B-2. Emissions from stockpiles are different during the time piles are active and when piles are inactive. Table B-3 contains combined emissions from material handling sources and stockpile sources. For the purpose of this modeling assessment, the stockpiles in the Non-Ferrous Material Handling System are assumed to be active for 24 hours per day Monday through Saturday.

Individual metal emission rates are shown in Table B-4a for active facility hours and in Table B-4b for inactive hours.

The Non-Ferrous Material Processing System includes a Fines Processing System that is located in a building. Emissions from the fines processing equipment are ducted to one of four identical dust collectors. Three of the dust collectors exhaust treated air back into the building and the fourth dust collector exhausts treated air to the outside atmosphere. Emissions from the single dust collector that exhausts to the atmosphere will be modeled as a point source with the following parameters:

Stack Height: 47 ft

Stack Diameter: 2 ft

Exhaust Flow Rate: 12,000 acfm

Exhaust Temperature: Ambient

Metal emissions from the dust collector are shown in Table B-4 in Appendix B.

2.4 Vehicle Traffic

The vast majority of material received at the proposed facility will be delivered by semi-trailers and the remaining portion will enter the facility in pickup truck sized vehicles driven by peddlers. Vehicles will enter the facility through a controlled gate and travel over a weigh scale before being routed to a designated unloading area. Proposed vehicle routes are presented in Figure C-1 in Appendix C.

Roadways at the facility were divided into segments. Estimated PM emissions for each segment were calculated based on the number and type of vehicles on each segment each day. The estimated PM emission for segment were then combined with representative metals concentrations as described in Section 2.5 below. The resulting segment-specific metals emissions rates were then modeled as a line of adjacent volume sources distributed over each segment pursuant to applicable modeling guidelines.

2.5 Metal Emission Rates for Emission Units Other Than the Metal Shredder

There is no published data describing metal concentrations in various particulate emission streams associated with scrap recycling facilities. In order to develop representative metal emission factors for facility emission units and activities, samples of material deposition from five areas at the existing GII facility were collected, screened, and the resulting particulate matter analyzed for metals. The identified metal concentrations from the samples collected at GII were assigned to particulate matter emissions from corresponding areas and emission units proposed for GIII. A copy of the laboratory analytical report for these samples is presented in Appendix D.

A summary of the metal analyses described above is presented in Table 2-1 below.

Table 2-1 Summary of Metal Concentrations in Material Deposition¹ at GII

Metals (Method 29)	Ferrous Roadway mg/kg	ASR Roadway mg/kg	General Roadway mg/kg	Ferrous Transfer mg/kg	Non-Ferrous Transfer mg/kg
Lead	763	1,610	525	4,230	4,720
Manganese	960	1,030	729	2,210	1,760
Mercury	1.77	6.95	2.22	18.8	9.34
Nickel	125	463	106	304	311
Antimony	< 1.23	< 1.22	< 1.16	< 1.17	< 1.21
Arsenic	2.28	1.75	2.70	2.75	4.51
Beryllium	< 5.90	< 1.30	< 5.50	< 1.17	< 1.21
Cadmium	9.63	18.4	5,42	47.6	34.6
Chromium	220	991	173	402	425
Cobalt	15.7	38.5	10.7	52.0	55.8
Phosphorus	598	561	270	833	934
Selenium	< 1.23	< 1.22	< 1.16	< 1.17	< 1.21
Zinc	5,470	13,300	3,080	37,300	34,000
Barium !!	388	673	232	984	684
Copper	1,110	1,080	841	2,100	1,650
Silver	< 12.3	< 12.2	< 11.6	< 11.7	< 12.1
Thallium	< 1.23	< 1.22	< 1.16	< 1.17	< 1.21

Bulk material samples from designated areas were transported to Environmental Monitoring and Technologies, Inc. (EMT) and sieved to remove oversized material. The resulting materials were analyzed for metals using the analytical methods identified in USEPA Method 29 (Metals Emissions from Stationary Sources).

Emission Sources

The following describes locations of the samples collected at GII and the areas and activities at GIII that each sample represents.

Sample Name	Sample Description
Ferrous Roadway	Sample collected at GII from the vehicle roadway adjacent to the shredded ferrous metal stockpile. Sample results represent anticipated metals content of fugitive particulate emissions from vehicular traffic near the shredded ferrous material stockpiles at GIII.
ASR Roadway	Sample collected at GII from the vehicle roadway adjacent to the ASR handling and stockpile area. Sample results represent anticipated metals content of fugitive particulate emissions from vehicular traffic near the bulk ASR handling and ASR stockpile areas at GIII.
General Roadway	Sample collected from the entrance to GII. Sample results represent anticipated metals content of fugitive particulate emissions from vehicular traffic between the facility entrance gate and the raw scrap unloading area at GIII.
Ferrous Transfer	Sample collected at GII from the pavement adjacent to ferrous material transfer conveyors. Sample results represent anticipated metals content of particulate emissions from the Ferrous Material Processing System from the outlet of the shredder to the ferrous material stockpiles and barge loading area at GIII.
Non-Ferrous Transfer	Sample collected at GII from fines deposited on horizontal surfaces (i.e. beams, pipes, etc.) inside the ASR processing building. Sample results represent anticipated metals content of particulate emissions from the Non-Ferrous Processing System at GIII.

Emission Sources

3.0 DISPERSION MODELING

Dispersion modeling was performed to predict the maximum impact from General III sources. AERMOD dispersion model Version 19191, AIRMET Version 19191, AERMINUTE Version 15272, AERMAP Version 18081, and AIRSURFACE Version 13016 was used in this modeling analysis.

3.1 Meteorological Data

Surface meteorological data used in the modeling was obtained from the National Weather Service at the Midway Airport Station for the years 2012 through 2016. Wind data was downloaded as 1-minute average ASOS data and processed using AERMINUTE. Upper air data for the same period was obtained from the coincident upper air sounding station at Davenport, Iowa. Surface and upper air data were preprocessed with AERMET using surface parameters from AIRSURFACE.

3.2 Terrain Data

Receptor elevations, source elevations, and building elevations were obtained by running AERMAP, using National Elevation Dataset (NED) files downloaded from USGS website.

3.3 Ambient Air Boundaries

There is security fencing on the north boundary and the northern part of the east boundary of the RMG industrial campus property that leads to a guard shack with gates (open when occupied or closed when unoccupied). The southern boundary of the RMG industrial campus property is a combination of fencing and berm, while the west boundary is the Calumet River. No Trespassing signs are posted around the boundary and no part of the boundary is adjacent to any public right away, which limits casual access to the site by the general public.

Based on the above, ambient air boundaries have been set at the RMG industrial campus property boundaries shown in Figure 1-2.

3.4 Receptor Network

A Cartesian receptor grid is placed around the property lines up to 5 km from the property line as follows:

- 50 m apart along the property line
- 100 m extending from the fence line to 2 km
- 500 m apart from 2 km to 5 km

11

3.5 Building Downwash

Downwash parameters were developed based on information provided by Reserve Management Group (RMG) for existing buildings and GIII for proposed buildings. Structure coordinates were obtained for existing buildings from Google Earth and for proposed buildings from GIII site plans. Building heights for existing buildings were obtained from direct measurements taken by RMG representatives and for the proposed building from facility site plans.

3.6 Lead Modeling

Lead modeling was performed to identify off site impacts for comparison to the National Ambient Air Quality Standard (NAAQS) for lead (Pb), which is $0.15 \mu g/m^3$ on a rolling three-month average.

GIII Pb emission sources described in Section 2 of this report were modeled along with other, non-GIII offsite Pb emission sources identified by IEPA for inclusion in the assessment. A list of the offsite Pb emission sources and emission point characteristics identified by IEPA is presented in Table 3-1 below.

Row#	ID Number	Stack Number	Stack ID	Stack Description	Lead Emissions (lb/hr)	Stack Diameter (ft)	Stack Height (ft)	Flow Rate (acfm)	Stack Temp (F)	UTM Zone	UTIM Easting	UTM Northing
1	031600AAR	109	250881	4 Big foot air houses (19.4 million BTU/hr each)	0.00000335	1.76	37	3,000	442	16	453419	4612420
2	031600FGT	3	195877	Cement silo loading	0.000069	2.80	36	10,266	80	16	451809	4617532
3	031600FGT	6	195880	Mixer and/or truck loading	0.0002292	2.90	32	10,220	80	16	451809	4617532
4	031600FHQ	1	121260	Portland cement terminal: Cement silo loading	0.00037	2.25	203	3,000	70	16	452489	4612185
5	031600FHQ	2	121261	Portland cement terminal: Truck loading/unloading	0.00222	4.50	120	3,000	70	16	452489	4612185
6	031600GKE	9	222736	Backup generator EDG A	0.000277144	3.00	12	16,200	895	16	454708	4618584
7	031600GKE	10	222737	Backup generator EDG B	0.000277144	3.00	12	16,200	895	16	454708	4618571
8	031600GKE	11	222738	Backup generator EDG C	0.000277144	3.00	12	16,200	895	16	454708	4618559
9	031600AFV	5_	118896	Kiln #1 & Kiln #2ª	0.0465	8.67	102	4,114	181	16	453823	4615216
10	031600AFV	27	184788	Crude zinc oxide bin loadout ^a (bag collector 5)	0.000000	8.99	98	123,228	81	16	453823	4615216
11	031600AFV	30	184791	Feed handling system	0.0018	1.51	75	4,101	82	16	453823	4615216
12	031600GWV	7	234365	Boiler	0.00019	3.77	74	19,740	416	16	454218	4613685

Table 3-1. Offsite Lead Emission Sources Identified by IEPA

AERMOD was run with five years of meteorological data (See Section 3.1) to predict the first-high monthly average lead concentration. AERMOD post files were created and processed with LEADPOST, which converts the monthly average values to rolling three-month averages for direct comparison with the Lead NAAQS. LEADPOST identifies the receptor of maximum impact based on a three-month rolling average.

a. Above data for Site ID 031600AFV and Site ID 031600FHQ included updated emissions and stack characteristics provided by IEPA.

The background ambient Pb concentration was added to the predicted maximum rolling 3-month average concentration. The nearest statewide air monitoring site for Pb is located at Washington High School, AQS ID 17-031-0022. The three-month rolling mean for Pb measured at Washington High School during the past three years are shown in Table 3-2. The maximum three-month rolling mean from the latest three-year period was used as a background concentration.

Three-Month
Rolling Mean Pb
Concentration
(ug/m³)

2018

Concentration
(ug/m³)

0.01

Table 3-2 - Lead background concentrations

0.02

0.02

0.02

2017

2016

The maximum predicted rolling three-month average Pb concentration, plus a background concentration of 0.02 ug/m^3 was compared to the Pb NAAQS.

3.7 Manganese Modeling

There is no NAAQS for manganese. Modeling was performed to identify predicted offsite impacts for comparison to Wisconsin's NR 445 standard of 4.8 μ g/m³ on a 24-hour average basis and USEPA's chronic inhalation Minimal Risk Level (MRL) of 0.3 μ g/m³ on an annual average basis.

GIII manganese sources described in Section 2 of this protocol were modeled along with non-GIII offsite manganese sources identified by IEPA for inclusion in this assessment. The list of offsite manganese emission sources is presented in Table 3-3.

AERMOD was run for five years of meteorological data (see Section 3.1) to predict the first-high 24-hour average concentration (for comparison to the NR 445 standard) and the maximum annual concentration (for comparison the USEPA MRL).

The design value is the maximum three-month rolling mean over the latest three-year period.

Table 3-3 - Offsite Manganese Sources Identified by IEPA

			ible 3-3 - Olisite Maligalies								
	ga a sala			Mn Emissions	Stack Diameter	Stack Height	Flow Rate	Stack Temp	UTM	UTM	υτм
ID Number	Stack Number	Stack Id	Stack Description	(lb/hr)	(ft)	(ft)	(acfm)	(F)	Zone	Northing	Easting
031036AAA	0003	115247	Boiler #3	0.00000152	2.00	25	2,752	300	16	4610011	454809
031036AAA	0003	115247	Boiler #2	0.000000589	2.00	25	2,752	300	16	4610011	454809
031036AAA	0002	115246	Boiler stack #1	0.000000589	3.50	95	2,600	220	16	4610011	454809
031600AAR	0046	118716	60 million BTU/hr boiler	0	3.30	117	19,319	300	16	4612420	453419
031600AAR	0055	118725	Air supply	0	2.30	55	8,000	225	16	4612420	453419
031600AAR	0056	118726	Air supply	0	1.00	45	2,000	245	16	4612420	453419
031600AAR	0088	156582	2 Natural gas fired hot water heaters	0.000001026	3.70	85	17,345	361	16	4612420	453419
031600AAR	0109	250881	4 Big foot air houses (19.4 million BTU/hr each)	0.000002546	1.76	37	3,000	442	16	4612420	453419
031600AAR	0110	250882	2 Hot water stations	0.000001026	1.84	37	3,300	430	16	4612420	453419
031600AAR	0111	250883	Paint line water heater	0.000000266	1.84	37	3,300	430	16	4612420	453419
031600AAR	0112	250884	Other natural gas combustion (curing ovens, oxidizers, space heaters)	0.000039976	1.92	39	4,860	258	16	4612420	453419
031600AAR	0114	250886	Emergency generator	7.4565E-06	2.02	36	12,960	692	16	4612420	453419
031600AFV	0005	118896	Kiin #2	0.033000178	6.40	52	4,115	181	16	4615216	453823
031600AFV	0005	118896	Kiln #2	0.032776655	6.40	52	4,115	181	16	4615216	453823
031600AFV	0035	184796	Engine	0	4.80	56	73,901	503	16	4615216	453823
031600ALC	0002	118971	Boiler	0.000009272	2.50	112	9,520	470	16	4613531	454085
031600AOL	0015	209976	Natural gas combustion	0.000002964	3.40	30	25,373	324	16	4617392	450256
031600BIY	0001	119521	Boiler #1	0.000001748	5.00	90	7,970	565	16	4613129	451612
031600BIY	0024	241900	Boiler #3	0.00000209	2.00	28	4,936	395	16	4613129	451612
031600BRA	0001	119770	Gas heater	0.00000171	2.50	35	700	350	16	4618594	454528
031600DPK	0001	120674	Silo loading	0.000505	2.20	32	12,424	113	16	4619060	454722
031600DQO	0021	173045	Centrifuge Bollers #1 and #2	1.38624E-06	1.83	46	2,050	450	16	4613049	450146
031600FDK	0002	121107	2 Steam generators	0.000001482	2.60	34	1	400	16	4617978	453577
031600FGT	0003	195877	Cement silo loading	0.0189375	2.80	36	10,266	80	16	4617532	451809
031600FGT	0006	195880	Mixer and/or truck loading	0.03672	2.90	32	10,220	80	16	4617532	451809
031600FGT	0007	195881	Natural gas combustion	0.00000342	2.70	50	8,859	341	16	4617532	451809
031600FHQ	0001	121260	Portland cement terminal: Cement silo loading	0.000101	5.30	50	3,000	70	16	4612185	452489
031600FHQ	0002	121261	Portland cement terminal: Truck loading/unloading	0.000606	7.92	20	3,000	70	16	4612185	452489
031600FHQ	0003	190764	Portland cement terminal: Barge unloader	0	2.80	36	10,266	80	16	4612185	452489
031600FHQ	0004	215253	Slag dryer	0	5.33	157	74,700	183	16	4612141	452468
031600FHQ	0004	215253	Slag dryer	0.000011704	5.33	157	74,700	183	16	4612141	452468
031600FLD	0017	188346	Product collector from shaft dryers (T51-HG1), Cyclone (T51-CN1), and Separator (T61-SR1)	6.65E-09	2.20	90	20,000	205	16	4617602	454330
031600FLD	0016	188345	Polymers (Y-Chutes, top of T61-RP2 bin and T61- RP2), and Aux. dryers (T71-HG2 and T71-HG7)	1.672E-09	2.20	90	3,336	205	16	4617602	
031600FWM	0023	233161	Natural gas combustion	0.000005852	3.40	58	15,060	436	16	4613979	453740
031600GFX	0003	193349	Natural gas combustion	0.000006194	2.47	49	9,240	331	16	4617336	+
031600GHA	0001	219682	Turbine CT-01	0.106666	20.00	90	1,658,000	997 997	16	4614792 4614792	
031600GHA	0001	219682	Turbine CT-01	0.10025	20.00	90	1,658,000	997	16 16	4614792	
031600GHA	0003	222391	Turbine CT-02		_	_			-		· · · · · · · · · · · · · · · · · · ·
031600GHA	0003	222391	Turbine CT-02	0.000005434	20.00	90 35	1,658,000 4,700	997 330	16	4614792 4612395	
031600GHV	0005	189629	2 Boilers	0.000005434	1.50	35	4,700	330	16	4612395	,
031600GHV 031600GKE	0005	189629	2 Boilers Turbine CTG-5	0.000004712	12.14	84	611,000	1050	16	4618643	†
031600GKE	0001	219577	Backup generator EDG A	0.0423471	3.00	12	16,200	895	16	4618584	_
031600GKE	0010	222737	Backup generator EDG B	0.01563884	3.00	12	16,200	895	16	4618571	_
031600GKE	0010	222738	Backup generator EDG C	0.01563884	3.00	12	16,200	895	16	4618559	_
031600GKE	0002	219591	Turbine CTG-6	0.04244986	12.14	84	611,000	1050	16	4618616	+
031600GKE	0002	219592	Turbine CTG-7	0.04277066	12.14	84	611,000	1050	16	4618590	_
031600GKE	0003	219593	Turbine CTG-8	0.04341226	12.14	84	611,000	1050	16	4618564	_
031600GKE	0005	219594	Turbine CTG-9	0.04197668	12.14	84	611,000	1050	16	4618643	_
031600GKE	0005	219595	Turbine CTG-10	0.0420248	12.14	84	611,000	1050	16	4618617	_
031600GKE	0007	219596	Turbine CTG-11	0.04220926	12.14	84	611,000	1050	16	4618590	
031600GKE	0008	219597	Turbine CTG-12	0.04207292	12.14	84	611,000	1050	16	4618564	+
031600GKU	0001	209195	Combined boilers stack	0.00000494	3.00	30	5,150	350	16	4617728	_
031600GWV	0007	234365	Boliler	0.000127848	3.78	74	19,740	416	16	4613685	
Parondana	1 0007	23-303) beind	1	1 3.73	. , ,		, /		,	1 .5 72.20

Dispersion Modeling

The background ambient manganese concentrations were added to the modeled results for comparison with identified 24-hour and annual standards. The nearest statewide air monitoring site for manganese is located at Washington High School, AQS ID 17-031-0022. The maximum 24-hour and annual manganese concentrations measured at Washington High School during the past three years are shown in Table 3-4. The maximum 24-hour concentration among the last three years is 0.370 µg/m³, which was used as a the 24-hour background concentration. The maximum annual average among the three years is 0.070 µg/m³, which was used as the annual background concentration.

Table 3-4. Manganese Background Concentrations

Year	Measured 1st High 24-Hour Mn Concentration (μg/m³)	Maximum 24-Hour Mn Concentration used as Background (µg/m³)	Measured Annual Mean Mn Concentrations (μg/m³)	Maximum Annual Mean Mn Concentration Used as Background (µg/m³)
2018	0.197		0.048	
2017	0.235	0.370	0.070	0.07
2016	0.370		0.068	

3.8 Modeling Other Metals

There are no NAAQS for other metals. Wisconsin's Air Toxics Rule (NR 445) sets health-based emission standards. The metal impacts predicted by this modeling analysis are compared to the NR 445 standards.

Table 3-5 includes a list of the other metals and their corresponding NR 445 limits.

Table 3-5, NR 445 Standards for Other metals

-	NR445 Standard		ATSDR Minimal	NAAQS 3-Month		llS Database sk Factor
Metal	24-hr (ug/m³)	Annuai (<i>ug</i> /m³)	Risk Level ⁽³⁾ Annual (ug/m ³)	Rolling Average Value (ug/m³)	(<i>u</i> g/m³)	Source
Antimony	12.00	NA	0.30			
Arsenic	NA	Carcinogen			0.00430	USEPA IRIS
Barium	12.00	NA				
Danillina		Carcinogen			0.00240	USEPA IRIS
Beryllium		0.02				
Cadmium	NA	Carcinogen	0.01		0.00180	USEPA IRIS
Chromium ⁽¹⁾	12.00	NA				
Cobalt	0.48	NA	0.10			
Copper	24.00	NA				
Lead	NA	NA		0.15		
Manganese	4.80	NA	0.30			
Nickel	NA	Carcinogen	0.09		0.00026	CARB
Phosphorus	2.43	NA				
Selenium	4.80	NA				
Silver ⁽²⁾	NA	Na				
Thallium	2.40	NA				
Zinc ⁽²⁾	NA	NA				
Mercury	0.60	0.30	0.20			

- 1. Chromium (metal) and compounds other than Chromium VI.
- NR 445does not identify standards for Silver and zinc compounds and no inhalation RfC is reported in the EPA Integrated Risk Information System (IRIS).
- 3. Chronic-duration inhalation exposure ≥ 1 year.

For other metals, AERMOD was run only with GIII sources described in Section 2 using five years of meteorological data (see Section 3.1).

Dispersion Modeling

For non-carcinogenic metals, the predicted first-high 24-hour average is compared to the NR 445 24-hour limit. For beryllium and mercury, the predicted maximum annual concentration is compared to the NR 445 annual limit. There is no NR 445 limit for silver and zinc and there is no inhalation exposure dose reported on the Integrated Risk Information System (IRIS). The predicted 24-hour average and predicted annual concentration for these two metals are reported but not compared to any limits.

Pursuant to NR 445.08(2)(c), emissions of carcinogenic air contaminants having a unit risk factor established by either the EPA or the California Air Resources Board, shall not result in an ambient air concentration off the source property corresponding to an inhalation impact (or risk) greater than 1 in $1,000,000 (1 \times 10^{-6})$.

The inhalation impact is determined by the following equation:

Inhalation impact = (Inhalation impact concentration annual average) x (Unit risk factor)

where:

the inhalation impact concentration is the annual average concentration of a contaminant in $(\mu g/m^3)$; and,

the unit risk factor for the contaminant is the unit risk factor value established by either EPA or the California Air Resources Board and is expressed in $(\mu g/m^3)^{-1}$.

The predicted maximum annual concentrations are multiplied by the compounding unit risk factor. The result is then compared to a standard of 1 in 1,000,000.

This Page Left Blank

4.0 MODELING RESULTS

The results of this modeling assessment demonstrate that the predicted worst case off-site ambient impacts are below the identified standards.

4.1 Predicted Lead Impacts

Modeling was performed using the proposed Pb emission rates for GIII, as well as Pb emissions from other sources identified in IEPA's Pb emissions inventory data (see Section 3.7; Table 3-1).

IEPA provided updated allowable Pb emission rates, stack characteristics, and site-specific building downwash parameters for two of the background sources identified in the Agency's inventory (Site ID No. 031600GKE and 013600FHQ). The Agency identified the updated information from recent facility compliance activities (i.e., permitting and emission testing) and physical site data from the recent statewide modeling of sulfur dioxide.

Table 4-1 – Summary of Predicted Impacts for Lead

Pollutant	Maximum 3-Month Rolling Average Period	Predicted Monthly Average (µg/m³)	Predicted Maximum 3-Month Rolling Average (µg/m³)	Design Value (Background) (μg/m³)	Total Predicted 3-Month Rolling Average (w/Background) (µg/m³)	East (X)	North (Y) (m)
·	Feb-16	0.0591				452500	4612200
Lead	Mar-16	0.0679	0.0678	0.0200	0.0878	452500	4612200
	Apr-16	0.0764	1			452500	4612200

Comparison of Modeling Results to NAAQS Standard for Lead

Parameter	Units	3 Month Rolling Average
Pb NAAQS Standard (3-Month Rolling Avg)	$u g/m^3$	0.15
Maximum Predicted Pb Impact	$u g/m^3$	0.0878
Predicted Impact Meets Standard	Yes/No_	Yes

4.2 Predicted Manganese Impacts

Modeling was performed using estimated Mn emission for GIII as well as Mn emissions from other emission sources identified by IEPA (see Section 3.7; Table 3-3).

The maximum predicted 24 hour and annual impacts (ug/m³) for manganese are presented in Table 4-2 below. These data show that the maximum predicted impact is well below the identified 24 hour and annual standard for manganese.

Table 4-2 – Summary of Predicted Impacts for Manganese

Pollutant	Averaging Period	_Year	AERMOD Predicted Conc. (µg/m³)	Background Conc. (µg/m³)	Total Predicted Conc. (µg/m ³)	East (X)	North (Y) (m)	Time yy/mm/dd/hh
		2012	0.618		0.988	452500	4612200	12081524
		2013	0.786	1	1.156	452500	4612200	13090724
	24-HR	2014	0.618	0.370	0.988	452500	4612200	14092024
		2015	0.724]	1.094	452500	4612200	15090724
8.4		2016	0.694		1.064	452500	4612200	16082724
Mn		2012	0.102		0.172	452500	4612200	1 YEARS
		2013	0.102]	0.172	452500	4612200	1 YEARS
	ANNUAL	2014	0.104	0.070	0.174	452500	4612200	1 YEARS
		2015	0.113		0.183	452500	4612200	1 YEARS
		2016	0.102		0.172	452500	4612200	1 YEARS

Comparison of Modeled Results to Identified Standards

Parameter	Units	24-hr Value	Annual Value
NR445 Standard	μg/m ³	4.80	0.30
ATSDR Minimal Risk Level	μg/m ³	NA	0.30
Total Predicted Impact	ug/m ³	1.156	0.183
Impact Meets Standard	Yes/No	Yes	Yes

4.3 Predicted Impacts for Other Metals

Modeling for other metals was performed using the proposed metal emissions for the identified GIII metal emission sources.

The maximum predicted 24-hour and annual impacts (ug/m³) for other metals is presented in Table 4-3 below. Comparison of the maximum predicted 24 hour and annual impacts are compared to corresponding standards in Table 4-4. These data show that the maximum predicted impacts for each of the other metals modeled are well below the identified standards.

Dispersion Modeling

Table 4-3 - Comparison of Predicted Maximum Metal Impacts to Identified Standards

Pollutant	Averaging Data t Period Year		AERMOD Maximum Predicted Conc. (µg/m³)	Identified Standard and Source (Pass/Fail)	East (X) (m)	North (Y) (m)	Elevation (m)	Time yy/mm/dd/hh
30		2012	0.00088		454209	4615133	178.19	12101624
		2013	0.00109	12.00 ug/m3	454089	4614966	176.92	13011024
	24-HR	2014	0.00097	NR445	454209	4615133	178.19	14111024
		2015	0.00100	Pass	454126	4615088	178.19	15111724
25 20		2016	0.00090		454089	4614966	176.92	16081524
Antimony		2012	0.00007		454340	4615247	178.19	1 YEARS
		2013	0.00007	0.30 ug/m3	454596	4615041	178.19	1 YEARS
	ANNUAL	2014	0.00007	ATSDR MRL	454596	4615041	178.19	1 YEARS
		2015	0.00006	Pass	454377	4615267	178.19	1 YEARS
		2016	0.00006	V	454596	4615041	178.19	1 YEARS
		2012	0.00056		454596	4615041	178.19	12020224
		2013	0.00065	No Standard	454596	4615041	178.19	13011524
	24-HR	2014	0.00065	Identified	454600	4615000	178.19	14010824
		2015	0.00044		454596	4615041	178.19	15123024
		2016	0.00048		454596	4615041	178.19	16012024
Arsenic		2012	0.00008	Unit Risk Factor	454596	4615041	178.19	1 YEARS
		2013	0.00009	0.0043	454596	4615041	178.19	1 YEARS
	ANNUAL	2014	0.00009	Inhalation Impact®	454596	4615041	178.19	1 YEARS
		2015	0.00008	3.87E-07	454596	4615041	178.19	1 YEARS
		2016	0.00009	Pass	454596	4615041	178.19	1 YEARS
	800	2012	0.05583		454099	4614767	178.14	12012624
		2013	0.06609	12.00 ug/m3	454099	4614767	178.14	13122124
	24-HR	2014	0.06250	NR445	454099	4614767	178.14	14020424
		2015	0.06909	Pass	454099	4614767	178.14	15122524
		2016	0.04944		454000	4614800	175.37	16022324
Barlum		2012	0.00857		454099	4614767	178.14	1 YEARS
		2013	0.00769	No Standard	454596	4615041	178.19	1 YEARS
	ANNUAL	2014	0.00781	Identified	454596	4615041	178.19	1 YEARS
		2015	0.00830		454099	4614767	178.14	1 YEARS
		2016	0.00834		454099	4614767	178.14	1 YEARS

Table 4-3 · Comparison of Predicted Maximum Metal Impacts to Identified Standards (cont'd)

Pollutant	Averaging Period	Met Data Year	AERMOD Maximum Predicted Conc. (µg/m³)	identified Standard and Source (Pass/Fail)	East (X) (m)	North (Y) (m)	Elevation (m)	Time yy/mm/dd/hh
		2012	0.00105		454600	4615000	178.19	12010724
		2013	0.00122	No Standard	454596	4615041	178.19	13011524
	24-HR	2014	0.00131	Identified	454600	4615000	178.19	14010824
		2015	0.00080		454596	4615041	178.19	15012224
		2016	0.00092		454600	4615000	178.19	16021324
Beryllium		2012	0.00013	0.02 ug/m3	454596	4615041	178.19	1 YEARS
		2013	0.00014	NR445 Pass	454596	4615041	178.19	1 YEARS
	ANNUAL	2014	0.00015	Unit Risk Factor	454596	4615041	178.19	1 YEARS
		2015	0.00013	0.0024 Inhalation impact ^e	454596	4615041	178.19	1 YEARS
		2016	0.00014	3.60E-07 Pass	454596	4615041	178.19	1 YEARS
		2012	0.00259		454099	4614767	178.14	12012624
		2013	0.00313	No Standard Identified	454099	4614767	178.14	13122124
	24-HR	2014	0.00282		454099	4614767	178.14	14020424
		2015	0.00321		454099	4614767	178.14	15122524
Cadmium	252	2016	0.00236		454000	4614800	175.37	16022324
Caumon		2012	0.00040	0.01 ug/m3	454099	4614767	178.14	1 YEARS
		2013	0.00036	ATSDR MRL Pass	454099	4614767	178.14	1 YEARS
	ANNUAL	2014	0.00036	Unit Risk Factor	454099	4614767	178.14	1 YEARS
9		2015	0.00039	0.0018 Inhalation Impact ^a	454099	4614767	178.14	1 YEARS
		2016	0.00039	7.20E-07 Pass	454099	4614767	178.14	1 YEARS
	37-30	2012	0.05583		454099	4614767	178.14	12012624
		2013	0.06609	12.00 ug/m3	454099	4614767	178.14	13122124
	24-HR	2014	0.06250	NR445 Standard	454099	4614767	178.14	14020424
		2015	0.06909	Pass	454099	4614767	178.14	15122524
Cheaming		2016	0.04944		454000	4614800	175.37	16022324
Chromium		2012	0.00857		454099	4614767	178.14	1 YEAR\$
		2013	0.00769	No Standard	454596	4615041	178.19	1 YEARS
	ANNUAL	2014	0.00781	Identified	454596	4615041	178.19	1 YEARS
		2015	0.00830		454099	4614767	178.14	1 YEARS
		2016	0.00834	A A	454099	4614767	178.14	1 YEARS

Dispersion Modeling

Table 4-3 - Comparison of Predicted Maximum Metal Impacts to Identified Standards (cont'd)

Averaging Pollutant Period		Met Data Year	AERMOD Maximum Predicted Conc. (µg/m³)	Identified Standard and Source (Pass/Fail)	East (X) (m)	North (Y) (m)	Elevation (m)	Time yy/mm/dd/hh
		2012	0.00313		454092	4614916	177.28	12110724
		2013	0.00441	0.48 ug/m3	454092	4614916	177.28	13011024
	24-HR	2014	0.00373	NR445 Standard	454596	4614644	178.19	14010824
		2015	0.00390	Pass	454092	4614916	177.28	15022124
		2016	0.00302		454102	4614718	178.19	16031224
Cobalt		2012	0.00053		454099	4614767	178.14	1 YEARS
		2013	0.00048	0.10 ug/m3	454099	4614767	178.14	1 YEARS
	ANNUAL	2014	0.00048	NR445 Standard	454099	4614767	178.14	1 YEARS
		2015	0.00052	Pass	454099	4614767	178.14	1 YEARS
		2016	0.00053		454099	4614767	178.14	1 YEARS
		2012	0.17066		454596	4615041	178.19	12020224
		2013	0.20476	24.00 ug/m3	454596	4615041	178.19	13011524
	24-HR	2014	0.20416	NR445 Standard	454600	4615000	178.19	14010824
		2015	0.14940	Pass	454099	4614767	178.14	15122524
Cannas		2016	0.15274		454596	4615041	178.19	16012024
Copper		2012	0.02321		454596	4615041	178.19	1 YEARS
		2013	0.02527	No Standard	454596	4615041	178.19	1 YEARS
	ANNUAL	2014	0.02575	Identified	454596	4615041	178.19	1 YEARS
		2015	0.02346		454596	4615041	178.19	1 YEARS
		2016	0.02484		454596	4615041	178.19	1 YEARS
		2012	0.03414		454209	4615133	178.19	12101624
		2013	0.04017	2.40 ug/m3	454089	4614966	176.92	13011024
	24-HR	2014	0.03769	NR445 Standard	454209	4615133	178.19	14111024
		2015	0.03917	Pass	454126	4615088	178.19	15111724
Mana		2016	0.03444		454089	4614966	176.92	16081524
Mercury		2012	0.00262		454340	4615247	178.19	1 YEARS
		2013	0.00217	0.20 ug/m3	454340	4615247	178.19	1 YEARS
	ANNUAL	2014	0.00209	NR445 Standard	454251	4615156	178.19	1 YEARS
		2015	0.00232	Pass	454377	4615267	178.19	1 YEARS
		2016	0.00222		454303	4615228	178.19	1 YEARS

Table 4-3 - Comparison of Predicted Maximum Metal Impacts to Identified Standards (cont'd)

Pollutant	Met Max Averaging Data Predic		AERMOD Maximum Predicted Conc. (µg/m³)	Identified Standard and Source (Pass/Fail)	East (X) (m)	North (Y) (m)	Elevation (m)	Time yy/mm/dd/hh
		2012	0.02387		454596	4615041	178.19	12020224
	s []	2013	0.02857	No Standard	454092	4614916	177.28	13011024
	24-HR	2014	0.02597	Identified	454600	4615000	178.19	14010824
		2015	0.02490		454092	4614916	177.28	15022124
		2016	0.02076		454596	4615041	178.19	16012024
Nickel		2012	0.00345	0.09 ug/m3	454099	4614767	178.14	1 YEARS
		2013	0.00355	NR445 Pass	454596	4615041	178,19	1 YEARS
	ANNUAL	2014	0.00360	Unit Risk Factor	454596	4615041	178.19	1 YEARS
		2015	0.00336	0.0003 Inhalation Impact*	454099	4614767	178.14	1 YEARS
		2016	0.00348	9.36E-07 Pass	454596	4615041	178.19	1 YEARS
U		2012	0.11755		454089	4614966	176.92	12050124
		2013	0.16445	2.43 ug/m3	454089	4614966	176.92	13011024
	24-HR	2014	0.11429	NR445 Standard	454209	4615133	178.19	14111024
		2015	0.11922	Pass	454126	4615088	178.19	15111724
Dh haa		2016	0.12083	3	454126	4615088	178.19	16121624
Phosphorus	ANNUAL	2012	0.01193		454099	4614767	178.14	1 YEARS
		2013	0.01269	No Standard Identified	454596	4615041	178.19	1 YEAR\$
		2014	0.01268		454596	4615041	178.19	1 YEARS
		2015	0.01202		454596	4615041	178.19	1 YEARS
L		2016	0.01224		454596	4615041	178.19	1 YEARS
		2012	0.00463		454209	4615133	178.19	12101624
		2013	0.00545	4.80 ug/m3	454089	4614966	176.92	13011024
	24-HR	2014	0.00511	NR445 Standard	454209	4615133	178.19	14111024
		2015	0.00531	Pass	454126	4615088	178.19	15111724
Calanium	- 38.00	2016	0.00467	F4012-5	454089	4614966	176.92	16081524
Selenium		2012	0.00036		454340	4615247	178.19	1 YEARS
		2013	0.00030	No Standard	454340	4615247	178.19	1 YEARS
	ANNUAL	2014	0.00028	Identified	454251	4615156	178.19	1 YEARS
		2015	0.00032		454377	4615267	178.19	1 YEARS
		2016	0.00030		454303	4615228	178.19	1 YEARS

Table 4-3 - Comparison of Predicted Maximum Metal Impacts to Identified Standards (cont'd)

Pollutant	Averaging Period	Met Data Year	AERMOD Maximum Predicted Conc. (µg/m³)	Identified Standard and Source (Pass/Fail)	East (X) (m)	North (Y) (m)	Elevation (m)	Time yy/mm/dd/hh
		2012	0.00223	_	454600	4615000	178.19	12010724
		2013	0.00271	2.40 ug/m3	454596	4615041	178.19	13011524
	24-HR	2014	0.00280	NR445 Standard	454600	4615000	178.19	14010824
		2015	0.00180	Pass	454596	4615041	178.19	15123024
		2016	0.00196		454596	4615041	178.19	16012024
Silver		2012	0.00032		454596	4615041	178.19	1 YEARS
		2013	0.00035	No Standard	454596	4615041	178.19	1 YEARS
	ANNUAL	2014	0.00036	Identified	454596	4615041	178.19	1 YEARS
		2015	0.00032		454596	4615041	178.19	1 YEARS
Ì		2016	0.00034		454596	4615041	178.19	1 YEARS
	24-HR	2012	0.00022		454596	4615041	178.19	12020224
		2013	0.00027	No Standard	454596	4615041	178.19	13011524
		2014	0.00028	Identified	454600	4615000	178.19	14010824
1		2015	0.00018		454596	4615041	178.19	15123024
		2016	0.00020	<u> </u>	454596	4615041	178.19	16012024
Thallium		2012	0.00003		454596	4615041	178.19	1 YEARS
		2013	0.00004	No Standard	454596	4615041	178.19	1 YEARS
	ANNUAL	2014	0.00004	Identified	454596	4615041	178.19	1 YEARS
		2015	0,00003		454596	4615041	178.19	1 YEARS
		2016	0.00003		454596	4615041	178.19	1 YEARS
		2012	2.05738		454099	4614767	178.14	12012024
		2013	2.62604	No Standard	454092	4614916	177.28	13011024
	24-HR	2014	2.30367	Identified	454092	4614916	177.28	14010924
		2015	2.50381]	454099	4614767	178.14	15122524
_		2016	1.91458		454000	4614800	175.37	16022324
Zinc		2012	0.32888		454099	4614767	178.14	1 YEARS
		2013	0.29975	No Standard	454099	4614767	178.14	1 YEARS
	ANNUAL	2014	0.29897	Identified	454099	4614767	178.14	1 YEARS
		2015	0.32042		454099	4614767	178.14	1 YEARS
		2016	0.32752		454099	4614767	178.14	1 YEARS

a. There are currently no state or federal ambient air quality standards for these metals. Predicted impacts are compared to a unit risk of 1x10⁻⁶. Unit risk is calculated by multiplying predicted impact by the published unit risk factor from USEPA's IRIS database.

This Page Left Blank

Air Dispersion Modeling Report for Assessment of Metal Emission Impacts

General III, LLC - Chicago, Illinois

January 24, 2020

Appendix A

Ferrous Material Processing

Figures A-1 and A-2 contain TRADE SECRET information and have been REDACTED from this document.

This Page Left Blank

TRADE SECRET

Figure A-1 Redacted

Figure A-1 - Ferrous Processing System Flow Diagram
Air Dispersion Modeling Report

General III, LLC
11600 South Burley Avenue - Chicago, Illinois

TRADE SECRET

Figure A-2 Redacted

Figure A-2 - Ferrous Processing System Layout
Air Dispersion Modeling Report

General III, LLC 11600 South Burley Avenue - Chicago, Illinois

Table A-1a - Ferrous Material Processing - Metal Emissions in Active Hours (7 AM - 7 PM, Mon-Sat)

General III, LLC - Chicago, Illinois

Volume Source	Units	V-1	V-2	V-3	V-4	V-5	V-6	V-7	V-8	V-9	V-10	V-11	V-12	V-13	RTO
PM (Active)	lb/hr	1.161000	0.140000	0.140000	0.012000	0.188100	0.208700	0.145800	0.024400	0.041100	0.241200	0.199600	0.199600	0.567300	0.000000
Source of Metals Conc. Data	Sample No.	3	3	4	4	4	5	4	4	5	4	4	4	4	Nov 2019 Emission Test
	Sample	0.0000000	0.00000000	0.0000000	0.00000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	Data
Lead	lb/hr	0.000610	0.000074	0.000592	0.000051	0.000796	0.000985	0.000617	0.000103	0.000194	0.001020	0.000844	0.000844	0.002400	0.002766
Manganese	lb/hr	0.000846	0.000102	0.000309	0.000027	0.000416	0.000367	0.000322	0.000054	0.000072	0.000533	0.000441	0.000441	0.001254	0.003981
Mercury	lb/hr	0.000003	0.000000	0.000003	0.000000	0.000004	0.000002	0.000003	0.000000	0.000000	0.000005	0.000004	0.000004	0.000011	0.089273
Nickel	lb/hr	0.000123	0.000015	0.000043	0.000004	0.000057	0.000065	0.000044	0.000007	0.000013	0.000073	0.000061	0.000061	0.000172	0.006592
Antimony	lb/hr	0.000001	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000001	0.002247
Arsenic	lb/hr	0.000003	0.000000	0.000000	0.000000	0.000001	0.000001	0.000000	0.000000	0.000000	0.000001	0.000001	0.000001	0.000002	0.000794
Berylllum	lb/hr	0.000006	0.000001	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000001	0.000178
Cadmium	lb/hr	0.000006	0.000001	0.000007	0.000001	0.000009	0.000007	0.000007	0.000001	0.000001	0.000011	0.000010	0.000010	0.000027	0.000851
Chromium 4	lb/hr	0.000201	0.000024	0.000056	0.000005	0.000076	0.000089	0.000059	0.000010	0.000017	0.000097	0.000080	0.000080	0.000228	0.006903
Cobalt	lb/hr	0.000012	0.000001	0.000007	0.000001	0.000010	0.000012	0.000008	0.000001	0.000002	0.000013	0.000010	0.000010	0.000029	0.000213
Phosphorus	lb/hr	0.000313	0.000038	0.000117	0.000010	0.000157	0.000195	0.000121	0.000020	0.000038	0.000201	0.000166	0.000166	0.000473	0.242907
Selenium	lb/hr	0.000001	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000001	0.012093
Zinc	lb/hr	0.003576	0.000431	0.005222	0.000448	0.007016	0.007096	0.005438	0.000910	0.001397	0.008997	0.007445	0.007445	0.021160	0.053460
Barlum	lb/hr	0.000269	0.000032	0.000138	0.000012	0.000185	0.000143	0.000143	0.000024	0.000028	0.000237	0.000196	0.000196	0.000558	0.007682
Соррег	lb/hr	0.000976	0.000118	0.000294	0.000025	0.000395	0.000344	0.000306	0.000051	0.000068	0.000507	0.000419	0.000419	0.001191	0.007785
Silver	lb/hr	0.000013	0.000002	0.000002	0.000000	0.000002	0.000003	0.000002	0.000000	0.000000	0.000003	0.000002	0.000002	0.000007	0.002003
Thallium	lb/hr	0.000001	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000001	0.000239

a. Percentage of metal as % of total PM caculated based on measured metal emission rates from hammermill shredder controlled by cyclone and a roll media filter from June 2018.

b. Uncontrolled arganic compound emission rates, as presented in ISRI Title V Applicability Workbook, Table D-11F, adjusted for RTO with 98% destruction efficiency.

c. Chromium (metal) and compounds other than Chromium VI

Table A-1b - Ferrous Material Processing - Metal Emissions in Inactive Hours (7 PM - 7 AM, Mon-Sat, All Day, Sun)
General III, LLC - Chicago, Illinois

								.2.5	14.00		17.65	14.64	V-12	V-13	RTO
Volume Source	Units	V-1	V-2	V-3	V-4	V-5	V-6	V-7	V-8	V-9	V-10	V-11			KIO
PM (Inactive)	lb/hr	0.079400	•	-	0.001200	•	0.037100	•	-	0.000800		0.052900	0.052900		-
Source of Metals	Sample No.	3	3	4	4	4	5	4	4	5	4	4	4	4	1404 2023
Conc. Data	Sample Name	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	Emission Test
Lead	lb/hr	0.000042			0.000005		0.000175			0.000004		0.000224	0.000224		
Manganese	lb/hr	0.000058			0.000003		0.000065			0.000001		0.000117	0.000117		
Mercury	lb/hr	-										0.000001	0.000001		
Nickel	lb/hr	0.000008			-		0.000012			-		0.000016	0.000016		<u> </u>
Antimony	lb/hr				200		- 3		1	·					
Arsenic	lb/hr	-					12		}				-		
Beryllium	lb/hr				483		.00						•		<u> </u>
Cadmium	lb/hr				20		0.000001			-		0.000003	0.000003		L
Chromium ^c	lb/hr	0.000014			-		0.000016					0.000021	0.000021		<u> </u>
Cobalt	lb/hr	0.000001			-		0.000002			-		0.000003	0.000003		
Phosphorus	lb/hr	0.000021			0.000001		0.000035		<u> </u>	0.000001		0.000044	0.000044		
Selenium	lb/hr												-		
Zinc	fb/hr	0.000245			0.000045	ĺ	0.001261			0.000027		0.001973	0.001973		
Barium	lb/hr	0.000018			0.000001		0.000025			0.000001		0.000052	0.000052		
Copper	lb/hr	0.000067			0.000003		0.000061			0.000001		0.000111	0.000111		
Silver	lb/hr	0.000001			-	Ī				-		0.000001	0.000001		
Thallium	1b/hr	- 3					· -			·					

a. Percentage of metal as % of total PM caculated based on measured metal emission rates from hammermill shredder controlled by cyclone and a roll media filter from June 2018.

b. Uncontrolled organic compound emission rates, as presented in ISRI Title V Applicability Workbook, Table D-11F, adjusted for RTO with 93% destruction efficiency.

c. Chromium (metal) and compounds other than Chromium VI

Table A-2 - Ferrous Material Processing - Particulate Emissions General III, LLC - Chicago, Illinois

					Transfer Point	Transfer	Type of	Dust Pickup	Dust		Material Throughp		
				Moisture	Location	Point	Transfer	Capture	Control	Emission	ut	PM	Filterable PN
ow l	F	quipment Generating Emissions	Material	> 1.5%	(Inside /	Controlled	Point	Eff.	Eff.	Factor	Rates	Emissions	Emissions
F	ID# I	Description .	Conveyed	Y/N	Outside)	(Y/N)	Control	(%)	(%)	Source	tph	lb/ton	1b/hr
55	- "	Truck Dumping of Raw Feed	Unprepare	5.4 *2	Outside	N	-	0%	0%	Drop	300	0.00127 °	0.3797
		-	d										
56		Raw Feed from Ground after Truck	Unprepare	5.4 12	Outside	N		0%	0%	Drop	300	0.00127 °	0.3797
59	Magnet/	Drop Raw Scrap to Infeed Conveyor	Unprepare	N **	Outside	N	-	NA	0%	D	500	0.00020 f	0.1022
	Clam		d			<u></u>	<u> </u>						
								•	Total Filter	able PM E	missions		0.8616
37	E-01	Drop Raw Scrap onto Shredder Feed Chute	Unprepare	γ 🕶	Outside	N	-	NA	0%	A	500	0.00014 d	0.0700
40	E-05	Shredder Under Mill Vibratory Conveyor	Shred	Υº	Inside	N	-	NA	0%	Α	500	0.00014 d	0.0700
79	E-02	Shredder Bottom Discharge	Shred	Yo	shredder	0		0%	0%	A	500		aptured and
-				V 0			Comments of the	000	. 004		500		
81	E-02	Shredder Chute	Unprepare	Y		1	- 1	U%	0%	A	500		COLUMN PROPERTY AND ADDRESS OF THE PARTY AND A
_					anissons				Total Filter	able PM F	missions	TO STORE OF STREET	0.1400
				.001					TOGET THE	HOTE I WILL	11113310113		0.2400
4	C-001	Shredded Material Transfer Conveyor	Shred	Y.º	Outside	N		NA	0%	A	500	0.00014 d	0.0700
5	C-002	Shredded Material Transfer Conveyor	Shred	Y º	Outside	N	-	NA	0%	Α	1	0.00014 d	0.0001
6	C-002	Mat'l Not Removed by Poker Picker	Shred	Y 0	Outside	N	-	NA	0%	Α	499	0.00014 d	0.0699
								<u> </u>	Total Filte	able PM E	missions		0.1400
58	34	Poker Loadout	Pokers	N ⁰	Outside	N		0%	0%	D	1	0.00020 1	0.0002
62	E-06	Poker Picker Chute to Stockoile	Shred	1.5% a1	Outside	N	-	0%	0%	Drop	1	0.00761 °	0.0076
									Total Filter	rable PM E	missions		0.0078
5:5:5:5:5:5:5:5:5:5:5:5:5:5:5:5:5:5:5:	7 0 9 9 11	6	Truck Dumping of Raw Feed Raw Feed from Ground after Truck Dumping Drop Raw Scrap to Infeed Conveyor Clam Te-01 Drop Raw Scrap onto Shredder Feed Chute Chute Shredder Under Mill Vibratory Conveyor Shredder Chute Chute Chute Shredder Chute	Truck Dumping of Raw Feed Unprepare d Raw Feed from Ground after Truck Unprepare d Magnet/ Drop Raw Scrap to Infeed Conveyor Unprepare d To E-01 Drop Raw Scrap onto Shredder Feed Chute December 1 E-02 Shredder Under Mill Vibratory Conveyor Shred Shredder Chute Unprepare d Drop Raw Scrap onto Shredder Feed Unprepare d Drop Raw Scrap onto Shredder Feed Unprepare d Drop Raw Scrap onto Shredder Feed Unprepare d Drop Raw Scrap onto Shredder Feed Unprepare d Drop Raw Scrap onto Shredder Feed Unprepare d Drop Raw Scrap onto Shredder Feed Unprepare d Drop Raw Scrap onto Shredder Feed Unprepare d Drop Raw Scrap onto Shredder Feed Unprepare d Drop Raw Scrap onto Shredder Feed Unprepare d Drop Raw Scrap onto Shredder Feed Unprepare d Drop Raw Scrap onto Shredder Feed Unprepare d Drop Raw Scrap onto Shredder Feed Unprepare d Drop Raw Scrap to Infeed Conveyor Shred Drop Raw Scrap to Inf	Truck Dumping of Raw Feed Unprepare d S.4 **2 d Unprepare d Unprepare d Unprepare d Unprepare Dumping S.4 **2	Truck Dumping of Raw Feed Unprepare d Unpr	Truck Dumping of Raw Feed Unprepare d Unpr	Truck Dumping of Raw Feed Unprepare description of Control of Dumping of Raw Feed from Ground after Truck Unprepare description of Dumping description of Drop Raw Scrap to Infeed Conveyor Unprepare description of Drop Raw Scrap onto Shredder Feed Unprepare description of Chute desc	Truck Dumping of Raw Feed Unprepare dumprepare dumprepare dumprepare dumping description dumping dumping dumping dumping dumping dumprepare dum	Truck Dumping of Raw Feed Unprepare d Unpr	Truck Dumping of Raw Feed Unprepare de Unpre	Truck Dumping of Raw Feed Unprepare S.4 *** Outside N - 0% 0% Drop 300	Truck Dumping of Raw Feed

Table A-2 - Ferrous Material Processing - Particulate Emissions
General III. LLC - Chicago, Illinois

	1	2	3	6	7 8 1	9 Transfer	10	11	12 Dust	13	18	19 Material	. 22 #	24
Volume Source irouping	Row No.	ID#	Equipment Generating Emissions Description	Material Conveyed	Moisture > 1.5% Y/N	Point Location (Inside / Outside)	Transfer Point Controlled (Y/N)	Type of Transfer Point Control	Pickup Capture Eff. (%)	Dust Control Eff. (%)	Emission Factor Source	Throughp ut Rates tph	PM Emissions lb/ton	Filterable PN Emissions lb/hr
V-5	7	C-003	Ferrous Transfer Conveyor	Residue	Y-0	Outside	N	- '	NA	0%	A	130	0.00014 d	0.0182
V-5	8	C-003	Ferrous Transfer Conveyor	Ferrous	γo	Outside	N	-	NA	0%	Α	369	0.00014 d	0.0517
V-5	31	C-032	ASR Transfer Conveyor	Residue	٧º	Outside	N	-	NA	0%	Α	4	0.00014 d	0.0006
V-5	32	C-033	Magnetic Material	Shred	Y º	Outside	N	-	NA	0%	Α	5	0.00014 d	0.0007
V-5	33	C-033	ASR Not Removed by Magnet E-12	Residue	γ @:	Outside	N	-	NA	0%	A	129	0.00014 d	0.0181
V-5	34	C-034	Ferrous Transfer Conveyor	Shred	Υº	Outside	N	-	NA	0%	Α	5	0.00014 d	0.0007
V-5	35	C-035	Ferrous Transfer Conveyor	Shred	Υ 0	Outside	N	-	NA	0%	A	5	0.00014 d	0.0007
V-5	36	C-036	ASR Transfer Conveyor	Residue	Υº	Outside	N	-	NA	0%	Α	129	0.00014 d	0.0181
V-5	41	E-07	Magnet Discharge to Chute	Shred	Υ٥	Outside	N	-	NA	0%	Α	187	0.00014 d	0.0262
V-5	42	E-07	Magnet Discharge to Chute	Shred	۷٥	Outside	N	-	NA	0%	Α	187	0.00014 ^d	0.0262
V-5	49	E-12	Ferrous Removed by Magnet	Ferrous	Υº	Outside	N		NA	0%	Α	5	0.00014 d	0.0007
V-5	53	E-7	ASR Not Removed by Magnet	Shred	γ 23	Outside	N		NA	0%	Α	2	0.00014 d	0.0003
V-5	54	E-7	Ferrous Removed by Magnet E-7	Residue	γ ο	Outside	N	-	NA	0%	А	185	0.00014 d	0.0259
			J.,	<u> </u>		 _				Total Filte	rable PM E	missions	<u></u> <u></u>	0.1881
V-6	61	C-037	ASR Transfer Conveyor to Stockpile	Residue	10 a3	Outside	N	-	0%	0%	Drop	129	0.00053 °	0.0689

Table A-2 - Ferrous Material Processing - Particulate Emissions General III, LLC - Chicago, Illinois

1	2	3	6	7 _ 8	9	10	- 11	12	13	18	19	22 #	24
Row		<u> </u>	Material Conveyed	Moisture > 1.5% Y/N	Point Location (Inside /	Transfer Point Controlled (Y/N)	Type of Transfer Point Control	Pickup Capture Eff.	Dust Control Eff. (%)	Emission Factor Source	Material i Throughp ut Rates tph	PM Emissions lb/ton	Filterable PM Emissions Ib/hr
9	C-006	Ferrous Transfer Conveyor	Shred	Yº	Outside	Y	Z-Box Air	100%	100%	Α	183	0.00014	0.0000
10	C-007	Ferrous Transfer Conveyor	Shred	Υº	Outside	Y	Z-Box Air	100%	100%	A	183	0.00014	0.0000
21	C-022	Ferrous Transfer Conveyor	Shred	Y 82	Outside	N		NA	0%	A	55	0.00014	0.0077
22	C-023	Ferrous Transfer Conveyor	Shred	Y #2	Outside	N		NA	0%	A	55	0.00014	0.0077
23	C-024	Non-metallic transfer conveyor	Ferrous	Υº	Outside	N		NA	0%	A	4	0.00014	0.0006
30	C-031	ASR Transfer Conveyor	Residue	Yº	Outside	N	-	NA	0%	Α	4	0.00014	0.0006
38	E-015	Z-Box Separator Cyclone	Ferrous	A o	Outside	N	•	NA	0%	A	2	0.00014	0.0003
39	E-016	Z-Box Separator Cyclone	Ferrous	٧٥	Outside	N	-	NA	0%	Α	2	0.00014	0.0003
43	E-08	ASR Not Removed by Magnet	Shred	Υo	Outside	N	-	NA	0%	A	2	0.00014	0.0003
44	E-08	Ferrous Removed by Magnet E-7	Residue	Υº	Outside	N	-	NA	0%	A	185	0.00014	0.0259
45	E-10	Ferrous Removed by Magnet	Shred	Y 22	Outside	N	-	NA	0%	Α	128	0.00014	0.0179
46	E-11	Ferrous Removed by Magnet	Shred	γ s2	Outside	N		NA	0%	A	128	0.00014	0.0179
47	E-11	Ferrous Removed by Magnet	Shred	Y 22	Outside	N		NA	0%	A	55	0.00014	0.0077
48	E-11	Ferrous Removed by Magnet	Shred	Y 42	Outside	N	•	NA	0%	Α	55	0.00014	0.0077
64	SC-001	Supplemental Conveyor	Shred	Α.	Outside	N	-	NA	0%	Α	183	0.00014	0.0256
66	SC-002	Supplemental Conveyor	Shred	Υº	Outside	N	-	NA	0%	Α	183	0.00014	0.0256
70	C-004	Ferrous Transfer Conveyor	Shred	Υo	Outside	N		NA	0%	А	185		ured by inward
72	C-005	Ferrous Transfer Conveyor	Shred	A o	Outside	N	333	NA	0%	Α.	185		ured by inward
	No. 9 10 21 22 23 30 38 39 43 44 45 46 47 48 64 70	No. ID# 9 C-006 10 C-007 21 C-022 22 C-023 23 C-024 30 C-031 38 E-015 39 E-016 43 E-08 44 E-08 45 E-10 46 E-11 47 E-11 48 E-11 64 SC-001 66 SC-002 70 C-004	No. ID # Description 9 C-006 Ferrous Transfer Conveyor 10 C-007 Ferrous Transfer Conveyor 21 C-022 Ferrous Transfer Conveyor 22 C-023 Ferrous Transfer Conveyor 23 C-024 Non-metallic transfer conveyor 30 C-031 ASR Transfer Conveyor 38 E-015 Z-Box Separator Cyclone 39 E-016 Z-Box Separator Cyclone 43 E-08 ASR Not Removed by Magnet 44 E-08 Ferrous Removed by Magnet 45 E-10 Ferrous Removed by Magnet 46 E-11 Ferrous Removed by Magnet 47 E-11 Ferrous Removed by Magnet 48 E-11 Ferrous Removed by Magnet 48 E-11 Ferrous Removed by Magnet 64 SC-001 Supplemental Conveyor 66 SC-002 Supplemental Conveyor	No.ID #DescriptionConveyed9C-006Ferrous Transfer ConveyorShred10C-007Ferrous Transfer ConveyorShred21C-022Ferrous Transfer ConveyorShred22C-023Ferrous Transfer ConveyorShred23C-024Non-metallic transfer conveyorFerrous30C-031ASR Transfer ConveyorResidue38E-015Z-Box Separator CycloneFerrous39E-016Z-Box Separator CycloneFerrous43E-08ASR Not Removed by MagnetShred44E-08Ferrous Removed by MagnetShred45E-10Ferrous Removed by MagnetShred46E-11Ferrous Removed by MagnetShred47E-11Ferrous Removed by MagnetShred48E-11Ferrous Removed by MagnetShred48E-11Ferrous Removed by MagnetShred64SC-001Supplemental ConveyorShred70C-004Ferrous Transfer ConveyorShred	Row No.Equipment Generating Emissions DescriptionMaterial Conveyed> 1.5% Y/N9C-006Ferrous Transfer ConveyorShredY °10C-007Ferrous Transfer ConveyorShredY °21C-022Ferrous Transfer ConveyorShredY °22C-023Ferrous Transfer ConveyorShredY °23C-024Non-metallic transfer conveyorFerrousY °30C-031ASR Transfer ConveyorResidueY °38E-015Z-Box Separator CycloneFerrousY °39E-016Z-Box Separator CycloneFerrousY °43E-08ASR Not Removed by MagnetShredY °44E-08Ferrous Removed by MagnetShredY °45E-10Ferrous Removed by MagnetShredY °46E-11Ferrous Removed by MagnetShredY °47E-11Ferrous Removed by MagnetShredY °48E-11Ferrous Removed by MagnetShredY °64SC-001Supplemental ConveyorShredY °70C-004Ferrous Transfer ConveyorShredY °	Row Equipment Generating Emissions Material Conveyed > 1.5% (Inside / Outside) 9 C-006 Ferrous Transfer Conveyor Shred Y0 Outside 10 C-007 Ferrous Transfer Conveyor Shred Y0 Outside 21 C-022 Ferrous Transfer Conveyor Shred Y0 Outside 22 C-023 Ferrous Transfer Conveyor Shred Y0 Outside 23 C-024 Non-metallic transfer conveyor Ferrous Y0 Outside 30 C-031 ASR Transfer Conveyor Residue Y0 Outside 38 E-015 Z-Box Separator Cyclone Ferrous Y0 Outside 39 E-016 Z-Box Separator Cyclone Ferrous Y0 Outside 43 E-08 ASR Not Removed by Magnet Shred Y0 Outside 44 E-08 Ferrous Removed by Magnet Shred Y0 Outside 45 E-10 Ferrous Removed by Magnet Shred Y0 Outside 46 E-11 Ferrous Removed by Magnet Shred Y0 Outside 47 E-11 Ferrous Removed by Magnet Shred Y0 Outside 48 E-11 Ferrous Removed by Magnet Shred Y0 Outside 49 E-11 Ferrous Removed by Magnet Shred Y0 Outside 40 SC-001 Supplemental Conveyor Shred Y0 Outside 41 Ferrous Removed by Magnet Shred Y0 Outside 42 SC-001 Supplemental Conveyor Shred Y0 Outside 43 SC-002 Supplemental Conveyor Shred Y0 Outside	Row No. ID # Description Conveyed P/N Outside Point Controlled (ry/N) 9 C-006 Ferrous Transfer Conveyor Shred Y 0 Outside Y 10 C-007 Ferrous Transfer Conveyor Shred Y 0 Outside Y 21 C-022 Ferrous Transfer Conveyor Shred Y 0 Outside N 22 C-023 Ferrous Transfer Conveyor Shred Y 0 Outside N 23 C-024 Non-metallic transfer conveyor Ferrous Y 0 Outside N 30 C-031 ASR Transfer Conveyor Residue Y 0 Outside N 38 E-015 Z-Box Separator Cyclone Ferrous Y 0 Outside N 39 E-016 Z-Box Separator Cyclone Ferrous Y 0 Outside N 43 E-08 ASR Not Removed by Magnet Shred Y 0 Outside N 44 E-08 Ferrous Removed by Magnet Shred Y 0 Outside N 45 E-10 Ferrous Removed by Magnet Shred Y 0 Outside N 46 E-11 Ferrous Removed by Magnet Shred Y 0 Outside N 47 E-11 Ferrous Removed by Magnet Shred Y 0 Outside N 48 E-11 Ferrous Removed by Magnet Shred Y 0 Outside N 49 Outside N 40 Outside N 50 Outside N	Row No. ID # Description Conveyed Y/N Outside / Conveyed Y/N Outside / Controlled (try) Con	Row Equipment Generating Emissions Material Sequence Shred	Row Equipment Generating Emissions Material No. ID # Dust Control Conveyed Y/N Control	Row Row	Row Equipment Generating Emissions Material Conveyed Vin Point (Inside / Vin Vin Control Conveyed Vin Point (Inside / Vin Vin Control Conveyed Vin Point (Inside / Vin Vin Control Conveyed Vin Point (Inside / Vin Vin Control Conveyed Vin Point (Inside / Vin Vin Control Conveyed Vin Point (Inside / Vin Vin Control Control Conveyed Vin Point (Inside / Vin Control Control Conveyed Vin Point (Inside / Vin Control	Row Equipment Generating Emissions Material Location (Inside

Table A-2 - Ferrous Material Processing - Particulate Emissions General III. LLC - Chicago. Illinois

	1	2	3	6	7 8	9	10	11	12	13	18	19	22 #	. 24
/olume Source rouping	Row No.	ID#	equipment Generating Emissions Description	Material Conveyed	Moisture > 1.5% Y/N	Point Location (Inside / Outside)	Transfer Point Controlled (Y/N)	Type of Transfer Point Control	Dust Pickup Capture Eff. (%)	Dust Control Eff. (%)	Emission Factor Source	Material Throughp ut Rates toh	PM Emissions lb/ton	Filterable PN Emissions lb/hr
ii Ouping	24	C-025	Non-metallic not removed by magnet E-	Ferrous	1314 1314	Outside	N	Condo	NA NA	0%	A	2	0.00014 d	0.0003
V-8	4	C-025	13	renous	1.70	Outside	"		NA	076	^		0.00014	0.0003
V-8	25	C-025	material removed by first magnet to second magnet	Ferrous	γ 22	Outside	N	1977	, NA	0%	A	1	0.00014 d	0.0001
V-8	26	Ç-026	Ferrous Transfer Conveyor	Ferrous	λπ	0	0	•	0%	0%	A	1	0.00014 d	0.0001
V-8	27	C-027	Ferrous Transfer Conveyor	Ferrous	A ss	Outside	N		NA	0%	Α	1	0.00014 d	0.0001
V-8	28	C-028	Non-metallic Transfer Conveyor	Ferrous	Y a	Outside	N		NA	0%	Α	1	0.00014 d	0.0001
V-8	29	C-029	Non-metallic Transfer Conveyor	Ferrous	Y.®	0	0	•	0%	0%	Α	1	0.00014 d	0.0001
V-8	50	E-13	Ferrous Removed by E-13	Ferrous	γ =2	Outside	N		NA	0%	Α	1	0.00014 d	0.0001
V-8	51	E-13	Ferrous Removed by E-13	Ferrous	Υo	Outside	N	·	NA	0%	Α	1	0.00014 d	0.0001
V-8	52	E-14	Mat'l Not removed by Separator	Ferrous	Υº	Outside	N	-	NA	0%	A	0.25	0.00014 ^d	0.0000
V-8	60	C-030	Mat'l not Removed by Separator	Ferrous	1.5 a1	Outside	Y	Cover	0%	0%	Drop	2.25	0.00761 °	0.0171
V-8	63	E-14	Final Discharge from Mat'l Separator	Ferrous	1.5 *1	Outside	N	-	0%	0%	Drop	0.75	0.00761 °	0.0057
V-8	65	SC-009	Supplemental Conveyor	Ferrous	Υo	Outside	N	-	NA	0%	Α	2	0.00014 ^d	0.0003
V-8	67	SC-010	Supplemental Conveyor	Ferrous	ΥD	Outside	N	•	NA	0%	A	2	0.00014 ^d	0.0003
						2 20-00-000				Total Fifter	able PM E	missions		0.0244
V-9	57	-	Non-metallic Loadout	Non- metallic	N º	Outside	N	-	0%	0%	D	187	0.00020 f	0.0382

Table A-2 - Ferrous Material Processing - Particulate Emissions General III, LLC - Chicago, Illinois

	1	2	3	6	7 _8	9	10	11	12	13	18	19	22 #	24
/olume Source rouping	Row No.	ID#	quipment Generating Emissions Description	Material Conveved	Moisture > 1.5% Y/N	Transfer Point Location (Inside / Outside)	Transfer Point Controlled (Y/N)	Type of Transfer Point Control	Dust Pickup Capture Eff. (%)	Dust Control Eff. (%)	Emission Factor Source	Material Throughp ut Rates tph	PM Emissions lb/ton	Filterable PI Emissions lb/hr
V-10	11	C-008	Ferrous Transfer Conveyor	Shred	γ a2	Outside	N	-	NA.	0%	Α	56	0.00014 d	0.0078
V-10	12	C-009	Ferrous Transfer Conveyor	Shred	γ a2	Outside	N	-	NA	0%	A	128	0.00014 ^d	0.0179
V-10	13	C-010	Ferrous Transfer Conveyor	Shred	Y =2	Outside	N		NA	0%	Α	128	0.00014 d	0.017
V-10	14	C-011	Ferrous Transfer Conveyor	Shred	γ s2	Outside	N		NA	0%	A	55	0.00014 d	0.007
V-10	15	C-012	Ferrous Transfer Conveyor	Shred	γ 22	Outside	N	-	NA	0%	Α	56	0.00014 d	0.0078
V-10	16	C-013	Ferrous Transfer Conveyor	Shred	γ =2	Outside	N	-	NA	0%	А	128	0.00014 d	0.017
V-10	17	C-014	Ferrous Transfer Conveyor	Shred	Y a2	Outside	N	-	NA	0%	Α	128	0.00014 d	0.017
V-10	18	C-015	Ferrous Transfer Conveyor	Shred	Y #2	Outside	N	-	NA	0%	A	55	0.00014 d	0.007
V-10	19	C-016	Ferrous Transfer Conveyor	Shred	γ a2	Outside	N	-	NA	0%	A	367	0.00014 d	0.051
V-10	20	C-020	Ferrous Transfer Conveyor	Shred	Y 22	Outside	N	-	NA	0%	А	367	0.00014 4	0.051
V-10	68	SC-005	Supplemental Conveyor	Shred	Yº	Outside	N	-	NA	0%	A	128	0.00014 d	0.017
V-10	69	SC-008	Supplemental Conveyor	Shred	Yº	Outside	N	-	NA	0%	A	128	0.00014 d	0.017
V-10	71	C-014	Ferrous Transfer Conveyor	Shred	γ 12	Outside	N		NA	0%	A	367	Alternate to 0 Emissions from	-014 to C-016 100% of mate
V-10	73	C-012	Ferrous Transfer Conveyor	Shred	γ a2	Outside	N		NA	0%	A	367	Alternate to 6	-012 to C-016 100% of mate
V-10	74	C-015	Ferrous Transfer Conveyor	Shred	γ s2	Outside	N	in the	NA	0%	A	367	Alternate to 6	-015 to C-016 100% of mate
V-10	75	C-019	Ferrous Transfer Conveyor	Shred	γ ε2	Outside	N		NA	0%	A	367	Alternate to C Emissions from	STATE OF THE PARTY
V-10	76	C-013	Ferrous Transfer Conveyor	Shred	Y 22	Outside	N		NA	0%	A	367	Alternate to Emissions from	C-013 to C-016 100% of mate
V-10	77	C-017	Ferrous Transfer Conveyor	Shred	λ 25	Outside	N		NA	0%	A	367	Alternate to C	020/C-021 or C-018.
V-10	78	C-020	Ferrous Transfer Conveyor	Shred	γ a2	Outside	N		NA	0%	A	367	Alternate to Emissions from	0-017 to C-018 100% of mate
							- T. (*)		002	Total Filte	rable PM (missions		0.24

Table A-2 - Ferrous Material Processing - Particulate Emissions General III LLC - Chicago, Illinois

1	2	3	6	7 8	9	10	11	12	13	18	19	22 #	24
Row No.	E ID#	quipment Generating Emissions Description	Material Conveyed	Moisture > 1.5% Y/N	Point Location (Inside / Outside)	Transfer Point Controlled (Y/N)	Type of Transfer Point Control	Pickup Capture Eff. (%)	Dust Control Eff. (%)	Emission Factor Source	Throughp ut Rates tph	PM Emissions lb/ton	Filterable PIV Emissions lb/hr
82	C-018	Ferrous Transfer Conveyor to stockpile	Shred	5.4% *2	Outside	N		NA	0%	Drop	367	Alternate to C- Stockpile or Ba	021 to S Ferrous arge 2 to Barge.
80	C-21	Ferrous Transfer Conveyor to stockpile	Shred	5.4% *2	Outside	N		NA	0%	Drop	367	Alternate to C- Stockpile or Ba	018 to N Ferrous arge 2 to Barge.
1	Barge 1	Ferrous Transfer Conveyor	Shred	γ a2	Outside	N	-	NA	0%	Α	367	0.00014 4	0.0514
2	Barge 2	Ferrous Transfer Conveyor	Shred	γ 42	Outside	N	-	NA	0%	Α	367	0.00014 d	0.0514
			Shred	5.4% 42	Outside	N	-	0%	0%	Drop	367	0.00127 4	0.4645
	80	No. ID # 82 C-018 80 C-21 1 Barge 1	No. ID # Description 82 C-018 Ferrous Transfer Conveyor to stockpile 80 C-21 Ferrous Transfer Conveyor to stockpile 1 Barge 1 Ferrous Transfer Conveyor	No. ID # Description Conveyed 82 C-018 Ferrous Transfer Conveyor Shred 80 C-21 Ferrous Transfer Conveyor Shred 1 Barge 1 Ferrous Transfer Conveyor Shred	Row No. ID # Description Conveyed Y/N 82 C-018 Ferrous Transfer Conveyor Shred 5.4% *2 80 C-21 Ferrous Transfer Conveyor to stockpile 1 Barge 1 Ferrous Transfer Conveyor Shred Y *2	Equipment Generating Emissions Material No. ID # Description Conveyed Shred S.4% *2 Outside	Row Equipment Generating Emissions Material Location Point No. ID # Description Conveyed Y/N Controlled (Y/N) 82 C-018 Ferrous Transfer Conveyor Shred 5.4% *2 Outside N 80 C-21 Ferrous Transfer Conveyor Shred 5.4% *2 Outside N 1 Barge 1 Ferrous Transfer Conveyor Shred Y *2 Outside N	Row Equipment Generating Emissions Material Conveyed Y/N Controlled (Y/N) Control 82 C-018 Ferrous Transfer Conveyor Shred 5.4% *2 Outside N 80 C-21 Ferrous Transfer Conveyor to stockpile 1 Barge 1 Ferrous Transfer Conveyor Shred Y A2 Outside N 1 Barge 1 Ferrous Transfer Conveyor Shred Y A2 Outside N 1 Barge 1 Ferrous Transfer Conveyor Shred Y A2 Outside N 1 Outside N	Row Equipment Generating Emissions Material No. ID # Description Conveyed Y/N Outside N - NA 82 C-018 Ferrous Transfer Conveyor to stockpile 80 C-21 Ferrous Transfer Conveyor Shred S.4% *2 Outside N - NA 1 Barge 1 Ferrous Transfer Conveyor Shred Y *2 Outside N - NA	Row Equipment Generating Emissions Material > 1.5% (Inside / Controlled No. ID # Description Conveyed Y/N Outside) (I/N) Control (%) (%) (%) R2 C-018 Ferrous Transfer Conveyor to stockpile Shred S.4% *2 Outside N - NA 0% 80 C-21 Ferrous Transfer Conveyor Shred S.4% *2 Outside N - NA 0% 80 C-21 Ferrous Transfer Conveyor Shred S.4% *2 Outside N - NA 0% 80 C-21 Ferrous Transfer Conveyor Shred S.4% *2 Outside N - NA 0% 80 C-21 Ferrous Transfer Conveyor Shred S.4% *2 Outside N - NA 0% 80 C-21 Ferrous Transfer Conveyor Shred S.4% *2 Outside N - NA 0% 80 C-21 Ferrous Transfer Conveyor Shred S.4% *2 Outside N - NA 0% 80 C-21 Ferrous Transfer Conveyor Shred S.4% *2 Outside N - NA 0% 80 C-21 Ferrous Transfer Conveyor Shred S.4% *2 Outside N - NA 0% 80 C-21 Ferrous Transfer Conveyor Shred Y *2 Outside N - NA 0% 80 C-21 Ferrous Transfer Conveyor Shred Y *2 Outside N - NA 0% 80 C-21 Ferrous Transfer Conveyor Shred Y *2 Outside N - NA 0% 80 C-21 Ferrous Transfer Conveyor Shred Y *2 Outside N - NA 0% 80 C-21 Ferrous Transfer Conveyor Shred Y *2 Outside N - NA 0% 80 C-21 Ferrous Transfer Conveyor Shred Y *2 Outside N - NA 0% 80 C-21 Ferrous Transfer Conveyor Shred Y *2 Outside N - NA 0% 80 C-21 Ferrous Transfer Conveyor Shred Y *2 Outside N - NA 0% 80 C-21 Ferrous Transfer Conveyor Shred Y *2 Outside N - NA 0% 80 C-21 Ferrous Transfer Conveyor Shred Y *2 Outside N - NA 0% 80 C-21 Ferrous Transfer Conveyor Shred Y *2 Outside N - NA 0% 80 C-21 Ferrous Transfer Conveyor Shred Y *2 Outside N - NA 0% 80 C-21 Ferrous Transfer Conveyor Shred Y *2 Outside N - NA 0% 80 C-21 Ferrous Transfer Conveyor Shred Y *2 Outside N - NA 0% 80 C-21 Ferrous Transfer Conveyor Shred Y *2 Outside N - NA 0% 80 C-21 Ferrous Transfer Conveyor Shred Y *2 Outside N - NA 0% 80 C-21 Ferrous Transfer Conveyor Shred Y *2 Outside N - NA 0% 80 C-21 Ferrous Transfer Conveyor Shred Y *2 Outside N - NA 0% 80 C-21 Ferrous Transfer Conveyor Shred Y *2 Outside N - NA 0% 80 C-21 Ferrous	Row Equipment Generating Emissions Material > 1.5% (Inside / Controlled Point Controlled Point Controlled (Y/N) Controlled (Y	Row Equipment Generating Emissions Material > 1.5% (Inside / Controlled Point Control Eff. (%) Source tph Shred S.4% 2 Outside N - NA 0% Drop 367 Barge 1 Ferrous Transfer Conveyor Shred Shr	Row Equipment Generating Emissions Material > 1.5% (Inside / Controlled Controlled (Iv/N) Control (%) Source tph Ib/ton 1b/ton 1b/ton 1costockpile Row Equipment Generating Emissions Material > 1.5% (Inside / Controlled (Iv/N) Control (%) Source tph Ib/ton 1b/ton 1b/ton 1costockpile Row Equipment Generating Emissions Material > 1.5% (Inside / Controlled (Inside / Controlled (Iv/N) Control (%) Source tph Ib/ton 1b/

- a1 Controlled particulate matter emission factors from AP-42, Table 11.19.2-2 for conveying used based on conservative assumption that moisture content is greater than 1.5% due to water added in the shredder.
- a2 Material moisture was assumed to be the mean of material moisture contents identified in AP42, Table 13.2.4-1.
- a3 Northern Metals (Minneapolis, MN) found moisture content of ASR in the range of 20 to 30%; from MPCA Construction Permit Technical Support Document for Northern Metals in Becker MN, Stream COMG-2.

 Calculations for the ASR stacking conveyor drop point conservatively assumes 10% moisture.
- a4 Moisture content of raw materials is assumed to be >1.5% based on application of water from water atomization cannons used for fugitive dust control.
- b Uncontrolled emission factor calculated according to material drop equation in AP-42, Section 13.2.4.3. Emissions calculated with control Eff. factor included for source being inside of a building.
- c Uncontrolled emission factor calculated according to material drop equation in AP-42, Section 13.2.4.3.
- d Uncontrolled particulate matter emission factors from AP-42, Table 11.19.2-2 for conveying. If moisture content is greater than 1.5% by weight, controlled emission factors are used.
- e Uncontrolled particulate matter emission factors from AP-42, Table 11.19.2-2 for screening. If moisture content is greater than 1.5% by weight, controlled emission factors are used.
- f Uncontrolled particulate matter emission factors from AP-42, Table 11.19.2-2 for truck loading of curshed stone. Use uncontrolled emission factor to be conservative.
- Particulate matter emission factors from AP-42, Table 11.19.2-2 for conveying. For sources controlled by a dust collector the emission factor is multiplied by the identified capture Eff. and then by the quantity of 1-control Eff..

 Dust collectors vent back into to the building. These emission calculations conservatively assume dust collector emission are vented to the atmosphere.
- h Metal HAPs as percent of total PM measured at the discharge of the existing roll media filter in June 2018.

Table A-3 Ferrous Plant Stockpile - Particulate Emissions General III, LLC - Chicago, Illinois

Volume Source Grouping	Stock Pile	Stock Pile Area Acres	Control Factor ^b	Inactive Emissions ^{a,d} PM Ib/hr	Active Emissions ^{4,4} PM lb/hr
V-1	Raw Material Truck Dumping (Drop 1)	0.3630	1.00	0.0529	0.1996
V-1	Raw Material Movement from Truck Dumping Area to Stockpile (Drop 2)	0.1815	1.00	0.0265	0.0998
	·		Total	0.0794	0.2994
V-4	Poker North	0.0115	0.33	0.0006	0.0021
V-4	Poker South	0.0115	0.33	0.0006	0.0021
			Total	0.0012	0.0042
V-6	ASR	0.2541	1.00	0.0371	0.1398
V-9	Fluff (Bin)	0.0161	0.33	0.0008	0.0029
V-11	Ferrous North	0.3630	1.00	0.0529	0.1996
V-12	Ferrous South	0.3630	1.00	0.0529	0.1996

- a. Stockpile emissions calculation from TCEQ for crushed stone downloaded August 2019.
 https://www.tcea.texas.gov/assets/public/permitting/air/Guidance/NewSourceReview/emiss-calc-rock1.xlsx
- b. Control Factor of 0.33 (67.5% control) for partial enclosure consisting of walls on three sides of bin. Control Factor of 1.0 for no control.
- c. Assume number of active days to be 6 days per week and 52 weeks per year and inactive days to be 1 day per week and 52 weeks per year.
- d. From TCEQ Guidance

Stockpile emission calculation:

PM Emission Rate (tpy) = [(inactive day PM EF x No. of inactive days) x stockpile area/2000 x control factor] +

[(active day PM EF x No. of active days) x (stockpile area/2000) x control factor]

Inactive Day PM Emission Factor =

3.50 lb-PM/acre-day

Active Day PM Emission Factor =

13.20 lb-PM/acre-day

Table A-4 - Ferrous Material Processing - PM Emission Summary
General III, LLC - Chicago, Illinois

			Filterable PA	l Emissions		
Г	Mati Ha	indling	Stock	pile	Tot	al
Volume Source	Active lb/hr	Inactive Ib/hr	Active lb/hr	Inactive lb/hr	Active lb/hr	inactive lb/hr
V-1	0.8616		0.2994	0.0794	1.1610	0.0794
V-2	0.1400				0.1400	
V-3	0.1400				0.1400	
V-4	0.0078		0.0042	0.0012	0.0120	0.0012
V-5	0.1881				0.1881	
V-6	0.0689		0.1398	0.0371	0.2087	0.0371
V-7	0.1458				0.1458	
V-8	0.0244				0.0244	
V-9	0.0382		0.0029	0.0008	0.0411	0.0008
V-10	0.2412				0.2412	
V-11	0.0000		0.1996	0.0529	0.1996	0.0529
V-12	0.0000		0.1996	0.0529	0.1996	0.0529
V-13	0.5673				0.5673	
Totals	2.4233		0.8455	0.2243	3.2688	0.2243

Air Dispersion Modeling Report for Assessment of Metal Emission Impacts

General III, LLC - Chicago, Illinois

January 24, 2020

Appendix B

Non-Ferrous Material Processing Figures and Tables

Figures B-1 and B-2 contain TRADE SECRET information and have been REDACTED from this document.

TRADE SECRET

Figure B-1 Redacted

Figure B-1 - Non-Ferrous Processing System Flow Diagram **Air Dispersion Modeling Report**

> General III, LLC 11600 South Burley Avenue - Chicago, Illinois

TRADE SECRET

Figure B-2 Redacted

Figure B-2 - Non-Ferrous Processing System Layout
Air Dispersion Modeling Report

General III, LLC
11600 South Burley Avenue - Chicago, Illinois

Table B-1 - Non-Ferrous Material Processing - Particulate Emissions General III, LLC - Chicago, Illinois

	A	В	c	F	G G	Н	<u> </u>	, , , , , , , , , , , , , , , , , , ,	K	L	М	•	Q	R
Grouping	Row No.	Equipment Generating Emissions ID#	Description	Material Conveyed	Moisture > 1.5% Y/N	Transfer Point Location (Inside / Outside)	Conveyor Covered Y/N	Transfer Point Controlled (Y/N)	Type of Transfer Point Control	Dust Pickup Capture Eff. (%)	Dust Control Eff. (%)	Material Throughput Rates tph	PM Emissions Factor ib/ton	Filter: PA Emiss
VN-1	113	C-001	Conveyor	Residue	Υº	Outside	Y	N	NA		0%	70	0.000140 ^d	0.00
VN-1	114	C-002	Conveyor	Residue	N °	Outside	Y	N	NA		0%	68	0.003000 °	0.20
VN-1	115	C-002	Conveyor	Ferrous	N °	Outside	Y	N	NA		0%	2	0.003000 °	0.00
VN-1	116	C-003	Conveyor	Residue	N °	Outside	Y	N	NA		0%	67.90	0.003000 °	0.20
VN-1	117	C-004	Conveyor	Residue	N °	Outside	Y	N	NA]	0%	60.90	0.003000 °	0.18
VN-1	118	C-005	Conveyor	Residue	N ⁰	Outside	Y	N	NA		0%	30.45	0.003000 °	0.09
VN-1	119	C-006	Conveyor	Residue	N °	Outside		N	NA		0%	30.45	0.003000 °	0.09
VN-1	122	C-009	Conveyor	Residue	N °	Outside		N	NA		0%	9.14	0.003000 °	0.02
VN-1	123	C-010	Conveyor	Residue	N º	Outside		N	NA		0%	9.14	0.003000 °	0.02
VN-1	124	C-011	Conveyor	Residue	N °	Outside	Y	N	NA .		0%	8.40	0.003000 °	0.0
VN-1	129	C-016	Conveyor	Residue	N °	Outside	Y	N	NA		0%	2.7	0.003000 °	0.00
VN-1	174	E-01	Vibratory Batch Feeder	Residue	Y º	Outside		N	NA		0%	70	0.000140 ⁶	0.00
VN-1	175	E-03	Screener	Residue	Y °	Outside		N	NA .		0%	60.90	0.002200 *	0.13
VN-1	176	E-03	Screener	Residue	γ ο	Outside		N	NA		0%	6.80	0.002200 *	0.0:
VN-1	177	E-03	Screener	Residue	Y º	Outside		N	NA.		0%	2.70	0.002200 °	0.00
VN-1	178	E-04	Screener	Residue	Υ 0	Outside		N	NA		0%	15.75	0.002200 *	0.03
VN-1	179	E-04	Screener	Residue	Y º	Outside		N	NA		0%	9.14	0.002200 *	0.03
VN-1	180	E-04	Screener	Residue	γ ο	Outside		N	NA		0%	4.20	0.002200 *	0.00
VN-1	190	E-11	Screener	Residue	N °	Outside		N	NA NA		0%	15.75	0.025000 d	0.3
VN-1	191	E-11	Screener	Residue	N °	Outside		N	NA		0%	9.14	0.025000 d	0.2
VN-1	192	E-11	Screener	Residue	N °	Outside		N	NA		0%	4.20	0.025000 d	0.10
VN-1	244	End Loader	Drop ASR into feed hopper	Residue into Hopper	N S	Outside		Y	Cover		0%	70.00	0.000204 4	0.0
VN-1	246	SC-001	Supplemental Conveyor	Residue	0 *	0		0	0		0%	15.75	0.003000	0.0
VN-1	247	SC-002	Supplemental Conveyor	Residue	0 %	0		0	0		0%	16	0.003000	0.0

Table B-1 - Non-Ferrous Material Processing - Particulate Emissions General III, LLC - Chicago, Illinois

	A	В	С	F	G		Н	1	J	ĸ	L	М	0	Q	R
Grouping	Row No.	Equipment Generating Emissions ID#	Description	Material Conveyed	Moisture > 1.5% Y/N		Transfer Point Location (Inside / Outside)	Conveyor Covered Y/N	Transfer Point Controlled (Y/N)	Type of Transfer Point Control	Dust Pickup Capture Eff. (%)	Dust Control Eff. (%)	Material Throughput Rates tph	PM Emissions Factor lb/ton	Filterable PM Emissions
VN-2	120	C-007	Conveyor	Residue	N	0	Inside	Υ	N	ECS Enclosure	100%	Bldg Eff.	15.75	0.003000 *	0.0095
VN-2	121	C-008	Conveyor	Residue	N	0	Inside		N	ECS Enclosure	100%	Bldg Eff	15.75	0.003000 *	0.0095
VN-2	125	C-012	Conveyor	Residue	N	0	Inside	γ	N	ECS Enclosure	100%	Bldg Eff.	9.14	0.003000 *	0.0055
VN-2	126	C-013	Conveyor	Residue	N	0	Inside	γ	N	ECS Enclosure	100%	Bldg Eff.	9.14	0.003000 *	0.0055
VN-2	127	C-014	Conveyor	Residue	N	0	Inside	Υ	N	ECS Enclosure	100%	Bldg Eff.	8.40	0.003000 °	0.0050
VN-2	128	C-015	Conveyor	Ferrous	N	0	Inside	Y	N	ECS Enclosure	100%	Bldg Eff.	.25	0.003000 °	0.0002
VN-2	130	C-017	Conveyor	Ferrous	N	٥	Outside		N	NA		0%	1.75	0.003000 °	0.0053
VN-2	131	C-018	Conveyor	Ferrous	N	٥	Outside	Y	N	NA		0%	1.75	0.003000 °	0.0053
VN-2	132	C-019	Conveyor	Lights	N	٥	Outside	Y	N	NA		0%	0.25	0.003000 °	0.0008
VN-2	133	C-020	Conveyor	Residue	N	0	Outside	Y	N	NA		0%	11.12	0.003000 °	0.0334
VN-2	134	C-021	Conveyor	Residue	N	٥	Outside	Y	N	NA		0%	11.12	0.003000 °	0.0334
VN-2	135	C-022	Conveyor to Wind Sifter	Mixed Non-Ferrous	N	۰	Outside	Y	Y	Wind Sifter	100%	100%	0.80	0.003000 °	0.0024
VN-2	136	C-023	Conveyor to Wind Sifter	Residue	N	٥	Outside	Y	Y	Wind Sifter	100%	100%	7.29	0.000140 °	0.0010
VN-2	137	C-024	Conveyor to Wind Sifter	Residue	N	٥	Outside	Υ	Y	Wind Sifter	100%	100%	7.29	0.000140 0	0.0010
VN-2	139	C-035	Conveyor	Residue	N	٥	Inside	Υ	N	ECS Enclosure	100%	Bldg Eff.	2.7	0.003000 0	0.0016
VN-2	147	C-044	Conveyor	Residue	N	٥	Outside	Y	N	NA		0%	24.87	0.003000 °	0.0746
VN-2	181	E-05	Magnetic Separation	Residue	N	0	Inside		N	ECS Enclosure	100%	Bldg Eff.	14.87	0.003000	0.0089
VN-2	182	E-05	Magnetic Separation	Residue	N	٥	Inside		N	ECS Enclosure	100%	Bldg Eff.	9.87	0.003000	0.0059
VN-2	183	E-05	Magnetic Separation	Ferrous	N	٥	Inside		N	NA		0%	0.88	0.003000	0.0026
VN-2	184	E-05	Magnetic Separation	Ferrous	N	0	Inside		N	NA		0%	5.00	0.003000	0.0150
VN-2	185	E-06	Eddy Current Separator	Residue	N	٥	Outside		N	NA		0%	6.12	0.003000 d	0.0184
VN-2	186	E-06	Eddy Current Separator	Mids	N	0	Outside		N	NA		0%	3.50	0.003000 d	0.0105
VN-2	187	E-06	Eddy Current Separator	Zorba	N	٥	Outside		N	NA		0%	0.25	0.003000 d	0.000
VN-2	188	E-07	Wind Sifter	Lights	N	٥	Outside		Y	Cover		0%	0.25	0.002200 d	0.0006
VN-2	189	E-07	Wind Sifter	Heavies	1.5	•	Outside		Y	Wind Sifter	90%	100%	1.50	0.007606 °	0.0103

Table B-1 - Non-Ferrous Material Processing - Particulate Emissions General III, LLC - Chicago, Illinois

	A	В	c	OF S	G	н	1		К	<u> </u>	M	•	Q	R
<i>C</i> t	Row No.	Equipment Generating Emissions ID#	Description	Material Conveyed	Moisture > 1.5%	Transfer Point Location (Inside / Outside)	Conveyor Covered Y/N	Transfer Point Controlled (Y/N)	Type of Transfer Point Control	Dust Pickup Capture Eff. (%)	Dust Control Eff. (%)	Material Throughput Rates tph	PM Emissions Factor lb/ton	Filterable PM Emissions Ib/hr
Grouping VN-2	193	E-12	Magnetic Separation	Residue	N ⁰	Inside		N	ECS	100%	Bldg	14.87	0.003000	0.0089
AM-7	193	E-12	Magnetic Scharanon	Residue	"	""		l	Enclosure		Eff.			
VN-2	194	E-12	Magnetic Separation	Residue	N °	Inside		N	ECS Enclosure	100%	Bldg Eff.	9.87	0.003000	0.0059
VN-2	195	E-12	Magnetic Separation	Ferrous	N º	Inside		N	NA	_	0%	0.88	0.003000	0.0026
VN-2	196	E-12	Magnetic Separation	Ferrous	N º	Inside		N	NA		0%	5.00	0.003000	0.0150
VN-2	197	E-12	Magnetic Separation	Zorba	N °	Outside		N	NA		0%	0.25	0.003000 d	0.0008
VN-2	198	E-13	Eddy Current Separator	Residue	N °	Outside		N	NA .		0%	6.12	0.003000 d	0.0184
VN-2	199	E-13	Eddy Current Separator	Mids	N °	Outside		N	NA .		0%	3.50	0.003000 d	0.0105
VN-2	200	E-14	Wind Sifter	Lights	N º	Outside		Y	Cover		0%	0.20	0.002200 4	0.0004
VN-2	201	E-14	Wind Sifter	Heavies	1.5	Outside		Y	Wind Sifter	100%	100%	0.60	0.007606 °	0.0046
VN-2	202	E-15	Magnetic Separation	Residue	N D	Inside		N	ECS Enclosure	100%	Bidg Eff.	9.09	0.003000	0.0055
VN-2	203	E-15	Magnetic Separation	Residue	N 0	Inside		N	ECS Enclosure	100%	Bldg Eff.	8.29	0.003000	0.0050
VN-2	204	E-15	Magnetic Separation	Ferrous	N ®	Outside		N	NA		0%	0.05	0.003000 d	0.0002
VN-2	205	E-15	Magnetic Separation	Mixed Non- Ferrous	N ®	Outside		N	NA		0%	0.40	0.003000 ^d	0.0012
VN-2	206	E-16	Eddy Current Separator	Residue	N G	Outside		N	NA		0%	7.29	0.003000 d	0.0219
VN-2	207	E-16	Eddy Current Separator	Zorba	N º	Outside		N	NA NA		0%	1.00	0.003000 4	0.0030
VN-2	208	E-17	Wind Sifter	Lights	N °	Outside		Y	Cover		0%	1.09	0.002200 d	0.0024
VN-2	209	E-17	Wind Sifter	Residue	N °	Outside		Y	Wind Sifter	100%	100%	6.20	0.002200 d	0.0136
VN-2	210	E-21	Magnetic Separation	Residue	N °	Inside	<u> </u>	N	ECS Enclosure	100%	Bldg Eff.	8.29	0.003000	0.0050
VN-2	211	E-21	Magnetic Separation	Ferrous	и 。	Outside		N	NA NA		0%	0.05	0.003000 4	0.0002
VN-2	212	E-21	Magnetic Separation	Mixed Non- Ferrous	N °	Outside		N	NA		0%	0	0.003000 d	0.0012
VN-2	213	E-22	Eddy Current Separator	Zorba	N °	Outside		N	NA		0%	1.00	0.003000 ^d	0.0030
VN-2	214	E-22	Eddy Current Separator	Residue	N °	Outside		N	NA		0%	7.29	0.003000 d	0.0219
VN-2	215	E-23	Wind Sifter	Lights	N °	Outside		Y	Cover		0%	1	0.002200 4	0.0024
VN-2	216	E-23	Wind Sifter	Residue	N °	Outside		Y	Wind Sifter		100%	6.20	0.002200 d	0.0136
VN-2	217	E-27	Magnetic Separation	Residue	N °	Inside		N	ECS Enclosure	100%	Bidg Eff.	8,15	0.003000	0.0049

Table B-1 - Non-Ferrous Material Processing - Particulate Emissions General III, LLC - Chicago, Illinois

					6									0	
Grouping	Row No.	Equipment Generating Emissions ID#	Description	Material Conveyed	Moisture > 1.5% Y/N		Transfer Point Location (Inside / Outside)	Conveyor Covered Y/N	Transfer Point Controlled (Y/N)	Type of Transfer Point Control	Dust Pickup Capture Eff. (%)	Dust Control Eff. (%)	Material Throughput Rates tph	PM Emissions Factor Ib/ton	Filterable PM Emissions Ib/hr
VN-2	219	E-28	Eddy Current Separator	Residue	N		Outside		N	NA		0%	7,15	0.003000 #	0.0215
VN-2	221	E-34	Magnetic Separation	Residue	N	0	Inside		N	ECS Enclosure	100%	Bldg Eff.	6,55	0.003000	0.0039
VN-2	222	E-34	Magnetic Separation	Residue	N	0	Inside		N	ECS Enclosure	100%	Bldg Eff.	6.55	0.003000	0.0039
VN-2	224	E-35	Eddy Current Separator	Residue	N	0	Outside		N	NA		0%	5.05	0.003000 4	0.0152
VN-2	231	E-43	Vibratory Feeder	Residue	N	0	Inside		N	ECS Enclosure	100%	Bldg Eff.	2.70	0.003000	0.0016
VN-2	232	E-44	Eddy Current Separator drop to stockpile	Zorba	1.5	•	Inside		N	NA		0%	0.50	0.007600	0.0038
VN-2	240	E-49	Transfer Conveyor	Residue onto ECS	N	0	Inside		N	ECS Enclosure	100%	Bidg Eff.	8.15	0.003000	0.0049
VN-2	242	ECS	Eddy Current Separator drop to container	Zorba	1.5	•	Inside		N	NA		0%	0.04	0.007600	0.0003
VN-2	243	ECS	Eddy Current Separator drop to container	Zorba	1.5	*	Inside		N	NA		0%	0.18	0.007600	0.0014
VN-2	248	SC-003	Supplemental Conveyor	Residue	0	0	0		0	0		0%	7.34	0.003000	0.0220
VN-2	249	SC-004	Supplemental Conveyor	Residue	0	0	0		0	0		0%	7.34	0.003000	0.0220
										·	Tot	al Filterable	PM Emissions	· · · · · · · · · · · · · · · · · · ·	0.5395

Table B-1 - Non-Ferrous Material Processing - Particulate Emissions General III, LLC - Chicago, Illinois

	A	8	C	F	G	н		J	K		М	0	Q	R_
Grouping	Row No.	Equipment Generating Emissions ID#	Description	Material Conveyed	Moisture > 1.5% Y/N	Transfer Point Location (Inside / Outside)	Conveyor Covered Y/N	Transfer Point Controlled (Y/N)	Type of Transfer Point Control	Dust Pickup Capture Eff. (%)	Dust Control Eff. (%)	Material Throughput Rates tph	PM Emissions Factor lb/ton	Filterab PM Emission Ib/hr
VN-3	138	C-034	Conveyor	Material	N o	Outside	Υ	N	NA		0%	0.55	0.003000 °	0.0017
VN-3	140	C-039	Conveyor	Separator Mixed Non-Ferrous	N °	Outside		N	NA		0%	0.80	0.003000 °	0.002
VN-3	141	C-040	Conveyor	Residue	N °	Outside	-	N	NA		0%	2.80	0.003000 °	0.008
VN-3	142	C-040	Conveyor	Mids	N °	Outside		N	NA		0%	7	0.003000 °	0.021
VN-3	143	C-040	Conveyor	Residue	N °	Outside		N	NA		0%	4.20	0.003000 °	0.012
VN-3	144	C-041	Conveyor	Zorba	N °	Outside		N	NA		0%	0.50	0.003000 °	0.001
VN-3	145	C-042	Conveyor	Zorba	N O	Outside		N	NA		0%	1.50	0.003000 °	0.004
VN-3	146	C-043	Conveyor	Zorba	N °	Outside		N	NA		0%	3	0.003000 °	0.009
VN-3	148	C-044	Conveyor	Lights Zuric	N °	Outside	Y	N	NA		0%	0.30	0.003000 °	0.000
VN-3	149	C-045	Conveyor	Residue	N °	Outside	Y	N	NA		0%	24.87	0.003000 °	0.074
VN-3	150	C-047	Conveyor	To SSI	N °	Outside		N	NA		0%	0.55	0.003000 0	0.001
VN-3	151	C-048	Conveyor	Out of SSI	N °	Outside		N	NA		0%	0.55	0.003000 °	0.001
VN-3	152	C-050	Conveyor	Residue	N °	Outside	Y	N	NA		0%	25.07	0.003000 °	0.075
VN-3	153	Ç-052	Conveyor	Residue	N °	Outside		N	NA	:	0%	2	0.003000	0.00
VN-3	154	C-055	Conveyor	Wire	N °	Outside	Υ	N	NA		0%	1.00	0.003000 °	0.003
VN-3	155	C-058	Conveyor	Zuric drops	N °	Outside	Υ	N	NA		0%	0.30	0.003000 °	0.000
VN-3	156	C-060	Conveyor	Zone	N o	Outside	Y	N	NA		0%	1.20	0.003000 °	0.003
VN-3	162	C-064	Conveyor drop to container	Zorba	1.5	Outside		N	NA.		0%	0.70	0.007606 °	0.00
VN-3	163	C-065	Conveyor	Residue	N °	Outside	γ	N	NA		0%	2.2	0.003000 d	0.000
VN-3	164	C-066	Conveyor	Residue	N °	Outside	Y	N	NA		0%	54.39	0.003000 d	0.16
VN-3	165	C-067	Conveyor	Residue	N ^D	Outside	Y	N	NA		0%	54.39	0.003000 4	0.16
VN-3	168	C-071	Conveyor	Lights	N °	Outside	Y	Y	Cover		0%	0.03	0.000140 4	0.000
VN-3	169	C-072	Conveyor	Lights	N °	Outside	Y	Y	Cover		0%	0	0.000140 d	0.00
VN-3	170	DC-01 Cyc	DC-01 fines discharge to covered coneyor	Lights	N °	Outside		Y	Cover		0%	0.01	0.000140 d	0.00
VN-3	171	DC-02 Cyc	DC-02 fines discharge to covered conevor	Lights	N °	Outside		Y	Cover		0%	0.01	0.000140 d	0.00

Table B-1 - Non-Ferrous Material Processing - Particulate Emissions General III, LLC - Chicago, Illinois

	, ^	B ' ' '	· c	<u> </u>	G	Н	' ' -	' ' '		, ' 	М	•	Q	R
Grouping	Row No.	Equipment Generating Emissions ID#	Description	Material Conveyed	Moisture > 1.5% Y/N	Transfer Point Location (Inside / Outside)	Conveyor Covered Y/N	Transfer Point Controlled (Y/N)	Type of Transfer Point Control	Dust Pickup Capture Eff. (%)	Dust Control Eff. (%)	Material Throughput Rates tph	PM Emissions Factor lb/ton	Filter: PA Emiss
VN-3	172	DC-03 Cyc	DC-03 fines discharge to covered coneyor	Lights	N *	Outside		Y	Cover		0%	0.01	0.000140 ^d	0.00
VN-3	173	DC-04 Cyc	DC-04 fines discharge to covered coneyor	Lights	N °	Outside		Y	Cover		0%	0.01	0.000140 d	0.00
VN-3	218	€-27	Magnetic Separation	Ferrous	N ®	Outside		N	NA		0%	0.25	0.003000 d	0.00
VN-3	220	E-28	Eddy Current Separator	Zorba	N °	Outside		N	NA		0%	1.00	0.003000 d	0.00
VN-3	223	E-35	Eddy Current Separator	Zorba	N °	Outside		N	NA		0%	1.50	0.003000 d	0.00
VN-3	225	E-40	Separator	Lights Zuric	N °	Outside		N	NA		0%	0.24	0.025000 d	0.00
VN-3	226	E-40	Separator	Heavies Zuric	N °	Outside		N	NA		0%	0.96	0.025000 d	0.02
VN-3	227	E-40	Separator	Lights Zuric	N °	Outside		N	NA		0%	0.35	0.025000 d	0.00
VN-3	228	E-41	Separator	Lights	N °	Outside		N	NA		0%	0.95	0.025000 d	0.02
VN-3	229	E-41	Separator drop to container	Heavies	1.5	Outside		N	NA		0%	0.05	0.007606 °	0.00
VN-3	230	E-42	Low speed shredder for size reduction	Out of SSI	N °	Outside		N	NA		0%	0.55	0.003000 d	0.00
VN-3	234	E-46	Separator	Heavier Zorba	N °	Outside		N	NA	Ì	0%	1.25	0.02500 d	0.03
VN-3	235	E-46	Separator	Lights Zorba	N O	Outside		N	NA		0%	0.25	0.02500 d	0.00
VN-3	236	E-47	Separator	Zorba	N °	Outside		N	NA		0%	2.70	0.02500 d	0.06
VN-3	237	E-47	Separator	Heavies Zorba	N º	Outside		N	NA		0%	0.85	0.02500 d	0.02
VN-3	238	E-47	Separator	Lights Zorba	N °	Outside		N	NA		0%	0.15	0.02500 ^d	0.00
VN-3	239	E-47	Separator	Light Zorba	N °	Outside		N	NA		0%	0.30	0.02500 ^d	0.00
VN-3	241	E-50	Air Vibe	To Infeed SSI	N °	Outside		γ	Cover		0%	0.55	0.00014 ^d	0.00
VN-3	250	SC-005	Supplemental Conveyor	Residue	0.0% °	0		0	0		0%	54.39	0.00300	0.16
VN-3	251	SC-006	Supplemental Conveyor	Residue	0.0% °	0		0	0		0%	54.39	0.00300	0.16

Table B-1 - Non-Ferrous Material Processing - Particulate Emissions General III, LLC - Chicago, Illinois

		В	С		<u> </u>	Н		,	K		М	0	Q	Ř
Grouping	Row No.	Equipment Generating Emissions ID#	Description	Material Conveyed	Moisture > 1.5% Y/N	Transfer Point Location (Inside / Outside)	Conveyor Covered Y/N	Transfer Point Controlled (Y/N)	Type of Transfer Point Control	Dust Pickup Capture Eff. (%)	Dust Control Eff. (%)	Material Throughput Rates tph	PM Emissions Factor Ib/ton	Filtera PM Emissi Ib/h
VN-4	159	C-062	Conveyor	Heavier Zorba	N °	Outside		N	NA		0%	1.25	0.003000 d	0.00
VN-4	160	C-063	Conveyor drop to stockpile	Zorba	1.5	Outside		N	NA		0%	2.70	0.007606 °	0.020
VN-4	161	C-063	Conveyor drop to stockpile	Heavies Zorba	1.5% *	Outside		N	NA		0%	0.85	0.00761 °	0.00
VN-4	233	E-44	Eddy Current Separator	Residue	N °	Outside		N	NA		0%	2.2	0.00300 ₫	0.00
										Tot	al Filterable	PM Emissions		0.03
VN-S	157	C-061	Conveyor drop to stockpile	Heavies Zuric	1.5%	Outside		N	NA		0%	0.96	0.00761 °	0.00
VN-5 VN-5	157 158	C-061	drop to stockpile Conveyor	Heavies Zuric	1.5% *	Outside Outside		N N	NA NA		0%	0.96	0.00761 °	0.00
			drop to stockpile Conveyor drop to stockpile Conveyor	<u> </u>										
VN-S	158	C-061	drop to stockpile Conveyor drop to stockpile	Heavies Zuric Waste to	1.5%	Outside		N	NA		0%	0.30	0.00761 °	0.00
VN-S	158	C-061	drop to stockpile Conveyor drop to stockpile Conveyor drop to stockpile Conveyor Conveyor	Heavies Zuric Waste to	1.5%	Outside	Y	N	NA		0%	0.30 0.55	0.00761 °	0.00
VN-5	158 167	C-061 C-070	drop to stockpile Conveyor drop to stockpile Conveyor drop to stockpile	Heavies Zuric Waste to Stockoile	1.5% *	Outside Outside	Y	N N	NA NA		0%	0.30 0.55 Yotal	0.00761 ° 0.00761 °	0.00

- a Material moisture content (%) for light materials AP-42, Table 13.2.4-1 for crushed limestone -
- Uncontrolled emission factor calculated according to material drop equation in AP-42, Section 13.2.4.3.
 Emissions calculated with control Eff. factor included for source being inside of a building.
- c Uncontrolled emission factor calculated according to material drop equation in AP-42, Section 13.2.4.3.
- d Uncontrolled particulate matter emission factors from AP-42, Table 11.19.2-2 for conveying. If moisture is greater than 1.5% by weight, use controlled emission factors.
- e Uncontrolled particulate matter emission factors from AP-42, Table 11.19.2-2 for screening. If moisture is greater than 1.5% by weight, use controlled emission factors.
- f Sources located inside the Fines Building emit to the atmosphere through Dust Collection DC-01. Emissions are estimated by 12,000
- g Metal HAPs as percent of total PM measured at the discharge of the existing roll media filter in June 2018.

Table B-2 - Non-Ferrous Plant Stockpile - Particulate Emissions General III, LLC - Chicago, Illinois

Volume Source Grouping	Stock Pile	Stock Pile Area Acres	Control Factor ^b	Inactive Emissions ^{ad} PM lb/hr	Active Emissions ^{s,4} PM lb/hr
VN-1	FE from E-02	0.0047	0.33	0.0002	0.0009
VN-4	5" + Zorba	0.0189	0.33	0.0009	0.0034
VN-4	2-1/2" - 5" Zorba	0.0189	0.33	0.0009	0.0034
VN-4	5/8" - 2-1/2" Zorba	0.0189	0.33	0.0009	0.0034
			Total	0.0027	0.0102
VN-S	Tailings	0.0195	0.33	0.0009	0.0035
VN-5	Open	0.0195	0.33	0.0009	0.0035
VN-5	Wire	0.0195	0.33	0.0009	0.0035
VN-5	Wire Rich Solids	0.0195	0.33	0.0009	0.0035
VN-5	Zurick	0.0195	0.33	0.0009	0.0035
			Total	0.0045	0.0175
VN-6	Waste	0.0868	0.33	0.0042	0.0158

a. Stockpile emissions calculation from TCEQ for crushed stone downloaded August 2019.
https://www.tceq.texas.gov/assets/public/permitting/air/Guidance/NewSourceReview/emiss-calc-rock1.xlsx

- b. Control Factor of 0.1 (90% control) for partial enclosure consisting of walls on three sides of bin. Control Factor of 2.0 for no control.
- c. Assume number of active days to be 6 days per week and 52 weeks per year and inactive days to be 1 day per week and 52 weeks per year.
- d. From TCEQ Guidance

Stockpile emission calculation:

PM Emission Rate (tpy) = [{Inactive day PM EF x No. of inactive days} x stockpile area/2000 x control factor] +
[{active day PM EF x No. of active days} x {stockpile area/2000} x control factor]

Inactive Day PM Emission Factor = 3.50 lb-PM/acre-day
Active Day PM Emission Factor = 13.20 lb-PM/acre-day

Table B-3 - Non-Ferrous Material Processing - PM Emission Summary General III, LLC - Chicago, Illinois

				PM Emission		
Srouces	Mati Ha	ndling	Stock	pile	Tot	
	Active lb/hr	Inactive Ib/hr	Active Ib/hr	Inactive tb/hr	Active lb/hr	Inactive Ib/hr
VN-1	1.9420	1.9420	0.0009	0.0002	1.9429	1.9422
VN-2	0.5395	0.5395			0.5395	0.5395
VN-3	1.1050	1.1050		i	1.1050	1.1050
VN-4	0.0374	0.0374	0.0102	0.0027	0.0476	0.0401
VN-5	0.0138	0.0138	0.0175	0.0045	0.0313	0.0183
VN-6	0.4248	0.4248	0.0158	0.0042	0.4406	0.4290

Table B-4a - Non-Ferrous Material Processing - Metal Emissions in Active Hours
(7 AM - 7 PM, Mon-Sat)
General III, LLC - Chicago, Illinois

Volume Source	Units	VN-1	VN-2	VN-3	VN-4	VN-5	VN-6	DC-1
PM (Active)	lb/hr	1.942900	0.539528	1.105000	0.047600	0.031300	0.440600	0.514300
Source of	Sample No.	5	5	5	5	5	5	S
Metals Conc. Data	Sample Name	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Lead	lb/hr	0.009170	0.002547	0.005216	0.000225	0.000148	0.002080	0.00242
Manganese	lb/hr	0.003420	0.000950	0.001945	0.000084	0.000055	0.000775	0.00090
Mercury	lb/hr	0.000018	0.000005	0.000010	0.000000	0.000000	0.000004	0.00000
Nickel	lb/hr	0.000604	0.000168	0.000344	0.000015	0.000010	0.000137	0.00016
Antimony	lb/hr	0.000002	0.000001	0.000001	0.000000	0.000000	0.000001	0.00000
Arsenic	lb/hr	0.000009	0.000002	0.000005	0.000000	0.000000	0.000002	0.00000
Beryllium	lb/hr	0.000002	0.000001	0.000001	0.000000	0.000000	0.000001	0.00000
Cadmium	lb/hr	0.000067	0.000019	0.000038	0.000002	0.000001	0.000015	0.00001
Chromium ⁴	lb/hr	0.000826	0.000229	0.000470	0.000020	0.000013	0.000187	0.00021
Cobalt	lb/hr	0.000108	0.000030	0.000062	0.000003	0.000002	0.000025	0.00002
Phosphorus	lb/hr	0.001815	0.000504	0.001032	0.000044	0.000029	0.000412	0.00048
Selenium	lb/hr	0.000002	0.000001	0.000001	0.000000	0.000000	0.000001	0.00000
Zinc	lb/hr	0.066059	0.018344	0.037570	0.001618	0.001064	0.014980	0.01748
Barium	lb/hr	0.001329	0.000369	0.000756	0.000033	0.000021	0.000301	0.00035
Copper	lb/hr	0.003206	0.000890	0.001823	0.000079	0.000052	0.000727	0.00084
Silver	lb/hr	0.000024	0.000007	0.000013	0.000001	0.000000	0.000005	0.00000
Thallium	lb/hr	0.000002	0.000001	0.000001	0.000000	0.000000	0.000001	0.00000

a. Percentage of metal as % of total PM caculated based on measured metal emission rates from harmermill shredder controlled by cyclone and a roll media filter from June 2018.

b. Uncontrolled organic compound emission rates, as presented in ISRI Title V Applicability Workbook, Table D-11F, adjusted for RTO with 98% destruction efficiency.

c. Chromium (metal) and compounds other than Chromium VI

Table B-4b - Non-Ferrous Material Processing - Metal Emissions in Inactive Hours (7 PM - 7 AM, Mon-Sat, All Day, Sun)

General III, LLC - Chicago, Illinois

Volume Source	Únits	VN-1	VN-2	VN-3	VN-4	VN-5	VN-6	DC-1
PM (Inactive)	lb/hr	1.942200	0.539528	1.105000	0.040100	0.018300	0.429000	D.514300
Source of	Sample No.	5	5	5	5	5	5	5
Metals Conc. Data	Sample Name	0.0000000	9.0000000	0.0000000	0.0000000	6.0000000	0.0000000	0.0000000
Lead	lb/hr	0.009167	0.002547	0.005216	0.000189	0.000086	0.002025	0.002427
Manganese	lb/hr	0.003418	0.000950	0.001945	0.000071	0.000032	0.000755	0.00090
Mercury	lb/hr	0.000018	0.000005	0.000010			0.000004	0.000000
Nickel	lb/hr	0.000604	0.000168	0.000344	0.000012	0.000006	0.000133	0.00016
Antimony	lb/hr	0.000002	0.000001	0.000001	-	-	0.000001	0.00000
Arsenic	lb/hr	0.000009	0.000002	0.000005			0.000002	0.00000
Beryllium	lb/hr	0.000002	0.000001	0.000001	-	-	0.00001	0.00000
Cadmium	lb/hr	0.000067	0.000019	0.000038	0.000001	0.000001	0.000015	0.00001
Chromium ^c	lb/hr	0.000825	0.000229	0.000470	0.000017	0.000008	0.000182	0.00021
Cobalt	lb/hr	0.000108	0.000030	0.000062	0.000002	0.000001	0.000024	0.00002
Phosphorus	lb/hr	0.001814	0.000504	0.001032	0.000037	0.000017	0.000401	0.00048
Selenium	lb/hr	0.000002	0.000001	0.000001		•	0.000001	0.00000
Zinc	lb/hr	0.066035	0.018344	0.037570	0.001363	0.000622	0.014586	0.01748
Barlum	lb/hr	0.001328	0.000369	0.000756	0.000027	0.000013	0.000293	0.00035
Copper	lb/hr	0.003205	0.000890	0.001823	0.000066	0.000030	0.000708	0.00084
Silver	lb/hr	0.000024	0.000007	0.000013		· ·	0.000005	0.00000
Thailium	lb/hr	0.000002	0.000001	0.000001		_ ·	0.000001	0.00000

a. Percentage of metal as % of total PM caculated based on measured metal emission rates from hammermill shredder controlled by cyclone and a roll media filter from June 2018. b. Uncontrolled organic compound emission rates, as presented in ISRI Title V Applicability Workbook, Table D-11F, adjusted for RTO with 98% destruction efficiency.

c. Chromium (metal) and compounds other than Chromium VI

Air Dispersion Modeling Report for Assessment of Metal Emission Impacts

General III, LLC – Chicago, Illinois

January 24, 2020

Appendix C
Vehicle Traffic Routes

Air Dispersion Modeling Report for Assessment of Metal Emission Impacts

General III, LLC – Chicago, Illinois

January 24, 2020

Appendix D

Laboratory Report for Metals Analyses of GII Material Deposition Samples

Des Plaines, Illinois 60016

P 847.967.6666

800.246.0663

F 847.967.6735

www.emt.com

Analytical Report

Mark Weintraub Reserve Management Group 4550 Darrow Road Stow, OH 44224 December 13, 2019

Work Order: 19L0295, 19L0296, 19L0297, 19L0298, 19L0299

RE:

Residential Soil Analysis

Dear Mark Weintraub:

Enclosed are the analytical reports for the EMT Work Order listed. Also included with this analytical report is a copy of the chain of custody associated with these samples. If you have any questions, please contact me.

Sincerely,

Mark Steuer Project Manager 847.967.6666

MSteuer@emt.com

Approved for release: 12/13/2019 4:08:41PM

Approved by,

Nathan Fey

Laboratory Operations Manager

The contents of this report apply to the sample(s) analyzed. No duplication is allowed except in its entirety. Detection and Reporting limits are adjusted for sample size used, dilutions and moisture content, if applicable.

State of Illinois, NELAP Accredited Lab No. 100256, Cert No. 004524

Table of Contents

Cover Letter	1
Sample Summary	3
Case Narrative	4
Client Sample Results	6
Dates Report	11
Quality Control	14
Certified Analyses	19
List of Certifications	19
Qualifiers and Definitions	20
Chain of Custody	2.

509 N. 3rd Avenue Des Plaines, Illinois 60016 P 847.967.6666 800.246.0663 F 847.967.6735 www.emt.com

Sample Summary

Sample ID	Laboratory ID	Matrix	Date Sampled	_Date Received
FERDWY	19L0295-01	Soil	12/05/19 00:00	12/05/19 15:20
ASRRDWY	19L0296-01	Soil	12/05/19 00:00	12/05/19 15:20
FETP	19L0297-01	Soil	12/05/19 00:00	12/05/19 15:20
RDWY	19L0298-01	Soil	12/05/19 00:00	12/05/19 15:20
NFETP	19L0299-01	Soil	12/05/19 00:00	12/05/19 15:20

Des Plaines, Illinois 60016

P 847.967.6666

800.246.0663

F 847.967.6735

www.emt.com

Case Narrative

Client:

Reserve Management Group

Date: 12/13/2019

Project:

Residential Soil Analysis

Work Order: 19L0295, 19L0296, 19L0297, 19L0298, 19L0299

All reported results are within defined laboratory quality control objectives unless listed below or otherwise qualified in this report.

Sample results only relate to the sample(s) received at the laboratory and analytes of interest tested.

Work Order: 19L0295

The samples were received on 12/05/19 15:20. The samples arrived in good condition and properly preserved. The temperature of the cooler at receipt was:

Cooler

Temp C°

Default Cooler

20.0

COC missing sample time.

R1) This is a revised report to include 6010_TI

Refer to Qualifiers and Definitions for quality and analytical clarifications or deviations.

Work Order: 19L0296

The samples were received on 12/05/19 15:20. The samples arrived in good condition and properly preserved. The temperature of the cooler at receipt was:

Cooler

Temp C°

Default Cooler

20.0

COC missing sample time.

R1) This is a revised report to include 6010_TI

Refer to Qualifiers and Definitions for quality and analytical clarifications or deviations.

Des Plaines, Illinois 60016

P 847.967.6666

800.246.0663

F 847.967.6735

www.emt.com

Work Order: 19L0297

The samples were received on 12/05/19 15:20. The samples arrived in good condition and properly preserved. The temperature of the cooler at receipt was:

Cooler

Temp C*

Default Cooler

20.0

COC missing sample time.

R1) This is a revised report to include 6010_TI

Refer to Qualifiers and Definitions for quality and analytical clarifications or deviations.

Work Order: 19L0298

The samples were received on 12/05/19 15:20. The samples arrived in good condition and properly preserved. The temperature of the cooler at receipt was:

Cooler

Temp C*

Default Cooler

20.0

COC missing sample time.

R1) This is a revised report to include 6010_TI

Refer to Qualifiers and Definitions for quality and analytical clarifications or deviations.

Work Order: 19L0299

The samples were received on 12/05/19 15:20. The samples arrived in good condition and properly preserved. The temperature of the cooler at receipt was:

Cooler

Temp C°

Default Cooler

20.0

COC missing sample time.

R1) This is a revised report to include 6010_TI

Refer to Qualifiers and Definitions for quality and analytical clarifications or deviations.

Des Plaines, Illinois 60016

P 847.967.6666

800.246.0663

F 847.967.6735

www.emt.com

Client Sample Results

Client:

Reserve Management Group

Client Sample ID: FERDWY

Project:

Residential Soil Analysis

Report Date: 12/13/2019

Collection Date: 12/05/2019 00:00

Work Order:

19L0295, 19L0296, 19L0297, 19L0298, 19L0299

Matrix: Soil

Lab ID: 19L0295-01

	R	EMT eporting			Date/Time		
Analyses	Result	Limit	Qual	Units	Analyzed	Batch	Analyst
Metals by ICP-AES							_
Method: \$	SW6010C / SW3050						
Antimony	< 1.23	1,23		mg/Kg	12/12/19 14:03	B9L0408	KJ1
Arsenic	2.28	1,23		mg/Kg	12/12/19 14 03	B9L0408	KJ1
Barlum	388	1.23		mg/Kg	12/12/19 14:03	B9L0408	KJ1
Beryllium	< 5.90	5.90		mg/Kg	12/12/19 13:13	B9L0408	KJ1
Cadmium	9.63	0.123		mg/Kg	12/12/19 14 03	B9L0408	KJ1
Chromium	220	1,23		mg/Kg	12/12/19 14:03	B9L0408	KJ1
Cobatt	15.7	1.23		mg/Kg	12/12/19 14:03	B9L0408	KJ1
Copper	1110	1.23		mg/Kg	12/12/19 14:03	B9L0408	KJ1
Lead	763	12.3	Q, S3	mg/Kg	12/12/19 13 13	B9L0408	KJ1
Manganese	960	1,23		mg/Kg	12/12/19 14 03	B9L0408	KJ1
Nickel	125	1.23		mg/Kg	12/12/19 14:03	B9L0408	KJ1
Phosphorus	598	6.16	Q, S3	mg/Kg	12/12/19 14:03	B9L0408	KJ1
Selenium	< 1.23	1.23		mg/Kg	12/12/19 14:03	B9L0408	KJ1
Silver	< 12,3	12.3		mg/Kg	12/12/19 13:13	B9L0408	KJ1
Thallium	< 1.23	1.23		mg/Kg	12/12/19 14:03	B9L0408	KJ1
Titanium	137	1.23		mg/Kg	12/12/19 14 03	B9L0408	KJ1
Zinc	5470	12.3		mg/Kg	12/12/19 13:13	B9L0408	KJ1
Mercury by CVAA							
Method: 3	SW7471B						
Mercury	1.77	0.098		mg/Kg	12/11/19 13:53	B9L0421	GSB

Des Plaines, Illinois 60016

P 847.967.6666

800.246.0663

F 847.967.6735

www.emt.com

Client Sample Results

(Continued)

Client: Project: Reserve Management Group

Residential Soil Analysis

Client Sample ID: ASRRDWY

Report Date: 12/13/2019

Collection Date: 12/05/2019 00:00

Work Order: 19L029	5, 19L0296, 19L0297	, 19L0298,	19L029	99	Matrix: Lab ID:	Soil 19L0296-01		
Analyses	Result	EMT Reporting Limit	Qual	Units		Date/Time Analyzed	Batch	Analyst
letals by ICP-AES								
Method	: SW6010C / SW3050)						
Antimony	< 1.22	1.22		mg/Kg		12/12/19 14:08	B9L0408	KJ1
Arsenic	1,76	1.22		mg/Kg		12/12/19 14:08	B9L0408	KJ1
Barlum	673	1.22		mg/Kg		12/12/19 14:08	B9L0408	KJ1
Beryllium	< 1.30	1.30		mg/Kg		12/12/19 13:17	B9L0408	KJ1
Cadmium	18.4	0.122		mg/Kg		12/12/19 14:08	B9L0408	KJ1
Chromium	991	1,22		mg/Kg		12/12/19 14:08	B9L0408	KJ1
Cobalt	38.5	1.22		mg/Kg		12/12/19 14:08	B9L0408	KJ1
Copper	1080	1.22		mg/Kg		12/12/19 14:08	B9L0408	KJ1
Lead	1610	12.2	Q, S3	mg/Kg		12/12/19 13:17	B9L0408	KJ1
Manganese	1030	1,22		mg/Kg		12/12/19 14:08	B9L0408	KJ1
Nickel	463	1.22		mg/Kg		12/12/19 14:08	B9L0408	KJ1
Phosphorus	561	6.12	Q, S3	mg/Kg		12/12/19 14:08	B9L0408	KJ1
Selenium	< 1.22	1.22		mg/Kg		12/12/19 14:08	B9L0408	KJ1
Silver	< 12.2	12.2		mg/Kg		12/12/19 13:17	B9L0408	KJ1
Thallium	< 1.22	1.22		mg/Kg		12/12/19 14:08	B9L0408	KJ1
Titanlum	162	1.22		mg/Kg		12/12/19 14:08	B9L0408	KJ1
Zinc	13300	122		mg/Kg		12/12/19 12:53	B9L0408	KJ1
Mercury by CVAA					-(252.7 - 5			
Method	: SW7471B							
Mercury	6.95	0.972		mg/Kg		12/11/19 14:24	B9L0421	GSB

Des Plaines, Illinois 60016

19L0295, 19L0296, 19L0297, 19L0298, 19L0299

P 847.967.6666

800.246.0663

F 847.967.6735

www.emt.com

Client Sample Results

(Continued)

Client:

Work Order:

Reserve Management Group

Client Sample ID: FETP

Cit Campio ID. | E||

Project:

Residential Soil Analysis

Report Date: 12/13/2019
Collection Date: 12/05/2019 00:00

Matrix: Soil

Lab ID: 19L0297-01

			Lab ID: 19L0297-01									
Analyses	Result	EMT Reporting Limit	Qual	Units	Date/Time Analyzed	Batch	Analyst					
Metals by ICP-AES												
	V6010C / SW3050	+										
Antimony	< 1.17	1.17		mg/Kg	12/12/19 14:13	B9L0408	KJ1					
Arsenic	2.75	1.17		mg/Kg	12/12/19 14:13	B9L0408	KJ1					
Barium	984	1.17		mg/Kg	12/12/19 14:13	B9L0408	KJ1					
Beryllium	< 1.17	1.17		mg/Kg	12/12/19 13:21	B9L0408	KJ1					
Cadmium	47.6	0.117		mg/Kg	12/12/19 14:13	B9L0408	KJ1					
Chromium	402	1.17		mg/Kg	12/12/19 14:13	B9L0408	KJ1					
Cobalt	52.0	1,17		mg/Kg	12/12/19 14:13	B9L0408	KJ1					
Copper	2100	11.7		mg/Kg	12/12/19 13:21	B9L0408	KJ1					
Lead	4230	117	Q, S3	mg/Kg	12/12/19 12:57	B9L0408	KJ1					
Manganese	2210	11.7		mg/Kg	12/12/19 13:21	B9L0408	KJ1					
Nickel	304	1,17		mg/Kg	12/12/19 14:13	B9L0408	KJ1					
Phosphorus	833	5.87	Q, S3	mg/Kg	12/12/19 14:13	B9L0408	KJ1					
Selenium	< 1,17	1.17		mg/Kg	12/12/19 14:13	B9L0408	KJ1					
Silver	< 11,7	11.7		mg/Kg	12/12/19 13:21	B9L0408	KJ1					
Thallium	< 1.17	1.17		mg/Kg	12/12/19 14:13	B9L0408	KJ1					
Titanium	199	1.17		mg/Kg	12/12/19 14:13	B9L0408	KJ1					
Zinc	37300	117		mg/Kg	12/12/19 12:57	B9L0408	KJ1					
Mercury by CVAA												
Method: SV	V7471B											
Mercury	18.8	9.89		mg/Kg	12/11/19 14:18	B9L0421	GSB					

Des Plaines, Illinois 60016

19L0295, 19L0296, 19L0297, 19L0298, 19L0299

P 847.967.6666

800.246.0663

F 847.967.6735

www.emt.com

Client Sample Results

(Continued)

Client: Project:

Work Order:

Reserve Management Group

Residential Soil Analysis

Client Sample ID: RDWY

Report Date: 12/13/2019

Collection Date: 12/05/2019 00:00

Matrix: Soil

		EMT					
	1	Reporting			Date/Time		
Analyses	Result	Limit	Qual U	Inits	 Analyzed	Batch	Analyst
Metals by ICP-AES							
	SW6010C / SW3050)					
Antimony	< 1.16	1.16	m	ng/Kg	12/12/19 14:18	B9L0408	KJ1
Arsenic	2.70	1.16	m	ng/Kg	12/12/19 14:18	B9L0408	KJ1
Barium	232	1.16	m	ng/Kg	12/12/19 14:18	B9L0408	KJ1
Beryllium	< 5.50	5.50	n	ng/Kg	12/12/19 13:26	B9L0408	KJ1
Cadmium	5.42	0.116	rr	ng/Kg	12/12/19 14:18	B9L0408	KJ1
Chromium	173	1.16	m	ng/Kg	12/12/19 14:18	B9L0408	KJ1
Cobalt	10.7	1,16	m	ng/Kg	12/12/19 14:18	B9L0408	KJ1
Copper	841	1.16	m	ng/Kg	12/12/19 14:18	B9L0408	KJ1
Lead	526	11.6	Q, S3 m	ng/Kg	12/12/19 13:26	B9L0408	KJ1
Manganese	729	1.16	m	ng/Kg	12/12/19 14:18	B9L0408	KJ1
Nickel	106	1,16	rr	ng/Kg	12/12/19 14:18	B9L0408	KJ1
Phosphorus	270	5,78	Q, S3 m	ng/Kg	12/12/19 14.18	B9L0408	KJ1
Selenium	< 1.16	1.16	fT	ng/Kg	12/12/19 14:18	B9L0408	KJ1
Silver	< 11.6	11.8	n	ng/Kg	12/12/19 13:26	B9L0408	KJ1
Thallium	< 1.16	1.16	m	ng/Kg	12/12/19 14:18	B9L0408	KJ1
Titanium	112	1.16	m	ng/Kg	12/12/19 14:18	B9L0408	KJ1
Zinc	3080	11.6	m	ng/Kg	12/12/19 13:26	B9L0408	KJ1
Mercury by CVAA							
Method:	SW7471B						
Mercury	2.22	0.965	n	ng/Kg	12/11/19 14:20	B9L0421	GSB

509 N. 3rd Avenue Des Plaines, Illinois 60016 **P** 847.967.6666 800.246.0663 **F** 847.967.6735 www.emt.com

Client Sample Results

(Continued)

Client: Project:

Work Order:

Reserve Management Group

Client Sample ID: NFETP

Residential Soil Analysis

Report Date: 12/13/2019

Collection Date: 12/05/2019 00:00

19L0295, 19L0296, 19L0297, 19L0298, 19L0299

Matrix: Soil Lab ID: 19L0299-01

	_	EMT			85 - 4 - (SS)		
Analyses	Result	eporting Limit	Qual	Units	Date/Time Analyzed	Batch	Analyst
Metals by ICP-AES	W6010C / SW3050						
method: S	Menine (2M3020						
Antimony	< 1.21	1.21		mg/Kg	12/12/19 14:31	B9L0408	KJ1
Arsenic	4.51	1.21		mg/Kg	12/12/19 14:31	B9L0408	KJ1
Barium	684	1.21		mg/Kg	12/12/19 14:31	B9L0408	KJ1
Beryllium	< 1,21	1.21		mg/Kg	12/12/19 13:39	B9L0408	KJ1
Cadmium	34.6	0,121		mg/Kg	12/12/19 14:31	B9L0408	KJ1
Chromlum	425	1.21		mg/Kg	12/12/19 14:31	B9L0408	KJ1
Cobalt	55.8	1,21		mg/Kg	12/12/19 14:31	B9L0408	KJ1
Copper	1650	12.1		mg/Kg	12/12/19 13:39	B9L0408	KJ1
Lead	4720	121	Q, S3	mg/Kg	12/12/19 13:05	B9L0408	KJ1
Manganese	1760	12.1		mg/Kg	12/12/19 13:39	B9L0408	KJ1
Nickel	311	1,21		mg/Kg	12/12/19 14:31	B9L0408	KJ1
Phosphorus	934	6.03	Q, S3	mg/Kg	12/12/19 14:31	B9L0408	KJ1
Selenium	< 1.21	1.21		mg/Kg	12/12/19 14:31	B9L0408	KJ1
Silver	< 12.1	12.1		mg/Kg	12/12/19 13:39	B9L0408	KJ1
Thallium	< 1.21	1.21		mg/Kg	12/12/19 14:31	B9L0408	KJ1
Titanium	221	1.21		mg/Kg	12/12/19 14:31	B9L0408	KJ1
Zinc	34000	121		mg/Kg	12/12/19 13:05	B9L0408	KJ1
Mercury by CVAA							
Method: S	W7471B						
Mercury	9.34	9.00		mg/Kg	12/11/19 14:22	B9L0421	GSB

Des Plaines, Illinois 60016

P 847.967.6666

800.246.0663

F 847.967.6735

www.emt.com

Dates Report

Client:

Reserve Management Group

Project:

Residential Soil Analysis

Report Date: 12/13/2019

Work Order:

19L0295,19L0296,19L0297,19L0298,19L0299

ample ID	Client Sample ID	Collection	Matrix	Test Name	Leached Prep Date	Prep Date	Analysis Date	Batch ID	Sequenc
9L0295-01	FERDWY	12/05/19	Soil	Antimony, Total ICP-AES		12/11/19 09:53	12/12/19 14:03	B9L0408	S9L0269
				Silver, Total ICP-AES		12/11/19 09:53	12/12/19 13:13		
				Zinc, Total ICP-AES		12/11/19 09:53	12/12/19 13:13		
				Thallium, Total ICP-AES		12/11/19 09:53	12/12/19 14:03		
				Selenium, Total ICP-AES		12/11/19 09:53	12/12/19 14:03		
				Lead, Total ICP-AE\$		12/11/19 09:53	12/12/19 13:13		
				Phosphorus, Total ICP-AES		12/11/19 09:53	12/12/19 14:03		
				Nickel, Total ICP-AES		12/11/19 09:53	12/12/19 14:03		
				Barium, Total ICP-AES		12/11/19 09:53	12/12/19 14:03		
				Titanium, Total ICP-AES		12/11/19 09:53	12/12/19 14:03		
				Arsenic, Total ICP-AES		12/11/19 09:53	12/12/19 14:03		
				Manganese, Total ICP-AES		12/11/19 09:53	12/12/19 14:03		
				Beryllium, Total ICP-AES		12/11/19 09:53	12/12/19 13:13		
				Cadmium, Total ICP-AES		12/11/19 09:53	12/12/19 14:03		
				Cobalt, Total ICP-AES		12/11/19 09:53	12/12/19 14:03		
				Chromium, Total ICP-AES		12/11/19 09:53	12/12/19 14:03		
	0296-01 ASRRDWY			Copper, Total ICP-AES		12/11/19 09:53	12/12/19 14:03		
				Mercury, Total CVAA		12/11/19 10:35	12/11/19 13:53	B9L0421	S9L0229
L0296-01				Nickel, Total ICP-AES		12/11/19 09:53	12/12/19 14:08	B9L0408	S9L0269
				Beryllium, Total ICP-AES		12/11/19 09:53	12/12/19 13:17		
				Zinc, Total ICP-AES		12/11/19 09:53	12/12/19 12:53		
				Thallium, Total ICP-AES		12/11/19 09:53	12/12/19 14:08		
				Titanium, Total ICP-AES		12/11/19 09:53	12/12/19 14:08		
				Selenium, Total ICP-AES		12/11/19 09:53	12/12/19 14:08		
				Antimony, Total ICP-AES		12/11/19 09:53	12/12/19 14:08		
				Lead, Total ICP-AES		12/11/19 09:53	12/12/19 13:17		
				Phosphorus, Total ICP-AES		12/11/19 09:53	12/12/19 14:08		
				Copper, Total ICP-AES		12/11/19 09:53	12/12/19 14:08		
				Chromium, Total ICP-AES		12/11/19 09:53	12/12/19 14:08		
				Silver, Total ICP-AES		12/11/19 09:53	12/12/19 13:17		
				Cadmium, Total ICP-AES		12/11/19 09:53	12/12/19 14:08		
				Barium, Total ICP-AES		12/11/19 09:53	12/12/19 14:08		
				Arsenic, Total ICP-AES		12/11/19 09:53	12/12/19 14:08		
				Manganese, Total ICP-AES		12/11/19 09:53	12/12/19 14:08		
				Cobalt, Total ICP-AES		12/11/19 09:53	12/12/19 14:08		
				Mercury, Total CVAA		12/11/19 10:35	12/11/19 14:24	B9L0421	S9L0229
L0297-01	FETP			Chromium, Total ICP-AES		12/11/19 09:53	12/12/19 14:13	B9L0408	S9L0269
				Cobalt, Total ICP-AES		12/11/19 09:53	12/12/19 14:13		
				Cadmium, Total ICP-AES		12/11/19 09:53	12/12/19 14:13		
				Beryllium, Total ICP-AES		12/11/19 09:53	12/12/19 13:21		
				Barium, Total ICP-AES		12/11/19 09:53	12/12/19 14:13		
				Silver, Total ICP-AES		12/11/19 09:53	12/12/19 13:21		

Des Plaines, Illinois 60016

P 847.967.6666

800.246.0663

F 847.967.6735

www.emt.com

Dates Report

(Continued)

Client: Project:

Reserve Management Group

Residential Soil Analysis

Report Date: 12/13/2019

amula IO	Office Community ID				Leached				
ample ID	Cilent Sample ID	Collection	Matrix	Test Name	Prep Date	Prep Date	Analysis Date	Batch ID	Sequenc
9L0297-01	FETP	12/05/19	Soil	Nickel, Total ICP-AES		12/11/19 09:53	12/12/19 14:13	B9L0408	\$91,0269
				Manganese, Total ICP-AES		12/11/19 09:53	12/12/19 13:21		
				Arsenic, Total ICP-AES		12/11/19 09:53	12/12/19 14 13		
				Zinc, Total ICP-AES		12/11/19 09:53	12/12/19 12:57		
				Phosphorus, Total ICP-AES		12/11/19 09:53	12/12/19 14 13		
				Lead, Total ICP-AES		12/11/19 09:53	12/12/19 12:57		
				Antimony, Total ICP-AES		12/11/19 09:53	12/12/19 14:13		
				Selenium, Total ICP-AES		12/11/19 09:53	12/12/19 14:13		
				Titanium, Total ICP-AES		12/11/19 09:53	12/12/19 14:13		
				Thallium, Total ICP-AES		12/11/19 09:53	12/12/19 14:13		
				Copper, Total ICP-AES		12/11/19 09:53	12/12/19 13:21		
				Mercury, Total CVAA		12/11/19 10:35	12/11/19 14:18	B9L0421	\$9L0229
)L0298-01	RDWY			Manganese, Total ICP-AES		12/11/19 09:53	12/12/19 14:18	B9L0408	S9L0269
				Thallium, Total ICP-AES		12/11/19 09:53	12/12/19 14:18		
				Antimony, Total ICP-AES		12/11/19 09:53	12/12/19 14:18		
				Selenium, Total ICP-AES		12/11/19 09:53	12/12/19 14:18		
				Lead, Total ICP-AES		12/11/19 09:53	12/12/19 13:26		
				Phosphorus, Total ICP-AES		12/11/19 09:53	12/12/19 14:18		
			Nickel, Total ICP-AES		12/11/19 09:53	12/12/19 14:18			
				Zinc, Total ICP-AES		12/11/19 09:53	12/12/19 13:26		
				Silver, Total ICP-AES		12/11/19 09:53	12/12/19 13:26		
				Chromium, Total ICP-AES		12/11/19 09:53	12/12/19 14:18		
				Cobalt, Total ICP-AES		12/11/19 09:53	12/12/19 14:18		
				Cadmium, Total ICP-AES		12/11/19 09:53	12/12/19 14:18		
				Titanium, Total ICP-AES		12/11/19 09:53	12/12/19 14:18		
				Beryllium, Total ICP-AES		12/11/19 09:53	12/12/19 13/26		
				Barium, Total ICP-AES		12/11/19 09:53	12/12/19 14:18		
				Arsenic, Total ICP-AES		12/11/19 09:53	12/12/19 14:18		
				Copper, Total ICP-AES		12/11/19 09:53	12/12/19 14:18		
				Mercury, Total CVAA		12/11/19 10:35	12/11/19 14:20	B9L0421	\$9L0229
L0299-01	NFETP			Nickel, Total ICP-AES		12/11/19 09:53	12/12/19 14:31	B9L0408	S9L0269
				Titanium, Total ICP-AES		12/11/19 09:53	12/12/19 14:31		
				Selenium, Total ICP-AES		12/11/19 09:53	12/12/19 14:31		
				Beryllium, Total ICP-AES		12/11/19 09:53	12/12/19 13:39		
				Antimony, Total ICP-AES		12/11/19 09:53	12/12/19 14:31		
				Zinc, Total ICP-AES		12/11/19 09:53	12/12/19 13:05		
				Lead, Total ICP-AES		12/11/19 09:53	12/12/19 13:05		
				Phosphorus, Total ICP-AES		12/11/19 09:53	12/12/19 14:31		
				Thallium, Total ICP-AES		12/11/19 09:53	12/12/19 14:31		
				Manganese, Total ICP-AES		12/11/19 09:53	12/12/19 13:39		
				Copper, Total ICP-AES		12/11/19 09:53	12/12/19 13:39		
				Chromium, Total ICP-AES		12/11/19 09:53	12/12/19 14:31		

Des Plaines, Illinois 60016

P 847.967.6666

800.246.0663

F 847.967.6735

www.emt.com

Dates Report

(Continued)

Client:

Reserve Management Group

Report Date: 12/13/2019

Project:

Residential Soil Analysis

Work Order:

19L0295,19L0296,19L0297,19L0298,19L0299

					Leached				
Sample ID	Client Sample ID	Collection	Matrix	Test Name	Prep Date	Prep Date	Analysis Date	Batch ID	Sequence
19L0299-01	NFETP	12/05/19	Soil	Cadmium, Total ICP-AES		12/11/19 09:53	12/12/19 14:31	B9L0408	\$9L0269
				Barium, Total ICP-AES		12/11/19 09:53	12/12/19 14:31		
				Arsenic, Total ICP-AES		12/11/19 09:53	12/12/19 14:31		
				Silver, Total ICP-AES		12/11/19 09:53	12/12/19 13:39		
				Cobatt, Total ICP-AES		12/11/19 09:53	12/12/19 14:31		
				Mercury, Total CVAA		12/11/19 10:35	12/11/19 14:22	B9L0421	\$9L0229

509 N. 3rd Avenue Des Plaines, Illinois 60016

P 847.967.6666

800.246.0663

F 847.967.6735

www.emt.com

Quality Control

Client: Project: Reserve Management Group

Report Date: 12/13/2019

Residential Soil Analysis

Matrix: Solid

Work Order:

19L0295, 19L0296, 19L0297, 19L0298, 19L0299

Metals by ICP-AES

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch: B9L0408 - SW3050					_		-			
Blank (B9L0408-BLK1)				Prepared	: 12/11/2019	09:53	Analyzed: 12	/12/2019	12:25	
Antimony	< 2,50	2.50	mg/Kg							
Arsenic	< 2.50	2.50	mg/Kg							
Barium	< 2.50	2.50	mg/Kg							
Beryllium	< 0.250	0.250	mg/Kg							
Cadmium	< 0.250	0,250	mg/Kg							
Chromium	< 2.50	2.50	mg/Kg							
Cobalt	< 2.50	2.50	mg/Kg							
Copper	< 2.50	2.50	mg/Kg							
Lead	< 2.50	2.50	mg/Kg							
Manganese	< 2.50	2.50	mg/Kg							
Nickel	< 2.50	2,50	mg/Kg							
Phosphorus	< 12.5	12.5	mg/Kg							
Selenium	< 2.50	2.50	mg/Kg							
Silver	< 2.50	2.50	mg/Kg							
Thallium	< 2.50	2.50	mg/Kg							
Titanium	< 2.50	2.50	mg/Kg							
Zinc	< 2,50	2,50	mg/Kg							
										
LCS (B9L0408-BS1)				Prepared	: 12/11/2019	09:53	Analyzed: 12	/12/2019	12:29	
Antimony	51.5	2.50	mg/Kg	50.00		103	80-105			
Arsenic	47,6	2,50	mg/Kg	50.00		95.1	80-107			
Barium	50,4	2.50	mg/Kg	50.00		101	80-109			
Beryllium	4.90	0.250	mg/Kg	5.000		98.1	81.9-112			
Cadmium	5.10	0.250	mg/Kg	5.000		102	80-110			
Chromium	49.8	2.50	mg/Kg	50.00		99.5	80-111			
Cobalt	51.2	2.50	mg/Kg	50.00		102	85-110			
Copper	52.0	2.50	mg/Kg	50.00		104	84.8-108			
Lead	47.3	2.50	mg/Kg	50.00		94.6	80-111			
Manganese	50.0	2.50	mg/Kg	50.00		100	82.3-108			
Nickel	48.3	2.50	mg/Kg	50,00		96.6	83.5-107			
Phosphorus	249	12.5	mg/Kg	250.0		99.6	80-120			
Selenium	47.6	2.50	mg/Kg	50.00		95.2	80-106			
Silver	4.90	2.50	mg/Kg	5.000		98.0	80-116			
Thallium	49.9	2.50	mg/Kg	50.00		99.8	80-112			
Titanium	48.1	2.50	mg/Kg	50.00		96.2	80-120			
Zinc	49.5	2.50	mg/Kg	50,00		98.9	80-110			
	So	urce: 19L033	34-04RE1	Prepared	: 12/11/2019	09:53	Analyzed: 12	/12/2019	13:59	
Serial Dilution (B9L0408-DUP1)						100				
	3.23	5.76	ma/Ka		3,53			8,87	10	
Beryllium	3.23	5.76 57.6	mg/Kg mg/Kg					8.87 7.48	10 10	
Serial Dilution (B9L0408-DUP1) Beryllium Copper Manganese		5.76 57,6 57.6	mg/Kg mg/Kg mg/Kg		3.53 18.4 423			8.87 7.48 1.25	10 10 10	

RPD

Umit

Qual

509 N. 3rd Avenue

Des Plaines, Illinois 60016

P 847.967.6666

800.246.0663

F 847.967.6735

www.emt.com

Quality Control

(Continued)

Client: Project:

Analyte

Zinc

Reserve Management Group

Residential Soil Analysis

Report Date: 12/13/2019

%REC

Limits

RPD

%REC

81.7

75-125

Matrix: Solid

Work Order:

19L0295, 19L0296, 19L0297, 19L0298, 19L0299

Metals by ICP-AES

(Continued)

Units

Spike

Level

Source

Result

Reporting

Limit

Result

Cartal Dilution (DOI 0400 DIID4) (Cartinual)	Sam	rce: 19L033	A-NARE4	Dronarod	12/11/2010 00 52	Analyzed: 12/12/2019	13:50	
Serial Dilution (B9L0408-DUP1) (Continued) Zinc	44.4	57.6	mg/Kg	Prepareu.	44.0	0.730	10	
				_ 0.40 73	12	. 42 8		
Serial Dilution (B9L0408-DUP2)	Soul	rce: 19L033	54-04KEZ	Prepared:	12/11/2019 09:53	Analyzed: 12/12/2019	74.54	
Antimony	< 2.30	5.76	mg/Kg		ND		10	
Arsenic	3.50	5.76	mg/Kg		3.19	9.22	10	
Barium	48.1	5,76	mg/Kg		45.1	6.44	10	
Cadmium	< 0.161	0.576	mg/Kg		ND		10	
Chromium	31.1	5.76	mg/Kg		27.2	13.3	10	P
Cobalt	10.0	5.76	mg/Kg		8.80	13.1	10	P
Lead	14.1	5.76	mg/Kg		13.4	4.96	10	
Nickel	23.7	5.76	mg/Kg		20.7	13.6	10	P
Phosphorus	231	28,8	mg/Kg		213	7.96	10	
Selenium	< 2.26	5.76	mg/Kg		ND		10	
Thallium	< 1.96	5.76	mg/Kg		ND		10	
Titanium	46.5	5.76	mg/Kg		42.2	9.79	10	
MRL Check (B9L0408-MRL1)			_	Prepared:	12/11/2019 09:53	Analyzed: 12/12/2019	12.33	
Antimony	2.52	2.50	mg/Kg	2.500	101	70-130		
Arsenic	2.52	2.50	mg/Kg	2.500	101	70-130		
Barium	2.63	2,50	mg/Kg	2,500	105	70-130		
Beryllium	0.245	0.250	mg/Kg	0.2500	98.0	70-130		
Cadmium	0.260	0.250	mg/Kg	0.2500	104	70-130		
Chromium	2.66	2,50	mg/Kg	2,500	107	70-130		
Cobalt	2.10	2.50	mg/Kg	2.000	105	70-130		
Copper	2.68	2.50	mg/Kg	2.500	107	70-130		
Lead	2,46	2.50	mg/Kg	2.500	98.6	70-130		
Manganese	2.62	2.50	mg/Kg	2.500	105	70-130		
Nickel	2.44	2.50	mg/Kg	2.500	97.8	70-130		
Phosphorus	14.0	12.5	mg/Kg	12.50	112	70-130		
Selenium	2.89	2.50	mg/Kg	2.500	116	70-130		
Silver	0.270	2.50	mg/Kg	0.2500	108	70-130		
Thallium	2.60	2.50	mg/Kg	2.500	104	70-130		
Titanium	2.50	2.50	mg/Kg	2.500	100	70-130		
Zinc	3.10	2.50	mg/Kg	2.500	124	70-130		
Matrix Spike (B9L0408-MS1)	Sou	rce: 19L03	34-04RE1	Prepared:	12/11/2019 09:53	Analyzed: 12/12/2019	13:47	
Beryllium	5.83	1,20	mg/Kg	2,408	3.53 95.6	75-125		
Copper	41.9	12.0	mg/Kg	24.08	18.4 97.7	75-125		
Manganese	332	12.0	mg/Kg	24.08	423 NR	75-125		S
Silver	< 1.44	12.0	mg/Kg	2,408	ND	75-125		S

mg/Kg

12.0

63.7

24.08

44.0

509 N. 3rd Avenue Des Plaines, Illinois 60016

P 847.967.6666

800.246.0663

F 847.967.6735

www.emt.com

Quality Control

(Continued)

Client:

Reserve Management Group

_

Report Date: 12/13/2019

Project:

Residential Soil Analysis

Matrix: Solid

i ioject.

Work Order:

19L0295, 19L0296, 19L0297, 19L0298, 19L0299

Metals by ICP-AES

(Continued)											
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual	
Batch: B9L0408 - SW3050 (Continued)											
Matrix Splke (B9L0408-MS2)	So	urce: 19L033	4-04RE2	Prepared	1: 12/11/2019	9 09:53	Analyzed: 12	/12/2019	14:40		
Antimony	0.508	1.20	mg/Kg	24.08	ND	2.11	75-125			S	
Arsenic	22,0	1,20	mg/Kg	24,08	3.19	78.2	75-125				
Barium Barium	63,5	1.20	mg/Kg	24.08	45.1	76.7	75-125				
Cadmium	1.69	0.120	mg/Kg	2.408	ND	70.3	75-125			S	
Chromium	46.6	1.20	mg/Kg	24.08	27.2	80.7	75-125				
Cobalt	24.2	1.20	mg/Kg	24.08	8.80	64.1	75-125			S	
Lead	28,9	1,20	mg/Kg	24.08	13.4	64,4	75-125			s	
Nickel	34.2	1,20	mg/Kg	24.08	20,7	56.4	75-125			s	
Phosphorus	306	6.02	mg/Kg	120.4	213	77.4	75-125				
Selenium	14.9	1.20	mg/Kg	24.08	ND	61.9	75-125			s	
Thallium	15.4	1.20	mg/Kg	24.08	ND	64.1	75-125			s	
Titanium	46.2	1.20	mg/Kg	24.08	42.2	16.5	75-125			S	
Matrix Spike Dup (B9L0408-MSD1)	So	urce: 19L033	34-04RE1	Prepared	i: 12/11/201	9 09.53	Analyzed: 12	/12/2019	13:51	- 200	
Bervllium	5.43	1.22	mg/Kg	2.436	3.53	78.3	75-125	7.02	20		
Copper	39.2	12.2	mg/Kg	24.36	18.4	85.3	75-125	6.79	20		
Manganese	436	12.2	mg/Kg	24.36	423	55.1	75-125	27.2	20	P, S	
Silver	< 1.46	12.2	mg/Kg	2.436	ND		75-125		20	S	
Zinc	62.8	12.2	mg/Kg	24.36	44.0	76.9	75-125	1.48	20		
Matrix Spike Dup (B9L0408-MSD2)	So	urce: 19L033	34-04RE2	Prepared	i: 12/11/201	9 09:53	Analyzed: 12	/12/2019	14:45		
Antimony	1.12	1.22	mg/Kg	24.36	ND	4.60	75-125	75.2	20	P, S	
Arsenic	21.5	1.22	mg/Kg	24.36	3.19	74.9	75-125	2.70	20	S	
Barium	65.1	1.22	mg/Kg	24.36	45.1	82.3	75-125	2.44	20		
Cadmium	1.73	0.122	mg/Kg	2.436	ND	71.2	75-125	2.43	20	s	
Chromium	45.2	1,22	mg/Kg	24.36	27.2	73,8	75-125	3,17	20	s	
	25.7	1.22			8.80	69.5	75-125	6.01	20	s	
Cobalt	,	1.44	mg/Kg	24.36	0,00						
Cobalt Lead	28.2		mg/Kg mg/Kg	24.36 24.36	13.4	60.7	75-125	2.57	20	S	
Lead	28.2 36.4	1.22	mg/Kg			60.7 64.8	75-125 75-125	2.57 6.23	20 20	S S	
Lead Nickel	36.4	1.22 1.22	mg/Kg mg/Kg	24.36 24.36	13.4 20.7	64.8	75-125	6.23	20	S	
Lead Nickel Phosphorus	36.4 295	1.22 1.22 6.09	mg/Kg mg/Kg mg/Kg	24.36 24.36 121.8	13.4 20.7 213	64.8 67.0	75-125 75-125	6.23 3.84	20 20	s s	
Lead Nickel Phosphorus Selenium	36.4 295 15.6	1.22 1.22 6.09 1.22	mg/Kg mg/Kg mg/Kg mg/Kg	24.36 24.36 121.8 24.36	13.4 20.7 213 ND	64.8 67.0 64.2	75-125 75-125 75-125	6.23 3.84 4.80	20 20 20	s s s	
Lead Nickel Phosphorus	36.4 295	1.22 1.22 6.09	mg/Kg mg/Kg mg/Kg	24.36 24.36 121.8	13.4 20.7 213	64.8 67.0	75-125 75-125	6.23 3.84	20 20	s s	
Lead Nickel Phosphorus Salenium Thallium	36.4 295 15.6 16.1 67.9	1.22 1.22 6.09 1.22 1.22	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	24.36 24.36 121.8 24.36 24.36 24.36	13.4 20.7 213 ND ND 42.2	64.8 67.0 64.2 66.1 105	75-125 75-125 75-125 75-125	6.23 3.84 4.80 4.15 38.0	20 20 20 20 20 20	S S S	
Lead Nickel Phosphorus Selenium Thallium Titanium Post Spike (B9L0408-PS1)	36.4 295 15.6 16.1 67.9	1.22 1.22 6.09 1.22 1.22 1.22	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	24.36 24.36 121.8 24.36 24.36 24.36 Prepared	13.4 20.7 213 ND ND 42.2	64.8 67.0 64.2 66.1 105	75-125 75-125 75-125 75-125 75-125 75-125 Analyzed: 12	6.23 3.84 4.80 4.15 38.0	20 20 20 20 20 20	S S S	
Lead Nickel Phosphorus Selenium Thallium Titanium Post Spike (B9L0408-PS1) Beryllium	36.4 295 15.6 16.1 67.9	1.22 1.22 6.09 1.22 1.22 1.22 9urce: 19L03	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	24.36 24.36 121.8 24.36 24.36 24.36 <i>Prepared</i>	13.4 20.7 213 ND ND 42.2 4: 12/11/201:	64.8 67.0 64.2 66.1 105 9 09:53	75-125 75-125 75-125 75-125 75-125 75-125 Analyzed: 12 80-120	6.23 3.84 4.80 4.15 38.0	20 20 20 20 20 20	S S S	
Lead Nickel Phosphorus Selenium Thallium Titanium Post Spike (B9L0408-PS1) Beryllium Copper	36.4 295 15.6 16.1 67.9 Sc 120 143	1.22 1.22 6.09 1.22 1.22 1.22 9urce: 19L033	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	24.36 24.36 121.8 24.36 24.36 24.36 Prepared 115.2 115.2	13.4 20.7 213 ND ND 42.2 4: 12/11/201: 3.53 18.4	64.8 67.0 64.2 66.1 105 9 09:53	75-125 75-125 75-125 75-125 75-125 Analyzed: 12 80-120 80-120	6.23 3.84 4.80 4.15 38.0	20 20 20 20 20 20	S S S	
Lead Nickel Phosphorus Selenium Thallium Titanium Post Spike (B9L0408-PS1) Beryllium	36.4 295 15.6 16.1 67.9	1.22 1.22 6.09 1.22 1.22 1.22 9urce: 19L03	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	24.36 24.36 121.8 24.36 24.36 24.36 <i>Prepared</i>	13.4 20.7 213 ND ND 42.2 4: 12/11/201:	64.8 67.0 64.2 66.1 105 9 09:53	75-125 75-125 75-125 75-125 75-125 75-125 Analyzed: 12 80-120	6.23 3.84 4.80 4.15 38.0	20 20 20 20 20 20	S S S	

Des Plaines, Illinois 60016

P 847.967.6666

800.246.0663

F 847.967.6735

www.emt.com

Quality Control

(Continued)

Client: Project: Reserve Management Group

Residential Soil Analysis

Report Date: 12/13/2019

Matrix: Solid

Work Order:

19L0295, 19L0296, 19L0297, 19L0298, 19L0299

Metals by ICP-AES

(Continued)

	Booult	Reporting	Unite	Spike	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Analyte	Result	Limit	Units	Level	Result	76REC	Limits	KPD	CITTIL	Quai

Ratch:	B9L0408 -	SW2050	(Continued)
Dalli.	DJLU4U0 -	2112020	(CONUNITABLE)

Post Spike (B9L0408-PS2)	Soul	rce: 19L0334	-04RE2	Prepared	: 12/11/201	9 09.53	Analyzed: 12/12/2019 14:49	
Antimony	8.53	1,28	mg/Kg	12.80	ND	66.6	80-120	s
Arsenic	15,2	1.28	mg/Kg	12.80	3.19	94.1	80-120	
Barium	59.6	1.28	mg/Kg	12.80	45.1	114	80-120	
Cadmium	10.8	0,128	mg/Kg	12.80	ND	84.2	80-120	
Chromium	39.7	1.28	mg/Kg	12.80	27.2	97.4	80-120	
Cobalt	20.2	1.28	mg/Kg	12.80	8.80	88.7	80-120	
Lead	23,6	1.28	mg/Kg	12.80	13.4	80.0	80-120	
Nickel	31.9	1.28	mg/Kg	12.80	20.7	87.8	80-120	
Phosphorus	229	6.40	mg/Kg	12.80	213	125	80-120	S
Selenium	8.96	1,28	mg/Kg	12.80	ND	70.0	80-120	S
Thallium	9,34	1.28	mg/Kg	12.80	ND	72.9	80-120	S
Titanium	55.4	1.28	mg/Kg	12.80	42.2	103	80-120	
Reference (B9L0408-SRM1)		100		Prepared	l: 12/11/201	9 09:53	Analyzed: 12/12/2019 12:37	
Antimony	16.8	25.0	mg/Kg	12.70		133	50-150	
Arsenic	92.0	25.0	mg/Kg	111.3		82.7	50-150	
Barium	357	25.0	mg/Kg	304.9		117	50-150	
Beryllium	109	2,50	mg/Kg	101.6		107	50-150	
Cadmium	78.6	2.50	mg/Kg	88.94		88.4	50-150	
Chromium	177	25.0	mg/Kg	152.5		116	50-150	
Cobalt	41.3	25.0	mg/Kg	46.70		88.4	50-150	
Copper	90.1	25.0	mg/Kg	76.23		118	50-150	
Lead	142	25.0	mg/Kg	127.0		112	50-150	
Manganese	237	25.0	mg/Kg	228.7		104	50-150	
Nickel	139	25.0	mg/Kg	161.6		86.3	50-150	
Selenium	59.2	25.0	mg/Kg	50.82		116	50-150	
Silver	22.1	25.0	mg/Kg	15.25		145	50-150	
Thallium	40.4	25.0	mg/Kg	50.11		80.7	50-150	
Titanium	215	25.0	mg/Kg	287.1		74.8	50-150	
Zinc	144	25.0	mg/Kg	158.1		91.0	50-150	

Des Plaines, Illinois 60016

P 847.967.6666

800.246.0663

F 847.967.6735

www.emt.com

Quality Control

(Continued)

Client:

Reserve Management Group

Report Date: 12/13/2019

Matrix: Solid

Project:

Residential Soil Analysis

Work Order: 19L

19L0295, 19L0296, 19L0297, 19L0298, 19L0299

Mercury by CVAA

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch: B9L0421										
Blank (B9L0421-BLK1)				Prepared:	12/11/2019	10.35	Analyzed:	12/11/2019	13:48	
Mercury	< 0.100	0,100	mg/Kg							
LCS (B9L0421-BS1)				Prepared:	12/11/2019	10:35	Analyzed:	12/11/2019	13:50	
Mercury	0.504	0.100	mg/Kg	0.5000		101	89.7-115	5		
MRL Check (B9L0421-MRL1)				Prepared:	12/11/2019	10:35	Analyzed:	12/11/2019	13:42	
Mercury	0.218	0.100	mg/Kg	0.2000		109	70-130			
Matrix Spike (B9L0421-MS1)		Source: 19	K0764-02	Prepared:	12/11/2019	10:35	Analyzed:	12/11/2019	14.12	
Mercury	0.447	0.097	mg/Kg	0,4853	ND	92,2	75-125			
Matrix Spike Dup (B9L0421-MSD1)		Source: 19	K0764-02	Prepared:	12/11/2019	10:35	Analyzed:	12/11/2019	14:14	
Mercury	0.452	0.097	mg/Kg	0.4837	ND	93.5	75-125	1.06	20	
Reference (B9L0421-SRM1)				Prepared:	12/11/2019	10:35	Analyzed:	12/11/2019	13:51	
Mercury	0.147	0.100	mg/Kg	0.1832		80.3	50-150			

Des Plaines, Illinois 60016

P 847.967.6666

800.246.0663

F 847.967.6735

www.emt.com

Certified Analyses included in this Report

SW6010C in Solid		
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
Antimony	7440-36-0	DoD,ISO,WDNR,ILEPA
Arsenic	7440-38-2	DoD,ISO,AKDEC,WDNR,ILEPA
Barium	7440-39-3	DoD,ISO,AKDEC,WDNR,ILEPA
Beryllium	7440-41-7	DoD,ISO,WDNR,ILEPA
Cadmium	7440-43-9	DoD,ISO,AKDEC,WDNR,ILEPA
Chromium	7440-47-3	DoD,ISO,AKDEC,WDNR,ILEPA
Cobalt	7440-48-4	DoD,ISO,WDNR,ILEPA
Copper	7440-50-8	DoD,ISO,WDNR,ILEPA
Lead	7439-92-1	DoD,ISO,AKDEC,WDNR,ILEPA
Manganese	7439-96-5	DoD,ISO,WDNR,ILEPA
Nickel	7440-02-0	DoD,ISO,AKDEC,WDNR,ILEPA
Phosphorus	7723-14-0	DoD
Selenium	7782-49-2	DoD,ISO,WDNR,ILEPA
Silver	7440-22-4	DoD,ISO,WDNR,ILEPA
Thallium	7440-28-0	DoD,WDNR,ILEPA
Titanium	7440-32-6	DoD,WDNR,ILEPA
Zinc	7440-66-6	DoD,ISO,WDNR,ILEPA
SW7471B in Solid		
Mercury	7439-97 - 6	ISO,DoD,WDNR,ILEPA

List of Certifications

Code	Description	Number	Expires
AKDEC	State of Alaska, Dept. Environmental Conservation	17-011	04/30/2020
CPSC	US Consumer Product Safety Commission, Accredited by PJLA Lab No. 1050	L18-184-R1	04/30/2020
DoD	Department of Defense, Accredited by PJLA	L18-183-R3	04/30/2020
ILEPA	State of Illinois, NELAP Accredited Lab No. 100256	004524	01/31/2020
ISO	ISO/IEC 17025, Accredited by PJLA	L18-184-R1	04/30/2020
WDNR	State of Wisconsin Dept of Natural Resources	999888890	08/31/2020

Des Plaines, Illinois 60016

P 847.967.6666

800.246.0663

F 847.967.6735

www.emt.com

Qualifiers and Definitions

Item	Description
Р	The quality control sample %RPD is above the laboratory control limit.
Q	One or more quality control results were outside of the acceptance limits (e.g. LCS recovery, surrogate spike recovery, or CCV recovery).
S	The quality control sample recovery is outside of the laboratory control limits.
S3	The percent recovery was outside the limits, but the analyte is reported within the calibration range. Data is acceptable.
%Rec	Percent Recovery

ENVIRONME MONITORING TECHNOLOGIES

Morton Grove, Illinois 60053-320:

8100 North Austin Avenue

19L0295
PM: Mark Steuer
Reserve Management Group
Residential Soil Analysis

n of Custody Record

TURNAROUND TIME:	
RUSH	
day turnaround	
ROUTINE	

6666 -967-6735 nt.com

Due Date: <u>12 -10 -19 COC #: 229008</u>

Company: GENER Address: Phone #: (440) 287 P.O. #: Client Contact: MARK Project ID / Location:	-7209	F	ox #: (roj.#:	>			2. Drink 3. Soil Contai P - Plas G - Gla Presen 1) None 2. H2SO 3. HNO	ing Water, ing Water tic V- iss B- vative: 4. No. 14. S. Hold	6. Groui VOC Viai Tediar Bag IoOH 7.2	ndwater O- Other	ər						Analy	EMT USE ONLY EMT WORKORDER
Sample I.D.	Sample Type		containe Type		By	S Date	ampling Time	рН	Temp.	Prese Field	rvation Lab	/ \$\$	" /	/_/	//		//	#1910295
FERDWY				1	JK	12/5						X						OIA
Relinquished By: Relinquished By:	T C	Pate: //2 Ime: Pate: Ime: Pate:	2-5 : - :	-19		#			Date: Time: Date: Time: Time: Time:			Cile	Project of No.	e: t I.D.	211	lad	TEM	MPLE RECEIVED HICE MPERATURE 20.0 T SAMPLE RETURN DUCY ON BACK

SPECIAL INSTRUCTIONS

Add to fog is letter " must i've sound the gize soo soir prior to analy

R 001855

Sample Receipt Checklist

Work Order: 19L0295

Printed: 12/5/2019 4:52:12PM

Client: Reserve Management Group
Project: Residential Soil Analysis

Date Due:

12/10/19 17:00 (3 day TAT)

Received By: Agnieszka B. Zabawa Logged In By: Agnieszka B. Zabawa

PM or Client Contacted

Date Received:

12/05/19 15:20

Date Logged In: 12/05/19 16:48

20°C Samples Received at: How were samples received? Client No Custody Seals Present NA **Custody Seals Intact** Sample Cont/Cooler Intact Yes No CQC Present/Complete 1 Yes COC/Labels Agree Proper Cont/Preservation checked Yes Yes Sufficient Sample Volume Samples Within Holdtime Yes Cooler Temp Within Limits No No VOA Water Vials Received VOA Water Vials/Zero Headspace NA

COMMENTS
COC missing sample time.

ABZ 12/5/A

No

ENVIRONMEN MONITORING A TECHNOLOGIES,

8100 North Austin Avenue Morton Grove, Illinois 60053-3203

PM: Mark Steuer

Reserve Management Group Residential Soil Analysis

of Custody Record

TURNAROUND TIME:
RUSH
day turnaround
ROUTINE

66 57-6735

www.emt.com

Due Date: 12 - 19 - 19 COC # 229005

Company: GENERAL Address: Phone #: 440 287 P.O. #: Client Contact: MAR Project ID / Location:	- 720; K We!!	9 F	ax#: (1 » Was 2. Dyini 3. Soil Conta P - Plas G - Gk	king Work tiner Typ tilc V - css B - valive: 9 4. N 4 5. H	6. Grou 9: VOC Vial Tedlar Bag IaOH 7.	ndwater 6- Oth	7. Groun B) Other er			red)			<i>!</i>	Analy	EMT USE ONLY
Sample I.D.	Sample		Contain				ampling				rvatlor			/ /		/ /	/.	//	WORKORDER
	Туре	Size	- Туре	No.	Ву	Date	Time	рН	Temp.	Field	Lab								#19L0296 mm
ASKKOWY				1	JK	12/5					ATO STATE OF	X							OIA
		.50									4 (0)3								
											# 10 M								
			20					, -										\Box	
								92			186								
	100									74	e i a		T						56 - 50
* 4	, T	•			÷	*					, 建设				1				
				1								П	十						
			161										\top				_		
. 1/1				_		2							十	\top	\vdash	+			Take Take
Relinquished by:		ate: <i> 2</i> me:	2-5	-19	Receive	ed By:			Date: Time:	- :	-		T USE	ONLY		Mile Ser	rena i	ON	IPLE RECEIVED ICE PERATURE
Relinquished By:		ate: me:	. **	7-9	Receive	ed By:	1		Date: Time:	:	-	- Committee			L	5.1		1870	20.0
Reilnquished By:	D	ate:	8	38	Receive	ed For Lo	b By:		Date:	12 5	19	Jar	Lot N	lo.	U P	=**	13.0 ₁		
	Tir	me:	N W		Am	In h	h		Time:	15:2		GUL.		San S			-	EMT	SAMPLE RETURN LICY ON BACK
PECIAL INSTRUCTIO	M/C.				1									107.27					

Add to Log in Notes - , " Must fun sample thru size 200 reine prount analysis!

Sample Receipt Checklist

Work Order: 19L0296

Printed: 12/5/2019 5:01:50PM

Client: Reserve Management Group

Project: Residential Soil Analysis

Date Due:

12/10/19 17:00 (3 day TAT)

Received By: Agnieszka B. Zabawa Date Received: 12/05/19 15:20
Logged In By: Agnieszka B. Zabawa Date Logged In: 12/05/19 16:52

20°C Samples Received at: Client How were samples received? **Custody Seals Present** No NA Custody Seals Intact Sample Cont/Cooler Intact Yes COC Present/Complete No L Yes COC/Labels Agree Yes Proper Cont/Preservation checked Sufficient Sample Volume Yes Samples Within Holdtime Yes Cooler Temp Within Limits No VOA Water Vials Received No VOA Water Vials/Zero Headspace NA No PM or Client Contacted

COMMENTSCOC missing sample time.

12/5/17

ENVIRONME MONITORING

Morton Grove, Illinois 60053-320

8100 North Austin Avenue

PM: Mark Steuer Reserve Management Group Residential Soil Analysis

in of Custody Record

TURNAROUND TIME:
RUSH
day turnaround
ROUTINE

7-6666 7-967-6735 www.emt.com

Due Date: 12 _ 10 _ 19 COC #: 151417

Company: CTENERAL Address: Phone #: (440)287 P.O. #: Client Contact: MARK Project ID / Location:	720g	9 F	ax #: (_ Proj.#:				2. Drink 3. Soil Contai P - Plas	re Water ting Water tic V - ss B - valive: 9 4, N 24 5. H	er 5. Oll 6. Grou e: VOC Vial Tedlar Bag	ndwater O-Oth	7. Ground Other er						And	alyse	EMT USE ONLY
Sample I.D.	Sample		Contain			, , , , , , , , , , , , , , , , , , , ,	Sampling				rvation		§/ /	/ /	/ /	//	/ /	//	WORKORDER
·	Туре	Size =	Туре	No.	Ву	Date	Time	рН	Temp.	Field	Lab			/ /		/_/		/_/_	#1910297
FETP				1	JR	12/5						X							OIA
		16		-				Ď.			A STATE OF								
								III h		5.5	THE STATE OF					>	\top		
	ì							94-									1	\top	•
						-		V.			. 政	1	-	1					
								4					_			\top	+		
/E				13											1 1				
•				1											1 1				
							•	1			Digital Control						11		
1		15																	
Relinguished By:	- 1	ate:/2 ime:	-5	-19	Receive	ed By:		71	Date: Time:	- :	-	ALC: UNIVERSE	USE C	1.00		1		ON IC	1分/元/3
Relinquished By:		ate: ime:	a	igr	Receive	ed By:	112	. V.	Date: Time:	9 :	-	FMT	Prole	Control of the late of	15			Must be was gre- sample	RATURE e recorded if sampling a oter than 6 hrs. prior to receipt)
Relinquished By:	-	ate: ime:	- :	_		ed For La			Date: Time:			Jar I	ot No				À	20 EMT S	AMPLE RETURN S

Page 25 of 30

EMT-FORM-GEN-028 ANd 6 Login Abtes " Most find Sample three size 2005 Seive Prior 4

Sample Receipt Checklist

Work Order: 19L0297

Printed: 12/5/2019 4:55:05PM

Client: Reserve Management Group

Project: Residential Soil Analysis

Date Due:

12/10/19 17:00 (3 day TAT)

Received By: Agnieszka B. Zabawa Date Received: 12/05/19 15:20
Logged In By: Agnieszka B. Zabawa Date Logged In: 12/05/19 16:54

20°C Samples Received at: Client How were samples received? No **Custody Seals Present** NA **Custody Seals Intact** Sample Cont/Cooler Intact Yes No **COC Present/Complete** COC/Labels Agree Yes Yes Proper Cont/Preservation checked Sufficient Sample Volume Yes Samples Within Holdtime Yes Cooler Temp Within Limits No VOA Water Vials Received No VOA Water Vials/Zero Headspace NA PM or Client Contacted No

COMMENTS
COC missing sample time.

ABZ 12/5/19

ENVIRONMENT MONITORING A TECHNOLOGIES, I

Morton Grove, Illinois 60053-3203

8100 North Austin Avenue

191.0298

19L0298 PM: Mark Steuer Reserve Management Group Residential Soil Analysis

of Custody Record

-6735

TURNAROUND TIME:
RUSH
day turnaround
ROUTINE

Due Date: 12-10-19 COC #: 229004

Phone #: (440) 287 P.O. #: Client Contact: MA Project ID / Location:	rk Wei	Conta P - Plas G - Glo Preser 1. None 2. HzSC 3. HNO	er		//		//		EMT											
Sample I.D.	Sample Type	Container Size Type No.				ampline Time		Temp.	Preservation		- /^~/		//	/ /		/ /	////	///	#1910299	
RDW/V		3120	туре	1	JK	12/5	THILLE	рп	јетр.	Heid	LGD		<i>7)</i>		1:					OIA
1,70,47		He	12		13.5									-	\dashv				+	
											= Ac miles		45						17	
			E.		ļ			F								$\perp \perp$			4	
									==				50	+					+	
			 			,	~ ¹²					ti F		+	╁				+	
				F						<u> </u>	A soul of		\vdash	\top	+	\Box				504
	vā						•												6	
Relinguished/Bv:											in the	350				<u> </u>		lie o	1115	
Relinquisitied by:		ate:// me:	2-5	-19	Receive	эа ву:			Date:	<u>-</u>	ī	133.74		ONL		in Milas			N ICE	ECEIVED
Relinquished By:	-	ate:			Receive	ed By:			Time:		_ :	-		ode:	27.77			-	EMPERA	TURE
. •		me:	; ;			10			Time:	:		100	10.00	atherit I the	fiel	5.	14-	aly:	-	
Relinquished By:	D	ate:		-	Receive	ed For Lo	ab By:		Date:	ス- 6	19	Ja	r Lot	Vo.				Č.,,,,,	2	O O
•	· 1	me:	:		H	pulu	"lile-		Time: 15 :20			Jar Lot No.					13/5	EMT SAMPLE RETURN POLICY ON BACK		

Sample Receipt Checklist

Work Order: 19L0298

Printed: 12/5/2019 4:56:57PM

Client: Reserve Management Group

Project: Residential Soil Analysis

Date Due:

12/10/19 17:00 (3 day TAT)

Received By: Agnieszka B. Zabawa Date Received: 12/05/19 15:20
Logged In By: Agnieszka B. Zabawa Date Logged In: 12/05/19 16:55

Samples Received at: 20°C How were samples received? Client **Custody Seals Present** No **Custody Seals Intact** NA Sample Cont/Cooler Intact Yes COC Present/Complete No 1 Yes COC/Labels Agree Proper Cont/Preservation checked Yes Sufficient Sample Volume Yes Samples Within Holdtime Yes Cooler Temp Within Limits No VOA Water Vials Received No VOA Water Vials/Zero Headspace NA PM or Client Contacted No

COMMENTSCOC missing sample time.

ABZ 12|5|19

MONITORING TECHNOLOGIE

Morton Grove, Illinois 60053-32

8100 North Austin Avenue

PM: Mark Steuer Reserve Management Group Residential Soil Analysis

ain of Custody Record

TURNARAOUND TIME:	
X RUSH	
day turnaround	
ROUTINE	

7-6666 47-967-6735 www.emt.com

Due Date: 12-10 - 19 COC #: 210038

Company: GENERAL TROM K. Serve Management Coup. Address: Phone #: (Zaup)	Sample 1. Waste 2. Drinki 3. Sõil	Type: Water ing Wate	4. Sludg r 5. Oil 6. Grour	(2	. Ground Other	wate	•		51	/	/	/ /	Anc	alyse	s ////
						3, Sôil 6, Groundwater									//	EN US ON EMT WORKORI					
Sample I.D.	Sample	C	Containe	er		v	ampling	_			rvatlon	- /		/ /	/ /	/ /	' /	/ / =		/ /	A Constraint
sample i.b.	Type	Size	Туре	:No.	Ву	Date	Time	рН	Temp.	Field	Lab		"		+	+		+	+		(E21807 10 10 10 10 10 10 10
NFETP				3	1K	12/5		•			~ખેલીસ	X			\perp		\perp	$oldsymbol{\perp}$			JOIA-C
V. 2											使精度						┸	_		\perp	.
			000 00		Sign of		265	W	11140	5.14		î 10					8				
-	- 13						7			***							\perp				
W						•															
					7.0						Dart !				E						
A company	<i>c</i>					111															The state of the s
				1							(See all						Т	T			
				1	i	 	W				310000								115		
				 	1	 		_	<u> </u>		A DELE						丁				
elinquished By:	I		-5	_14	Receiv	ed By:		<u> </u>	Date:	_	_	EN	T US	E ON	ILY	SAMPLE RECEIVED			LE RECEIVED		
	- 1	ime:	·)	'/					Time:	D :		Ci	ent	Code			108.0		Co. Market Labor V.	ON IC	erature
elinquished By:		oate:	_ _ -	_	Receiv	red By:			Date:			EN	IT Pr	oject	1.D.	4.4					
Sili I Guidi I Gui Dy.	30	ime:	- Ja	_					Time:	:		R	251	lowl	. 4	7#5a	्य	An	ey	دزو	
elinquished By:		orte:	-		Receiv	ed For L	ab By:		Date:	12- 5	- 19	Ja	rLot	No.				UPSN-		2	0-0
om regularious sys		ima:	-		A	1. 2	.hi		Time:	15:	20					100				EMT S	B-O SAMPLE RETURN ICY ON BACK BACK YSIS
PECIAL INSTRUCTI		IIII O .			1 192	<i></i> 0	<u> </u>		1	10		387134	26.2.935	2 3 dt 2 0	0.00000	Participant of the	BOTT CO	T	10000	× 4	2 / 1 . 510

Sample Receipt Checklist

Work Order: 19L0299

Printed: 12/5/2019 4:58:36PM

Client: Reserve Management Group
Project: Residential Soil Analysis

Date Due:

12/10/19 17:00 (3 day TAT)

Received By: Agnieszka B. Zabawa Logged In By: Agnieszka B. Zabawa

Date Received:

12/05/19 15:20

Date Logged In:

12/05/19 16:57

20°C Samples Received at: How were samples received? Client **Custody Seals Present** No **Custody Seals Intact** NA Sample Cont/Cooler Intact Yes COC Present/Complete No 1 Yes COC/Labels Agree Proper Cont/Preservation checked Yes Sufficient Sample Volume Yes Samples Within Holdtime Yes Cooler Temp Within Limits No VOA Water Vials Received No VOA Water Vials/Zero Headspace NA PM or Client Contacted No

COC missing sample time.

12/5/17

Air Dispersion Modeling Report for Assessment of Metal Emission Impacts

General III, LLC – Chicago, Illinois

January 24, 2020

Appendix E

Modeling Input and Output Files (CD-ROM)

This Page Left Blank

Air Dispersion Modeling Report for Assessment of Metal Emission Impacts General III, LLC – Chicago, Illinois

January 24, 2020

Appendix E

Modeling Input and Output Files (CD-ROM)

Modeling was performed for each of the 17 metals identified in USEPA Method 29 emission testing. A separate modeling run was performed for each of the 17 metals. Accordingly, the CD ROM attached to this page contains AERMOD input and output files for each of the 17 modeling runs.

This is a copy of the original modeling report.
The CD ROM with AERMOD input and output files was included in the original reports sent to the attention of Jeff Sprague of IEPA.

If you require these files, please contact John Pinion of RKA at jpinion@rka-inc.com.

EXHIBIT 12

February 12, 2020

R17421-7.1

Mr. Jeff Sprague Illinois Environmental Protection Agency - Bureau of Air 1021 North Grand Avenue East Springfield, IL 62702

Supplement No. 1 to the January 24, 2020
Air Dispersion Modeling Report for Assessment of Metal Emission Impacts
General III, LLC – 11600 South Burley - Chicago, Illinois
Construction Permit Application 19090021; Site ID No.: 031600SFX

Dear Mr. Sprague:

Pre our recent discussions, the following supplemental information is being provided to replace information in the above referenced modeling report.

2.6 Modeling Facility Operating Schedule

Section 2.6 is a new section and is being added to identify the operating schedule used in the revised modeling. The modeled operating schedule is as follows:

	Modeled Facility Operating Schedule								
Site Operation	Mon -	Fri	Sat	t					
Ferrous System Operation (includes Shredder)	7 AM to 7 PM	12 hr/day	7 AM to 5 PM	12 hr/day					
Barge Loading	7 AM to 3 PM	8 hr/day	7 AM to 3 PM	8 hr/day					
Non Ferrous System Operation	5 AM to 11 PM	18 hr/day	5 AM to 11 PM	18 hr/day					
Roadway Fugitive Emissions (Facility Vehicular Traffic)	5 AM to 7 PM	14 hr/day	5 AM to 5 PM	12 hr/day					

Breaking out the barge loading operating time from the general ferrous material processing system operating time resulted in minor changes to hourly metal emission rates from following Volume Sources in the Ferrous Material Processing System and shredder RTO/Scrubber.

• Volume Source 10 – includes conveyors downstream from the Z-Box Separators that direct recovered ferrous metal to material stockpiles through the manual picking station to the north or south ferrous material stockpiles (V-11 and V-12 respectively) or to the barge loading conveyors and barge (V-13). During Barge Loading hours, emission estimates assume that 100% of the ferrous metal produced is directed to the Barge. During non-barge loading operating hours, it is

assumed that 50% of the recovered ferrous metal is directed to the north ferrous stockpile and 50% is directed to the south ferrous stockpile.

- Volume Source 11 consists of a stacking conveyor and the north ferrous metal stockpile and includes process emissions from stockpile loading, truck loading (out of the stockpile) and stockpile fugitive emissions for active and inactive hours. During barge loading hours, process emissions are zero and emissions are limited to stockpile fugitive emissions.
- Volume Source 12 consists of a stacking conveyor and the south ferrous metal stockpile and includes process emissions from stockpile loading, truck loading (out of the stockpile) and stockpile fugitive emissions for active and inactive hours. During barge loading hours, process emissions are zero and emissions are limited to stockpile fugitive emissions.
- Volume Source 13 consists of three conveyor transfer points and the barge loading conveyor that direct recovered ferrous metal from the manual picking station to the barge. During barge loading hours, process emissions assume 100 % of recovered ferrous metal are directed to the barge.
 During Non-barge loading hours, the barge conveyors and barge loading emissions are zero.

Emissions from Volume Sources 1 through 9 were not changed.

Based on the identified changes to barge loading hours described above, metal emissions from the shredder RTO/Scrubber were modified to reflect the measured metal emission factors from the November 2019 emission testing at GII multiplied by a safety factor of 2.

Attachment A to this Supplement No. 1 identifies the revised hourly metal emission rates for the Ferrous Material Processing System described above.

- Revised Tables A-1a and A-1b present a summary of the revised hourly metal emission rates from the Ferrous Material Processing System during modeled operating hours.
- Revised Table A-1c presents a summary of hourly metal emissions from the Ferrous Material Processing System during modeled non-operating hours.
- Revised Table A-2 presents the revised hourly filterable PM process emission rates from each Volume Source in the Ferrous Material Processing System. As described above, changes are limited to Volume Sources V-10, V-11, V-12, and the Shredder RTO/Scrubber.
- Revised Table A-3 presents a summary of hourly fugitive stockpile filterable PM emission rates for active and inactive hours.
- Revised Table A-4 presents a summary of total hourly filterable PM emissions from process emission sources plus stockpile fugitive emissions for each Volume Source in the Ferrous Material Processing System.

Attachment B to this Supplement No. 1 presents the hourly metal emission rates for the Non-Ferrous material Processing System. The hourly emission rates do not change. The tables were updated only to identify the operating schedule identified above.

3.3 Ambient Air Boundaries

The following information is provided to replace existing Section 3.3 in the January 24, 2020, Air Dispersion Modeling Report for Assessment of Metal Emission Impacts (Report) describing the ambient air boundaries used in the modeling analysis.

The ambient air boundary for this modeling analysis is based primarily on the existing property lines of the RMG Industrial Campus as shown in the revised Figure 1-2 below.

<u>West Boundary</u>: The west boundary of the RMG Industrial Campus is defined by the Calumet River. This boundary has not changed from the information presented in the above referenced Report. The elevation difference between the surface of the Calumet River and the top of the existing retaining wall provides adequate access control and marks the ambient air boundary along the west property boundary. Additional signs prohibiting public access to the site will be placed as needed along the west boundary.

North Boundary: The existing fence along the length of the north boundary of the RMG Industrial Campus will prevent casual public access to the property and marks the ambient air boundary for modeling. This boundary has not changed from the information presented in the above referenced Report. Additional signs prohibiting public access to the site will be placed as needed along the north boundary.

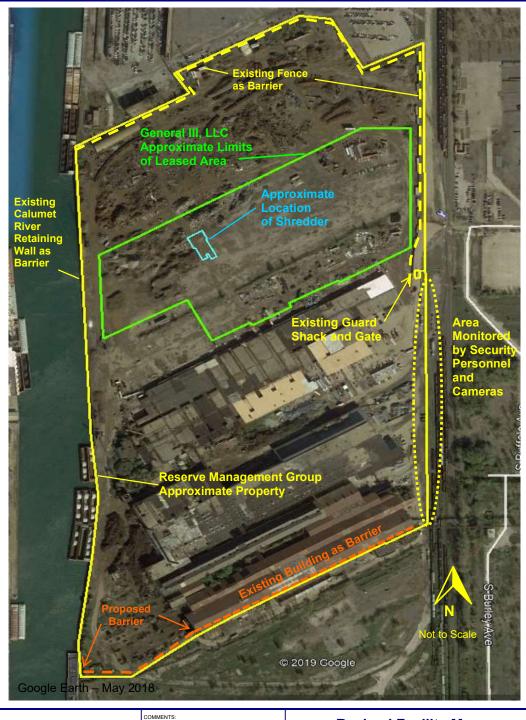
<u>East Boundary</u>: The existing fence beginning at the northeast corner of the RMG Industrial Campus extending southward along the east boundary of the site to the existing guard shack will prevent casual public access to the property and marks the ambient air boundary on this portion of the east boundary. This description of this portion of the east boundary has not changed from the information presented in the above referenced Report. Additional signs prohibiting public access to the site will be placed as needed along the existing fence.

Several active rail spurs cross the east boundary of the site between the guard shack and southeast corner of the RMG Industrial Campus property. The installation of fencing along this portion of the east boundary is not practical due to the number of active rail spurs. The east boundary, south of the guard shack is visually observed by security personal located at the guard shack during working hours. When the site is closed, the southern portion of the east boundary (south of the guard shack) is visually observed by security personnel conducting periodic patrols either on foot or in a vehicle. There is also one camera located on a pole near the guard shack that is used to view southward from the guard shack along the eastern property line.

To address comments from IEPA, the boundary control described above will be supplemented with, a second elevated camera installed near the southeast corner of the RMG Industrial Campus property to view northward along the east boundary toward the guard shack. A monitor will also be installed in the guard shack to display the images from the existing camera and the proposed new camera to allow security personnel to regularly view the southern portion of the east boundary.

Additional signs prohibiting public access to the site will be placed as needed along the southern portion of the eastern boundary.

The existing and proposed controls described above will establish the ambient air boundary along the southern portion of the east boundary of the RMG Industrial Campus property.


<u>South Boundary</u>: The initial January 24, 2020 modeling report described the southern ambient air boundary as an existing earthen berm along the southern property line. To address concerns identified by IEPA, the ambient air boundary along the southern property line has been moved northward to parallel the southern exterior wall of an existing building. The existing building marks the ambient air boundary from the southeast corner of the RMG Industrial Campus property westward to the southwest corner of the existing building as shown in the revised Figure 1-2. A barrier, consisting of fencing or shipping containers, will be installed between the southwest corner of the existing building to the Calumet River. This combination of the proposed barrier and the exterior wall of the existing building will mark the southern ambient air boundary.

Signs prohibiting public access to the site will be placed as needed along the existing building and proposed barrier.

3.5 Building Downwash

The initial air modeling report described the use of building downwash parameters for the proposed GIII structures and existing structures on the RMG Industrial Campus property. At the request of IEPA, building downwash parameters provided by the Agency for existing structures on two off-list properties (Site ID Numbers 031600AFV and 031600FJQ), were included in the revised modeling described herein.

Air Dispersion Modeling Report for the Assessment of Metal Emission Impacts Revised Facility Map Ambient Air Boundaries General III, LLC 11600 South Burley, Chicago, IL

1-2

FIGURE

DRAWNBY: APPROVED BY: PROJECT NUMBER: DATE DRAWN: REVISED DATE

JGP R19439-7.10 02-2020

3.6 Lead Modeling

The updated version of Table 3-1 presented below identifies the updated source characteristics for offsite lead emission sources provided by IEPA for Sites 031600AFV and 031600FJQ. The updated source characteristics identified in Table 3-1 were used to re-run the air dispersion model for lead emissions. Updated modeling input and output files for lead modeling are presented on a CD ROM provided in Attachment C to this Supplement No. 1.

Table 3-1. Offsite Lead Emission Sources Identified by IEPA

Row #	ID Number	Stack Number	Stack ID	Stack Description	Lead Emissions (lb/hr)	Stack Diameter (ft)	Stack Height (ft)	Flow Rate (acfm)	Stack Temp (F)	UTM Zone	UTM Easting	UTM Northing
1	031600AAR	109	250881	4 Big foot air houses (19.4 million BTU/hr each)	0.00000335	1.76	37	3,000	442	16	453419	4612420
2	031600FGT	3	195877	Cement silo loading	0.000069	2.80	36	10,266	80	16	451809	4617532
3	031600FGT	6	195880	Mixer and/or truck loading	0.0002292	2.90	32	10,220	80	16	451809	4617532
4	031600FHQ	1	121260	Portland cement terminal: Cement silo loading	0.00037	2.25	203	3,000	70	16	452496.4	4612240
5	031600FHQ	2	121261	Portland cement terminal: Truck loading/unloading	0.00222	4.50	120	3,000	70	16	452461	4612136
6	031600GKE	9	222736	Backup generator EDG A	0.000277144	3.00	12	16,200	895	16	454708	4618584
7	031600GKE	10	222737	Backup generator EDG B	0.000277144	3.00	12	16,200	895	16	454708	4618571
8	031600GKE	11	222738	Backup generator EDG C	0.000277144	3.00	12	16,200	895	16	454708	4618559
9	031600AFV	5	118896	Kiln #1 & Kiln #2 ^a	0.144	8.67	102	4,114	181	16	453769.8	4615224
10	031600AFV	27	184788	Crude zinc oxide bin loadout ^a (bag collector 5)	0.009000	8.99	98	123,228	81	16	453756.9	4615211
11	031600AFV	30	184791	Feed handling system ^a	0.0018	1.51	75	4,101	82	16	453837.9	4615177
12	031600GWV	7	234365	Boiler	0.00019	3.77	74	19,740	416	16	454218	4613685

3.7 Manganese Modeling

The updated version of Table 3-3 presented below identifies the updated source characteristics for offsite manganese emission sources provided by IEPA for Sites 031600AFV and 031600FJQ. The updated source characteristics identified in Table 3-3 were used to re-run the air dispersion model for manganese emissions described in this correspondence. Updated modeling input and output files for manganese modeling are presented on a CD ROM provided in Attachment B to this Supplement No. 1.

Table 3-3 - Offsite Manganese Sources Identified by IEPA

				Mn	Stack	Stack		Stack			
	Stack			Emissions	Diameter	Height	Flow Rate	Temp	UTM	UTM	UTM
ID Number	Number	Stack Id	Stack Description	(lb/hr)	(ft)	(ft)	(acfm)	(F)	Zone	Northing	Easting
031036AAA	0003	115247	Boiler #3	0.00000152	2.00	25	2,752	300	16	4610011	454809
031036AAA	0004	115248	Boiler #2	0.000000589	2.00	25	2,752	300	16	4610011	454809
031036AAA	0002	115246	Boiler stack #1	0.000000589	3.50	95	2,600	220	16	4610011	454809
031600AAR	0046	118716	60 million BTU/hr boiler	0	3.30	117	19,319	300	16	4612420	453419
031600AAR	0055	118725	Air supply	0	2.30	55	8,000	225	16	4612420	453419
031600AAR	0056	118726	Air supply	0	1.00	45	2,000	245	16	4612420	453419
031600AAR	0088	156582	2 Natural gas fired hot water heaters	0.000001026	3.70	85	17,345	361	16	4612420	453419
031600AAR	0109	250881	4 Big foot air houses (19.4 million BTU/hr each)	0.000002546	1.76	37	3,000	442	16	4612420	453419
031600AAR	0110	250882	2 Hot water stations	0.000001026	1.84	37	3,300	430	16	4612420	453419
031600AAR	0111	250883	Paint line water heater	0.000000266	1.84	37	3,300	430	16	4612420	453419
031600AAR	0112	250884	Other natural gas combustion (curing ovens, oxidizers, space heaters)	0.000039976	1.92	39	4,860	258	16	4612420	453419
031600AAR	0114	250886	Emergency generator	7.4565E-06	2.02	36	12,960	692	16	4612420	453419
031600AFV	0005	118896	Kiln #2	0.065776833	8.67	102	4,115	181	16	4615223.5	453769.8
031600AFV	0035	184796	Engine	0	4.80	56	73,901	503	16	4615216	453823
031600ALC	0002	118971	Boiler	0.000009272	2.50	112	9,520	470	16	4613531	454085
031600AOL	0015	209976	Natural gas combustion	0.000002964	3.40	30	25,373	324	16	4617392	450256
031600BIY	0001	119521	Boiler #1	0.000001748	5.00	90	7,970	565	16	4613129	451612
031600BIY	0024	241900	Boiler #3	0.00000209	2.00	28	4,936	395	16	4613129	451612
031600BRA	0001	119770	Gas heater	0.00000171	2.50	35	700	350	16	4618594	454528
031600DPK	0001	120674	Silo loading	0.000505	2.20	32	12,424	113	16	4619060	454722
031600DQO	0021	173045	Centrifuge Boilers #1 and #2	1.38624E-06	1.83	46	2,050	450	16	4613049	450146
031600FDK	0002	121107	2 Steam generators	0.000001482	2.60	34	1	400	16	4617978	453577
031600FGT	0003	195877	Cement silo loading	0.0189375	2.80	36	10,266	80	16	4617532	451809
031600FGT	0006	195880	Mixer and/or truck loading	0.03672	2.90	32	10,220	80	16	4617532	451809
031600FGT	0007	195881	Natural gas combustion	0.00000342	2.70	50	8,859	341	16	4617532	451809
031600FHQ	0001	121260	Portland cement terminal: Cement silo loading	0.000101	2.26	203	3,000	70	16	4612239.7	452496.4
031600FHQ	0002	121261	Portland cement terminal: Truck loading/unloading	0.000606	4.51	120	3,000	70	16	4612136	452461
031600FHQ	0003	190764	Portland cement terminal: Barge unloader	0	2.80	36	10,266	80	16	4612185	452489
031600FHQ	0004	215253	Slag dryer	0	5.33	157	74,700	183	16	4612141	452468
031600FHQ	0004	215253	Slag dryer	0.000011704	5.33	157	74,700	183	16	4612141	452468
031600FLD	0017	188346	Product collector from shaft dryers (T51-HG1), Cyclone (T51-CN1), and Separator (T61-SR1)	6.65E-09	2.20	90	20,000	205	16	4617602	454330
031600FLD	0016	188345	Polymers (Y-Chutes, top of T61-RP2 bin and T61-RP2), and Aux. dryers (T71-HG2 and T71-HG7)	1.672E-09	2.20	90	3,336	205	16	4617602	454330
031600FWM	0023	233161	Natural gas combustion	0.000005852	3.40	58	15,060	436	16	4613979	453740
031600GFX	0003	193349	Natural gas combustion	0.000006194	2.47	49	9,240	331	16	4617336	450418
031600GHA	0001	219682	Turbine CT-01	0.106666	20.00	90	1,658,000	997	16	4614792	453654
031600GHA	0001	219682	Turbine CT-01	0	20.00	90	1,658,000	997	16	4614792	453654
031600GHA	0003	222391	Turbine CT-02	0.10025	20.00	90	1,658,000	997	16	4614792	453697
031600GHA	0003	222391	Turbine CT-02	0	20.00	90	1,658,000	997	16	4614792	453697
031600GHV	0005	189629	2 Boilers	0.000005434	1.50	35	4,700	330	16	4612395	452774
031600GHV	0005	189629	2 Boilers	0.000004712	1.50	35	4,700	330	16	4612395	452774
031600GKE	0001	219577	Turbine CTG-5	0.0429471	12.14	84	611,000	1050	16	4618643	454621
031600GKE	0009	222736	Backup generator EDG A	0.01563884	3.00	12	16,200	895	16	4618584	454708
031600GKE	0010	222737	Backup generator EDG B	0.01563884	3.00	12	16,200	895	16	4618571	454708
031600GKE	0011	222738	Backup generator EDG C	0.01563884	3.00	12	16,200	895	16	4618559	454708
031600GKE	0002	219591	Turbine CTG-6	0.04244986	12.14	84	611,000	1050	16	4618616	454621
031600GKE	0003	219592	Turbine CTG-7	0.04277066	12.14	84	611,000	1050	16	4618590	454621
031600GKE	0004	219593	Turbine CTG-8	0.04341226	12.14	84	611,000	1050	16	4618564	454621
031600GKE	0004	219594	Turbine CTG-9	0.04341220	12.14	84	611,000	1050	16	4618643	454672
031600GKE	0003	219595	Turbine CTG-10	0.04197008	12.14	84	611,000	1050	16	4618617	454672
031600GKE	0007	219595	Turbine CTG-10 Turbine CTG-11	0.0420248	12.14	84	611,000	1050	16	4618590	454672
031600GKE	0007	219597	Turbine CTG-12	0.04220320	12.14	84	611,000	1050	16	4618564	454672
031600GKU	0008	209195	Combined boilers stack	0.04207292	3.00	30	5,150	350	16	4617728	454672
		_									
031600GWV	0007	234365	Boliler	0.000127848	3.78	74	19,740	416	16	4613685	454218

3.9 Volume Source Characteristics

This section 3.9 – Volume Source Characteristics has been added to the end of Section 3.0 of the referenced air dispersion modeling report to provide the characteristics of emission unit volume sources (Section 3.9.1.) and roadway volume sources (Section 3.9.2.) used in the model.

3.9.1 Emission Unit Volume Source Characteristics

The Volume Sources outlined in Figures A-1 and B-1 of the January 24, 2020, Air Dispersion Modeling Report, delineate the approximate location of the individual emission units included in each volume source. The model input requires the x and y dimensions for each volume source to be the same and have been input accordingly.

The height of the individual emission units that comprise each volume source was reviewed, and the maximum height is selected as the height of the volume source. The length of the group of sources is selected as the length of the volume source. The volume source parameters entered in the model were derived as follows:

- Release Height = Volume Source Height divided by 2.0
- Initial Lateral Dimensions = Volume Source Length divided by 4.3
- Initial Vertical Dimensions = Volume Source Height divided by 2.15

Table 3-6 provides a summary of the emission unit volume source dimensions used as model inputs.

Table 3-6 – Emission Unit Volume Source Characteristics

Volume Source	Height of Emission Sources (ft)	Length of Source Group (ft)	Release Height (ft)	Initial Lateral Dimensions (ft) (σ _{yo})	Initial Vertical Dimensions (ft) (σ _{zo})
V1	4	10	2.00	2.3256	1.8605
V2	60	84	30.00	19.5349	27.9070
V3	4	6	2.00	1.3953	1.8605
V4	25	50	12.50	11.6279	11.6279
V5	25	20	12.50	4.6512	11.6279
V6	35	60	17.50	13.9535	16.2791
V7	30	20	15.00	4.6512	13.9535
V8	30	20	15.00	4.6512	13.9535
V9	25	25	12.50	5.8140	11.6279
V10	6	20	3.00	4.6512	2.7907
V11	35	120	17.50	27.9070	16.2791
V12	35	120	17.50	27.9070	16.2791
V13	6	20	3.00	4.6512	2.7907
VN1	40	100	20.00	23.2558	18.6047
VN2	40	100	20.00	23.2558	18.6047
VN3	25	100	12.50	23.2558	11.6279
VN4	25	100	12.50	23.2558	11.6279
VN5	25	100	12.50	23.2558	11.6279
VN6	25	40	12.50	9.3023	11.6279

3.9.2 Roadway Volume Sources Characteristics

Roadway emissions are modeled as lines of adjacent volume sources. Haul road recommendations presented in US EPA Memorandum, Haul Road Workgroup Final Report Submission to EPA-OAQPS, are followed. The roadway volume source characteristics are presented in Table 3-7 below.

Table 3-7 – Roadway Volume Source Characteristics

Volume Source Characteristic	Description	Value
Typical vehicle height (VH)	Typical haul vehicle (10 ft)	3.05 m
Top-of-Plume	1.7 x VH	5.18 m
Release Height	½ x Top-of-Plume	2.59 m
Adjusted Road Width	Road width (6 m) + 6 m	12 m
Initial Lateral Dimension (σ _{yo})	Adjusted Road Width / 2.15	5.58 m
Initial Vertical Dimension (σ_{zo})	Top-of-Plume / 2.15	2.41 m
Distance between volume sources	Adjusted Road Width	12 m

4.1 Predicted Lead Impacts

Based on the information described above, the air dispersion modeling for predicted lead impacts was rerun and updated results are presented in Table 4-1 below. The revised modeling continues to show that the identified standards have not been exceeded.

4.2 Predicted Manganese Impacts

Based on the information described above, the air dispersion modeling for predicted manganese impacts was re-run and updated results are presented in Table 4-2 below. The revised modeling continues to show that the identified standards have not been exceeded.

4.3 Predicted Impacts for Other Metals

Based on the information described above, the air dispersion modeling for predicted impacts from other metals was re-run and updated results are presented in Table 4-3 below. The revised modeling continues to show that the identified standards have not been exceeded.

Table 4-1 – Summary of Predicted Impacts for Lead

Pollutant	Maximum 3-Month Rolling Average Period	Predicted Monthly Average (µg/m³)	Predicted Maximum 3-Month Rolling Average (µg/m³)	Design Value (Background) (µg/m³)	Total Predicted 3-Month Rolling Average (w/Background) (µg/m³)	East (X) (m)	North (Y) (m)
	Oct-12	0.0499					
Lead	Nov-12	0.0896	0.0649	0.0200	0.0849	454091	464866
	Dec-12	0.0552					

Comparison of Modeling Results to NAAQS Standard for Lead

Parameter	Units	3 Month Rolling Average
Pb NAAQS Standard (3-Month Rolling Avg)	$u g/m^3$	0.15
Maximum Predicted Pb Impact	$u g/m^3$	0.0849
Predicted Impact Meets Standard	Yes/No	Yes

Table 4-2 – Summary of Predicted Impacts for Manganese

Pollutant	Averaging Period	Year	AERMOD Predicted Conc. ^a (μg/m ³)	Background Conc. (μg/m³)	Total Predicted Conc. ^a (µg/m ³)	East (X) (m)	North (Y) (m)	Time yy/mm/dd/hh
		2012	0.336		0.706	452000	4617500	12011324
	24-HR	2013	0.347	0.370	0.717	452000	4617500	13013124
		2014	0.326		0.696	452000	4617500	14012724
		2015	0.334		0.704	452000	4617500	15073024
N/m		2016	0.379		0.749	452000	4617500	16120824
Mn		2012	0.035		0.105	452000	4617500	1 YEARS
		2013	0.034		0.104	452000	4617500	1 YEARS
	ANNUAL	2014	0.038	0.070	0.108	452000	4617500	1 YEARS
		2015	0.030		0.100	452000	4617500	1 YEARS
		2016	0.039		0.109	452000	4617500	1 YEARS

a. Maximum 24 hour and annual predicted impacts are highlighed.

Comparison of Modeled Results to Identified Standards

Companion of Modelea Medalia to Identifica Standards									
Parameter	Units	24-hr Value	Annual Value						
NR445 Standard	μg/m ³	4.80	0.30						
ATSDR Minimal Risk Level	μg/m ³	NA	0.30						
Total Predicted Impact	μg/m ³	0.749	0.109						
Impact Meets Standard	Yes/No	Yes	Yes						

Table 4-3 - Comparison of Predicted Maximum Metal Impacts to Identified Standards

Pollutant	Averaging Period	Met Data Year	AERMOD Maximum Predicted Conc. ^a (μg/m ³)	Identified Standard and Source (Pass/Fail)	East (X) (m)	North (Y) (m)	Elevation (m)	Time yy/mm/dd/hh
		2012	0.00198	• • •	454126	4615088	178.19	12022024
		2013	0.00253	12.00 ug/m3	454085	4614965	176.36	13011024
	24-HR	2014	0.00220	NR445	454168	4615111	178.19	14022824
		2015	0.00224	Pass	454126	4615088	178.19	15111724
		2016	0.00228		454126	4615088	178.19	16121624
Antimony		2012	0.00016		454251	4615156	178.19	1 YEARS
		2013	0.00013	0.30 ug/m3	454251	4615156	178.19	1 YEARS
	ANNUAL	2014	0.00013	ATSDR MRL	454251	4615156	178.19	1 YEARS
		2015	0.00014	Pass	454340	4615247	178.19	1 YEARS
		2016	0.00014		454251	4615156	178.19	1 YEARS
		2012	0.00080		454126	4615088	178.19	12122824
		2013	0.00112	No Standard	454085	4614965	176.36	13011024
	24-HR	2014	0.00085	Identified	454168	4615111	178.19	14022824
		2015	0.00085		454126	4615088	178.19	15111724
Arsenic		2016	0.00094		454126	4615088	178.19	16121624
Arsenic		2012	0.00007	Unit Risk Factor	454251	4615156	178.19	1 YEARS
		2013	0.00008	0.0043	454596	4615044	178.19	1 YEARS
	ANNUAL	2014	0.00008	Inhalation Impact ^a	454596	4615044	178.19	1 YEARS
		2015	0.00008	3.87E-07	454596	4615044	178.19	1 YEARS
		2016	0.00008	Pass	454596	4615044	178.19	1 YEARS
		2012	0.09159		454091	4614866	177.21	12110724
		2013	0.07107	12.00 ug/m3	454091	4614866	177.21	13121324
	24-HR	2014	0.07181	NR445	454088	4614915	176.78	14010924
		2015	0.06763	Pass	454091	4614866	177.21	15110924
Barium		2016	0.06038		454091	4614866	177.21	16031424
Barium		2012	0.00977		454091	4614866	177.21	1 YEARS
		2013	0.00909	No Standard	454091	4614866	177.21	1 YEARS
	ANNUAL	2014	0.00819	Identified	454091	4614866	177.21	1 YEARS
		2015	0.00902		454091	4614866	177.21	1 YEARS
		2016	0.00952	limpacts are high	454091	4614866	177.21	1 YEARS

a. The maximum predicted 24 hour and annual impacts are highlighted

Table 4-3 - Comparison of Predicted Maximum Metal Impacts to Identified Standards (cont'd)

Pollutant	Averaging Period	Met Data Year	AERMOD Maximum Predicted Conc. ^a (μg/m ³)	Identified Standard and Source (Pass/Fail)	East (X) (m)	North (Y) (m)	Elevation (m)	Time yy/mm/dd/hh
		2012	0.00062	, , ,	454596	4614996	178.19	12121724
		2013	0.00086	No Standard	454596	4615044	178.19	13011524
	24-HR	2014	0.00091	Identified	454600	4615000	178.19	14010824
		2015	0.00068		454596	4615044	178.19	15012224
Daniel III and		2016	0.00056		454596	4615044	178.19	16112524
Beryllium		2012	0.00009	0.02 ug/m3	454596	4615044	178.19	1 YEARS
		2013	0.00010	NR445 Pass	454596	4615044	178.19	1 YEARS
	ANNUAL	2014	0.00011	Unit Risk Factor	454596	4615044	178.19	1 YEARS
		2015	0.00010	0.0024 Inhalation Impact ^a	454596	4615044	178.19	1 YEARS
		2016	0.00010	3.60E-07 Pass	454596	4615044	178.19	1 YEARS
		2012	0.00430		454091	4614866	177.21	12110724
		2013	0.00345	No Standard	454091	4614866	177.21	13121324
	24-HR	2014	0.00350	Identified	454088	4614915	176.78	14010924
		2015	0.00325		454091	4614866	177.21	15110924
Cadmium		2016	0.00296		454091	4614866	177.21	16031424
Caumum		2012	0.00047	0.01 ug/m3	454091	4614866	177.21	1 YEARS
		2013	0.00044	ATSDR MRL Pass	454091	4614866	177.21	1 YEARS
	ANNUAL	2014	0.00040	Unit Risk Factor	454091	4614866	177.21	1 YEARS
		2015	0.00044	0.0018 Inhalation Impact ^a	454091	4614866	177.21	1 YEARS
		2016	0.00047	7.20E-07 Pass	454091	4614866	177.21	1 YEARS
		2012	0.05308		454091	4614866	177.21	12110724
		2013	0.04369	12.00 ug/m3	454088	4614915	176.78	13011024
	24-HR	2014	0.03918	NR445 Standard	454088	4614915	176.78	14010924
		2015	0.03325	Pass	454091	4614866	177.21	15110924
Chromium		2016	0.03280		454091	4614866	177.21	16031424
		2012	0.00505		454091	4614866	177.21	1 YEARS
		2013	0.00474	No Standard	454091	4614866	177.21	1 YEARS
	ANNUAL	2014	0.00434	Identified	454596	4615044	178.19	1 YEARS
		2015	0.00468		454091	4614866	177.21	1 YEARS
h Th		2016	0.00499	limpacts are high	454091	4614866	177.21	1 YEARS

b. The maximum predicted 24 hour and annual impacts are highlighted

Table 4-3 - Comparison of Predicted Maximum Metal Impacts to Identified Standards (cont'd)

Pollutant	Averaging Period	Met Data Year	AERMOD Maximum Predicted Conc. ^a (μg/m ³)	Identified Standard and Source (Pass/Fail)	East (X) (m)	North (Y) (m)	Elevation (m)	Time yy/mm/dd/hh
		2012	0.00570	•	454091	4614866	177.21	12110724
		2013	0.00465	0.48 ug/m3	454088	4614915	176.78	13011024
	24-HR	2014	0.00448	NR445	454088	4614915	176.78	14010924
		2015	0.00412	Pass	454091	4614866	177.21	15022124
		2016	0.00380		454091	4614866	177.21	16031424
Cobalt		2012	0.00059		454091	4614866	177.21	1 YEARS
		2013	0.00055	0.10 ug/m3	454091	4614866	177.21	1 YEARS
	ANNUAL	2014	0.00049	ATSDR MRL	454091	4614866	177.21	1 YEARS
		2015	0.00054	Pass	454091	4614866	177.21	1 YEARS
		2016	0.00057		454091	4614866	177.21	1 YEARS
		2012	0.20625		454091	4614866	177.21	12110724
		2013	0.15740	24.00 ug/m3	454091	4614866	177.21	13121324
	24-HR	2014	0.15695	NR445	454088	4614915	176.78	14010924
		2015	0.14908	Pass	454091	4614866	177.21	15110924
Connor		2016	0.13420		454091	4614866	177.21	16031424
Copper		2012	0.02178		454091	4614866	177.21	1 YEARS
		2013	0.02029	No Standard	454091	4614866	177.21	1 YEARS
	ANNUAL	2014	0.01904	Identified	454596	4615044	178.19	1 YEARS
		2015	0.02016		454091	4614866	177.21	1 YEARS
		2016	0.02121		454091	4614866	177.21	1 YEARS
		2012	0.07740		454126	4615088	178.19	12022024
		2013	0.09787	2.40 ug/m3	454085	4614965	176.36	13011024
	24-HR	2014	0.08643	NR445	454168	4615111	178.19	14022824
		2015	0.08811	Pass	454126	4615088	178.19	15111724
Mercury		2016	0.08881		454126	4615088	178.19	16121624
ivicicuiy		2012	0.00626	0.30 ug/m3	454251	4615156	178.19	1 YEARS
		2013	0.00492	NR445 Pass	454251	4615156	178.19	1 YEARS
	ANNUAL	2014	0.00494		454251	4615156	178.19	1 YEARS
		2015	0.00529	0.20 ug/m3 ATSDR MRL	454340	4615247	178.19	1 YEARS
		2016	0.00527	Pass	454251	4615156	178.19	1 YEARS

c. The maximum predicted 24 hour and annual impacts are highlighted

Table 4-3 - Comparison of Predicted Maximum Metal Impacts to Identified Standards (cont'd)

Pollutant	Averaging Period	Met Data Year	AERMOD Maximum Predicted Conc. ³ (μg/m ³)	Identified Standard and Source (Pass/Fail)	East (X) (m)	North (Y) (m)	Elevation (m)	Time yy/mm/dd/hh
		2012	0.03650	, ,	454091	4614866	177.21	12110724
		2013	0.03038	No Standard	454088	4614915	176.78	13011024
	24-HR	2014	0.02770	Identified	454088	4614915	176.78	14010924
		2015	0.02406		454091	4614866	177.21	15110924
NC -1 -1		2016	0.02357		454091	4614866	177.21	16031424
Nickel		2012	0.00366	0.09 ug/m3	454091	4614866	177.21	1 YEARS
		2013	0.00342	NR445/ATSDR MRL Pass	454091	4614866	177.21	1 YEARS
	ANNUAL	2014	0.00307	Unit Risk Factor	454091	4614866	177.21	1 YEARS
		2015	0.00339	0.00026 Inhalation Impact ^a	454091	4614866	177.21	1 YEARS
		2016	0.00362	9.52E-07 Pass	454091	4614866	177.21	1 YEARS
		2012	0.23252		454126	4615088	178.19	12022024
		2013	0.31775	2.43 ug/m3	454085	4614965	176.36	13011024
	24-HR	2014	0.25171	NR445	454168	4615111	178.19	14022824
		2015	0.25271	Pass	454126	4615088	178.19	15111724
Phosphorus		2016	0.27090		454126	4615088	178.19	16121624
riiospiiorus		2012	0.02051		454251	4615156	178.19	1 YEARS
		2013	0.01597	No Standard	454251	4615156	178.19	1 YEARS
	ANNUAL	2014	0.01627	Identified	454251	4615156	178.19	1 YEARS
		2015	0.01676		454340	4615247	178.19	1 YEARS
		2016	0.01771		454091	4614866	177.21	1 YEARS
		2012	0.01049		454126	4615088	178.19	12022024
		2013	0.01327	4.80 ug/m3	454085	4614965	176.36	13011024
	24-HR	2014	0.01171	NR445	454168	4615111	178.19	14022824
		2015	0.01194	Pass	454126	4615088	178.19	15111724
Selenium		2016	0.01203		454126	4615088	178.19	16121624
Scientum		2012	0.00085		454251	4615156	178.19	1 YEARS
		2013	0.00067	No Standard	454251	4615156	178.19	1 YEARS
	ANNUAL	2014	0.00067	Identified	454251	4615156	178.19	1 YEARS
		2015	0.00072		454340	4615247	178.19	1 YEARS
		2016	0.00071		454251	4615156	178.19	1 YEARS

d. The maximum predicted 24 hour and annual impacts are highlighted

Table 4-3 - Comparison of Predicted Maximum Metal Impacts to Identified Standards (cont'd)

Pollutant	Averaging Period	Met Data Year	AERMOD Maximum Predicted Conc. ^a (μg/m ³)	Identified Standard and Source (Pass/Fail)	East (X) (m)	North (Y) (m)	Elevation (m)	Time yy/mm/dd/hh
		2012	0.00213	, ,	454126	4615088	178.19	12122824
		2013	0.00302	2.40 ug/m3	454085	4614965	176.36	13011024
	24-HR	2014	0.00231	NR445 Standard	454082	4615014	175.94	14010924
		2015	0.00219	Pass	454126	4615088	178.19	15111724
Ciloren		2016	0.00246		454126	4615088	178.19	16121624
Silver		2012	0.00026		454596	4615044	178.19	1 YEARS
		2013	0.00029	No Standard	454596	4615044	178.19	1 YEARS
	ANNUAL	2014	0.00030	Identified	454596	4615044	178.19	1 YEARS
		2015	0.00028		454596	4615044	178.19	1 YEARS
		2016	0.00029		454596	4615044	178.19	1 YEARS
		2012	0.00024		454126	4615088	178.19	12122824
		2013	0.00034	No Standard	454085	4614965	176.36	13011024
	24-HR	2014	0.00026	Identified	454082	4615014	175.94	14010924
		2015	0.00026		454126	4615088	178.19	15111724
Thallium		2016	0.00028		454126	4615088	178.19	16121624
mamum		2012	0.00003		454596	4615044	178.19	1 YEARS
		2013	0.00003	No Standard	454596	4615044	178.19	1 YEARS
	ANNUAL	2014	0.00003	Identified	454596	4615044	178.19	1 YEARS
		2015	0.00003		454596	4615044	178.19	1 YEARS
		2016	0.00003		454596	4615044	178.19	1 YEARS
		2012	3.56760		454091	4614866	177.21	12110724
		2013	2.83587	No Standard	454088	4614915	176.78	13011024
	24-HR	2014	2.90149	Identified	454088	4614915	176.78	14010924
		2015	2.69618		454091	4614866	177.21	15110924
Zinc		2016	2.44070		454091	4614866	177.21	16031424
2.110		2012	0.38076		454091	4614866	177.21	1 YEARS
		2013	0.35366	No Standard	454091	4614866	177.21	1 YEARS
	ANNUAL	2014	0.31644	Identified	454091	4614866	177.21	1 YEARS
		2015	0.34893		454091	4614866	177.21	1 YEARS
		2016	0.36716	olimpacts are high	454091	4614866	177.21	1 YEARS

e. The maximum predicted 24 hour and annual impacts are highlighted

February 12, 2020 R17423-7.1 Supplement No. 1 to the January 24, 2020 Air Dispersion Modeling Report for Assessment of Metal Emission Impacts Page 16

If you have any questions or need any additional information, please don't hesitate to contact me at 630-393-9000 or by e-mail at <u>jpinion@hotmail.com</u>.

Yours very truly,

RK & Associates

 $cc: \quad Mr. \ Bob \ Bernoteit-IEPA \ Bureau \ of \ Air-Springfield, Illinois-(Hard \ Copies)$

Mr. Jim Kallas – General III, LLC – Chicago, Illinois (via e-mail)

Supplement No. 1 to the January 24, 2019 Air Dispersion Modeling Report for Assessment of Metal Emission Impacts

General III, LLC – 11600 South Burley - Chicago, Illinois Construction Permit Application 19090021; Site ID No.: 031600SFX

February 12, 2020

Attachment A

Revised Ferrous Material Processing System Hourly Metal Emission Rates to Reflect Changes in Operating Schedule

This Page Left Blank

Table A-1a - Ferrous Material Processing - Metal Emissions in Active Hours General III, LLC - Chicago, Illinois

Active Hours - Barge Loading 7 AM to 3 PM Monday through Saturday

Volume Source	Units	V-1	V-2	V-3	V-4	V-5	V-6	V-7	V-8	V-9	V-10	V-11	V-12	V-13	RTO ^b
PM (Active)	lb/hr	1.161000	0.140000	0.140000	0.012000	0.188100	0.208700	0.145800	0.024400	0.041100	0.241200	0.199600	0.199600	0.567300	4.700000
Source of Metals	Sample No.	3	3	4	4	4	5	4	4	5	4	4	4	4	Nov 2019
Conc. Data	Sample Name	0.0000000	0.0000000	Ferrous Transfer	Ferrous Transfer	Ferrous Transfer	Non-Ferrous Transfer	Ferrous Transfer	Ferrous Transfer	Non-Ferrous Transfer	Ferrous Transfer	Ferrous Transfer	Ferrous Transfer	Ferrous Transfer	Emission Test Data
Lead	lb/hr	0.000610	0.000074	0.000592	0.000051	0.000796	0.000985	0.000617	0.000103	0.000194	0.001020	0.000844	0.000844	0.002400	1.383E-03
Manganese	lb/hr	0.000846	0.000102	0.000309	0.000027	0.000416	0.000367	0.000322	0.000054	0.000072	0.000533	0.000441	0.000441	0.001254	1.990E-03
Mercury	lb/hr	0.000003	0.000000	0.000003	0.000000	0.000004	0.000002	0.000003	0.000000	0.000000	0.000005	0.000004	0.000004	0.000011	4.464E-02
Nickel	lb/hr	0.000123	0.000015	0.000043	0.000004	0.000057	0.000065	0.000044	0.000007	0.000013	0.000073	0.000061	0.000061	0.000172	3.296E-03
Antimony	lb/hr	0.000001	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000001	1.124E-03
Arsenic	lb/hr	0.000003	0.000000	0.000000	0.000000	0.000001	0.000001	0.000000	0.000000	0.000000	0.000001	0.000001	0.000001	0.000002	3.971E-04
Beryllium	lb/hr	0.000006	0.000001	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000001	8.901E-05
Cadmium	lb/hr	0.000006	0.000001	0.000007	0.000001	0.000009	0.000007	0.000007	0.000001	0.000001	0.000011	0.000010	0.000010	0.000027	4.256E-04
Chromium ^c	lb/hr	0.000201	0.000024	0.000056	0.000005	0.000076	0.000089	0.000059	0.000010	0.000017	0.000097	0.000080	0.000080	0.000228	3.452E-03
Cobalt	lb/hr	0.000012	0.000001	0.000007	0.000001	0.000010	0.000012	0.000008	0.000001	0.000002	0.000013	0.000010	0.000010	0.000029	1.064E-04
Phosphorus	lb/hr	0.000313	0.000038	0.000117	0.000010	0.000157	0.000195	0.000121	0.000020	0.000038	0.000201	0.000166	0.000166	0.000473	1.215E-01
Selenium	lb/hr	0.000001	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000001	6.047E-03
Zinc	lb/hr	0.003576	0.000431	0.005222	0.000448	0.007016	0.007096	0.005438	0.000910	0.001397	0.008997	0.007445	0.007445	0.021160	2.673E-02
Barium	lb/hr	0.000269	0.000032	0.000138	0.000012	0.000185	0.000143	0.000143	0.000024	0.000028	0.000237	0.000196	0.000196	0.000558	3.841E-03
Copper	lb/hr	0.000976	0.000118	0.000294	0.000025	0.000395	0.000344	0.000306	0.000051	0.000068	0.000507	0.000419	0.000419	0.001191	3.893E-03
Silver	lb/hr	0.000013	0.000002	0.000002	0.000000	0.000002	0.000003	0.000002	0.000000	0.000000	0.000003	0.000002	0.000002	0.000007	1.002E-03
Thallium	lb/hr	0.000001	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000001	1.194E-04

Active Hours - Non-Barge Loading 3 PM to 7 PM Monday through Friday and 3 PM to 5 PM Saturday

Volume Source	Units	V-1	V-2	V-3	V-4	V-5	V-6	V-7	V-8	V-9	V-10 ^d	V-11 ^d	V-12 ^d	V-13 ^d	RTO ^b
PM (Active)	lb/hr	1.161000	0.140000	0.140000	0.012000	0.188100	0.208700	0.145800	0.024400	0.041100	0.421030	0.431854	0.431854	0.000000	4.700000
Source of Metals	Sample No.	3	3	4	4	4	5	4	4	5	4	4	4	4	Nov 2019
Conc. Data	Sample Name	0.0000000	0.0000000	Ferrous Transfer	Ferrous Transfer	Ferrous Transfer	Non-Ferrous Transfer	Ferrous Transfer	Ferrous Transfer	Non-Ferrous Transfer	Ferrous Transfer	Ferrous Transfer	Ferrous Transfer	Ferrous Transfer	Emission Test Data
Lead	lb/hr	0.000610	0.000074	0.000592	0.000051	0.000796	0.000985	0.000617	0.000103	0.000194	0.001020	0.000844	0.000844	0.002400	1.383E-03
Manganese	lb/hr	0.000846	0.000102	0.000309	0.000027	0.000416	0.000367	0.000322	0.000054	0.000072	0.000533	0.000441	0.000441	0.001254	1.990E-03
Mercury	lb/hr	0.000003	0.000000	0.000003	0.000000	0.000004	0.000002	0.000003	0.000000	0.000000	0.000005	0.000004	0.000004	0.000011	4.464E-02
Nickel	lb/hr	0.000123	0.000015	0.000043	0.000004	0.000057	0.000065	0.000044	0.000007	0.000013	0.000073	0.000061	0.000061	0.000172	3.296E-03
Antimony	lb/hr	0.000001	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000001	1.124E-03
Arsenic	lb/hr	0.000003	0.000000	0.000000	0.000000	0.000001	0.000001	0.000000	0.000000	0.000000	0.000001	0.000001	0.000001	0.000002	3.971E-04
Beryllium	lb/hr	0.000006	0.000001	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000001	8.901E-05
Cadmium	lb/hr	0.000006	0.000001	0.000007	0.000001	0.000009	0.000007	0.000007	0.000001	0.000001	0.000011	0.000010	0.000010	0.000027	4.256E-04
Chromium ^c	lb/hr	0.000201	0.000024	0.000056	0.000005	0.000076	0.000089	0.000059	0.000010	0.000017	0.000097	0.000080	0.000080	0.000228	3.452E-03
Cobalt	lb/hr	0.000012	0.000001	0.000007	0.000001	0.000010	0.000012	0.000008	0.000001	0.000002	0.000013	0.000010	0.000010	0.000029	1.064E-04
Phosphorus	lb/hr	0.000313	0.000038	0.000117	0.000010	0.000157	0.000195	0.000121	0.000020	0.000038	0.000201	0.000166	0.000166	0.000473	1.215E-01
Selenium	lb/hr	0.000001	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000001	6.047E-03
Zinc	lb/hr	0.003576	0.000431	0.005222	0.000448	0.007016	0.007096	0.005438	0.000910	0.001397	0.008997	0.007445	0.007445	0.021160	2.673E-02
Barium	lb/hr	0.000269	0.000032	0.000138	0.000012	0.000185	0.000143	0.000143	0.000024	0.000028	0.000237	0.000196	0.000196	0.000558	3.841E-03
Copper	lb/hr	0.000976	0.000118	0.000294	0.000025	0.000395	0.000344	0.000306	0.000051	0.000068	0.000507	0.000419	0.000419	0.001191	3.893E-03
Silver	lb/hr	0.000013	0.000002	0.000002	0.000000	0.000002	0.000003	0.000002	0.000000	0.000000	0.000003	0.000002	0.000002	0.000007	1.002E-03
Thallium	lb/hr	0.000001	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000001	1.194E-04

- a. Metal emissions from Volume Sources V-1 through V-13 calculated by multiplying total Volume Source PM (lb/hr) by the metal concentrations from corresponding samples of material deposition at GII collected and analyzed in December 2019.
- b. Metal emissions from the Shredder RTO calculated using the measured metal emission factors from November 2019 metals compliance testing of the RTO performed at GII multiplied by the maximum hourly shredder feed and a safety factor.
- c. Chromium (metal) and compounds other than Chromium VI
- d. Only values in blue text are changed from Barge Loading values.

Table A-1b - Ferrous Material Processing - Metal Emissions in Inactive Hours General III, LLC - Chicago, Illinois

Inactive Hours - 7 PM to 7 AM Monday through Friday, 5 PM to 7AM Saturday, and All Day Sunday

Volume Source	Units	V-1	V-2	V-3	V-4	V-5	V-6	V-7	V-8	V-9	V-10	V-11	V-12	V-13	RTOb
PM (Inactive)	lb/hr	0.079400	-	-	0.001200	-	0.037100	-	-	0.000800	-	0.052900	0.052900	-	-
Source of Metals	Sample No.	3	3	4	4	4	5	4	4	5	4	4	4	4	Nov 2019
Conc. Data ^a	Sample Name	0.0000000	0.0000000	Ferrous Transfer	Ferrous Transfer	Ferrous Transfer	Non-Ferrous Transfer	Ferrous Transfer	Ferrous Transfer	Non-Ferrous Transfer	Ferrous Transfer	Ferrous Transfer	Ferrous Transfer	Ferrous Transfer	Emission Test Data
Lead	lb/hr	0.000042			0.000005		0.000175			0.000004		0.000224	0.000224		
Manganese	lb/hr	0.000058			0.000003		0.000065			0.000001		0.000117	0.000117		
Mercury	lb/hr	-			-		-			-		0.000001	0.000001		
Nickel	lb/hr	0.000008			-		0.000012			-		0.000016	0.000016		
Antimony	lb/hr	-			-		-			-		-	-		
Arsenic	lb/hr	-			-		-			-		i	-		
Beryllium	lb/hr	-			-		-			-		-	-		
Cadmium	lb/hr	-			-		0.000001			-		0.000003	0.000003		
Chromium ^c	lb/hr	0.000014			-		0.000016			-		0.000021	0.000021		
Cobalt	lb/hr	0.000001			-		0.000002			-		0.000003	0.000003		
Phosphorus	lb/hr	0.000021			0.000001		0.000035			0.000001		0.000044	0.000044		
Selenium	lb/hr	-			-		-			-		i	-		
Zinc	lb/hr	0.000245			0.000045		0.001261			0.000027		0.001973	0.001973		
Barium	lb/hr	0.000018			0.000001		0.000025			0.000001		0.000052	0.000052		
Copper	lb/hr	0.000067	·		0.000003		0.000061			0.000001		0.000111	0.000111		
Silver	lb/hr	0.000001			-		-			-		0.000001	0.000001	•	
Thallium	lb/hr	-			-		-			-		-	-		

a. Metal emissions from Volume Sources V-1 through V-13 calculated by multiplying total Volume Source PM (lb/hr) by the metal concentrations from corresponding samples of material deposition at GII collected and analyzed in December 2019.

b. Shredder/RTO does not operate during inactive hours.

c. Chromium (metal) and compounds other than Chromium VI

Table A-2 - Ferrous Material Processing - Particulate Emissions General III, LLC - Chicago, Illinois

												Barge Loading 7 AM to 3 PM Mon			3 PM to 7 PM	Non-Barge Load M Mon - Fri and 3 PN	•
	Row		quipment Generating Emissions	Material	Moisture > 1.5%	Transfer Point Location (Inside /	Transfer Point Controlled	Type of Transfer Point	Dust Pickup Capture Eff.	Dust Control Eff.	Emission Factor	Material Throughput Rates	PM Emission Factors	Filterable PM Emissions	Material Throughput Rates	PM Emission Factors	Filterable PM Emissions
Grouping	No.	ID#	Description	Conveyed	Y/N	Outside)	(Y/N)	Control	(%)	(%)	Source	tph	lb/ton	lb/hr	tph	lb/ton	lb/hr
V-1	55		Truck Dumping of Raw Feed	Unprepare d	5.4 ^{a2}	Outside	N		0%	0%	Drop	300	0.00127 ^c	0.3797	300	0.00127 ^c	0.3797
V-1	56		Raw Feed from Ground after Truck Dumping	Unprepare d	5.4 ^{a2}	Outside	N		0%	0%	Drop	300	0.00127 °	0.3797	300	0.00127 ^c	0.3797
V-1	59	Magnet/	Drop Raw Scrap to Infeed Conveyor	Unprepare d	N ^{a4}	Outside	N		NA	0%	D	500	0.00020 ^f	0.1022	500	0.00020 f	0.1022
	Total Filterable PM Emissions									0.8616			0.8616				
V-2	37	E-01	Drop Raw Scrap onto Shredder Feed Chute	Unprepare d	γ a4	Outside	N		NA	0%	А	500	0.00014 ^d	0.0700	500	0.00014 ^d	0.0700
V-2	40	E-05	Shredder Under Mill Vibratory Conveyor	Shred	Y	Inside	N		NA	0%	А	500	0.00014 ^d	0.0700	500	0.00014 ^d	0.0700
V-2	79	E-02	Shredder Bottom Discharge	Shred	Υº	shredder emissions	0		0%	0%	А			d controlled by shredder introl system			d controlled by shredder introl system
V-2	81	E-02	Shredder Chute	Unprepare d	Υº	shredder emissions	0	-	0%	0%	А			d controlled by shredder entrol system		·	d controlled by shredder introl system
										Total Filte	erable PM	Emissions		0.1400			0.1400
V-3	4	C-001	Shredded Material Transfer Conveyor	Shred	Y	Outside	N		NA	0%	А	500	0.00014 ^d	0.0700	500	0.00014 ^d	0.0700
V-3	5	C-002	Shredded Material Transfer Conveyor	Shred	Y	Outside	N		NA	0%	А	1	0.00014 ^d	0.0001	1	0.00014 ^d	0.0001
V-3	6	C-002	Mat'l Not Removed by Poker Picker	Shred	Y	Outside	N		NA	0%	А	499	0.00014 ^d	0.0699	499	0.00014 ^d	0.0699
				•	<u>. </u>					Total Filte	erable PM	Emissions	·	0.1400		<u> </u>	0.1400
V-4	58	-	Poker Loadout	Pokers	N	Outside	N		0%	0%	D	1	0.00020 ^f	0.0002	1	0.00020 ^f	0.0002
V-4	62	E-06	Poker Picker Chute to Stockpile	Shred	1.5% ^{a1}	Outside	N		0%	0%	Drop	1	0.00761 ^c	0.0076	1	0.00761 ^c	0.0076
				1			1			Total Filte	erable PM	Emissions		0.0078			0.0078

Table A-2 - Ferrous Material Processing - Particulate Emissions General III, LLC - Chicago, Illinois

Non-Barge Loading 3 PM to 7 PM Mon - Fri and 3 PM to 5 PM Saturdays Barge Loading 7 AM to 3 PM Mon - Sat Changes only to V-10 thru V-13 (see blue text below). Point Transfer Type of Pickup Dust Material Material Filterable PM Filterable PM Volume Moisture Location Point Transfer Capture Control Emission Throughput ΡМ Throughput ΡМ Emissions Emissions **Equipment Generating Emissions** Material > 1.5% (Inside / Controlled Point Eff. Eff. Factor Rates **Emission Factors** Rates **Emission Factors** Source Row No. ID# Description Y/N Outside) (Y/N) Control (%) (%) lb/ton lb/hr lb/ton lb/hr Groupin Conveyed Source tph C-003 Ferrous Transfer Conveyor Outside NA Α 130 0.0182 130 0.00014 V-5 C-003 Ferrous Transfer Conveyor Ferrous Outside N NA 0% Α 369 0.00014 d 0.0517 369 0.00014 0.0517 V-5 NA 0% 0.00014 0.0006 0.00014 0.0006 31 C-032 ASR Transfer Conveyor Residue Outside 4 4 Ν Α V-5 C-033 0% 32 Magnetic Material Shred Outside NA Α 5 0.00014 0.0007 5 0.00014 0.0007 V-5 33 C-033 ASR Not Removed by Magnet E-12 Residue Outside Ν NA 0% Α 129 0.00014 d 0.0181 129 0.00014 0.0181 V-5 34 C-034 Ferrous Transfer Conveyor Shred Outside N NA 0% Α 5 0.00014 d 0.0007 5 0.00014 0.0007 V-5 Υ N NA 5 0.00014 0.0007 5 0.00014 0.0007 35 C-035 Ferrous Transfer Conveyor Shred Outside 0% Α V-5 129 0.00014 0.0181 129 0.00014 36 C-036 ASR Transfer Conveyor Residue Υ Outside Ν NA 0% Α 0.0181 V-5 41 E-07 Magnet Discharge to Chute Shred Outside N NA 0% Α 187 0.00014 0.0262 187 0.00014 0.0262 V-5 42 E-07 Magnet Discharge to Chute Shred Outside NA 0% Α 187 0.00014 0.0262 187 0.00014 0.0262 V-5 49 E-12 Ferrous Removed by Magnet Ferrous Outside N NA 0% Α 5 0.00014 0.0007 5 0.00014 0.0007 V-5 γa 53 E-7 ASR Not Removed by Magnet Shred Outside N NA 0% Α 2 0.00014 0.0003 2 0.00014 0.0003 V-5 54 E-7 Ferrous Removed by Magnet E-7 Residue Υ Outside Ν NA 0% 185 0.00014 0.0259 185 0.00014 0.0259 V-5 **Total Filterable PM Emissions** 0.1881 0.1881 C-037 61 ASR Transfer Conveyor to Stockpile Residue 10 a3 Outside N 0% 0% 0.00053 0.0689 129 0.00053 0.0689 Drop 129 V-6

Table A-2 - Ferrous Material Processing - Particulate Emissions General III, LLC - Chicago, Illinois

Non-Barge Loading 3 PM to 7 PM Mon - Fri and 3 PM to 5 PM Saturdays Barge Loading 7 AM to 3 PM Mon - Sat Changes only to V-10 thru V-13 (see blue text below). Point Transfer Type of Pickup Dust Material Material Filterable PM Volume Moisture Location Point Transfer Capture Control Emission Throughput ΡМ Throughpu ΡМ Filterable PM **Equipment Generating Emissions** Material > 1.5% (Inside / Controlled Point Eff. Fff. Factor **Emission Factors Emissions Emission Factors** Emissions Source Row Rates Rates No. ID# Description Y/N Outside) (Y/N) (%) lb/ton lb/hr lb/ton Groupin Conveyed Control (%) Source tph lb/hr C-006 Ferrous Transfer Conveyor Shred Outside Z-Box Air 100% 100% Α 183 0.00014 0.0000 183 0.00014 0.0000 V-7 Loop 10 C-007 Shred Outside Z-Box Air 100% 100% 183 0.00014 0.0000 183 0.00014 0.0000 Ferrous Transfer Conveyor Α V-7 Loop γa 0.00014 0.0077 0.00014 0.0077 21 C-022 Shred Outside NA 0% 55 Ν Α 55 Ferrous Transfer Conveyor V-7 C-023 γ a2 0% 0.00014 0.0077 0.00014 22 Shred Outside NA 55 0.0077 Ferrous Transfer Conveyor Α 55 V-7 23 C-024 Non-metallic transfer conveyor Ferrous Outside NA 0% Α 4 0.00014 0.0006 4 0.00014 0.0006 V-7 30 C-031 ASR Transfer Conveyor Residue Outside N NA 0% Α 0.00014 0.0006 V-7 0.00014 0.0003 0.00014 0.0003 38 E-015 Υ Outside Ν NA 0% 2 2 Z-Box Separator Cyclone Ferrous Α V-7 39 E-016 Z-Box Separator Cyclone Ferrous Υ Outside Ν NA 0% Α 2 0.00014 0.0003 2 0.00014 0.0003 V-7 43 E-08 ASR Not Removed by Magnet Shred Outside N NA 0% Α 2 0.00014 0.0003 0.00014 0.0003 V-7 E-08 Ferrous Removed by Magnet E-7 Residue Outside NA 0% Α 185 0.00014 0.0259 185 0.00014 0.0259 V-7 45 E-10 Ferrous Removed by Magnet Shred Outside N NA 0% Α 128 0.00014 0.0179 128 0.00014 0.0179 V-7 γa 0.0179 0.00014 46 E-11 Ferrous Removed by Magnet Shred Outside Ν NA 0% Α 128 0.00014 128 0.0179 V-7 47 E-11 Ferrous Removed by Magnet Shred Y a2 Outside N NA 0% Α 55 0.00014 0.0077 55 0.00014 0.0077 V-7 48 E-11 Shred Υ a2 Outside NA 0% 55 0.00014 0.0077 55 0.00014 0.0077 Ferrous Removed by Magnet Α V-7 64 SC-001 Supplemental Conveyor Shred Outside N NA 0% Α 183 0.00014 0.0256 183 0.00014 0.0256 V-7 NA 183 0.00014 0.0256 0.00014 0.0256 66 SC-002 Supplemental Conveyor Shred Outside Ν 0% Α 183 V-7 Emissions captured by inward air flow at inlet to Emissions captured by inward air flow at inlet to 2 70 C-004 Ferrous Transfer Conveyor Shred Outside Ν NA 0% Α V-7 Box separator Box separato 72 C-005 Ferrous Transfer Conveyor Shred Υ Outside N NA 0% Emissions captured by inward air flow at inlet to 2 Emissions captured by inward air flow at inlet to Z V-7 Total Filterable PM Emissions 0.1458 0.1458

Table A-2 - Ferrous Material Processing - Particulate Emissions General III, LLC - Chicago, Illinois

																Non-Barge Load	•
																/I Mon - Fri and 3 PN	•
												Barge	Loading 7 AM to 3 F	M Mon - Sat	Changes on	ly to V-10 thru V-13 (se	ee blue text below).
Volume Source	Row	E	quipment Generating Emissions	Material	Moisture > 1.5%	Transfer Point Location (Inside /	Transfer Point Controlled	Type of Transfer Point	Dust Pickup Capture Eff.	Dust Control Eff.	Emission Factor	Material Throughput Rates	PM Emission Factors	Filterable PM Emissions	Material Throughput Rates	PM Emission Factors	Filterable PM Emissions
Grouping	No.	ID#	Description	Conveyed	Y/N	Outside)	(Y/N)	Control	(%)	(%)	Source	tph	lb/ton	lb/hr	tph	lb/ton	lb/hr
V-8	24	C-025	Non-metallic not removed by magnet E- 13	Ferrous	Υ	Outside	N		NA	0%	Α	2	0.00014 ^d	0.0003	2	0.00014 ^d	0.0003
V-8	25	C-025	material removed by first magnet to second magnet	Ferrous	Υ a2	Outside	N		NA	0%	A	1	0.00014 ^d	0.0001	1	0.00014 ^d	0.0001
V-8	26	C-026	Ferrous Transfer Conveyor	Ferrous	Y a2				0%	0%	А	1	0.00014 ^d	0.0001	1	0.00014 ^d	0.0001
V-8	27	C-027	Ferrous Transfer Conveyor	Ferrous	Y a2	Outside	N		NA	0%	А	1	0.00014 ^d	0.0001	1	0.00014 ^d	0.0001
V-8	28	C-028	Non-metallic Transfer Conveyor	Ferrous	Y	Outside	N		NA	0%	А	1	0.00014 ^d	0.0001	1	0.00014 ^d	0.0001
V-8	29	C-029	Non-metallic Transfer Conveyor	Ferrous	Y				0%	0%	А	1	0.00014 ^d	0.0001	1	0.00014 ^d	0.0001
V-8	50	E-13	Ferrous Removed by E-13	Ferrous	γ ^{a2}	Outside	N		NA	0%	А	1	0.00014 ^d	0.0001	1	0.00014 ^d	0.0001
V-8	51	E-13	Ferrous Removed by E-13	Ferrous	Y	Outside	N		NA	0%	А	1	0.00014 ^d	0.0001	1	0.00014 ^d	0.0001
V-8	52	E-14	Mat'l Not removed by Separator	Ferrous	Y	Outside	N		NA	0%	А	0.25	0.00014 ^d	0.0000	0.25	0.00014 ^d	0.0000
V-8	60	C-030	Mat'l not Removed by Separator	Ferrous	1.5 ^{a1}	Outside	Y	Cover	0%	0%	Drop	2.25	0.00761 ^c	0.0171	2.25	0.00761 ^c	0.0171
V-8	63	E-14	Final Discharge from Mat'l Separator	Ferrous	1.5 ^{a1}	Outside	N		0%	0%	Drop	0.75	0.00761 ^c	0.0057	0.75	0.00761 ^c	0.0057
V-8	65	SC-009	Supplemental Conveyor	Ferrous	Y	Outside	N		NA	0%	А	2	0.00014 ^d	0.0003	2	0.00014 ^d	0.0003
V-8	67	SC-010	Supplemental Conveyor	Ferrous	Y	Outside	N		NA	0%	А	2	0.00014 ^d	0.0003	2	0.00014 ^d	0.0003
									•	Total Filt	erable PM	Emissions		0.0244	Ì		0.0244
V-9	57	-	Non-metallic Loadout	Non- metallic	N	Outside	N		0%	0%	D	187	0.00020 ^f	0.0382	187	0.00020 ^f	0.0382
							•	•	•								
															<u> </u>		

Table A-2 - Ferrous Material Processing - Particulate Emissions General III, LLC - Chicago, Illinois

Non-Barge Loading 3 PM to 7 PM Mon - Fri and 3 PM to 5 PM Saturdays Barge Loading 7 AM to 3 PM Mon - Sat Changes only to V-10 thru V-13 (see blue text below). Dust Point Transfer Type of Pickup Dust Material Material Filterable PM Volume Moisture Location Point Transfei Capture Control Emission Throughput ΡМ Throughput ΡМ Filterable PM **Equipment Generating Emissions** Material > 1.5% Point Fff. Factor **Emission Factors Emissions Emission Factors Emissions** Source Row (Inside / Controlled Eff. Rates Rates ID# Description Y/N Outside) (Y/N) (%) lb/ton lb/hr lb/ton No. Conveyed Control (%) Source tph lb/hr Groupin V-10 11 C-008 Ferrous Transfer Conveyor Shred Outside NA Α 56 0.00014 0.0078 56 0.00014 V-10 12 C-009 Ferrous Transfer Conveyor Shred Outside N NA 0% 128 0.00014 0.0179 128 0.00014 0.0179 Α 128 0.00014 0.0179 128 0.00014 0.0179 V-10 13 C-010 γa NA 0% Shred Outside Ν Α Ferrous Transfer Conveyor V-10 γ a2 0% 14 C-011 Shred Outside Ν NA 55 0.00014 Ferrous Transfer Conveyor Α 55 0.00014 0.0077 0.0077 V-10 15 C-012 Ferrous Transfer Conveyor Shred Y a2 Outside Ν NA 0% Α 56 0.00014 0.0078 56 0.00014 0.0078 V-10 16 C-013 Ferrous Transfer Conveyor Shred Outside N NA 0% Α 128 0.0179 128 0.00014 γ a2 128 0.00014 0.0179 128 0.00014 0.0179 V-10 17 C-014 Ferrous Transfer Conveyor Outside Ν NA 0% Shred Α V-10 18 C-015 Ferrous Transfer Conveyor Shred γa2 Outside Ν NA 0% Α 55 0.00014 0.0077 55 0.00014 0.0077 V-10 19 C-016 Ferrous Transfer Conveyor Shred γ a2 Outside N NA 0% Α 367 0.00014 0.0514 367 0.00014 0.0514 V-10 20 C-020 Ferrous Transfer Conveyor Shred Outside NA 0% Α 367 0.00014 0.0514 367 0.00014 0.0514 V-10 68 SC-005 Supplemental Conveyor Shred Outside N NA 0% 128 0.00014 0.0179 128 0.00014 0.0179 Α V-10 69 SC-008 Supplemental Conveyor Shred Outside Ν NA 0% Α 128 0.00014 0.0179 128 0.00014 0.0179 V-10 71 C-014 Ferrous Transfer Conveyor Shred Y a2 Outside N NA 0% Α No material to discharged to conveyor during 184 0.00014 0.0257 barge loading. V-10 73 C-012 Shred Υ a2 Outside NA 0% No material to discharged to conveyor during 184 0.00014 0.0257 Ferrous Transfer Conveyor Α barge loading. V-10 74 C-015 Ferrous Transfer Conveyor Shred Outside N NA 0% No material to discharged to conveyor during 184 0.00014 0.0257 Α barge loading. No material to discharged to conveyor during C-019 NA 0.00014 0.0257 V-10 75 Ferrous Transfer Conveyor Shred Outside Ν 0% Α 184 barge loading No material to discharged to conveyor during V-10 76 C-013 Ferrous Transfer Conveyor Shred Y a2 Outside Ν NA 0% Α 184 0.00014 0.0257 barge loading. V-10 77 C-017 Ferrous Transfer Conveyor Shred γ a2 Outside N NA 0% Α No material to discharged to conveyor during 184 0.00014 0.0257 No material to discharged to conveyor during 0.0257 V-10 78 C-020 Ferrous Transfer Conveyor Shred Outside 0% 184 0.00014 Ν NA barge loading. 0.2412 0.4210 Total Filterable PM Emissions

												Barge	e Loading 7 AM to 3			Non-Barge Load VI Mon - Fri and 3 PN ly to V-10 thru V-13 (se	1 to 5 PM Saturdays		
Volume Source Grouping	Row No.	Ec	quipment Generating Emissions Description	Material Conveyed	Moisture > 1.5% Y/N	Transfer Point Location (Inside / Outside)	Transfer Point Controlled (Y/N)	Type of Transfer Point Control	Dust Pickup Capture Eff. (%)	Dust Control Eff. (%)	Emission Factor Source	Material Throughput Rates tph	PM Emission Factors lb/ton	Filterable PM Emissions Ib/hr	Material Throughput Rates tph	PM Emission Factors lb/ton	Filterable PM Emissions Ib/hr		
V-11	82	C-018	Ferrous Transfer Conveyor to stockpile	Shred	5.4% ^{a2}	Outside	N	-	NA	0%	Drop			d to stockpile during barge ding.	184	0.00127	0.2323		
V-12	80	C-21	Ferrous Transfer Conveyor to stockpile	Shred	5.4% ^{a2}	Outside	N	-	NA	0%	Drop			d to stockpile during barge ding.	184	0.00127	0.2323		
V-13	1	Barge 1	Ferrous Transfer Conveyor	Shred	γ a2	Outside	N		NA	0%	А	367	0.00014 ^d	0.0514	No material	routed to barge during no	n-barge loading hours.		
V-13	2	Barge 2	Ferrous Transfer Conveyor	Shred	γ a2	Outside	N		NA	0%	Α	367	0.00014 ^d	0.0514	No material	routed to barge during no	n-barge loading hours.		
V-13	3	Barge 3	Ferrous Transfer Conveyor to barge (stockpile)	Shred	5.4% ^{a2}	Outside	N		0%	0%	Drop	367	0.00127 ^c	0.4645	0.4645 No material routed to barge during non-barge loading hours.				
	Total Filterable PM Emissions 0.5673 0.0000																		

- a1 Controlled particulate matter emission factors from AP-42, Table 11.19.2-2 for conveying used based on conservative assumption that moisture content is greater than 1.5% due to water added in the shredder.
- a2 Material moisture was assumed to be the mean of material moisture contents identified in AP42, Table 13.2.4-1.
- a3 Northern Metals (Minneapolis, MN) found moisture content of ASR in the range of 20 to 30%; from MPCA Construction Permit Technical Support Document for Northern Metals in Becker MN, Stream COMG-2.

 Calculations for the ASR stacking conveyor drop point conservatively assumes 10% moisture.
- a4 Moisture content of raw materials is assumed to be >1.5% based on application of water from water atomization cannons used for fugitive dust control.
- b Uncontrolled emission factor calculated according to material drop equation in AP-42, Section 13.2.4.3. Emissions calculated with control Eff. factor included for source being inside of a building.
- c Uncontrolled emission factor calculated according to material drop equation in AP-42, Section 13.2.4.3.
- d Uncontrolled particulate matter emission factors from AP-42, Table 11.19.2-2 for conveying. If moisture content is greater than 1.5% by weight, controlled emission factors are used.
- e Uncontrolled particulate matter emission factors from AP-42, Table 11.19.2-2 for screening. If moisture content is greater than 1.5% by weight, controlled emission factors are used.
- f Uncontrolled particulate matter emission factors from AP-42, Table 11.19.2-2 for truck loading of curshed stone. Use uncontrolled emisson factor to be conservative.
- g Particulate matter emission factors from AP-42, Table 11.19.2-2 for conveying. For sources controlled by a dust collector the emission factor is multiplied by the identified capture Eff. and then by the quantity of 1-control Eff..

 Dust collectors vent back into to the building. These emission calculations conservatively assume dust collector emission are vented to the atmosphere.
- h Metal HAPs as percent of total PM measured at the discharge of the existing roll media filter in June 2018.

Table A-3 Ferrous Plant Stockpile - Particulate Emissions General III, LLC - Chicago, Illinois

Volume Source Grouping	Stock Pile	Stock Pile Area Acres	Control Factor ^b	Inactive Emissions ^{a,d} PM lb/hr	Active Emissions ^{a,d} PM lb/hr
V-1	Raw Material Truck Dumping (Drop 1)	0.3630	1.00	0.0529	0.1996
V-1	Raw Material Movement from Truck Dumping Area to Stockpile (Drop 2)	0.1815	1.00	0.0265	0.0998
			Total	0.0794	0.2994
V-4	Poker North	0.0115	0.33	0.0006	0.0021
V-4	Poker South	0.0115	0.33	0.0006	0.0021
			Total	0.0012	0.0042
V-6	ASR	0.2541	1.00	0.0371	0.1398
V-9	Fluff (Bin)	0.0161	0.33	0.0008	0.0029
V-11	Ferrous North	0.3630	1.00	0.0529	0.1996
V-12	Ferrous South	0.3630	1.00	0.0529	0.1996

- a. Stockpile emissions calculation from TCEQ for crushed stone downloaded August 2019.
 https://www.tceq.texas.gov/assets/public/permitting/air/Guidance/NewSourceReview/emiss-calc-rock1.xlsx
- b. Control Factor of 0.33 (67.5% control) for partial enclosure consisting of walls on three sides of bin. Control Factor of 1.0 for no control.
- c. Assume number of active days to be 6 days per week and 52 weeks per year and inactive days to be 1 day per week and 52 weeks per year.
- d. From TCEQ Guidance

Stockpile emission calculation:

PM Emission Rate (tpy) = [(inactive day PM EF x No. of inactive days) x stockpile area/2000 x control factor] +

[(active day PM EF x No. of active days) x (stockpile area/2000) x control factor]

Inactive Day PM Emission Factor = 3.50 lb-PM/acre-day

Active Day PM Emission Factor = 13.20 lb-PM/acre-day

Table A-4 - Ferrous Material Processing - PM Emission Summary General III, LLC - Chicago, Illinois

Barge Loading Hours^{a,b}

		Filterable PM Emissions Agreerial Handling Emissions										
		dling Emissions Loading Hours	Stoc	kpile	То	tal						
Volume Source	Active lb/hr	Inactive Ib/hr	Active lb/hr	Inactive lb/hr	Active lb/hr	Inactive lb/hr						
V-1	0.8616		0.2994	0.0794	1.1610	0.0794						
V-2	0.1400				0.1400							
V-3	0.1400				0.1400							
V-4	0.0078		0.0042	0.0012	0.0120	0.0012						
V-5	0.1881				0.1881							
V-6	0.0689		0.1398	0.0371	0.2087	0.0371						
V-7	0.1458				0.1458							
V-8	0.0244				0.0244							
V-9	0.0382		0.0029	0.0008	0.0411	0.0008						
V-10	0.2412				0.2412							
V-11	0.0000		0.1996	0.0529	0.1996	0.0529						
V-12	0.0000		0.1996	0.0529	0.1996	0.0529						
V-13	0.5673				0.5673							

a. Barge Loading Hours - 7 AM to 3 PM Monday through Saturday.

Non-Barge Loading Hours^{a,b}

			Filterable PI	M Emissions		
	Material Hand During Non Barg	lling Emissions e Loading Hours	Stoc	kpile	То	tal
Volume Source	Active lb/hr	Inactive Ib/hr	Active lb/hr	Inactive lb/hr	Active lb/hr	Inactive Ib/hr
V-1	0.8616		0.2994	0.0794	1.1610	0.0794
V-2	0.1400				0.1400	
V-3	0.1400				0.1400	
V-4	0.0078		0.0042	0.0012	0.0120	0.0012
V-5	0.1881				0.1881	
V-6	0.0689		0.1398	0.0371	0.2087	0.0371
V-7	0.1458				0.1458	
V-8	0.0244				0.0244	
V-9	0.0382		0.0029	0.0008	0.0411	0.0008
V-10	0.4210				0.4210	
V-11	0.2323		0.1996	0.0529	0.4319	0.0529
V-12	0.2323		0.1996	0.0529	0.4319	0.0529
V-13	0.0000				0.0000	

a. Non-Barge Loading Hours - 3 PM to 7 PM Monday through Friday and 3 PM to 5 PM Saturday.

b. Inactive Hours - 7 PM to 7 AM Monday through Friday, 5 PM to 7AM Saturday, and All Day Sunday.

b. Inactive Hours - 7 PM to 7 AM Monday through Friday, 5 PM to 7AM Saturday, and All Day Sunday.

Supplement No. 1 to the January 24, 2019 Air Dispersion Modeling Report for Assessment of Metal Emission Impacts

General III, LLC – 11600 South Burley - Chicago, Illinois Construction Permit Application 19090021; Site ID No.: 031600SFX

February 12, 2020

Attachment B

Non-Ferrous Material Processing System Hourly Metal Emission Rates Tables

The hourly emission rates in these tables have not changed from the January 24, 2020 modeling report. Only the titles of the tables have been changed to identify the operating schedule

This Page Left Blank

Grouping	Row No.	Equipment Generating Emissions ID#	Description	Material Conveyed	Moisture > 1.5% Y/N	Transfer Point Location (Inside / Outside)	Conveyor Covered Y/N	Transfer Point Controlled (Y/N)	Type of Transfer Point Control	Dust Pickup Capture Eff. (%)	Dust Control Eff. (%)	Material Throughput Rates tph	PM Emissions Factor lb/ton	Filterab PM Emission
VN-1	113	C-001	Conveyor	Residue	Y	Outside	Y	N	NA		0%	70	0.000140 d	0.0098
VN-1	114	C-002	Conveyor	Residue	N	Outside	Y	N	NA		0%	68	0.003000 0	0.2037
VN-1	115	C-002	Conveyor	Ferrous	N	Outside	Y	N	NA		0%	2	0.003000 0	0.006
VN-1	116	C-003	Conveyor	Residue	N	Outside	Y	N	NA		0%	67.90	0.003000 0	0.203
VN-1	117	C-004	Conveyor	Residue	N	Outside	Y	N	NA		0%	60.90	0.003000 0	0.182
VN-1	118	C-005	Conveyor	Residue	N	Outside	Y	N	NA		0%	30.45	0.003000 °	0.091
VN-1	119	C-006	Conveyor	Residue	N	Outside		N	NA		0%	30.45	0.003000 0	0.091
VN-1	122	C-009	Conveyor	Residue	N	Outside		N	NA		0%	9.14	0.003000 0	0.027
VN-1	123	C-010	Conveyor	Residue	N	Outside		N	NA		0%	9.14	0.003000 0	0.027
VN-1	124	C-011	Conveyor	Residue	N	Outside	Y	N	NA		0%	8.40	0.003000 0	0.025
VN-1	129	C-016	Conveyor	Residue	N	Outside	Y	N	NA		0%	2.7	0.003000 0	0.008
VN-1	174	E-01	Vibratory Batch Feeder	Residue	Y	Outside		N	NA		0%	70	0.000140 d	0.009
VN-1	175	E-03	Screener	Residue	Y	Outside		N	NA		0%	60.90	0.002200 ^e	0.134
VN-1	176	E-03	Screener	Residue	Y	Outside		N	NA		0%	6.80	0.002200 e	0.015
VN-1	177	E-03	Screener	Residue	Y	Outside		N	NA		0%	2.70	0.002200 e	0.005
VN-1	178	E-04	Screener	Residue	Y	Outside		N	NA		0%	15.75	0.002200 ^e	0.034
VN-1	179	E-04	Screener	Residue	Y	Outside		N	NA		0%	9.14	0.002200 e	0.020
VN-1	180	E-04	Screener	Residue	Y	Outside		N	NA		0%	4.20	0.002200 ^e	0.009
VN-1	190	E-11	Screener	Residue	N	Outside		N	NA		0%	15.75	0.025000 d	0.393
VN-1	191	E-11	Screener	Residue	N	Outside		N	NA		0%	9.14	0.025000 ^d	0.228
VN-1	192	E-11	Screener	Residue	N	Outside		N	NA		0%	4.20	0.025000 d	0.10
VN-1	244	End Loader	Drop ASR into feed hopper	Residue into Hopper	N	Outside		Y	Cover		0%	70.00	0.000204 ^d	0.014
VN-1	246	SC-001	Supplemental Conveyor	Residue							0%	15.75	0.003000	0.04
VN-1	247	SC-002	Supplemental Conveyor	Residue							0%	16	0.003000	0.047

Grouping	Row No.	Equipment Generating Emissions ID#	Description	Material Conveyed	Moisture > 1.5% Y/N	Transfer Point Location (Inside / Outside)	Conveyor Covered Y/N	Transfer Point Controlled (Y/N)	Type of Transfer Point Control	Dust Pickup Capture Eff. (%)	Dust Control Eff. (%)	Material Throughput Rates tph	PM Emissions Factor Ib/ton	Filterable PM Emissions Ib/hr
VN-2	120	C-007	Conveyor	Residue	N	Inside	Y	N	ECS	100%	Bldg	15.75	0.003000 0	0.0095
VN-2	121	C-008	Conveyor	Residue	N	Inside		N	Enclosure ECS	100%	Eff. Bldg	15.75	0.003000 0	0.0095
VN-2	125	C-012	Conveyor	Residue	N	Inside	Y	N	Enclosure ECS	100%	Eff. Bldg	9.14	0.003000 °	0.0055
VN-2	126	C-013	Conveyor	Residue	N	Inside	Y	N	Enclosure ECS	100%	Eff. Bldg	9.14	0.003000 ⁰	0.0055
VN-2	127	C-014	Conveyor	Residue	N	Inside	Y	N	Enclosure ECS	100%	Eff. Bldg	8.40	0.003000 °	0.0050
VN-2	128	C-015	Conveyor	Ferrous	N	Inside	Y	N	Enclosure ECS	100%	Eff. Bldg	.25	0.003000 °	0.0002
VN-2	130	C-017	,	Ferrous	N	Outside	·	N N	Enclosure NA	10070	Eff. 0%	1.75	0.003000 0	0.0053
			Conveyor											
VN-2	131	C-018	Conveyor	Ferrous	N	Outside	Y	N	NA		0%	1.75	0.003000 0	0.0053
VN-2	132	C-019	Conveyor	Lights	N	Outside	Y	N	NA		0%	0.25	0.003000 0	0.0008
VN-2	133	C-020	Conveyor	Residue	N	Outside	Y	N	NA		0%	11.12	0.003000 0	0.0334
VN-2	134	C-021	Conveyor	Residue	N	Outside	Y	N	NA		0%	11.12	0.003000 0	0.0334
VN-2	135	C-022	Conveyor to Wind Sifter	Mixed	N	Outside	Y	Y	Wind Sifter	100%	100%	0.80	0.003000 ⁰	0.0024
VN-2	136	C-023	Conveyor to Wind Sifter	Non-Ferrous Residue	N	Outside	Y	Y	Wind Sifter	100%	100%	7.29	0.000140 0	0.0010
VN-2	137	C-024	Conveyor to Wind Sifter	Residue	N	Outside	Y	Y	Wind Sifter	100%	100%	7.29	0.000140 °	0.0010
VN-2	139	C-035	Conveyor	Residue	N	Inside	Y	N	ECS	100%	Bldg	2.7	0.003000 ⁰	0.0016
VN-2	147	C-044	Conveyor	Residue	N	Outside	Y	N	Enclosure NA		Eff. 0%	24.87	0.003000 0	0.0746
VN-2	181	E-05	Magnetic Separation	Residue	N	Inside		N	ECS	100%	Bldg	14.87	0.003000	0.0089
VN-2	182	E-05	Magnetic Separation	Residue	N	Inside		N	Enclosure ECS	100%	Eff. Bldg	9.87	0.003000	0.0059
VN-2	183	E-05	Magnetic Separation	Ferrous	N	Inside		N	Enclosure NA		Eff. 0%	0.88	0.003000	0.0026
VN-2	184	E-05	Magnetic Separation	Ferrous	N	Inside		N	NA		0%	5.00	0.003000	0.0150
VN-2	185	E-06		Residue	N	Outside		N	NA NA		0%	6.12	0.003000 d	0.0184
			Eddy Current Separator											
VN-2	186	E-06	Eddy Current Separator	Mids	N	Outside		N	NA		0%	3.50	0.003000 d	0.0105
VN-2	187	E-06	Eddy Current Separator	Zorba	N	Outside		N	NA		0%	0.25	0.003000 d	0.0008
VN-2	188	E-07	Wind Sifter	Lights	N	Outside		Y	Cover		0%	0.25	0.002200 ^d	0.0006
VN-2	189	E-07	Wind Sifter	Heavies	1.5 ª	Outside		Y	Wind Sifter	90%	100%	1.50	0.007606 ^c	0.0103
VN-2	193	E-12	Magnetic Separation	Residue	N	Inside		N	ECS Enclosure	100%	Bldg Eff.	14.87	0.003000	0.0089

Grouping	Row No.	Equipment Generating Emissions ID#	Description	Material Conveyed	Moisture > 1.5% Y/N	Transfer Point Location (Inside / Outside)	Conveyor Covered Y/N	Transfer Point Controlled (Y/N)	Type of Transfer Point Control	Dust Pickup Capture Eff. (%)	Dust Control Eff. (%)	Material Throughput Rates tph	PM Emissions Factor Ib/ton	Filterable PM Emissions
VN-2	194	E-12	Magnetic Separation	Residue	N	Inside		N	ECS Enclosure	100%	Bldg Eff.	9.87	0.003000	0.0059
VN-2	195	E-12	Magnetic Separation	Ferrous	N	Inside		N	NA		0%	0.88	0.003000	0.0026
VN-2	196	E-12	Magnetic Separation	Ferrous	N	Inside		N	NA		0%	5.00	0.003000	0.0150
VN-2	197	E-12	Magnetic Separation	Zorba	N	Outside		N	NA		0%	0.25	0.003000 d	0.0008
VN-2	198	E-13	Eddy Current Separator	Residue	N	Outside		N	NA		0%	6.12	0.003000 ^d	0.0184
VN-2	199	E-13	Eddy Current Separator	Mids	N	Outside		N	NA		0%	3.50	0.003000 d	0.0105
VN-2	200	E-14	Wind Sifter	Lights	N	Outside		Y	Cover		0%	0.20	0.002200 d	0.0004
VN-2	201	E-14	Wind Sifter	Heavies	1.5 a	Outside		Y	Wind Sifter	100%	100%	0.60	0.007606 ^c	0.0046
VN-2	202	E-15	Magnetic Separation	Residue	N	Inside		N	ECS Enclosure	100%	Bldg Eff.	9.09	0.003000	0.0055
VN-2	203	E-15	Magnetic Separation	Residue	N	Inside		N	ECS Enclosure	100%	Bldg Eff.	8.29	0.003000	0.0050
VN-2	204	E-15	Magnetic Separation	Ferrous	N	Outside		N	NA		0%	0.05	0.003000 d	0.0002
VN-2	205	E-15	Magnetic Separation	Mixed Non- Ferrous	N	Outside		N	NA		0%	0.40	0.003000 d	0.0012
VN-2	206	E-16	Eddy Current Separator	Residue	N	Outside		N	NA		0%	7.29	0.003000 d	0.0219
VN-2	207	E-16	Eddy Current Separator	Zorba	N	Outside		N	NA		0%	1.00	0.003000 d	0.0030
VN-2	208	E-17	Wind Sifter	Lights	N	Outside		Υ	Cover		0%	1.09	0.002200 d	0.0024
VN-2	209	E-17	Wind Sifter	Residue	N	Outside		Y	Wind Sifter	100%	100%	6.20	0.002200 d	0.0136
VN-2	210	E-21	Magnetic Separation	Residue	N	Inside		N	ECS Enclosure	100%	Bldg Eff.	8.29	0.003000	0.0050
VN-2	211	E-21	Magnetic Separation	Ferrous	N	Outside		N	NA		0%	0.05	0.003000 d	0.0002
VN-2	212	E-21	Magnetic Separation	Mixed Non- Ferrous	N	Outside		N	NA		0%	0	0.003000 d	0.0012
VN-2	213	E-22	Eddy Current Separator	Zorba	N	Outside		N	NA		0%	1.00	0.003000 d	0.0030
VN-2	214	E-22	Eddy Current Separator	Residue	N	Outside		N	NA		0%	7.29	0.003000 d	0.0219
VN-2	215	E-23	Wind Sifter	Lights	N	Outside		Y	Cover		0%	1	0.002200 d	0.0024
VN-2	216	E-23	Wind Sifter	Residue	N	Outside		Y	Wind Sifter	100%	100%	6.20	0.002200 d	0.0136
VN-2	217	E-27	Magnetic Separation	Residue	N	Inside		N	ECS Enclosure	100%	Bldg Eff.	8.15	0.003000	0.0049
VN-2	219	E-28	Eddy Current Separator	Residue	N	Outside		N	NA		0%	7.15	0.003000 d	0.0215
VN-2	221	E-34	Magnetic Separation	Residue	N	Inside		N	ECS Enclosure	100%	Bldg Eff.	6.55	0.003000	0.0039

Grouping	Row No.	Equipment Generating Emissions ID#	Description	Material Conveyed	Moisture > 1.5% Y/N	Transfer Point Location (Inside / Outside)	Conveyor Covered Y/N	Transfer Point Controlled (Y/N)	Type of Transfer Point Control	Dust Pickup Capture Eff. (%)	Dust Control Eff. (%)	Material Throughput Rates tph	PM Emissions Factor Ib/ton	Filterable PM Emission lb/hr
VN-2	222	E-34	Magnetic Separation	Residue	N	Inside		N	ECS Enclosure	100%	Bldg Eff.	6.55	0.003000	0.0039
VN-2	224	E-35	Eddy Current Separator	Residue	N	Outside		N	NA		0%	5.05	0.003000 d	0.0152
VN-2	231	E-43	Vibratory Feeder	Residue	N	Inside		N	ECS Enclosure	100%	Bldg Eff.	2.70	0.003000	0.0016
VN-2	232	E-44	Eddy Current Separator drop to stockpile	Zorba	1.5 a	Inside		N	NA		0%	0.50	0.007600	0.0038
VN-2	240	E-49	Transfer Conveyor	Residue onto ECS	N	Inside		N	ECS Enclosure	100%	Bldg Eff.	8.15	0.003000	0.0049
VN-2	242	ECS	Eddy Current Separator drop to container	Zorba	1.5 a	Inside		N	NA		0%	0.04	0.007600	0.0003
VN-2	243	ECS	Eddy Current Separator drop to container	Zorba	1.5 a	Inside		N	NA		0%	0.18	0.007600	0.0014
VN-2	248	SC-003	Supplemental Conveyor	Residue							0%	7.34	0.003000	0.0220
VN-2	249	SC-004	Supplemental Conveyor	Residue							0%	7.34	0.003000	0.0220
	•	<u>. </u>		•						Tota	l Filterable	PM Emissions		0.5395

Grouping	Row No.	Equipment Generating Emissions ID#	Description	Material Conveyed	Moisture > 1.5% Y/N	Transfer Point Location (Inside / Outside)	Conveyor Covered Y/N	Transfer Point Controlled (Y/N)	Type of Transfer Point Control	Dust Pickup Capture Eff. (%)	Dust Control Eff. (%)	Material Throughput Rates tph	PM Emissions Factor Ib/ton	Filterable PM Emissions Ib/hr
VN-3	138	C-034	Conveyor	Material Separator	N	Outside	Y	N	NA		0%	0.55	0.003000 0	0.0017
VN-3	140	C-039	Conveyor	Mixed Non-Ferrous	N	Outside		N	NA		0%	0.80	0.003000 0	0.0024
VN-3	141	C-040	Conveyor	Residue	N	Outside		N	NA		0%	2.80	0.003000 0	0.0084
VN-3	142	C-040	Conveyor	Mids	N	Outside		N	NA		0%	7	0.003000 0	0.0210
VN-3	143	C-040	Conveyor	Residue	N	Outside		N	NA		0%	4.20	0.003000 0	0.0126
VN-3	144	C-041	Conveyor	Zorba	N	Outside		N	NA		0%	0.50	0.003000 0	0.0015
VN-3	145	C-042	Conveyor	Zorba	N	Outside		N	NA		0%	1.50	0.003000 0	0.0045
VN-3	146	C-043	Conveyor	Zorba	N	Outside		N	NA		0%	3	0.003000 0	0.0090
VN-3	148	C-044	Conveyor	Lights Zuric	N	Outside	Y	N	NA		0%	0.30	0.003000 0	0.0009
VN-3	149	C-045	Conveyor	Residue	N	Outside	Y	N	NA		0%	24.87	0.003000 0	0.0746
VN-3	150	C-047	Conveyor	To SSI	N	Outside		N	NA		0%	0.55	0.003000 0	0.0017
VN-3	151	C-048	Conveyor	Out of SSI	N	Outside		N	NA		0%	0.55	0.003000 0	0.0017
VN-3	152	C-050	Conveyor	Residue	N	Outside	Y	N	NA		0%	25.07	0.003000 0	0.0752
VN-3	153	C-052	Conveyor	Residue	N	Outside		N	NA		0%	2	0.003000 0	0.0068
VN-3	154	C-055	Conveyor	Wire	N	Outside	Y	N	NA		0%	1.00	0.003000 0	0.0030
VN-3	155	C-058	Conveyor	Zuric drops	N	Outside	Y	N	NA		0%	0.30	0.003000 0	0.0009
VN-3	156	C-060	Conveyor	Zone	N	Outside	Y	N	NA		0%	1.20	0.003000 0	0.0036
VN-3	162	C-064	Conveyor	Zorba	1.5 a	Outside		N	NA		0%	0.70	0.007606 ^c	0.0053
VN-3	163	C-065	drop to container Conveyor	Residue	N	Outside	Y	N	NA		0%	2.2	0.003000 d	0.0066
VN-3	164	C-066	Conveyor	Residue	N	Outside	Y	N	NA		0%	54.39	0.003000 d	0.1632
VN-3	165	C-067	Conveyor	Residue	N	Outside	Y	N	NA		0%	54.39	0.003000 d	0.1632
VN-3	168	C-071	Conveyor	Lights	N	Outside	Y	Y	Cover		0%	0.03	0.000140 d	
VN-3	169	C-072	Conveyor	Lights	N	Outside	Y	Y	Cover		0%	0	0.000140 d	
VN-3	170	DC-01 Cyc	DC-01 fines discharge to	Lights	N	Outside		Y	Cover		0%	0.01	0.000140 ^d	
VN-3	171	DC-02 Cyc	DC-02 fines discharge to	Lights	N	Outside		Y	Cover		0%	0.01	0.000140 d	
VN-3	172	DC-03 Cyc	covered coneyor DC-03 fines discharge to covered coneyor	Lights	N	Outside		Y	Cover		0%	0.01	0.000140 ^d	

Grouping	Row No.	Equipment Generating Emissions ID#	Description	Material Conveyed	Moisture > 1.5% Y/N	Transfer Point Location (Inside / Outside)	Conveyor Covered Y/N	Transfer Point Controlled (Y/N)	Type of Transfer Point Control	Dust Pickup Capture Eff. (%)	Dust Control Eff. (%)	Material Throughput Rates tph	PM Emissions Factor lb/ton	Filterable PM Emission lb/hr
VN-3	173	DC-04 Cyc	DC-04 fines discharge to covered coneyor	Lights	N	Outside	-	Y	Cover		0%	0.01	0.000140 ^d	
VN-3	218	E-27	Magnetic Separation	Ferrous	N	Outside		N	NA		0%	0.25	0.003000 d	0.0008
VN-3	220	E-28	Eddy Current Separator	Zorba	N	Outside		N	NA		0%	1.00	0.003000 ^d	0.0030
VN-3	223	E-35	Eddy Current Separator	Zorba	N	Outside		N	NA		0%	1.50	0.003000 d	0.0045
VN-3	225	E-40	Separator	Lights Zuric	N	Outside		N	NA		0%	0.24	0.025000 ^d	0.0060
VN-3	226	E-40	Separator	Heavies Zuric	N	Outside		N	NA		0%	0.96	0.025000 ^d	0.0240
VN-3	227	E-40	Separator	Lights Zuric	N	Outside		N	NA		0%	0.35	0.025000 d	0.0088
VN-3	228	E-41	Separator	Lights	N	Outside		N	NA		0%	0.95	0.025000 ^d	0.0238
VN-3	229	E-41	Separator drop to container	Heavies	1.5 a	Outside		N	NA		0%	0.05	0.007606 ^c	0.0004
VN-3	230	E-42	Low speed shredder for size reduction	Out of SSI	N	Outside		N	NA		0%	0.55	0.003000 d	0.0017
VN-3	234	E-46	Separator	Heavier Zorba	N	Outside		N	NA		0%	1.25	0.02500 ^d	0.0313
VN-3	235	E-46	Separator	Lights Zorba	N	Outside		N	NA		0%	0.25	0.02500 ^d	0.0063
VN-3	236	E-47	Separator	Zorba	N	Outside		N	NA		0%	2.70	0.02500 ^d	0.0675
VN-3	237	E-47	Separator	Heavies Zorba	N	Outside		N	NA		0%	0.85	0.02500 ^d	0.0213
VN-3	238	E-47	Separator	Lights Zorba	N	Outside		N	NA		0%	0.15	0.02500 ^d	0.0038
VN-3	239	E-47	Separator	Light Zorba	N	Outside		N	NA		0%	0.30	0.02500 d	0.0075
VN-3	241	E-50	Air Vibe	To Infeed SSI	N	Outside		Y	Cover		0%	0.55	0.00014 ^d	0.0001
VN-3	250	SC-005	Supplemental Conveyor	Residue							0%	54.39	0.00300	0.1632
VN-3	251	SC-006	Supplemental Conveyor	Residue							0%	54.39	0.00300	0.1632

Grouping	Row No.	Equipment Generating Emissions ID#	Description	Material Conveyed	Moisture > 1.5% Y/N	Transfer Point Location (Inside / Outside)	Conveyor Covered Y/N	Transfer Point Controlled (Y/N)	Type of Transfer Point Control	Dust Pickup Capture Eff. (%)	Dust Control Eff. (%)	Material Throughput Rates tph	PM Emissions Factor Ib/ton	Filterable PM Emission
VN-4	159	C-062	Conveyor	Heavier Zorba	N	Outside		N	NA		0%	1.25	0.003000 ^d	0.0038
VN-4	160	C-063	Conveyor drop to stockpile	Zorba	1.5 a	Outside		N	NA		0%	2.70	0.007606 ^c	0.0205
VN-4	161	C-063	Conveyor drop to stockpile	Heavies Zorba	1.5% a	Outside		N	NA		0%	0.85	0.00761 ^c	0.0065
VN-4	233	E-44	Eddy Current Separator	Residue	N	Outside		N	NA		0%	2.2	0.00300 d	0.0066
				·	•					Tota	l Filterable	PM Emissions		0.0374
VN-5	157	C-061	Conveyor drop to stockpile	Heavies Zuric	1.5% a	Outside		N	NA		0%	0.96	0.00761 ^c	0.0073
VN-5	158	C-061	Conveyor drop to stockpile	Heavies Zuric	1.5% a	Outside		N	NA		0%	0.30	0.00761 ^c	0.0023
		C-070	Conveyor	Waste to	1.5% a	Outside		N	NA		0%	0.55	0.00761 ^c	0.0042
VN-5	167	0 070	drop to stockpile	Stockpile										
VN-5	167		drop to stockpile	I Stockpile	<u> </u>		<u> </u>					Total		0.0138
VN-5 VN-6	167	C-068	drop to stockpile Conveyor drop to stockpile	Residue	1.5 a	Outside	Y	N	NA		0%	Total 54.39	0.007606 ^c	0.0138 0.4137
	<u> </u>		Conveyor		1.5 a	Outside Outside	Y	N N	NA NA		0%		0.007606 ^c 0.00020	

- a Material moisture content (%) for light materials AP-42, Table 13.2.4-1 for crushed limestone -
- b Uncontrolled emission factor calculated according to material drop equation in AP-42, Section 13.2.4.3. Emissions calculated with control Eff. factor included for source being inside of a building.
- c Uncontrolled emission factor calculated according to material drop equation in AP-42, Section 13.2.4.3.
- Uncontrolled particulate matter emission factors from AP-42, Table 11.19.2-2 for conveying. If moisture is greater than 1.5% by weight, use controlled emission factors.
- e Uncontrolled particulate matter emission factors from AP-42, Table 11.19.2-2 for screening. If moisture is greater than 1.5% by weight, use controlled emission factors.
- f Sources located inside the Fines Building emit to the atmosphere through Dust Collection DC-01. Emissions are estimated by 12,000
- g Metal HAPs as percent of total PM measured at the discharge of the existing roll media filter in June 2018.

This Page Left Blank

Table B-2 - Non-Ferrous Plant Stockpile - Particulate Emissions General III, LLC - Chicago, Illinois

Volume Source Grouping	Stock Pile	Stock Pile Area Acres	Control Factor ^b	Inactive Emissions ^{a,d} PM Ib/hr	Active Emissions ^{a,d} PM lb/hr
VN-1	FE from E-02	0.0047	0.33	0.0002	0.0009
VN-4	5" + Zorba	0.0189	0.33	0.0009	0.0034
VN-4	2-1/2" - 5" Zorba	0.0189	0.33	0.0009	0.0034
VN-4	5/8" - 2-1/2" Zorba	0.0189	0.33	0.0009	0.0034
			Total	0.0027	0.0102
VN-5	Tailings	0.0195	0.33	0.0009	0.0035
VN-5	Open	0.0195	0.33	0.0009	0.0035
VN-5	Wire	0.0195	0.33	0.0009	0.0035
VN-5	Wire Rich Solids	0.0195	0.33	0.0009	0.0035
VN-5	Zurick	0.0195	0.33	0.0009	0.0035
			Total	0.0045	0.0175
VN-6	Waste	0.0868	0.33	0.0042	0.0158

a. Stockpile emissions calculation from TCEQ for crushed stone downloaded August 2019.
 https://www.tceq.texas.gov/assets/public/permitting/air/Guidance/NewSourceReview/emiss-calc-rock1.xlsx

- b. Control Factor of 0.1 (90% control) for partial enclosure consisting of walls on three sides of bin. Control Factor of 1.0 for no control.
- c. Assume number of active days to be 6 days per week and 52 weeks per year and inactive days to be 1 day per week and 52 weeks per year.
- d. From TCEQ Guidance

Stockpile emission calculation:

PM Emission Rate (tpy) = [(inactive day PM EF x No. of inactive days) x stockpile area/2000 x control factor] + [(active day PM EF x No. of active days) x (stockpile area/2000) x control factor]

Inactive Day PM Emission Factor = 3.50 lb-PM/acre-day
Active Day PM Emission Factor = 13.20 lb-PM/acre-day

Table B-3 - Non-Ferrous Material Processing - PM Emission Summary
General III, LLC - Chicago, Illinois

			PM Em	issions		
Sources	Material	Handling	Stock	kpile	Tot	als
	Active ^a lb/hr	Inactive ^b lb/hr	Active ^a lb/hr	Inactive ^b lb/hr	Active ^a lb/hr	Inactive ^b lb/hr
VN-1	1.9420	1.9420	0.0009	0.0002	1.9429	1.9422
VN-2	0.5395	0.5395			0.5395	0.5395
VN-3	1.1050	1.1050			1.1050	1.1050
VN-4	0.0374	0.0374	0.0102	0.0027	0.0476	0.0401
VN-5	0.0138	0.0138	0.0175	0.0045	0.0313	0.0183
VN-6	0.4248	0.4248	0.0158	0.0042	0.4406	0.4290

a. Active hours 5 AM to 11 PM Monday through Saturday.

b. Inactive hours 11 PM to 5 AM Monday through Saturday and all day Sunday.

Table B-4a - Non-Ferrous Material Processing - Metal Emissions in Active Hours General III, LLC - Chicago, Illinois

5 AM to 11 PM Monday through Saturday

Volume Source	Units	VN-1	VN-2	VN-3	VN-4	VN-5	VN-6	DC-1 ^b
PM (Active)	lb/hr	1.942900	0.539528	1.105000	0.047600	0.031300	0.440600	0.514300
Source of	Sample No.	5	5	5	5	5	5	5
Metals Conc. Data ^a	Sample Name	0.0000000	Non-Ferrous Transfer	Non-Ferrous Transfer	Non-Ferrous Transfer	Non-Ferrous Transfer	Non-Ferrous Transfer	Non-Ferrous Transfer
Lead	lb/hr	0.009170	0.002547	0.005216	0.000225	0.000148	0.002080	0.002427
Manganese	lb/hr	0.003420	0.000950	0.001945	0.000084	0.000055	0.000775	0.000905
Mercury	lb/hr	0.000018	0.000005	0.000010	0.000000	0.000000	0.000004	0.000005
Nickel	lb/hr	0.000604	0.000168	0.000344	0.000015	0.000010	0.000137	0.000160
Antimony	lb/hr	0.000002	0.000001	0.000001	0.000000	0.000000	0.000001	0.000001
Arsenic	lb/hr	0.000009	0.000002	0.000005	0.000000	0.000000	0.000002	0.000002
Beryllium	lb/hr	0.000002	0.000001	0.000001	0.000000	0.000000	0.000001	0.000001
Cadmium	lb/hr	0.000067	0.000019	0.000038	0.000002	0.000001	0.000015	0.000018
Chromium ^c	lb/hr	0.000826	0.000229	0.000470	0.000020	0.000013	0.000187	0.000219
Cobalt	lb/hr	0.000108	0.000030	0.000062	0.000003	0.000002	0.000025	0.000029
Phosphorus	lb/hr	0.001815	0.000504	0.001032	0.000044	0.000029	0.000412	0.000480
Selenium	lb/hr	0.000002	0.000001	0.000001	0.000000	0.000000	0.000001	0.000001
Zinc	lb/hr	0.066059	0.018344	0.037570	0.001618	0.001064	0.014980	0.017486
Barium	lb/hr	0.001329	0.000369	0.000756	0.000033	0.000021	0.000301	0.000352
Copper	lb/hr	0.003206	0.000890	0.001823	0.000079	0.000052	0.000727	0.000849
Silver	lb/hr	0.000024	0.000007	0.000013	0.000001	0.000000	0.000005	0.000006
Thallium	lb/hr	0.000002	0.000001	0.000001	0.000000	0.000000	0.000001	0.000001

a. Metal emissions from Volume Sources V-1 through V-13 calculated by multiplying total Volume Source PM (lb/hr) by the metal concentrations from corresponding samples of material deposition at GII collected and analyzed in December 2019.

Metal emissions from DC-1 are calculated by multiplying the estimated dust collector PM emission rate (lb/hr) by the metal concentrations from corresponding samples of material deposition at GII collected and analyzed in December 2019.

c. Chromium (metal) and compounds other than Chromium $\ensuremath{\text{VI}}$

Table B-4b - Non-Ferrous Material Processing - Metal Emissions in Inactive Hours General III, LLC - Chicago, Illinois

11 PM to 5 AM Monday through Saturday and All Day Sunday

Volume Source	Units	VN-1	VN-2	VN-3	VN-4	VN-5	VN-6	DC-1 ^b
PM (Inactive)	lb/hr	1.942200	0.539528	1.105000	0.040100	0.018300	0.429000	0.514300
Source of	Sample No.	5	5	5	5	5	5	5
Metals Conc. Data ^a	Sample Name	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Lead	lb/hr	0.009167	0.002547	0.005216	0.000189	0.000086	0.002025	0.002427
Manganese	lb/hr	0.003418	0.000950	0.001945	0.000071	0.000032	0.000755	0.000905
Mercury	lb/hr	0.000018	0.000005	0.000010	-	-	0.000004	0.000005
Nickel	lb/hr	0.000604	0.000168	0.000344	0.000012	0.000006	0.000133	0.000160
Antimony	lb/hr	0.000002	0.000001	0.000001	-	-	0.000001	0.000001
Arsenic	lb/hr	0.000009	0.000002	0.000005	-	-	0.000002	0.000002
Beryllium	lb/hr	0.000002	0.000001	0.000001	-	-	0.000001	0.000001
Cadmium	lb/hr	0.000067	0.000019	0.000038	0.000001	0.000001	0.000015	0.000018
Chromium ^c	lb/hr	0.000825	0.000229	0.000470	0.000017	0.000008	0.000182	0.000219
Cobalt	lb/hr	0.000108	0.000030	0.000062	0.000002	0.000001	0.000024	0.000029
Phosphorus	lb/hr	0.001814	0.000504	0.001032	0.000037	0.000017	0.000401	0.000480
Selenium	lb/hr	0.000002	0.000001	0.000001	-	-	0.000001	0.000001
Zinc	lb/hr	0.066035	0.018344	0.037570	0.001363	0.000622	0.014586	0.017486
Barium	lb/hr	0.001328	0.000369	0.000756	0.000027	0.000013	0.000293	0.000352
Copper	lb/hr	0.003205	0.000890	0.001823	0.000066	0.000030	0.000708	0.000849
Silver	lb/hr	0.000024	0.000007	0.000013	-	-	0.000005	0.000006
Thallium	lb/hr	0.000002	0.000001	0.000001	-	-	0.000001	0.000001

a. Metal emissions from Volume Sources V-1 through V-13 calculated by multiplying total Volume Source PM (lb/hr) by the metal concentrations from corresponding samples of material deposition at GII collected and analyzed in December 2019.

Metal emissions from DC-1 are calculated by multiplying the estimated dust collector PM emission rate (lb/hr) by the metal concentrations from corresponding samples of material deposition at GII collected and analyzed in December 2019.

c. Chromium (metal) and compounds other than Chromium VI

Supplement No. 1 to the January 24, 2019 Air Dispersion Modeling Report for Assessment of Metal Emission Impacts

General III, LLC – 11600 South Burley - Chicago, Illinois Construction Permit Application 19090021; Site ID No.: 031600SFX

February 12, 2020

Attachment C Metal Emission Modeling Input and Output Files (CD-ROM)

This Page Left Blank

D21 North Grand Avenue East, P.O. Box 19276, Springfield, Illinois 62794-9276 · (217) 782-3397

JB Pritzker, Governor

John J. Kim, Director

TEPA - DIVISION OF BECORDS ! ANNAGEMENT

REVIEWER. JWR

EXHIBIT 13

MEMORANDUM

DATE: March 2, 2020

TO: German Barria, FESOP/LOP Unit, Permit Section/BOA

FROM: Jeffrey Sprague, Modeling Unit, AQPS/BOA

SUBJECT: General III, LLC (State ID# 031600SFX), Permit Application #19090021

General III, LLC (GIII) through its consultant RK & Associates, Inc. (RKA), has submitted an air quality analysis in support of a construction permit for a new scrap metal recycling facility to be located at 11600 South Burley in Chicago, Illinois. The Illinois EPA (IEPA) requested the air quality analysis to assure that ambient air impacts of hazardous air pollutant (HAP) metal emissions from the proposed facility and existing nearby facilities were addressed. The contributions of facilities other than the proposed scrap metal recycling facility were evaluated only in conjunction with the lead (Pb) and manganese (Mn) analyses. RKA submitted a modeling protocol on November 18, 2019 (Air Dispersion Modeling Protocol to Assess Metal Emission Impacts, General III, LLC - Chicago, Illinois) to which the IEPA provided comment on November 20, 2019 (email from Jeff Sprague to John Pinion). An initial air quality analysis was submitted on January 24, 2020 (Air Dispersion Modeling Report for Assessment of Metal Emission Impacts, General III, LLC - Chicago, Illinois), with a subsequent submittal on February 12, 2020 (Supplement No. 1 to the January 24, 2020 Air Dispersion Modeling Report for Assessment of Metal Emission Impacts, General III, LLC - 11600 South Burley - Chicago, Illinois.) The supplemental submittal incorporated and described adjustments to ambient air boundaries (fenceline receptors), operating schedules, source coordinates, stack parameters. building downwash parameter inputs, emission factors for the shredder RTO/scrubber, and emissions allocations in selected modeled "Volume Sources". Modeling input and output files accompanying both submittals were provided on compact disc. The analyses evaluated the lead (Pb) air quality impacts against the 2008 National Ambient Air Quality Standard (NAAOS), and all other HAPs against the Agency for Toxic Substances and Disease Registry (ATSDR) Minimal Risk Levels, hazardous air contaminant air quality standards in the Wisconsin Department of Natural Resources air toxics rule (Wisconsin Administrative Code, Chapter NR 445 - Control of Hazardous Pollutants), and/or an inhalation risk greater than 1 in 1,000,000 for carcinogenic substances with a unit risk factor established by USEPA or the California Air Resources Board.

Modeling Methodology and Emissions

The consultant's modeling procedure conformed with generally accepted air dispersion modeling practices and with recommendations made by the IEPA in written and spoken communications. The most recent version of the American Meteorological Society/Environmental Protection

4302 N. Main Street, Rockford, IL 61103 (815) 987-7760 595 S. State Street, Elgin, IL 60123 (847) 608-3131 2125 S. First Street, Champaign, IL 61820 (217) 278-5800 2009 Mail Street Collinsville, IL 62234 (618) 346-5120 9511 Harrison Street, Des Plaines, IL 60016 (847) 294-4000 412 SW Washington Street, Suite D, Peoria, IL 61602 (309) 671-3022 2309 W. Main Street, Suite 116, Marion, IL 62959 (618) 993-7200 100 W. Randolph Street, Suite 4-500, Chicago, IL 60601 Agency Regulatory Model (AERMOD, version 19191) was used in conjunction with five consecutive years of regionally representative meteorological data (2012-2016: Midway Airport, Chicago, IL surface observations; Davenport, IA upper air soundings) processed using AERMET, version 19191. LEADPOST (version 13262) was used to post-process AERMOD output for determining maximum three-month rolling average lead (Pb) concentrations. The receptor network was of sufficient density and extent to capture the impacts of local contributing sources and to adequately represent air quality around the proposed facility. The modeling conducted by RKA evaluated HAP emissions from the proposed facility operations including the shredder RTO/Scrubber, baghouse exhaust from the "Non-Ferrous System Operation", scrap material dumping, material handling/transfer operations (conveyors, endloader activity, truck loadout, etc.), screeners, sifters, separators, stockpiles and haul truck movement on roadways. With limited exception, these sources were modeled based upon the operating schedule identified in the following table (Table 1):

Table 1 - Modeled Facility Operating Schedule

Site Operation	Monday	- Friday	Saturday		
Ferrous System Operation					
(includes Shredder)	7 AM to 7 PM	12 hrs/day	7 AM to 5 PM	12 hrs/day	
Barge Loading	7 AM to 3 PM	8 hrs/day	7 AM to 3 PM	8 hrs/day	
Non-Ferrous System Operation	5 AM to 11 PM	18 hrs/day	5 AM to 11 PM	18 hrs/day	
Roadway Fugitive Emissions					
(Facility Vehicular Traffic)	5 AM to 7 PM	14 hrs/day	5 AM to 5 PM	12 hrs/day	

Offsite lead-emitting facilities included fuel combustion emission sources, Portland cement usage and transfer operations, and metals processing and recovery. Offsite manganese-emitting facilities were the same, but included a greater number and much broader range of fuel combustion emission sources. Lead and manganese emission rates for offsite-emitting facilities were provided by the IEPA from its statewide inventory database. The fractional components of particulate matter emissions comprising the various HAP metal emission estimates for the proposed GIII operations are based upon: (1) Measured metal emission factors from the November 2019 compliance testing of the shredder RTO at the General Iron Industries, Inc. (General Iron) facility at 1909 North Clifton Avenue, Chicago, Illinois, and/or (2) analysis of the metal composition of selected samples of "material deposition" at the General Iron facility collected in December, 2019. The former used to estimate metal emissions from the GIII shredder RTO/Scrubber, whereas the latter was primarily used to assign HAP metal estimates for process and fugitive emissions comprising modeled GIII "Volume Sources".

Modeling Results

The applicant's maximum predicted HAP metal impacts typically occurred at receptors that were fenceline or near-fenceline locations. These included receptors on western, northern, and eastern boundaries of the proposed GIII site. The exception to this pattern were the modeled impacts for manganese, which showed maximum 24-hour and annual average values occurring to the northwest at a distance of more than three kilometers. This difference is attributed to the contributing impacts of offsite facilities included in the manganese modeling analysis.

The lead air quality analysis, which included GII emissions and offsite facilities in proximity to GIII, as well as a monitored background concentration (2016-2018 design value - Washington High School monitor), resulted in a maximum impact of 0.0849 μ g/m³ along the western fenceline. This value is less than 60% of the NAAQS. Table 2 provides a summary of the lead analysis results from both the consultant's submittal and the Agency's independent audit.

		•	• •	- •	
	Maximum Modeled 3-Month	Background Concentration	Total Concentration		Pb NAAQS
ļ.	Rolling Average	[Monitored Design Value]	[Modeled + Background]		[3-Month Rolling Average]
Modeling Source	(μg/m³)	(μg/m³)	(μg/m³)	Receptor (UTM Zone 16)	(μg/m³)
Consultant (RKA)	0.0649	0.0200	0.0849	454091.0 E, 4614866.0 N	0.15
Illinois EPA	0.0649	0.0200	0.0849	454091.0 E, 4614866.0 N	0.15

Table 2 - Summary of Predicted Lead (Pb) Air Quality Impacts

As noted above, the consultant's manganese analysis also incorporated emissions from offsite facilities in proximity to the proposed GIII location. Monitored background concentrations were obtained from the Washington High School monitor and reflect the maximum 24-hour average and annual average concentrations during the past three years. Table 3 provides summary results of the analysis conducted by RKA and the independent audit conducted by IEPA. The maximum 24-hour average value is approximately 16% of the NR445 hazardous air contaminant standard, whereas the maximum annual average value is approximately one-third of the NR445 and ATSDR MRL standards.

Maximum Modeled Background Total Concentration Concentration [AERMOD] Human Health Standard Concentration [Modeled + Background] $(\mu g/m^3)$ $(\mu g/m^3)$ $(\mu g/m^3)$ Source Value (µg/m³) **Modeling Source** Averaging Period Receptor (UTM Zone 16) 0.370 NR445 24-Hour¹ 0.379 0.749 452000.0 E. 4617500.0 N 4.80 Consultant (RKA) 0.039 0.070 0.109 452000.0 E, 4617500.0 N NR445 / ATSDR MRL Annual³ 0.30 / 0.30 24-Hour 0.379 0.370 0.749 452000.0 E, 4617500.0 N NR445 4.80 Illinois EPA 452000.0 E, 4617500.0 N NR445 / ATSDR MRL Annual² 0.035 0.070 0.30 / 0.30

Table 3 - Summary of Predicted Manganese (Mn) Air Quality Impacts

For the large group of remaining HAP metals, modeling was conducted for both 24-hour and annual averaging periods. For some of the metals (arsenic, barium, beryllium, cadmium, chromium, copper, nickel, phosphorus, selenium, and silver) only a 24-hour average health

¹The reported maximum modeled concentration is the highest value for any year of the five years modeled.

²The reported maximum modeled concentration is for that receptor with the highest average of the individual five yearly concentrations.

standard or an annual average health standard was available for comparison against maximum modeled impacts. For other metals (thallium and zinc), neither an NR445 standard nor an ATSDR MRL was available for comparison. For carcinogenic metals, an inhalation risk estimate of 1 x 10⁻⁶ based upon established unit risk factors and modeled concentrations serves as an additional standard. In all instances in which a standard was available for comparison, the maximum modeled impacts were lower, and typically, significantly lower than the specified level of the standard. Tables 4 and 5 provide summary results of the maximum predicted impacts and the corresponding health-based standards.

Table 4 - Maximum Predicted 24-Hour Average Concentrations of Selected Metal HAPs, and Related Health Standards

£	Consultant (RKA)	Modeling Submittal	Heal	th Standard	Illinois EPA Mod	eling Audit Results
Metal HAP	Concentration (µg/m³)	Receptor (UTM Zone 16)	Source	Concentration (µg/m³)	Concentration (µg/m³)	Receptor (UTM Zone 16)
Antimony	0.00253	454085.0 E, 4614965.0 N	NR445	12.00	0.00253	454085.1 E, 4614964.0 N
Arsenic	0.00112	454085.0 E, 4614965.0 N	None Identified		0.00112	454085.1 E, 4614964.6 N
Barium	0.09159	454091.0 E, 4614866.0 N	NR445	12.00	0.09159	454091.0 E, 4614865.5 N
Beryllium	0.00091	454600.0 E, 4615000.0 N	None Identified		0.00091	454600.0 E, 4615000.0 N
Cadmium	0.00430	454091.0 E, 4614866.0 N	None Identified		0.00430	454091.0 E, 4614865.5 N
Chromium	0.05308	454091.0 E, 4614866.0 N	NR445	12.00	0.05308	454091.0 E, 4614865.5 N
Cobalt	0.00570	454091.0 E, 4614866.0 N	NR445	0.48	0.00570	454091.0 E, 4614865.5 N
Copper	0.20625	454091.0 E, 4614866.0 N	NR445	24.00	0.20625	454091.0 E, 4615865.5 N
Mercury	0.09787	454085.0 E, 4614965.0 N	NR445	2.40	0.09787	454085.1 E, 4614964.6 N
Nickel	0.03650	454091.0 E, 4614866.0 N	None Identified		0.03650	454091.0 E, 4614865.5 N
Phosphorus	0.31775	454085.0 E, 4614965.0 N	NR445	2.43	0.31775	454085.1 E, 4614964.6 N
Selenium	0.01327	454085.0 E, 4614965.0 N	NR445	4.80	0.01327	454085.1 E, 4614964.6 N
Silver	0.00302	454085.0 E, 4614965.0 N	NR445	2.40	0.00302	454085.1 E, 4614964.6 N
Thallium	0.00034	454085.0 E, 4614965.0 N	None Identified		0.00034	454085.1 E, 4614964.6 N
Zinc	3.56760	454091.0 E, 4614866.0 N	None Identified	*****	3.56760	454091.0 E, 4614865.5 N

Table 5 - Maximum Predicted Annual Average Concentrations of Selected Metal HAPs, and Related Health Standards

	Applicant/Consultar	nt Modeling Submittal ¹	Healt	h Standard	Illinois EPA Made	eling Audit Results ⁷
Metal HAP	Concentration (µg/m³)	Receptor (UTM Zone 16)	Source	Concentration (µg/m³)	Concentration (µg/m³)	Receptor (UTM Zone 16)
Antimony	0.00016	454251.0 E, 4615156.0 N	ATSDR MRL	0.30	0.00014	454251.0 E, 4615155.9 N
Arsenic	0.00008	454596.0 E, 4615044.0 N	IUR ²	[0.0043 X 0.00008 < 1E-06]	0.00008	454595.8 E, 4615044.4N
Barium	0.00977	454091.0 E, 4614866.0 N	None Identified	*****	0.00912	454091.0 E, 4614865.5 N
Beryllium	0.00011	454596.0 E, 4615044.0 N	NR445 ³	0.02	0.00010	454595.8 E, 4615044.4 N
Cadmium	0.00047	454091.0 E, 4614866.0 N	ATSDR MRL ⁴	0.01	0.00044	454091.0 E, 4614865.5 N
Chromium	0.00505	454091.0 E, 4614866.0 N	None Identified	*****	0.00474	454091.0 E, 4614865.5 N
Cobalt	0.00059	454091.0 E, 4614866.0 N	ATSDR MRL	0.10	0.00055	454091.0 E, 4614865.5 N
Copper	0.02178	454091.0 E, 4614866.0 N	None Identified	*****	0.02034	454091.0 E, 4614865.5 N
Mercury	0.00626	454251.0 E, 4615156.0 N	NR445 ⁵	0.30	0.00523	454251.0 E, 4615155.9 N
Nickel	0.00366	454091.0 E, 4614866.0 N	NR445/ATSDR MRL ⁶	0.09	0.00343	454091.0 E, 4614865.5 N
Phosphorus	0.02051	454251.0 E, 4615156.0 N	None Identified	*****	0.01710	454251.0 E, 4615155.9 N
Selenium	0.00085	454251.0 E, 4615156.0 N	None Identified	*****	0.00071	454251.0 E, 4615155.9 N
Silver	0.00030	454596.0 E, 4615044.0 N	None Identified	*****	0.00029	454595.8 E, 4615044.4 N
Thallium	0.00003	454596.0 E, 4615044.0 N	None Identified		0.00003	454595.8 E, 4615044.4 N
Zinc	0.38076	454091.0 E, 4614866.0 N	None Identified		0.35341	454091.0 E, 4614865.5 N

¹The reported AERMOD concentration is the maximum individual year concentration of the five years modeled.

²Using a 0.0043 Unit Risk Factor and 0.00008 μg/m³ modeled concentration yields a 3.87E-07 inhalation impact which is less than 1-in-a-million.

³Additionally, using a 0.0024 Unit Risk Factor and 0.00011 µg/m3 modeled concentration yields a 3.60E-07 inhalation impact which is less than 1-in-a-million.

⁴Additionally, using a 0.0018 Unit Risk Factor and 0.00047 µg/m³ modeled concentration yields a 7.20£-07 inhalation impact which is less than 1-in-a-million.

⁵A 0.20 µg/m³ ATSDR MRL is also an applicable standard to evaluate mercury annual average impacts.

⁶Additionally, using a 0.00026 Unit Risk Factor and 0.00366 μg/m³ modeled concentration yields a 9.52E-07 inhalation impact which is less than 1-in-a-million.

⁷The reported AERMOD concentration is for that receptor with the highest average of the individual five yearly concentrations.

Remarks and Recommendations

The following dot-point entries provide concluding comments regarding the modeling assessment, with particular emphasis on conditions for acceptability and notable uncertainties in the analysis.

- The applicant's consultant submitted a modeling analysis that was consistent with the directives of Illinois EPA staff, addressing through modeling those metal HAPs previously identified at the General Iron Industries, Inc. facility. The current analysis focused on lead (Pb) and manganese (Mn) emissions, while also evaluating other metal HAPs. A more exhaustive assessment would include incorporating offsite facilities in the modeling analysis for these other metal HAPs, and, if available, monitored background concentrations for a fuller accounting of potential ambient loadings.
- Illinois EPA acceptance of "ambient air boundary" receptor placement, as implemented in the modeling analysis, is contingent upon additional signage, visual control equipment, and a physical barrier (fencing or shipping containers) as described on pages 3 and 4 of <u>Supplement No. 1 to the January 24, 2020 Air Dispersion Modeling Report for Assessment of Metal Emission Impacts, General III, LLC 11600 South Burley Chicago, Illinois.</u>
- The modeling analysis was not structured to allow evaluation of ambient air concentrations for all possible hours from the five-year meteorological dataset. Rather, those hours of meteorological data that fell outside the operating schedules for General III emission sources in Table 1 of this memorandum were excluded from the analysis. Consequently, permit conditions are necessary that restrict the facility's operation to the days and hours specified in Table 1 (largely reproduced from page 1 of Supplement No. 1 to the January 24, 2020 Air Dispersion Modeling Report for Assessment of Metal Emission Impacts, General III, LLC 11600 South Burley Chicago, Illinois). For certain emission sources, the meteorological hours modeled by the consultant extended beyond the operational hours specified in Table 1. Accordingly, the permit conditions should be adjusted to reflect this expanded assessment.
- The roadway fugitive emissions calculations reflect haul truck travel (semi-trailers) on specified road segments accompanying deliveries of metal scrap and removal of waste material. It is highly uncertain as to how well small truck deliveries by "peddlers" are represented in the number of vehicles and in the choice of parameters for estimating emissions. Additionally, the roadway fugitives do not include emission estimates of personal (employee) vehicle travel or possible product transfer by trucks offsite that may be occurring on these roadways. The unquantified emissions from these mobile sources, though likely insignificant, adds some uncertainty to the modeled HAP metal concentrations.
- The Reserve Management Group (RMG) industrial campus includes four existing facilities that are directly south of the proposed General III, LLC location. These

facilities---Reserve Marine Terminals, Regency Technologies, Napuck Salvage of Waupaca, and South Shore Recycling---were not incorporated directly into the modeling analysis. They may, however, be indirectly represented by the monitored background values used for some of the HAP metals. It is uncertain to what extent the unquantified emissions from these facilities are contributing to ambient loadings of HAP metals.

Based upon the applicant's submittal, and the Illinois EPA's review and audits, the air quality analysis adequately demonstrates that the proposed General III, LLC scrap metal recycling facility will not cause or contribute to violations of the lead (Pb) NAAQS, nor exceed human health-based HAP standards that include ATSDR MRLs and concentration or risk-based limits codified in Chapter NR445 of the Wisconsin Administrative Code.

cc: David Bloomberg, Section Manager, AQPS/BOA
Chris Romaine, CAAPP Construction Unit Manager, Permit Section/BOA
Bob Bernoteit, FESOP/State Permits Unit Manager, Permit Section/BOA
Robb Layman, Assistant Counsel, Division of Legal Counsel

EXHIBIT 14

March 20, 2020

R17421-7.0

Mr. Jeff Sprague Illinois Environmental Protection Agency - Bureau of Air 1021 North Grand Avenue East Springfield, IL 62702

Final Metal Emissions from South Chicago Property Management, Ltd. General III, LLC - 11600 South Burley - Chicago, Illinois Site ID No. 031600SFX; Application No. 19090021

Dear Mr. Sprague:

The following information is provided at your request to quantify estimated metals emissions associated with South Chicago Property Management, Ltd. (SCPM) operations at 11600 S. Burley Avenue in Chicago, Illinois.

Metal HAP emissions from SCPM are a function of particulate emissions. The primary sources of PM emissions from SCPM are material handling activities and roadway emissions.

SCPM recently submitted an application for a Lifetime Operating Permit that included particulate matter emission rates. Metals emissions were estimated by collecting site specific samples of particulate matter from the site that are assumed to best represent the anticipated metal content of the particulate matter emissions from each emission unit. Samples were submitted to a certified laboratory for metals analysis and the reported metal concentrations from each sample were combined with corresponding particulate matter emission rates to estimate total metals emissions. The metal analytical reports are presented in Attachment A.

Table 1 below identifies the particulate matter emission units for each operating entity at SCPM and identifies the sample used to estimate metal emissions. The following briefly describes the samples collected and submitted for metals analysis.

RMT Material Handling:

A representative sample of particulate matter captured in the baghouse controlling emissions from RMT's sand processing unit was collected and analyzed to represent the metal content of particulate matter emissions from RMT's material handling activities (shredding and screening and materials drops). No screening for particle size was performed in preparation of the composite sample.

March 20, 2020 R17423-7.0 Mr. Jeff Sprague – IEPA Bureau of Air Final Metal Emissions from South Chicago Property Management, Ltd.

General III, LLC - 11600 South Burley - Chicago, Illinois Site ID No. 031600SFX; Application No. 19090021

Page 2

Table 1 Identification of Particulate Matter Samples Used to Estimate

Metal Emissions from Existing Emission Units

Emission Unit/Activity	Reserve Marine Terminals (RMT)	Napuck Salvage of Waupaca (NSW)	South Shore Recycling (SSR)	Regency Technologies (RSR)
Shredding & Screening	SPB	ASB		
Material Drops (inside)	SPB	ASB		
Internal Combustion Engines	Note 1			
AL Dryer Propane Combustion		Note 1		
Torch Cutting	PR		PR	
Paved Roads - Controlled	PR	PR		PR
Unpaved Roads - Controlled	UP		UP	
Campus Wide AST 500-gal Gas	NA			
Campus Wide AST	NA			

SPB = Sand Processing Baghouse

ASB = Aluminum Shredding Baghouse

UP = Unpaved Road Dust

PR = Paved Road Dust

NSW Material Handling:

A representative sample of particulate matter captured in the baghouse controlling emissions from NSW's aluminum shredding system was collected and analyzed to represent the metal content of particulate matter emissions from NSW's material handling activities (shredding and screening and materials drops). No screening for particle size was performed in preparation of the composite sample.

Paved Roads:

Particulate matter samples were collected from multiple locations on paved roads within SCPM. The samples were composited in the field and a single sample was collected and submitted for analysis. The metals content of the paved road particulate samples was assumed to represent particulate matter emissions from paved roads as well as torching emissions because torching is performed on a paved surface. No screening for particle size was performed in preparation of the composite sample.

Unpaved Roads:

Particulate matter samples were collected from multiple locations on unpaved roads within SCPM. The samples were composited in the field and a single sample was collected and submitted for analysis. The metals content of the unpaved road particulate samples was assumed to represent particulate matter emissions from paved roads. No screening for particle size was performed in preparation of the composite sample.

For the purposes of this estimate, metal HAP emissions from fuel combustion sources (internal
combustion engine/generators and the propane aluminum dryer) are assumed to be negligible and are
not included in this estimate.

Table 2 presents a summary of metals concentrations from each sample analyzed.

Table 2 Summary of Metal Concentrations from SCPM Particulate Samples

HAP Y/N	Metal	Paved Roads PPM	Unpaved Roads PPM	NSW Baghouse Dust PPM	RMT Baghouse Dust PPM
Υ	Antimony	<1.19	<1.24	24.9	<1.18
Υ	Arsenic	<1.19	<1.24	<1.17	<1.18
Υ	Beryllium	<1.19	<1.24	<0.117	<1.18
Υ	Cadmium	0.724	0.834	15.3	0.962
Υ	Chromium	346	303	106	527
Υ	Cobalt	2.74	2.14	116	6.2
Υ	Lead	50.6	72	595	46.1
Υ	Manganese	4,760	5,040	624	4,000
Υ	Mercury	<0.095	0.104	<0.095	0.547
Υ	Nickel	25.5	20.2	101	74.5
Υ	Phosphorus	40.1	184	1540	869
Υ	Selenium	<1.19	<1.24	<1.17	<1.18
N	Barium	57.2	51.6	321	367
N	Copper	95.3	72.4	1760	373
N	Silver	<1.19	<1.24	<3.75	<1.18
N	Titanium	256	166	699	183
N	Zinc	249	178	3,560	1,660

Table 3 presents a summary of annual particulate matter emission rates from identified SCPM emission units and the corresponding annual metal emission rates.

Table 3 Summary of Maximum PM Emissions Used to Estimate Metal Emissions

POTENTIAL PM Emissions with Controlled Roadway PM

Activity/Emission Unit	RMT PM (tpy)	NSW PM (tpy)	SSR PM (tpy)	RSR PM (tpy)	SCPM Employee (tpy)	SCPM Total (tpy)
Shredding & Screening	1.5339	0.6222				2.1561
Material Drops (inside)	0.0142	0.0001				0.0143
Internal Combustion Engines	0.5300					
AL Dryer Propane Combustion		0.2010				
Torch Cutting	1.6824		0.0087			1.6911
Paved Roads - Controlled	1.3895	1.1496		0.9184	0.0860	3.5435
Unpaved Roads - Controlled	21.3129		1.6807			22.9936
Campus Wide AST 500-gal Gas						
Campus Wide AST 1000-gal Diesel						
Totals Emissions	26.46	1.97	1.69	0.92	0.09	30.40

	RMT	NSW	SCPM Paved	SCPM	
Total PM Emissions (tpy) Used to	Material	Material	Roads &	Unpaved	
Estimate Corresponding Metal Emissions	Handling	Handling	Torch Cutting	Roads	Totals
	1.5481	0.6223	5.2346	22.9936	30.3986

Table 4 presents the estimated maximum annual metal emission rates, which were determined by multiplying the particulate emission rate (tpy) by the corresponding weight percent (Wt %) of each metal in the corresponding sample analyzed. Metal concentrations in Table 2 are reported in milligrams per kilogram (mg/kg), which is equivalent to parts per million (PPM). The weight percent of each metal is calculated by dividing the reported metal concentration by 1,000,000.

Table 4 Summary of Maximum SCPM Metal Emissions

		RMT Material	NSW Material	SCPM Paved Roads and	SCPM Unpaved	SCPM	Totals
HAP (Y/N)	Metal	Handling (tpy)	Handling (tpy)	Torch Cutting (tpy)	Roads (tpy)	(tpy)	lb/yr
Υ	Antimony	1.81E-06	1.55E-05	6.23E-06	2.85E-05	5.20E-05	0.10
Υ	Arsenic	1.81E-06	7.28E-07	6.23E-06	2.85E-05	3.73E-05	0.07
Υ	Beryllium	7.74E-07	7.28E-08	6.23E-06	2.85E-05	3.56E-05	0.07
Υ	Cadmium	1.49E-06	9.52E-06	3.79E-06	1.92E-05	3.40E-05	0.07
Υ	Chromium	8.16E-04	6.60E-05	1.81E-03	6.97E-03	9.66E-03	19.32
Υ	Cobalt	9.60E-06	7.22E-05	1.43E-05	4.92E-05	1.45E-04	0.29
Υ	Lead	7.14E-05	3.70E-04	2.65E-04	1.66E-03	2.36E-03	4.72
Υ	Manganese	6.19E-03	3.88E-04	2.49E-02	1.16E-01	1.47E-01	294.77
Υ	Mercury	8.47E-07	5.91E-08	4.97E-07	2.39E-06	3.79E-06	0.01
Υ	Nickel	1.15E-04	6.29E-05	1.33E-04	4.64E-04	7.76E-04	1.55
Υ	Phosphorus	1.35E-03	9.58E-04	2.10E-04	4.23E-03	6.74E-03	13.49
Υ	Selenium	1.83E-06	7.28E-07	6.23E-06	2.85E-05	3.73E-05	0.07
N	Barium	5.68E-04	2.00E-04	2.99E-04	1.19E-03	2.25E-03	4.51
N	Copper	5.77E-04	1.10E-03	4.99E-04	1.66E-03	3.84E-03	7.67
N	Silver	1.83E-06	2.33E-06	6.23E-06	2.85E-05	3.89E-05	0.08
N	Titanium	2.83E-04	4.35E-04	1.34E-03	3.82E-03	5.88E-03	11.75
N	Zinc	2.57E-03	2.22E-03	1.30E-03	4.09E-03	1.02E-02	20.36

The highest total SCPM metal emission rate is Manganese (Mn) at 294.77 lb/yr. Actual emissions are estimated to be approximately 276.38 lb/yr.

Installation of GIII is expected to add approximately 74.18 lb/yr of additional Mn emissions to this site. At the same time, the installation of pavement for the GIII project will replace existing unpaved roads used by SCPM with paved roads, as described below. This improvement will reduce SCPM's annual Mn emissions by approximately 117.5 lb/yr, which will offset the increase in Mn emissions from GIII, resulting in an overall decrease in site-wide Mn emissions of 43.32 lb/yr from the addition of GIII.

The community impacts associated with SCPM's current Mn emissions are documented by IEPA's ambient air quality monitoring station located at Washington High School. The IEPA's 2018 Air Quality Report identifies that the annual mean ambient air concentration of Mn measured at Washington High School was 0.048 ug/m^3 , which is just 16% of USEPA's recommended limit of 0.30 ug/m^3 .

Future Reduction in SCPM Mn Emissions:

The top portion of Table 5 identifies the estimated fugitive roadway PM emissions based on existing paved and unpaved roadways. The bottom portion of the table identifies the future projected PM emissions after GIII paving.

The estimated fugitive roadway PM emissions are multiplied by the measured Mn concentration (Wt %) in recent particulate matter samples from SCPM as described above.

The estimated Mn emissions from the vehicle miles traveled on current roadway surfaces was compared to the estimated Mn emissions from vehicle miles traveled on future roadway surfaces. This comparison shows a reduction of 44.3% in the estimated Mn emissions associated with fugitive roadway PM emissions due to road paving that will be performed in conjunction construction of GIII.

The majority of fugitive roadway PM emissions are generated from interior plant roadways that are removed from the ambient air boundary. The estimates in roadway emissions are conservative because they do not account for the portion of particulate emissions that settle to the ground before reaching the property line.

March 20, 2020 R17423-7.0

Mr. Jeff Sprague - IEPA Bureau of Air Final Metal Emissions from South Chicago Property Management, Ltd. General III, LLC - 11600 South Burley - Chicago, Illinois

Site ID No. 031600SFX; Application No. 19090021

Page 6

Table 5 - Summary of Current and Future Estimated Mn Emissions from SCPM

	Currer	nt Paved Roa	dway PM En	nissions ^a Current Unpaved Roadway PM Emissio				Emissions ^a
Entity	lb/VMT	miles/day	tons/yr	miles/yr	lb/VMT	miles/day	tons/yr	miles/yr
RMT	0.6408	16.68	1.39	4,336.77	2.8531	57.46	21.31	14,940.17
NSW	0.6408	13.80	1.15	3,588.01				
SSR					0.6671	19.38	1.68	5,038.82
RSR	0.6408	2.56	0.92	2,866.42				
Employees	0.0200	33.07	0.09	8,600.00				
Current Maxin Roadway PM E		tpy	3.54				22.99	
		ppm	4,760				5,040	
Current Maxin Roadway Mn E		lb/yr	33.73				231.78	
Noadway Will I		lb/yr		265.51				
Current Maxin		lb/yr	(294.77 (includes process emissions and roadway emissions)				

	Futur	e Paved Road (After G	dway Emissi III Paving)				ved Roadway PM Emissions After GIII Paving)		
Entity	lb/VMT	miles/day	tons/yr	miles/yr ^a	lb/VMT	miles/day	tons/yr	miles/yr	
RMT	0.6408	41.95	3.49	10,907.30	2.8531	25.06	9.29	6,514.74	
NSW	0.6408	13.80	1.15	3,588.01					
SSR	0.0238	18.88	0.06	4,907.56	II unpaved	roads elimir	nated by GII	l.	
RSR	0.6408	2.56	0.92	2,866.42					
Employees	0.0200	33.07	0.09	8,600.00					
Future Maxim Roadway PM E	•	tpy	5.71	9.29		9.29			
Future Maxim	um	ppm	4,760	1			5,040		
Roadway Mn I	Emissions	lb/yr	54.33				93.68		
(After GIII Pav	ing)	lb/yr			148	3.01			
Reduction in R	Roadway	lb/yr			117	7.50			
Mn Due to GIII	Paving	%			44	.3%			
Future Maxim SCPM Mn Emis (After GIII Pavi	ssions	lb/yr		177.27 (includes process and roadway emissions)					

Estimated Maximum Mn 74.18 lb/yr **Emissions from GIII** (includes process and roadway emissions from GIII Construction Permit)

Estimated Maximum 251.45 **Mn Emissions** lb/yr (includes process and roadway emissions) Site-Wide (SCPM + GIII)

> a. Emission estimates are conservative because they are based on maximum material throughputs and do not take credit for the portion of PM that will settle to the ground before crossing the property line.

Decrease in Site-Wide **Mn Emissions** After Adding GIII 43.32 lb/yr

If you have any questions or need any additional information, please don't hesitate to contact me at 630-393-9000 or by e-mail at <u>ipinion@hotmail.com</u>.

Yours very truly,

RK & Associates

cc: Dennis Stropko – SCPM – Chicago, Illinois

Jim Kallas – General III – Chicago, Illinois

Rob Layman – IEPA – Springfield

Bob Bernoteit – IEPA – Springfield.

This Page Left Blank

Final Metal Emissions from South Chicago Property Management, Ltd. General III, LLC - 11600 South Burley - Chicago, Illinois Site ID No. 031600SFX; Application No. 19090021

General III, LLC 11600 S. Burley Avenue Chicago, Illinois 60614

March 19, 2020

ATTACHMENT A

Metal Analytical Results for Particulate Samples Collected from South Chicago Property Management Ltd.

Des Plaines, Illinois 60016

P 847.967.6666

800.246.0663

F 847.967.6735

Work Order: 20C0342, 20C0343, 20C0344,

www.emt.com

Analytical Report

Mark Weintraub Reserve Management Group 4550 Darrow Road Stow, OH 44224 March 10, 2020

SCPM

Napuck Dust

Dear Mark Weintraub:

Enclosed are the analytical reports for the EMT Work Order listed. Also included with this analytical report is a copy of the chain of custody associated with these samples. If you have any questions, please contact me.

Sincerely,

RE:

Mark Steuer Project Manager 847.967.6666

MSteuer@emt.com

Approved for release: 3/10/2020 12:55:44PM

Approved by,

20C0345

Nathan Fey

Laboratory Operations Manager

The contents of this report apply to the sample(s) analyzed. No duplication is allowed except in its entirety. Detection and Reporting limits are adjusted for sample size used, dilutions and moisture content, if applicable.

State of Illinois, NELAP Accredited Lab No. 100256, Cert No. 1002562020-1

Table of Contents

Cover Letter	Ι
Sample Summary	3
Case Narrative	4
Client Sample Results	5
Dates Report	9
Quality Control	11
Certified Analyses	25
List of Certifications	25
Qualifiers and Definitions	26
Chain of Custody	27

Des Plaines, Illinois 60016

P 847.967.6666

800.246.0663

F 847.967.6735

www.emt.com

Sample Summary

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
Napuck Dust	20C0344-01	Soil	03/05/20 00:00	03/05/20 16:00
Paved	20C0342-01	Soil	03/05/20 00:00	03/05/20 16:00
RMT Dust	20C0345-01	Soil	03/05/20 00:00	03/05/20 16:00
Unpaved	20C0343-01	Soil	03/05/20 00:00	03/05/20 16:00

Des Plaines, Illinois 60016

P 847.967.6666

800.246.0663

F 847.967.6735

www.emt.com

Date: 03/10/2020

Case Narrative

Client: Reserve Management Group

Project: SCPM

Paved

Work Order: 20C0342, 20C0343, 20C0344, 20C0345

All reported results are within defined laboratory quality control objectives unless listed below or otherwise qualified in this report.

Sample results only relate to the sample(s) received at the laboratory and analytes of interest tested.

Work Order: 20C0342

The samples were received on 03/05/20 16:00. The samples arrived in good condition and properly preserved. The temperature of the cooler at receipt was:

<u>Cooler</u> <u>Temp C°</u> Default Cooler 23.3

Refer to Qualifiers and Definitions for quality and analytical clarifications or deviations.

Work Order: 20C0343

The samples were received on 03/05/20 16:00. The samples arrived in good condition and properly preserved. The temperature of the cooler at receipt was:

<u>Cooler</u> <u>Temp C°</u> Default Cooler 23.3

Refer to Qualifiers and Definitions for quality and analytical clarifications or deviations.

Work Order: 20C0344

The samples were received on 03/05/20 16:00. The samples arrived in good condition and properly preserved. The temperature of the cooler at receipt was:

<u>Cooler</u> <u>Temp C°</u> Default Cooler 23.3

Refer to Qualifiers and Definitions for quality and analytical clarifications or deviations.

Work Order: 20C0345

The samples were received on 03/05/20 16:00. The samples arrived in good condition and properly preserved. The temperature of the cooler at receipt was:

CoolerTemp C°Default Cooler23.3

Refer to Qualifiers and Definitions for quality and analytical clarifications or deviations.

Des Plaines, Illinois 60016

P 847.967.6666

800.246.0663

F 847.967.6735

www.emt.com

Client Sample Results

Client: Reserve Management Group

Client Sample ID: Paved
Report Date: 03/10/2020

Project: SCPM

Work Order:

Collection Date: 03/05/2020 00:00

Paved

Matrix: Soil

20C0342, 20C0343, 20C0344, 20C0345

Lab ID: 20C0342-01

	EMT Reporting			Date/Time		
Analyses Resu		g Qual U	Jnits	Analyzed	Batch	Analyst
Metals by ICP-AES						
Method: SW6010C / SW	3050					
Antimony < 1.	9 1.19	n	ng/Kg	03/06/20 18:23	B0C0225	KJ1
Arsenic < 1.	9 1.19	n	ng/Kg	03/06/20 18:23	B0C0225	KJ1
Barium 57	.2 1.19	n	ng/Kg	03/06/20 18:23	B0C0225	KJ1
Beryllium < 1.	9 1.19	n	ng/Kg	03/06/20 17:32	B0C0225	KJ1
Cadmium 0.7	24 0.119	n	ng/Kg	03/06/20 18:23	B0C0225	KJ1
Chromium 3	16 1.19	n	ng/Kg	03/06/20 18:23	B0C0225	KJ1
Cobalt 2.	74 1.19	n	ng/Kg	03/06/20 18:23	B0C0225	KJ1
Copper 95	.3 1.19	n	ng/Kg	03/06/20 18:23	B0C0225	KJ1
Lead 50	.6 1.19	n	ng/Kg	03/06/20 18:23	B0C0225	KJ1
Manganese 47	50 11.9	n	ng/Kg	03/06/20 17:32	B0C0225	KJ1
Nickel 25	.5 1.19	n	ng/Kg	03/06/20 18:23	B0C0225	KJ1
Phosphorus 4	59.6	Q, S3 n	ng/Kg	03/06/20 17:32	B0C0225	KJ1
Selenium < 1.	9 1.19	n	ng/Kg	03/06/20 18:23	B0C0225	KJ1
Silver < 1.	9 1.19	n	ng/Kg	03/06/20 18:23	B0C0225	KJ1
Titanium 2	56 1.19	n	ng/Kg	03/06/20 18:23	B0C0225	KJ1
Zinc 2	4.76	n	ng/Kg	03/06/20 18:23	B0C0225	KJ1
Mercury by CVAA						
Method: SW7471B						
Mercury < 0.09	0.095	n	ng/Kg	03/09/20 14:08	B0C0297	GSB

Des Plaines, Illinois 60016

P 847.967.6666

800.246.0663

F 847.967.6735

www.emt.com

Client Sample Results

(Continued)

Client: Reserve Management Group

Client Sample ID: Unpaved Report Date: 03/10/2020

Project: SCPM

Work Order:

Collection Date: 03/05/2020 00:00

Unpaved

Matrix: Soil

 $20C0342,\,20C0343,\,20C0344,\,20C0345$

Lab ID: 20C0343-01

	_	EMT			_			
Analyses	R Result	Reporting Limit	Qual U	nits		te/Time alyzed	Batch	Analyst
Metals by ICP-AES								
-	SW6010C / SW3050							
Antimony	< 1.24	1.24	m	g/Kg	03/06	6/20 18:27	B0C0225	KJ1
Arsenic	< 1.24	1.24	m	g/Kg	03/06	6/20 18:27	B0C0225	KJ1
Barium	51.6	1.24		g/Kg	03/06	3/20 18:27	B0C0225	KJ1
Beryllium	< 1.24	1.24		g/Kg	03/06	3/20 17:36	B0C0225	KJ1
Cadmium	0.834	0.124		g/Kg	03/06	3/20 18:27	B0C0225	KJ1
Chromium	303	1.24		g/Kg	03/06	8/20 18:27	B0C0225	KJ1
Cobalt	2.14	1.24		g/Kg	03/06	8/20 18:27	B0C0225	KJ1
Copper	72.4	1.24	m	g/Kg	03/06	3/20 18:27	B0C0225	KJ1
Lead	72.0	1.24	m	g/Kg	03/06	6/20 18:27	B0C0225	KJ1
Manganese	5040	12.4	m	g/Kg	03/06	6/20 17:36	B0C0225	KJ1
Nickel	20.2	1.24	m	g/Kg	03/06	6/20 18:27	B0C0225	KJ1
Phosphorus	184	6.19	Q, S3 m	g/Kg	03/06	6/20 18:27	B0C0225	KJ1
Selenium	< 1.24	1.24	m	g/Kg	03/06	6/20 18:27	B0C0225	KJ1
Silver	< 1.24	1.24	m	g/Kg	03/06	6/20 18:27	B0C0225	KJ1
Titanium	166	1.24		g/Kg	03/06	8/20 18:27	B0C0225	KJ1
Zinc	178	4.95		g/Kg	03/06	3/20 18:27	B0C0225	KJ1
Mercury by CVAA								
	SW7471B							
Mercury	0.104	0.095	m	g/Kg	03/09	9/20 14:09	B0C0297	GSB

Project:

Work Order:

Des Plaines, Illinois 60016

P 847.967.6666

800.246.0663

F 847.967.6735

www.emt.com

Client Sample Results

(Continued)

Client: Reserve Management Group

Client Sample ID: Napuck Dust

SCPM

Report Date: 03/10/2020

Napuck Dust

Collection Date: 03/05/2020 00:00

20C0342, 20C0343, 20C0344, 20C0345 **Matrix**: Soil

Lab ID: 20C0344-01

		EMT Reporting			Date/Time		
Analyses	Result			Units	Analyzed	Batch	Analyst
Metals by ICP-AES							
Method	: SW6010C / SW3050						
Antimony	24.9	1.17		mg/Kg	03/06/20 18:32	B0C0225	KJ1
Arsenic	< 1.17	1.17		mg/Kg	03/06/20 18:32	B0C0225	KJ1
Barium	321	1.17		mg/Kg	03/06/20 18:32	B0C0225	KJ1
Beryllium	< 0.117	0.117		mg/Kg	03/06/20 18:32	B0C0225	KJ1
Cadmium	15.3	0.117		mg/Kg	03/06/20 18:32	B0C0225	KJ1
Chromium	106	1.17		mg/Kg	03/06/20 18:32	B0C0225	KJ1
Cobalt	116	1.17		mg/Kg	03/06/20 18:32	B0C0225	KJ1
Copper	1760	11.7		mg/Kg	03/06/20 17:41	B0C0225	KJ1
Lead	595	1.17		mg/Kg	03/06/20 18:32	B0C0225	KJ1
Manganese	624	1.17		mg/Kg	03/06/20 18:32	B0C0225	KJ1
Nickel	101	1.17		mg/Kg	03/06/20 18:32	B0C0225	KJ1
Phosphorus	1540	58.6	Q, S3	mg/Kg	03/06/20 17:41	B0C0225	KJ1
Selenium	< 1.17	1.17		mg/Kg	03/06/20 18:32	B0C0225	KJ1
Silver	< 3.75	3.75		mg/Kg	03/06/20 17:41	B0C0225	KJ1
Titanium	699	1.17		mg/Kg	03/06/20 18:32	B0C0225	KJ1
Zinc	3560	46.9		mg/Kg	03/06/20 17:41	B0C0225	KJ1
Mercury by CVAA							
Method	: SW7471B						
Mercury	0.547	0.099		mg/Kg	03/09/20 14:11	B0C0297	GSB

Des Plaines, Illinois 60016

P 847.967.6666

800.246.0663

F 847.967.6735

www.emt.com

Client Sample Results

(Continued)

Client: Reserve Management Group

Client Sample ID: RMT Dust

Project: SCPM

Report Date: 03/10/2020 **Collection Date:** 03/05/2020 00:00

RMT Dust

Matrix: Soil

Work Order: 20C0342, 20C0343, 20C0344, 20C0345

Lab ID: 20C0345-01

	EMT Reporting	1		Date/Time		
Analyses Resi		Qual l	Jnits	Analyzed	Batch	Analyst
Metals by ICP-AES						
Method: SW6010C / SW	3050					
Antimony < 1.	1.18	r	ng/Kg	03/06/20 18:37	B0C0225	KJ1
Arsenic < 1.	1.18	r	ng/Kg	03/06/20 18:37	B0C0225	KJ1
Barium 3	37 1.18	r	ng/Kg	03/06/20 18:37	B0C0225	KJ1
Beryllium < 0.5	0.500	r	ng/Kg	03/06/20 18:37	B0C0225	KJ1
Cadmium 0.9	0.118	r	ng/Kg	03/06/20 18:37	B0C0225	KJ1
Chromium 5	27 1.18	r	ng/Kg	03/06/20 18:37	B0C0225	KJ1
Cobalt 6.	20 1.18	r	ng/Kg	03/06/20 18:37	B0C0225	KJ1
Copper 3	73 1.18	r	ng/Kg	03/06/20 18:37	B0C0225	KJ1
Lead 46	.1 1.18	r	ng/Kg	03/06/20 18:37	B0C0225	KJ1
Manganese 40	11.8	r	ng/Kg	03/06/20 17:45	B0C0225	KJ1
Nickel 74	.5 1.18	r	ng/Kg	03/06/20 18:37	B0C0225	KJ1
Phosphorus 8	59 58.9	Q, S3 r	ng/Kg	03/06/20 17:45	B0C0225	KJ1
Selenium < 1.	1.18	r	ng/Kg	03/06/20 18:37	B0C0225	KJ1
Silver < 1.	1.18	r	ng/Kg	03/06/20 18:37	B0C0225	KJ1
Titanium 1	33 1.18	r	ng/Kg	03/06/20 18:37	B0C0225	KJ1
Zinc 16	60 47.2	r	ng/Kg	03/06/20 17:45	B0C0225	KJ1
Mercury by CVAA						
Method: SW7471B						
Mercury < 0.0	0.095	r	ng/Kg	03/09/20 14:13	B0C0297	GSB

Report Date: 03/10/2020

509 N. 3rd Avenue

Project:

Des Plaines, Illinois 60016

P 847.967.6666

800.246.0663

F 847.967.6735

www.emt.com

Dates Report

Client: Reserve Management Group

SCPM

Paved

Work Order: 20C0342,20C0343,20C0344,20C0345

Sample ID	Client Sample ID	Collection	Matrix	Test Name	Leached Prep Date	Prep Date	Analysis Date	Batch ID	Sequence
20C0342-01	Paved	03/05/20	Soil	Lead, Total ICP-AES		03/06/20 09:49	03/06/20 18:23	B0C0225	S0C0113
				Silver, Total ICP-AES		03/06/20 09:49	03/06/20 18:23		
				Zinc, Total ICP-AES		03/06/20 09:49	03/06/20 18:23		
				Titanium, Total ICP-AES		03/06/20 09:49	03/06/20 18:23		
				Antimony, Total ICP-AES		03/06/20 09:49	03/06/20 18:23		
				Phosphorus, Total ICP-AES		03/06/20 09:49	03/06/20 17:32		
				Nickel, Total ICP-AES		03/06/20 09:49	03/06/20 18:23		
				Manganese, Total ICP-AES		03/06/20 09:49	03/06/20 17:32		
				Barium, Total ICP-AES		03/06/20 09:49	03/06/20 18:23		
				Selenium, Total ICP-AES		03/06/20 09:49	03/06/20 18:23		
				Arsenic, Total ICP-AES		03/06/20 09:49	03/06/20 18:23		
				Copper, Total ICP-AES		03/06/20 09:49	03/06/20 18:23		
				Beryllium, Total ICP-AES		03/06/20 09:49	03/06/20 17:32		
				Cadmium, Total ICP-AES		03/06/20 09:49	03/06/20 18:23		
				Cobalt, Total ICP-AES		03/06/20 09:49	03/06/20 18:23		
				Chromium, Total ICP-AES		03/06/20 09:49	03/06/20 18:23		
				Mercury, Total CVAA		03/09/20 10:30	03/09/20 14:08	B0C0297	S0C0130
0C0343-01	Unpaved			Manganese, Total ICP-AES		03/06/20 09:49	03/06/20 17:36	B0C0225	S0C0113
				Selenium, Total ICP-AES		03/06/20 09:49	03/06/20 18:27		
				Antimony, Total ICP-AES		03/06/20 09:49	03/06/20 18:27		
				Lead, Total ICP-AES		03/06/20 09:49	03/06/20 18:27		
				Phosphorus, Total ICP-AES		03/06/20 09:49	03/06/20 18:27		
				Nickel, Total ICP-AES		03/06/20 09:49	03/06/20 18:27		
				Titanium, Total ICP-AES		03/06/20 09:49	03/06/20 18:27		
				Copper, Total ICP-AES		03/06/20 09:49	03/06/20 18:27		
				Chromium, Total ICP-AES		03/06/20 09:49	03/06/20 18:27		
				Cobalt, Total ICP-AES		03/06/20 09:49	03/06/20 18:27		
				Cadmium, Total ICP-AES		03/06/20 09:49	03/06/20 18:27		
				Beryllium, Total ICP-AES		03/06/20 09:49	03/06/20 17:36		
				Barium, Total ICP-AES		03/06/20 09:49	03/06/20 18:27		
				Silver, Total ICP-AES		03/06/20 09:49	03/06/20 18:27		
				Zinc, Total ICP-AES		03/06/20 09:49	03/06/20 18:27		
				Arsenic, Total ICP-AES		03/06/20 09:49	03/06/20 18:27		
				Mercury, Total CVAA		03/09/20 10:30	03/09/20 14:09	B0C0297	S0C0130
20C0344-01	Napuck Dust			Lead, Total ICP-AES		03/06/20 09:49	03/06/20 18:32	B0C0225	S0C0113
				Silver, Total ICP-AES		03/06/20 09:49	03/06/20 17:41		
				Zinc, Total ICP-AES		03/06/20 09:49	03/06/20 17:41		
				Titanium, Total ICP-AES		03/06/20 09:49	03/06/20 18:32		
				Antimony, Total ICP-AES		03/06/20 09:49	03/06/20 18:32		
				Phosphorus, Total ICP-AES		03/06/20 09:49	03/06/20 17:41		
				Nickel, Total ICP-AES		03/06/20 09:49	03/06/20 18:32		
				Manganese, Total ICP-AES		03/06/20 09:49	03/06/20 18:32		

Report Date: 03/10/2020

509 N. 3rd Avenue

Des Plaines, Illinois 60016

P 847.967.6666

800.246.0663

F 847.967.6735

www.emt.com

Dates Report

(Continued)

Client: Reserve Management Group

Project: SCPM

Napuck Dust

Work Order: 20C0342,20C0343,20C0344,20C0345

					Leached				
Sample ID	Client Sample ID	Collection	Matrix	Test Name	Prep Date	Prep Date	Analysis Date	Batch ID	Sequence
20C0344-01	Napuck Dust	03/05/20	Soil	Barium, Total ICP-AES		03/06/20 09:49	03/06/20 18:32	B0C0225	S0C0113
				Chromium, Total ICP-AES		03/06/20 09:49	03/06/20 18:32		
				Cobalt, Total ICP-AES		03/06/20 09:49	03/06/20 18:32		
				Cadmium, Total ICP-AES		03/06/20 09:49	03/06/20 18:32		
				Beryllium, Total ICP-AES		03/06/20 09:49	03/06/20 18:32		
				Copper, Total ICP-AES		03/06/20 09:49	03/06/20 17:41		
				Selenium, Total ICP-AES		03/06/20 09:49	03/06/20 18:32		
				Arsenic, Total ICP-AES		03/06/20 09:49	03/06/20 18:32		
				Mercury, Total CVAA		03/09/20 10:30	03/09/20 14:11	B0C0297	S0C0130
20C0345-01	RMT Dust			Nickel, Total ICP-AES		03/06/20 09:49	03/06/20 18:37	B0C0225	S0C0113
				Phosphorus, Total ICP-AES		03/06/20 09:49	03/06/20 17:45		
				Lead, Total ICP-AES		03/06/20 09:49	03/06/20 18:37		
				Antimony, Total ICP-AES		03/06/20 09:49	03/06/20 18:37		
				Selenium, Total ICP-AES		03/06/20 09:49	03/06/20 18:37		
				Zinc, Total ICP-AES		03/06/20 09:49	03/06/20 17:45		
				Manganese, Total ICP-AES		03/06/20 09:49	03/06/20 17:45		
				Titanium, Total ICP-AES		03/06/20 09:49	03/06/20 18:37		
				Copper, Total ICP-AES		03/06/20 09:49	03/06/20 18:37		
				Chromium, Total ICP-AES		03/06/20 09:49	03/06/20 18:37		
				Cobalt, Total ICP-AES		03/06/20 09:49	03/06/20 18:37		
				Cadmium, Total ICP-AES		03/06/20 09:49	03/06/20 18:37		
				Beryllium, Total ICP-AES		03/06/20 09:49	03/06/20 18:37		
				Barium, Total ICP-AES		03/06/20 09:49	03/06/20 18:37		
				Silver, Total ICP-AES		03/06/20 09:49	03/06/20 18:37		
				Arsenic, Total ICP-AES		03/06/20 09:49	03/06/20 18:37		
				Mercury, Total CVAA		03/09/20 10:30	03/09/20 14:13	B0C0297	S0C0130

509 N. 3rd Avenue Des Plaines, Illinois 60016 **P** 847.967.6666 800.246.0663 **F** 847.967.6735 www.emt.com

Quality Control

Client: Reserve Management Group

Project: SCPM

Napuck Dust

Work Order: 20C0342, 20C0343, 20C0344, 20C0345

Report Date: 03/10/2020

Matrix: Solid

Metals by ICP-AES

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual

Batch: B0C0225 - SW3050

Blank (B0C0225-BLK1)				Drawayad 02/05/0000 00:40
				Prepared: 03/06/2020 09:49 Analyzed: 03/06/2020 16:56
Antimony	< 2.50	2.50	mg/Kg	
Antimony	< 2.50	2.50	mg/Kg	
Antimony	< 2.50	2.50	mg/Kg	
Antimony	< 2.50	2.50	mg/Kg	
Arsenic	< 2.50	2.50	mg/Kg	
Arsenic	< 2.50	2.50	mg/Kg	
Arsenic	< 2.50	2.50	mg/Kg	
Arsenic	< 2.50	2.50	mg/Kg	
Barium	< 2.50	2.50	mg/Kg	
Barium	< 2.50	2.50	mg/Kg	
Barium	< 2.50	2.50	mg/Kg	
Barium	< 2.50	2.50	mg/Kg	
Beryllium	< 0.250	0.250	mg/Kg	
Beryllium	< 0.250	0.250	mg/Kg	
Beryllium	< 0.250	0.250	mg/Kg	
Beryllium	< 0.250	0.250	mg/Kg	
Cadmium	< 0.250	0.250	mg/Kg	
Cadmium	< 0.250	0.250	mg/Kg	
Cadmium	< 0.250	0.250	mg/Kg	
Cadmium	< 0.250	0.250	mg/Kg	
Chromium	< 2.50	2.50	mg/Kg	
Chromium	< 2.50	2.50	mg/Kg	
Chromium	< 2.50	2.50	mg/Kg	
Chromium	< 2.50	2.50	mg/Kg	
Cobalt	< 2.50	2.50	mg/Kg	
Cobalt	< 2.50	2.50	mg/Kg	
Cobalt	< 2.50	2.50	mg/Kg	
Cobalt	< 2.50	2.50	mg/Kg	
Copper	< 2.50	2.50	mg/Kg	
Copper	< 2.50	2.50	mg/Kg	
Copper	< 2.50	2.50	mg/Kg	
Copper	< 2.50	2.50	mg/Kg	
Lead	< 2.50	2.50	mg/Kg	
Lead	< 2.50	2.50	mg/Kg	
Lead	< 2.50	2.50	mg/Kg	
Lead	< 2.50	2.50	mg/Kg	
Manganese	< 2.50	2.50	mg/Kg	
Manganese	< 2.50	2.50	mg/Kg	
Manganese	< 2.50	2.50	mg/Kg	
Manganese	< 2.50	2.50	mg/Kg	
Nickel	< 2.50	2.50	mg/Kg	
Nickel	< 2.50	2.50	mg/Kg	
			5 5	

Des Plaines, Illinois 60016

P 847.967.6666

800.246.0663

F 847.967.6735

www.emt.com

Quality Control

(Continued)

Client: Reserve Management Group

Project: SCPM

RMT Dust

Work Order: 20C0342, 20C0343, 20C0344, 20C0345

Report Date: 03/10/2020

Matrix: Solid

Metals by ICP-AES

(Continued)

		Reporting		Spike	Source		%REC		RPD		
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual	

Blank (B0C0225-BLK1) (Continued)	,			Prepared: 03/06/2020 09:49 Analyzed: 03/06/2020 16:56
Nickel	< 2.50	2.50	mg/Kg	715parod. 00.00.2020 00.10 7may200. 00.00/2020 70:00
Nickel	< 2.50	2.50	mg/Kg	
Phosphorus	< 12.5	12.5	mg/Kg	
Phosphorus	< 12.5	12.5	mg/Kg	
Phosphorus	< 12.5	12.5	mg/Kg	
Phosphorus	< 12.5	12.5	mg/Kg	
Selenium	< 2.50	2.50	mg/Kg	
Selenium	< 2.50	2.50	mg/Kg	
Selenium	< 2.50	2.50	mg/Kg	
Selenium	< 2.50	2.50	mg/Kg	
Silver	< 2.50	2.50		
Silver	< 2.50	2.50	mg/Kg mg/Kg	
Silver	< 2.50	2.50	mg/Kg	
Silver	< 2.50	2.50		
Titanium	< 2.50	2.50	mg/Kg mg/Kg	
Titanium	< 2.50	2.50		
Titanium	< 2.50 < 2.50	2.50	mg/Kg	
Titanium	< 2.50 < 2.50	2.50	mg/Kg	
	< 10.0		mg/Kg	
Zinc		10.0	mg/Kg	
Zinc	< 10.0	10.0	mg/Kg	
Zinc	< 10.0	10.0	mg/Kg	
Zinc	< 10.0	10.0	mg/Kg	
LCS (B0C0225-BS1)				Prepared: 03/06/2020 09:49 Analyzed: 03/06/2020 17:00
Antimony	43.7	2.50	mg/Kg	50.00 87.3 80-109
Antimony	43.7	2.50	mg/Kg	50.00 87.3 80-109
Antimony	43.7	2.50	mg/Kg	50.00 87.3 80-109
Antimony	43.7	2.50	mg/Kg	50.00 87.3 80-109
Arsenic	41.3	2.50	mg/Kg	50.00 82.6 80-108
Arsenic	41.3	2.50	mg/Kg	50.00 82.6 80-108
Arsenic	41.3	2.50	mg/Kg	50.00 82.6 80-108
Arsenic	41.3	2.50	mg/Kg	50.00 82.6 80-108
Barium	40.2	2.50	mg/Kg	50.00 80.5 80-112
Barium	40.2	2.50	mg/Kg	50.00 80.5 80-112
Barium	40.2	2.50	mg/Kg	50.00 80.5 80-112
Barium	40.2	2.50	mg/Kg	50.00 80.5 80-112
Beryllium	4.22	0.250	mg/Kg	5.000 84.3 80.1-110
Beryllium	4.22	0.250	mg/Kg	5.000 84.3 80.1-110
Beryllium	4.22	0.250	mg/Kg	5.000 84.3 80.1-110
Beryllium	4.22	0.250	mg/Kg	5.000 84.3 80.1-110
Cadmium	4.26	0.250	mg/Kg	5.000 85.3 80-110
Cadmium	4.26	0.250	mg/Kg	5.000 85.3 80-110

Des Plaines, Illinois 60016

P 847.967.6666

800.246.0663

F 847.967.6735

www.emt.com

Quality Control

(Continued)

Client: Reserve Management Group

Project: SCPM

RMT Dust

Work Order: 20C0342, 20C0343, 20C0344, 20C0345

Report Date: 03/10/2020

Matrix: Solid

Metals by ICP-AES

(Continued)

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual

LCS (B0C0225-BS1) (Continued)				Prepared: 0	3/06/2020 09:49	Analyzed: 03/06/2020 17:00	
Cadmium	4.26	0.250	mg/Kg	5.000	85.3	80-110	
Cadmium	4.26	0.250	mg/Kg	5.000	85.3	80-110	
Chromium	41.8	2.50	mg/Kg	50.00	83.5	80-112	
Chromium	41.8	2.50	mg/Kg	50.00	83.5	80-112	
Chromium	41.8	2.50	mg/Kg	50.00	83.5	80-112	
Chromium	41.8	2.50	mg/Kg	50.00	83.5	80-112	
Cobalt	42.5	2.50	mg/Kg	50.00	85.1	80-110	
Cobalt	42.5	2.50	mg/Kg	50.00	85.1	80-110	
Cobalt	42.5	2.50	mg/Kg	50.00	85.1	80-110	
Cobalt	42.5	2.50	mg/Kg	50.00	85.1	80-110	
Copper	42.2	2.50	mg/Kg	50.00	84.4	80.8-111	
Copper	42.2	2.50	mg/Kg	50.00	84.4	80.8-111	
Copper	42.2	2.50	mg/Kg	50.00	84.4	80.8-111	
Copper	42.2	2.50	mg/Kg	50.00	84.4	80.8-111	
Lead	41.5	2.50	mg/Kg	50.00	83.0	80-112	
Lead	41.5	2.50	mg/Kg	50.00	83.0	80-112	
Lead	41.5	2.50	mg/Kg	50.00	83.0	80-112	
Lead	41.5	2.50	mg/Kg	50.00	83.0	80-112	
Manganese	41.1	2.50	mg/Kg	50.00	82.2	80.1-109	
Manganese	41.1	2.50	mg/Kg	50.00	82.2	80.1-109	
Manganese	41.1	2.50	mg/Kg	50.00	82.2	80.1-109	
Manganese	41.1	2.50	mg/Kg	50.00	82.2	80.1-109	
Nickel	41.5	2.50	mg/Kg	50.00	83.1	80-109	
Nickel	41.5	2.50	mg/Kg	50.00	83.1	80-109	
Nickel	41.5	2.50	mg/Kg	50.00	83.1	80-109	
Nickel	41.5	2.50	mg/Kg	50.00	83.1	80-109	
Phosphorus	218	12.5	mg/Kg	250.0	87.1	80-120	
Phosphorus	218	12.5	mg/Kg	250.0	87.1	80-120	
Phosphorus	218	12.5	mg/Kg	250.0	87.1	80-120	
Phosphorus	218	12.5	mg/Kg	250.0	87.1	80-120	
Selenium	41.7	2.50	mg/Kg	50.00	83.5	80-109	
Selenium	41.7	2.50	mg/Kg	50.00	83.5	80-109	
Selenium	41.7	2.50	mg/Kg	50.00	83.5	80-109	
Selenium	41.7	2.50	mg/Kg	50.00	83.5	80-109	
Silver	4.22	2.50	mg/Kg	5.000	84.4	80-115	
Silver	4.22	2.50	mg/Kg	5.000	84.4	80-115	
Silver	4.22	2.50	mg/Kg	5.000	84.4	80-115	
Silver	4.22	2.50	mg/Kg	5.000	84.4	80-115	
Zinc	42.8	10.0	mg/Kg	50.00	85.6	80.2-111	
Zinc	42.8	10.0	mg/Kg	50.00	85.6	80.2-111	
Zinc	42.8	10.0	mg/Kg	50.00	85.6	80.2-111	
Zinc	42.8	10.0	mg/Kg	50.00	85.6	80.2-111	

R 001941

509 N. 3rd Avenue

Des Plaines, Illinois 60016

P 847.967.6666

800.246.0663

F 847.967.6735

www.emt.com

Quality Control

(Continued)

Client: Reserve Management Group

Project: SCPM

Unpaved

Work Order: 20C0342, 20C0343, 20C0344, 20C0345

Report Date: 03/10/2020

Matrix: Solid

Metals by ICP-AES

(Continued)

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual

Batch: B0C0225 - SW3050 (Continued)

LCS (B0C0225-BS1) (Continued)

Prepared: 03/06/2020 09:49 Analyzed: 03/06/2020 17:00

Serial Dilution (B0C0225-DUP1)	Sour	ce: 20C034	10-02RE1	Prepared: 03/06/2020 09:49	Analyzed: 03/06/2020	18:10	
Beryllium	< 0.939	5.87	mg/Kg	ND		10	
Beryllium	< 0.939	5.87	mg/Kg	ND		10	
Beryllium	< 0.939	5.87	mg/Kg	ND		10	
Beryllium	< 0.939	5.87	mg/Kg	ND		10	
Cadmium	< 1.17	5.87	mg/Kg	ND		10	
Cadmium	< 1.17	5.87	mg/Kg	ND		10	
Cadmium	< 1.17	5.87	mg/Kg	ND		10	
Cadmium	< 1.17	5.87	mg/Kg	ND		10	
Chromium	13.8	58.7	mg/Kg	12.1	13.4	10	Р
Chromium	13.8	58.7	mg/Kg	12.1	13.4	10	Р
Chromium	13.8	58.7	mg/Kg	12.1	13.4	10	Р
Chromium	13.8	58.7	mg/Kg	12.1	13.4	10	Р
Lead	< 12.7	58.7	mg/Kg	ND		10	
Lead	< 12.7	58.7	mg/Kg	ND		10	
Lead	< 12.7	58.7	mg/Kg	ND		10	
Lead	< 12.7	58.7	mg/Kg	ND		10	
Phosphorus	142	293	mg/Kg	142	0.595	10	
Phosphorus	142	293	mg/Kg	142	0.595	10	
Phosphorus	142	293	mg/Kg	142	0.595	10	
Phosphorus	142	293	mg/Kg	142	0.595	10	
Selenium	< 23.5	58.7	mg/Kg	ND		10	
Selenium	< 23.5	58.7	mg/Kg	ND		10	
Selenium	< 23.5	58.7	mg/Kg	ND		10	
Selenium	< 23.5	58.7	mg/Kg	ND		10	
Serial Dilution (B0C0225-DUP2)	3our	ce: 20C034	10-02RE2	Prepared: 03/06/2020 09:49	Analyzed: 03/06/2020	19:03	
Antimony	< 1.43	5.87	mg/Kg	ND		10	
Antimony	< 1.43	5.87	mg/Kg	ND		10	
Antimony	< 1.43	5.87	mg/Kg	ND		10	
Antimony	< 1.43	5.87	mg/Kg	ND		10	
Arsenic	< 2.35	5.87	mg/Kg	ND		10	
Arsenic	< 2.35	5.87	mg/Kg	ND		10	
Arsenic	< 2.35	5.87	mg/Kg	ND		10	
Arsenic	< 2.35	5.87	mg/Kg	ND		10	
Barium	16.4	5.87	mg/Kg	15.4	6.38	10	
Barium	16.4	5.87	mg/Kg	15.4	6.38	10	
Barium	16.4	5.87	mg/Kg	15.4	6.38	10	
Barium	16.4	5.87	mg/Kg	15.4	6.38	10	
Cobalt	16.8	5.87	mg/Kg	14.1	17.5	10	Р
Cobalt	16.8	5.87	mg/Kg	14.1	17.5	10	Р

Des Plaines, Illinois 60016

P 847.967.6666

800.246.0663

F 847.967.6735

www.emt.com

Quality Control

(Continued)

Client: Reserve Management Group

Project: SCPM

RMT Dust

Work Order: 20C0342, 20C0343, 20C0344, 20C0345

Report Date: 03/10/2020

Matrix: Solid

Metals by ICP-AES

(Continued)

		Reporting		Spike	Source		%REC		RPD	
Analyte F	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual

Serial Dilution (B0C0225-DUP2) (Continued)	€our	ce: 20C034	10-02RE2	Prepared: 03/06	/2020 09:49	Analyzed: 03/0	6/2020 1	9:03	
Cobalt	16.8	5.87	mg/Kg	14.	1		17.5	10	Р
Cobalt	16.8	5.87	mg/Kg	14.	1		17.5	10	Р
Copper	7.18	5.87	mg/Kg	6.9	7		3.02	10	
Copper	7.18	5.87	mg/Kg	6.9	7		3.02	10	
Copper	7.18	5.87	mg/Kg	6.9	7		3.02	10	
Copper	7.18	5.87	mg/Kg	6.9	7		3.02	10	
Manganese	180	5.87	mg/Kg	158	3		13.1	10	Р
Manganese	180	5.87	mg/Kg	158	3		13.1	10	Р
Manganese	180	5.87	mg/Kg	158	3		13.1	10	Р
Manganese	180	5.87	mg/Kg	158	3		13.1	10	Р
lickel	40.7	5.87	mg/Kg	33.0	3		18.9	10	Р
lickel	40.7	5.87	mg/Kg	33.0	3		18.9	10	Р
lickel	40.7	5.87	mg/Kg	33.0	3		18.9	10	Р
lickel	40.7	5.87	mg/Kg	33.0	3		18.9	10	Р
Silver	< 1.17	5.87	mg/Kg	ND	1			10	
Silver	< 1.17	5.87	mg/Kg	ND	1			10	
Silver	< 1.17	5.87	mg/Kg	ND				10	
Bilver	< 1.17	5.87	mg/Kg	ND)			10	
itanium	107	5.87	mg/Kg	95.2			11.2	10	Р
ītanium	107	5.87	mg/Kg	95.2			11.2	10	Р
ītanium	107	5.87	mg/Kg	95.2			11.2	10	Р
ītanium	107	5.87	mg/Kg	95.2			11.2	10	P
MRL Check (B0C0225-MRL1)				Prepared: 03/06	/2020 09:49	Analyzed: 03/0	6/2020 1	7:04	
Antimony	2.55	2.50	mg/Kg	2.500	102	70-130			
Antimony	2.55	2.50	mg/Kg	2.500	102	70-130			
antimony	2.55	2.50	mg/Kg	2.500	102	70-130			
Antimony	2.55	2.50	mg/Kg	2.500	102	70-130			
rsenic	2.28	2.50	mg/Kg	2.500	91.2	70-130			
rsenic	2.28	2.50	mg/Kg	2.500	91.2	70-130			
rsenic	2.28	2.50	mg/Kg	2.500	91.2	70-130			
Arsenic	2.28	2.50	mg/Kg	2.500	91.2	70-130			
Barium	2.13	2.50	mg/Kg	2.500	85.2	70-130			
Barium	2.13	2.50	mg/Kg	2.500	85.2	70-130			
Barium	2.13	2.50	mg/Kg	2.500	85.2	70-130			
Barium	2.13	2.50	mg/Kg	2.500	85.2	70-130			
Beryllium	0.225	0.250	mg/Kg	0.2500	90.0	70-130			
Beryllium	0.225	0.250	mg/Kg	0.2500	90.0	70-130			
Beryllium	0.225	0.250	mg/Kg	0.2500	90.0	70-130			
Beryllium	0.225	0.250	mg/Kg	0.2500	90.0	70-130			
Cadmium	0.225	0.250	mg/Kg	0.2500	90.0	70-130			

Des Plaines, Illinois 60016

P 847.967.6666

800.246.0663

F 847.967.6735

www.emt.com

Quality Control

(Continued)

Client: Reserve Management Group

Project: SCPM

RMT Dust

Work Order: 20C0342, 20C0343, 20C0344, 20C0345

Report Date: 03/10/2020

Matrix: Solid

Metals by ICP-AES

(Continued)

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual

MRL Check (B0C0225-MRL1) (Continued)				Prepared: 03	/06/2020 09:49	Analyzed: 03/06/2020 17:04
Cadmium	0.225	0.250	mg/Kg	0.2500	90.0	70-130
Cadmium	0.225	0.250	mg/Kg	0.2500	90.0	70-130
Chromium	2.20	2.50	mg/Kg	2.500	87.8	70-130
Chromium	2.20	2.50	mg/Kg	2.500	87.8	70-130
Chromium	2.20	2.50	mg/Kg	2.500	87.8	70-130
Chromium	2.20	2.50	mg/Kg	2.500	87.8	70-130
Cobalt	1.72	2.50	mg/Kg	2.000	86.2	70-130
Cobalt	1.72	2.50	mg/Kg	2.000	86.2	70-130
Cobalt	1.72	2.50	mg/Kg	2.000	86.2	70-130
Cobalt	1.72	2.50	mg/Kg	2.000	86.2	70-130
Copper	2.20	2.50	mg/Kg	2.500	88.0	70-130
Copper	2.20	2.50	mg/Kg	2.500	88.0	70-130
Copper	2.20	2.50	mg/Kg	2.500	88.0	70-130
Copper	2.20	2.50	mg/Kg	2.500	88.0	70-130
Lead	2.29	2.50	mg/Kg	2.500	91.6	70-130
Lead	2.29	2.50	mg/Kg	2.500	91.6	70-130
Lead	2.29	2.50	mg/Kg	2.500	91.6	70-130
Lead	2.29	2.50	mg/Kg	2.500	91.6	70-130
Manganese	2.20	2.50	mg/Kg	2.500	88.2	70-130
Manganese	2.20	2.50	mg/Kg	2.500	88.2	70-130
Manganese	2.20	2.50	mg/Kg	2.500	88.2	70-130
Manganese	2.20	2.50	mg/Kg	2.500	88.2	70-130
Nickel	2.22	2.50	mg/Kg	2.500	88.6	70-130
Nickel	2.22	2.50	mg/Kg	2.500	88.6	70-130
Nickel	2.22	2.50	mg/Kg	2.500	88.6	70-130
Nickel	2.22	2.50	mg/Kg	2.500	88.6	70-130
Selenium	2.50	2.50	mg/Kg	2.500	100	70-130
Selenium	2.50	2.50	mg/Kg	2.500	100	70-130
Selenium	2.50	2.50	mg/Kg	2.500	100	70-130
Selenium	2.50	2.50	mg/Kg	2.500	100	70-130
Titanium	1.96	2.50	mg/Kg	2.500	78.6	70-130
Titanium	1.96	2.50	mg/Kg	2.500	78.6	70-130
Titanium	1.96	2.50	mg/Kg	2.500	78.6	70-130
Titanium	1.96	2.50	mg/Kg	2.500	78.6	70-130
Zinc	2.44	10.0	mg/Kg	2.500	97.8	70-130
Zinc	2.44	10.0	mg/Kg	2.500	97.8	70-130
Zinc	2.44	10.0	mg/Kg	2.500	97.8	70-130
Zinc	2.44	10.0	mg/Kg	2.500	97.8	70-130

Des Plaines, Illinois 60016

P 847.967.6666

800.246.0663

F 847.967.6735

www.emt.com

Quality Control

(Continued)

Client: Reserve Management Group

Project: SCPM

Napuck Dust

Work Order: 20C0342, 20C0343, 20C0344, 20C0345

Report Date: 03/10/2020

Matrix: Solid

Metals by ICP-AES

(Continued)

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual

Matrix Spike (B0C0225-MS1)	Sourc	e: 20C0340-02I	RE1 Prepare	ed: 03/06/202	20 09:49	Analyzed: 03/06/2020 17	:58
Beryllium	2.56	1.21 mg/	Kg 2.413	0.446	87.5	75-125	
Beryllium	2.56	1.21 mg/	Kg 2.413	0.446	87.5	75-125	
Beryllium	2.56	1.21 mg/	Kg 2.413	0.446	87.5	75-125	
Beryllium	2.56	1.21 mg/	Kg 2.413	0.446	87.5	75-125	
Cadmium	2.08	1.21 mg/	Kg 2.413	ND	86.0	75-125	
Cadmium	2.08	1.21 mg/	Kg 2.413	ND	86.0	75-125	
Cadmium	2.08	1.21 mg/	Kg 2.413	ND	86.0	75-125	
Cadmium	2.08	1.21 mg/	Kg 2.413	ND	86.0	75-125	
Chromium	32.0	12.1 mg/	Kg 24.13	12.1	82.6	75-125	
Chromium	32.0	12.1 mg/	Kg 24.13	12.1	82.6	75-125	
Chromium	32.0	12.1 mg/	Kg 24.13	12.1	82.6	75-125	
Chromium	32.0	12.1 mg/	Kg 24.13	12.1	82.6	75-125	
Lead	26.8	12.1 mg/	Kg 24.13	5.42	88.4	75-125	
Lead	26.8	12.1 mg/	Kg 24.13	5.42	88.4	75-125	
Lead	26.8	12.1 mg/	Kg 24.13	5.42	88.4	75-125	
Lead	26.8	12.1 mg/	Kg 24.13	5.42	88.4	75-125	
Phosphorus	261	60.3 mg/	Kg 120.7	142	98.2	75-125	
Phosphorus	261	60.3 mg/	Kg 120.7	142	98.2	75-125	
Phosphorus	261	60.3 mg/	Kg 120.7	142	98.2	75-125	
Phosphorus	261	60.3 mg/	Kg 120.7	142	98.2	75-125	
Selenium	19.9	12.1 mg/	Kg 24.13	ND	82.6	75-125	
Selenium	19.9	12.1 mg/	Kg 24.13	ND	82.6	75-125	
Selenium	19.9	12.1 mg/	Kg 24.13	ND	82.6	75-125	
Selenium	19.9	12.1 mg/	Kg 24.13	ND	82.6	75-125	
Matrix Spike (B0C0225-MS2)	Source	e: 20C0340-02I	RE2 Prepar	ed: 03/06/202	20 09:49	Analyzed: 03/06/2020 18	:50
Antimony	6.33	1.21 mg/	Kg 24.13	ND	26.2	75-125	S
Antimony	6.33	1.21 mg/	-	ND	26.2	75-125	S
Antimony	6.33	1.21 mg/	Kg 24.13	ND	26.2	75-125	S
Antimony	6.33	1.21 mg/	Kg 24.13	ND	26.2	75-125	S
Arsenic	19.5	1.21 mg/	Kg 24.13	0.777	77.8	75-125	
Arsenic	19.5	1.21 mg/	Kg 24.13	0.777	77.8	75-125	
Arsenic	19.5	1.21 mg/	Kg 24.13	0.777	77.8	75-125	
Arsenic	19.5	1.21 mg/	Kg 24.13	0.777	77.8	75-125	
Barium	35.8	1.21 mg/	Kg 24.13	15.4	84.6	75-125	
Barium	35.8	1.21 mg/	Kg 24.13	15.4	84.6	75-125	
Barium	35.8	1.21 mg/		15.4	84.6	75-125	
Barium	35.8	1.21 mg/	Kg 24.13	15.4	84.6	75-125	
Cobalt	31.6	1.21 mg/	Kg 24.13	14.1	72.3	75-125	S
Cobalt	31.6	1.21 mg/	Kg 24.13	14.1	72.3	75-125	S
Cobalt	31.6	1.21 mg/	Kg 24.13	14.1	72.3	75-125	S
Cobalt	31.6	1.21 mg/	Kg 24.13	14.1	72.3	75-125	S

509 N. 3rd Avenue Des Plaines, Illinois 60016 **P** 847.967.6666 800.246.0663 **F**

F 847.967.6735

www.emt.com

Quality Control

(Continued)

Client: Reserve Management Group

Project: SCPM

Napuck Dust

Work Order: 20C0342, 20C0343, 20C0344, 20C0345

Report Date: 03/10/2020

Matrix: Solid

Metals by ICP-AES

(Continued)

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual

Copper	Matrix Spike (B0C0225-MS2) (Continued)	3our	ce: 20C0340	0-02RE2	Prepared	1: 03/06/2020	0 09:49	Analyzed: 03	3/06/2020	18:50	
Copper	Copper	27.1	1.21	mg/Kg	24.13	6.97	83.2	75-125			
Copper	Copper	27.1	1.21	mg/Kg	24.13	6.97	83.2	75-125			
Copper	Copper	27.1	1.21	mg/Kg	24.13	6.97	83.2	75-125			
Manganese 165 1.21 mg/Kg 24.13 158 3.2.2 75-125 S Manganese 165 1.21 mg/Kg 24.13 158 32.2 75-125 S Nickel 57.2 1.21 mg/Kg 24.13 33.6 97.8 75-125 S Nickel 57.2 1.21 mg/Kg 24.13 33.6 97.8 75-125 S Nickel 57.2 1.21 mg/Kg 24.13 33.6 97.8 75-125 S Nickel 57.2 1.21 mg/Kg 24.13 33.6 97.8 75-125 S Silver 1.11 1.21 mg/Kg 24.13 ND 46.1 75-125 S S Silver 1.11 1.21 mg/Kg 24.13 ND 46.1 75-125 S S Silver 1.11 1.21 mg/Kg 24.13 ND 46.1 75-125 S S	Copper	27.1			24.13	6.97	83.2	75-125			
Manganese	Manganese	165	1.21	mg/Kg	24.13	158	32.2	75-125			S
Manganese	Manganese	165	1.21	mg/Kg	24.13	158	32.2	75-125			S
Nickel Nickel Nickel Nickel Nickel Nickel Nickel S7.2 1.21 mg/Kg 24.13 33.6 97.8 75-125 75-125 75-125 Nickel Nickel S7.2 1.21 mg/Kg 24.13 33.6 97.8 75-125 75-125 75-125 Nickel S7.2 1.21 mg/Kg 24.13 33.6 97.8 75-125 75-125 Nickel S7.2 1.21 mg/Kg 24.13 33.6 97.8 75-125 75-125 SSINore SILVer SILVer SILVer SILVer 1.11 1.21 Mg/Kg 24.13 ND 46.1 75-125 SSINOR SILVer 1.11 1.21 Mg/Kg 24.13 ND 46.1 75-125 SSINOR SILVer 1.11 1.21 Mg/Kg 24.13 ND 46.1 75-125 SSINOR SILVer SILV	Manganese	165	1.21	mg/Kg	24.13	158	32.2	75-125			S
Nickel 57.2	Manganese	165	1.21	mg/Kg	24.13	158	32.2	75-125			S
Nickel 57.2	Nickel	57.2	1.21	mg/Kg	24.13	33.6	97.8	75-125			
Nickel	Nickel	57.2	1.21	mg/Kg	24.13	33.6	97.8	75-125			
Silver	Nickel	57.2	1.21	mg/Kg	24.13	33.6	97.8	75-125			
Silver	Nickel	57.2	1.21	mg/Kg	24.13	33.6	97.8	75-125			
Silver	Silver	1.11	1.21		2.413	ND	46.1	75-125			S
Silver 1.11 1.21 mg/Kg 2.413 ND 46.1 75-125 S Silver 1.11 1.21 mg/Kg 2.413 ND 46.1 75-125 S Titanium 97.6 1.21 mg/Kg 24.13 95.2 9.84 75-125 S Titanium 97.6 1.21 mg/Kg 24.13 95.2 9.84 75-125 S Titanium 97.6 1.21 mg/Kg 24.13 95.2 9.84 75-125 S Zinc 51.0 4.83 mg/Kg 24.13 26.9 99.6 75-125 S Zinc 51.0 4.83 mg/Kg 24.13 26.9 99.6 75-125 S Zinc 51.0 4.83 mg/Kg 24.13 26.9 99.6 75-125 2.80 20 Zinc 51.0 4.83 mg/Kg 24.13 26.9 99.6 75-125 2.80 20 Ber	Silver	1.11	1.21	mg/Kg	2.413	ND	46.1	75-125			
Titanium 97.6 1.21 mg/Kg 24.13 95.2 9.84 75-125 S Titanium 97.6 1.21 mg/Kg 24.13 95.2 9.84 75-125 S Titanium 97.6 1.21 mg/Kg 24.13 95.2 9.84 75-125 S Titanium 97.6 1.21 mg/Kg 24.13 95.2 9.84 75-125 S Zinc 51.0 4.83 mg/Kg 24.13 26.9 99.6 75-125 S Zinc 51.0 4.83 mg/Kg 24.13 26.9 99.6 75-125 S Zinc 51.0 4.83 mg/Kg 24.13 26.9 99.6 75-125 Z S Zinc 51.0 4.83 mg/Kg 24.13 26.9 99.6 75-125 Z S Z Z Z 20.9 75-125 Z 80 Z Z Z 20.9 75-125 <t< td=""><td>Silver</td><td>1.11</td><td>1.21</td><td>mg/Kg</td><td>2.413</td><td>ND</td><td>46.1</td><td>75-125</td><td></td><td></td><td>S</td></t<>	Silver	1.11	1.21	mg/Kg	2.413	ND	46.1	75-125			S
Titanium	Silver	1.11	1.21	mg/Kg	2.413	ND	46.1	75-125			S
Titanium 97.6	Titanium	97.6	1.21	mg/Kg	24.13	95.2	9.84	75-125			S
Titanium 97.6 1.21 mg/Kg 24.13 95.2 9.84 75-125 S Zinc 51.0 4.83 mg/Kg 24.13 26.9 99.6 75-125	Titanium	97.6	1.21	mg/Kg	24.13	95.2	9.84	75-125			S
Zinc 51.0 4.83 mg/Kg 24.13 26.9 99.6 75-125 Zinc 51.0 4.83 mg/Kg 24.13 26.9 99.6 75-125 Zinc 51.0 4.83 mg/Kg 24.13 26.9 99.6 75-125 Matrix Spike Dup (B0C0225-MSD1) Source: 20C0340-02RE1 Prepared: 03/06/2020 09:49 Analyzed: 03/06/2020 18:02 Beryllium 2.63 1.15 mg/Kg 2.307 0.446 94.7 75-125 2.80 20 Beryllium 2.63 1.15 mg/Kg 2.307 0.446 94.7 75-125 2.80 20 Beryllium 2.63 1.15 mg/Kg 2.307 0.446 94.7 75-125 2.80 20 Beryllium 2.63 1.15 mg/Kg 2.307 0.446 94.7 75-125 2.80 20 Beryllium 2.63 1.15 mg/Kg 2.307 ND 90.0 75-125 2.80 20 Cadmium 2.08 1.15 mg/Kg 2.307 <	Titanium	97.6	1.21	mg/Kg	24.13	95.2	9.84	75-125			S
Zinc 51.0 4.83 mg/Kg 24.13 26.9 99.6 75-125 Zinc 51.0 4.83 mg/Kg 24.13 26.9 99.6 75-125 Zinc 51.0 4.83 mg/Kg 24.13 26.9 99.6 75-125 Matrix Spike Dup (B0C0225-MSD1) Source: 20C0340-02RE1 Prepared: 03/06/2020 09.49 Analyzed: 03/06/2020 18:02 Beryllium 2.63 1.15 mg/Kg 2.307 0.446 94.7 75-125 2.80 20 Beryllium 2.63 1.15 mg/Kg 2.307 0.446 94.7 75-125 2.80 20 Beryllium 2.63 1.15 mg/Kg 2.307 0.446 94.7 75-125 2.80 20 Beryllium 2.63 1.15 mg/Kg 2.307 ND 90.0 75-125 2.80 20 Cadmium 2.08 1.15 mg/Kg 2.307 ND 90.0 75-125 0.0679	Titanium	97.6	1.21	mg/Kg	24.13	95.2	9.84	75-125			S
Zinc 51.0 4.83 mg/Kg 24.13 26.9 99.6 75-125 Matrix Spike Dup (B0C0225-MSD1) Source: 20C0340-02RE1 Prepared: 03/06/2020 09:49 Analyzed: 03/06/2020 18:02 Beryllium 2.63 1.15 mg/Kg 2.307 0.446 94.7 75-125 2.80 20 2.80 20 Beryllium 2.63 1.15 mg/Kg 2.307 0.446 94.7 75-125 2.80 20 2.80 20 Beryllium 2.63 1.15 mg/Kg 2.307 0.446 94.7 75-125 2.80 20 2.80 20 Beryllium 2.63 1.15 mg/Kg 2.307 0.446 94.7 75-125 2.80 20 Beryllium 2.63 1.15 mg/Kg 2.307 0.446 94.7 75-125 2.80 20 Cadmium 2.08 1.15 mg/Kg 2.307 0.446 94.7 75-125 2.80 20 Cadmium 2.08 1.15 mg/Kg 2.307 ND 90.0 75-125 0.0679 20 Cadmium 2.08 1.15 mg/Kg 2.307 ND 90.0 75-125 0.0679 20 Cadmium 2.08 1.15 mg/Kg 2.307 ND 90.0 75-125 0.0679 20 Chromium 36.7 11.5 mg/Kg 2.307 ND 90.0 75-125 0.0679 20 Chromium 36.7 11.5 mg/Kg 2.307 ND 90.0 75-125 0.0679 20 Chromium 36.7 11.5 mg/Kg 2.307 12.1 107 75-125 13.6 20	Zinc	51.0	4.83	mg/Kg	24.13	26.9	99.6	75-125			
Matrix Spike Dup (B0C0225-MSD1) Source: 20C0340-02RE1 Prepared: 03/06/2020 09:49 Analyzed: 03/06/2020 18:02 Beryllium 2.63 1.15 mg/Kg 2.307 0.446 94.7 75-125 2.80 20 Beryllium 2.63 1.15 mg/Kg 2.307 0.446 94.7 75-125 2.80 20 Beryllium 2.63 1.15 mg/Kg 2.307 0.446 94.7 75-125 2.80 20 Beryllium 2.63 1.15 mg/Kg 2.307 0.446 94.7 75-125 2.80 20 Beryllium 2.63 1.15 mg/Kg 2.307 0.446 94.7 75-125 2.80 20 Beryllium 2.63 1.15 mg/Kg 2.307 ND 90.0 75-125 2.80 20 Cadmium 2.08 1.15 mg/Kg 2.307 ND 90.0 75-125 0.0679 20 Cadmium 2.08 1.15 mg	Zinc	51.0	4.83	mg/Kg	24.13	26.9	99.6	75-125			
Matrix Spike Dup (B0C0225-MSD1) Source: 20C0340-02RE1 Prepared: 03/06/2020 09:49 Analyzed: 03/06/2020 18:02 Beryllium 2.63 1.15 mg/Kg 2.307 0.446 94.7 75-125 2.80 20 Beryllium 2.63 1.15 mg/Kg 2.307 0.446 94.7 75-125 2.80 20 Beryllium 2.63 1.15 mg/Kg 2.307 0.446 94.7 75-125 2.80 20 Beryllium 2.63 1.15 mg/Kg 2.307 0.446 94.7 75-125 2.80 20 Beryllium 2.63 1.15 mg/Kg 2.307 0.446 94.7 75-125 2.80 20 Beryllium 2.63 1.15 mg/Kg 2.307 ND 90.0 75-125 2.80 20 Cadmium 2.08 1.15 mg/Kg 2.307 ND 90.0 75-125 0.0679 20 Cadmium 2.08 1.15 mg	Zinc	51.0	4.83	mg/Kg	24.13	26.9	99.6	75-125			
Beryllium 2.63 1.15 mg/Kg 2.307 0.446 94.7 75-125 2.80 20 Beryllium 2.63 1.15 mg/Kg 2.307 0.446 94.7 75-125 2.80 20 Beryllium 2.63 1.15 mg/Kg 2.307 0.446 94.7 75-125 2.80 20 Beryllium 2.63 1.15 mg/Kg 2.307 0.446 94.7 75-125 2.80 20 Beryllium 2.63 1.15 mg/Kg 2.307 0.446 94.7 75-125 2.80 20 Beryllium 2.63 1.15 mg/Kg 2.307 ND 90.0 75-125 2.80 20 Cadmium 2.08 1.15 mg/Kg 2.307 ND 90.0 75-125 0.0679 20 Cadmium 2.08 1.15 mg/Kg 2.307 ND 90.0 75-125 0.0679 20 Cadmium 2.08 1.15	Zinc	51.0	4.83	mg/Kg	24.13	26.9	99.6	75-125			
Beryllium 2.63 1.15 mg/Kg 2.307 0.446 94.7 75-125 2.80 20 Beryllium 2.63 1.15 mg/Kg 2.307 0.446 94.7 75-125 2.80 20 Beryllium 2.63 1.15 mg/Kg 2.307 0.446 94.7 75-125 2.80 20 Cadmium 2.08 1.15 mg/Kg 2.307 ND 90.0 75-125 0.0679 20 Cadmium 2.08 1.15 mg/Kg 2.307 ND 90.0 75-125 0.0679 20 Cadmium 2.08 1.15 mg/Kg 2.307 ND 90.0 75-125 0.0679 20 Cadmium 2.08 1.15 mg/Kg 2.307 ND 90.0 75-125 0.0679 20 Chromium 36.7 11.5 mg/Kg 23.07 12.1 107 75-125 13.6 20 Chromium 36.7 11.5	Matrix Spike Dup (B0C0225-MSD1)	3our	ce: 20C0340	0-02RE1	Prepared	1: 03/06/2020	0 09:49	Analyzed: 03	3/06/2020	18:02	
Beryllium 2.63 1.15 mg/Kg 2.307 0.446 94.7 75-125 2.80 20 Beryllium 2.63 1.15 mg/Kg 2.307 0.446 94.7 75-125 2.80 20 Beryllium 2.63 1.15 mg/Kg 2.307 0.446 94.7 75-125 2.80 20 Cadmium 2.08 1.15 mg/Kg 2.307 ND 90.0 75-125 0.0679 20 Cadmium 2.08 1.15 mg/Kg 2.307 ND 90.0 75-125 0.0679 20 Cadmium 2.08 1.15 mg/Kg 2.307 ND 90.0 75-125 0.0679 20 Cadmium 2.08 1.15 mg/Kg 2.307 ND 90.0 75-125 0.0679 20 Chromium 36.7 11.5 mg/Kg 23.07 12.1 107 75-125 13.6 20 Chromium 36.7 11.5	Beryllium	2.63	1.15	mg/Kg	2.307	0.446	94.7	75-125	2.80	20	
Beryllium 2.63 1.15 mg/Kg 2.307 0.446 94.7 75-125 2.80 20 Beryllium 2.63 1.15 mg/Kg 2.307 0.446 94.7 75-125 2.80 20 Cadmium 2.08 1.15 mg/Kg 2.307 ND 90.0 75-125 0.0679 20 Cadmium 2.08 1.15 mg/Kg 2.307 ND 90.0 75-125 0.0679 20 Cadmium 2.08 1.15 mg/Kg 2.307 ND 90.0 75-125 0.0679 20 Cadmium 2.08 1.15 mg/Kg 2.307 ND 90.0 75-125 0.0679 20 Cadmium 2.08 1.15 mg/Kg 2.307 ND 90.0 75-125 0.0679 20 Chromium 36.7 11.5 mg/Kg 23.07 12.1 107 75-125 13.6 20 Chromium 36.7 11.5 mg/Kg 23.07 12.1 107 75-125 13.6 20	Beryllium	2.63	1.15		2.307	0.446	94.7	75-125	2.80	20	
Cadmium 2.08 1.15 mg/Kg 2.307 ND 90.0 75-125 0.0679 20 Cadmium 2.08 1.15 mg/Kg 2.307 ND 90.0 75-125 0.0679 20 Cadmium 2.08 1.15 mg/Kg 2.307 ND 90.0 75-125 0.0679 20 Cadmium 2.08 1.15 mg/Kg 2.307 ND 90.0 75-125 0.0679 20 Chromium 36.7 11.5 mg/Kg 23.07 12.1 107 75-125 13.6 20 Chromium 36.7 11.5 mg/Kg 23.07 12.1 107 75-125 13.6 20 Chromium 36.7 11.5 mg/Kg 23.07 12.1 107 75-125 13.6 20 Chromium 36.7 11.5 mg/Kg 23.07 12.1 107 75-125 13.6 20 Lead 26.9 11.5 mg/Kg	Beryllium	2.63	1.15	mg/Kg	2.307	0.446	94.7	75-125	2.80	20	
Cadmium 2.08 1.15 mg/Kg 2.307 ND 90.0 75-125 0.0679 20 Cadmium 2.08 1.15 mg/Kg 2.307 ND 90.0 75-125 0.0679 20 Cadmium 2.08 1.15 mg/Kg 2.307 ND 90.0 75-125 0.0679 20 Cadmium 2.08 1.15 mg/Kg 2.307 ND 90.0 75-125 0.0679 20 Cadmium 36.7 11.5 mg/Kg 23.07 12.1 107 75-125 0.0679 20 Chromium 36.7 11.5 mg/Kg 23.07 12.1 107 75-125 13.6 20 Chromium 36.7 11.5 mg/Kg 23.07 12.1 107 75-125 13.6 20 Chromium 36.7 11.5 mg/Kg 23.07 12.1 107 75-125 13.6 20 Chromium 36.7 11.5 mg/Kg 23.07 5.42 93.2 75-125 0.619 20	Beryllium	2.63	1.15	mg/Kg	2.307	0.446	94.7	75-125	2.80	20	
Cadmium 2.08 1.15 mg/Kg 2.307 ND 90.0 75-125 0.0679 20 Cadmium 2.08 1.15 mg/Kg 2.307 ND 90.0 75-125 0.0679 20 Chromium 36.7 11.5 mg/Kg 23.07 12.1 107 75-125 13.6 20 Chromium 36.7 11.5 mg/Kg 23.07 12.1 107 75-125 13.6 20 Chromium 36.7 11.5 mg/Kg 23.07 12.1 107 75-125 13.6 20 Chromium 36.7 11.5 mg/Kg 23.07 12.1 107 75-125 13.6 20 Chromium 36.7 11.5 mg/Kg 23.07 12.1 107 75-125 13.6 20 Lead 26.9 11.5 mg/Kg 23.07 5.42 93.2 75-125 0.619 20 Lead 26.9 11.5 mg/Kg 23.07 5.42 93.2 75-125 0.619 20 Lea	Cadmium	2.08	1.15		2.307	ND	90.0	75-125	0.0679	20	
Cadmium 2.08 1.15 mg/Kg 2.307 ND 90.0 75-125 0.0679 20 Cadmium 2.08 1.15 mg/Kg 2.307 ND 90.0 75-125 0.0679 20 Chromium 36.7 11.5 mg/Kg 23.07 12.1 107 75-125 13.6 20 Chromium 36.7 11.5 mg/Kg 23.07 12.1 107 75-125 13.6 20 Chromium 36.7 11.5 mg/Kg 23.07 12.1 107 75-125 13.6 20 Chromium 36.7 11.5 mg/Kg 23.07 12.1 107 75-125 13.6 20 Chromium 36.7 11.5 mg/Kg 23.07 12.1 107 75-125 13.6 20 Lead 26.9 11.5 mg/Kg 23.07 5.42 93.2 75-125 0.619 20 Lead 26.9 11.5 mg/Kg 23.07 5.42 93.2 75-125 0.619 20 Lea	Cadmium	2.08	1.15	mg/Kg	2.307	ND	90.0	75-125	0.0679	20	
Chromium 36.7 11.5 mg/Kg 23.07 12.1 107 75-125 13.6 20 Chromium 36.7 11.5 mg/Kg 23.07 12.1 107 75-125 13.6 20 Chromium 36.7 11.5 mg/Kg 23.07 12.1 107 75-125 13.6 20 Chromium 36.7 11.5 mg/Kg 23.07 12.1 107 75-125 13.6 20 Lead 26.9 11.5 mg/Kg 23.07 5.42 93.2 75-125 0.619 20 Lead 26.9 11.5 mg/Kg 23.07 5.42 93.2 75-125 0.619 20 Lead 26.9 11.5 mg/Kg 23.07 5.42 93.2 75-125 0.619 20 Lead 26.9 11.5 mg/Kg 23.07 5.42 93.2 75-125 0.619 20	Cadmium	2.08	1.15		2.307	ND	90.0	75-125	0.0679	20	
Chromium 36.7 11.5 mg/Kg 23.07 12.1 107 75-125 13.6 20 Chromium 36.7 11.5 mg/Kg 23.07 12.1 107 75-125 13.6 20 Chromium 36.7 11.5 mg/Kg 23.07 12.1 107 75-125 13.6 20 Chromium 36.7 11.5 mg/Kg 23.07 12.1 107 75-125 13.6 20 Lead 26.9 11.5 mg/Kg 23.07 5.42 93.2 75-125 0.619 20 Lead 26.9 11.5 mg/Kg 23.07 5.42 93.2 75-125 0.619 20 Lead 26.9 11.5 mg/Kg 23.07 5.42 93.2 75-125 0.619 20 Lead 26.9 11.5 mg/Kg 23.07 5.42 93.2 75-125 0.619 20	Cadmium	2.08	1.15	mg/Kg	2.307	ND	90.0	75-125	0.0679	20	
Chromium 36.7 11.5 mg/Kg 23.07 12.1 107 75-125 13.6 20 Chromium 36.7 11.5 mg/Kg 23.07 12.1 107 75-125 13.6 20 Lead 26.9 11.5 mg/Kg 23.07 5.42 93.2 75-125 0.619 20 Lead 26.9 11.5 mg/Kg 23.07 5.42 93.2 75-125 0.619 20 Lead 26.9 11.5 mg/Kg 23.07 5.42 93.2 75-125 0.619 20	Chromium	36.7	11.5	mg/Kg	23.07	12.1	107	75-125	13.6	20	
Chromium 36.7 11.5 mg/Kg 23.07 12.1 107 75-125 13.6 20 Chromium 36.7 11.5 mg/Kg 23.07 12.1 107 75-125 13.6 20 Lead 26.9 11.5 mg/Kg 23.07 5.42 93.2 75-125 0.619 20 Lead 26.9 11.5 mg/Kg 23.07 5.42 93.2 75-125 0.619 20 Lead 26.9 11.5 mg/Kg 23.07 5.42 93.2 75-125 0.619 20	Chromium	36.7	11.5	mg/Kg	23.07	12.1	107	75-125	13.6	20	
Chromium 36.7 11.5 mg/Kg 23.07 12.1 107 75-125 13.6 20 Lead 26.9 11.5 mg/Kg 23.07 5.42 93.2 75-125 0.619 20 Lead 26.9 11.5 mg/Kg 23.07 5.42 93.2 75-125 0.619 20 Lead 26.9 11.5 mg/Kg 23.07 5.42 93.2 75-125 0.619 20	Chromium	36.7	11.5		23.07	12.1	107	75-125	13.6	20	
Lead 26.9 11.5 mg/Kg 23.07 5.42 93.2 75-125 0.619 20 Lead 26.9 11.5 mg/Kg 23.07 5.42 93.2 75-125 0.619 20	Chromium	36.7	11.5	mg/Kg	23.07	12.1	107	75-125	13.6	20	
Lead 26.9 11.5 mg/Kg 23.07 5.42 93.2 75-125 0.619 20	Lead	26.9	11.5	mg/Kg	23.07	5.42	93.2	75-125	0.619	20	
y y	Lead	26.9	11.5	mg/Kg	23.07	5.42	93.2	75-125	0.619	20	
Lead 26.9 11.5 mg/Kg 23.07 5.42 93.2 75-125 0.619 20	Lead	26.9	11.5	mg/Kg	23.07	5.42	93.2	75-125	0.619	20	
	Lead	26.9	11.5	mg/Kg	23.07	5.42	93.2	75-125	0.619	20	

509 N. 3rd Avenue Des Plaines, Illinois 60016 **P** 847.967.6666 800.246.0663 **F** 847.967.6735 www.emt.com

Quality Control

(Continued)

Client: Reserve Management Group

Project: SCPM

Napuck Dust

Work Order: 20C0342, 20C0343, 20C0344, 20C0345

Report Date: 03/10/2020

Matrix: Solid

Metals by ICP-AES

(Continued)

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual

Matrix Spike Dup (B0C0225-MSD1) (Continued)	3our	ce: 20C034	: 20C0340-02RE1		I: 03/06/202	0 09:49	Analyzed: 03	3/06/2020	18:02	
Phosphorus	294	57.7	mg/Kg	115.4	142	131	75-125	11.9	20	S
Phosphorus	294	57.7	mg/Kg	115.4	142	131	75-125	11.9	20	S
Phosphorus	294	57.7	mg/Kg	115.4	142	131	75-125	11.9	20	S
Phosphorus	294	57.7	mg/Kg	115.4	142	131	75-125	11.9	20	S
Selenium	20.4	11.5	mg/Kg	23.07	ND	88.3	75-125	2.19	20	
Selenium	20.4	11.5	mg/Kg	23.07	ND	88.3	75-125	2.19	20	
Selenium	20.4	11.5	mg/Kg	23.07	ND	88.3	75-125	2.19	20	
Selenium	20.4	11.5	mg/Kg	23.07	ND	88.3	75-125	2.19	20	
Matrix Spike Dup (B0C0225-MSD2)	Sour	ce: 20C034	0-02RE2	Prepared	I: 03/06/202	0 09:49	Analyzed: 03	3/06/2020	18:55	
Antimony	6.77	1.15	mg/Kg	23.07	ND	29.3	75-125	6.65	20	S
Antimony	6.77	1.15	mg/Kg	23.07	ND	29.3	75-125	6.65	20	S
Antimony	6.77	1.15	mg/Kg	23.07	ND	29.3	75-125	6.65	20	S
Antimony	6.77	1.15	mg/Kg	23.07	ND	29.3	75-125	6.65	20	S
Arsenic	18.7	1.15	mg/Kg	23.07	0.777	77.5	75-125	4.59	20	
Arsenic	18.7	1.15	mg/Kg	23.07	0.777	77.5	75-125	4.59	20	
Arsenic	18.7	1.15	mg/Kg	23.07	0.777	77.5	75-125	4.59	20	
Arsenic	18.7	1.15	mg/Kg	23.07	0.777	77.5	75-125	4.59	20	
Barium	35.0	1.15	mg/Kg	23.07	15.4	84.9	75-125	2.28	20	
Barium	35.0	1.15	mg/Kg	23.07	15.4	84.9	75-125	2.28	20	
Barium	35.0	1.15	mg/Kg	23.07	15.4	84.9	75-125	2.28	20	
Barium	35.0	1.15	mg/Kg	23.07	15.4	84.9	75-125	2.28	20	
Cobalt	35.3	1.15	mg/Kg	23.07	14.1	91.6	75-125	11.0	20	
Cobalt	35.3	1.15	mg/Kg	23.07	14.1	91.6	75-125	11.0	20	
Cobalt	35.3	1.15	mg/Kg	23.07	14.1	91.6	75-125	11.0	20	
Cobalt	35.3	1.15	mg/Kg	23.07	14.1	91.6	75-125	11.0	20	
Copper	26.9	1.15	mg/Kg	23.07	6.97	86.3	75-125	0.628	20	
Copper	26.9	1.15	mg/Kg	23.07	6.97	86.3	75-125	0.628	20	
Copper	26.9	1.15	mg/Kg	23.07	6.97	86.3	75-125	0.628	20	
Copper	26.9	1.15	mg/Kg	23.07	6.97	86.3	75-125	0.628	20	
Manganese	175	1.15	mg/Kg	23.07	158	76.2	75-125	5.76	20	
Manganese	175	1.15	mg/Kg	23.07	158	76.2	75-125	5.76	20	
Manganese	175	1.15	mg/Kg	23.07	158	76.2	75-125	5.76	20	
Manganese	175	1.15	mg/Kg	23.07	158	76.2	75-125	5.76	20	
Nickel	65.5	1.15	mg/Kg	23.07	33.6	138	75-125	13.5	20	S
Nickel	65.5	1.15	mg/Kg	23.07	33.6	138	75-125	13.5	20	S
Nickel	65.5	1.15	mg/Kg	23.07	33.6	138	75-125	13.5	20	S
Nickel	65.5	1.15	mg/Kg	23.07	33.6	138	75-125	13.5	20	S
Silver	1.01	1.15	mg/Kg	2.307	ND	43.8	75-125	9.59	20	S
Silver	1.01	1.15	mg/Kg	2.307	ND	43.8	75-125	9.59	20	S
Silver	1.01	1.15	mg/Kg	2.307	ND	43.8	75-125	9.59	20	S
Silver	1.01	1.15	mg/Kg	2.307	ND	43.8	75-125	9.59	20	S

Des Plaines, Illinois 60016

P 847.967.6666

800.246.0663

F 847.967.6735

www.emt.com

Quality Control

(Continued)

Client: Reserve Management Group

SCPM Project:

Napuck Dust

20C0342, 20C0343, 20C0344, 20C0345 Work Order:

Report Date: 03/10/2020

Matrix: Solid

Metals by ICP-AES

(Continued)

		ъ "		0 "	•		0/ 050		555	
.		Reporting		Spike	Source	~ ===	%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual

Batch: B0C0225 -	SW3050	(Continued)
------------------	--------	-------------

Matrix Spike Dup (B0C0225-MSD2) (Continued)	3oui	rce: 20C034	0-02RE2	Prepared	1: 03/06/2020	09:49	Analyzed: 03	/06/2020	18:55	
Titanium	108	1.15	mg/Kg	23.07	95.2	57.2	75-125	10.5	20	S
Titanium	108	1.15	mg/Kg	23.07	95.2	57.2	75-125	10.5	20	S
Titanium	108	1.15	mg/Kg	23.07	95.2	57.2	75-125	10.5	20	S
Titanium	108	1.15	mg/Kg	23.07	95.2	57.2	75-125	10.5	20	S
Zinc	45.8	4.61	mg/Kg	23.07	26.9	81.8	75-125	10.6	20	
Zinc	45.8	4.61	mg/Kg	23.07	26.9	81.8	75-125	10.6	20	
Zinc	45.8	4.61	mg/Kg	23.07	26.9	81.8	75-125	10.6	20	
Zinc	45.8	4.61	mg/Kg	23.07	26.9	81.8	75-125	10.6	20	
Post Spike (B0C0225-PS1)	Source: 20C0340-02RE1		Prepared: 03/06/2020 09:4		09:49	Analyzed: 03	/06/2020	18:06		
Beryllium	121	1.17	mg/Kg	117.3	0.446	102	80-120			
Beryllium	121	1.17	mg/Kg	117.3	0.446	102	80-120			
Beryllium	121	1.17	mg/Kg	117.3	0.446	102	80-120			
Beryllium	121	1.17	mg/Kg	117.3	0.446	102	80-120			
Cadmium	113	1.17	mg/Kg	117.3	ND	96.1	80-120			
Cadmium	113	1.17	mg/Kg	117.3	ND	96.1	80-120			
Cadmium	113	1.17	mg/Kg	117.3	ND	96.1	80-120			
Cadmium	113	1.17	mg/Kg	117.3	ND	96.1	80-120			
Chromium	129	11.7	mg/Kg	117.3	12.1	99.4	80-120			
Chromium	129	11.7	mg/Kg	117.3	12.1	99.4	80-120			
Chromium	129	11.7	mg/Kg	117.3	12.1	99.4	80-120			
Chromium	129	11.7	mg/Kg	117.3	12.1	99.4	80-120			
_ead	114	11.7	mg/Kg	117.3	5.42	92.4	80-120			
_ead	114	11.7	mg/Kg	117.3	5.42	92.4	80-120			
_ead	114	11.7	mg/Kg	117.3	5.42	92.4	80-120			
_ead	114	11.7	mg/Kg	117.3	5.42	92.4	80-120			
Phosphorus	260	58.7	mg/Kg	117.3	142	100	80-120			
Phosphorus	260	58.7	mg/Kg	117.3	142	100	80-120			
Phosphorus	260	58.7	mg/Kg	117.3	142	100	80-120			
Phosphorus	260	58.7	mg/Kg	117.3	142	100	80-120			
Selenium	117	11.7	mg/Kg	117.3	ND	99.5	80-120			
Selenium	117	11.7	mg/Kg	117.3	ND	99.5	80-120			
Selenium	117	11.7	mg/Kg	117.3	ND	99.5	80-120			
Selenium	117	11.7	mg/Kg	117.3	ND	99.5	80-120			
Post Spike (B0C0225-PS2)	3oui	rce: 20C034	0-02RE2	Prepared	I: 03/06/2020	09:49	Analyzed: 03	/06/2020	18:59	
Antimony	11.0	1.30	mg/Kg	13.04	ND	84.6	80-120			
Antimony	11.0	1.30	mg/Kg	13.04	ND	84.6	80-120			
Antimony	11.0	1.30	mg/Kg	13.04	ND	84.6	80-120			
Antimony	11.0	1.30	mg/Kg	13.04	ND	84.6	80-120			
Arsenic	13.1	1.30	mg/Kg	13.04	0.777	94.8	80-120			
Arsenic	13.1	1.30	mg/Kg	13.04	0.777	94.8	80-120			

Des Plaines, Illinois 60016

P 847.967.6666

800.246.0663

F 847.967.6735

www.emt.com

Quality Control

(Continued)

Client: Reserve Management Group

Project: SCPM

RMT Dust

Work Order: 20C0342, 20C0343, 20C0344, 20C0345

Report Date: 03/10/2020

Matrix: Solid

Metals by ICP-AES

(Continued)

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual

Post Spike (B0C0225-PS2) (Continued)	Sour	ce: 20C0340)-02RE2	Prepared	: 03/06/2020	0 09:49	Analyzed: 03/06/2020	18:59	
Arsenic	13.1	1.30	mg/Kg	13.04	0.777	94.8	80-120		
Arsenic	13.1	1.30	mg/Kg	13.04	0.777	94.8	80-120		
Barium	26.6	1.30	mg/Kg	13.04	15.4	86.4	80-120		
Barium	26.6	1.30	mg/Kg	13.04	15.4	86.4	80-120		
Barium	26.6	1.30	mg/Kg	13.04	15.4	86.4	80-120		
Barium	26.6	1.30	mg/Kg	13.04	15.4	86.4	80-120		
Cobalt	24.8	1.30	mg/Kg	13.04	14.1	82.2	80-120		
Cobalt	24.8	1.30	mg/Kg	13.04	14.1	82.2	80-120		
Cobalt	24.8	1.30	mg/Kg	13.04	14.1	82.2	80-120		
Cobalt	24.8	1.30	mg/Kg	13.04	14.1	82.2	80-120		
Copper	19.0	1.30	mg/Kg	13.04	6.97	92.0	80-120		
Copper	19.0	1.30	mg/Kg	13.04	6.97	92.0	80-120		
Copper	19.0	1.30	mg/Kg	13.04	6.97	92.0	80-120		
Copper	19.0	1.30	mg/Kg	13.04	6.97	92.0	80-120		
Manganese	170	1.30	mg/Kg	13.04	158	91.9	80-120		
Manganese	170	1.30	mg/Kg	13.04	158	91.9	80-120		
Manganese	170	1.30	mg/Kg	13.04	158	91.9	80-120		
Manganese	170	1.30	mg/Kg	13.04	158	91.9	80-120		
Nickel	44.3	1.30	mg/Kg	13.04	33.6	81.7	80-120		
Nickel	44.3	1.30	mg/Kg	13.04	33.6	81.7	80-120		
Nickel	44.3	1.30	mg/Kg	13.04	33.6	81.7	80-120		
Nickel	44.3	1.30	mg/Kg	13.04	33.6	81.7	80-120		
Silver	8.65	1.30	mg/Kg	13.04	ND	66.3	80-120		S
Silver	8.65	1.30	mg/Kg	13.04	ND	66.3	80-120		S
Silver	8.65	1.30	mg/Kg	13.04	ND	66.3	80-120		S
Silver	8.65	1.30	mg/Kg	13.04	ND	66.3	80-120		S
Titanium	106	1.30	mg/Kg	13.04	95.2	84.2	80-120		
Titanium	106	1.30	mg/Kg	13.04	95.2	84.2	80-120		
Titanium	106	1.30	mg/Kg	13.04	95.2	84.2	80-120		
Titanium	106	1.30	mg/Kg	13.04	95.2	84.2	80-120		
Zinc	39.1	5.22	mg/Kg	13.04	26.9	93.0	80-120		
Zinc	39.1	5.22	mg/Kg	13.04	26.9	93.0	80-120		
Zinc	39.1	5.22	mg/Kg	13.04	26.9	93.0	80-120		
Zinc	39.1	5.22	mg/Kg	13.04	26.9	93.0	80-120		
Reference (B0C0225-SRM1)				Prepared	: 03/06/2020	0 09:49	Analyzed: 03/06/2020	17:08	
Antimony	19.6	25.0	mg/Kg	27.03		72.3	50-150		
Antimony	19.6	25.0	mg/Kg	27.03		72.3	50-150		
Antimony	19.6	25.0	mg/Kg	27.03		72.3	50-150		
Antimony	19.6	25.0	mg/Kg	27.03		72.3	50-150		
Arsenic	37.6	25.0	mg/Kg	52.55		71.7	50-150		
Arsenic	37.6	25.0	mg/Kg	52.55		71.7	50-150		

Des Plaines, Illinois 60016

P 847.967.6666

800.246.0663

F 847.967.6735

www.emt.com

Quality Control

(Continued)

Client: Reserve Management Group

SCPM Project:

RMT Dust

20C0342, 20C0343, 20C0344, 20C0345 Work Order:

Report Date: 03/10/2020

Matrix: Solid

Metals by ICP-AES

(Continued)

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual

Reference (B0C0225-SRM1) (Continued)				Prepared: (03/06/2020 09:49	Analyzed: 03/06/2020 17:08
Arsenic	37.6	25.0	mg/Kg	52.55	71.7	50-150
Arsenic	37.6	25.0	mg/Kg	52.55	71.7	50-150
Barium	116	25.0	mg/Kg	148.7	77.9	50-150
Barium	116	25.0	mg/Kg	148.7	77.9	50-150
Barium	116	25.0	mg/Kg	148.7	77.9	50-150
Barium	116	25.0	mg/Kg	148.7	77.9	50-150
Beryllium	73.6	2.50	mg/Kg	109.7	67.1	50-150
Beryllium	73.6	2.50	mg/Kg	109.7	67.1	50-150
Beryllium	73.6	2.50	mg/Kg	109.7	67.1	50-150
Beryllium	73.6	2.50	mg/Kg	109.7	67.1	50-150
Cadmium	37.0	2.50	mg/Kg	48.65	76.0	50-150
Cadmium	37.0	2.50	mg/Kg	48.65	76.0	50-150
Cadmium	37.0	2.50	mg/Kg	48.65	76.0	50-150
Cadmium	37.0	2.50	mg/Kg	48.65	76.0	50-150
Chromium	106	25.0	mg/Kg	142.2	74.2	50-150
Chromium	106	25.0	mg/Kg	142.2	74.2	50-150
Chromium	106	25.0	mg/Kg	142.2	74.2	50-150
Chromium	106	25.0	mg/Kg	142.2	74.2	50-150
Cobalt	27.8	25.0	mg/Kg	36.65	76.0	50-150
Cobalt	27.8	25.0	mg/Kg	36.65	76.0	50-150
Cobalt	27.8	25.0	mg/Kg	36.65	76.0	50-150
Cobalt	27.8	25.0	mg/Kg	36.65	76.0	50-150
Copper	16.6	25.0	mg/Kg	27.08	61.3	50-150
Copper	16.6	25.0	mg/Kg	27.08	61.3	50-150
Copper	16.6	25.0	mg/Kg	27.08	61.3	50-150
Copper	16.6	25.0	mg/Kg	27.08	61.3	50-150
Lead	112	25.0	mg/Kg	148.1	75.7	50-150
Lead	112	25.0	mg/Kg	148.1	75.7	50-150
Lead	112	25.0	mg/Kg	148.1	75.7	50-150
Lead	112	25.0	mg/Kg	148.1	75.7	50-150
Manganese	400	25.0	mg/Kg	600.1	66.7	50-150
Manganese	400	25.0	mg/Kg	600.1	66.7	50-150
Manganese	400	25.0	mg/Kg	600.1	66.7	50-150
Manganese	400	25.0	mg/Kg	600.1	66.7	50-150
Nickel	45.4	25.0	mg/Kg	58.38	77.8	50-150
Nickel	45.4	25.0	mg/Kg	58.38	77.8	50-150
Nickel	45.4	25.0	mg/Kg	58.38	77.8	50-150
Nickel	45.4	25.0	mg/Kg	58.38	77.8	50-150
Selenium	91.5	25.0	mg/Kg	123.3	74.2	50-150
Selenium	91.5	25.0	mg/Kg	123.3	74.2	50-150
Selenium	91.5	25.0	mg/Kg	123.3	74.2	50-150
Selenium	91.5	25.0	mg/Kg	123.3	74.2	50-150

509 N. 3rd Avenue

Project:

Des Plaines, Illinois 60016

P 847.967.6666

800.246.0663

F 847.967.6735

www.emt.com

Quality Control

(Continued)

Client: Reserve Management Group

SCPM

Napuck Dust

Work Order: 20C0342, 20C0343, 20C0344, 20C0345

Report Date: 03/10/2020

Matrix: Solid

Metals by ICP-AES

(Continued)

					_					
		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual

Batch: B0C0225 - SW3050 (Continued)

Reference (B0C0225-SRM1) (Continued)				Prepared: 03/0	06/2020 09:49	Analyzed: 03/06/2020 17:08	
Silver	11.8	25.0	mg/Kg	13.52	87.7	50-150	
Silver	11.8	25.0	mg/Kg	13.52	87.7	50-150	
Silver	11.8	25.0	mg/Kg	13.52	87.7	50-150	
Silver	11.8	25.0	mg/Kg	13.52	87.7	50-150	
Titanium	291	25.0	mg/Kg	460.1	63.3	50-150	
Titanium	291	25.0	mg/Kg	460.1	63.3	50-150	
Titanium	291	25.0	mg/Kg	460.1	63.3	50-150	
Titanium	291	25.0	mg/Kg	460.1	63.3	50-150	
Zinc	378	100	mg/Kg	483.3	78.2	50-150	
Zinc	378	100	mg/Kg	483.3	78.2	50-150	
Zinc	378	100	mg/Kg	483.3	78.2	50-150	
Zinc	378	100	mg/Kg	483.3	78.2	50-150	

509 N. 3rd Avenue

Des Plaines, Illinois 60016

P 847.967.6666

800.246.0663

F 847.967.6735

www.emt.com

Quality Control

(Continued)

Client: Reserve Management Group

Project: SCPM

Napuck Dust

Work Order: 20C0342, 20C0343, 20C0344, 20C0345

Report Date: 03/10/2020

Matrix: Solid

Mercury by CVAA

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch: B0C0297										
Blank (B0C0297-BLK1)				Prepared	I: 03/09/2020	10:30	Analyzed: 03	3/09/2020	14:02	
Mercury	< 0.100	0.100	mg/Kg							
Mercury	< 0.100	0.100	mg/Kg							
Mercury	< 0.100	0.100	mg/Kg							
Mercury	< 0.100	0.100	mg/Kg							
LCS (B0C0297-BS1)				Prepared	I: 03/09/2020	10:30	Analyzed: 03	3/09/2020	14:04	
Mercury	0.546	0.100	mg/Kg	0.5000		109	89.7-115			
Mercury	0.546	0.100	mg/Kg	0.5000		109	89.7-115			
Mercury	0.546	0.100	mg/Kg	0.5000		109	89.7-115			
Mercury	0.546	0.100	mg/Kg	0.5000		109	89.7-115			
MRL Check (B0C0297-MRL1)				Prepared	I: 03/09/2020	10:30	Analyzed: 03	3/09/2020	13:52	
Mercury	0.236	0.100	mg/Kg	0.2000		118	70-130			
Mercury	0.236	0.100	mg/Kg	0.2000		118	70-130			
Mercury	0.236	0.100	mg/Kg	0.2000		118	70-130			
Mercury	0.236	0.100	mg/Kg	0.2000		118	70-130			
Matrix Spike (B0C0297-MS1)		Source: 200	C0340-02	Prepared	I: 03/09/2020	10:30	Analyzed: 03	3/09/2020	14:22	
Mercury	0.491	0.096	mg/Kg	0.4790	ND	102	75-125			
Mercury	0.491	0.096	mg/Kg	0.4790	ND	102	75-125			
Mercury	0.491	0.096	mg/Kg	0.4790	ND	102	75-125			
Mercury	0.491	0.096	mg/Kg	0.4790	ND	102	75-125			
Matrix Spike Dup (B0C0297-MSD1)		Source: 200	C0340-02	Prepared	I: 03/09/2020	10:30	Analyzed: 03	3/09/2020	14:24	
Mercury	0.489	0.096	mg/Kg	0.4781	ND	102	75-125	0.498	20	
Mercury	0.489	0.096	mg/Kg	0.4781	ND	102	75-125	0.498	20	
Mercury	0.489	0.096	mg/Kg	0.4781	ND	102	75-125	0.498	20	
Mercury	0.489	0.096	mg/Kg	0.4781	ND	102	75-125	0.498	20	
Reference (B0C0297-SRM1)				Prepared	l: 03/09/2020	10:30	Analyzed: 03	3/09/2020	14:06	
Mercury	0.200	0.100	mg/Kg	0.1991		101	50-150			
Mercury	0.200	0.100	mg/Kg	0.1991		101	50-150			
Mercury	0.200	0.100	mg/Kg	0.1991		101	50-150			
Mercury	0.200	0.100	mg/Kg	0.1991		101	50-150			

509 N. 3rd Avenue Des Plaines, Illinois 60016 **P** 847.967.6666 800.246.0663 **F** 847.967.6735 www.emt.com

Certified Analyses included in this Report

Analyte	CAS#	Certifications
SW6010C in Solid		
Antimony	7440-36-0	DoD,ISO,WDNR,ILEPA
Arsenic	7440-38-2	DoD,ISO,AKDEC,WDNR,ILEPA
Barium	7440-39-3	DoD,ISO,AKDEC,WDNR,ILEPA
Beryllium	7440-41-7	DoD,ISO,WDNR,ILEPA
Cadmium	7440-43-9	DoD,ISO,AKDEC,WDNR,ILEPA
Chromium	7440-47-3	DoD,ISO,AKDEC,WDNR,ILEPA
Cobalt	7440-48-4	DoD,ISO,WDNR,ILEPA
Copper	7440-50-8	DoD,ISO,WDNR,ILEPA
Lead	7439-92-1	DoD,ISO,AKDEC,WDNR,ILEPA
Manganese	7439-96-5	DoD,ISO,WDNR,ILEPA
Nickel	7440-02-0	DoD,ISO,AKDEC,WDNR,ILEPA
Phosphorus	7723-14-0	DoD
Selenium	7782-49-2	DoD,ISO,WDNR,ILEPA
Silver	7440-22-4	DoD,ISO,WDNR,ILEPA
Titanium	7440-32-6	DoD,WDNR,ILEPA
Zinc	7440-66-6	DoD,ISO,WDNR,ILEPA
SW7471B in Solid		
Mercury	7439-97-6	ISO,DoD,WDNR,ILEPA

List of Certifications

Code	Description	Number	Expires
AKDEC	State of Alaska, Dept. Environmental Conservation	17-011	04/30/2020
CPSC	US Consumer Product Safety Commission, Accredited by PJLA Lab No. 1050	L18-184-R1	04/30/2020
DoD	Department of Defense, Accredited by PJLA	L18-183-R3	04/30/2020
ILEPA	State of Illinois, NELAP Accredited Lab No. 100256	1002562020-1	07/27/2020
ISO	ISO/IEC 17025, Accredited by PJLA	L18-184-R1	04/30/2020
TX	Texas Commission of Environmental Quality	T104704554-19-4	10/31/2020
WA	Washington State Department of Ecology	C1057	01/05/2021
WDNR	State of Wisconsin Dept of Natural Resources	999888890	08/31/2020

509 N. 3rd Avenue

Des Plaines, Illinois 60016

P 847.967.6666

800.246.0663

F 847.967.6735

www.emt.com

Qualifiers and Definitions

Item	Description
Р	The quality control sample %RPD is above the laboratory control limit.
Q	One or more quality control results were outside of the acceptance limits (e.g. LCS recovery, surrogate spike recovery, or CCV recovery).
S	The quality control sample recovery is outside of the laboratory control limits.
S3	The percent recovery was outside the limits, but the analyte is reported within the calibration range. Data is acceptable.
%Rec	Percent Recovery

ENVIRONMI MONITORIN TECHNOLOGIE

Des Plaines, IL 60016 509 N. 3rd Avenue

20C0342	Mark Steuer
20	PM

Reserve Management Group

Residential Soil Analysis

ain of Custody Record

TURNAROUND TIME: RUSH

day turnaround ROUTINE 10 20 COC # 233102

Due Date:

847-967-6735

w.emt.com 9999-19

Table of Contents WORKORDER #200342 EMT USE ONLY R 001954 EMT EMT SAMPLE RETURN POLICY ON BACK SAMPLE RECEIVED 018 X TEMPERATURE 23.3 Analyses EMT Project I.D. **EMT USE ONLY** Client Code: 7. Groundwater (filtered)

Other Jar Lot No. × 3-5-20 Preservation Cab 00 91 Container Type:
P - Plastic N - VOC Vial O- Other 1. Waste Water 4. Sludge 2. Drinking Water 5. Oil 3. Soil 6. Groundwater Field 7. Zn Ace 8. Other B - Tedlar Bag Temp. Date: Time: Date: Date: Time: Time: 4. NaOH 5. HCI 6. MeOH H Preservative: Sample Type: G - Glass None 2. H2SO4 3. HNO3 Sampling Time Received For Lab By: Ame The 3/5/20 Date Received By: Received By: B Š. Date: 8-5 -20 00 Container Type Fax #: (Proj.#: Client Contact: MARK LEINTRAUS Size Time: Date: Time: Date: Time: Sample Project ID / Location: SCPM Type Page 27 of 34 Phone #: (440) 287 KM G Sample I.D. HO BY: Relinquished By: Relihauished By: Company: PAWED Address: Relindulsh P.O. #:

Sample Receipt Checklist

Work Order: 20C0342

Printed: 3/5/2020 4:20:46PM

Client: Reserve Management Group

Project: Residential Soil Analysis

Date Due:

Tuesday, March 10, 2020

Received By: Agnieszka B. Zabawa

Logged In By: Agnieszka B. Zabawa

Date Received: 03/05/20 16:00 Date Logged In: 03/05/20 16:02

Sample Temperature at Receipt: 23.3°C

How were samples received?

Client

Custody Seals Present

No

Custody Seals Intact

Sample Containers Intact

NA

COC Present and Complete

Yes Yes

COC agrees with Sample Labels

Yes

Containers Properly Preserved

Yes

Samples Received Within Holdtime

Yes

Cooler Temp Within Limits

Yes

VOA Water Vials Received

No

Comments

ENVIRONIMONITORI **TECHNOLO**

Des Plaines, IL 60016 509 N. 3rd Avenue

_			_	=
			=	
_				
_		_	-	=
_		_		
				=
>	-		1	r

Reserve Management Group Residential Soil Analysis PM: Mark Steuer 20C0343

Chain of Custody Record

day turnaround

☐ ROUTINE

TURNAROUND TIME:

K RUSH

Due Da X:847-967-6735 ww.emt.com 7-967-6666

L	0
5	HOUSE -
-	0
1	0
C	V
)C #:
<	# 000
N	
5	1
	4
4)
	<u>e</u>

EMT SAMPLE RETURN 946100 BACK POLICY ON BACK WORKORDER ONLY #20034B EMT USE SAMPLE RECEIVED ON ICE X TEMPERATURE 910 Analyses EMT Project I.D. **EMT USE ONLY** ××× ××× Client Code: 2. Groundwater (filtered) (8. Other Jark Lot No. **Preservation** Lab 3 00:91 1 P-Plastic V-VOC Vial O-Other G-Glass B-Tedlar Bag 3-5 1. Waste Water 4. Sludge 2. Drinking Wafer 5. Oil 3. Soil 6. Groundwater Field 7, Zn Ace 8. Other Temp. Date: Date: Date: Time: Time: Time: 4. NaOH HCI
 MeOH Container Type: Preservative:
(1) None 4, N
2, H2SO4 5, H Н Sample Type: 3. HNO3 Sampling Time Received For Lab By: 3/5/20 Date Received By: Received By: B Š 2 16:00 Container Type Fax #: (Proj.#: Client Contact: MARK WENTERD Date: 3 Size Time: Date: Date: Time: Time: 7209 Sample Type Project ID / Location: SCPM SPECIAL INSTRUCTIONS: Phone #: (40 287 RMG Sample I.D. Relinquished By: Relinduished By: JAPANED JAPANED Company: Relinguist Address:

Sample Receipt Checklist

Work Order: 20C0343

Printed: 3/5/2020 4:15:45PM

Client: Reserve Management Group

Project: Residential Soil Analysis

Date Due:

23.3°C

Client

No

NA

Yes

Yes

Yes

Yes

Yes

Yes

No

Tuesday, March 10, 2020

Received By: Agnieszka B. Zabawa

Logged In By: Agnieszka B. Zabawa

Date Received: 03/05/20 16:00

Sample Temperature at Receipt:

How were samples received?

Custody Seals Present

Custody Seals Intact

Sample Containers Intact

COC Present and Complete

COC agrees with Sample Labels

Containers Properly Preserved

Samples Received Within Holdtime

Cooler Temp Within Limits

VOA Water Vials Received

Date Logged In: 03/05/20 16:13

Comments

ABZ 315/20

509 N. 3rd Avenue Des Plaines, IL 60016

Company: Address:

P.O. #:

	20C0344
	20C
	=
:>:	

Reserve Management Group Residential Soil Analysis PM: Mark Steuer

:847-967-6735

w.emt.com 9999-296

70
\succeq
0
Ŭ
Ď
Ž
>
Ó
ŏ
÷
5
$\boldsymbol{\pi}$
U
5
O
.늘
O

day turnaround TURNAROUND TIME: X RUSH

ROUTINE

3. 10 20 coc # 233103

Due Date:

ORKORDER EMT USE ONLY DUD344 EMT Analyses 7. Groundwater (filtered) Container Type:
P - Plastic V - VOC Vial (3) - Other
G - Glass B - Tedlar Bag 1. Waste Water 4. Sludge 2. Drinking Wafer 5. Oil 6. Groundwater 3. Soil 7. Zn Ace 8. Other 4, NaOH 5, HCI 6. MeOH Preservative: Sample Type: 6. None 2. H2SO4 3. HNO3 Fax #: (Proj.#: Client Contact: MARK WENTRATE 7209 Phone #: (440)287 KM6 Project ID / Location:_

N	ENT Digital D		ţ-			Pod Bv.	Received By:		i	Doto.		Relinduished Bv.
TEMPERATURE	Client Code:		Time:				-	Ø	Time: $/\!$	me:	-	12
SAMPLE RECEIV	EMT USE ONLY	ı	Date:			ed By:	Received By:	-20	Date: 3 -5 -20	ate: 3		Relinquished By:
					•							
								, seek				
						3.			S			
												00014
			3 0 50									
			2 11 1	1								the so
								5			-	
						,		18				is 18
OIA	XXXX			٠		3/5/20		1				AIAPUCK* DUST
7 / / #20	// SUDE	Field Lab	Temp.	Н	Time	Date	By	No.	Type	Size	Type	י שוקוווסט
OM / /	/ / *** XXX / XX /	Preservation			Sampling	Sc		ər	Container		Sample	

Page 31 of 34

Table of Contents

EMT SAMPLE RETURN POLICY ON BACK

23.3

EMT Project I.D.

Date:

Received By:

Date:

Relinduished By:

Time:

Jar Lot No.

5-20

Date: Time:

Received For Lab By:

Date: Time:

Relinquished By:

Time:

From

00

9 3

R 001958

VED.

Sample Receipt Checklist

Work Order: 20C0344

Printed: 3/5/2020 4:17:27PM

Client: Reserve Management Group

Project: Residential Soil Analysis

Date Due:

23.3°C

Client

No

NA

Yes

Yes

Yes

Yes

Yes

Yes

No

Tuesday, March 10, 2020

Received By: Agnieszka B. Zabawa

Logged In By: Agnieszka B. Zabawa

Date Received: 03/05/20 16:00 Date Logged In: 03/05/20 16:16

Sample Temperature at Receipt:

How were samples received?

Custody Seals Present

Custody Seals Intact

Sample Containers Intact COC Present and Complete COC agrees with Sample Labels Containers Properly Preserved Samples Received Within Holdtime Cooler Temp Within Limits VOA Water Vials Received

Comments

ENVIRONA MONITORII TECHNOLOG

Des Plaines, IL 60016 509 N. 3rd Avenue

Company:

Address:

Town All The	
E SERVICE	
	-
	_
	=
	- 7
	=
	=
	=

Reserve Management Group Residential Soil Analysis PM: Mark Steuer 20C0345

Chain of Custody Record

day turnaround TURNAROUND TIME: ROUTINE X RUSH

Due Date:

4X:847-967-6735

ww.emt.com 47-967-6666

M

/0 20 COC #: 23

WORKORDER EMT USE ONLY #200345 **BIO** Analyses Fer 5. Oil Coundwater (filtered) 6. Groundwater **Preservation** GB V-VOC Vial O-Other B-Tedlar Bag Field 7. Zn Ace 8. Other 2. Drinking Wafer 5. Oil 3. Soil Temp. 4. NGOH 6. MeOH 5. HCI Container Type: Ha Preservative: Sample Type: P - Plastic G - Glass C None 2. H2SO4 3. HNO3 Sampling Date Time 3/5/20 B Š Container Type Fax #: (Proj.#: Client Contact: MARK WENTRANS Size Phone #: (440) 287 - 7209 Sample Type Project ID / Location: SCPM KNIG Sample I.D.

及不

	SAMPLE RECEIVED	TA TEMPERATURE	R	001	23.3	POLICY ON BACK
	EMT USE ONLY	Cliept Code:	EMT Project I.D.		Date: 3-5 -20 Jartot No.	
	1	••	1	••	3-5	Time: (6:00
	Date:	Time:	Date:	Time:	Date:	Time:
•	Received By:		Received By:		Received For Lab By:	Howlind
	Date: 3 - 5 - 20 Received By:	Time: $/\!\!\mathcal{L}$:00	Date:	Timė:	Date:	Time:
	<u>ă</u>	İ	ă	直	<u>`</u>	Ė
	Relinquished By:	1	Relinquished By:		Relinquished By:	Page

Table of Contents

ge 33 of 34

Sample Receipt Checklist

Work Order: 20C0345

Printed: 3/5/2020 4:19:35PM

Client: Reserve Management Group

Project: Residential Soil Analysis

Date Due:

Tuesday, March 10, 2020

Received By: Agnieszka B. Zabawa

Logged In By: Agnieszka B. Zabawa

Date Received: 03/05/20 16:00 Date Logged In: 03/05/20 16:18

Sample Temperature at Receipt: 23.3°C

How were samples received?

Client

Custody Seals Present

700 6

Custody Seals Intact

No

Comple Containers Inter

NA

Sample Containers Intact

Yes

COC Present and Complete

Yes

COC agrees with Sample Labels

Yes

Containers Properly Preserved

Yes

Samples Received Within Holdtime

Yes

Cooler Temp Within Limits

and the second s

Yes

VOA Water Vials Received

No

Comments

ABZ

3/3/20

Exhibit 15

From: Guy, Jeff on behalf of EPA.PublicHearingCom

To: Meleah Geertsma

Bcc: Frost, Brad; Pressnall, Chris
Subject: RE: Update on metals recyclers?
Date: Wednesday, June 3, 2020 12:26:57 PM

Attachments: <u>image001.png</u>

Ms. Geertsma,

Thank you for your comments, which will be included as an exhibit with the hearing record. The Agency will prepare a responsiveness summary that will include a summary of all the views, significant comments, criticisms, and suggestions - in addition to the Agency's specific response and final action. You will be notified of the final decision in this matter and of the availability of the responsiveness summary.

Thanks,

Jeffrey J. Guy

Hearing Officer, Illinois Environmental Protection Agency Office of Community Relations (217) 785-8724

Jeff.Guy@illinois.gov

From: Geertsma, Meleah < mgeertsma@nrdc.org >

Sent: Tuesday, June 2, 2020 1:44 PM

To: Pressnall, Chris < Chris.Pressnall@Illinois.gov Subject: [External] Re: Update on metals recyclers?

Hi Chris - following up on this thread from back in April. Were you able to clear up the questions I had on the various versions of the Fugitive Particulate Operating Program? As I note below, the draft permit incorporates by reference a Dec 2019 version, but only a March 2020 version is included in the repository documents.

It appears to me that either the draft permit is incorrect/out of date and should reference the March version, or the repository docs are incomplete and should have included the Dec 2019 plan version. Or I somehow missed the Dec 2019 version in the repository docs.

Thanks so much, Meleah

From: Geertsma, Meleah < mgeertsma@nrdc.org >

Sent: Monday, April 20, 2020 3:20 PM

To: Pressnall, Chris < Chris.Pressnall@Illinois.gov>

Subject: Re: Update on metals recyclers?

Thanks Chris, glad it was a good presentation! I can never tell on webinars, it's so hard to gauge audience reaction. An unfortunate part of life these days...

Anyway, thanks re your response to my question on the S Burley facilities; I did see that there are emissions estimates sent to Jeff Sprague in March among the repository docs on IEPA's website for the proposed draft permit.

One question on the repository documents: I see that on page 11 of the draft permit, cond 10(h) incorporates by reference the Dec 11, 2019 Fugitive Particulate Operating Program. But on a review of the repository documents, I only found a March 20, 2020 version of the fugitives operating program (it's the third repository doc among the links). Is that text on page 11 of the draft permit in error and should it instead incorporate by reference the March 2020 program? Or is there also a Dec 2019 fugitives operating program that I should be looking at, and the March 2020 program is automatically incorporated by reference as a subsequent version per draft condition 10(i)... just trying to make sure I'm looking at the right docs and understand what the permit is referring to...

Best, Meleah

From: Pressnall, Chris < Chris.Pressnall@Illinois.gov>

Sent: Friday, April 17, 2020 9:59 AM

To: Geertsma, Meleah < mgeertsma@nrdc.org > **Subject:** RE: Update on metals recyclers?

Hello Meleah -

I thought your webinar a week ago was excellent, very good overview of the issues.

At any rate, after talking to folks, I do not believe any modelling of the current facilities in conjunction with the proposed facility has been required to date. Certainly, technical staff have been thinking about this issue but not sure if there is an official position.

Chris Pressnall

Environmental Justice Coordinator Illinois EPA

(217) 524-1284 (217) 785-8346 (fax)

chris.pressnall@illinois.gov

From: Geertsma, Meleah < mgeertsma@nrdc.org >

Sent: Wednesday, April 8, 2020 6:41 AM

To: Pressnall, Chris < Chris.Pressnall@Illinois.gov Subject: [External] Re: Update on metals recyclers?

Thanks Chris - appreciate your internal advocating, and hopefully we can improve things together.

One related question: can you clarify, I think with Jeff Sprague, whether there's any air quality modeling being required of the four S Burley facilities (previously Reserve Management Group, now South Chicago Property Management)? I haven't seen any modeling references or documents/files in the productions so far, but given the issues with modeling records in particular, would like to get an answer from the staff working on that project.

Best, Meleah

From: Pressnall, Chris < Chris.Pressnall@Illinois.gov>

Sent: Thursday, April 2, 2020 9:03 AM

To: Geertsma, Meleah < mgeertsma@nrdc.org > **Subject:** RE: Update on metals recyclers?

Good morning Meleah -

I wholeheartedly agree and obviously I am frustrated as well. This is why I have parroted internally what Keith has been saying for a while, which is to get more information online. Unfortunately, in discussing this with the Records Unit and others it is not that simple to have everything scanned up front and on the web. For General Iron, various people are maintaining files and the Records Unit does not know who those people are unless someone tells them. Furthermore, I do not know either since I am not in the Bureau of Air actively working on the project. In my old role, I would have had a better idea who exactly was doing what on a project. As you can see, this whole process is very dependent on humans catching things thus the issues.

At any rate, yes, let's continue to work together and brainstorm on ways to improve the process.

Best,

Chris Pressnall

Environmental Justice Coordinator Illinois EPA

(217) 524-1284 (217) 785-8346 (fax)

chris.pressnall@illinois.gov

From: Geertsma, Meleah < mgeertsma@nrdc.org >

Sent: Wednesday, April 1, 2020 10:20 AM

To: Pressnall, Chris < Chris.Pressnall@Illinois.gov Subject: [External] Re: Update on metals recyclers?

Hi Chris - circling round on this prior exchange to note that, in the course of reviewing materials from IEPA sent in response to our most request FOIA request, there are a number of items that appear to date between our Jan meeting with IEPA and early Feb when I circled around with you below. This is on top of the air quality modeling protocol that was mistakenly left out of early FOIA responses due to it appears lack of checking with the modeling folks.

This is not to critique your role, but to simply point out that there's a need for greater transparency, clarity and timeliness around permitting documents on the agency's side. Look forward to working with you to try to improve the situation!

Best, Meleah

From: Pressnall, Chris < Chris.Pressnall@Illinois.gov>

Sent: Friday, February 7, 2020 5:02 PM

To: Geertsma, Meleah < mgeertsma@nrdc.org > **Subject:** RE: Update on metals recyclers?

Hello Meleah –

I checked with legal and permits and they did not think anything new has been submitted since the last FOIA although we will probably receive its response to the VN very soon. I will be out on Monday and back in the office on Tuesday, although it seems you may be traveling by then.

Chris Pressnall

Environmental Justice Coordinator Illinois EPA

(217) 524-1284 (217) 785-8346 (fax)

chris.pressnall@illinois.gov

From: Geertsma, Meleah < mgeertsma@nrdc.org>
Sent: Wednesday, February 5, 2020 9:23 AM
To: Pressnall, Chris < Chris.Pressnall@Illinois.gov>
Subject: [External] Update on metals recyclers?

Hi Chris -

Circling around to see if you have any updates that you can share on the metals recyclers, both/either the permitting for General III and the permitting/investigation of the S Burley facilities. I also wanted to touch bases to see if you have any thoughts on the best way for us to keep current on records requests, re our discussion of FOIAs on the call with IEPA staff.

It would be great if we could connect before this upcoming Tues, as I then head into a stretch of work travel and vacation.

Thanks, Meleah

MELEAH GEERTSMA

Senior Attorney, Environmental Justice

NATURAL RESOURCES
DEFENSE COUNCIL
20 N. WACKER DRIVE, SUITE 1600
CHICAGO, IL 60606
T 312.651.7904
F 312.332.1908
mgeertsma@NRDC.ORG
NRDC.ORG

Please save paper. Think before printing.

State of Illinois - CONFIDENTIALITY NOTICE: The information contained in this communication is confidential, may be attorney-client privileged or attorney work product, may constitute inside information or internal deliberative staff communication, and is intended only for the use of the addressee. Unauthorized use, disclosure or copying of this communication or any part thereof is strictly prohibited and may be unlawful. If you have received this communication in error, please notify the sender immediately by return e-mail and destroy this communication and all copies thereof, including all attachments. Receipt by an unintended recipient does not waive attorney-client privilege, attorney work product privilege, or any other exemption from disclosure.

EXHIBIT 16

General Iron

1909 N. Clifton Avenue | Chicago, IL 60614-4803 | 773-327-9600

November 14, 2019

VIA OVERNIGHT DELIVERY

Mr. Bob Bernoteit
Illinois Environmental Protect Agency
Division of Air Pollution Control
PO Box 19506 - 1021 North Grand Avenue East
Springfield, IL 62794-9506

RECEIVED STATE OF ILLINOIS

NOV 1 5 2019

Environmental Protection Agency
BUREAU OF AIR

Claim of TRADE SECRET and Justification of Claim for TRADE SECRET Designation Supplemental Information for Construction Permit Application 19090021 General III, LLC – 11600 South Burley Avenue – Chicago, Illinois - Site ID No.: 031600SFX

Mr. Bernoteit:

The attached supplemental information was requested by the IEPA to support the Agency's review of the above-referenced construction permit application. The supplemental information consists of (a) a table with detailed equipment listings for the Ferrous Material Processing System and Non-Ferrous Material Processing System, identifying equipment identification numbers, process throughput rates, emission factors, and particulate matter emission calculations for each individual piece of equipment and (b) detailed equipment layout drawings for the proposed scrap metal recycling facility described in the above-referenced construction permit application.

General III, LLC's (GIII) Claim for Trade Secret designation is limited to the equipment layout drawings for the Ferrous Material Processing System and the Non-Ferrous Material Processing System. These drawings are claimed by GIII to represent trade secret information as defined in 35 IAC 101.202 and Section 3.490 of the Illinois Environmental Protection Act [415 ILCS 5/3.490].

The drawings, included in the attached submittal, are hereby claimed as trade secret information in accordance with 35 IAC 130 and are clearly marked with the words "Trade Secret" in red letters on each page of the drawings (total of four pages). Two copies of the supplemental information submittal are attached to this claim, one including the clearly marked drawings claimed as trade secret and one copy with the drawings redacted noting that they have been claimed as trade secret information.

IEPA - DIVISION OF RECORDS MANAGEMENT

DEC 06 2019

REVIEWER: JMR

Mr. Bob Bernoteit
Illinois Environmental Protect Agency
Division of Air Pollution Control
November 14, 2019
Page 2

Pursuant to 35 IAC 130.203, GIII is providing the following information as its statement of justification for the claim of trade secret information. Each specific element, identified in 35 IAC 130.203(a) through (e), required for a statement of justification for the trade secret claim is identified below.

§130.203(a) A detailed description of the procedures used by the owner to safeguard the article from becoming available to persons other than those selected by the owner to have access thereto for limited purposes;

The equipment layout drawings, prepared under a strict confidentiality agreement between GIII and a prospective equipment manufacturer, have only been provided to select GIII management personnel and outside consultants as required for preparation of facility permit applications and other information required for local governmental approval. This information is maintained on a password protected server at GIII with limited access. All equipment drawings produced to date have been labeled as confidential, to protect this information and prevent its public dissemination.

§130.203(b) A detailed statement identifying the persons or class of persons to whom the article has been disclosed;

This information has only been disclosed to the top management of GIII and select outside consultants.

§130.203(c) A certification that the owner has no knowledge that the article has ever been published or disseminated or has otherwise become a matter of general public knowledge;

GIII hereby certifies that it has no knowledge that these identified articles claimed as trade secret information have been published or disseminated or have otherwise become a matter of general public information.

§130.203(d) A detailed discussion of why the owner believes the article to be of competitive value; and

The equipment drawings claimed as trade secret information were produced at great expense to GIII and represent months of intense effort by GIII and a prospective equipment manufacturer. The final design is a product of GIII's over 60 years of experience recycling scrap metal in the Chicago market and the considerable technological expertise of the prospective equipment manufacturer and represents a state-of-the-art recycling process that will maximize recovery and production of high value ferrous and non-ferrous metals in a sustainable and economic manner. GIII believes that the specific design and equipment layout will provide GIII with a

Mr. Bob Bernoteit
Illinois Environmental Protect Agency
Division of Air Pollution Control
November 14, 2019
Page 3

significant competitive advantage over its competitors by providing increased metal recovery at reduced operating expense.

§130.203(e) Any other information that will support the claim.

The equipment layout drawings represent a process design that is unique to GIII and is not available in any market.

We believe that the above information is sufficient to justify a claim of trade secret for the equipment layout drawings described herein. If you believe that additional information is required to approve this designation, please contact Mr. Adam Labkon of GIII at 773-868-3491 (adamlabkon@general-iron.com).

Yours very truly, General III, LLC

Mr. Adam Labkon

V.P.

cc: Ms. Ann Zwick - Freeborn & Peters - Chicago, Illinois

Agency ID: 170002390446

Media File Type: AIR

Bureau ID: 031600SFX Site Name: General III LLC Site Address1: 11600 S Burley Ave

Site Address2:

Site City: Chicago

State: IL

Zip: 60617-

This record has been determined to be partially or wholly exempt from public disclosure

Exemption Type:

Portion Removed

Exempt Doc #: 2

Document Date: 11/15/2019

Staff: JMR

Document Description: PERMIT FILE - SUPPLEMENTAL INFORMATION (TRADE SECRET CLAIM ON EQUIPMENT LAYOUT DRAWINGS)

Category ID: 03M

Category Description:

AIR PERMIT - CONSTRUCTION/JOINT

Exempt Type: Portion Removed

Permit ID: 19090021

Date of Determination:

12/6 /2019

TRADE SECRET

Figure 3-2A Redacted

Figure 3-2A - Ferrous Processing System Layout General III, LLC 11600 South Burley Avenue Chicago, Illinois

IEPA - DIVISION OF RECORDS MANAGEMENT RELEASABLE

DEC 06 2019

REVIEWER: JMR

TRADE SECRET

Figure 3-2B Redacted

WENDT CORPORATION RESERVES THE RIGHT TO ALTER AND/OR IMPROVE THE DESIGN OR MANUFACTURE OF ITS EQUIPMENT WITHOUT PRIOR NOTICE

THIS DRAWING (AND THE INFORMATION HEREON) IS CONFIDENTIAL AND THE PROPERTY OF WEND'T CORPORATION. IT IS LOANED ON CONDITIONS THAT IT SHALL NOT BE COPIED OR DISCLOSED TO OTHERS WITHOUT WRITTEN AUTHORIZATION. Figure 3-2B - Ferrous Material Processing Flow Diagram

General III, LLC 11600 South Burley Avenue Chicago, Illinois

Rev 1 - Gill Emission Tables - Nov. 12, 2019

_		-							1	_	,							1							8,4	1			_	_			
_	52	55	S	\$	\$	47	46	-	┼	+	+-	2	2	å	8	38	37 1		-		-	32		8	29		27 0		<u> </u>		•		
	23	6-7	614	613	E13	£13	611	4				203	8	5-07	E-07	8	910-3	5055	ğ	See	C035	C-034	C-033	Coas	C-032	COBI	Cago	5	1	ŀ	•		
Magnet E-7	Ferrous Removed by	ASR Not Removed by	Mat'l Not removed by Separator	Ferrous Removed by E- 13	Ferrous Removed by E- 13	Ferrous Removed by Magnet	Ferrous Removed by Magnet	Magnet Manoved by	Magnet	Magnet Barray d by	Magnet 6-7	Ferrous Removed by	ASR Not Removed by	Magnet Discharge to	Magnet Discharge to Chute	Shredder Under Mill Vibratory Conveyor	2-Box Separator Cyclone	Z-Box Separator Oyclone	Shredder Feed Chune	ASK ITAKKER CONVEYOR	Ferrous Transfer Conveyor	Ferrous Transfer Conveyor	ASR Not Removed by Magnet E-12	Magnetic Meterial	ASR Transfer Conveyor	ASR Transfer Conveyor	Non-metallic Transfer Conveyor	Description	at Generating Emissions		n		Table 3-2 -
	Residue	Shred	Ferrous	Ferrous	Ferrous	Ferrous	Shred			Sheet	Street	Residue	Shred	Shred	Shred	Shred	Ferrous	беттоця	Unprepared	Katsana	Shred	Shred	Residue	Shred	Residue	Residue	Ferrous	Conveyed	Maderial		•	Genera	Table 3-2 - Ferrous Material Processing - Particulate Emissions
	4	¥	٧.	٧	¥ 43	4	1		4 6	Yes	4 2	4	4	A	¥	4		4		-		٧	4	4	٧	٧		4/1	Moistane 1.5%	88	-	al III, L	aterial
	Outside	Outside	Outside	Outside	2 Outside	Outside	Cumpos	1	_	1	Outside	Outside	Outside	Outside	Outside	inside	Cuttoo	Outside	-		Outside	Outside	Outside	Outside	Outside	Outside		Outside	(Incation	Transfer		LC-Chi	Proces
	z	2	2	*	2	2	2	: :	2	2	2	=	2	(// E	2	2	•	2		2	2 2	2	2	2	2	2		N/A	0		a	General III, LLC - Chicago, Illinois	sing - Pa
											\dagger			_300	ī		Ш			1		-				3 1	-	Control	70 10	The second	2	nois	ırticulat
-	š	NA A	*	₹	3	3	ŝ		*	\$	F	3	3	*	*	3	3	8 3	; ;	;	3	3	3	3	š	¥		38		Dust			e Emiss
-											- 12		101													74		3	8_				lons
-	>	>	>	>	>	>	, ,	•	>	>	>	>	>	*	,	,	, ,	, ,			,	,	,	,	,	,		source			7		
	158		25				Ι.	â	_	128	128	58		387	15	ğ				6	1 .		. 5					4			-		
-	5 37,000	400	2			,	T	\dagger	55 11.000	+	25,600	5 37,000	2 400	37,					1.0		25,900		١.					T T	Throughput flatus	Materia	M Lyon		100
	370,000	4,000		١,,		١.	Τ.	+	110,000		256,000	370,000	4,000	95			+	T	+			1900	1		E	Г	3	197		• • • • • • • • • • • • • • • • • • •	a for contra	1 000 000 tov	100,000 thus
	0.00014	0.00014		Ι.		1	+-	\top	0.00014	0 0.00014	0 0.00014	0 0.00014 ·	0 0.00014			\vdash		+	1						o.uoma	—		p Villado					
-	0.0259	0.0003	-	+	+	-	_	+	0.0077	0.0179	0.0179	4 0.0259	0.0003		+	_		+	+	_	_	+		_	a unua	┿	+	a nom	-		•		
-	0.0026	0.0000	-	+-	╄	+	+	+-	0.0008	0,0018	81000 6.	0.0026	3 0.0000	-	-	-	+	+-	-	+	+	+		┿		+	+	n noon	ᆛᅗᇎ		-		
-	6 0.0259	0,0003	╌	+-	-	+-	+	-	8 0.0077	8 0.0179	e cotton	6 0.0259	0 0.0003		1	+	-		-	+	_	+	+	+	-		-				-		
ŀ	0.0000046 °	0.000046	-	╫	+	+	╁	┯	0.000046 °	0.000046 •	0.000046 *	0.000046 °		1	+	+	┰	-		+	+	+	+	+	-		+	O SPONOVE &			-		
-	16° 0.0085	0.0001	_	-	+	+	+	_	0.0025	0.0059	0.0059	9 0'00g2		-	+	-	+	_	_	_	-	-		+-	_	1	-	0.0000	4		æ		
	5 0.0009	0,000	+	+	+-	+-		0.0003	5 0.0003	0.0006	90000	5 0.0009			+	+	-	_	+	-	-	-	+	+			-	وا	-IF 5		<		
-	0.0035	0.0001	+	╫	╂━┉	+	+	0,0025	0.0025	0.0059	0.0059	0.0085	\vdash	1	+	+	+		+	+	_	+	_	-	-	+	+	0.000	-		¥		
	0.000013		╅━━	1	1	+-	╫	0.0000.1	e £1000010	0.000003 d	0.000013	P ET000010	_	9. 1	-	+-	+	_	0.000013		-	-	-	+	+	+	+	ţ	B-/1200		*		
	0.0024	9.00000	+-	-	+			0.0007	0.0007	0.0017	0.0017	0.0024	-	+	-	_	_	-	0.0000	\rightarrow	_	_	_	_			_	+	Bylar I		-		
	4 0.0002	٤	+	-	+	+	┿	0.0001	7 0.0001	7 0.0002	7 0.0002	0.0002	-	+	-	8	+	_	_	0.0007	-		-	+	+	200	000	g.	PAG2.5 The ton/mo		-		
Page 2 of 4	0.0024		-	+-	+-			0.0007	0.0007	0.0017	0.0017	0.0024	-	-	_	-	-	_	_	0.0065	_	-	_	-	-	-		0.000	-		×		

Rev 1 - GIII Emission Tables - Nov. 12, 2019

Table 3-2 - Ferrous Material Processing - Particulate Emissions

800038 ž COSO 0.0 Description
Truck Dumping of Raw
Freed Fant Feed from Ground Drop Raw Scrap to to Stockpile Policer Picker Charte to Mat'l not Removed by Poker Loadout hud Discharge from Sheep Parks Shred Shred Emonts SHOP Parag Perki Fernous Paues **FETTOUS** Ferrous Potent Unprepared General III, LLC - Chicago, Illinois 1.5% 1.5% N. 115% # 1.5% *1 5,4 4 5.4 4 Outside Outside Outside Outside Outside Outside Outside Outside Outside NWA N 2 2 2 Z 2 Costrol COVE Sal š 3 3 ₹ Ŧ 阝 룅 ξ 퀽 3 3 3 3 ₹ Control Er. 9 3 B 8 9 1 > 이 0 23 2,35 8 367 128 E 5 8 崩 ä 1 Material
Throughput
Rates
Type
100,000 100,000 Max Monthly Thrupet
100,000 tpm
Annual Throughput
1,000,000 tpy
N 100,000 37,400 73,400 73,400 73,400 25,600 25,600 36,600 36,600 150.00 25,800 73,400 73,400 450,00 73,400 8 8 8 1,000,000 1,000,00 1,000,000 734,000 734,000 734,000 256,000 256,000 374,000 366,000 366,000 258,000 734,000 366,000 4,000 2,000 1500 \$000 4,500 0.00020 0.00014 0.00014 d 0.00761 * 0.00761 * 0.00127 0.00020 0.00127 • 0.00014 COCCIA A 0.00761 . ESDOO.0 Emissions
ByTer tens/mo
0.3797 0.0633 0.4645 0.1022 0.3797 0.0179 0.0179 0.0256 0,0003 0.0256 0.0057 0.0076 0.0689 0.0171 0.0374 0.0382 0.0102 0.0633 970070 0.0018 0.0026 0,000 0.0026 0.0006 0.0008 0.0069 0.0017 0,0465 0.0038 0.0689 0.1022 0.0179 0.0179 0.0256 0.0003 0.0256 0.0057 0.0076 0.0171 0.4645 0.0382 0,6328 0.6324 Alternate to C412 to C416.

Alternate to C415 to C416.

Alternate to C415 to C416.

Alternate to C415 to C416.

Indicate from 100% of material throughput saligned

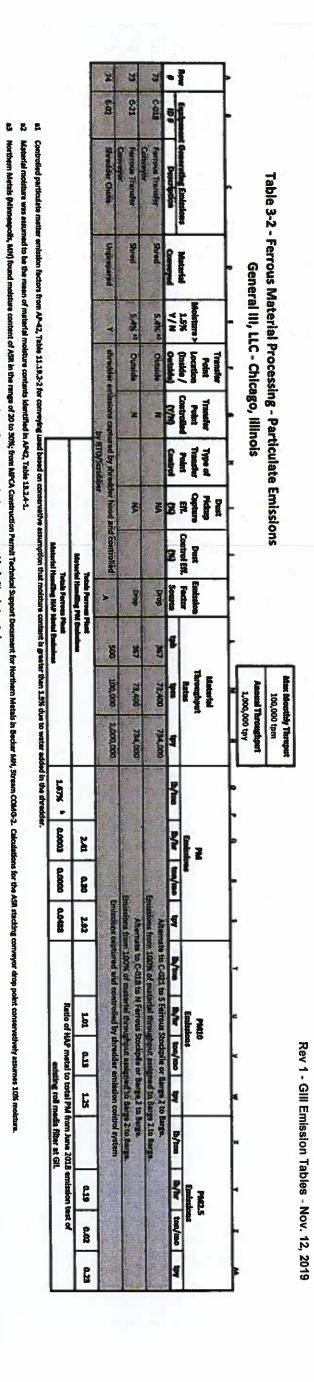
Alternate to C416 top C417.

Alternate to C416 top C417.

Alternate to C416 top C416.

Indicate from 100% of material throughput saligned

Alternate to C417 to C4 Attentions to C-014 to C-016.


Attentions from 100% of metabled throughput sendphed to C-014 to C-016.

Emissionic captured by Inwent of flow at inlet to 7-980 separator 0.000100 0.000046 * 0.000046 0 0.000046 * 0.000046 0 0.000100 , 0.000100 0.00060 * 0.00360 0.00060 * 0.00360 * 0.00025 * Emissions
D/hr tou/mo
0.1796 0.0299 0.0059 0.0059 0.0084 0.0001 0.0084 0.0027 0.2197 0.0187 96.770 0.0036 0.0326 0.0500 18000 serd air flow at Inde 0.0006 0.0006 0.0008 0.0000 0.0008 0.0003 0.0004 0.0033 0.0220 6T00.0 0.0000 0.0008 0.0050 8,000 uned to COLT to COLE. pred to C-015 to C-017 T/Cota med to Cath to Cath. med to Calls to Calls. 0.0059 0.0059 0.0084 0.0027 0.0036 0.0326 0.0500 0.0187 0.0084 0.2197 0.0183 0,2993 of to C-017 to have 1 Emissions

h/ton h/hr ton/mo

0.0009* 0.0272 0.0045 0.000013 d , ETDDOOT P. ET000010 , stoooo' 0.000015 ' 0.000015 1 0.000013 d 0.000015 etopono, 0.00054 * 0.00004 * 0.00054 . 6000070 0.00000 0.0024 0.0017 0.0017 0.0000 0.0024 0.0000 0,0004 0.0005 0.0049 0.0333 0.0012 0.0076 0.0028 0.0028 0.0003 0.0272 0.0002 0.0002 0.0001 0.0008 2,0045 0.0000 0.0005 0.0002 0.0002 0.0000 0.000 0.0001 0.0033 0,0003 1200 0.0007 0.0333 0.0023 0.0024 0.0024 0.0076 0.0028 2,000,7 0,000 00000 0.0004 0.0005 0.0049 0.0453 0.0012

Rev 1 - GIII Emission Tables - Nov. 12, 2019

Metal HAPs as percent of total PM measured at the discharge of the existing roll media filter in lune 2018

rapticulate matter emission factors from AP-42, Table 11.19.2-3 for conveying. For sources controlled by a dust collector

orthylied particulate matter emission factors from AP-42, Table 11.19.2-2 for truck loading of cursived stone. Use uncontrolled emisson factor to be conservable.

ed by the identified capture Eff. and then by the quantity of 1-control Eff.. Dust collectors vent back into to the building. These emiss

ontrolled particulate matter emission factors from AP-42, Table 11.19.3-2 for screening. If moisture content is greater than 1.5% by weight, controlled emission factors are used.

mirrolled perticulate matter emission factors from AP-42, Table 11.19.2-2 for conveying, if moisture content is greater than 1.5% by weight, controlled emission factors are used.

mirrolled emission factor calculated according to material drop equation in AP-42, Section 13.2.A.S. Emissions calculated with control Eff. factor included for source being inside of a building.

terius is assumed to be >1.5% based on application of water from water atomization cannons used for fugitive dust control.

uninolised emission factor calculated according to material drop equation in AP-42, Section 13.2.4.3.

Material Drop PM Equations (AP-42, Section 13.2.4.3)

E = k (0.0032) × (U/5)1.3

(M/2)1.4

R = particle size multiplier (dimensionless)

U = mean wind speed

https://www.timeensidate.com/weather/ss Ŧ: w.timeanddate.com/weather/usa/chicago/climate
isture content (%)

mph - annual awaraga wind speed for Chicago (Alidway Airport)
PM - AP-42, Section 13.2.4, for particle size < 30 um
PM - AP-42, Section 13.2.4, for particle size < 10 um
PM - AP-42, Section 13.2.4, for particle size < 2.5 um

Tansfer Points - AP-42, Table 11.19.2-2.

Figure 3-3A Redacted

Figure 3-3A - Non-Ferrous Processing System Layout

TRADE SECRET

Figure 3-3B Redacted

TRADE SECRET

Figure 3-3B - Non-Ferrous Material Processing Flow Diagram

General III, LLC 11600 South Burley Avenue Chicago, Illinois

27	×	×	¥	E	ĸ	Ħ	8	5	z	17	ĸ	ı,	E	Ħ	ä	=	8	u	60	7	6	u	•		2	· j_=	- 1	Lt.			
Material	Material	Material Seperator	Material Separato	66.3	£-39	637	E-37	14-3	06-3	06-3	8K-3	6-26	52.3	623	F.20	F-20	F.19	F-16	Shaker	Shaker	Sheker	Shahar	Shadar	Shakar	Shahar	Shakar	E 15		-		
Drop to container	Drop to container	Transfer Conveyor	Transfer Conveyor	Induction Sorter	Induction Sorter	induction Sorter	induction Sorter	Induction Sorter	induction Sorter	Induction Sorter	Induction Sorter	Induction Sorter	Induction Sorter	Induction Sorter	Induction Sorter	Induction Sorter	Induction Sorter	Induction Sorter	lut								Equipment Generating Endealocal D 8 Description		c		Table 3-3 - Non-Ferrous Material Processing - Particulate Emissions
Residue	Residue	Residue	Residue	Zone	Drops Zuric Recov Finder	Residue	Zone	Zuric	Zuric	Azzidue	Wire	Residue	Wire Fuzz	Residue	Wire	Residue	Wire fuzz	Residue	Residue	Residue	Residue	Residue	Residue	Residue	Residue	Residue	Conseyed	g.		General III, LLC - Chicago, Illinois	-Ferrous N
1.5% ·	15% •	2	2	2	z	2	2	2	2	2	2	2	z	2	2	2	2	2	Z	z	Z	z	z	2	2	=	Y/N	Moisture	**	III, LLC	lateria
inside	Inside	Inside	Inside	Inside	inside	Inside	tnside	hiside	Inside	and de	Inside	Inside	Inside	Inside	Inside	Indide	Inside	Inside	inside	inside	Inside	inside	Inside	inside	inside	inside	(traide / Outside)	Point Location	ŀ	- Chica	Proces
														I				55		8	2(1)	*		II	1		Covered			go, Illin	sing - P
٧	٧	٧	*	~	4	٧	٧	Y	٧	٧	*	Y	٧	٧	γ	٧	٧	Υ	γ	٧	A	۲	Υ	¥	. ≺	4	(Y/N)	Polit de		ois	articula
Dust	Dust Collector	Dust Collector	Dust Collector	Collector	Dust Collector	Dust Collector	Dust Collector	Coffector	Dust Collector	Collector	Dust Collector	Collector	Dust Collector	Collector	Dust Collector	Dust Collector	Dust Collector	Dust Collector	Coffector	Dust	Codector	Collector	Dust Collector	Dust	Dust	Dust Collector	Control	Type of Transfer	-		te Emi
100%	100%	100%	100%	100%	100%	100%	100%	300X	100%	100%	100%	100%	100%	100%	100%	100%	100%	3000	100%	3,00%	100%	NOOT	NOOT	100%	100%	3,00%	2 9	Option of	-		ssions
유	en oc	<u> </u>	Eff. DC	<u> </u>	9 8	E 8	<u> </u>	<u> </u>	무요	<u> </u>	ER. DC	E# PC	FR CC	R. P.	<u> </u>	黑只	er DC	9 8	DC EM.	13 8.	55 P.	<u> </u>	EST. DC	# R	5 R	<u> </u>	13	Dust	ŀ		
Drop	Drop	>	>	>	>	>	>	>	>	>	A	A	A	٨	>	A	٨	A .		9	0	(3)	0	9			Source	Emission	-		
600	0.03	25	250	ŗ	2	3.55	r.	68	8	S	2.0	pi	3.5	S.M	g	1	ដ	5.84	0.42	242	20.00	949	1.00	1.00	R	ę	g		•		·
11.1	11.1	81.1	81.1	4023	110.6	1,301.4	552.9	239.6	239.6	2,395.7	EVE	368.6	552.9	2,152.5	194.5	9196	552.9	2,152.5	154.8	154.8	354.8	154.8	363.6	368.6	92.1	92.1	ton/mo	Material	-	Aresusi Ti 258,0	Mare Magne 25,800
ш	ш	811	118	1,023	3077	13,084	5,529	22.86	2,396	23,957	1,843	3,686	5,529	21,525	1,843	3,686	5,529	21,525	1,548	1548	1,548	1,540	3,686	3,686	921		Ą		٥	Annual Throughput 258,000 tpy	ter Manthly Thrupst 25,800 ton/mo
0.00760	0.00760	0.000140	0.000140	0.000140	0.000140	0.000140	0.000140	0.0001.40	0.0003.40	0.000140	0.000140	0.000140	0.000140	0.000140	0.000140	0.0001.40	0.000140	0.0001.40	0.002200	0.002200	0.002200	0.002200	0.002200	0.002200	0.002200		┢┼		-	OC PM Control Eff	Control ET
Note f				Note f	-		H					Note f		Note f	1									Note f				l.	٩	3	# 2
Note f	Note f		-	Note ?	 	┝╌	-	-	├──			Note f		Note f	Note f		Note f		Note f		-	-		Note f			Н	2	30	90,90%	900008
Note f.	-	-	-	Note f.	-	-	₩	-	!	├	\vdash			Note f.	-		-	_	Note f.	 			\vdash	Note f.		_	ta de		-		
0.00360	0.00360	0.000046	0.000046	0.000046	0.000046	0.000046	0.000046	0.000046	0.000046	0.000046	0.000046	0.000046	0.000046	0.000046	0.000046	0,000046	0.000046	0.000046	0.000740	0.000740	0.000740	0.000740	0.000740	0.000740	0.000740	0.000740	lb/ton			Control Est	Control Eff
Note f				Note f	_		-	_						Note f	_				Note f								H		٩	*	4 2
Note f	-	_	-	f Note f		_		├	┼	-				f Note f	-		-	-	Notef			_		-			√hr ton/mo	PAGG	V	30008	90.000
Nota f	╫	-	+	Note 1	+	\vdash	\vdash	-	┼					Note f	-					 	-			Note 1	-	1	Đ.		*		
0.00050	0.00050	 _	+	0.000013	+	_				├				0.000013	_					-	-				-	-	B√tos		-	Control Ett	Control Eff
Note f	Note 7	Note f	Mote f	Noce 1	Note 1	Note f	Note 1	Note 1	Note f	Note 1	Note f	Note f	Note f	Note f	Note f	Note f	Note f	Note f	Note f	Note *	Note f	Note f	Note 1	Note f	Note 1	Note 1	Z,	PMOS	4	V Feed (I	
Note f	1	╌	+		╁	-	╆	+	-	┼	-	\vdash			1		-		-						1		H	15	-	\$6.00%	80.00%
	Note 1	├	 		-	10		\vdash	-	┼-	-	-	-	-	1					_		-	-				Age G		1		

r	2	25	16	8	19	ŧ	*7	*	t	ŧ	2	£	à	8	2	2	37	×	*	r	2	2	2	8	2	12	•	Į.	-		
Shahar	Shelter	Shakar	Shaker	Shaker	Shaker	Adatorial Separator	Metarial	Separate	Material A	Material	Material	Material	Material	Majorial Separator	Material	Managia	Marachi	Material	Materia	Shake	Shaker	Fire Street	Material	Material	Separate Management	Material	60	§			
	ingual I					Transfer Conveyor	Transfer Conveyor			Drop to container	Transfer Conveyor	Transfer Conveyor	Transfer Conveyor	200	Drop to container		Drop to container	Drop to container		$\overline{}$			Drop to container		Transfer Conveyor	Transfer Conveyor	Dyproption	nest Campathy Smintons	•		Table 3-3 - Non-Ferrous Material Processing - Particulate Emissions
Residue	Residue	Residue	Residue	Residue	Residue	Product	Product	Product	Product	Zorba	Residue	Residue	Residue	Residue	Zorba	Zorba	Zorba	Zorba	Zorba	Zorba	Zorba	Zorba	Zorba	Zorba	Residue	Residue	Conveyed	No.		General III, LLC - Chicago, Illinois	-Ferrous N
z	2	z	z	z	z	2	2	z	2	1.5%	2	2	2	2	1.5% •	15% -	1,5% *	1.5% •	1.5% -	2	z	2	1.5% •	1.5% •	2	=	٧/٣	> 1.5%	-	III, LLC	Aateria
hside	Inside	Inside	Inside	Inside	Inside	inside	inside	Inside	freide	mide	Inside	Implide	Inside	Inside	inside	Inside	Inside	Inside	Inside	linside	Inside	inside	inside	inside	inside	In side	Outside)	To a fin	-	- Chica	Proce
																											Covered	Company	-	go, Illin	ssing - F
z	z	æ	2	2	2	٧	7	-	7	٧	¥	4	٧	4	Y	~	٧	٧	٧	4	¥	٧	٧	Y	٧	4	1	Control	-	ois	articul
Dust	Dust Callector	Dust Collector	Collector	Dust Collector	Dust Collector	Dust Collector	Collector	Collector	Dust Co Bector	Collector	Dust Collector	Collector	Dust Collector	Dust Collector	Dust Collector	Collector	Dust Collector	Dust Collector	Dust Collector	Dust Collector	Dust Collector	Collector	Dust Collector	Dust Collector	Dust Collector	Callector	Control	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-		ate Emi
100%	100%	300%	100%	100%	100%	100%	100	100%	100%	100%		100%			100%					1,00%	3,00%	100%			150%		-	2 1 1	-		issions
3 R	3 8	# R	9 8	9 8	# R	3 8	# R	3 8	1 8	异 8	<u>ş</u> 8	3 8	<u> </u>	9 8	3 8	5 8	# R	# R	3 8	異名	무요	<u> </u>	<u> </u>	# 8	# 8	5 8	2	in Contract of the Contract of			
•		•	•	•	•	>	,	>	>	1	^	^	>	,	orge Orge	Drag	Drop	Drop	98	>	*	^	Drop	Drop	,	,	Source	Production Production	-		
2.8	8	19	18	1.46	1.8	0,0084	0.0084	0.0084	0.00#4	0,14	1,00	0.41	ş	2	8	o g	0,10	9,02	98	0,12	0.12	0.19	0.06	200	ę	2	g				
387.0	387.0	387.0	387.0	216.0	216.0	2	2	2 2	2	97.6	151.1	151.1	151.1	151.1	Ě	36.9	36.9	7.4	24	14.2	44.2	70.0	22.1	121	346.5	346.5	pou/mo	Material Throughput Rates	H	Annual 1	25,800
3,870	3,870	OCE,E	3,870	5,160	5,160	<u> </u>	5		=	516	1,511	1,511	1,511	1511	E	369	369	74	2	42	4.5	700	122	122	3,465	3,460	ā	5 T	٩	Amusi Throughput 254,000 tpy	Max Monthly Thruput 25,800 ton/mo
0.025000	\vdash	0.025000	-	0.025000	0.025000	_	-	-	_	-		-	-		_							-	-	-		-	٠			Control Eff	Costrol Eff
Note f	Note 1	age of the same of	700	70 00	Rote	Mode	3	8	Note	To the state of	-	Note	Note	Note	Note	- 1					Note	Note f			-		ş	£_	١	-	
Note	-	Rote	+-	Note	-	-	-	1	-	-	-	Notef		_					-		Note f	r Note f					1.	PA	H	30.00%	MADOLE
Note f.	-	Note:	-	Note f.	-	-	-	+	+	-	-	Note f.	-	-	-		-	-	-	_	Note f.	Note f.	-	-	Nota f.		٠		H		
0.008700	0.008700	0.008700	0.008700	0.008700	0.008700	0.000046	au constant	0.000046	0.000046	0.00360	0.000046	0.000046	0.000046	0.000046	0.00360	0.00360	0.00360	0.00360	0.00360	0.000046	0.000046	0.000046	0.00360	0.00360	0.000046	0.000046	P/SS			DC PM ₃	ECS Enc. PM Cantrol Eff
Note !			\vdash	Total	-	-	-	\vdash	\vdash	H	_	Hote		-		-	-				-	Note	\vdash				۰	,	e	#.	4 3
Note f	_	-	 	1	-	_	-	+	+	-	-	r Note r	_					-	-	-	_	-	_	_			-		V	MOUR	80.00%
Moter	-	-	-	-	-	-	1	+	1	\vdash	_	Note	-	-	-	-			-		-	_	-	-			٠		£		
0.001317	-	\vdash	1	-	-	+-	-	+	+	-					-	_	t		-	١.	-		-	-		-	+-		-	Control Eff	ECS Enc. PM Control Eff
Note f	Note	30	No.	Note	No.	_	_	1	70	Note 1	3	Note	Note	Note	Nota 1	Nota	Note	Note 1	Note	Note	Note 1	Note	Note	Note	No.	7002	ş	PM2.5 Emission	-		
Note f		╁	╫╌	-	\vdash	+	+	1	+-	-	1		_	+-	1					-		_	_	Ī	-	_	+	1 20 10	H	30.00%	80.00%
Note 1	+-		-	-	+	+	┼	Note	+	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	9	1			

Page 2 of 10

	1,297.4 12,974	12,974 0.003000	12,974 0.003000 Note f	12,974 0.003000 Note f Note f	12,974 0.003000 Note f Note f Note f.	12,974 0.003000 Note f Note f Note f. 0.001100	12,974 0.003000 Note f Note f Note f 0.000100 Note f	12,974 0.003000 Note f Note f Note f 0.001100 Note f Note f	12,974 0.003000 Note f Note f Note f. 0.001100 Note f	12,974 0.003000 Note f Note f Note f Note f Note f Note f
1622 1,622	- 600	0,003000	Note f	Note f Note f	Note f Note f Note f.	Note f Note f Note f. 0.001100	Note f Note f Note f. 0.001100 Note f	Note f Note f Note f. 0.001100 Note f Note f	Note f Note f Hote f. 0.001100 Note f Note f Note f	Note f Note f Note f 0.001100 Note f Note f 0.000167
3,350.3 33,503	9,00	0.003000	Note f	Note f Note f	Note f Note f Note f.	Note f Mote f Note f. 0.001100	Note f Note f Note f. 0.001100 Note f	Note f Note f Note f. 0.001100 Note f Note f	Note f Note f Note f. 0.001100 Note f Note f	Note f Note f Note f 0.001100 Note f Note f 0.000167
420.2 4,202	0.003000		Note f	Note f Note f	Note f Note f Note f.	Note f Note f Note f. 0.001100	Note f Note f Note f 0.001100 Note f	Note f Note f Note f 0.001100 Note f	Note f Note f Note f 0.001100 Note f Note f Note f	Note f Note f Note f 0.001100 Note f Note f Note f
420.2 4,200	0.003000		Note f	Note f Note f	Note f Note f Note f.	Note f Note f Note f. 0.001100	Note f Note f Note f. 0.001100 Note f	Note f Note f Note f. 0.001100	Note f Note f Note f. 0.001100 Note f Note f	Note f Note f Note f. 0.001100 Note f Note f Note f
840.3 8,409	0.003000	<u> </u>	Note f	Note f Note f	Note f Note f Note f.	Note f Note f Note f. 0,001100	Note f Note f Hote f. 0.001100 Note f	Note f Note f Note f O.001100 Note f Note f	Note f Note f Note f O.001100 Note f Note f Note f	Note f Note f Note f O.0001100 Note f Note f Note f 0.000157
מוצבנו מופבנו	0.003000			Note 1	Note f Note f.	Note f Note f. 0.001100	Note f Note f. 0.001100 Note f	Note f Note f. 0.001100 Note f Note f	Note f Note f. 0.001100 Note f Note f Note f	Note f Note f. 0.001100 Note f Note f Note t 0.000167
	0.003000		-	No.	Note f Note f.	Note f Note f. 0.001100	Note f Note f. 0.001100 Note f	Note f Nate f. 0.001100 Note f Note f	Note f Note f. 0.001100 Note f Note f Note f	Note of Note 1. 0.001100 Note of Note of Note of October 0.000157
Н	0.003000			Note 1	Note f Note f.	Note f Note f. 0.001100	Note f Rose f. 0.001100 Note f	Note f Note f. 0.001100 Note f Note f	Note f Note f. 0.001100 Note f Note f Note f	Note f Note f. 0.001100 Note f Note f Note c 0.000167
אנו	0.00760		Note f	Note f	Note f Note f.	Note f Note f. 0.00350	Note f Note f. 0.00360 Note f	Note f Note f. 0.00360 Note f Note f	Note f Note f. 0.00350 Note f Note f Note f	Note f Note f. 0.00350 Note f Note f Note f 0.00050
	0.003000		-	Note f	Note f Note f.	Nota f Note f. 0.001100	Note f Note f. 0.001100 Note f	Note f Note f. 0.001100 Note f Note f	Note f Note f. 0.001100 Note f Note f Note f	Note f Note f. 0.001100 Note f Note f Note f 0.000167
	0.003000		Note f	Note f	Note f Note f.	Note f Note f. 0.001100	Note f Note f. 0.001100 Note f	Note f Note f. 0.001100 Note f Note f	Note f Note f: 0.001100 Note f Note f Note f	Note f Note f. 0.001100 Note f Note f Note f 0.000167
8	0.003000		Note f	Note 1	Note f Note f.	Note f Note f. 0.001100	Note f Note f. 0.001100 Note f	Note f Note f. 0.001100 Note f Note f	Note f Note f: 0.001.100 Note f Note f Note f	Note f Note f. 0.001100 Note f Note f Note f 0.000157
2 2	0.003000	-		Note 1	Note f Note f.	Note f Note f. 0.001100	Note f Note f. 0.001100 Note f	Note f Note f. 0.001100 Note f Note f	Note f Note f. 0.001100 Note f Note f Note f	Note f Note f. 0.001100 Note f Note f Note f 0.000167
erst evst	0.00760		Note f	Nota 1	Note 1 Note f.	Note 1 Note 1. 0.00360	Note f. 0.00360 Note f	Note 1 Note 1. 0.00360 Note 1 Note 1	Note! Note!: 0.00360 Note! Note! Note!	Hote f. 0.00360 Note f Note f Note f a00050
	0.00760			Note	Note f Note f.	Note f Note f. 0.00360	Note f Note f. 0.00360 Note f	Note ! Note !. 0.00360 Note ! Note !	Note ! Note !. 0.00360 Note ! Note ! Note !	Hote f Note f. 0.00360 Note f Note f Note f Acces
619.2 6,192	0.003000		Note f	Nota f	Note f Note f.	Note f Note f. 0.001100	Note f Note f. 0.001100 Note f	Note f Note f. 0.001100 Note f Note f	Note f Note f. 0.001100 Note f Note f Note f	Note f Note f. 0.001100 Note f Note f Note f 0.000157
1,548.0 15,480	0.003000		Note f	Note f	Note f Note f.	Note f Note f. 0.001100	Note f Note f. 0.001100 Note f	Note f Note f. 0.001100 Note f Note f	Note f Note f. 0.001100 Note f Note f	Note f Note f. 0.001100 Note f Note f Note f
1,548.0 15,480	0.003000		Note f	Nota f	Note f Note f.	Note f Note f. 0.001100	Note f Note f. 0.001100 Note f	Note f Note f. 0.001100	Note f Note f. 0.001100 Note f Note f	Nota f Nota f. 0.001100 Nota f Nota f Nota f 0.000167
1,297.4 12,974	0.003000	190	Note f	Note f	Note f Note f.	Note f Note f. 0.001100	Note f Note f. 0.001100 Note f	Note f Note f. 0.001100	Note f Note f. 0.001100 Note f Note f Note f	Note f Note 6. 0.001100 Note f Note f 0.000157
692.9 6,929	0.003000		Note f	Note f	Note f Note f.	Note f Note f. 0.001100	Note f Note f. 0.001100 Note f	Note f Note f. 0.001100 Note f Note f	Note f Note f. 0.001100 Note f Note f Note f	Note f Note f. 0.001100 Note f Note f Note f 0.000167
162.2 1,622	0.003000			Note f	Note f Note f.	Note f Note 1. 0.001100	Note f Note f. 0.001100 Note f	Note f Note f. 0.001100 Note f Note f	Note f Note f. 0.001100 Note f Note f Note f	Note f Note f. 0.001100 Note f Note f Note 6 0.000167
692.9 6,929	0.003000		Note f	Note f	Note f Note f.	Note f Nets f. 0.001100	Note f Note f. 0.001100 Note f	Note f Note f. 0.001100 Note f Note f	Note f Note f. 0.001100 Note f Note f Note f	Note f Note f. 0.001100 Note f Note f Note f 0.000167
סצבת סבים,	0.003000	15-17	Note f	Nota f	Note f Note f.	Note f Note f. 0.001100	Note f Note f. 0.001100 Note f	Note f Note f. 0.001100	Note f Note f. 0.001100 Note f Note f	Note f Note f. 0.001100 Note f Note f 0.000167
sert crest	0.003000		Note f	Note f	Note f Note f.	Note f Note f. 0.001100	Note f Note f.	Note f Note f. 0.001100 Note f	Note f Note f. 0.001100 Note f Note f	Note f Note f. 0.001100 Note f Note f Note f 0.000167
1,297.4 12,974	0.003000		Note f	Note 1	Note ? Note f.	Note f Note f. 0.001100	Note f Note f. 0.001100 Note f	Note f Note f. 0.001100 Note f	Note f Note f. 0.001100 Note f Note f	Note f Note f. 0.001100 Note f Note f Note f 0.000157
	0.003000	100		Note 1	Note ? Note ?.	Note ! Note !. 0.001100	Note f Note f. 0.001100 Note f	Note ! Note !. 0.001100 Note ! Note !	Note ! Note !. 0.001100 Note ! Note ! Note !	Note 1 Note 1. 0.001100 Note 1 Note 1 Note 1 USBOOK
П	D/ton	Н	н	ton/mo	ton/mo tpy	ton/mo tpy lb/ton	ten/me tpy lb/ton lb/hr	ten/me tpy lb/ton lb/hr	ton/mo tpy lb/ton lb/tr ton/mo	ton/mo tpy lb/ton lb/hr ton/mo tpy
Material Throughput Rates			PNA Embedon	PM Emissions	PNA	iters	itons	iters	M PASS Stone Emissions	M PAGE Embedone Embedone
	-	Ш		0 1 2	3 1	0 1 1				
Agental Throughput 258,000 tyy	DC PM Control Eff		W	98.50%		SAJON DC PM.		DC PM ₂₀ Control Eff	DC PM ₂₀ Control Eff	DC PM ₂₀ st.cox
25,800 ton/ma	Control			SCHOOL SECTION			Centrol Eff	Centrol Eff	Central Eff	Control Eff Control Eff

S - Non-Februsia Material Protessing - Performance in Investor in Section -																											
S 2- Non-Ferrico Manufall Processible; Perrico Sulvivos (1988) The fine of the control of the c	0.0000	0.000		0.000167°	0.0000	0.0002	0,000	0.001100 0	0.0000	0,0004	0.0024	0.0000000	2,949	294.9	0.80	,	100%		Wand Sifte	7	4	Outside	2	Mined	Conveyor to Wlad Sifter	C-022	
S 2-1 No 1- February I Material Processing - Part Concession - Part Concessing - Part Concessing - Part Concessing - Par			+-	, orman	6.02.2	0.0023	0.0122	0.001100.0	0.0615	0,0061	0.0334	0.003000	40,985	4,098.5	11.12	>			¥	z	4	Outside	=	Residue	Conveyor	C-021	보
Statistical processibility of processibly - Particular legislation Particular legislation			+	a constant		0.0023		COULTOO	0.0815	19000	0.0834	0.008000	40,985	4,098.5	ti.ti	,			¥	z	4	Outside	z	Residue	Conveyor	C-020	뛾
State Interest I	-	200	+	ATTOOM .	0.000	10001	-	0.001100.0	-	0.0001	0,0008	0.003000	921	92.1	25	,			3	2	٧	Outside	z	Lights	Conveyor	6100	뙲
Statistics Statistics Processing - Pro	+		-	(COLUMN)	o, cuis	0.000*	+	o outtoo	-	0.000.0	0.0053	0.003000	şş 8	645.0	17	>			Ē	2	Y	Outside	2	Ferrous	Conveyor	C-073	벌
State Interest I			-					COULTROD	,enn,	0,000	0,005	0.000000	ş	855	178	>			₹	z		Outside	2	Ferrous	Conveyor	C-017	뜅
3.3. Non-Februlii III.C. Chicago illinois y interiori il Protessinje il Protessin	0000	0000	+	o Composition						9,000	G.OO.	anosono	9,9	38.	27	,			3	2	-	Outside	z	Residue	Conveyor	C-016	129
3.3. Non-Februotis Material Protestings - Perutotis Material Protestings - Perutotis Material Protestings - Perutotis Material Protestings - Perutotis Material Protestings - Perutotis Material Protesting - Perutotis Material Protesting - Perutotis Material Protesting - Perutotis Material Protesting - Perutotis Material Materi	0.0008		+	o comes	200										t	,	3 8	_	Enclosure	2	4	inside	2	Ferrous	Conveyor	COLS	128
3.3.	0,000	0000	-	0.000167 °	1990	0.000	0.0003	0.001100 0	+	+	3	o memo		3		. ,	9)		Enclosura			9508	2	Rasidue	Conveyor	C 914	127
3.3 Non-Ferrous Material Processing - Particulate Emissions Particulate	0.0005	0.0001	+	0.000167°	-	0.0003	\$100.0	0.001100 °	+	+	0.0050	• 000000	30.980	3080	1				Enclosure	2 2	-		١.	Residue	Conveyor	Cent	1
3.3. Non-Ferrous Material Processing - Particulare Emissions	0.0006	10000	-	0.000167 0	-	0.0004	0.0020	o cottoo o	10100	0,000	0.0055	0.0000000	33,687	3.368.7	9.14	•	ES.		Enclosura	Ī	+						L
3.3. Non-Ferrous Material Processing - Particulate Emissions Processing - Particulate Emissions Processing - Particulate Emissions Processing - Particulate Emissions Processing - Particulate Emissions Processing - Particulate Emissions Processing - Particulate Emissions Processing - Particulate Particulate	0.0006	0.0001	-	0.000167 0	0.0037	0.0004	0.0020	0.0011000	-+	-	0.0055	0.003000 0	11,627	3,368.7	9,14	>	F		ũ	2	4	Inside	2	Residue	Conveyor	COL	E
Activities Act	0.0026	0.0003	_	0.000167 9	0.0170	-	0.0092	0.001100 p	\rightarrow	-	0.0252	0.003000 °	30,960	3,096.0	ŝ	>		1	3	=	4	Outside	z	Rasidue	Conveyor	55	٤
3.3 Non-Ferrous Materials Processing: Particulate Emissions 1 1 1 1 1 1 1 1 1	0.0028	0,0003	-	0.000167	2410.0		10101	0.001100.0	_	-	0.0274	0.003000 °	33,687	3,364.7	9,14	*			₹	2		Outside	z	Residue	Сопунуют	COTO	튒
3.3 Non-ferrous Material Processing - Particulate Emissions Emission	u,ou,o	emon.	-	/atomin	Callino.	-	101010	0.001100.0	-	-	0.0274	0.0000000	33,687	3,368.7	9.14	*			ş	2		Outside	z	Residue	Conveyor	5000	E
3.3 - Non-Fetrois Material Processing - Particulate Emissions Particulate Emission Pa		1	+	/athorn	0.000	-	0.003	o dottoo.	-	-	0,0095	0.003000	\$4,0%	5,805.0	15.75	*	3 是		Enclosure Enclosure	2		Inside	2	Residue	Conveyor	C008	E
State Pric		1	-	mouls,	0.000	0.0008	0,0035	0.001100.0	-	-	0,0095	0.003000 0	-	5,805.0	15.73	*	異異	-	Endosura	z	4	Inside	2	Residue	Conveyor	C-007	정
3.3 - Non-Ferrous Material Processing. Particulate Emissions Continue C	0.000	0.000	-	/eT0000	/190.0	-	0.0335	0.001100	+-	-	0.091.4	0.000000	-	11,223.0	30.45	^			¥	2		Outside	2	Residue	Conveyor	600	15
3-3 - Non-Ferrous Material Processing - Particulate Emissions September Particulate Emissions September		9	-	/etmon	/190.0	-	0.0335	0.001100	-	-	4,160'0	0.003000 °	112,230	11,229.0	30.45	٨			3	Z	4	Outside	2	Residue	Conveyor	200	Ē
3-3 - Nony-Ferrous Material Processing - Particulate Emissions Factor	50,00	etton	-	COUNTRY /	0.1235	-	0.0670	0.001100.0	-	_	0.1827	0.0080000	224,460	22,446.0	60,90	y			N.	Z	4	Outside	. 2	Residue	Compayor	5007	Ę
Signature Processing - Particulate Emissions Par			-	COOLING /	0.13/6	-	0.0747	0.001100.0	-	-	0.2097	0.0000000	250,260	25,026.0	67.90	٨			N.	z	4	Outside	2	Residue	Conveyor	288	뷺
Non-Ferrous Material Processing - Particulate Emissions 23,000 ton/mo 200 20		1000	+	/dthom	-	+	0.0023	o cottoo o	-	-	0.0063	0.003000	-	774.0	2	>		_8	š	2	4	Outside	2	Ferrous	Conveyor	200	E
Non-Ferrous Material Processing - Particulate Emissions General III, LLC - Chicago, Illinois Transfer Type of Polist Transfer Type of Control Emissions Material Y/N Condada, Correspor Control Emissions No heads Y/N Condada, Correspor Control Emissions No heads Y/N Condada, Correspor Control Emissions Residue No heads N		1,200	+	/ettenn	+	-	0.0747	0.001100.0		-	0.2037	0.000000	-	25,026.0	8	>			N.	2	٧	Outside	2	Residue	Conveyor	262	Ē
Non-Ferrous Material Processing - Particulate Emissions Superior Superi	1	2000	-	ETONOT3	-	-	0.0032	0.000046	-	-	0.0098	0.000140		25,800.0	70	٨	119		₹	2	4	Outside	4	Residue	Conveyor	1007	E
Non-Ferrous Material Processing - Particulate Emissions General III, LLC - Chicago, Illinois Transfer Point Commyor Control Eff. Point Commyor Comm	1.3639	0.1364	-		1.5639	-	O-STAG		-		0.53.0						Building	urces insid	sions for So	Total Emb							E
Non-Ferrous Material Processing - Particulate Emissions General III, LLC - Chicago, Illinois Transfer Point Point Point Conveyed V/N Outstand V/N			+	-	1 20	Note	700	0.00360	NO T	-	100	0.00760	ğ	25	0.07	Drog	# R	100%	Dust Collector	z		halde	1.5%	Zorba	Drop to container	9	E
Non-Ferrous Material Processing - Particulate Emissions Committee Particulate P			+	, 910mm	-	Note	70	0.001100	-	-	Note 1	0.003000	1,494	117.4	0.46	>	F R	300%	Dust Collector	2	1 11	anside	2	Residue	Transfer Conversor	1	ğ
Annual Throughput DC PM Assort Control Eff Dust Emission Factor Factor Throughput Factor Factor Throughput Factor Throughput Factor Factor Throughput Factor Factor Throughput Factor Factor Throughput Factor Throughput Factor Throughput Factor Throughput Factor Throughput Factor Factor Throughput Factor Factor Throughput Factor Factor Throughput Facto			-	(00000)	1	700	1	0.001100	-	-	Pote 1	0.000000	10,836	1,083.6	2.94	>	9 8	100%	Dust	z		Inside	z	Residue	Transfer Conveyor	System	-
Annual Throughput DC PM 255,000 tory/mo Control Eff Sector DC PM 255,0	Ą	tor/mo		a/ton	╋┷	ton/ma	_	100 A	H	н	ş	B/ton	ą	ton/mo	g	Source	2	2	Control	0/10	Covered	Outside)	N/A	Conveyed	Occupation Constitutes	8	- [
Annual Throughput DC P86 Season EFF Control EFF Control EFF Control EFF		Œ	PM2.5 Emission			ā T	PMI			ž	Endesio PM			Material Throughput Rates		{ }	Co Di		Type of	7		Transfer Point	Modella				
Annual Throughput DC PM 96.00% Control Eff 96.00% Control Eff Control Eff Control Eff	*	H	1	-			e	H	H	-		1				ŀ	-						•	•	•		
25,300 ton/mo Control Est		3000		DC PM _{2.5} Control Eff		300768		Control Eff	ia .	98.50%		Control Et	A A	Annual Thro	_					ois	go, Illin	- Chica	III, LLC	Genera	Labre 2-0 and 1		
New Monthly Thropott ECS Enc. PM mooth ECS Enc. PM 40.00%	1000	80.00		Control Eff	100	9000%		Control ESF		MOON		Control Eff		Max Month)				stons	ate Fmi			D-000	Astoris		T-Ni- 2 2 Non		

0.00761 * 0.0053 0.0030 0.0038	2,540 0.007	258.0	0,70	dr de		NA	*		Outside	15%•	Zorba	Conveyor drop to container	C 864
		Г	C.B.O.	doru		<u>\$</u>	2		Outside	15% •	Heavies Zorta	drap to stockpile	161 C-063
names name	-	1	2 2			\$			Outside	+	Zorba	Conveyor drop to stockpile	
0.000	4,507 mostor •	#0./	3 5	}		3			Outside	† 	Heavier Zorba	Conveyor	-
unio.	+	\vdash	e e	Drop		3			Outside	1.5%	Heavies Zuric	Conveyor drop to stockpile	158 C-061
+	-		0.96	Drog		3	┝		Outside		Heavies Zuric	Conveyor drop to stockpile	C-061
0.0036 0.0007	┼╌╴		120	>		\$	H	*	Outside	2	Zone	Conveyor	156 0-060
0.0002		\vdash	0.30	^		ž		٧	Outside	2	Zuric drops	Conveyor	155 C-058
0.0006			1	>		*	-	٧	Outside	z	Wire	Conveyor	194 0-055
0.0068 0.0012		829.3	2.25	^		\$	2	_	Outside	2	Residue	Conveyor	153 C-052
0.0752 0.0139	-		25.07	>		\$	-	4	Outside	2	Residue	Coppeyor	152 0-050
0.0017 0.0003	100	202.7	0.55	>	TI.	\$	2		Outside	2	Out of \$51	Conveyor	151 C-048
0.0017 0.0003	2,027 0.003000 0	202.7	0.53	>		\$	-	-	Outside	2	To SSI	Conveyor	150 C-047
	91,664 0.003000 0	9,166.4 9	24.87	>	=3	*	- Z	< -	Outside	2	Residue	Сопивую	249 CO15
0.0009 0.0002	1,106 0.003000 9	110.6	0,30	>		*	- E	≺	Outside	2	Lights Zuric	Conveyor	748 C-044
0.0746 0.0137	-	25 1	24.57	*	0	N.	2	~	Outside	2	Residue	Conveyor	147 C-044
0.0090 0.0017			tu.	>		\$	2		Outside	Z	Zorba	Conveyor	146 CO43
000 0 0.0045 0.0008 0.0083	5,529 0.003000 °	552.9	1.50	>		₹	=	\dashv	Outside	2	Zorba	Conveyor	2002
000 0 0.0015 0.0003 0.0028	1,943 0,003000 °	184.3	0.50	>		₹	2	81	Outside	2	Zorba	Conveyor	144 CONT
000 0 0.0126 0.0023 0.0232	15,480 0.003000 °	1,548.0 1	4.20	>		\$	2		Outside	2	Repidue	Сопивуют	743 C-040
0.0210 0.0039	25,500 0.003000 °	2,580.0 2	7	>		×	2		Outside	2	Mid	Conveyor	745 C-040
0.0084 0.0015	10,320 0.003000 0	1,032.0	2.80	>		*	2		Outside	2	Residue	Conveyor	2000 147
0.0024 0.0004	_	294.9	0.80	>		3	· 2		Outside	2	Missed	Conveyor	C089
0.0003			2.7	>		ecs 100%	2 6 6	۲	T de	2	Residue	Conveyor	C88
0.0017 0.0003			oss	>		. ₹	-	۲	Outside	2	Motorial	Conveyor	Cos
0.0010 0.0002	26,869 0.000140 °	2,686.9	7.29	>	35 100%	Wind Sither 100%	Perlyn A	*	Outside	2	Residus	Conveyor to Wind Sifter	\$20
0.0000 0.0002	26,869 0.000140 *		7.29	>		4		\neg			3.1	8	Copy
Entraions Byter ton/mo	tyy lb/ton		g		29	Point Eff.	<u> </u>	Comment Cont	Outside /	¥1.5%		ment Generating Emissions Description	Equips of high
7	5	Material				Type of Picture		7	and an		 - 		[]) (e)
0	-	3	† -	-					•		0	•	-
Marce Harry		Annual Throughput 250,000 tpy						Illinois	Chicago	, LLC-	General III, LLC - Chicago, Illinois	1400H - C-C BIGBI	
A EST ADAMA	o Control Eff	25,800 ton/mo			ň	mission	culate	o - Part	rocaccia	torio D	The same of the	Table 2 2 Non-Enward Parterial Drocessing - Particulate Emissions	

199	ğ	167	15	15.	7	15	182	181	180	173	178	137	176	13	174	173	172	171	170	169	168	167	166	18	12	ž	- F		•		
E-07	E-07	ŝ	8	8	83	8.3	8-3	8	10-3	6	6-04	8	8	60.3	10-3	S S	8 g	O 00	0 PC 01	C-072	C071	C-0770	C-068	C-057	28 C	530-5	5		_		
Wind Sifter	Wind Sifter	Eddy Current Separator	Eddy Current Separator	Eddy Current Separator	Magnetic Separation	Magnetic Separation	Magnetic Separation	Magnetic Separation	Screener	SUMME	Scriperney	Screener	Screener	Screener	Vibratory Batch Feeder	DC-04 fines discharge to covered consever	DC-03 fines discharge to covered coneyor	DC-02 fines discharge to	DC-01 fines discharge to covered consyor	Conveyor	Conveyor	Conseyor drop to stockpile	Copveyor drop to stockpile	Conveyor	Conveyor	Conveyor	Description	11141	•		Table 3-3 - Non-Ferrous Material Processing - Particulate Emissions
Heavies	Ughts	Zorba	Mids	Residue	Гелтоня	Ferrous	Residue	Residue	Residue	Pesidee	Rasidue	Residue	Residue	Residue	Residue	Lighes	Lights	supp.	Lights	Lights	Lights	Waste to Stockpile	Residue	Residue	Residue	Residue	Material			General III, LLC - Chicago, Illinois	-Ferrous N
1.5% *	2	2	2	2	2	2	2	2	٧	4	4	٧	٧	4	٧	Z	Z	2	2	2	2	15%.	1.5% •	_2	2	2	>15% Y/H	1	10	III, LLC	Aateria
Outside	Outside	Outside	Outside	Outside	Inside	Inside	Inside	Inside	Outside	Outside	Outside	Outside	Outside	Outside	Outside	Outside	Outside	Outside	Outside	Outside	Outside	Outside	Outside	Outside	Outside	Outside	(healde / Outside)	Transfer Point	- 1	- Chica	Proce
																=				4	٧	×	۲	Υ	4	٧	Convergor Covered			go, Illin	ssing - F
4	4	z	2	2	N	Z	2	Z	Z	z	2	2	2	2	2	٧	Υ	Ą	٧	٧	¥	2	2	2	z	2	Controlled (Y/N)	Transfer		ois	articula
Wind Sittan	Cower	¥	¥	Ą	¥	Ē	Enclosure	Exchange Exc	AN	Ĕ	N.	ž	¥	NA.	ž	Cover	CONNE	Cover	COVER	Cover	Cower	ş	3	W	¥	¥	Pate a	Type of			ate Emi
30%		=	-				100%	100%					ayaay ayaagaayaan	-tion-size-d		ta											29	T D	-		ssions
100%							3 2	Elde Elde			C.	C										410			_	10 11	2 3 8	Du			
Drop	9	٨	٨	٧	٨	^	>	•		•	9	9		9.5	٨	٨	٨	٧	٨	>	٨	Drap	doup		٧	*	Fector Source				
1.50	0.25	25	3.50	6.12	5	Q _B	9.87	14.87	ŝ	77.6	15.75	270	883	60.90	8	0.008	0.008	0.008	0.008	0.03	0.03	S	54.39	54,39	54.39	E	g	25.	<u> </u> -		
552.9	92.1	92.1	1,290.0	2,255.7	1,842.9	324.3	3,637.8	5,480.7	1,548.0	1,362.7	5,805.0	995.1	2,506.3	22,446.0	25,800.0	2.9	2.9	2.9	2.9	נית	Ħ	202.7	20,046.6	20,046.6	20,046.6	810.9	Ratas tor/mo	Material	2	Account T	25,800
5,529	921	921	12,900	22,557	18,429	3,243	36,378	54,807	15,480	33,527	58,050	9,951	25,063	224,460	258,000	29	29	29	8	111	111	2,027	200,466	200,466	200,466	8,109	4		o	rued Throughput	Max Monthly Thruput 25,800 ton/mo
0.00761	0.002200 4	0.003000	0.0000000	0.003000	0.003000	0.003000	0.003000	0.003000	0.002200	0.002200 *	0.002200 •	0.002200 *	0.002200 •	0.002200 *	0.000140		0,000140 4	0.0001.40 4	0.0001.40 4	0.000140	0.000140	0.00761	0.00761 *	0.003000 4	0.003000	0.003000	lb/we			DC PM	Control Eff
0.0103	90000	80000		0.0184		0.0026	<u> </u>	 	0.0092	0.0201	0.0347	0.0059	• 0.0150	0.1340	0.0098	0,000	0.0000	_		0,0000				_	0.1632	_	5 5		<u>-</u>	a	3 %
0.0021	10000	1000.0	0,0019	0.0034	0.0028	-	├	-	0.0017	0.0037	0.0064	ttaoro	0.0028	0.0247	0.001.8	0.000	0.0000	_	0.0000	0,000	—	-	-	_	TOEOT	_	tons	2		94,000	20.000
0.0000	0.0010	0.0014	0.0194	0.0838	0.0276	0.0049	0.0109	o.oti64	0,0170	0.0371	0.0639	cotos	0.0276	0.2469	0.0181	0.0000	0.0000	0.0000		0.0000	0.0000	0.0077	0.7624	\vdash	0.3007	0.0122	yş.		-	***	
0.00360 °	0.000740 4	0.001100 4	0.001100 a	0.001100 4	0.001100	0.001100	0.001100	0.001100	0.000740 *	0.000740	0.000740 *	0.000740 *	0.000740 *	0.000740 *	0.000046 *	0.000046 4	0.000046	0.000046	0.000046 4	0.000046 4	0.000046	0.00360	0.00360 *	o cottoo e	0.001100	0.001100.0	lb/ton			OC PM.	Control Eff
0.000	0.0002	8000.0 P	0.0039	0.0067		ļ	ļ	-	-	0.0068	0.0117	0.0020	0.0050	0.0451	0.0032	-	0,0000	_			-	-			0.0598			2	-	4 -	= 2
0.0010	0,0000		_		├	┢	-	+-	\vdash	0.0012	7 0.0021	0.0004	0.0009	1 0.0083	2 0.0006		0.0000	—				-			\vdash		Emissions Vhr tos/mo		4	20000	9000A
0.0000	0.0003	0,0005	0.0071	0,0124	_		-	╂	\vdash	\vdash	0,0215	0.0037	0.0093	0.0831	0.0059		0.0000		_	_	_	-	_		_		Н		æ		
0.00054	0.000050 4		0.000167	0.000167	0.0001.67	0.000167		+	Н	0.000020	0.000050 •	0.000050 *	0.0000050 *	0.000050	0.000013	0.000013				1	-	 	-		_					DC PM.	Control Eff
0.0000	0.0000			_			<u> </u>	╄	-	0.0005	0.0008	T000.0	0.0003	0.0030	0.0009	ļ		_	-			_	+	•	0.0091	-		2	¥	7	2 2
0.0002	0,000	_	_	0.0002	ļ. —	-	┡	┼—	 	2,0001	t000.0	0.0000	_	0.0006	0.0002	-		-	-			\vdash	-	-	-	_	₩ ₹	5005	H	30,000	80,000
0.0000	_	_	<u> </u>		-	-		ļ							_	_	_		-	-		-			_	_	Ada		A A	•	

0.0001	0.000050 d	0.0000	0.0008	0.0000	0.000740 4	0.0000	0.0025	0.0136	0.002200	5.1 22,851	0 2,285,1	96.3		36 100%	Wind Sifter 100%	y Wind		Outside	Z	Residue	Wind Sifter	6-23	316
0.0000	0,000050	0.0015	0.0001	0,000	0.000740	0.0044	0,0004	0.0024	0.002200 *	401.7 4,017		108			Cower	8		Outside	2	Ughts	Wind Sifter	6-23	255
0.0002		0.0148	0.0015	0.0080		0.0403	0.0040	0.0219	0.003000 4	6.9 26,869	2,686.9	7.29	>		Ā	2		Outside	2	Residue	Eddy Current Seperator	E-22	¥
				1100.0	\vdash	5 0.0055		0.0030	6.003000 4	368.6 3,586	1 36		>		N.	2		Outside	2	Zorba	Eddy Current Separator	£-22	22
_	-	0.0008	0.0001	0.0004	0.001100 4	0,0022	0.0002	0,0012		1474 1474		0.40	_		A.	2		Outside	2	Afted Non-	Magnetic Separation	E 22	ä
┢		-	-	-	\vdash		0.0000	0.0002		18.4 184			A		N.	2		Outside	Z	Ferrous	Magnetic Separation	123	Ĕ
-	-	┝	₩							y	3,6	8.29	>	% Bldg	ECS 100%	N Encl		Inside		Residue	Magnetic Separation	6-21	226
┝	-	-	_	•	\vdash	_			_		2,285.1	6.20	×		Wind Sifter 100%	Y Wind		Outside	2	Residue	Wind Sifter	6-17	8
-	-		1	_	-	Н	0.0004	\vdash		401.7 4,017		1.09			Cover	ر م		Outside	z	Lights	Wind Sifter	E-17	8
		0.0020	┝		_	—	-			985'8 9'898	1 36				A.	7	<u> </u>	Outside	2	Zorba	Eddy Current Separator	£-16	89
\vdash	-	0.0148		_		_	-				ų	7.29	>		₹	2	_	Outside	2	Residue	Eddy Current Separator	2-16	ğ
-		0.0008		_								0.40	>	7.5	\$	2		Outside		Mitted Non- Ferrous	Magnetic Separation	ž.	š
		⊢				\vdash	0.0000	0.0002				205	>			- z		Outside	z	Ferrous	Magnetic Separation	E-15	ğ
┿━━	-	┢	+		 					ğ	ير	23	>	A BAGE	Ecs 100% Enclosure	17		Inside		Residue	Magnetic Separation	513	ğ
_		0.0037	-	_							110	9.09	>		ECS 100%	N Ench	1	Inside	æ	Residue	Magnetic Separation	E15	ğ
-	-	-	-	-				-		×	_		K Drop	36 100%	Wind Sifter 100%	hulm A		Outside	: %2.1	Heavies	Whed Shar	T.	ğ
	_		├							73.7		020	0		Cover	8		Outside	2	Ughts	Wind Sifter	¥.	ğ
-	-	0.0071	-	-		0.0194		0.0105	_	ı,	0 1,290.0	3.50			\$	7		Outside	2	Wilds	Eddy Current Separator	£	\$
-	-	0.0124	0.0012		Н	0.0338	0.0034	0.0184	0.003000 4	5.7 22,557	2 2,255.7	6,12	>	17/35 2	3	2		Outside	2	Residue	Eddy Current Separator	: :	\$
\vdash	\vdash	0,0005	20001	0.0003		0.0014	0.0001	0.0008	0,0000000	92.1 921		25.0	>		\$	2		Outside	2	Zorba	Magnetic Separation	#3	197
-			-		Н			0.0150		2.9 18,429	5 1,842.9	11	>	111	NA	2		Inside	2	Ferrous	Magnetic Separation	£-12	ğ
-		0.0018	-	0.0010	0.001100	0.0049	500000	0.0026		324.3 3,243		0.88	>		ş	2	W	Inside	2	Ferrous	Magnetic Separation	ů	*
-		-	_			-	_	_	_	0	7 3,637.8	9.87	· •		OS 100%	R End	0 *	Inside	z	Residue	Magnetic Separation	S.	ĕ
-					Н					0.7 54,807	7 5,480.7	14.87	A	S Bidg	ECS 100%	Z End		Inside	2	Residue	Magnetic Seperation	ű	題
	0.001317	0.0673	0.0067	0.0365	0.008700 4	0.1935	0.0194	0.1050	0.025000	15,480	1,548.0	420			3	2		Outside	2	Ansidue	Screener	딾	E
ļ	-	0.1465			_			0.2285		8.7 33,687	4 3,368.7	Ne	9		3	2	ile i	Outside	, z	Residue	Screener	113	5
_		-			\vdash	_			0.025000	5.0 58,050					-			Outside	_	Residue	Scripper	113	
PAGES Embasions th/fir ton/mo	fb/ton	Ads	7 9 9		il/as	H	HF-		tt/ron	Material Throughput Rates ton/mo tyy	Η	हु <u>।</u>	t Emission Fector	Se in the contract of the cont	Type of Pichap Transfer Capture Point Eff. Control (N)		Transfer Point Conveyor Controls Covered (Y/n)	Point Location (budde) Co	>1.5% Y/N		Equipment Generating Emissions 10 8 Description	edepte e	- [
•		_	*	-	-	-	-	0	-			<u> </u>	1	-	2	ľ	-	-	-		î	-	,
56.00%	Control Eff		\$3,000	4	DC PM ₂₀ Control ET		20.50%	-	DC PM Combrol Eff	and Throughput 258,000 tpy	A						Illinois	Chicago,	I, LLC-	General III, LLC - Chicago, Illinois			
300.08	Control Eff		MOOVE		Control Eff		Sp.ogs.	= 1	Control Eff	25,800 ton/mo	25			ធ	Emission	culate	g-Parti	rocessin	terla	errous M	Table 3-3 - Non-Ferrous Material Processing - Particulate Emissions		

Table 3 3 - Non-ferrori Multi-Oblicago Illinois Section	000 0.0002	0.0001 0.0000	0.00050	0.0012	0.0001	0.0006	0.00360	0.0025	0,0003	0.003.4	0.00760	8	86.3	e la	chab			3	2	-	msace	15%	COTOR	drop to container	Ĉ	
Table 3 3 - Non-Ferrical Material Processing, Particulate Emissions Final Same	┡	_	_	\vdash	-			0,0006	├	0.0003		14/	747	5	ride			3	3			1.0%	80,607	drop to container	Ē	1
Table 53 - Note Februs Material Processing - Particulate Entisone Particulate Entisone	+-	╄	╄	╫	+-	╄	╄	╁	╄		╄								2		十			Edds Committee	2	
Table 3 3 - Non-Ferretty Material Processity Particulate Entision Same	-	+	4	┿	+	-	4	+	-	10000	4	2,027	202.7	82.0	>			COVER	4	+	Outside		To Infeed St	Air Vibe	E-50	241
Table 3-3 - Non-Ferrous Meterial Processive Particulate Enticion Secti	\rightarrow		_			-				0.0049	0.003000	30,039	6.E00'E	8.15	>	2 E	100%	E CS	2		Inside		Residue onto ECS	Transfer Conveyor	E-49	240
Table 3-3 - Non-Ferrous Material Processing - Particulate Emissions Section Sect				-			_	-		0.0075	0.025000 4	1,106	110.6	0.30				š	2		Outside	2	Light Zorbe	Separator	E-47	239
Table 3.3 - Non-Ferrous Material Processing - Particulate Enhances France Fran	_		•							0.0038		553	55.3	0.15				¥	z		Outside		Lights Zorbi	Separator	E-47	238
Table 3-3 - Non-Ferry Use Material Processing - Particulative Emissions Seven Injust C Chiengo Illinois Campo							-		_	0.0213	_	3,133	313.3	2	•			\$	z		Outside		Zorba	Separator	£-47	237
Part Part						_		\vdash		0.0675	0.025000 4	9,861	98.1	2.70	9			¥	z		Outside	2	Zorbe	Separator	E-47	236
Table 3-3 - Non-Ferrous Material Processing - Particulate Emissions Section Sect				\vdash		⊢		\vdash	_	0.0063	0.025000 4	22	13	23				3	2		Outside		Lights Zorbi	Separator	*	235
Table 3.3 - Non-Fetrous Material Processing - Particulate Emissions Series Ser			-	\vdash	_	-		<u> </u>			0.025000 4	4,607	460.7	¥	•			₹	×		Outside		Heavier Zorba	Separator	*	234
Table 3-3-Non-Ferrous Material Processing - Particulate Emissions Same Maria Mar		_	•			\vdash	-	\vdash		9,006.6	0.003000 4	8,109	810.9	E	>			\$	z		Owtado) 	Residue	Eddy Current Separator	*	233
Table 3-3 - Non-Fetrous Material Processing - Particulate Emissions Partic								0.0070		0.0038	0.00760	1,843	184.3	0.50	Drop	ì		*	Z		_	1.5%	Zorba	Eddy Current Separator drop to stockpile	7	292
Table 3-3 - Non-Ferrous Material Processing - Particulate Emissions September Septem	_		-	-			-			910076	0.003000	9,951	995.1	2.70	>	Ridg Eff.		Enclasure	2		nek de	2	Residue	Vibratory Feeder	E	231
Companie Connecting Francis Marterial Processing - Particulate Emissions September Companie Connecting - Particulate Companie Co			_							0.0017	0.003000 4	2,027	202.7	0.55	>		-	NA.	2		Outside	-	Out of SSI	low speed shredder for size reduction	å	120
Table 3-3 - Non-Ferrous Material Processing - Particulate Emissions Camerial III, LLC - Chicago, IIIInols Camerial III, LLC - Chicago, IIIInols Camerial III, LLC - Chicago, IIIInols Camerial III, LLC - Chicago, IIIInols Camerial III, LLC - Chicago, IIIInols Camerial III, LLC - Chicago, IIIInols Camerial III, LLC - Chicago, IIIInols Camerial III, LLC - Chicago, IIIInols Camerial III, LLC - Chicago, IIIInols Camerial III, LLC - Chicago, IIIInols Camerial III, LLC - Chicago, IIIInols Camerial III, LLC - Chicago, IIIInols Camerial III, LLC - Chicago, IIIInols Camerial III, LLC - Chicago, IIIInols Camerial III, LLC - Chicago, IIIIInols Camerial III, LLC - Chicago, IIIIInols Camerial III, LLC - Chicago, IIIIInols Camerial IIII, LLC - Chicago, IIIII Camerial IIII, LLC - Chicago, IIIII Camerial IIII, LLC - Chicago, IIIII Camerial IIII, LLC - Chicago, IIIII Camerial IIII, LLC - Chicago, IIIII Camerial IIII, LLC - Chicago, IIIII Camerial IIII, LLC - Chicago, IIII Camerial IIII, LLC - Chicago, IIII Camerial IIII, LLC - Chicago, IIIII Camerial IIII, LLC - Chicago, IIII Camerial IIII, LLC - Chicago, IIII Camerial IIII, LLC - Chicago, IIII Camerial IIII Camerial IIII, LLC - Chicago, IIII Camerial IIII, LLC - Chicago, IIII Camerial IIII, LLC - Chicago, IIII Camerial		\vdash	-	-			-			0.0004	0.00761 *	154	E	28	Drop			3	2		-	15%	Heavies	drop to container	E	229
Part Part				_	_	\vdash	_			0.0238	0.025000 4	3,501	350.1	2,95		ű	-	3	z		_	2	Egitt Egitt	Separator	I	228
Table 3-3 - Non-Ferrous Material Processing - Particulate Emissions Partic								_	0.0016	0.0088	0.025000 4	1,290	129.0	0.35	0			NA.	2	-		-111	Lights Zurk	Separator	5	227
Comparison Com	-	-	-	-	_					0.0240	0.025000 4	3,538	353.8	0.96	9			¥	z	-			Heavies Zu	Separator	5	226
Part Part				-	-	-		\dashv	-	0.0060	0.025000	85	88.5	82.0	-			₹	z			(0.	Lights Zurk	Separator	ē	225
Table 3-3 - Non-Ferrous Material Processing - Particulate Emissions Control Emissi		-	-			-+	-			25700	0.003000 4	113,613	1,861.3	5.05	>			₹	2		_	2	Residue	Eddy Current Separator	6.35	14
Fable 3-3 - Non-Ferrous Material Processing - Particulate Emissions September Septem	-		_					0,0083		0.0045	0.003000	5,529	552.9	1.50	*			¥	2	_		2	Zorbe	Eddy Current Separator	3	223
Composition Composition									0.0007	0.0039	0.003000	24,141	2,414.1	6.55	>	9. Sep		Enclosure Enclosure	2		<u> </u>	2	Residue	Magnetic Separation	ž	222
Table 3-3 - Non-Ferrous Material Processing - Particulate Emissions Femission Femiss	-			-		ļļ		┝╼┩	0.0007	0.0039	0.003000	24,341	TWIT	828	>	en g		Ecs	2			2	Rasidue	Magnetic Separation	163	123
Table 3-3 - Non-Ferrous Material Processing - Particulate Emissions Script Scr	-							0.0055	90000	0.0030	0.003000	3,686	368.6	110	*		_	×	2				Zorba	Eddy Current Separator	E-26	220
Table 3-3 - Non-Ferrous Material Processing - Particulate Emissions April	\rightarrow					\rightarrow		0.0395	0.0040	0.0215	0.003000 4	26,353	2,635.3	7.15	>			\$	2	-		2	Residue	Eddy Current Separator	6-28	219
Table 3-3 - Non-Ferrous Material Processing - Particulate Emissions Sentend Processing - Particulate Emissi			•		10000	-	_	0.0014	0.0001	0.0008	0.003000	921	92.1	0.25	>			¥	2	_		- 2	Ferrous	Magnetic Separation	£-27	218
Table 3-3 - Non-Ferrous Material Processing - Particulate Emissions General III, LLC - Chicago, IIIInois General III, LLC - Chicago, IIIInois Franks Franks Franks General III, LLC - Chicago, IIIInois Franks		-						0.0090	0.0009	0.0049	0.003000	30,039	3,003.9	8.15		ESF BLAZ		Endosure	2			2	Residue	Magnetic Separation	6-27	217
Table 3-3 - Non-Ferrous Material Processing - Particulate Emissions General III, LLC - Chicago, illinois General III, LLC - Chicago, illinois Control Eff Transfer Control Eff Transfer Trans	Н		Ц	H	н	ш.	Ц	Ą	ton/mo	P _N	lly'ton	Ą	ton/mo	đ		-	-	Control		-	-	┢	Conveyed	Description	15 8	•
Max Monthly Throught ECS Enc. PM assess ECS Enc. PM assess ECS Enc. PM assess Control Eff Control Eff Control Eff SEA. PM assess Control Eff Control Eff SEA. PM assess DC PM.s SA.sess DC PM.s SA.sess DC PM.s SA.sess Control Eff SEA. PM assess DC PM.s SA.sess DC PM.s SA.sess Control Eff SEA. PM assess DC PM.s SA.sess DC PM.s SA.sess Control Eff SEA. PM assess DC PM.s SA.sess DC PM		PM2.5				DINA.			B				Material Throughput Batter					<u> </u>	2	§ .			*	R .	Equipm	10 a
Azonad Throughput Control Eff season Control Eff season Control Eff season Control Eff Se	H	Y		4	4							0		E	-		-		=		-		0	c		ŀ
Max Monthly Thruput ECS Enc. PM sharps ECS Enc. PM as acces. 25,800 ton/mo Control Eff Control Eff Control Eff	FOOD	*	DC PM _{Ls}		98,0006		DC PM ₂₀		96.00%		DC PM Control Eff	Add on any other and any other and any other and any other and any other and any other and any other and any other and any other and any other and any other and any other and any other and and any other and and any other and any other and any other and and any other and and any other and and any other and any	Annual Ti						nois	ago, IIII	C-Chic	al III, LI	Gener			
	To St	B	Control Eff	4-	1600 GB		Control Eff		MOUTE		Control Eff	ton/mo	25,800 1				issions	late Em	Particu	- Buissa	ial Procu	Mater	-Ferrous	Table 3-3 - Non		

		251	1	-	-	1	-			₽	. 1			1	•		
		SC-008	\$0.00	\$C-00#4	90,000	\$C-002	50.00	Loader East	10 mg	1	andred .	111			•		
		Supplemental Conveyor	Supplemental Conveyor	Supplemental Conveyor	Supplemental Conveyor	Supplemental Conveyor	Supplemental Conveyor	load waste to truck	hopper	themderstand	Stotestics Sansiana Sansabab			-		Table 3-3 - Non-Ferrous Material Processing - Particulate Emissions	
		Residue	Residue	Residue	Residue	Residue	Residue		Into Hopper	Conveyed	Material	N 1,	100		General III, LLC - Chicago, Illinois	Ferrous A	
					1 11			2		ì	71.5%	Moleture		^	III, LLC	Aateria	
							U	Outside	Outside	Outside	1	Location	Transfer	-	- Chica	Proce	
			11	,	13/			13.	1	CONSTRUCT				۰	go, Illi	ssing -	
								2	~	1	0	Point		=	ois	Particul	
		2.				×		8	Cower	Combro	ì	Transfer of		-		late Em	
	1 2	7.27				T. Fe				3	P	D =	Dust	L		issions	
				ā					9	3	=	0		~			
Totals Manderrysofthe Material Handiby 1969 Metal	Totals Handling FM Eni	>	>	¥	>	>	^	5	Ð	Source	Fector	-		_			
	a Plant Emissions	54,39	54.39	7.34	7.34	15,75	15.75	0.00	8	ğ				£			
•		20,046.6	20,046.6	2,705.3	2,705.3	o'soe's	o'soe's	0.0	25,800.0	ton/mo	Rates	Material Throughput			Annual 255	Max Mon 25,80	
	111	200,466	200,466	27,053	27,053	58,050	58,050	Ŋ	258,000	Ą		¥ -	100	٥	Annual Throughput 255,000 tpy	Max Monthly Thruput 25,800 ton/mo	
1.67%		0.003000	0.003000	0.003000	0.003000	0.003000	0.003000	0 0.000204	0 0.000204	ily'ton				P	Control Eff	et ECS Enc. PM Control Eff	
-		00 0.1632	00 0.1632		00 0.0220	0.0479									107 A	C PM	
0	4.57 0	632 0.0301	632 0.0301	0.0220 0.0041	220 0.0041	473 0.0087	0.0087	0.0000	0.0143 0.0026	NAME TO SE	Emissions	2		٩		8	
0.15	0.88 8.74	0.3007	0.3007	M1 0.0406	0.0406	128010 280	97 0.0871	0,000	0.0264	Ach cru/una					8.30E.B	en.oczk	
	74	0.001100	0.001100	1	001100						_		_	×	C D	Con	
o of HAP m				0.001100.0		0.001100	0.001100.0	0.000100	0.000000	non/di	٧				DC PM _{In} Control Eff	ECS Enc. PM Control Eff	
etal to total	2.01	0.0598 0.	0.0598 0	0.0081 0	0.0081 0	0.0173 0	0.0173	0,0000	0.0070	A1/4	48 B I	=		_	Ļ		
Ratio of HAP metal to total PM from June 2018 emission test of roll media filter appli	0.42	0.0110 0.	OTTO O	0.0015	0.0015 0.	0.0032 0.	0.0032 0.	0.0000	0.0013	ton/mo	1 I		SELOCK V		MOOR	(eV] - (
une 2018 er	£	0.1103 0.	0.1103 0.	0.0149 0.	0.0149 0.	0.0319 0.	0.0319	0.0000	U 6710'0	Acts			_	*		2 2	JIII Emi
nission test		0.000167	0.000167	0.000167	0.000167	0.000167	0.000157	0,000015	, ST0000T	lb/ton				1	DC PM _{LE} Control Eff	ECS Enc. PM Control Eff	Rev 1 - GIII Emission Tables - Nov. 12,
of roll med	0.73	0.0091	0.0091	0.0012	0.0012	0.0026	0.0026	0.0000	0.0011	IN/N	Embations	PAGS		1			1 - Saldt
ia filter app	ST.0	0.0017	0.0017	0,0002	0.0002	0.0005	0.0005	00000	2000	ton/mo	2	••			3000.00		10V. 12
Med to	1.77	0.0167	0.0167	0.0023	0.0023	0.0048	0.0048	00000	0.0020	Ag	I			1			2019

als - AP-42, Table 13-2.4-1 for crushed limestone thing to methetal drop equation in AP-42, Section 13-2.4-3. Emissions calculated with control Eff. fector included for source being inside of a building.
thing to material drop equation in AP-42, Section 13-2.4-3.

Uncontrolled perticulate matter emission factors from AP-42, Table 11.19.3-2 for conveying. If moliture is greater than 1.5% by weight, use controlled emission factors. Uncontrolled perticulate matter emission factors from AP-42, Table 11.19.3-2 for acreening. If moliture is greater than 1.5% by weight, use controlled emission factors. Sources located inside the Fines Building emit to the atmosphere through Dust Collection DC-01. Emissions are estimated by 12,000 Meissi HAPs as percent of total PM measured at the discharge of the addition in June 2015.

Material Drop PM Equations (AP-42, Section 13, E = emission factor (Byton of material dropped) k = particle size multiplier (dimensionless) (M/2)^{1,4} U = mean wind speed https://www.timesaddate.com/weether/ke

= 9.0 0.74 0.85 https://www.timeanddute.com M = material moisture content (%)

mph - sensisl average wind speed for Chicago (Mildway Airport)
PAR - AP-42, Section 13.2.4, for particle size < 30 um
PAR - AP-42, Section 13.2.4, for particle size < 10 um
PAR - AP-42, Section 13.2.4, for particle size < 2.5 um
PAR - AP-42, Section 13.2.4, for particle size < 2.5 um
N for light materials - AP-42, Table 13.2.4-1 for crushed timeston

EXHIBIT 17

From:

Frost, Brad

To:

EPA.PublicHearIngCom

Cc:

Guy, Jeff

Bcc:

Zwick, Ann M.; John Pinion; Pressnall, Chris; Barria, German; jimkallas@general-iron.com; Adam Labkon;

Walts.alan@Epa.gov; mdunn@atg.state.il.us; Harley, Keith; janzav34@gmall.com;

george.cardenas@cityofchicago.org; samira.hanessian@cityofchicago.org;

Committeeonenvironmentalprotectionandenergy@cityofchicago.org; Erica DeAngelis@durbin.senate.gov;

esims@senatorelglesims.com; office@repevans.com; Peter Danos@duckworth.senate.gov;

janzay34@qmail.com; jim@general-iron.com; rick.bryant@mail.house.gov; ward10@cityofchicago.org; chicagossnaacp@gmail.com; colleen@llenviro.org; elindberg@uchlcago.edu; mgeertsma@nrdc.org; crquerrer@qmail.com; sarahelizabethrichmond@amail.com; imoreno@nrdc.org; Harley, Keith;

kellynichols1@gmall.com; smedicherla@grummanbutkus.com; Sherrill, John; aflickinger@chicagoriver.org; cookcounty1board@cookcounty1l.gov; environment@cookcounty1l.gov; nwarkenthien@cpllink.com; Cardick, Samuel; Bailey, Sabrina; mmarshall@delta-institute.org; Wendystarkriemer@gmail.com; lexmwinter@gmail.com;

anna.schibrowsky@gmail.com; sarah.buchhorn@gmall.com; alfonso.martel@cityofchicago.org;

indiancreekeec@outlook.com; Liliana.escarpita@cityofchicago.org; arturo@naaee.org;

debble.hays@simsmm.com; erhodes@delta-institute.org; Ajoycegolden@student.ccc.edu; ltargos@gmail.com; eknox@clccrul.org; Erica_DeAngelis@durbin.senate.gov; info@duckworth.senate.gov; angela.tin@lung.org; kareena.wasserman@comed.com; lfrede@cicil.net; dchizewer@earthjustice.org; jcassel@earthjustice.org; jhammons@elpc.org; KCourtney@elpc.org; info@faithinplace.org; jwalling@ilenviro.org; iergstaff@ierg.org;

gnorris@illinoisnaacp.org; thaley@illinoisnaacp.org; jpino@lvelo.org; nick.firmand@gmail.com; ltarqos@gmail.com; BUrbaszewski@lunochicaqo.org; christine.nannicelli@sierraclub.org; jack.darin@sierraclub.org; katrina.phillips@sierraclub.org; cary.shepherd@law.notrhwestern.edu; ash.ngu@propublica.org; obautista58@gmail.com; gramirez@nrdc.org; loquita8@gmail.com; dgrable@kentlaw.iit.edu; n-loeb@northwestern.edu; cary.shepherd@law.northwestern.edu; webmaster@cookcountyil.gov; delta@delta-institute.org; Dave.Graham@cityofchicaqo.org; Jennifer.Hesse@cityofchicago.org; Mort.Ames@cityofchicaqo.org; cantello.nlcole@epa.gov;

frank.nathan@epa.gov

Subject: Date: General III Comment Period and Public Hearing

Monday, March 30, 2020 10:35:00 AM

Attachments:

GIII Public Notice.pdf

All,

General III, LLC has applied to the Illinois Environmental Protection Agency (Illinois EPA) Bureau of Air for a permit to construct a scrap metal recycling facility proposed to be located at 11600 South Burley Avenue in Chicago. The Illinois EPA has reviewed the application and made a <u>preliminary</u> determination that the application meets the standards for issuance and has prepared a draft permit for public review and comment. The Illinois EPA is accepting public comments on the draft construction permit until June 13, 2020. The draft permit, public notice and other documents are available on our website http://bit.ly/2SiUSql.

In addition, the Illinois EPA is holding a public hearing to accept verbal comments into the written record. The public hearing will be held online on May 14, 2020. There will be a session starting at 1:30 pm and a second session starting at 6:00 pm. Computer and telephone connection options are available. Login instructions are found in the notice.

Anyone who wishes to make a comment at the hearing must contact the hearing officer and request to do so by 5:00 p.m. CST on Tuesday, May 12, 2020. The hearing officer contact information is jeff.guy@illinois.gov or call 217/785-8724

Details on the hearing and submission of comments are in the public notice which is attached to this e-mail and may be found at the link above.

ID #: 031600SFX

Permit #: 19090021

Source: General III, LLC

Illinois Environmental Protection Agency

Notice of Comment Period and Public Hearing Proposed Issuance of a Construction Permit to General III, LLC in Chicago

General III, LLC has applied to the Illinois Environmental Protection Agency (Illinois EPA) Bureau of Air for a permit to construct a scrap metal recycling facility proposed to be located at 11600 South Burley Avenue in Chicago. As part of the review of the construction permit application, the Illinois EPA requested the company develop a plan for controlling fugitive dust emissions at the facility and perform a modeling analysis. The Illinois EPA has reviewed the application and made a <u>preliminary</u> determination that the application meets the standards for issuance and has prepared a draft permit for public review and comment.

In addition to accepting written comments on the draft permit, the Illinois EPA Bureau of Air will hold a public hearing on Thursday, May 14, 2020. The hearing will be held online with an afternoon session beginning at 1:30 pm and an evening session beginning at 6:00 pm. Computer and telephone connection options are available. The first 30 minutes of each session will be the Illinois EPA presentation concerning the hearing and draft permit. Information on how to connect to the hearing is below.

If you would like to provide comment on the draft permit at the hearing: Requests to comment at the public hearing must be made no later than 5:00 p.m. CST on Tuesday, May 12, 2020, by contacting the hearing officer at jeff.guy@illinois.gov or calling 217/785-8724. Registering reserves you an opportunity to provide comment during the hearing. If you are limited on time, please contact the hearing officer for a more specific commenting time.

Access to the hearing

You may log in or call in to the hearing up to 15 minutes prior to the start or anytime during the hearing.

By Computer: click this link

https://illinois.webex.com/illinois/onstage/q.php?MTID=ede15d1e3bc40793e54ad27332af98

This will take you to the webex webpage for the hearing. Enter your information and click the Join Now button. You may be prompted for an Event Number or Event Password, below.

By Phone: call +1-312-535-8110 and when prompted enter the event number, below.

Event Number: 804 080 241 Event Password: cWpHgfRA248

If you have questions or need assistance with webex, please contact the Illinois EPA contact listed below prior to the day of the hearing.

The hearing will be held to receive comments and answer questions from the public concerning the application. The hearing will be held under the Illinois EPA's "Procedures for Permit and Closure Plans," 35 IAC 166, Subpart A. Lengthy comments and questions should be submitted in writing. Requests for interpretation (including sign language) must be made to the hearing officer by April 23, 2020. Email comments originating on third party systems or servers intended for

submittal of multiple emails of the same or nearly the same content will not be accepted without prior approval from the hearing officer. Any questions about hearing procedures or requests to address special needs should be made to the Illinois EPA, Jeff Guy – Hearing Officer, Re: General III, 217/524-1628, TDD: 866/273-5488, epa.publichearingcom@illinois.gov

For information or requests about the draft permit, please contact Brad Frost, Community Relations, Illinois EPA, at 217/782-2113 or 217/782-9143 TDD or brad.frost@illinois.gov

The Illinois EPA will accept written public comments on the draft permit during the comment period. Written comments must be received no later than midnight June 13, 2020, and must be submitted to epa.publichearingcom@illinois.gov or Illinois EPA, Attn: Jeff Guy, Hearing Officer, PO Box 19276, 1021 North Grand Avenue, Springfield, IL 62794-9276.

A repository of documents for this permitting action is available on the Illinois EPA's website at https://www2.illinois.gov/epa/public-notices/boa-notices/Pages/default.aspx and at Illinois EPA offices at 9511 Harrison Street in Des Plaines, 847/294-4000 and 1021 N. Grand Avenue East in Springfield, 217/782-7027 (you must call ahead to assure that someone will be available to assist you). Copies of the draft construction permit and its project summary are also available upon request.

The proposed facility would be located in an area of Environmental Justice concern. More information about Illinois EPA's Environmental Justice program may be found at https://www2.illinois.gov/epa/topics/environmental-justice/Pages/default.aspx

EXHIBIT 18

From:

Frost, Brad

To:

EPA.PublicHearingCom

Cc:

Guy, Jeff

Bcc:

Zwick, Ann M.; John Pinion; Pressnall, Chris; Barria, German; jimkallas@general-iron.com; Adam Labkon;

Walts.alan@Epa.gov; mdunn@atg.state.il.us; Harley, Keith; janzav34@gmail.com;

george.cardenas@cityofchicago.org; samira.hanessian@cityofchicago.org;

Committeeonenvironmentalprotectionandenergy@cityofchicago.org; Erica DeAngelis@durbin.senate.gov;

esims@senatorelgiesims.com; office@repevans.com; Peter Danos@duckworth.senate.gov;

janzav34@gmail.com; jim@qeneral-iron.com; rick.bryant@mail.house.gov; ward10@cityofchicago.org; chicagossnaacp@gmail.com; colleen@ilenviro.org; elindberg@uchicago.edu; mqeertsma@nrdc.org; crguerrer@gmail.com; sarahelizabethrichmond@gmail.com; imoreno@nrdc.org; Harley, Keith;

kellynichols1@gmail.com; smedicherla@grummanbutkus.com; Sherrill, John; aflickinger@chicagoriver.org; cookcounty.board@cookcountyIL.gov; environment@cookcountyil.gov; nwarkenthien@cpilink.com; Cardick, Samuel; Bailey, Sabrina; mmarshall@delta-institute.org; Wendystarkriemer@gmail.com; lexmwinter@gmail.com;

anna.schibrowsky@gmail.com; sarah.buchhorn@gmail.com; alfonso.martel@cityofchicago.org;

indiancreekeec@outlook.com; Liliana.escarpita@cityofchicago.org; arturo@naaee.org;

debbie.hays@simsmm.com; erhodes@delta-institute.org; Ajoycegolden@student.ccc.edu; ltargos@gmail.com; eknox@clccrul.org; Erica DeAngelis@durbin.senate.gov; info@duckworth.senate.gov; angela.tin@lung.org; kareena.wasserman@comed.com; lfrede@cicil.net; dchizewer@earthiustice.org; jcassel@earthiustice.org; Jhammons@elpc.org; KCourtney@elpc.org; info@faithinplace.org; jwalling@ilenviro.org; jergstaff@ierg.org;

gnorris@illinoisnaacp.org; thaley@illinoisnaacp.org; jpino@lvejo.org; nick.firmand@gmail.com; ltarqos@gmail.com; BUrbaszewski@lunqchicago.org; christine.nannicelli@sierraclub.org; jack.darin@sierraclub.org; katrina.phillips@sierraclub.org; cary.shepherd@law.northwestern.edu; ash.nqu@propublica.org; obautista58@gmail.com; gramirez@nrdc.org/ cary.shepherd@law.northwestern.edu; dgrable@kentlaw.iit.edu; n-loeb@northwestern.edu; cary.shepherd@law.northwestern.edu; webmaster@cookcountyil.gov; delta@delta-institute.org; Dave.Graham@cityofchicago.org; Jennifer.Hesse@cityofchicago.org; Mort.Ames@cityofchicago.org; cantello.nicole@epa.gov;

frank.nathan@epa.gov

Subject:

RE: General III Comment Period and Public Hearing

Date:

Monday, March 30, 2020 3:45:00 PM

Attachments:

GIII Public Notice.pdf image001.png image002.png image003.png image005.png

All,

Attached is a slightly modified notice. In the notice previously sent, the url for the hearing is correct; however, the characters of the url run to a second line. If the link is directly clicked on your browser will not pick up the characters on the second line. For ease of use, so that you do not have to cut and paste the url into a browser, I have attached a notice with the url on a single line. If you have any questions, please contact me.

Brad Frost
Manager, Office of Community Relations
217/782-7027

From: Frost, Brad

Sent: Monday, March 30, 2020 10:35 AM

To: EPA.PublicHearingCom < EPA.PublicHearingCom@Illinois.gov>

Cc: Guy, Jeff < Jeff.Guy@Illinois.gov>

Subject: General III Comment Period and Public Hearing

General III, LLC has applied to the Illinois Environmental Protection Agency (Illinois EPA) Bureau of Air for a permit to construct a scrap metal recycling facility proposed to be located at 11600 South Burley Avenue in Chicago. The Illinois EPA has reviewed the application and made a preliminary determination that the application meets the standards for issuance and has prepared a draft permit for public review and comment. The Illinois EPA is accepting public comments on the draft construction permit until June 13, 2020. The draft permit, public notice and other documents are available on our website http://bit.ly/2SiUSql.

In addition, the Illinois EPA is holding a public hearing to accept verbal comments into the written record. The public hearing will be held online on May 14, 2020. There will be a session starting at 1:30 pm and a second session starting at 6:00 pm. Computer and telephone connection options are available. Login instructions are found in the notice.

Anyone who wishes to make a comment at the hearing must contact the hearing officer and request to do so by 5:00 p.m. CST on Tuesday, May 12, 2020. The hearing officer contact information is jeff.guy@illinois.gov or call 217/785-8724

Details on the hearing and submission of comments are in the public notice which is attached to this e-mail and may be found at the link above.

ID #: 031600SFX
Permit #: 19090021
Source: General III, LLC

Illinois Environmental Protection Agency

Notice of Comment Period and Public Hearing Proposed Issuance of a Construction Permit to General III, LLC in Chicago

General III, LLC has applied to the Illinois Environmental Protection Agency (Illinois EPA) Bureau of Air for a permit to construct a scrap metal recycling facility proposed to be located at 11600 South Burley Avenue in Chicago. As part of the review of the construction permit application, the Illinois EPA requested the company develop a plan for controlling fugitive dust emissions at the facility and perform a modeling analysis. The Illinois EPA has reviewed the application and made a <u>preliminary</u> determination that the application meets the standards for issuance and has prepared a draft permit for public review and comment.

In addition to accepting written comments on the draft permit, the Illinois EPA Bureau of Air will hold a public hearing on Thursday, May 14, 2020. The hearing will be held online with an afternoon session beginning at 1:30 pm and an evening session beginning at 6:00 pm. Computer and telephone connection options are available. The first 30 minutes of each session will be the Illinois EPA presentation concerning the hearing and draft permit. Information on how to connect to the hearing is below.

If you would like to provide comment on the draft permit at the hearing: Requests to comment at the public hearing must be made no later than 5:00 p.m. CST on Tuesday, May 12, 2020, by contacting the hearing officer at jeff.guy@illinois.gov or calling 217/785-8724. Registering reserves you an opportunity to provide comment during the hearing. If you are limited on time, please contact the hearing officer for a more specific commenting time.

Access to the hearing

You may log in or call in to the hearing up to 15 minutes prior to the start or anytime during the hearing.

By Computer: click this link

https://illinois.webex.com/illinois/onstage/g.php?MTID=ede15d1e3bc40793e54ad27332af9805d This will take you to the webex webpage for the hearing. Enter your information and click the Join Now button. You may be prompted for an Event Number or Event Password, below.

By Phone: call +1-312-535-8110 and when prompted enter the event number, below.

Event Number: 804 080 241 Event Password: cWpHgfRA248

If you have questions or need assistance with webex, please contact the Illinois EPA contact listed below prior to the day of the hearing.

The hearing will be held to receive comments and answer questions from the public concerning the application. The hearing will be held under the Illinois EPA's "Procedures for Permit and Closure Plans," 35 IAC 166, Subpart A. Lengthy comments and questions should be submitted in writing. Requests for interpretation (including sign language) must be made to the hearing officer by April 23, 2020. Email comments originating on third party systems or servers intended for submittal of multiple emails of the same or nearly the same content will not be accepted without

prior approval from the hearing officer. Any questions about hearing procedures or requests to address special needs should be made to the Illinois EPA, Jeff Guy – Hearing Officer, Re: General III, 217/524-1628, TDD: 866/273-5488, epa.publichearingcom@illinois.gov

For information or requests about the draft permit, please contact Brad Frost, Community Relations, Illinois EPA, at 217/782-2113 or 217/782-9143 TDD or brad.frost@illinois.gov

The Illinois EPA will accept written public comments on the draft permit during the comment period. Written comments must be received no later than midnight June 13, 2020, and must be submitted to epa.publichearingcom@illinois.gov or Illinois EPA, Attn: Jeff Guy, Hearing Officer, PO Box 19276, 1021 North Grand Avenue, Springfield, IL 62794-9276.

A repository of documents for this permitting action is available on the Illinois EPA's website at https://www2.illinois.gov/epa/public-notices/boa-notices/Pages/default.aspx and at Illinois EPA offices at 9511 Harrison Street in Des Plaines, 847/294-4000 and 1021 N. Grand Avenue East in Springfield, 217/782-7027 (you must call ahead to assure that someone will be available to assist you). Copies of the draft construction permit and its project summary are also available upon request.

The proposed facility would be located in an area of Environmental Justice concern. More information about Illinois EPA's Environmental Justice program may be found at https://www2.illinois.gov/epa/topics/environmental-justice/Pages/default.aspx

Exhibit 19 Hearing Order General III, LLC

On March 30, 2020, the Illinois Environmental Protection Agency ("Illinois EPA") posted a Public Notice (entitled "Notice of Comment Period and Public Hearing") for General III, LLC. General III, LLC has applied to the Illinois EPA Bureau of Air for a permit to construct a scrap metal recycling facility proposed to be located at 11600 South Burley Avenue in Chicago, Illinois. The Public Notice was posted on the Illinois EPA website at https://www2.illinois.gov/epa/public-notices/Pages/general-notices.aspx.

The Public Notice provided information related to the public hearing, which was conducted on May 14, 2020, and to information regarding the associated public comment period. Notably, the Public Notice observed that the Illinois EPA will accept written public comments on the draft permit during the comment period no later than midnight, June 13, 2020. Based on a recent inquiry concerning this time requirement, a clarification is warranted.

The date in the Public Notice for the submission of comments stems from the applicable regulations, which generally provides for closure of the record 30 days after the date of the hearing. [35 Ill. Adm. Code 166.191]. In the event of a time requirement (such as this one involving the date of record closure) that is set for a Saturday or Sunday, the time within which such action must be performed is extended by operation of law to the following Monday. [5 ILCS 70/Section 1.11]. For this reason, public comments must be submitted no later than midnight on Monday, June 15, 2020. Written comments must be submitted to epa.publichearingcom@illinois.gov, jeff.Guy@illnois.gov, or Illinois EPA, Attn: Jeff Guy, Hearing Officer, PO Box 19276, 1021 North Grand Avenue, Springfield, Illinois 62794-9276 no later than midnight, Monday, June 15, 2020.

Jeffrey J Guy, Illinois EPA Hearing Officer

Office of Community Relation

From: Guy, Jeff

To: <u>EPA.PublicHearingCom</u>
Subject: Due date of GIII comments

Date: Wednesday, June 3, 2020 11:41:36 AM

Attachments: Exhibit 104 Hearing Order.pdf

image001.png

From: Guy, Jeff

Sent: Wednesday, June 3, 2020 11:39 AM **To:** Geertsma, Meleah <mgeertsma@nrdc.org>

Subject: RE: Due date of GIII comments

Ms. Geertsma,

Please see the attached document, which can be found at the link provided below, in regards to the comment period deadline.

https://www2.illinois.gov/epa/public-notices/boa-notices/Pages/default.aspx

Thanks,

Jeffrey J. Guy

Hearing Officer, Illinois Environmental Protection Agency Office of Community Relations (217) 785-8724

Jeff.Guy@illinois.gov

From: Geertsma, Meleah < mgeertsma@nrdc.org >

Sent: Tuesday, June 2, 2020 8:53 AM **To:** Guy, Jeff < <u>Jeff.Guy@Illinois.gov</u>>

Subject: [External] Re: Due date of GIII comments

Thanks Jeff - will IEPA be sending out an updated notice with the Monday deadline?

From: Guy, Jeff < Jeff.Guy@Illinois.gov>
Sent: Tuesday, June 2, 2020 8:42 AM

To: Geertsma, Meleah < mgeertsma@nrdc.org >

Subject: Due date of GIII comments

Ms. Geertsma,

Regarding General III, LLC, written comments may be submitted by Monday, June 15, 2020 as the end of comment period falls on a Saturday (June 13, 2020).

Thank you,

Jeffrey J. Guy

Hearing Officer, Illinois Environmental Protection Agency Office of Community Relations (217) 785-8724 Jeff.Guy@illinois.gov

From: Geertsma, Meleah < mgeertsma@nrdc.org >

Sent: Friday, May 29, 2020 1:58 PM

To: Pressnall, Chris < Chris.Pressnall@Illinois.gov Subject: [External] Due date of GIII comments?

Hi Chris - can you confirm the due date for comments on the proposed GIII permit? The noticed date of June 13 falls on a Saturday, so does the date get bumped to that Monday,

June 15? Thanks, Meleah

State of Illinois - CONFIDENTIALITY NOTICE: The information contained in this communication is confidential, may be attorney-client privileged or attorney work product, may constitute inside information or internal deliberative staff communication, and is intended only for the use of the addressee. Unauthorized use, disclosure or copying of this communication or any part thereof is strictly prohibited and may be unlawful. If you have received this communication in error, please notify the sender immediately by return e-mail and destroy this communication and all copies thereof, including all attachments. Receipt by an unintended recipient does not waive attorney-client privilege, attorney work product privilege, or any other exemption from disclosure.