Landfill 33, Ltd. - Table of Contents

Section 4

R1640: Cover Sheet	2
R1641-R1699: Appendix H Groundwater Impact Assessment - H.E.L.P. Output Files	3
R1700: Cover Sheet	. 62
R1701-R1812: Appendix I Groundwater Impact Assessment Surrogate Absorption and Half Lives Values	
	63
R1813: Table 1: Existing Unit Baseline and Sensitivity Parameters	175
R1814: Table 2: South Unit Baseline and Sensitivity Parameters	176
R1815: Table 3: Northwest Unit Baseline and Sensitivity Parameters	177
R1816: Table 4: Northwest Surrogate Parameters	178
R1817-R1819: Table 5: Leachate and Predicted Concentrations	179
R1820-R1822: Table 6: Existing and South Unit AGQS and MAPC Values	182
R1823-R1825: Table 7: Northwest Unit AGQS and MAPC Values	185

:

Η

R1640

APPENDIX H

.

.

H.E.L.P. OUTPUT FILES

	TITLE:	Existing Unit HELP		Calc No.	Rev. No.
ANDREWS	Project:	Landfill 33		Date	: 08/29/2018
	Job No.:	180130		Sheet 1 d	of 8
	Prepared	MTH Checked			
	By:			Reviewed	:

OBJECTIVE:

Determine the estimated leachate head over the base liner to ensure compliance with Section 811.317 of the Illinois Administrative Code and determine estimated leachate head over the composite liner system for the Groundwater Impact Assessment (GIA).

DESIGN CRITERIA:

- 1. The liner configuration for the Existing Unit consists of 10-ft of in situ low permeability (i.e., K<1.0 X 10⁻⁷ cm/s) silty clay.
- The final cover configuration for the Existing Unit from the base to the surface will consist of 12 inches of recompacted clay cover overlain by a 40 mil Linear Low Density Polyethylene (LLDPE) geomembrane liner, a 200 mil double sided geocomposite drainage layer, 30 inches of general cover soils and 6 inches of soil material capable of supporting vegetation.
- 3. The 12 inches of recompacted clay cover will be constructed with a maximum hydraulic conductivity of 1.0 X 10⁻⁷ cm/s.
- 4. It is assumed that the 40 mil LLDPE geomembrane cover liner layer will have 15 installation defects per acre each retaining a cross-sectional area of 1 cm².
- 5. The 200 mil double sided geocomposite drainage layer will have a hydraulic conductivity of 10 cm/s.
- 6. The maximum waste depth upon closure of the landfill will be approximately 936 inches in depth.

METHOD:

- 1. Determine HELP input data for weather, precipitation, evapotranspiration, etc. for Effingham, Illinois or other cities located within the region surrounding Effingham, Illinois.
- 2. The in situ liner and final cover system for the Existing Unit design will be used as HELP input values.
- 3. HELP run scenarios evaluated over a one (1) acre area for the estimated 75 year design period (45 years of active life and 30 years of post-closure care) and 70 years after the design period. One run completed during the estimated 45 year active life of the landfill; one run will be conducted for the 30 year post closure care period; and one run will be completed for 70 years after post closure.
- 4. Utilize the HELP output data for use in the GIA.

Assumptions:

Input Data for all HELP Simulations

- Synthetically generated temperature and rainfall inputs developed using actual monthly mean temperature and rainfall data from the St. Louis, Missouri weather station and synthetically generated based on St. Louis, Missouri simulations.
- Synthetically generated solar radiation and evapotranspiration inputs were developed using the latitude for Effingham, IL and synthetically generated based on St. Louis, Missouri simulations.
- The cover geomembrane installation defect density of 15 holes/acre has been utilized based on the HELP Model guidance and typical applications submitted and approved by the Illinois EPA.

Input Data for Individual HELP Simulations

H.E.L.P. Model Design Setup (Active Life Period - Years 1 through 45)

Layer	Depth	Description	Notes
1	12"	Daily Cover Layer	Layer 1: Vertical Percolation Layer (1) Soil Texture #11

	TITLE:	Existing Unit HELP Landfill 33 180130		Calc No.	Rev. No.
ANDREWS	Project:			Date:	08/29/2018
\mathbf{V}	Job No.:			Sheet 2 of 8	
	Prepared	MTH Checked			
	By:	:		Reviewed:	

2	936"	Waste	Layer 2: Vertical Percolation Layer (1) Soil Texture #18 for municipal solid waste
3	120"	In Situ Silty Clay	Layer 3: Barrier Soil Liner Layer (3) Soil Texture #16

Notes for Active Life Period - Years 1 through 45

- 12 inches of daily/intermediate cover was assumed for this HELP run.
- Average waste depth of 936 inches was assumed for the entire active life.
- A subsurface outflow of -6 inches/year has been imposed on the waste layer to simulate leachate pumping.
- HELP was allowed to generate the initial moisture content and snow water.
- A Leaf Area Index of 3.0 was utilized to represent a fair to good stand of grass over the landfill cover.
- The SCS Runoff Curve Number is based on an assumed top grade of 10% with a fair stand of grass and a slope length of 445 feet.
- Fractional area allowing runoff is presumed to be 75% assuming that the waste has been placed and there is a fair stand of grass.
- The evaporative zone depth is presumed to be 12 inches, the minimum value for a clay as recommended in the HELP documentation.

Layer	Depth	Description	Notes
1	6"	Vegetative Layer	Layer 1: Vertical Percolation Layer (1) Soil Texture #8
2	30"	Protective Layer	Layer 2: Vertical Percolation Layer (1) Soil Texture #11
3	0.20"	Geosynthetic Drainage Layer	Layer 3: Lateral Drainage Layer (2) Soil Texture #20 Average Slope 10% Drainage Length 445 feet
4	0.04"	40-mil LLDPE Geomembrane	Layer 4: Flexible Membrane Liner Layer (4) Material Texture #36 Pinhole-1, Defects-15, Installation Quality-4 (Poor)
5	12"	Recompacted Clay Cover Liner	Layer 5: Barrier Soil Liner Layer (3) Soil Texture #16
6	936"	Waste	Layer 6: Vertical Percolation Layer (1) Soil Texture #18 for municipal solid waste
7	120"	In Situ Silty Clay	Layer 7: Barrier Soil Liner Layer (3) Soil Texture #16

H.E.L.P. Model Design Setup (Post-Closure Care Period - Years 46 through 75)

	TITLE:	Existing Unit HELP		Calc No.	Rev. No.
ANDREWS	Project:	Landfill 33		Date:	08/29/2018
•	Job No.:	180130		Sheet 3 o	f 8
	Prepared	MTH Checked			
	By:			Reviewed:	

Notes for Post Closure Care Period - Years 46 through 75

- The Layer 1 thickness of 6 inches and HELP model default soil texture #8 used is based on the assumption that loamy soil will be placed as the final lift of the final cover system to promote vegetative growth.
- The Layer 2 HELP Model default soil texture #11 was used based on the assumption that the use of general site soils classified as lean clay (CL).
- The Layer 3 HELP model default soil texture #20 was used based on the standard geocomposite drainage material attributes.
- The full waste depth of 936 inches was used for the post closure care period years 46 to 75 and the final soil water content specifications from the previous 1 through 45 year HELP run were input.
- Initial soil water and snow water content was specified for layers 6 and 7 based on the final water storage
 of the 1 to 45 year HELP run. The initial soil water content specified for layers 1 through 5 was assumed
 to be at field capacity for all layers except Layer 5, the initial water content was specified at the layers
 porosity to indicate a fully compacted clay material.
- A Leaf Area Index of 4.0 was utilized to represent the presence of well-established stand of grass over the landfill cover.
- The SCS Runoff Curve Number is based on an assumed worst case grade of 10% (top of landfill slope) composed of areas with good stands of grass with a maximum flow distance of 445 feet based on the final cover configuration.
- Fractional area allowing runoff is presumed to be 90% assuming that the waste will be graded to the final
 approved contours and all areas will be closed.
- Evaporative zone depth is presumed to be 24 inches, larger than the minimum recommended 8 inches recommended by HELP and well below the maximum of 36 inches.

Layer	Depth	Description	Notes
1	6"	Vegetative Layer	Layer 1: Vertical Percolation Layer (1) Soil Texture #8
2	30"	Protective Layer	Layer 2: Vertical Percolation Layer (1) Soil Texture #11
3	0.20"	Geosynthetic Drainage Layer	Layer 3: Lateral Drainage Layer (2) Soil Texture #20 Average Slope 10% Drainage Length 445 feet
4	0.04"	40-mil LLDPE Geomembrane	Layer 4: Flexible Membrane Liner Layer (4) Material Texture #36 Pinhole-1, Defects-15, Installation Quality-4 (Poor)
5	12"	Recompacted Clay Cover Liner	Layer 5: Barrier Soil Liner Layer (3) Soil Texture #16
6	936"	Waste	Layer 6: Vertical Percolation Layer (1) Soil Texture #18 for municipal solid waste
9	120"	Recompacted Clay Liner	Layer 13: Barrier Soil Liner Layer (3) Soil Texture #16

H.E.L.P. Model Design Setup (After Post-Closure Care Period - Years 76 to 145)

	TITLE:	Existing Unit HELP		Calc No.	Rev. No.
	Project:	Landfill 33		Date: 08/29/2018	
•	Job No.:	180130		Sheet 4 o	f 8
	Prepared By:	МТН	Checked	Reviewed	

Notes for After Post Closure Care Period - Years 76 to 145

- Reduction of the final cover drainage layer (Layer 3) hydraulic conductivity to 1.0 cm/sec is based on the assumption of potential sediment fouling of the geosynthetics.
- An increase in final cover recompacted clay cover liner (Layer 5) hydraulic conductivity to 1.0 X 10⁻⁵ cm/sec is based on the assumption that potential settlement may occur and result in a higher hydraulic conductivity.
- Initial soil water and snow water content was specified for layers 1 through 7 based on the final water storage of the 46 through 75 year HELP run.
- A Leaf Area Index of 5.0 was utilized to represent the presence of an excellent stand of grass over the landfill cover.
- The SCS Runoff Curve Number is based on an assumed worst case grade of 10% (top of landfill slope) composed of areas with excellent stands of grass with a maximum flow distance of 445 feet based on the final cover configuration.
- Fractional area allowing runoff is presumed to be 95% for the potential of settlement in the final cover system.
- Evaporative zone depth is presumed to be 24 inches, larger than the minimum recommended 8 inches recommended by HELP and below the maximum of 36 inches.

CONCLUSION:

Results of the HELP Model simulations indicate that the average annual leachate heads will remain below the surrounding piezometric groundwater elevation throughout the 45 year Design Period and the 70 year after post closure period resulting in an inward gradient. Final results for each of the three simulation runs are as follows:

HELP Model Output Liner Head Information						
HELP Run Scenario	Average Annual Leachate Head					
Intermediate Cover Years 1 through 45	0.199 - Inches					
Post Closure Care Period Years 46 through 75	0.00 - Inches					
After Post Closure Care Period Years 76 through 145	0.00 - Inches					

REFERENCES:

Koerner, Robert M. "Designing with Geosynthetics." Upper Saddle River, NJ: Pearson Prentice Hall, 2005.

- National Environmental Satellite, Data, and Information Service, National Oceanic & Atmospheric Administration <u>http://hurricane.ncdc.noaa.gov/climatenormals/clim20/il/113320.pdf</u> (accessed August 1, 2011)
- Schroeder, Paul R., Tamsen S. Dozier, Paul A. Zappi, Bruce M. McEnroe, John W. Sjostrom, and R. Lee Peyton. The Hydrologic Evaluation of Landfill Performance (HELP) Model; Engineering Documentation for Version 3. Vols. EPA/600/R-94/168b. Environmental Laboratory, U.S. Army Corps of Engineers, Vicksburg, MS: U.S. Environmental Protection Agency: Office of Research and Development, 1994.
- Xuede, Qian, Robert M. Koerner, and Donald H. Gray. "Geotechnical Aspects of Landfill Design and Construction." Upper Saddle River, NJ: Prentice Hall, 2002.

	TITLE:	Existing Unit HELP		Calc No.	Rev. No.
	Project:	Landfill 33		Dat	e: 08/29/2018
	Job No.:	180130		Sheet 5	of 8
	Prepared	MTH	Checked		
	By:		:	Reviewe	d:

(

	TITLE:	South Unit HELP Landfill 33 180130		Calc No.	Rev. No.
ANDREWS ENGINEERING INC	Project:			Date:	08/29/2018
•	Job No.:			Sheet 1 of	8
	Prepared	MTH Checked			
	By:			Reviewed:	

OBJECTIVE:

Determine the estimated leachate head over the base liner to ensure compliance with Section 811.317 of the Illinois Administrative Code and determine estimated leachate head over the composite liner system for the Groundwater Impact Assessment (GIA).

DESIGN CRITERIA:

- 1. The liner configuration for the South Unit consists of 3-ft of recompacted clay liner material overlain by a 60-mil High Density Polyethylene (HDPE) geomembrane liner and a 12 inches of granular drainage layer.
- 2. The 36 inches of recompacted clay liner will be constructed with a maximum hydraulic conductivity of 1.0 X 10⁻⁷ cm/s.
- 3. It is assumed that the 60-mil HDPE geomembrane liner layer will have 10 installation defects per acre each retaining a cross-sectional area of 1 cm².
- 4. The 12 inch granular drainage layer has a minimum hydraulic conductivity of 5.0 X 10⁻² cm/s.
- 5. The final cover configuration for the South Unit from the base to the surface will consist of 12 inches of recompacted clay cover overlain by a 40-mil Linear Low Density Polyethylene (LLDPE) geomembrane liner, a 200-mil double sided geocomposite drainage layer, 30 inches of general cover soils and 6 inches of soil material capable of supporting vegetation.
- 6. The 12 inches of recompacted clay cover will be constructed with a maximum hydraulic conductivity of 1.0 X 10⁻⁷ cm/s.
- 7. It is assumed that the 40-mil LLDPE geomembrane cover liner layer will have 15 installation defects per acre each retaining a cross-sectional area of 1 cm².
- 8. The 200-mil double sided geocomposite drainage layer will have a hydraulic conductivity of 3.5 cm/s. per the geocomposite flow calculation.
- 9. The maximum waste depth upon closure of the landfill will be approximately 1152 inches in depth.

METHOD:

- 1. Determine HELP input data for weather, precipitation, evapotranspiration, etc. for Effingham, Illinois or other cities located within the region surrounding Effingham, Illinois.
- 2. Utilize the South Unit design attributes for the composite liner system, leachate collection system, waste depth and final cover system for use as HELP input.
- 3. Complete three HELP run scenarios over a one (1) acre area for the estimated 61year design period (31 years of active life and 30 years of post-closure care) and 70 years after the design period. One run will be completed during the estimated 31 year active life of the landfill; one run will be conducted for the 30 year post closure care period; and one run will be completed for 70 years after post closure.
- 4. Utilize the HELP output data for use in the GIA.

Assumptions:

Input Data for all HELP Simulations

- Synthetically generated temperature and rainfall inputs were developed using actual monthly mean temperature and rainfall data from the St. Louis, Missouri weather station and synthetically generated based on St. Louis, Missouri simulations.
- Synthetically generated solar radiation and evapotranspiration inputs were developed using the latitude for Effingham, Illinois and synthetically generated based on St. Louis, Missouri simulations.
- The liner geomembrane pinhole density of 1 is utilized per the recommendations from the HELP Model 3.07 guidance information which notes that pinhole density of 0.5 to 1 may be typical based on current manufacturing process.
- The liner geomembrane installation defect density of 10 holes/acre has been utilized based on the HELP Model guidance and typical applications submitted and approved by the Illinois EPA.

	TITLE:	South Unit HELP		Calc No.	Rev. No.
ANDREWS	Project:	Landfill 33		Date: 08/29/2018	
•	Job No.:	180130		Sheet 2 o	of 8
	Prepared	MTH	Checked		
	By:		:	Reviewed	:

• The cover geomembrane installation defect density of 15 holes/acre has been utilized based on the HELP Model guidance and typical applications submitted and approved by the Illinois EPA.

Input Data for Individual HELP Simulations

H.E.L.P. Model Design Setup (Active Life Period - Years 1 through 31)

Layer	Depth	Description	Notes
1	12"	Daily Cover Layer	Layer 1: Vertical Percolation Layer (1) Soil Texture #11
2	1152"	Waste	Layer 2: Vertical Percolation Layer (1) Soil Texture #18 for municipal solid waste
3	12"	Pea Gravel/Coarse Sand OR Sand and 300 mil Double Sided Geocomposite	Layer 3: Lateral Drainage Layer (2) Soil Texture #21 K = 5.0 X 10 ⁻² cm/sec Average Slope 2.2% Drainage Length 615 feet
4	0.06"	60 mil HDPE Geomembrane	Layer 4: Flexible Membrane Liner Layer (4) Material Texture #35 Pinhole-1, Defects-10, Installation Quality-4 (Poor)
5	36"	Recompacted Clay Liner	Layer 5: Barrier Soil Liner Layer (3) Soil Texture #16

Notes for Active Life Period – Years 1 through 31

- 12 inches of intermediate cover was assumed for this HELP run.
- An initial average waste depth of 1,152 inches was assumed for years 1 through 31.
- HELP was allowed to generate the initial moisture content and snow water.
- A Leaf Area Index of 3.0 was utilized to represent the presence of a fair stand of grass.
- The SCS Runoff Curve Number is based on an assumed top grade of 14% composed of vegetated soils with a maximum flow distance of 630 feet.
- Fractional area allowing runoff is presumed to be 75% assuming that the waste is in place and runoff potential is limited.
- The evaporative zone depth is presumed to be the minimum recommended by the HELP program of 12 inches.

H.E.L.P. Model Design Setup (Post-Closure Care Period - Years 32 through 61)

Layer	Depth	Description	Notes
1	6"	Vegetative Layer	Layer 1: Vertical Percolation Layer (1) Soil Texture #8

	TITLE:	South Uni	t HELP	Calc No.	Rev. No.
ANDREWS	Project:	Landfill 33		Date: 08/29/2018	
\bullet	Job No.:	180130		Sheet 3 of 8	
	Prepared	MTH	Checked		
	By:		:	Reviewed:	

2	30"	Protective Layer	Layer 2: Vertical Percolation Layer (1) Soil Texture #11
3	0.20"	Geosynthetic Drainage Layer	Layer 3: Lateral Drainage Layer (2) Soil Texture #20 Average Slope 14.5% Drainage Length 630 feet
4	0.04"	40 mil LLDPE Geomembrane	Layer 4: Flexible Membrane Liner Layer (4) Material Texture #36 Pinhole-1, Defects-15, Installation Quality-4 (Poor)
5	12"	Recompacted Clay Cover Liner	Layer 5: Barrier Soil Liner Layer (3) Soil Texture #16 (shown as 0 due to conductivity amendment) K = 1.0 X 10 ⁻⁷ cm/sec
6	1,152"	Waste	Layer 6: Vertical Percolation Layer (1) Soil Texture #18 for municipal solid waste
7	12"	Pea Gravel/Coarse Sand OR Sand and 300 mil Double Sided Geocomposite	Layer 7: Lateral Drainage Layer (2) Soil Texture #21 (shown as 0 due to conductivity amendment) K = 5.0 X 10 ⁻² cm/sec Average Slope 2.2% Drainage Length 615 feet
8	0.06"	60 mil HDPE Geomembrane	Layer 8: Flexible Membrane Liner Layer (4) Material Texture #35 Pinhole-1, Defects-10, Installation Quality-4 (Poor)
9	36"	Recompacted Clay Liner	Layer 9: Barrier Soil Liner Layer (3) Soil Texture #16

Notes for Post-Closure Care Period – Years 32 through 61

- The Layer 1 thickness of 6 inches and HELP Model default soil texture #8 used is based on the assumption that 6 inches of loamy soil will be placed as the final lift of the final cover system to promote vegetative growth.
- The Layer 2 HELP Model default soil texture #11 was used based on the assumption that the use of general site soils classified as lean clay (CL).
- The Layer 3 HELP Model default soil texture #20 was used based on the standard geocomposite drainage material attributes.
- The full waste depth of 1,152 inches was used for the post closure care period years 32 through 61 and the final soil water content specifications from the previous 1 through 31 year HELP run were input.
- Initial soil water and snow water content was specified for layers 6 through 9 based on the final water storage of the 1 through 31 year HELP run. The initial soil water content specified for layers 1 through 5 was assumed to be at field capacity for all layers except Layer 5, the initial water content was specified at the layers porosity to indicate a fully compacted clay material.
- A Leaf Area Index of 4.0 was utilized to represent the presence of significant vegetation over the landfill cover.

	TITLE:	South Unit HELP		Calc No.	Rev. No.
ANDREWS	Project:	Landfill 33		Date: 08/29/2018	
▼ .	Job No.:	180130		Sheet 4 of 8	
	Prepared	MTH Checked			
	By:		:	Reviewed:	

- The SCS Runoff Curve Number is based on an assumed worst case grade of 14% (top of landfill slope) composed of areas with good stands of grass with a maximum flow distance of 630 feet based on the final cover configuration.
- Fractional area allowing runoff is presumed to be 90% assuming that the waste will be graded to the final
 approved contours and all areas will be closed.
- Evaporative zone depth is presumed to be 24-inches, larger than the minimum recommended 8-inches recommended by HELP and well below the maximum of 36-inches.

H.E.L.P. Model Design Setup (After Post-Closure Care Period - Year 62 through 131)

Layer	Depth	Description	Notes
1	6"	Vegetative Layer	Layer 1: Vertical Percolation Layer (1) Soil Texture #8
2	30"	Protective Layer	Layer 2: Vertical Percolation Layer (1) Soil Texture #11
3	0.20"	Geosynthetic Drainage Layer	Layer 3: Lateral Drainage Layer (2) Soil Texture #20 (shown as 0 due to conductivity amendment) K = 1.0 cm/sec Average Slope 5% Drainage Length 178 Ft (Longest)
4	0.04"	40-mil LLDPE Geomembrane	Layer 4: Flexible Membrane Liner Layer (4) Material Texture #36 Pinhole-1, Defects-15, Installation Quality-Poor
5	12"	Recompacted Clay Cover Liner	Layer 5: Barrier Soil Liner Layer (3) Soil Texture #16 (shown as 0 due to conductivity amendment) K = 1.0 X 10 ⁻⁵ cm/sec
6	1,512"	Waste	Layer 2: Vertical Percolation Layer (1) Soil Texture #18 for municipal solid waste
7	12"	Pea Gravel/Coarse Sand OR Sand and 300 mil Double Sided Geocomposite	Layer 3: Vertical Percolation Layer (1) Soil Texture #21 (shown as 0 due to conductivity amendment) K = 5.0 X 10 ⁻² cm/sec Subsurface Inflow = 0.35 Inches/Year
8	0.06"	60-mil HDPE Geomembrane	Layer 9: Flexible Membrane Liner Layer (4) Material Texture #35 Pinhole-1, Defects-10, Installation Quality -Poor
9	36"	Recompacted Clay Liner	Layer 13: Barrier Soil Liner Layer (3) Soil Texture #16

Notes for After Post Closure Care Period – Years 62 through 131

• Reduction of the final cover drainage layer (Layer 3) hydraulic conductivity to 1.0 cm/sec is based on the assumption of potential sediment fouling of the geosynthetics.

	TITLE:	South Unit HELP		Calc No.	Rev. No.
ANDREWS ENGINEERING INC	Project:	Landfill 33		Date	08/29/2018
•	Job No.:	180130		Sheet 5 o	f 8
	Prepared	MTH Checked			
	By:			Reviewed	:

- An increase in final cover recompacted clay cover liner (Layer 5) hydraulic conductivity to 1.0 X 10⁻⁵ cm/sec is based on the assumption that potential settlement may occur and result in a higher hydraulic conductivity.
- Revision to the leachate drainage layer (Layer 7) from a lateral drainage layer designation layer type 2 to a vertical percolation layer type 1 is based on the assumption that leachate collection will cease after completion of the 30 year post closure care period.
- Initial soil water and snow water content was specified for layers 1 through 9 based on the final water storage of the 31 through 61year HELP run.
- A Leaf Area Index of 5.0 was utilized to represent an excellent stand of grass over the landfill cover.
- The SCS Runoff Curve Number is based on an assumed worst case grade of 14% (top of landfill slope) composed of areas with excellent stands of grass with a maximum flow distance of 630 feet based on the final cover configuration.
- Fractional area allowing runoff is presumed to be 95%.
- Evaporative zone depth is presumed to be 24-inches, larger than the minimum recommended 8-inches recommended by HELP and below the maximum of 36-inches.

CONCLUSION:

Results of the HELP Model simulations indicate that the average annual leachate heads will remain below the surrounding piezometric groundwater elevation throughout the 67-year Design Period and the 70-year after post closure period resulting in an inward gradient. Final results for each of the four simulation runs are as follows:

HELP Model Output Liner	HELP Model Output Liner Head Information						
HELP Run Scenario	Average Annual Leachate Head						
Active Life Years 1 through 31	1.548 - Inches						
Post Closure Care Period Years 32 through 61	0 - Inches						
After Post Closure Care Period Years 62 through 131	2.252 Inches						

REFERENCES:

Koerner, Robert M. "Designing with Geosynthetics." Upper Saddle River, NJ: Pearson Prentice Hall, 2005.

National Environmental Satellite, Data, and Information Service, National Oceanic & Atmospheric Administration <u>http://hurricane.ncdc.noaa.gov/climatenormals/clim20/il/113320.pdf</u> (accessed August 1, 2011)

	TITLE:	South Unit HELP		Calc No.	Rev. No.
ANDREWS	Project:	Landfill 33		Date:	08/29/2018
•	Job No.:	180130		Sheet 6 o	f 8
	Prepared	МТН	Checked		
	By:			Reviewed:	

Schroeder, Paul R., Tamsen S. Dozier, Paul A. Zappi, Bruce M. McEnroe, John W. Sjostrom, and R. Lee Peyton. The Hydrologic Evaluation of Landfill Performance (HELP) Model; Engineering Documentation for Version 3. Vols. EPA/600/R-94/168b. Environmental Laboratory, U.S. Army Corps of Engineers, Vicksburg, MS: U.S. Environmental Protection Agency: Office of Research and Development, 1994.

Google Maps

http://maps.google.com/maps?f=q&source=s_q&hl=en&geocode=&q=2150+North,+Oneida,+IL&aq=0&vps=1&sII=41.028154,-

90.250111&sspn=0.0225,0.036221&ie=UTF8&hq=&hnear=2150+N,+Oneida,+Knox,+Illinois+61467 (accessed August 1, 2011).

Xuede, Qian, Robert M. Koerner, and Donald H. Gray. "Geotechnical Aspects of Landfill Design and Construction." Upper Saddle River, NJ: Prentice Hall, 2002.

	TITLE:	South Uni	it HELP	Calc No.	Rev. No.
ANDREWS ENGINEERING INC	Project:	Landfill 33		Date: 08/29/2018	
•	Job No.:	180130		Sheet 1 of 8	
	Prepared By:	MTH Checked		Reviewed:	

OBJECTIVE:

Determine the estimated leachate head over the base liner to ensure compliance with Section 811.317 of the Illinois Administrative Code and determine estimated leachate head over the composite liner system for the Groundwater Impact Assessment (GIA).

DESIGN CRITERIA:

- 1. The liner configuration for the South Unit consists of 3-ft of recompacted clay liner material overlain by a 60-mil High Density Polyethylene (HDPE) geomembrane liner and a 12 inches of granular drainage layer.
- The 36 inches of recompacted clay liner will be constructed with a maximum hydraulic conductivity of 1.0 X 10⁻⁷ cm/s.
- 3. It is assumed that the 60-mil HDPE geomembrane liner layer will have 10 installation defects per acre each retaining a cross-sectional area of 1 cm².
- 4. The 12 inch granular drainage layer has a minimum hydraulic conductivity of 5.0 X 10⁻² cm/s.
- 5. The final cover configuration for the South Unit from the base to the surface will consist of 12 inches of recompacted clay cover overlain by a 40-mil Linear Low Density Polyethylene (LLDPE) geomembrane liner, a 200-mil double sided geocomposite drainage layer, 30 inches of general cover soils and 6 inches of soil material capable of supporting vegetation.
- 6. The 12 inches of recompacted clay cover will be constructed with a maximum hydraulic conductivity of 1.0 X 10⁻⁷ cm/s.
- 7. It is assumed that the 40-mil LLDPE geomembrane cover liner layer will have 15 installation defects per acre each retaining a cross-sectional area of 1 cm².
- 8. The 200-mil double sided geocomposite drainage layer will have a hydraulic conductivity of 3.5 cm/s. per the geocomposite flow calculation.
- 9. The maximum waste depth upon closure of the landfill will be approximately 1152 inches in depth.

METHOD:

- 1. Determine HELP input data for weather, precipitation, evapotranspiration, etc. for Effingham, Illinois or other cities located within the region surrounding Effingham, Illinois.
- 2. Utilize the South Unit design attributes for the composite liner system, leachate collection system, waste depth and final cover system for use as HELP input.
- 3. Complete three HELP run scenarios over a one (1) acre area for the estimated 61year design period (31 years of active life and 30 years of post-closure care) and 70 years after the design period. One run will be completed during the estimated 31 year active life of the landfill; one run will be conducted for the 30 year post closure care period; and one run will be completed for 70 years after post closure.
- 4. Utilize the HELP output data for use in the GIA.

Assumptions:

Input Data for all HELP Simulations

- Synthetically generated temperature and rainfall inputs were developed using actual monthly mean temperature and rainfall data from the St. Louis, Missouri weather station and synthetically generated based on St. Louis, Missouri simulations.
- Synthetically generated solar radiation and evapotranspiration inputs were developed using the latitude for Effingham, Illinois and synthetically generated based on St. Louis, Missouri simulations.
- The liner geomembrane pinhole density of 1 is utilized per the recommendations from the HELP Model 3.07 guidance information which notes that pinhole density of 0.5 to 1 may be typical based on current manufacturing process.
- The liner geomembrane installation defect density of 10 holes/acre has been utilized based on the HELP Model guidance and typical applications submitted and approved by the Illinois EPA.

	TITLE:	South Unit HELP		Calc No.	Rev. No.
ANDREWS	Project:	Landfill 33		Date: 08/29/2018	
•	Job No.:	180130		Sheet 2 of 8	
	Prepared	MTH Checked			
	By:		· • •	Reviewed:	

• The cover geomembrane installation defect density of 15 holes/acre has been utilized based on the HELP Model guidance and typical applications submitted and approved by the Illinois EPA.

Input Data for Individual HELP Simulations

H.E.L.P. Model Design Setup (Active Life Period – Years 1 through 31)

Layer	Depth	Description	Notes
1	12"	Daily Cover Layer	Layer 1: Vertical Percolation Layer (1) Soil Texture #11
2	1152"	Waste	Layer 2: Vertical Percolation Layer (1) Soil Texture #18 for municipal solid waste
3	12"	Pea Gravel/Coarse Sand OR Sand and 300 mil Double Sided Geocomposite	Layer 3: Lateral Drainage Layer (2) Soil Texture #21 K = 5.0 X 10 ⁻² cm/sec Average Slope 2.2% Drainage Length 615 feet
4	0.06"	60 mil HDPE Geomembrane	Layer 4: Flexible Membrane Liner Layer (4) Material Texture #35 Pinhole-1, Defects-10, Installation Quality-4 (Poor)
5	36"	Recompacted Clay Liner	Layer 5: Barrier Soil Liner Layer (3) Soil Texture #16

Notes for Active Life Period – Years 1 through 31

- 12 inches of intermediate cover was assumed for this HELP run.
- An initial average waste depth of 1,152 inches was assumed for years 1 through 31.
- HELP was allowed to generate the initial moisture content and snow water.
- A Leaf Area Index of 3.0 was utilized to represent the presence of a fair stand of grass.
- The SCS Runoff Curve Number is based on an assumed top grade of 14% composed of vegetated soils with a maximum flow distance of 630 feet.
- Fractional area allowing runoff is presumed to be 75% assuming that the waste is in place and runoff potential is limited.
- The evaporative zone depth is presumed to be the minimum recommended by the HELP program of 12 inches.

H.E.L.P. Model Design Setup (Post-Closure Care Period - Years 32 through 61)

Layer	Depth	Description	Notes
1	6"	Vegetative Layer	Layer 1: Vertical Percolation Layer (1) Soil Texture #8

	TITLE:	South Uni	t HELP	Calc No.	Rev. No.
ANDREWS	Project:	Landfill 33		Date: 08/29/2018	
\bullet	Job No.:	180130		Sheet 3 of	8
	Prepared	MTH Checked			
	By:			Reviewed:	

2	30"	Protective Layer	Layer 2: Vertical Percolation Layer (1) Soil Texture #11
3	0.20"	Geosynthetic Drainage Layer	Layer 3: Lateral Drainage Layer (2) Soil Texture #20 Average Slope 14.5% Drainage Length 630 feet
4	0.04"	40 mil LLDPE Geomembrane	Layer 4: Flexible Membrane Liner Layer (4) Material Texture #36 Pinhole-1, Defects-15, Installation Quality-4 (Poor)
5	12"	Recompacted Clay Cover Liner	Layer 5: Barrier Soil Liner Layer (3) Soil Texture #16 (shown as 0 due to conductivity amendment) K = 1.0 X 10 ⁻⁷ cm/sec
6	1,152"	Waste	Layer 6: Vertical Percolation Layer (1) Soil Texture #18 for municipal solid waste
7	12"	Pea Gravel/Coarse Sand OR Sand and 300 mil Double Sided Geocomposite	Layer 7: Lateral Drainage Layer (2) Soil Texture #21 (shown as 0 due to conductivity amendment) K = 5.0 X 10 ⁻² cm/sec Average Slope 2.2% Drainage Length 615 feet
8	0.06"	60 mil HDPE Geomembrane	Layer 8: Flexible Membrane Liner Layer (4) Material Texture #35 Pinhole-1, Defects-10, Installation Quality-4 (Poor)
9	36"	Recompacted Clay Liner	Layer 9: Barrier Soil Liner Layer (3) Soil Texture #16

Notes for Post-Closure Care Period – Years 32 through 61

- The Layer 1 thickness of 6 inches and HELP Model default soil texture #8 used is based on the assumption that 6 inches of loamy soil will be placed as the final lift of the final cover system to promote vegetative growth.
- The Layer 2 HELP Model default soil texture #11 was used based on the assumption that the use of general site soils classified as lean clay (CL).
- The Layer 3 HELP Model default soil texture #20 was used based on the standard geocomposite drainage material attributes.
- The full waste depth of 1,152 inches was used for the post closure care period years 32 through 61 and the final soil water content specifications from the previous 1 through 31 year HELP run were input.
- Initial soil water and snow water content was specified for layers 6 through 9 based on the final water storage of the 1 through 31 year HELP run. The initial soil water content specified for layers 1 through 5 was assumed to be at field capacity for all layers except Layer 5, the initial water content was specified at the layers porosity to indicate a fully compacted clay material.
- A Leaf Area Index of 4.0 was utilized to represent the presence of significant vegetation over the landfill cover.

	TITLE:	South Unit HELP		Calc No.	Rev. No.
ANDREWS	Project:	Landfill 33		Date: 08/29/2018	
•	Job No.:	180130		Sheet 4 of 8	
	Prepared	MTH	Checked		
	By:		:	Reviewed	l:

- The SCS Runoff Curve Number is based on an assumed worst case grade of 14% (top of landfill slope) composed of areas with good stands of grass with a maximum flow distance of 630 feet based on the final cover configuration.
- Fractional area allowing runoff is presumed to be 90% assuming that the waste will be graded to the final approved contours and all areas will be closed.
- Evaporative zone depth is presumed to be 24-inches, larger than the minimum recommended 8-inches recommended by HELP and well below the maximum of 36-inches.

H.E.L.P. Model Design Setup (After Post-Closure Care Period - Year 62 through 131)

Layer	Depth	Description	Notes
1	6"	Vegetative Layer	Layer 1: Vertical Percolation Layer (1) Soil Texture #8
2	30"	Protective Layer	Layer 2: Vertical Percolation Layer (1) Soil Texture #11
3	0.20"	Geosynthetic Drainage Layer	Layer 3: Lateral Drainage Layer (2) Soil Texture #20 (shown as 0 due to conductivity amendment) K = 1.0 cm/sec Average Slope 5% Drainage Length 178 Ft (Longest)
4	0.04"	40-mil LLDPE Geomembrane	Layer 4: Flexible Membrane Liner Layer (4) Material Texture #36 Pinhole-1, Defects-15, Installation Quality-Poor
5	12"	Recompacted Clay Cover Liner	Layer 5: Barrier Soil Liner Layer (3) Soil Texture #16 (shown as 0 due to conductivity amendment) K = 1.0 X 10 ⁻⁵ cm/sec
6	1,512"	Waste	Layer 2: Vertical Percolation Layer (1) Soil Texture #18 for municipal solid waste
7	12"	Pea Gravel/Coarse Sand OR Sand and 300 mil Double Sided Geocomposite	Layer 3: Vertical Percolation Layer (1) Soil Texture #21 (shown as 0 due to conductivity amendment) K = 5.0 X 10 ⁻² cm/sec Subsurface Inflow = 0.35 Inches/Year
8	0.06"	60-mil HDPE Geomembrane	Layer 9: Flexible Membrane Liner Layer (4) Material Texture #35 Pinhole-1, Defects-10, Installation Quality -Poor
9	36"	Recompacted Clay Liner	Layer 13: Barrier Soil Liner Layer (3) Soil Texture #16

Notes for After Post Closure Care Period – Years 62 through 131

• Reduction of the final cover drainage layer (Layer 3) hydraulic conductivity to 1.0 cm/sec is based on the assumption of potential sediment fouling of the geosynthetics.

	TITLE:	South Unit HELP		Calc No.	Rev. No.
ANDREWS	Project:	Landfill 33		Date:	08/29/2018
\mathbf{V}	Job No.:	180130		Sheet 5 o	f 8
	Prepared	MTH	Checked		
	By:		:	Reviewed	

- An increase in final cover recompacted clay cover liner (Layer 5) hydraulic conductivity to 1.0 X 10⁻⁵ cm/sec is based on the assumption that potential settlement may occur and result in a higher hydraulic conductivity.
- Revision to the leachate drainage layer (Layer 7) from a lateral drainage layer designation layer type 2 to
 a vertical percolation layer type 1 is based on the assumption that leachate collection will cease after
 completion of the 30 year post closure care period.
- Initial soil water and snow water content was specified for layers 1 through 9 based on the final water storage of the 31 through 61year HELP run.
- A Leaf Area Index of 5.0 was utilized to represent an excellent stand of grass over the landfill cover.
- The SCS Runoff Curve Number is based on an assumed worst case grade of 14% (top of landfill slope) composed of areas with excellent stands of grass with a maximum flow distance of 630 feet based on the final cover configuration.
- Fractional area allowing runoff is presumed to be 95%.
- Evaporative zone depth is presumed to be 24-inches, larger than the minimum recommended 8-inches recommended by HELP and below the maximum of 36-inches.

CONCLUSION:

Results of the HELP Model simulations indicate that the average annual leachate heads will remain below the surrounding piezometric groundwater elevation throughout the 67-year Design Period and the 70-year after post closure period resulting in an inward gradient. Final results for each of the four simulation runs are as follows:

HELP Model Output Liner Head Information				
HELP Run Scenario	Average Annual Leachate Head			
Active Life Years 1 through 31	1.548 - Inches			
Post Closure Care Period Years 32 through 61	0 - Inches			
After Post Closure Care Period Years 62 through 131	2.252 Inches			

REFERENCES:

Koerner, Robert M. "Designing with Geosynthetics." Upper Saddle River, NJ: Pearson Prentice Hall, 2005.

National Environmental Satellite, Data, and Information Service, National Oceanic & Atmospheric Administration http://hurricane.ncdc.noaa.gov/climatenormals/clim20/il/113320.pdf (accessed August 1, 2011)

	TITLE:	South Uni	IT HELP	Calc No.	Rev. No.
ANDREWS ENGINEERING INC	Project:	Landfill 33		Date: 08/29/2018	
	Job No.:	180130		Sheet 6	of 8
	Prepared	MTH Checked			
	By:			Reviewed	l:

Schroeder, Paul R., Tamsen S. Dozier, Paul A. Zappi, Bruce M. McEnroe, John W. Sjostrom, and R. Lee Peyton. The Hydrologic Evaluation of Landfill Performance (HELP) Model; Engineering Documentation for Version 3. Vols. EPA/600/R-94/168b. Environmental Laboratory, U.S. Army Corps of Engineers, Vicksburg, MS: U.S. Environmental Protection Agency: Office of Research and Development, 1994.

Google Maps

http://maps.google.com/maps?f=q&source=s_q&hl=en&geocode=&q=2150+North,+Oneida,+IL&aq=0& vps=1&sll=41.028154,-

90.250111&sspn=0.0225,0.036221&ie=UTF8&hq=&hnear=2150+N,+Oneida,+Knox,+Illinois+61467 (accessed August 1, 2011).

Xuede, Qian, Robert M. Koerner, and Donald H. Gray. "Geotechnical Aspects of Landfill Design and Construction." Upper Saddle River, NJ: Prentice Hall, 2002.

.

	•••••••••••••••••••••••••••••••••••••••	
••		•
••		•
••	HYDROLOGIC EVALUATION OF LANDFILL PERFORMANCE	•
**	HELP MODEL VERSION 3.07 (1 NOVEMBER 1997)	••
••	DEVELOPED BY ENVIRONMENTAL LABORATORY	•
••	USAE WATERWAYS EXPERIMENT STATION	••
••	FOR USEPA RISK REDUCTION ENGINEERING LABORATORY	••
••		•
**		•

PRECIPITATION DATA FILE:	C:\LF33\DATA4E1.D4
TEMPERATURE DATA FILE:	C:\LF33\DATA7E1.D7
SOLAR RADIATION DATA FILE:	C:\LF33\DATA13E1.D13
EVAPOTRANSPIRATION DATA:	C:\LF33\DATA11E1.D11
SOIL AND DESIGN DATA FILE:	C:\LF33\DATA10E1.D10
OUTPUT DATA FILE:	C:\LF33\E10145.OUT

TIME: 91:12 DATE: 6/29/2018

TITLE: EXISTING UNIT - ACTIVE LIFE - YEARS 1 TO 45

NOTE: INITIAL MOISTURE CONTENT OF THE LAYERS AND SHOW WATER HERE COMPUTED AS HEARLY STEADY-STATE VALUES BY THE PROGRAM.

LAYER 1

TYPE 1 - VERTICAL PERCOLATION LAYER

MATERIAL TEXTURE NUMBER 11						
-	12.00 INCHES					
•	· 0.4640 VOL/VOL					
•	0.3100 VOL/VOL					
•	0.1870 VOL/VOL					
•	0.3377 VOL/VOL					
•	0.639999998000E-04 CM/SEC					
	•					

LAYER 2

TYPE 1 - VERTICAL	PE	RCOLATION LAYER
MATERIAL TEXT	URE	NUMBER 18
THICKNESS	=	936.00 INCHES
POROSITY	-	0.6710 VOL/VOL
FIELD CAPACITY	-	0.2920 VOL/VOL
WILTING POINT	-	0.0770 VOL/VOL
INITIAL SOIL WATER CONTENT	-	0.2900 VOL/VOL
EFFECTIVE SAT. HYD. COND.	-	0.10000005000E-02 CM/SEC

LAYER 3

TYPE 3 - BARR	IER	SOIL LINER	
MATERIAL TEXT	URE	NUMBER 16	
THICHIESS	-	120.00	INCHES
POROSITY	•	0.4270	VOL/VOL
FIELD CAPACITY	•	0.4180	VOL/VOL
WILTING POINT	-	0.3670	VOL/VOL
INITIAL SOIL WATER CONTENT	•	0.4270	VOL/VOL
EFFECTIVE SAT. HYD. COND.	•	0.10000000	1000E-06 CN/SEC

GENERAL DESIGN AND EVAPORATIVE ZONE DATA

NOTE: SCS RUNOFF CURVE HUNBER WAS COMPUTED FROM DEFAULT SOIL DATA BASE USING SOIL TEXTURE #11 WITH BARE GROUND CONDITIONS, A SURFACE SLOPE OF 10.3 AND A SLOPE LENGTH OF 445. FEET.

SCS RUNOFF CURVE NUMBER	•	94.60	
FRACTION OF AREA ALLOWING RUNOFF	•	75.0	PERCENT
AREA PROJECTED ON HORIZONTAL PLANE	~	1.000	ACRES
EVAPORATIVE ZONE DEPTH	•	6.0	INCHES
INITIAL WATER IN EVAPORATIVE ZONE		1.089	INCHES
UPPER LIMIT OF EVAPORATIVE STORAGE	-	2.784	INCHES
LOWER LIMIT OF EVAPORATIVE STORAGE	-	· 1.122	INCHES
INITIAL SNOW WATER	•	0.000	INCHES
INITIAL WATER IN LAYER MATERIALS	•	326.755	INCHES
TOTAL INITIAL WATER	-	326.755	INCHES
TOTAL SUBSURFACE INFLOW	•	-6.00	INCHES/YEAR

2.07 2.72

1.10

0.800

0.647 0.387

0.744 1.980

0.417

0.0392 0.0437

0.0486 0.0535

____ AVERAGES OF MONTHLY AVERAGED DAILY HEADS (INCHES)

1 THROUGH 45

3.62 2.24

1.75

0.575 0.384

0.542 0.460

2.507 1.232

0.963

0.0446

0.0538 0.0516

4.21 2.03

1.99

0.848

0.263

0.750

2.793 0.852

1.063

0.289

0.0411

0.0513 0.0539

Ĺ ۰.

JAN/JUL FEB/AUG MAR/SEP APR/OCT MAY/NOV JUN/DEC

3.41 2.20

1.34

0.423

0.279

0.406 0.341

2.525 1.376

0.828

0.628

0.0433

0.0425

0.0514 0.0524

3.24 2.75

1.22

0.775

0.422

0.705 0.300

2.077 1.850

0.519

0.807

0.0441

0.0424

0.0532

AVERAGE MONTHLY VALUES IN INCHES FOR YEARS

1.64 3.57

0.94

0.423

0.462 0.663

0.596 2.275

0.365

0.0414

0.0422

0.0531 0.0524

EVAPOTRANSPIRATION AND WEATHER DATA

NOTE: EVAPOTRANSPIRATION DATA WAS OBTAINED FROM ST. LOUIS MISSOURI

STATION LATITUDE	-	39.10	DEGREES
NAXIMUN LEAF AREA INDEX	-	0.00	
START OF GROWING SEASON (JULIAN DATE)	-	98	
END OF GROWING SEASON (JULIAN DATE)	•	300	
EVAPORATIVE ZONE DEPTH	•	6.0	INCHES
AVERAGE ANNUAL WIND SPEED	•	10.40	MBH
AVERAGE 1ST QUARTER RELATIVE HUMIDITY	•	73.00	3
AVERAGE 2ND QUARTER RELATIVE HUMIDITY	•	67.00	Ĵ,
AVERAGE 3RD QUARTER RELATIVE HUMIDITY	•	71.00	ŝ
AVERAGE 4TH QUARTER RELATIVE HUMIDITY		74.00	3

NOTE:	PRECIPITATION DATA WAS	SYNTHETICALLY	GENERATED USING
	COEFFICIENTS FOR	ST. LOUIS	MISSOURI
	NORMAL MEAN MONTHLY	PRECIPITATION	(INCHES)

JAN/JUL	FEB/AUG	NAR/SEP	APR/OCT	MAY/NOV	JUN/DEC
					·····
1.72	2.14	3.20	3.55	3.54	3.73
3.63	2.55	2.70	2.32	2.53	2.22

NOTE: TEMPERATURE DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR ST. LOUIS MISSOURI

NORMAL MEAN MONTHLY TEMPERATURE (DEGREES FAHRENHEIT)

JAN/JUL	FEB/AUG	MAR/SEP	APR/OCT	MAY/NOV	JUN/DEC
28:60	33.80	43.20	56.10	65.60	74.80
78.90	77.00	69.70	57.90	44.60	34.20

NOTE: SOLAR RADIATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR ST. LOUIS MISSOURI AND STATION LATITUDE = 39.10 DEGREES

DAILY AVERAGE HEAD ON TOP OF LAYER 3 AVERAGES 1.4143 1.4

PERCOLATION/LEAKAGE THROUGH LAYER 3

.

PRECIPITATION TOTALS

RUNOFF TOTALS

STD. DEVIATIONS

STD. DEVIATIONS

EVAPOTRANSPIRATION TOTALS

STD. DEVIATIONS

STD. DEVIATIONS

TOTALS

PEAK DAILY VALUES FOR YEARS	1 THROUGH	45
	(INCHES)	(CU. FT.)
PRECIPITATION	3.57	12959.100
RUNOFF	1.963	7127.2856
PERCOLATION/LEAKAGE THROUGH LAYER 3	0.003830	13.90330
AVERAGE HEAD ON TOP OF LAYER 3	15.120	
SHOW WATER	2.43	8021.5488
MAXIMUN VEG. SOIL WATER (VOL/VOL)	٥	. 4640
MINIMUM VEG. SOIL WATER (VOL/VOL)	0	. 1870
	•••••	

	1.7192	1.7049	1.6942	1.6420	1.6770	1.7093	
STD. DEVIATIONS					3.4384 3.2115		

AVERAGE ANNUAL TOTALS & (STD. DEVIATIONS) FOR YEARS 1 THROUGH 45 PERCENT INCHES CU. FEET PRECIPITATION 33.70 (4.999) 122337.5 100.00 6.244 (1.8170) 22664.17 18.526 RUNOFF 75523.41 61.734 EVAPOTRANSPIRATION 20.805 (2.5041) PERCOLATION/LEAKAGE THROUGH LAYER 3 0.51531 (0.56111) 1870.562 1.52902 AVERAGE HEAD ON TOP OF LAYER 3 1.662 (3.079) CHANGE IN WATER STORAGE 0.134 (1.8920) 484.73 0.396

FINAL WATER STORAGE AT END OF YEAR 45 ____ LAYER 1 (INCHES) (VOL/VOL) 3.6105 0.3009

** ** ** ** HYDROLOGIC EVALUATION OF LANDFILL PERFORMANCE HELP MODEL VERSION 3.07 (1 NOVEMBER 1997) Developed by Environmental Laboratory USAE WATEWAYS EXPERIMENT STATION FOR USEPA RISK REDUCTION ENGINEERING LABORATORY •• **

•••

•••

٠. ••

PRECIPITATION DATA FILE: C:\LF33\DATA42.D4 TEMPERATURE DATA FILE: C:\LF33\DATA42.D7 SOLAR RADIATION DATA FILE: C:\LF33\DATA12.D1 EVAPORANISEIRATION DATA: C:\LF33\DATA12.D1 SOIL AND DESIGN DATA FILE: C:\LF33\DATA10E2.D10 OUTPUT DATA FILE: C:\LF33\DATA10E3.D10

DATE: 6/29/2018 TIME: 92:35

TITLE: EXISTING UNIT - 30 YEAR POST CLOSURE - YEARS 46 TO 75

NOTE: INITIAL MOISTURE CONTENT OF THE LAYERS AND SHOW WATER WERE SPECIFIED BY THE USER.

LAYER 1

TYPE 1 - VERTICA		
MATERIAL TEX	TURE N	UNBER 8
THICKNESS	•	6.00 INCHES
POROSITY	-	0.4630 VOL/VOL
FIELD CAPACITY	•	0.2320 VOL/VOL
WILTING POINT		0.1160 VOL/VOL
INITIAL SOIL WATER CONTENT	-	0.2320 VOL/VOL
EFFECTIVE SAT. HYD. COND.		.369999991000E-03 CM/SEC

2	277.9134	0.2969	
3	51.2400	0.4270	
SHOW WATER	0.000		

':

NOTE: SATURATED HYDRAULIC CONDUCTIVITY IS MULTIPLIED BY 4.20 FOR ROOT CHANNELS IN TOP HALF OF EVAPORATIVE ZONE.

LAYER 2

TYPE 1 - VERTICAL PERCOLATION LAYER

.

MATERIAL TEXT	UKE	NUMBER II
THICKNESS	•	30.00 INCHES
POROSITY	-	0.4640 VOL/VOL
FIELD CAPACITY	•	0.3100 VOL/VOL
WILTING POINT	•	0.1870 VOL/VOL
INITIAL SOIL WATER CONTENT	•	0.3100 VOL/VOL
EFFECTIVE SAT. HYD. COND.	•	0.639999998000E-04 CM/SEC

LAYER 3

TYPE 2 - LATERA		
MATERIAL TEXT	URE	NUMBER 20
THICKNESS	•	0.20 INCHES
POROSITY	-	0.8500 VOL/VOL
FIELD CAPACITY	-	0.0100 VOL/VOL
WILTING POINT	-	0.0050 VOL/VOL
INITIAL SOIL WATER CONTENT	•	0.0100 VOL/VOL
EFFECTIVE SAT. HYD. COND.	•	10.000000000 CM/SEC
SLOPE	•	10.00 PERCENT
DRAINAGE LENGTH	•	445.0 FEET

LAYER 4

TYPE 4 - FLEXIBLE MEMBRANE LINER

MATERIAL	TEXTURE	NUMBER 3	6
THICHIESS	•	0.04	INCHES
POROSITY	•	0.000	0 VOL/VOL
FIELD CAPACITY	•	0.000	0 VOL/VOL
WILTING POINT	-	0.000	0 VOL/VOL
INITIAL SOIL WATER CONTI	ENT =	0.000	0 VOL/VOL
EFFECTIVE SAT. HYD. CON	D. =	0.3999999	93000E-12 CM/SEC
FML PINHOLE DENSITY	.=	1.00	HOLES/ACRE
FML INSTALLATION DEFECT:	s •	15.00	HOLES/ACRE
FNL PLACEMENT QUALITY	•	4 - POOR	

AND A SLOPE LENGTH OF 445. FEET.

SCS RUNOFF CURVE NUMBER	-	79.70	
FRACTION OF AREA ALLOWING RUNOFF	•	90.0	PERCENT
AREA PROJECTED ON HORIZONTAL PLANE	•	1.000	ACRES
EVAPORATIVE ZONE DEPTH	•	24.0	INCHES
INITIAL WATER IN EVAPORATIVE ZONE	•	6.972	INCHES
UPPER LINIT OF EVAPORATIVE STORAGE	-	11.130	INCHES
LOWER LINIT OF EVAPORATIVE STORAGE	-	4.062	INCHES
INITIAL SNOW WATER	-	0.000	INCHES
INITIAL WATER IN LAYER MATERIALS	•	344.956	INCHES
TOTAL INITIAL WATER	-	344.956	INCHES
TOTAL SUBSURFACE INFLOW	-	0.00	INCHES/YEAR

EVAPOTRANSPIRATION AND WEATHER DATA

NOTE: EVAPOTRANSPIRATION DATA WAS OBTAINED FROM ST. LOUIS . MISSOURI

	'		
STATION LATITUDE	-	39.10	DEGREES
MAXIMUM LEAF AREA INDEX	•	3.00	
START OF GROWING SEASON (JULIAN DATE)		98	
END OF GROWING SEASON (JULIAN DATE)	=	300	
EVAPORATIVE ZONE DEPTH	=	24.0	INCHES
AVERAGE ANNUAL WIND SPEED	=	10.40	MPH
AVERAGE 1ST QUARTER RELATIVE HUMIDITY	-	73.00	ŝ
AVERAGE 2ND QUARTER RELATIVE HUMIDITY	=	67.00	3
AVERAGE 3RD QUARTER RELATIVE HUMIDITY	•	71.00	3
AVERAGE 4TH QUARTER RELATIVE HUMIDITY	-	74.00	3

NOTE: PRECIPITATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR ST. LOUIS MISSOURI

NORMAL MEAN MONTHLY PRECIPITATION (INCHES)

JAN/JUL	FEB/AUG	MAR/SEP	APR/OCT	MAY/NOV	JUN/DEC
1.72	2.14	3.28	3.55	3.54	3.73
3.63	2.55	2.70	2.32	2.53	2.22

NOTE: TEMPERATURE DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR ST. LOUIS MISSOURI

NORMAL MEAN MONTHLY TEMPERATURE (DEGREES FAHRENHEIT)

JAN/JUL FEB/AUG MAR/SEP APR/OCT MAY/NOV JUN/DEC

LAYER 5

TYPE 3 - 84	RRIER	SOIL LINER	
NATERIAL TE	XTURE	NUMBER 16	
THICKNESS	-	12.00	INCHES
POROSITY	-	0.4270	VOL/VOL
FIELD CAPACITY	•	0.4180	VOL/VOL
WILTING POINT	•	0.3670	VOL/VOL
INITIAL SOIL WATER CONTEN	IT =	0.4270	VOL/VOL
EFFECTIVE SAT. HYD. COND.	-	0.10000001	000E-06 CM/SEC

LAYER 6

.

.

TYPE 1 - VERTICAL	99	RCOLATION LAYER
MATERIAL TEXT	URE	NUNBER 18
THICKNESS	•	936.00 INCHES
POROSITY	۰	0.6710 VOL/VOL
FIELD CAPACITY	•	0.2920 VOL/VOL
WILTING POINT	•	0.0770 VOL/VOL
INITIAL SOIL WATER CONTENT	۰	0.2969 VOL/VOL
EFFECTIVE SAT. HYD. COND.	•	0.10000005000E-02 CM/SEC

LAYER 7

. TYPE 3 - BARR Material text				
THICKNESS	•	120.00	INCHES	
POROSITY	=	0.4270	VOL/VOL	
FIELD CAPACITY	-	0.4180	VOL/VOL	
WILTING POINT		0.3670	VOL/VOL	
INITIAL SOIL WATER CONTENT	•	0.4270	VOL/VOL	
EFFECTIVE SAT. HYD. COND.	-	0.10000000	000E-06	CM/SEC

GENERAL DESIGN AND EVAPORATIVE ZONE DATA

NOTE: SCS RUHOFF CURVE NUMBER WAS COMPUTED FROM DEFAULT Soil data base using soil texture # 8 with a Fair stand of grass, a surface slope of 10.3

۰.

28.60	33.80	43.20	56.10	65.60	74.80
78.90	77.00	69.70	57.90	44.60	34.20

NOTE: SOLAR RADIATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR ST. LOUIS MISSOURI AND STATION LATITUDE = 39.10 DEGREES

AVERAGE	MONTHLY	VALUES	111	INCHES	FOR	YEARS	1	THROUGH	I .	30	
-											

	JAN/JUL	FEB/AUG	MAR/SEP	APR/OCT	MAY/NOV	JUN/DEC
PRECIPITATION						
TOTALS	1.56	2.15	3.09	3.37	3.44	4.42
	3.38	2.66	2.75	2.10	2.16	2.06
STD. DEVIATIONS	0.95	1.09	0.92	1.36	1.56	2.04
	1.87	1.38	1.45	1.28	1.38	1.14
RUNOFF						
TOTALS	0.180	0.498	0.318	0.025	0.021	0.070
	0.027	0.005	0.005	0.006	0.018	0.016
STD. DEVIATIONS	0.320	0.565	0.602	0.098	0.048	0.167
	0.081	0.025	0.018	0.027	0.045	0.033
EVAPOTRANSPIRATION						
TOTALS	0.512	0.636	2.140	3.263	4.408	4.824
	3.531	2.597	2.122	1.267	0.899	0.676
STD. DEVIATIONS	0.277	0.371	0.568	0.766	0.840	1.655
	1.477	1.178	1.021	0.288	0.279	0.195
LATERAL DRAINAGE COLL	ECTED FROM	LAYER 3				:
		•••••				``
TOTALS	0.3953					
	0.0652	0.0162	0.0004	0.0201	0.2833	0.5459
STD. DEVIATIONS	0.4584	0.8242	0.7987	0.7111	0.5504	0.2367

PERCOLATION/LEAKAGE THR TOTALS STD. DEVIATIONS PERCOLATION/LEAKAGE THR	0.0000 0.0000 0.0000	R 5 0.0000 0.0000	0.0000	0.0000	0.0000	0.0000
STD. DEVIATIONS	0.0000				0.0000	0.0000
STD. DEVIATIONS	0.0000					
	0.0000			0.0000	0.0000	0.0000
POCOLATION (LENKACE THE		0.0000	0.0000	0.0000	0.0000	0.0000
POCOLATION/LEAVACE THE	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
ERCOLATION DEARAGE THAT	DUGH LAYE	r 7				
TOTALS	0.0146	0.0135	0.0148	0.0143	0.0147	0.0142
	0.0122	0.0111	0.0107	0.0111	0.0107	0.0110
				0.0370	0.0382	0.0369
STD. DEVIATIONS	0.0379 0.0341		0.0384 0.0327		0.0302	0.0336
AVERAGES OF	F MONTHLY	AVERAGED	DAILY HE			
DAILY AVERAGE HEAD ON TO						
DAILY AVERAGE HEAD ON TO AVERAGES			0.0038 0.0000	0.0028 0.0001	0.0014 0.0007	
AVERAGES	0.0010	0.0015				0.001
	0.0010 0.0002	0.0015 0.0000	0.0000	0.0001	0.0007	0.001
AVERAGES STD. DEVIATIONS DAILY AVERAGE HEAD ON TO	0.0010 0.0002 0.0012 0.0004	0.0015 0.0000 0.0023 0.0001 ER 7	0.0000	0.0001	0.0007	0.001
AVERAGES STD. DEVIATIONS DAILY AVERAGE HEAD ON TO	0.0010 0.0002 0.0012 0.0004	0.0015 0.0000 0.0023 0.0001 ER 7	0.0000	0.0001	0.0007	0.001
AVERAGES STD. DEVIATIONS DAILY AVERAGE HEAD ON TO	0.0010 0.0002 0.0012 0.0004	0.0015 0.0000 0.0023 0.0001 ER 7	0.0000 0.0020 0.0000	0.0001 0.0019 0.0003	0.0007 0.0014 0.0021	0.001
AVERAGES STD. DEVIATIONS DAILY AVERAGE HEAD ON TO	0.0010 0.0002 0.0012 0.0004 DP OF LAY! 0.6385	0.0015 0.0000 0.0023 0.0001 ER 7 0.8316	0.0000 0.0020 0.0000 0.8231 0.6139	0.0001 0.0019 0.0003 0.7848 0.5851	0.0007 0.0014 0.0021 0.7466 0.5565	0.000 0.0014 0.0006 0.0020 0.7084 0.5279 2.3226

PRECIPITATION	33.21	C	4.731)	120562.0	100.00
RUNOFF	1.190	t	1.0105)	4317.89	3.501
EVAPOTRAISPIRATION	26.875	C	2.9462)	97555.70	80.917
LATERAL DRAINAGE COLLECTED FROM LAYER 3	5.14694	C	2.06383)	18683.408	15.49693
PERCOLATION/LEAKAGE THROUGH LAYER 5	0.00004	C	0.00001)	0.133	0.00011
AVERAGE HEAD ON TOP OF LAYER 4	0.001 (0.000)		
PERCOLATION/LEAKAGE THROUGH LAYER 7	0.15292	(0.41021)	555.089	0.46042
AVERAGE HEAD ON TOP OF LAYER 7	0.678 (2.177)		
CHANGE IN WATER STORAGE	-0.152	(1.3347)	-550.09	-0.456

* * * * * * * * * * * * * * * * * * * *	••••••	•••••
PEAK DAILY VALUES FOR YEARS	1 THROUGH	30
	(INCHES)	(CU. FT.)
PRECIPITATION	3.44	12487.200
RUNOFF	1.962	7120.3406
DRAINAGE COLLECTED FROM LAYER 3	0.62284	2260.91333
PERCOLATION/LEAKAGE THROUGH LAYER S	0.000003	0.01149
AVERAGE HEAD ON TOP OF LAYER 4	0.049	
MAXIMUM HEAD ON TOP OF LAYER 4	0.113	
LOCATION OF MAXIMUM HEAD IN LAYER 3 (DISTANCE FROM DRAIN)	0.0 FEET	
PERCOLATION/LEAKAGE THROUGH LAYER 7	0.003732	13.54868
AVERAGE HEAD ON TOP OF LAYER 7	11.674	
SHOW WATER	2.43	8821.5488
MAXIMUM VEG. SOIL WATER (VOL/VOL)	0.	4278
MINIMUN VEG. SOIL WATER (VOL/VOL)	0.	1693

*** Maximum heads are computed using McEnroe's equations. ***

.....

.

Reference: Maximum Saturated Depth over Landfill Liner by Bruce M. NcEnroe, University of Kansas ASCE Journal of Environmental Engineering Vol. 119, No. 2, March 1993, pp. 262-270. FINAL WATER STORAGE AT END OF YEAR 30 -----(VOL/VOL) LAYER (INCHES) 1 1.6417 0.2736 9.0904 0.3030 2 . 3 0.0020 0.0100 4 0.0000 0.0000 5 5.1240 0.4270 273.3120 0.2920 6 7 51.2400 0.4270 0.000 SNOW WATER

.

ì

NOTE: SATURATED HYDRAULIC CONDUCTIVITY IS MULTIPLIED BY 4.90 FOR ROOT CHANNELS IN TOP HALF OF EVAPORATIVE ZONE.

LAYER 2

TYPE 1 - VERTICAL	PE	RCOLATION LAYER
MATERIAL TEXT	URE	NUMBER 11
THICKNESS	-	30.00 INCHES
POROSITY	-	0.4640 VOL/VOL
FIELD CAPACITY		0.3100 VOL/VOL
WILTING POINT	=	0.1870 VOL/VOL
INITIAL SOIL WATER CONTENT	•	0.3030 VOL/VOL
EFFECTIVE SAT. HYD. COND.	•	0.639999998000E-04 CM/SEC

LAYER 3

TYPE 2 - LATERA	LD	RAINAGE LAYER
MATERIAL TEXT	URE	NUMBER 0
THICHIESS	•	0.20 INCHES
POROSITY	-	0.8500 VOL/VOL
FIELD CAPACITY	•	0.0100 VOL/VOL
WILTING POINT	•	0.0050 VOL/VOL
INITIAL SOIL WATER CONTENT	•	0.0100 VOL/VOL
EFFECTIVE SAT. HYD. COND.	-	1.0000000000 CM/SEC
SLOPE	•	10.00 PERCENT
DRAINAGE LENGTH	•	445.0 FEET

LAYER 4

TYPE 4 - FLEXIB	LE	MEMBRANE LINER
MATERIAL TEXT	URE	NUMBER 36
THICKNESS	•	0.04 INCHES
POROSITY	•	0.0000 VOL/VOL
FIELD CAPACITY	•	0.0000 VOL/VOL
WILTING POINT		0.0000 VOL/VOL
INITIAL SOIL WATER CONTENT	-	0.0000 VOL/VOL
EFFECTIVE SAT. HYD. COND.	•	0.399999993000E-12 CM/SEC
FML PINHOLE DENSITY	•	1.00 HOLES/ACRE
FML INSTALLATION DEFECTS	•	15.00 HOLES/ACRE
FML PLACEMENT QUALITY	•	4 - POOR

AND A SLOPE LENGTH OF 445. FEET.

SCS RUNOFF CURVE NUMBER	•	72.90	
FRACTION OF AREA ALLOWING RUNOFF	•	95.0	PERCENT
AREA PROJECTED ON HORIZONTAL PLANE	•	1.000	ACRES
EVAPORATIVE ZONE DEPTH	•	24.0	INCHES
INITIAL WATER IN EVAPORATIVE ZONE	•	7.096	INCHES
UPPER LIMIT OF EVAPORATIVE STORAGE	•	11.130	INCHES
LOMER LIMIT OF EVAPORATIVE STORAGE	•	4.062	INCHES
INITIAL SNOW WATER	-	0.000	INCHES
INITIAL WATER IN LAYER MATERIALS	•	340.410	INCHES
TOTAL INITIAL WATER	•	340.410	INCHES
TOTAL SUBSURFACE INFLOM	-	0.00	INCHES/YEAR

EVAPOTRANSPIRATION AND WEATHER DATA

NOTE: EVAPOTRANSPIRATION DATA WAS OBTAINED FROM ST. LOUIS MISSOURI

STATION LATITUDE		39.10	DEGREES
MAKIMUM LEAF AREA INDEX	•	4.00	
START OF GROWING SEASON (JULIAN DATE)	•	98	
END OF GROWING SEASON (JULIAN DATE)	-	300	
EVAPORATIVE ZONE DEPTH	æ	24.0	INCHES
AVERAGE ANNUAL WIND SPEED	•	10.40	MPH
AVERAGE 1ST QUARTER RELATIVE HUMIDITY	-	73.00	3
AVERAGE 2ND QUARTER RELATIVE HUNIDITY		67.00	3
AVERAGE 3RD QUARTER RELATIVE HUMIDITY	-	71.00	÷
AVERAGE 4TH QUARTER RELATIVE HUMIDITY	•	74.00	3

NOTE: PRECIPITATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR ST. LOUIS MISSOURI

	NORMAL I	HEAN MONTHLY	PRECIPITATION	(INCHES)	
JAN/JUL	FEB/AUG	NAR/SEP	APR/OCT	MAY/NOV	JUN/DEC
1.72	2.14	3.28	3.55	3.54	3.73
3.63	2.55	2.70	2.32	2.53	2.22

NOTE: TEMPERATURE DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR ST. LOUIS MISSOURI

NORMAL MEAN MONTHLY TEMPERATURE (DEGREES FAHRENHEIT)

JAN/JUL FEB/AUG NAR/SEP APR/OCT MAY/NOV JUN/DEC

HYDROLOGIC EVALUATION OF LANDFILL PERFORMANCE
 HELP MODEL VERSION 3.07 (1 NOVEMBER 1997)
 DEVELOPED BY ENVIRONMENTAL LABORATORY
 USAE WATERNAYS EXPERIMENT STATION
 FOR USEPA RISK REDUCTION ENGINEERING LABORATORY

PRECIPITATION DATA FILE:	C:\LF33\DATA43.D4
TEMPERATURE DATA FILE:	C:\LF33\DATA73.D7
SOLAR RADIATION DATA FILE:	C:\LF33\DATA133.D13
EVAPOTRANSPIRATION DATA:	C:\LF33\DATA113.D11
SOIL AND DESIGN DATA FILE:	C:\LF33\DATA10E3.D10
OUTPUT DATA FILE:	C:\LF33\E176145.OUT

TIME: 92:59 DATE: 6/29/2018

TITLE: EXISTING UNIT - 70 YEAR AFTER POST CLOSURE - YEARS 76 TO 145

NOTE: INITIAL MOISTURE CONTENT OF THE LAYERS AND SNOW WATER WERE SPECIFIED BY THE USER.

LAYER 1

TYPE 1 - VERTICAL PERCOLATION LAYER MATERIAL TEXTURE NUMBER 0 THICKNESS 6.00 INCHES POROSITY 0.4630 VOL/VOL FIELD CARACITY 0.2320 VOL/VOL WILTING POINT 0.2320 VOL/VOL HILTING POINT 0.2130 VOL/VOL INITIAL SOIL WATER CONTENT 0.2736 VOL/VOL EFFECTIVE SAT. MYD. COND. 0.369999994000E-03 CM/SEC

LAYER 5

TYPE 3 - BAR	RIER	SOIL LINER		
MATERIAL TEX	TURE	NUMBER 0		
THICHIESS	9	12.00	INCHES	
POROSITY	•	0.4270	VOL/VOL	
FIELD CAPACITY	•	0.4180	VOL/VOL	
WILTING POINT	-	0.3670	VOL/VOL	
INITIAL SOIL WATER CONTENT	•	0.4270	VOL/VOL	
EFFECTIVE SAT. HYD. COND.	•	0.99999997	5000E-05	CM/SEC

LAYER 6

TYPE 1 - VERTICAL	PE	RCOLATION LAYER
MATERIAL TEXT	URE	NUMBER 18
THICKNESS	•	936.00 INCHES
POROSITY	•	0.6710 VOL/VOL
FIELD CAPACITY	٠	0.2920 VOL/VOL
WILTING POINT	•	0.0770 VOL/VOL
INITIAL SOIL WATER CONTENT	•	0.2920 VOL/VOL
EFFECTIVE SAT. HYD. COND.	•	0.10000005000E-02 CM/SEC

LAYER 7

TYPE 3 - BARR	IER	SOIL LINER		
MATERIAL TEXT	URE	NUMBER 16		
THICKNESS		120.00	INCHES	
POROSITY	-	0.4270	VOL/VOL	
FIELD CAPACITY	•	0.4180	VOL/VOL	
WILTING POINT	۰	0.3670	VOL/VOL	
INITIAL SOIL WATER CONTENT	•	0.4270	VOL/VOL	
EFFECTIVE SAT. HYD. COND.	•	0.10000001	1000E-06	CN/SEC

GENERAL DESIGN AND EVAPORATIVE ZONE DATA

NOTE: SCS RUHOFF CURVE NUMBER WAS COMPUTED FROM DEFAULT SOIL DATA BASE USING SOIL TEXTURE # 8 WITH A GOOD STAND OF GRASS, A SURFACE SLOPE OF 10.3

0.1433 0.0759 0.0144 0.1049 0.6772 0.9662

28.60	33.80	43.20	56.10	65.60	74.80
78.90	77.00	69.70	57.90	44.60	34.20
			•		

2.12 2.50

1.03 1.41

0.517 0.001

0.584

0.648 2.585

0.352

0.6701 0.0214

0.8087

AVERAGE MONTHLY VALUES IN INCHES FOR YEARS

1.01 3.43

0.97 1.79

0.267

0.447

0.525 3.525

0.240 1.664

0.4837

0.0614

0.5390

LATERAL DRAINAGE COLLECTED FROM LAYER 3

PRECIPITATION TOTALS

RUNOFF

TOTALS

TOTALS

TOTALS

STD. DEVIATIONS

STD. DEVIATIONS EVAPOTRANSPIRATION

STD. DEVIATIONS

STD. DEVIATIONS

1 THROUGH 70

3.59

1.65 1.36

0.003

0.012

4.047 0.050

0.992

0.5813

0.5689

4.08 2.10

2.04

0.011 0.057

0.043

4.168 0.669

1.914 0.195

0.2267

0.3628

JAN/JUL FEB/AUG MAR/SEP APR/OCT MAY/NOV JUH/DEC

3.55 2.29

1.37

0.010 0.001

0.054

3.304 1.222

0.706

1.1309 0.0196

0.7561

3.31 2.65

1.40 1.34

0.364

0.677

2.080 2.260

0.551 0.985

1.7594

0.0028

1.0704

.

NOTE: SOLAR RADIATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR ST. LOUIS MISSOURI AND STATION LATITUDE = 39.10 DEGREES

TOTALS	0.0011			0.0072		0.001
	0.0001	0.0000	0.0000	0.0001	0.0029	0.006
STD. DEVIATIONS	0.0026	0.0123	0.0369		0.0092	0.004
	0.0003	0.0001	0.0000	0.0004	0.0153	0.035
PERCOLATION/LEAKAGE	THROUGH LAYE	R 7				
TOTALS	0.0032	0.0065		0.0101		0.001
	0.0001	0.0000	0.0000	0.0001	0.0028	0.003
STD. DEVIATIONS		0.0141				
	0 0003	0.0001	0.0000	0.0004	0.0146	0.014
DAILY AVERAGE HEAD O	S OF NONTHLY	ER 4				
DAILY AVERAGE HEAD O	S OF NONTHLY	ER 4 0.1627	0.5374	0.1734		
DAILY AVERAGE HEAD O AVERAGES	5 OF KONTHLY N TOP OF LAY 0.0209 0.0016	ER 4 0.1627 0.0005	0.5374 0.0001	0.1734 0.0013	0.0657	0.164
DAILY AVERAGE HEAD O	5 OF KONTHLY N TOP OF LAY 0.0209 0.0016	ER 4 0.1627 0.0005 0.3425	0.5374 0.0001 0.9447	0.1734 0.0013 0.4993	0.0657 0.0725 0.2304	0.164
DAILY AVERAGE HEAD O AVERAGES	5 OF NONTHLY 0.0209 0.0016 0.0640 0.0037	ER 4 0.1627 0.0005 0.3425 0.0019	0.5374 0.0001 0.9447	0.1734 0.0013 0.4993	0.0657 0.0725 0.2304	0.164
DAILY AVERAGE HEAD O AVERAGES STD. DEVIATIONS	5 OF NONTHLY 0.0209 0.0016 0.0640 0.0037	ER 4 0.1627 0.0005 0.3425 0.0019 ER 7	0.5374 0.0001 0.9447	0.1734 0.0013 0.4993 0.0086 0.0076	0.0657 0.0725 0.2304 0.4038 0.0021	0.164 0.115 0.902 0.000
DAILY AVERAGE HEAD O AVERAGES STD. DEVIATIONS DAILY AVERAGE HEAD O	S OF KONTHLY 0.0209 0.0016 0.0640 0.0037	ER 4 0.1627 0.0005 0.3425 0.0019 ER 7	0.5374 0.0001 0.9447 0.0004 0.0097	0.1734 0.0013 0.4993 0.0086 0.0076	0.0657 0.0725 0.2304 0.4038	0.164 0.115 0.902 0.000
DAILY AVERAGE HEAD O AVERAGES STD. DEVIATIONS DAILY AVERAGE HEAD O	S OF NONTHLY 0.0209 0.0016 0.0640 0.0037 11 TOP OF LAY 0.0051 0.0000	ER 4 0.1627 0.0005 0.3425 0.0019 ER 7 0.0025 0.0000	0.5374 0.0001 0.9447 0.0006 0.0097	0.1734 0.0013 0.4993 0.0086 0.0076 0.0000 0.0272	0.0657 0.0725 0.2304 0.4038 0.0021 0.0024	0.164 0.115 0.902 0.000 0.005 0.000

AVERAGE ANNUAL TOTALS & (STD. DEVIATIONS) FOR YEARS 1 THROUGH 70

INCHES CU. FEET

PERCENT

PRECIPITATION	33.82	C	4.892)	122761.4	100.00
RUNOFF	1.248	C	0.9984)	4530.15	3.690
EVAPOTRANSPIRATION	26.682	(3.2810)	96856.61	78.898
LATERAL DRAINAGE COLLECTED FROM LAYER 3	5.04570	C	2.17258)	21219.875	17.2854
PERCOLATION/LEAKAGE THROUGH LAYER 5	0.05012	(0.05154)	181.931	0.148
AVERAGE HEAD ON TOP OF LAYER 4	0.102 (0.110)		
PERCOLATION/LEAKAGE THROUGH LAYER 7	0.05012	(0.04491)	181.931	0.149
AVERAGE HEAD ON TOP OF LAYER 7	0.003 (0.006)		
CHANGE IN WATER STORAGE	-0.007	¢	1.3942)	-27.16	-0.022

PEAK DAILY VALUES FOR YEARS	1 THROUGH	70
	(INCHES)	(CU. FT.)
PRECIPITATION	3.57 .	12959.100
RUNOFF '	2.660	9656.1279
DRAINAGE COLLECTED FROM LAYER 3	0.25421	922.79926
PERCOLATION/LEAKAGE THROUGH LAYER 5	0.030329	110.09521
AVERAGE HEAD ON TOP OF LAYER 4	24.255	
MAXIMUM HEAD ON TOP OF LAYER 4	40.935	
LOCATION OF MAXIMUM HEAD IN LAYER 3 (DISTANCE FROM DRAIN)	65.7 FEET	
PERCOLATION/LEAKAGE THROUGH LAYER 7	0.003416	12.39872
AVERAGE HEAD ON TOP OF LAYER 7	0.498	
SNOU WATER	3.24	11767.4912
MAXIMUM VEG. SOIL WATER (VOL/VOL)	0.	4227
MINIMUM VEG. SOIL WATER (VOL/VOL)	0.	1692
••• Maximum heads are computed using	McEnroe's equa	tions. ***

Reference: Maximum Saturated Depth over Landfill Liner by Bruce N. McEnroo, University of Kansas ASCE Journal of Environmental Engineering Vol. 119, No. 2, March 1993, pp. 262-270.

LAYER	(INCHES)	(VOL/VOL)
1	1.5429	0.2571
2	8.6649	0.2868
3	0.0020	0.0100
4	0.0000	0.0000
5	5.1240	0.4270
6	273.3120	0.2920
7	51.2400	0.4270
SHOW WATER	0.000	

	• • • • • • • • • • • • • • • • • • • •	
***********************	• • • • • • • • • • • • • • • • • • • •	******
••		
•		
+ HYDROLOGIC	EVALUATION OF LANDFILL PERFORMANCE	
. HELP MODE	L VERSION 3.07 (1 NOVEMBER 1997)	
	ED BY ENVIRONMENTAL LABORATORY	
	WATERWAYS EXPERIMENT STATION	
FOR USEPA RI	SK REDUCTION ENGINEERING LABORATORY	
•		
•	<u>i</u>	
• • • • • • • • • • • • • • • • • • • •		
• • • • • • • • • • • • • • • • • • • •		
•		
RECIPITATION DATA FILE:	C:\LF33\DATA4EA.D4	
EMPERATURE DATA FILE:	C:\LF33\DATA7EA.D7	
OLAR RADIATION DATA FILE:	C:\LF33\DATA13EA.D13	
VAPOTRANSPIRATION DATA:	C:\LF33\DATA11EA.D11	
OIL AND DESIGN DATA FILE:	C:\LF33\DATA10EA.D10	
UTPUT DATA FILE:	C:\LF33\EA0145.OUT	

		IGN DATA	C:\LF33\DATA10E
OUTPUT	DATA	FILE:	C:\LF33\EA0145.

TINE: 66:12 DATE: 6/29/2018

TITLE: EXISTING UNIT - ACTIVE LIFE - YEARS 1 TO 45

NOTE: INITIAL MOISTURE CONTENT OF THE LAYERS AND SNOW WATER WERE COMPUTED AS NEARLY STEADY-STATE VALUES BY THE PROGRAM.

LAYER 1

TYPE 1 - VERTICAL PERCOLATION LAYER						
MATERIAL TEXT	URE	NUMBER 11				
THICHIESS	•	12.00 INCHES				
POROSITY -	•	0.4640 VOL/VOL				
FIELD CAPACITY		0.3100 VOL/VOL				
WILTING POINT	•	0.1870 VOL/VOL				
INITIAL SOIL WATER CONTENT	•	0.3212 VOL/VOL				
EFFECTIVE SAT. HYD. COND.	•	0.639999998000E-04 CM/SEC				

NOTE: SATURATED HYDRAULIC CONDUCTIVITY IS MULTIPLIED BY 4.20 FOR ROOT CHANNELS IN TOP HALF OF EVAPORATIVE ZONE.

LAYER 2

TYPE 1 - VERTICAL	PE	RCOLATION LAYER
MATERIAL TEXT	URE	NUMBER 18
THICKNESS	•	936.00 INCHES
POROSITY	•	0.6710 VOL/VOL
FIELD CAPACITY	•	0.2920 VOL/VOL
WILTING POINT	•	0.0770 VOL/VOL
INITIAL SOIL WATER CONTENT	•	0.2894 VOL/VOL
EFFECTIVE SAT. HYD. COND.	•	0.10000005000E-02 CN/SEC

LAYER 3

TYPE 3 - BARR	IER	SOIL LINER	
MATERIAL TEXT	URE	NUMBER 16	
THICKNESS	•	120.00	INCHES
POROSITY	٠	0.4270	VOL/VOL
FIELD CAPACITY	•	0.4180	VOL/VOL
WILTING POINT	•	0.3670	VOL/VOL
INITIAL SOIL WATER CONTENT	•	0.4270	VOL/VOL
EFFECTIVE SAT. HYD. COND.	-	0.10000003	10002-06 CM/SEC

GENERAL DESIGN AND EVAPORATIVE ZONE DATA

.

ł

NOTE: SCS RUNOFF CURVE HUMBER WAS COMPUTED FROM DEFAULT SOIL DATA BASE USING SOIL TEXTURE #11 WITH A FAIR STAND OF GRASS, A SURFACE SLOPE OF 10.3 AND A SLOPE LENGTH OF 445. FEET.

•	87.10	
•	75.0 PERCENT	
-	1.000 * ACRES	
-	12.0 INCHES	
•	3.055 INCHES	
-	5.568 INCHES	
•	2.244 INCHES	
•	0.000 INCHES	
•	326.005 LNCHES	
		- 75.0 PERCENT 1.000 * ACRES - - 12.0 INCHES - - 3.055 INCHES - - - 5.566 INCHES - - 2.244 INCHES - - 0.000 INCHES -

TOTAL INITIAL WATER TOTAL SUBSURFACE INFLOW 326.005 INCHES -6.00 INCHES/YEAR

EVAPOTRANSPIRATION AND WEATHER DATA

NOTE: EVAPOTRANSPIRATION DATA WAS OBTAINED FROM ST. LOUIS MISSOURI

STATION LATITUDE	-	39.10	DEGREES
NAXIMUN LEAF AREA INDEX		3.00	
START OF GROWING SEASON (JULIAN DATE)	•	98	
END OF GROWING SEASON (JULIAN DATE)	•	300	
EVAPORATIVE ZONE DEPTH	•	12.0	INCHES
AVERAGE ANNUAL WIND SPEED	•	10.40	MPH
AVERAGE 1ST QUARTER RELATIVE HUMIDITY	•	73.00	3
AVERAGE 2ND QUARTER RELATIVE HUMIDITY	•	67.00	3
AVERAGE 3RD QUARTER RELATIVE HUMIDITY		71.00	3
AVERAGE 4TH QUARTER RELATIVE HUMIDITY	-	74.00	3

NOTE: PRECIPITATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR ST. LOUIS MISSOURI

	NORMAL M	EAN MONTHLY	PRECIPITATIO	(INCHES)	
JAH/JUL	FEB/AUG	MAR/SEP	APR/OCT	MAY/HOV	JUN/DEC

1.72	2.14	3.28	3.55	3.54	3.73
3.63	2.55	2.70	2.32	2.53	2.22

NOTE: TEMPERATURE DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR ST. LOUIS MISSOURI

	NORMAL MEAN	NONTHLY TEMP	ERATURE (DEGREE	S FAHRENHE	IT)
JAN/JUL	FEB/AUG	NAR/SEP	APR/OCT	MAY/NOV	JUN/DEC
28.60 78.90	33.00 77.00	43.20 69.70	56.10 57.90	65.60 44.60	74.80 34.20

NOTE: SOLAR RADIATION DATA MAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR ST. LOUIS MISSOURI AND STATION LATITUDE = 39.10 DEGREES

.

AVERAGE MONTH	LY VALUES I	N INCHES	FOR YEARS	1 THR	OUGH 45	
	JAN/JUL	FEB/AUG	MAR/SEP	APR/OCT	MAY/NOV	JUN/DE
RECIPITATION						
RECIPITATION						
TOTALS	1.64	2.07	3.24	3.41	3.62	4.21
	3.57	2.72	2.75		2.24	
STD. DEVIATIONS	0.94	1.10	1.22	1.34	1.75	1.99
	1.88	1.37	1.34	1.30		1.15
UNOFF						
TOTALS	0.339		0.456			
	0.130	0.048	0.061	0.040	0.101	0.12
STD. DEVIATIONS	0.422	0.607				
	0.231	0.106	0.080	0.079	0.200	0.36
VAPOTRANSPIRATION						
TOTALS			2.299			
	3.285	2.570	2.168	1.395	1.137	0.79
STD. DEVIATIONS	0.308	0.440	0.513	0.910		1.51
	1.439	1.140	0.913	0.419	0.318	0.21
ERCOLATION/LEAKAGE	THROUGH LAY	ER 3				
TOTALS	0.0069	0.0065	0.0073	0.0072	0.0073	0.00
	0.0072		0.0070	0.0072	0.0069	0.00
STD. DEVIATIONS	0.0254	0.0239	0.0273	0.0264	0.0275	0.02
	0.0274			0.0272		

AVER	AGES OF	MONTHLY	AVERAGED	DAILY	HEADS	(INCHES)

DAILY AVERAGE HEAD ON TOP OF LAYER 3

.

PEAK DAILY VALUES FOR YEARS	1 THROUGH	45	FINAL WATER	STORAGE AT EN	ID OF YEAR 45	
•	(INCHES)	(CU. FT.)	LAYER	(INCHES)	(VOL/VOL)	
PRECIPITATION	3.57	12959.100	1	3.6030	0.3002	
RUNOFF	1.095	6078.5874	2	266.8546	0.2851	
PERCOLATION/LEAKAGE THROUGH LAYER 3	0.003609	13.10205	3	51.2400	0.4270	
AVERAGE HEAD ON TOP OF LAYER 3	7.333		SNOW WATER	0.000		
SNOW WATER	2.43	8821.5488	••••••			
MAXIMUM VEG. SOIL WATER (VOL/VOL)	0	. 4640				
MINIMUM VEG. SOIL WATER (VOL/VOL)	0	. 1870				

 AVERAGES
 0.1256
 0.1278
 0.2170
 0.2424
 0.2700
 0.2521

 0.2324
 0.2246
 0.2048
 0.1850
 0.1652
 0.1655

 STD. DEVIATIONS
 0.6922
 0.6493
 0.9843
 1.1758
 1.1702
 1.1067

 1.0418
 0.9910
 0.9269
 0.8645
 0.8043
 0.7470

.....

AVERAGE ANNUAL TOTALS & (STD. DEVIATIONS) FOR YEARS 1 THROUGH 45

	INC	HES		CU. FEET	PERCENT

PRECIPITATION	33.70	C	4.999)	122337.5	100.00
RUNOFF	2.278	¢	1.1769)	8268.44	6.759
EVAPOTRANSPIRATION	25.431	¢	2.9371)	92312.91	75.458
PERCOLATION/LEAKAGE THROUGH LAYER 3	0.08513	ſ	0.28720)	309.016	0.25259
AVERAGE HEAD ON TOP OF LAYER 3	0.199 (0.866)		
CHANGE IN WATER STORAGE	-0.096	(2.5282)	-347.49	-0.284

.

.

. .

.

.

 $\langle \cdot \rangle$

NOTE: SATURATED HYDRAULIC CONDUCTIVITY IS MULTIPLIED BY 4.90 FOR ROOT CHANNELS IN TOP HALF OF EVAPORATIVE ZONE.

LAYER 2

TYPE 1 - VERTICAL	PE	RCOLATION LAYER
MATERIAL TEXT	URE	NUMBER 11
THICKNESS	•	30.00 INCHES
POROSITY	•	0.4640 VOL/VOL
FIELD CAPACITY	•	0.3100 VOL/VOL
WILTING POINT	•	0.1870 VOL/VOL
INITIAL SOIL WATER CONTENT	•	0.3100 VOL/VOL
EFFECTIVE SAT. HYD. COND.	•	0.639999998000E-04 CM/SEC

LAYER 3

TYPE 2 - LATERA	LDR	AINAGE LAYER
MATERIAL TEXT	URE	NUMBER 20
THICKNESS	•	0.20 INCHES
POROSITY	•	0.8500 VOL/VOL
FIELD CAPACITY	•	0.0100 VOL/VOL
WILTING POINT	•	0.0050 VOL/VOL
INITIAL SOIL WATER CONTENT	•	0.0100 VOL/VOL
EFFECTIVE SAT. HYD. COND.	-	10.000000000 CN/SEC
SLOPE	•	10.00 PERCENT
DRAINAGE LENGTH	•	445.0 FEET

LAYER 4

TYPE 4 - FLEXIB	LE	MEMBRANE LINER
MATERIAL TEXT	URE	NUMBER 36
THICKNESS		0.04 INCHES
POROSITY	-	0.0000 VOL/VOL
FIELD CAPACITY	-	0.0000 VOL/VOL
WILTING POINT		0.0000 VOL/VOL
INITIAL SOIL WATER CONTENT	•	0.0000 VOL/VOL
EFFECTIVE SAT. HYD. COND.	-	0.399999993000E-12 CM/SEC
FML PINHOLE DENSITY		1.00 HOLES/ACRE
FML INSTALLATION DEFECTS		15.00 HOLES/ACRE
FML PLACEMENT QUALITY		4 - POOR

AND A SLOPE LENGTH OF 445. FEET.

SCS RUNOFF CURVE NUMBER		72.90	
FRACTION OF AREA ALLOWING RUNOFF	•	90.0	PERCENT
AREA PROJECTED ON HORIZONTAL PLANE	-	1.000	ACRES
EVAPORATIVE ZONE DEPTH	•	24.0	INCHES
INITIAL WATER IN EVAPORATIVE ZONE	=	6.972	INCHES
UPPER LINIT OF EVAPORATIVE STORAGE	=	11.130	INCHES
LOWER LIMIT OF EVAPORATIVE STORAGE		4.062	INCHES
INITIAL SHOW WATER	•	0.000	INCHES
INITIAL WATER IN LAYER MATERIALS	•	333.912	INCHES
TOTAL INITIAL WATER	-	333.912	INCHES
TOTAL SUBSURFACE INFLOW	•	0.00	INCHES/YEAR

EVAPOTRANSPIRATION AND WEATHER DATA

NOTE: EVAPOTRANSPIRATION DATA WAS OBTAINED FROM ST. LOUIS MISSOURI

STATION LATITUDE	=	39.10	DEGREES
MAXIMUN LEAF AREA INDEX	•	4.00	
START OF GROWING SEASON (JULIAN DATE)	-	98	
END OF GROWING SEASON (JULIAN DATE)	-	300	
EVAPORATIVE ZONE DEPTH	•	24.0	INCHES
AVERAGE ANNUAL WIND SPEED	•	10.40	MPH
AVERAGE 1ST QUARTER RELATIVE HUMIDITY	•	73.00	3
AVERAGE 2ND QUARTER RELATIVE HUMIDITY	-	67.00	3
AVERAGE 3RD QUARTER RELATIVE HUMIDITY	•	71.00	3
AVERAGE 4TH QUARTER RELATIVE HUMIDITY	•	74.00	3

NOTE: PRECIPITATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR ST. LOUIS MISSOURI

	NORMAL	MEAN MONTHLY	PRECIPITATION	(INCHES)	
JAN/JUL	FEB/AUG	MAR/SEP	APR/OCT	MAY/NOV	JUN/DEC
1.72	2.14	3.28	3.55	3.54	3.73
3.63	2.55	2.70	2.32	2.53	2.22

NOTE: TEMPERATURE DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR ST. LOUIS MISSOURI

NORMAL MEAN MONTHLY TEMPERATURE (DEGREES FANRENHEIT)

JAN/JUL FEB/AUG MAR/SEP APR/OCT MAY/NOV JUN/DEC

HYDROLOGIC EVALUATION OF LANDFILL PERFORMANCE
 HELP MODEL VERSION 3.07 (1 NOVEMBER 1997)
 DEVELOPED BY ENVIRONMENTAL LABORATORY
 USAE WATERWAYS EVPENIMENT STATION
 FOR USEPA RISK REDUCTION ENGINEERING LABORATORY

PRECIPITATION DATA FILE:	C:\LF33\DATA4EB.D4
TEMPERATURE DATA FILE:	C:\LF33\DATA7EB.D7
SOLAR RADIATION DATA FILE:	C:\LF33\DATA13EB.D13
EVAPOTRANSPIRATION DATA:	C:\LF33\DATA11EB.D11
SOIL AND DESIGN DATA FILE:	C:\LF33\DATA10EB.D10
OUTPUT DATA FILE:	C:\LF33\EB4675.OUT

TINE: 66:50 DATE: 6/29/2018

TITLE: EXISTING UNIT - 30 YEAR POST CLOSURE - YEARS 46 TO 75

.....

NOTE: INITIAL MOISTURE CONTENT OF THE LAYERS AND SNOW WATER WERE SPECIFIED BY THE USER.

LAYER 1

TYPE 1 - VERTICAL PERCOLATION LAYER MATERIAL TEXTURE NUMBER 8

.

ζ

Interter IL	VIOUC	10110CN 0	
THICKNESS	-	6.00 INCHES	
POROSITY	-	0.4630 VOL/VOL	
FIELD CAPACITY	•	0.2320 VOL/VOL	
WILTING POINT		0.1160 VOL/VOL	
INITIAL SOIL WATER CONTEN	т =	0.2320 VOL/VOL	
EFFECTIVE SAT. HYD. COND.	-	0.369999994000E-03 CM/S	EC

LAYER 5

TYPE 3 - BARR	IER	SOIL LINER		
NATERIAL TEXT	URE	NUMBER 16		
THICKNESS	-	12.00	INCHES	
POROSITY	•	0.4270	VOL/VOL	
FIELD CAPACITY	-	0.4180	VOL/VOL	
WILTING POINT	•	0.3670	VOL/VOL	
INITIAL SOIL WATER CONTENT	•	0.4270	VOL/VOL	
EFFECTIVE SAT. HYD. COND.	-	0.10000001	1000E-06	CM/SEC

LAYER 6

TYPE 1 - VERTICAL PERCOLATION LAYER NATERIAL TEXTURE NUMBER 18 THICKNESS = 936.00 INCHES POROSITY = 0.6710 VOL/VOL FIELD CAPACITY = 0.2920 VOL/VOL MILTING POINT = 0.0710 VOL/VOL INITIAL SOIL WATER CONTENT = 0.29251 VOL/VOL EFFECTIVE SAT. NYO. COND. = 0.100000005000E-02 CM/SEC

LAYER 7

TYPE 3 - BARF Naterial text				
THICKNESS		120.00	INCHES	
POROSITY	=	0.4270	VOL/VOL	
FIELD CAPACITY	۰	0.4180	VOL/VOL	
WILTING POINT	-	0.3670	VOL/VOL	
INITIAL SOIL WATER CONTENT	•	0.4270	VOL/VOL	
EFFECTIVE SAT. HYD. COND.	=	0.1000000	1000E-06	CH/SEC

GENERAL DESIGN AND EVAPORATIVE ZONE DATA

NOTE: SCS RUNOFF CURVE NUMBER WAS COMPUTED FROM DEFAULT Soil data base using soil texture # 8 with A Good Stand of Grass, a surface slope of 10.3

28.60	33.60	43.20	56.10	65.60	74.80
78.90	77.00	69.70	\$7.90	44.60	34.20

NOTE: SOLAR RADIATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR ST. LOUIS MISSOURI AND STATION LATITUDE = 39.10 DEGREES

2.15 2.66

1.56 3.30

PRECIPITATION

TOTALS

AVERAGE MONTHLY VALUES IN INCHES FOR YEARS 1 THROUGH 30

JAN/JUL FEB/AUG MAR/SEP APR/OCT NAY/NOV JUN/DEC

3.09 2.75 3.37 2.19 4.42 2.06

3.44 2.16

			,			
	0.1145	0.0633	0.0165	0.0960	0.8215	0.0
PERCOLATION/LEAKAGE T	HROUGH LAYE	R 5				
TOTALS	0.0000	0.0000	0.0000	0.0000	0.0000	0.0
1017.05	0.0000	0.0000	0.0000	0.0000	0.0000	0.0
STD. DEVIATIONS	0.0000	0.0000	0.0000	0.0000	0.0000	0.0
	0.0000	0.0000	0.0000	0.0000	0.0000	0.0
PERCOLATION/LEAKAGE T	HROUGH LAYE	R 7				
TOTALS	0.0000	. 0.0000	0.0000	0.0000	0.0000	0.0
	0.0000	0.0000	0.0000	0.0000	0.0000	0.0
STD. DEVIATIONS	0.0000	0.0000	0.0000	0.0000	0.0000	0.0
	0.0000	0.0000	0.0000	0.0000	0.0000	0.0
AVERAGES	OF NONTHLY	AVERAGED	DAILY HE	ADS (INCH	ES)	
AVERAGES	OF NONTHLY	AVERAGED	DAILY HE	ADS (INCH	ES)	•••••
AVERAGES	OF NONTHLY	AVERAGED	DAILY HE	ADS (INCH	25)	
AVERAGES			DAILY HE	ADS (INCH	25)	
			DAILY HE	ADS (INCH) 0.0029	0.0014	0.0
DAILY AVERAGE HEAD ON	TOP OF LAY	ER 4				0.0
DAILY AVERAGE HEAD ON	TOP OF LAY	ER 4 0.0016	0.0039	0.0029	0.0014	

STD. DEVIATIONS	0.95 1.87	1.09 1.38	0.92 1.45	1.36 1.29	1.56 1.30	2.04 1.14
RUHOFF						
TOTALS	0.179	0.492	0.311	0.015	0.002	0.018
101/123	0.005	0.001	0.000	0.001	0.003	0.009
STD. DEVIATIONS	0.320	0.568	0.601	0.077	0.006	. 0.061
	0.017	0.003	0.002	0.007	0.009	0.023
EVAPOTRANSPIRATION						
	•					
TOTALS	0.502	0.630	2.105	3.244	4.742	4.570
	3.521	2.599	2.180	1.209	0.836	0.647
STD. DEVIATIONS	0.272	0.362	0.574	0.752	0.868	1.709
	1.511	1.181	1.071	0.279	0.258	0.197
LATERAL DRAINAGE COLLE	CTED FROM	LAYER 3				
TOTALS	0.4256	0.5622	1.5404	1.0885	0.5643	0.2120
101603	0.0500	0.0191	0.0032	0.0177	0.2979	0.6035
	0.0500	••••••				
STD. DEVIATIONS	0.4830	0.8325	0.8285	0.7293	0.5525	0.3098

AVERAGES	0.0011	0.0016	0.0039	0.0029	0.0014	0.0006
	0.0001	0.0000	0.0000	0.0000	0.0008	0.0015
STD. DEVIATIONS	0.0012	0.0023	0.0021	0.0019	0.0014	0.0008
	0.0003	0.0002	0.0000	0.0002	0.0022	0.0022
	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
STD. DEVIATIONS	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

AVERAGE ANNUAL TOTALS & (STD. DEVIATIONS) FOR YEARS 1 THROUGH 30

INCHES CU. FEET PERCENT

		•••			
PRECIPITATION	33.21	(4.731)	120562.0	100.00
RUNOFF	1.036	¢	0.9739)	3761.52	3.120
EVAPOTRANSPIRATION	26.786	(3.0181)	97233.41	80.650
LATERAL DRAINAGE COLLECTED FRON LAYER 3	5.38445	ł	2.11883)	19545.566	16.2120
PERCOLATION/LEAKAGE THROUGH LAYER 5	0.00004	(0.00001)	0.138	0.000
AVERAGE HEAD ON TOP OF LAYER 4	0.001 (0.000)		
PERCOLATION/LEAKAGE THROUGH LAYER 7	0.00000	ſ	0.00000)	0.000	0.000
AVERAGE HEAD ON TOP OF LAYER 7	0.000 (0.000)		
CHANGE IN WATER STORAGE	0.006	¢	1.2913)	21.49	0.018

.

•••••		• • • • • • • • • • • • • • •	•••••
	PEAK DAILY VALUES FOR YEARS	1 THROUGH	30
		(INCHES)	(CU. FT.)
PRECIPIT	ATION	3.44	12487.200
RUNOFF		1.958	7107.4639
DRAINAGE	COLLECTED FROM LAYER 3	0.75217	2730.36450
PERCOLAT	ION/LEAKAGE THROUGH LAYER 5	0.000004	0.01369
AVERAGE	HEAD ON TOP OF LAYER 4	0.060	
MAXIMUM	HEAD ON TOP OF LAYER 4	0.131	
	OF MAXIMUM HEAD IN LAYER 3 ISTANCE FROM DRAIN)	0.0 FEET	
PERCOLAT	ION/LEAKAGE THROUGH LAYER 7	0.000000	0.00000
AVERAGE	HEAD ON TOP OF LAYER 7	0.000	
SNOW WAT	ER	2.43	0021.5400
MAXIMUN	VEG. SOIL WATER (VOL/VOL)	0.	4202
мініним	VEG. SOIL WATER (VOL/VOL)	0.	1693

*** Naximum heads are computed using McEnroe's equations. ***

•

Reference: Maximum Saturated Depth over Landfill Liner by Bruce N. McEnroc, University of Kansas ASCE Journal of Environmental Engineering Vol. 119, No. 2, March 1993, pp. 262–270.

.

••••••••	• • • • • • • • • • • • • • •	•••••	•••••
FINAL WATER	STORAGE AT	END OF YEAR 30	
LAYER	(INCHES)	(VOL/VOL)	
1	1.6233	0.2705	
2	9.2451	0.3082	
3	0.0020	0.0100	
4	0.0000	0.0000	
5	5.1240	0.4270	
6	266.8547	0.2851	
7	51.2400	0.4270	
SHOW WATER	0.000		

.

.

•		•
•		•
•	HYDROLOGIC EVALUATION OF LANDFILL PERFORMANCE	•
••	HELP MODEL VERSION 3.07 (1 NOVEMBER 1997)	•
•	DEVELOPED BY ENVIRONNENTAL LABORATORY	•
•	USAE WATERWAYS EXPERIMENT STATION	•
•	FOR USEPA RISK REDUCTION ENGINEERING LABORATORY	•
•		•
•		•

PRECIPITATION DATA FILE:	C:\LF33\DATA4EC.D4
TEMPERATURE DATA FILE:	C:\LF33\DATA7EC.D7
SOLAR RADIATION DATA FILE:	C:\LF33\DATA13EC.D13
EVAPOTRANSPIRATION DATA:	C:\LF33\DATA11EC.D11
SOIL AND DESIGN DATA FILE:	C:\LF33\DATA10EC.D10
OUTPUT DATA FILE:	C:\LF33\EC76145.OUT

TIME: 68:53 DATE: 6/29/2018

TITLE: EXISTING UNIT - 70 YEAR AFTER POST CLOSURE - YEARS 76 TO 145

NOTE: INITIAL MOISTURE CONTENT OF THE LAYERS AND SNOW WATER WERE SPECIFIED BY THE USER.

LAYER 1

	PERCOLATION LAYER
MATERIAL TEXT	URE NUMBER 8
THICRIESS	 6.00 INCHES
POROSITY	 0.4630 VOL/VOL
FIELD CAPACITY	= 0.2320 VOL/VOL
WILTING POINT	= 0.1160 VOL/VOL
INITIAL SOIL WATER CONTENT	0.2705 VOL/VOL
EFFECTIVE SAT. HYD. COND.	- 0.369999994000E-03 CM/SEC

NOTE: SATURATED HYDRAULIC CONDUCTIVITY IS MULTIPLIED BY 5.00 FOR ROOT CHANNELS IN TOP HALF OF EVAPORATIVE 20HE.

LAYER 2

TYPE 1 - VERTICAL	PE	RCOLATION LAYER
MATERIAL TEXT	URE	NUMBER 11
THICKNESS		30.00 INCHES
POROSITY		0.4640 VOL/VOL
FIELD CAPACITY	•	0.3100 VOL/VOL
WILTING POINT	•	0.1870 VOL/VOL
INITIAL SOIL WATER CONTENT	•	0.3082 VOL/VOL
EFFECTIVE SAT. HYD. COND.	•	0.639999998000E-04 CM/SEC

LAYER 3

TYPE 2 - LATERAL DRAINAGE LAYER NATERIAL TEXTURE NUMBER 0 THICKNESS 0.20 INCHES POROSITY 0.0100 INCHES FIELD CAPACITY 0.0100 VOL/VOL FIELD CAPACITY 0.0100 VOL/VOL FIELD CAPACITY = 0.0100 VOL/VOL INITING FOINT = 0.0100 VOL/VOL EFFECTIVE SAT. NYD. COND. = 1.0000000000 SLOPE SLOPE = 10.00 PERCENT PRAINAGE LENGTH CN/SEC

LAYER 4

TYPE 4 - FLEXIBLE MEMBRANE LINER

MATERIAL TEXT	TURE	NUMBER 36
THICKNESS	•	0.04 INCHES
POROSITY	•	0.0000 VOL/VOL
FIELD CAPACITY	•	0.0000 VOL/VOL
WILTING POINT	•	0.0000 VOL/VOL
INITIAL SOIL WATER CONTENT	•	0.0000 VOL/VOL
EFFECTIVE SAT. HYD. COND.	•	0.399999993000E-12 CM/SEC
FML PINHOLE DENSITY	•	1.00 HOLES/ACRE
FML INSTALLATION DEFECTS	•	15.00 HOLES/ACRE
FML PLACENENT QUALITY	•	4 - POOR

LAYER S

TYPE 3 - BARR	IER	SOIL LINER		
MATERIAL TEXT	URE	NUMBER 0		
THICKNESS	-	12.00	INCHES	
POROSITY	•	0.4270	VOL/VOL	
FIELD CAPACITY	=	0.4180	VOL/VOL	
WILTING POINT		0.3670	VOL/VOL	
INITIAL SOIL WATER CONTENT	•	0.4270	VOL/VOL	
EFFECTIVE SAT. HYD. COND.	•	0.99999997	5000E-05	CH/SEC

LAYER 6

TYPE 1 - VERTICAL Material text		
THICKNESS	-	936.00 INCHES
POROSITY	-	0.6710 VOL/VOL
FIELD CAPACITY	-	0.2920 VOL/VOL
WILTING POINT	-	0.0770 VOL/VOL
INITIAL SOIL WATER CONTENT	•	0.2851 VOL/VOL
EFFECTIVE SAT. HYD. COND.	=	0.10000005000E-02 CM/SEC

LAYER 7

TYPE 3 - BARR	IER	SOIL LINER	
MATERIAL TEXT	URE	NUMBER 16	
THICRIESS	•	120.00	INCHES
POROSITY	•	0.4270	VOL/VOL
FIELD CAPACITY	•	0.4180	VOL/VOL
WILTING POINT	•	0.3670	VOL/VOL
INITIAL SOIL WATER CONTENT	•	0.4270	VOL/VOL
EFFECTIVE SAT. HYD. COND.	-	0.10000000	000E-06 CM/SEC

GENERAL DESIGN AND EVAPORATIVE ZONE DATA

NOTE: SCS RUNOFF CURVE RUNBER WAS CONPUTED FROM DEFAULT Soil data base using soil texture # 0 with An Excellent stand of grass, a surface slope of 10.3

AND A SLOPE LENGTH OF 445. FEET.

SCS RUNOFF CURVE NUMBER = 70.30	
FRACTION OF AREA ALLOWING RUNOFF = 95.0 PER	CENT
AREA PROJECTED ON HORIZONTAL PLANE = 1.000 ACR	ES
EVAPORATIVE 20NE DEPTH = 24.0 INC	HES
INITIAL WATER IN EVAPORATIVE ZONE . 7.171 INC.	HES
UPPER LIMIT OF EVAPORATIVE STORAGE - 11.130 INC.	HES
LOWER LIMIT OF EVAPORATIVE STORAGE - 4.062 INC	HES
INITIAL SNOW WATER = 0.000 INC	HES
INITIAL WATER IN LAYER MATERIALS = 334.009 INC	HES
TOTAL INITIAL WATER = 334.089 INC	
TOTAL SUBSURFACE INFLOW = 0.00 INC	HES/YEAR

EVAPOTRANSPIRATION AND WEATHER DATA

NOTE: EVAPOTRANSPIRATION DATA WAS OBTAINED FROM ST. LOUIS MISSOURI

STATION LATITUDE		•	39.10	DEGREES
MAXIMUN LEAF AREA	INDEX	•	5.00	
START OF GROWING SI	EASON (JULIAN DATE)	•	98	
END OF GROWING SEA	SON (JULIAN DATE)	•	300	
EVAPORATIVE ZONE D	EPTH	•	24.0	INCHES
AVERAGE ANNUAL WIN	D SPEED	•	10.40	MPH
AVERAGE 1ST QUARTE	R RELATIVE HUMIDITY	•	73.00	3
AVERAGE 2ND QUARTE	R RELATIVE HUMIDITY		67.00	Ĵ
AVERAGE 3RD QUARTE	R RELATIVE HUMIDITY	•	71.00	3
AVERAGE 4TH QUARTE	R RELATIVE HUMIDITY	•	74.00	3

NOTE: PRECIPITATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR ST. LOUIS NISSOURI

NORMAL MEAN MONTHLY PRECIPITATION (INCHES)

•

JAN/JUL	FEB/AUG	NAR/SEP	APR/OCT	MAY/NOV	JUN/DEC
1.72	2.14	3.28	3.55	3.54	3.73
3.63	2.55	2.70	2.32	2.53	2.22

NOTE: TENPERATURE DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR ST. LOUIS MISSOURI

NORMAL NEAN MONTHLY TEMPERATURE (DEGREES FAHRENHEIT)

JAN/JUL FEB/AUG MAR/SEP APR/OCT MAY/NOV JUN/	JAN/JUL	FEB/AUG	MAR/SEP	APR/OCT	MAY/NOV	JUN/DEC
--	---------	---------	---------	---------	---------	---------

	0.1383	0.0806	0.0152	0.0961	0.6811	0.9855
PERCOLATION/LEAKAGE T	HROUGH LAYE	R S				
TOTALS	0.0012	0.0063	0.0222	0.0074	0.0026	0.0009
	0.0001	0.0000	0.0000	0.0001	0.0031	0.0071
STD. DEVIATIONS	0.0027	0.0127	0.0377	0.0202	0.0082	0.0030
	0.0002	0.0001	0.0000	0.0004	0.0164	0.0373
		_				
PERCOLATION/LEAKAGE T	HROUGH LAYE	R 7				
TOTALS	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
STD. DEVIATIONS	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
STO. DEVIATIONS	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

AVERAGES OF MONTHLY AVERAGED DAILY HEADS (INCHES)

DAILY AVERAGE HEAD ON		ER 4				
AVERAGES	0.0221	0.1699	0.5476	0.1796	0.0577	0.0208
	0.0014	0.0005	0.0001	0.0012	0.0775	0.1753
STD. DEVIATIONS	0.0653	0.3537	0.9642	0.5352	0.2060	0.0980
	0.0035	0.0021	0.0004	0.0084	0.4333	0.9562
DAILY AVERAGE HEAD ON	TOP OF LAY	ER 7				
AVERAGES	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
STD. DEVIATIONS	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
AVERAGE ANNUAL TOT	ALS & (STD.	DEVIATIO	IS) FOR Y	LARS 1	THROUGH	70
				••••••		

PERCENT

28.60	33.80	43.20	56.10	65.60	74.80
78.90	77.00	69.70	57.90	44.60	34.20

NOTE: SOLAR RADIATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR ST. LOUIS MISSOURI AND STATION LATITUDE = 39.10 DEGREES

AVERAGE MONTHLY VALUES IN INCHES FOR YEARS 1 THROUGH 70

	JAN/JUL	FEB/AUG	MAR/SEP	APR/OCT	MAY/NOV	JUN/DEC
PRECIPITATION						
TOTALS	1.81	2.12	3.31	3.55	3.59	4.08
TOTALS	3.43	2.58	2.65	2.29	2.30	2.10
	3.43	2.30	2.03		2.30	2.10
STD. DEVIATIONS	0.97	1.03	1.40	1.37	1.65	2.04
	1.79	1.41	1.34	1.39	1.36	1.22
RUNOFF						
TOTALS	0.267	0.518	0.362	0.008	0.001	0.006
	0.004	0.000	0.000	0.000	0.006	0.056
STD. DEVIATIONS	0.448	0.585	0.678	0.051	0.005	0.026
STD. DEVIRITONS	0.022	0.002	0.000	0.001	0.035	0.223
EVAPOTRANSPIRATION						
TOTALS	0.521	0.643		3.335	4.093	4.129
	3.530	2.586	2.301	1.192	0.006	0.648
STD. DEVIATIONS	0.236	0.346	0.553	0.690	1.048	1.907
STD. DEVIATIONS	1.665	1.233	1.018	0.348	0.228	0.194
	1.005	1.200				
LATERAL DRAINAGE COL	LECTED FROM	LAYER 3				
						•
TOTALS	0.5006					
	0.0530	0.0202	0.0026	0.0170	0.2868	0.6069
STD. DEVIATIONS	0.5435	0.8086	1.0785	0.7569	0.5505	0.3443

PRECIPITATION	33.82	C	4.892)	122761.4	100.00
RUNOFF	1.228	t	0.9967)	4456.16	3.630
EVAPOTRANSPIRATION	26.645	C	3.3178)	96722.35	78.789
LATERAL DRAINAGE COLLECTED FROM LAYER 3	5.90334	C	2.17455)	21429.107	17.45590
PERCOLATION/LEAKAGE THROUGH LAYER 5	0.05118	C	0.05391)	105.769	0.151
AVERAGE HEAD ON TOP OF LAYER 4	0.104 (0.116)		
PERCOLATION/LEAKAGE THROUGH LAYER 7	0.0000	C	0.00000)	0.000	0.000
AVERAGE HEAD ON TOP OF LAYER 7	0.000 (0.000)		
CHANGE IN MATER STORAGE	0.042	C	1.3700)	153.70	0.125

.....

	(INCHES)	(CU. FT.)	LAYER	(INCHES)	(VOL/VOL)	
RECIPITATION	3.57	12959.100	1	1.5407	0.2568	
UNOFF	2.659	9653.2158	2	8.7114	0.2904	
RAINAGE COLLECTED FRON LAYER 3	0.25435	923.29694	3	0.0020	0.0100	
ERCOLATION/LEAKAGE THROUGH LAYER S	0.032530	118.08403	4	0.0000	0.0000	
verage head on top of layer 4	25.953		5	5.1240	0.4270	
AXIMUM HEAD ON TOP OF LAYER 4	43.405		6	270.4359	0.2889	
OCATION OF MAXIMUM HEAD IN LAYER 3 (DISTANCE FROM DRAIN)	68.5 FEET		7	51.2400	0.4270	
ERCOLATION/LEAKAGE THROUGH LAYER 7	0.000000	0.00000	SNOW WATER	0.000		
VERAGE HEAD ON TOP OF LAYER 7	0.000		***************************************	•••••	• • • • • • • • • • • • • • • • • • • •	•••••
NOU WATER	3.24	11767.4912				
AXIMUN VEG. SOIL WATER (VOL/VOL)	0.	4248				
INIMUM VEG. SOIL WATER (VOL/VOL)	0.	1693				

Reference: Maximum Saturated Depth over Landfill Liner by Bruce M. McEnroe, University of Mansas ASCE Journal of Environmental Engineering Vol. 119, No. 2, March 1993, pp. 262-270.

********	***************************************	
**		•
••		•
**	HYDROLOGIC EVALUATION OF LANDFILL PERFORMANCE	••
••	HELP NODEL VERSION 3.07 (1 NOVENBER 1997)	•
••	DEVELOPED BY ENVIRONMENTAL LABORATORY	•
••	USAE WATERWAYS EXPERIMENT STATION	•
••	FOR USEPA RISK REDUCTION ENGINEERING LABORATORY	••
••		•
••		••
********		*******

.

PRECIPITATION DATA FILE:	C:\LF33\DATA4N1.D4
TEMPERATURE DATA FILE:	C:\LF33\DATA7N1.D7
SOLAR RADIATION DATA FILE:	C:\LF33\DATA13N1.D13
EVAPOTRANSPIRATION DATA:	C:\LF33\DATA11N1.D11
SOIL AND DESIGN DATA FILE:	C:\LF33\DATA10N1.D10
OUTPUT DATA FILE:	C:\LF33\N10116.OUT

TIME: 95:22 DATE: 6/29/2018

.

.

.....

TITLE: NORTHWESTERN AREA - ACTIVE LIFE - YEARS 1 TO 16

NOTE: INITIAL NOISTURE CONTENT OF THE LAYERS AND SNOW WATER WERE COMPUTED AS NEARLY STEADY-STATE VALUES BY THE PROGRAM.

LAYER 1

TYPE 1 - VERTICAL PERCOLATION LAYER MATERIAL TEXTURE NUMBER 11 THICKNESS = 12.00 INCHES

THICKNESS	•	12.00 INCHES
POROSITY	•	0.4640 VOL/VOL
FIELD CAPACITY	-	0.3100 VOL/VOL
WILTING POINT	•	0.1870 VOL/VOL
INITIAL SOIL WATER CONTENT	•	0.3363 VOL/VOL
EFFECTIVE SAT. HYD. COND.	•	0.639999998000E-04 CM/SEC

LAYER 2

TYPE 1 - VERTICAL	PE	RCOLATION LAYER
MATERIAL TEXT	URE	NUMBER 18
THICRIESS	•	1152.00 INCHES
POROSITY	•	0.6710 VOL/VOL
FIELD CAPACITY	•	0.2920 VOL/VOL
WILTING POINT	•	0.0770 VOL/VOL
INITIAL SOIL WATER CONTENT	•	0.2929 VOL/VOL
EFFECTIVE SAT. HYD. COND.	•	0.10000005000E-02 CM/SEC

LAYER 3

TYPE 2 - LATERA	τр	RAINAGE LAYER
MATERIAL TEXT	URE	NUMBER O
THICKNESS	•	12.00 INCHES
POROSITY	•	0.3970 VOL/VOL
FIELD CAPACITY	•	0.0320 VOL/VOL
WILTING POINT `	•	0.0130 VOL/VOL
INITIAL SOIL WATER CONTENT	•	0.0736 VOL/VOL
EFFECTIVE SAT. HYD. COND.	•	0.500000007000E-01 CM/SEC
SLOPE	•	2.20 PERCENT
DRAINAGE LENGTH	•	653.0 FEET

LAYER 4

TYPE 4 - FLEXIBLE MEMBRANE LINER

MAICKING IGAI	URE	NUMBER 33
THICRIESS	۰	0.06 INCHES
POROSITY	•	0.0000 VOL/VOL
FIELD CAPACITY	-	0.0000 VOL/VOL
WILTING POINT	=	0.0000 VOL/VOL
INITIAL SOIL WATER CONTENT	•	0.0000 VOL/VOL .
EFFECTIVE SAT. HYD. COND.	•	0.199999996000E-12 CM/SEC
FML PINHOLE DENSITY	=	1.00 HOLES/ACRE
FML INSTALLATION DEFECTS	=	10.00 HOLES/ACRE
FML PLACEMENT QUALITY	-	4 - POOR
FML PINHOLE DENSITY FML INSTALLATION DEFECTS	=	1.00 HOLES/ACRE 10.00 HOLES/ACRE

LAYER S

TYPE 3 - BARRIER SOIL LINER

MATERIAL TEXT	UKE	NUMBER 10		
THICKNESS	•	36.00	INCHES	
POROSITY	•	0.4270	VOL/VOL	
FIELD CAPACITY	=		VOL/VOL	
WILTING POINT	-	0.3670	VOL/VOL	
INITIAL SOIL WATER CONTENT	•	0.4270	VOL/VOL	
EFFECTIVE SAT. HYD. COND.	-	0.10000000	1000E-06 (CM/SEC

GENERAL DESIGN AND EVAPORATIVE ZONE DATA

NOTE: SCS RUNOFF CURVE HUMBER WAS COMPUTED FROM DEFAULT Soil Data base using soil texture #11 with bare Grownd Conditions, a surface slope of 19.3 and A slope length of 380. Feet.

SCS RUNOFF CURVE NUMBER =	94.70	
FRACTION OF AREA ALLOWING RUNOFF	75.0	PERCENT
AREA PROJECTED ON HORIZONTAL PLANE .	1.000	ACRES
EVAPORATIVE ZONE DEPTH	6.0	INCHES
INITIAL WATER. IN EVAPORATIVE ZONE =	1.683	INCHES
UPPER LINIT OF EVAPORATIVE STORAGE =	2.784	INCHES
LOWER LINIT OF EVAPORATIVE STORAGE	1.122	INCHES
INITIAL SNOW WATER.	0.000	INCHES
INITIAL WATER IN LAYER MATERIALS -	357.736	INCHES
TOTAL INITIAL WATER =	357.736	INCHES
TOTAL SUBSURFACE INFLOW =	0.00	INCHES/YEAR

EVAPOTRANSPIRATION AND WEATHER DATA

NOTE: EVAPOTRANSPIRATION DATA WAS OBTAINED FROM ST. LOUIS MISSOURI

RUNOFF

STATION LATITUDE	= 39.10 DEGREES
NAXIMUN LEAF AREA INDEX	- 0.00
START OF GROWING SEASON (JULIAN DATE)	98
END OF GROWING SEASON (JULIAN DATE)	- 300
EVAPORATIVE ZONE DEPTH	 6.0 INCHES
AVERAGE ANNUAL WIND SPEED	= 10.40 MPH
AVERAGE 1ST QUARTER RELATIVE HUMIDITY	73.00 3
AVERAGE 2ND QUARTER RELATIVE HUMIDITY	
AVERAGE 3RD QUARTER RELATIVE HUMIDITY	

TOTALS	0.487	0.822	0.606	0.415	0.505	0.897
	0.718	0.288	0.393	0.270	0.385	0.208
STD. DEVIATIONS	0.445	0.545	0.686	0.381	0.553	0.935
	0.844	0.315	0.290	0.261	0.378	0.210
EVAPOTRANSPIRATION						
TOTALS	0.513	0.726	2.053	2.682	2.324	2.819
	2.060	1.974	1.864	1.523	1.244	0.786
STD. DEVIATIONS	0.298	0.477	0.469	0.889	1.229	1.002
	0.983	0.924	0.816	0.719	0.485	0.269
LATERAL DRAINAGE COLLI	CTED FROM	LAYER 3				
TOTALS	0.5687	0.4110	0.5559	0.7416	0.5879	0.5173
	0.5921	0.5292	0.4306	0.4296	0.3859	0.5005
STD. DEVIATIONS	0.2267	0.1951	0.2542	0.3278	0.2459	0.2493
	0.2938	0.2380	0.2125	0.1806	0.1730	0.2458
PERCOLATION/LEAKAGE TH	ROUGH LAYE	R 5				
TOTALS	0.0019	0.0014	0.0018	0.0024	0.0019	0.0017
	0.0019	0.0017	0.0014	0.0014	0.0013	0.0016
STD. DEVIATIONS	0.0007	0.0006	0.0008	0.0009	0.0007	0.0007
	0.0009	0.0007	0.0006	0.0006	0.0005	0.0007

AVERAGES OF MONTHLY AVERAGED DAILY HEADS (INCHES)

AVERAGES	1,9220	1.5218	1.8786	2.5898	1.9868	1.80
AVENAGES	2.0009	1.7884	1.5037	1.4517	1.3475	1.69
STD. DEVIATIONS	0.7660	0.7185	0.8591	1.1447	0.8310	0.67
	0.9929	0.8043	0.7422	0.6104	0.6040	0.83

AVERAGE	4TH	QUARTER	RELATIVE	HUMIDITY	•	74.00 3	

NOTE: PRECIPITATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR ST. LOUIS MISSOURI

NORMAL MEAN MONTHLY PRECIPITATION (INCHES)

JAN/JUL	FEB/AUG	MAR/SEP	APR/OCT	MAY/NOV	JUN/DEC
1.72	2.14	3.20	3.55	3.54	3.73
3.63	2.55	2.70	2.32	2.53	2.22

NOTE: TEMPERATURE DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR ST. LOUIS MISSOURI

NORMAL MEAN MONTHLY TEMPERATURE (DEGREES FAHRENHEIT)

JAN/JUL	FEB/AUG	MAR/SEP	APR/OCT	MAY/HOV	JUN/DEC
20.60	33.00	43.20	56.10	65.60	74.80
78.90	77.00	69.70	57.90	44.60	34.20

NOTE: SOLAR RADIATION DATA WAS SYNTHETICALLY GENERATED USING Coefficients for St. Louis missouri and station latitude = 39.10 degrees

.....

AVERAGE MONTHLY VALUES IN INCHES FOR YEARS 1 THROUGH 16

	JAN/JUL	FEB/AUG	NAR/SEP	APR/OCT	MAY/NOV	JUN/DEC
PRECIPITATION						
TOTALS	1.46	2.03	2.96	3.47	3.27	4.37
	3.32	2.54	2.69	2.19	2.32	2.10
STD. DEVIATIONS	0.80	1.14	0.87	1.49	1.09	2.09
	2.15	1.37	1.17	1.09	1.55	1.06

1 THROUGH 16 AVERAGE ANNUAL TOTALS & (STD. DEVIATIONS) FOR YEARS INCHES CU. FEET PERCENT 32.72 (3.650) 118782.7 100.00 PRECIPITATION 21755.57 RUNOFF 5.993 (1.8100) 18.315 EVAPOTRANSPIRATION 20.567 (2.1396) 74658.98 62.053 LATERAL DRAINAGE COLLECTED 6.25029 (1.58814) 22688.562 19.10090 FROM LAYER 3 PERCOLATION/LEAKAGE THROUGH LAYER 5 0.02047 (0.00474) 74.301 0.06255 AVERAGE HEAD ON TOP OF LAYER 4 1.791 (0.456) CHANGE IN WATER STORAGE -0.109 (1.0390) -394.74 -0.332

.....

١,

PEAK DAILY VALUES FOR YEARS	1 THROUGH	16
	(INCHES)	(CU. FT.)
PRECIPITATION	3.44	12407.200
RUNOFF	1.810	6570.7866
DRAINAGE COLLECTED FROM LAYER 3	0.06229	226.09923
PERCOLATION/LEAKAGE THROUGH LAYER 5	0.000183	0.66518
AVERAGE HEAD ON TOP OF LAYER 4	6.525	
MAXIMUM HEAD ON TOP OF LAYER 4	11.212	
LOCATION OF NAXIMUM HEAD IN LAYER 3 (DISTANCE FROM DRAIN)	91.7 FEET	
SHOW MATER	1.92	6955.1221
MAXIMUM VEG. SOIL WATER (VOL/VOL)	0	. 4640
MINIMUM VEG. SOIL WATER (VOL/VOL)	0	. 1870

*** Maximum heads are computed using McEnroc's equations. ***

Reference: Maximum Saturated Depth over Landfill Liner by Bruce M. NcEncoe, University of Kanaas ASCE Journal of Environmental Engineering Vol. 119, No. 2, March 1993, pp. 262-270.

HYDROLOGIC EVALUATION OF LANDFILL PERFORMANCE HELP MODEL VERSION 3.07 (1 NOVEMBER 1997) DEVELOPED BY ENVIRONMENTAL LABORATORY USAE WATERWAYS EXPERIMENT STATION FOR USEPA RISK REDUCTION ENGINEERING LABORATORY

.

PRECIPITATION DATA FILE:	C:\LF33\DATA42.D4
TEMPERATURE DATA FILE:	C:\LF33\DATA72.D7
SOLAR RADIATION DATA FILE:	C:\LF33\DATA132.D13
EVAPOTRANSPIRATION DATA:	C:\LF33\DATA112.D11
SOIL AND DESIGN DATA FILE:	C:\LF33\DATA10N2.D10
OUTPUT DATA FILE:	C:\LF33\N11746.OUT

TINE: 95:39 DATE: 6/29/2018

TITLE: NORTHWESTERN AREA-30 YEAR POST CLOSURE CARE-YEARS 17 TO 46

NOTE: INITIAL MOISTURE CONTENT OF THE LAYERS AND SNOW MATER WERE SPECIFIED BY THE USER.

LAYER 1

TYPE 1 - VERTICAL PERCOLATION LAYER NATERIAL TEXTURE NUMBER 0 THICKNESS = 12.00 INCHES POROSITY = 0.4530 VOL/VOL FIELD CARACITY = 0.2120 VOL/VOL WILTING POINT = 0.1160 VOL/VOL EFFECTIVE SAT. HYD. COND. = 0.369999994000E-03 CM/SEC

	(VOL/VOL)	(INCHES)	LAYER
· • • •	0.3010	3.6118	1
	0.2920	336.3840	2
	0.0523	0.6279	3
	0.0000	0.0000	4
	0.4270	15.3720	5
		0.000	SNOW WATER

NOTE: SATURATED HYDRAULIC CONDUCTIVITY IS MULTIPLIED BY 4.20 FOR ROOT CHANNELS IN TOP HALF OF EVAPORATIVE 20NE.

ς

LAYER 2

TYPE 1 - VERTICAL	PE	RCOLATION LAYER
MATERIAL TEXT	URE	NUMBER 11
THICKNESS	-	30.00 INCHES
POROSITY	-	0.4640 VOL/VOL
FIELD CAPACITY	•	0.3100 VOL/VOL
WILTING POINT	-	0.1870 VOL/VOL
INITIAL SOIL WATER CONTENT	•	0.3100 VOL/VOL
EFFECTIVE SAT. HYD. COND.	•	0.639999998000E-04 CM/SEC

LAYER 3

TYPE 2 - LATERA	LDF	AINAGE LAYER
MATERIAL TEXT	URE	NUMBER 20
THICKNESS	=	0.20 INCHES
POROSITY	•	0.8500 VOL/VOL
FIELD CAPACITY		0.0100 VOL/VOL
WILTING POINT	•	0.0050 VOL/VOL
INITIAL SOIL WATER CONTENT	•	0.0100 VOL/VOL
EFFECTIVE SAT. HYD. COND.	•	10.000000000 CN/SEC
SLOPE	•	19.00 PERCENT
DRAINAGE LENGTH	•	380.0 FEET

LAYER 4

TYPE 4 - FLEXIBLE NENBRAIE LINER MATERIAL TEXTURE NUMBER 36 THICKNESS = 0.04 INCHES PORDSITY = 0.000 VOL/VOL FIELD CAPACITY = 0.0000 VOL/VOL INITIAL SOLIL WATER CONTENT = 0.0000 VOL/VOL EFFECTIVE SAT. HYD. COND. = 0.39999993000E-12 CM/SEC FML FINISALDE DENISTY = 1.00 HOLES/ACRE FML PLACEMENT QUALITY = 4 - POOR

LAYER 5

TYPE 3 - BA	ARTER	SOLL LINER		
MATERIAL TE				
THICKNESS	-	12.00	INCHES	
POROSITY	=	0.4270	VOL/VOL	
FIELD CAPACITY	-	0.4180	VOL/VOL	
ILTING POINT	-	0.3670	VOL/VOL	
INITIAL SOIL WATER CONTER	IT ≂	0.4270	VOL/VOL	
EFFECTIVE SAT. HYD. COND.		0.10000001	L000E-06 CH/SEC	

LAYER 6

TYPE 1 - VERTICAL	PE	RCOLATION LAYER
NATERIAL TEXT	URE	NUMBER 18
THICKNESS	۰	1152.00 INCHES
POROSITY	-	0.6710 VOL/VOL
FIELD CAPACITY	۰	0.2920 VOL/VOL
WILTING POINT	•	0.0770 VOL/VOL
INITIAL SOIL WATER CONTENT	=	0.2920 VOL/VOL
EFFECTIVE SAT. HYD. COND.	=	0.10000005000E-02 CM/SEC

LAYER 7

TYPE 2 - LATERAL DRAINAGE LAYER

MATERIAL T	EXTURE	NUMBER 0			
THICKNESS	•	12.00	INCHES		•
POROSITY	•	0.3970	VOL/VOL		
FIELD CAPACITY	•	0.0320	VOL/VOL		
WILTING POINT	•	0.0130	VOL/VOL		
INITIAL SOIL WATER CONTEN	at -	0.0523	VOL/VOL		
EFFECTIVE SAT. HYD. COND.		0.50000000	7000E-01	CM/SEC	
SLOPE	•	2.20	PERCENT		
DRAINAGE LENGTH	•	653.0	FEET		

LAYER 8

TYPE 4 - FLEXIBLE MENBRANE LINER MATERIAL TEXTURE NUMBER 35

39.10 DEGREES 3.00 98 300

= 300 = 24.0 INCHES = 10.40 MPH = 73.00 3 = 67.00 3 = 71.00 3 = 74.00 3

HAY/NOV

3.54 2.53

NAY/NOV

65.60 44.60

JUH/DEC

3.73

JUN/DEC

74.80

NOTE: EVAPOTRANSPIRATION DATA WAS OBTAINED FROM ST. LOUIS MISSOURI

STATION LATITUDE MAXIMUM LEAF AREA INDEX START OF GROWING SEASON (JULIAN DATE) END OF GROWING SEASON (JULIAN DATE) EVAPORATIVE ZONE DEPTH AVERAGE ANNUAL WIND SPEED AVERAGE IST QUARTER RELATIVE HUMIDITY AVERAGE 2ND QUARTER RELATIVE HUMIDITY AVERAGE 4TH QUARTER RELATIVE HUMIDITY AVERAGE 4TH QUARTER RELATIVE HUMIDITY

MAR/SEP

3.28 2.70

NAR/SEP

43.20 69.70

NOTE: PRECIPITATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR ST. LOUIS MISSOURI NORMAL MEAN MONTHLY PRECIPITATION (INCHES)

NOTE: TEMPERATURE DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR ST. LOUIS MISSOURI NORMAL MEAN MONTHLY TEMPERATURE (DEGREES FAHRENHEIT)

APR/OCT

3.55 2.32

APR/OCT

56.10 57.90

ST. LOUIS

FEB/AUG

2.14 2.55

FEB/AUG

33.80 77.00

JAN/JUL

1.72 3.63

JAN/JUL

28.60 78.90

THICKNESS	•	0.06 INCHES
POROSITY	•	0.0000 VOL/VOL
FIELD CAPACITY	=	0.0000 VOL/VOL
WILTING POINT	-	0.0000 VOL/VOL
INITIAL SOIL WATER CONTENT	-	0.0000 VOL/VOL
EFFECTIVE SAT. HYD. COND.		0.199999996000E-12 CM/SEC
FML PINHOLE DENSITY	=	1.00 HOLES/ACRE
FML INSTALLATION DEFECTS	-	10.00 HOLES/ACRE
FML PLACEMENT QUALITY	•	4 - POOR
LAY	FR	9

LAYER 9

TYPE 3 - BARI	RIER	SOIL LINER
MATERIAL TEXT	TURE	NUMBER 16
THICKNESS	= -	36.00 INCHES
POROSITY	=	0.4270 VOL/VOL
FIELD CAPACITY	•	0.4180 VOL/VOL
WILTING POINT	•	0.3670 VOL/VOL
INITIAL SOIL WATER CONTENT	=	0.4270 VOL/VOL
EFFECTIVE SAT. HYD. COND.	=	0.10000001000E-06 CM/SEC

GENERAL DESIGN AND EVAPORATIVE ZONE DATA

NOTE: SCS RUNOFF CURVE NUMBER WAS COMPUTED FROM DEFAULT SOIL DATA BASE USING SOIL TEXTURE # 8 NITH A FAIR STAND OF GRASS, A SURFACE SLOPE OF 19.1 AND A SLOPE LENGTH OF 380, FEET.

-	80.20	
=	90.0	PERCENT
-	1.000	ACRES
-	24.0	INCHES
•	6.504	INCHES
•	11.124	INCHES
•	3.636	INCHES
•	0.000	INCHES
•	369.594	INCHES
-	369.594	INCHES
-	0.00	INCHES/YEAR
		= 90.0 = 1.000 = 24.0 = 6.504 = 11.124 = 3.636 = 0.000 = 369.594

EVAPOTRANSPIRATION AND WEATHER DATA

	JAN/JUL	FEB/AUG	MAR/SEP	APR/OCT	MAY/NOV	JUN/DE
PRECIPITATION						
		2.15			3 44	
TOTALS		2.15				
STD. DEVIATIONS	0.95	1.09	0.92	1.36	1.56	
	1.87	1.38	1.45	1.28	1.30	1.14
RUNOFF						
		0.721				
TOTALS	0.320					
STD. DEVIATIONS	0 445	0.696	0.674	0.103	0.049	0.17
STD. DEVIATIONS		0.028				
EVAPOTRANSPIRATION						
		0.638		2 262	4 373	4 76
TOTALS	3.507		2.133			
STD. DEVIATIONS	0.280	0.374	0.574	0.787	0.854	1.66
	1.481	1.177	1.025	0.293	0.282	0.19
LATERAL DRAINAGE COL	LECTED FROM	LAYER 3				
TOTALS	0.4317	0.4167	1.0309	1.0720	0.6036	0.27
	0.1179				0.2551	
STD. DEVIATIONS	0.4791	0.6721	0.6490	0.6433	0.5145	0.21
	0.1679	0.0729	0.0137	0.0466	0.7667	0.72
PERCOLATION/LEAKAGE						
TOTALS		0.0000	0.0000	0.0000	0.0000	0.00
	0.0000	0.0000	0.0000	0.0000	0.0000	0.00
STD. DEVIATIONS	0.0000					
	0.0000	0.0000	0.0000	0.0000	0.0000	0.00
LATERAL DRAINAGE COL	LECTED FROM	LAYER 7				
TOTALS	0.0045	0.0019	0.0010	0.0004	0.0002	0.00
	0.0000		0.0000			
STD. DEVIATIONS	0.0247	0.0102	0.0052	0.0023		0.00
		0.0001			0.0000	0.00

..... AVERAGE MONTHLY VALUES IN INCHES FOR YEARS 1 THROUGH 30

NOTE: SOLAR RADIATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR ST. LOUIS MISSOURI AND STATION LATITUDE = 39.10 DEGREES

PERCOLATION/LEAKAGE THROUGH LAYER 9

TOTALS	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
STD. DEVIATIONS	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000
	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
AVERAGES	OF MONTHLY	AVERAGED	DALLY HE	ADS (INCH	ES)	
DAILY AVERAGE HEAD ON	TOP OF LAY	ER 4				
DAILY AVERAGE HEAD ON AVERAGES	0.0005	0.0005	0.0012	0.0013	0.0007	
			0.0012 0.0000	0.0013 0.0000	0.0007 0.0003	
	0.0005	0.0005		0.0000	0.0003	0.000
AVERAGES	0.0005	0.0005	0.0000			0.0003 0.0006 0.0003
AVERAGES	0.0005 0.0001 0.0006 0.0002	0.0005 0.0000 0.0009 0.0001	0.0000	0.0000	0.0003	0.0006
AVERAGES STD. DEVIATIONS DAILY AVERAGE HEAD ON	0.0005 0.0001 0.0006 0.0002 TOP OF LAY	0.0005 0.0000 0.0009 0.0001 ER 8	0.0000	0.0000 0.0008 0.0001	0.0003 0.0006 0.0009	0.0000 0.0003 0.0008
AVERAGES STD. DEVIATIONS	0.0005 0.0001 0.0006 0.0002 TOP OF LAY	0.0005 0.0000 0.0009 0.0001 ER 8 0.0070	0.0000	0.0000 0.0008 0.0001 0.0015	0.0003 0.0006 0.0009 0.0007	0.0003
AVERAGES STD. DEVIATIONS DAILY AVERAGE HEAD ON	0.0005 0.0001 0.0006 0.0002 TOP OF LAY	0.0005 0.0000 0.0009 0.0001 ER 8	0.0000	0.0000 0.0008 0.0001	0.0003 0.0006 0.0009	0.0006
AVERAGES STD. DEVIATIONS DAILY AVERAGE HEAD ON	0.0005 0.0001 0.0006 0.0002 TOP OF LAY	0.0005 0.0000 0.0009 0.0001 ER 8 0.0070	0.0000	0.0000 0.0008 0.0001 0.0015	0.0003 0.0006 0.0009 0.0007	0.0003

••

AVERAGE ANNUAL TOTALS & (STD. DEVIATIONS) FOR YEARS 1 THRONGH 30

	INC	HES		CU. FEET	PERCENT
PRECIPITATION	33.21	(4.731)	120562.0	100.00
RUNOFF	1.660	ſ	1.1223)	6025.63	4.998
EVAPOTRANSPIRATION	26.822	(2.9548)	97362.76	80.757
LATERAL DRAINAGE COLLECTED FROM LAYER 3	4.72954	ſ	2.01001)	17160.242	14.24018
PERCOLATION/LEAKAGE THROUGH	0.00002	¢	0.00001)	0.067	0.0000

0.000 (0.000)			
0.00810 (0.04429)	29.417	0.02440	
0.00003 (0.00018)	0.126	0.00010	
0.002 (0.013)			
-0.007 {	1.4517)	-24.18	-0.020	
	0.00810 (0.00003 (0.002 (0.00810 { 0.04429} 0.00003 { 0.00018} 0.002 { 0.013}	0.00810 (0.04429) 29.417 0.00003 (0.00018) 0.126 0.002 (0.013)	0.00810 { 0.04429} 29.417 0.02440 ; 0.00003 { 0.00018} 0.126 0.0001t 0.002 { 0.013}

FINAL WATER	STORAGE AT EN	D OF YEAR 30
LAYER	(INCHES)	(VOL/VOL)
1	3.2913	0.2743
2	8.8363	0.2945
3	0.0020	0.0100
4	0.0000	0.0000 .
5	5.1240	0.4270
6	336.3840	0.2920
7	0.3840	0.0320
6	0.0000	0.0000
9	15.3720	0.4270
SNOW WATER	0.000	

• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	 *****

PEAK DAILY VALUES FOR YEARS	1 THROUGH 3	0
	(INCHES)	(CU. FT.)
PRECIPITATION	3.44	12407.200
RUNOFF	2.123	7708.0542
DRAINAGE COLLECTED FROM LAYER 3	0.62788	2279.10750
PERCOLATION/LEAKAGE THROUGH LAYER 5	0.000002	0.00599
AVERAGE HEAD ON TOP OF LAYER 4	0.023	
MAXIMUN HEAD ON TOP OF LAYER 4	0.089	
LOCATION OF NAXIMUM HEAD IN LAYER 3 (DISTANCE FROM DRAIN)	0.0 FEET	
DRAINAGE COLLECTED FROM LAYER 7	0.00631	22.89842
PERCOLATION/LEAKAGE THROUGH LAYER 9	0.000023	0.08357
AVERAGE HEAD ON TOP OF LAYER 8	0.661	
MAXIMUN HEAD ON TOP OF LAYER 8	1.282	
LOCATION OF MAXIMUM HEAD IN LAYER 7 (DISTANCE FROM DRAIN)	19.2 FEET	
SNOW WATER	2.43	6021.5406
MAXINUN VEG. SOIL WATER (VOL/VOL)	0.3	
MINIMUM VEG. SOIL WATER (VOL/VOL)	0.1	515

*** Maximum heads are computed using NcEnroe's equations. ***

.....

.

Reference: Naximum Saturated Depth over Landfill Liner by Bruce M. McEnroe, University of Kansas ASCE Journal of Environmental Engineering Vol. 119, No. 2, March 1993, pp. 262-270.

х.

NOTE: SATURATED HYDRAULIC CONDUCTIVITY IS MULTIPLIED BY 4.90 FOR ROOT CHANNELS IN TOP HALF OF EVAPORATIVE 20NE.

LAYER 2

TYPE 1 - VERTICAL PERCOLATION LAYER

MATERIAL TEXT	URE	NUMBER II		
THICKNESS	•	30.00	INCHES	
POROSITY	•	0.4640	VOL/VOL	
FIELD CAPACITY	•	0.3100	VOL/VOL	
WILTING POINT	•	0.1870	VOL/VOL	
INITIAL SOIL WATER CONTENT		0.2945	VOL/VOL	
EFFECTIVE SAT. HYD. COND.	•	0.63999999	8000E-04	CII/SEC

LAYER 3

TYPE 2 - LATERA	T DE	AINAGE LAYER
MATERIAL TEXT	URE	NUMBER 0
THICKNESS	•	0.20 INCHES
POROSITY	•	0.8500 VOL/VOL
FIELD CAPACITY	•	0.0100 VOL/VOL
WILTING POINT	•	0.0050 VOL/VOL
INITIAL SOIL NATER CONTENT	-	0.0100 VOL/VOL
EFFECTIVE SAT. HYD. COND.	-	1.0000000000 CN/SEC
SLOPE	•	19.00 PERCENT
DRAINAGE LENGTH	•	380.0 FEET

LAYER 4

TYPE 4 - FLEXIBLE MEMBRANE LINER NATERIAL TEXTURE HUNDER 35 FHICKNESS 0.000 VOL/VOL POROSITY 0.0000 VOL/VOL FIELD CAPACITY 0.0000 VOL/VOL INITIAL SOIL WATER CONTENT 0.0000 VOL/VOL EFFECTIVE SAT. NYD. COND. 0.39999993006-12 CN/SEC FNL DISLALATION DEFECTS 1.00 HOLES/ACRE FNL PLACEMENT QUALITY 4 - POOR

FIELD CAPACITY	•	0.0000 VOL/VOL
WILTING POINT		0.0000 VOL/VOL
INITIAL SOIL WATER CONTENT	•	0.0000 VOL/VOL
EFFECTIVE SAT. HYD. COND.	•	0.199999996000E-12 CM/SEC
FML PINHOLE DENSITY	•	1.00 HOLES/ACRE
FML INSTALLATION DEFECTS		10.00 HOLES/ACRE
FML PLACEMENT QUALITY		4 - POOR

LAYER 9

	RIER SOIL LINER TURE NUMBER 16
MATERIAL TEAT	IOKE NUMBER IS
THICRIESS	= 36.00 INCHES
POROSITY	= 0.4270 VOL/VOL
FIELD CAPACITY	0.4180 VOL/VOL
WILTING POINT	 0.3670 VOL/VOL
INITIAL SOIL MATER CONTENT	= 0.4270 VOL/VOL
EFFECTIVE SAT. HYD. COND.	- 0.10000001000E-06 CM/SEC

GENERAL DESIGN AND EVAPORATIVE 2018 DATA

NOTE: SCS RUNOFF CURVE NUMBER WAS COMPUTED FROM DEFAULT Soil data base using soil texture 3 8 with a Good Stand of Grass, a Sufrace Slope of 19.9 And a slope length of 380. FEET.

SCS RUNOFF CURVE NUMBER	•	73.70	
FRACTION OF AREA ALLOWING RUNOFF	•	95.0	PERCENT
AREA PROJECTED ON HORIZONTAL PLANE	-	1.000	ACRES
EVAPORATIVE ZONE DEPTH	-	24.0	INCHES
INITIAL WATER IN EVAPORATIVE ZONE	-	6.026	INCHES
UPPER LIMIT OF EVAPORATIVE STORAGE	-	11.124	INCHES
LOWER LIMIT OF EVAPORATIVE STORAGE	- :	3.636	INCHES
INITIAL SNOW WATER	-	0.000	INCHES
INITIAL WATER IN LAYER MATERIALS	•	369.393	INCHES
TOTAL INITIAL WATER	-	369.393	INCHES
TOTAL SUBSURFACE INFLOW	•	0.00	INCHES/YEAR

EVAPOTRANSPIRATION AND MEATHER DATA

NOTE: EVAPOTRANSPIRATION DATA WAS OBTAINED FROM

HYDROLOGIC EVALUATION OF LANDFILL PERFORMANCE HELP MODEL VERSION 3.07 (1 NOVEMBER 1997) Developed by Environmental Laboratory USAE WATEMAYS EXPERIMENT STATION FOR USEPA RISK REDUCTION ENGINEERING LABORATORY

...

••

•••

•• •••

PRECIPITATION DATA FILE:	C:\LF33\DATA43.D4
TEMPERATURE DATA FILE:	C:\LF33\DATA73.D7
SOLAR RADIATION DATA FILE:	C:\LF33\DATA133.D13
EVAPOTRANSPIRATION DATA:	C:\LF33\DATA113.D11
SOIL AND DESIGN DATA FILE:	C:\LF33\DATA10N3.D10
OUTPUT DATA FILE:	C:\LF33\N147116.OUT

TIME: 96:16 DATE: 6/29/2018

•••

....

•••

TITLE: NORTHWESTERN AREA-70 YEAR AFTER POST CLOSURE-YEAR 47 TO 116

NOTE: INITIAL MOISTURE CONTENT OF THE LAYERS AND SHOW WATER WERE SPECIFIED BY THE USER.

LAYER 1

I

TYPE 1 - VERTICAL PERCOLATION LAYER

MATERIAL	TEXTURE	NUMBER 8	
THICKNESS	•	12.00	INCHES
POROSITY	. •	0.4630	VOL/VOL
FIELD CAPACITY	-	0.2320	VOL/VOL
WILTING POINT	-	0.1160	VOL/VOL
INITIAL SOIL WATER CONT	= TVI3	0.2743	VOL/VOL
EFFECTIVE SAT. HYD. CON	D. =	0.36999999	1000E-03 CM/SEC

LAYER 5

TYPE 3 - BARA	IER	SOIL LINER		
MATERIAL TEXT	URE	NUMBER 0		
THICKNESS	-	12.00	INCHES	
POROSITY	•	0.4270	VOL/VOL	
FIELD CAPACITY	=	0.4180	VOL/VOL	
WILTING POINT	•	0.3670	VOL/VOL	
INITIAL SOIL WATER CONTENT	•	0.4270	VOL/VOL	
EFFECTIVE SAT. HYD. COND.	•	0.99999997	5000E-05	CH/SEC

LAYER 6

TYPE 1 - VERTICAL PERCOLATION LAYER MATERIAL TEXTURE NUMBER 18 THICKNESS 1152.00 INCHES POROSITY 0.6710 VOL/VOL FIELD CAPACITY 0.2920 VOL/VOL INITIAL SOL WATER CONTENT 0.2920 VOL/VOL EFFECTIVE SAT. HYD. COND. 0.10000005000E-02 CM/SEC

LAYER 7

TYPE 1 - VERTICAL	PE	RCOLATION LAYER
MATERIAL TEXT	URE	NUMBER O
THICHIESS	-	12.00 INCHES
POROSITY	-	0.3970 VOL/VOL
FIELD CAPACITY		0.0320 VOL/VOL
WILTING POINT	•	0.0130 VOL/VOL
INITIAL SOIL WATER CONTENT	•	0.0320 VOL/VOL
EFFECTIVE SAT. HYD. COND.	•	0.500000007000E-01 CH/SEC

LAYER 8

•	TYPE 4 - FL Material	EXIBLE MEMB	ER
THICKNESS POROSITY		с -	 INCHES VOL/VOL

	ST. LOUI	5	MISSOURI ·				JAN/JUL	FEB/AUG	MAR/SEP	APR/OCT	MAY/NOV	JUN/DEC
M	TATION LATIT	AREA INDEX	JULIAN DATE)	= 39.10 D = 4.00 = 98	EGREES	PRECIPITATION						
E1 E1	ID OF GROWING	G SEASON (JU	LIAN DATE)	= 300 = 24.0 II = 10.40 M		TOTALS	1.81 3.43	2.12 2.58	3.31 2.65	3.55 2.29	3.59 2.30	4.08 2.10
AN AN	VERAGE 1ST QU VERAGE 2ND QU	UARTER RELAT	IVE HUNIDITY IVE HUMIDITY IVE HUMIDITY	= 73.00 % = 67.00 %	en	STD. DEVIATIONS	0.97 1.79	1.03 1.41	1.40 1.34	1.37 1.39	1.65 1.36	2.04 .
			IVE HUMIDITY			RUNOFF						
NOTE:	PRECIPITAT		SWITHETICAL	LY GENERATED	USTNC	TOTALS	0.250 0.010	0.474 0.002	0.340 0.000	0.009 0.001	0.003 0.010	0.013 0.054
	COEFFICI	ENTS FOR	ST. LOUIS	. MISS		STD. DEVIATIONS	0.426 0.039	0.545 0.000	0.637 0.002	0.048 0.003	0.015 0.048	0.048 0.213
JAN/JUL	FEB/AUG	MAR/SEP	PRECIPITATIO	MAY/NOV	JUN/DEC	EVAPOTRANSPIRATION						
1.72 3.63	2.14 2.55	3.20 2.70	3.55 2.32	3.54 2.53	3.73 2.22	TOTALS	0.530 3.513	0.653 2.581	2.102 2.269	3.344 1.234	4.769 0.867	4.138 0.679
						STD. DEVIATIONS	0.242 1.656	0.355 1.229	0.545 0.989	0.712 0.356	1.024 0.239	1.900 0.195
NOTE:	TEMPERATUR COEFFICI		YNTHETICALLY ST. LOUIS	GENERATED U		LATERAL DRAINAGE COLL						
нс	ORMAL MEAN M	ONTHLY TEMPE	RATURE (DEGRI	EES FAHRENHE	IT)	TOTALS	0.5156 0.1135					
JAN/JUL	FEB/AUG	MAR/SEP	APR/OCT	MAY/NOV	JUN/DEC	STD. DEVIATIONS .	0.5456 0.1724					
28.60 78.90	33.80 77.00	43.20 69.70	56.10 57.90	65.60 44.60	74.80 34.20	PERCOLATION/LEAKAGE T						
NOTE			AS SYNTHETIC			TOTALS	0.0006 0.0001	0.0016				
101E:	COEFFICI	ENTS FOR	ST. LOUIS DE = 39.10	MISS		STD. DEVIATIONS	0.0016 0.0001					0.0002 0.0093
						PERCOLATION/LEAKAGE T						
						TOTALS	0.0005	0.0005				
••••••	•••••	•••••	•••••		•••••••••••••••••	STD. DEVIATIONS	0.0003 0.0003			0.0003		

AVERAGE MONTHLY, VALUES IN INCHES FOR YEARS 1 THROUGH 70

.

DAILY AVERAGE HEAD ON	TOP OF LAY	ER 4				
AVERAGES	0.0104	0.0389	0.1128	0.0360	0.0090	0.003
	0.0013	0.0004	0.0001	0.0001	0.0232	0.034
STD. DEVIATIONS	0.0385	0.1273	0.2266	0.1118	0.0151	0.004
	0.0020	0.0010	0.0004	0.0007	0.1400	0.230
DAILY AVERAGE HEAD ON	TOP OF LAY	ER Ø				
AVERAGES	0.5032	0.5049	0.5130	0.5199	0.5216	0.521
	0.5202	0.5188	0.5174	0.5159	0.5165	0.518
STD. DEVIATIONS	0.2864	0.2889	0.2923	0.2946	0.2940	0.293
	0.2924	0.2916	0.2908	0.2900	0.2879	0.290

.....

.....

AVERAGE ANNUAL TOT	ALS & (STD. DEVI	ATIONS) FOR	YEARS 1 THROU	GH 70
	18	ICHES	CU. FEET	PERCENT
PRECIPITATION	33.82	(4.892	122761.4	100.00
RUNOFF	1.164	(0.9403)	4225.34	3.442

Ronote	1.104 (0.9403)	4223.34	3.442
EVAPOTRANSPIRATION	26.680 (3.2479)	96849.79	78.893
LATERAL DRAINAGE COLLECTED FROM LAYER 3	5.96965 (2.15506)	21669.834	17.65199
PERCOLATION/LEAKAGE THROUGH LAYER 5	0.01230 (0.01403)	44.632	0.03636
AVERAGE HEAD ON TOP OF LAYER 4	0.023 (0.030)		
PERCOLATION/LEAKAGE THROUGH LAYER 9	0.00662 (0.00345)	24.042	0.01958
AVERAGE HEAD ON TOP OF LAYER 8	0.516 (0.291)		

CHANGE IN WATER STORAGE	-0.002	(1.4714)	-7.60	-0.006
****	•••••			

PEAK DAILY VALUES FOR YEARS	1 THROUGH	70
	(INCHES)	(CU. FT.)
PRECIPITATION	3.57	12959.100
RUNOFF	2.602	9446.6738
DRAINAGE COLLECTED FROM LAYER 3	0.55069	1999.00513
PERCOLATION/LEAKAGE THROUGH LAYER 5	0.025314	91.88854
AVERAGE HEAD ON TOP OF LAYER 4	20.320	
MAXINUM HEAD ON TOP OF LAYER 4	36.393	
LOCATION OF MAXIMUM HEAD IN LAYER 3 (DISTANCE FROM DRAIN)	27.4 FEET	
PERCOLATION/LEAKAGE THROUGH LAYER 9	0.000037	0.13339
AVERAGE HEAD ON TOP OF LAYER 8	1.110	
SHOW WATER	3.24	11767.4912
MAXINUM VEG. SOIL WATER (VOL/VOL)	0.	4100
MINIMUM VEG. SOIL WATER (VOL/VOL)	0.	1515

*** Maximum heads are computed using McEnroe's equations. ***

Reference: Maximum Saturated Depth over Landfill Liner by Bruce M. NcEnroe, University of Kanaas ASCE Journal of Environmental Engineering Vol. 119, No. 2, March 1993, pp. 262–270.

	•	••
**		•
••	HYDROLOGIC EVALUATION OF LANDFILL PERFORMANCE	•
••	HELP MODEL VERSION 3.07 (1 NOVEMBER 1997)	•
••	DEVELOPED BY ENVIRONMENTAL LABORATORY	•
••	USAE WATERWAYS EXPERIMENT STATION	••
••	FOR USEPA RISK REDUCTION ENGINEERING LABORATORY	•
••		•
•• .		•

.....

PRECIPITATION DATA FILE:	C:\LF33\DATA4NA.D4
TEMPERATURE DATA FILE:	C:\LF33\DATA7NA.D7
SOLAR RADIATION DATA FILE:	C:\LF33\DATA13NA.D13
EVAPOTRANSPIRATION DATA:	C:\LF33\DATA11NA.D11
SOIL AND DESIGN DATA FILE:	C:\LF33\DATA10HA.D10
OUTPUT DATA FILE:	C:\LF33\NA0116.OUT

DATE: 6/29/2018 TINE: 88:29

TITLE: NORTHWESTERN AREA - ACTIVE LIFE - YEARS 1 TO 16

NOTE: INITIAL MOISTURE CONTENT OF THE LAYERS AND SNOW WATER WERE Computed as nearly steady-state values by the program.

LAYER 1

TYPE 1 - VERTICAL PERCOLATION LAYER MATERIAL TEXTURE NUMBER 11 THICKNESS = 12.00 INCHES POROSITY = 0.4640 VOL/VOL FIELD CAPACITY = 0.3100 VOL/VOL HILTING POINT = 0.1870 VOL/VOL EFFECTIVE SAT. HYD. COND. = 0.63999998000E-04 CM/SEC

	FINAL WATER	STORAGE AT	END OF YEAR 70	
•••••	LAYER	(INCHES)	(VOL/VOL)	
	1	3.0592	0.2549	
	2	8.5237	0.2841	
	3	0.0020	0.0100	
	4	0.0000	0.0000	
	5	5.1240	0.4270	
	6	336.3840	0.2920	
	7	0.7011	0.0651	
	8	0.0000	0.0000	
	9	15.3720	0.4270	
s	NOM WATER	0.000		

.....

NOTE: SATURATED HYDRAULIC CONDUCTIVITY IS MULTIPLIED BY 4.20 FOR ROOT CHANNELS IN TOP HALF OF EVAPORATIVE 20NE.

LAYER 2

TYPE 1 - VERTICAL		
MATERIAL TEXT	URE	NUMBER 18
THICKNESS	•	1152.00 INCHES
POROSITY	•	0.6710 VOL/VOL
FIELD CAPACITY	-	0.2920 VOL/VOL
WILTING POINT	-	0.0770 VOL/VOL
INITIAL SOIL WATER CONTENT	•	0.2932 VOL/VOL
EFFECTIVE SAT. HYD. COND.	۰	0.100000005000E-02 CM/SEC

LAYER 3

TYPE 2 - LATERA	ιD	RAINAGE LAYER
NATERIAL TEXT	URE	NUMBER 0
THICKNESS	•	12.00 INCHES
POROSITY	•	0.3970 VOL/VOL
FIELD CAPACITY	-	0.0320 VOL/VOL
WILTING POINT	-	0.0130 VOL/VOL
INITIAL SOIL WATER CONTENT		0.0472 VOL/VOL
EFFECTIVE SAT. HYD. COND.	=	0.500000007000E-01 CM/SEC
SLOPE	-	2.20 PERCENT
DRAINAGE LENGTH	•	653.0 FEET

LAYER 4

TYPE 4 - FLEXIBLE MEMBRANE LINER

MATERIAL TEXT	URE	NUMBER 35
THICKNESS	-	0.06 INCHES
POROSITY	=	0.0000 VOL/VOL
FIELD CAPACITY	-	0.0000 VOL/VOL
WILTING POINT	-	0.0000 VOL/VOL
INITIAL SOIL WATER CONTENT	-	0.0000 VOL/VOL
EFFECTIVE SAT. HYD. COND.	=	0.199999996000E-12 CM/SEC
FML PINHOLE DENSITY	•	1.00 HOLES/ACRE
FML INSTALLATION DEFECTS		10.00 HOLES/ACRE
FML PLACEMENT QUALITY	•	4 - POOR

MAY/NOV

3.54 2.53

MAY/NOV

65.60 44.60 $\langle \cdot \rangle$

JUN/DEC 3.73 2.22

JU!!/DEC

74.80 34.20

LAYER 5

TYPE 3 - BAR	RIER	SOIL LINER	
MATERIAL TEX	TURE	NUMBER 16	
THICKNESS	•	36.00 INCHES	
POROSITY	•	0.4270 VOL/VOL	
FIELD CAPACITY	•	0.4180 VOL/VOL	
WILTING POINT	•	0.3670 VOL/VOL	
INITIAL SOIL WATER CONTENT	•	0.4270 VOL/VOL	
EFFECTIVE SAT. HYD. COND.	•	0.10000001000E-06 CM/S	53

GENERAL DESIGN AND EVAPORATIVE ZONE DATA

NOTE: SCS RUNOFF CURVE HUMBER WAS COMPUTED FROM DEFAULT Soil data base using soil texture #11 with a Fair staid of Grass, a surface slope of 19.3 And a slope length of 300. Feet.

=	87.40	
-	75.0	PERCENT
•	1.000	ACRES
	12.0	INCHES
	3.868	INCHES
•	5.568	INCHES
-	2.244	INCHES
•	0.000	INCHES
•	357.523	INCHES
•	357.523	INCHES
•	0.00	INCHES/YEAR
		= 75.0 = 12.0 = 3.860 = 5.560 = 2.244 = 0.000 = 357.523

EVAPOTRANSPIRATION AND WEATHER DATA

NOTE: EVAPOTRANSPIRATION DATA WAS OBTAINED FROM ST. LOUIS MISSOURI

STATION LATITUDE	-	39.10 DEGREES
MAXIMUM LEAF AREA INDEX	•	3.00
START OF GROWING SEASON (JULIAN DATE)	•	98.
END OF GROWING SEASON (JULIAN DATE)	•	300
EVAPORATIVE ZONE DEPTH	•	12.0 INCHES
AVERAGE ANNUAL WIND SPEED	-	10.40 MPH
AVERAGE 1ST QUARTER RELATIVE HUMIDITY	•	73.00 3

AVERAGE MONTHLY	VALUES	IN INCHES	FOR YEARS	1 THF	OUGH 16	i
•						
	JAN/JUL	FEB/AUG	NAR/SEP	APR/OCT	MAY/NOV	JUN/DEC
						•••••
PRECIPITATION						
TOTALS	1.46	2.03	2.96	3.47	3.27	4.37
	3.32	2.54	2.69	2.19	2.32	2.10
STD. DEVIATIONS	0.80	1.14	0.87	1.49	1.89	2.09

AVERAGE 2ND QUARTER RELATIVE HUMIDITY=67.00 %AVERAGE 3RD QUARTER RELATIVE HUMIDITY=71.00 %AVERAGE 4TH QUARTER RELATIVE HUMIDITY=74.00 %

NOTE: PRECIPITATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR ST. LOUIS MISSOURI

NORMAL MEAN MONTHLY PRECIPITATION (INCHES)

NOTE: TEMPERATURE DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR ST. LOUIS NISSOURI

NORMAL MEAN MONTHLY TEMPERATURE (DEGREES FAHRENHEIT)

NOTE: SOLAR RADIATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR ST. LOUIS MISSOURI AND STATION LATITUDE = 39.10 DEGREES

APR/OCT

3.55

APR/OCT

56.10 57.90

MAR/SEP

3.28

MAR/SEP

43.20 69.70

JAH/JUL

1.72 3.63

JAH/JUL

28.60 78.90 FEB/AUG

2.14 2.55

FEB/AUG

33.80 77.00

	2.15	1.37	1.17	1.09	1.55	1.06
RUNOFF						
TOTALS	0.399	0.643	0.344	0.057	0.101	0.229
TOTALS	0.163	0.015	0.046	0.028	0.085	0.074
STD. DEVIATIONS	0.414	0.524	0.712	0.081	0.163	0.418
	0.297	0.030	0.062	0.035	0.124	0.133
EVAPOTRANSPIRATION						
•••••						
TOTALS	0.496	0.746	2.360	3.276	3.046	3.869
	3.058	2.418	2.244	1.439	1.227	0.776
STD. DEVIATIONS	0.281	0.498	0.398	0.975	1.313	1.165
	1.516	1.163	1.046	0.449	0.328	0.179
LATERAL DRAINAGE COLL	ECTED FROM	LAYER 3				
TOTALS	0.6373	0.4525	0.6321	0.9312	0.7078	0.4897
	0.4392	0.2888	0.1678	0.1591	0.2603	0.5093
STD. DEVIATIONS	0.3558	0.2428	0.3628	0.4357	0.3947	0.3296
	0.4141	0.2719	0.1521	0.1524	0.2682	0.3630
PERCOLATION/LEAKAGE T	HROUGH LAYE	R S				
TOTALS	0.0020	0.0015	0.0020	0.0029	0.0022	0.0016
	0.0014	0.0010	0.0006	0.0006	0.0009	0.0017
STD. DEVIATIONS	0.0011	0.0007	0.0011	0.0013	0.0012	0.0010
	0.0012	0.0008	0.0005	0.0005	0.0008	0.0011

AVERAGES OF MONTHLY AVERAGED DAILY HEADS (INCHES)

AVERAGES	2.1536	1.6750	2.1363	3.2518	2.3919	1.71
	1.4844	0.9759	0.5859	0.5376	0.9090	1.72
STD. DEVIATIONS	1.2025	0.8937	1.2262	1.5214	1.3338	1.15
	1.3994	0.9187	0.5311	0.5151	0.9365	1.22

	INC	IES		CU. FEET	PERCENT
PRECIPITATION	32.72	C	3.658)	118782.7	100.00
RUNOFF	2.183	¢	1.3241)	7925.78	6.673
EVAPOTRANSPIRATION	24.974	C	2.2259)	90656.17	76.321
LATERAL DRAINAGE COLLECTED FROM LAYER 3	5.67497	C	2.09367)	20600.150	17.34272
PERCOLATION/LEAKAGE THROUGH LAYER 5	0.01838	(0.00632)	66.705	0.0561
AVERAGE HEAD ON TOP OF LAYER 4	. 1.628 (0.597)		
CHANGE IN WATER STORAGE	-0.128	ł	1.2454)	-466.14	-0.392

.....

PEAK DAILY VALUES FOR YEARS	1 THROUGH	16
	(INCHES)	(CU. FT.)
PRECIPITATION	3.44	12487.200
RUHOFF	1.302	4725.6240
DRAINAGE COLLECTED FROM LAYER 3	0.07023	254.95059
PERCOLATION/LEAKAGE THROUGH LAYER 5	0.000205	0.74240
AVERAGE HEAD ON TOP OF LAYER 4	7.350	
MAXIMUM HEAD ON TOP OF LAYER 4	12.493	
LOCATION OF MAXIMUM HEAD IN LAYER 3 (DISTANCE FROM DRAIN)	98.4 FEET	
SHOW WATER	1.92	6955.1221
MAXIMUM VEG. SOIL WATER (VOL/VOL)	0	. 4640
MININUM VEG. SOIL WATER (VOL/VOL)	0	. 1870

*** Maximum heads are computed using McEnroe's equations. ***

Reference: Maximum Saturated Depth over Landfill Liner by Bruce M. McEnree, University of Kanaas ASCE Journal of Environmental Engineering Vol. 119, No. 2, March 1993, pp. 262-270.

••••••••••••••••••••••••••••••••••

.

	FINAL WATER	STORAGE AT EN	D OF YEAR 16	
	LAYER	(INCHES)	(VOL/VOL)	
	1	3.1519	0.2627	
	2	336.3839	0.2920	
	3	0.5602	0.0467	
•	4	0.0000	0.0000	
	5	15.3720	0.4270	
	SNOW WATER	0.000		

.....

NOTE: SATURATED HYDRAULIC CONDUCTIVITY IS MULTIPLIED BY 4.90 FOR ROOT CHANNELS IN TOP HALF OF EVAPORATIVE ZONE.

••		
••		
	EVALUATION OF LANDFILL PERFORMANCE	
	EL VERSION 3.07 (1 NOVEMBER 1997)	
	PED BY ENVIRONMENTAL LABORATORY	••
	WATERWAYS EXPERIMENT STATION	••
** FOR USEPA RI	ISK REDUCTION ENGINEERING LABORATORY	••
••		••
••		**
		•••••
		••••
	•	
PRECIPITATION DATA FILE:	C:\LF33\DATA4EB.D4	
TEMPERATURE DATA FILE:	C:\LF33\DATA7EB.D7	
SOLAR RADIATION DATA FILE:		
EVAPOTRANSPIRATION DATA:	C:\LF33\DATA11EB.D11	
SOIL AND DESIGN DATA FILE:	C:\LF33\DATA10NB.D10	
OUTPUT DATA FILE:	C:\LF33\NB1746.OUT	
OUTPOT DATA FILE:	C: (EF33 (#B1/40.001	
-		
TIME: 89:21 DATE: 6/	/29/2018	
TIME: 89:21 DATE: 6/	12312010	

.....

TITLE: NORTHWESTERN AREA-30 YEAR POST CLOSURE CARE-YEARS 17 TO 46

.....

NOTE: INITIAL MOISTURE CONTENT OF THE LAYERS AND SNOW WATER WERE SPECIFIED BY THE USER.

LAYER 1

TYPE 1 - VERTICAL	PE	RCOLATION LAYER
NATERIAL TEXT	URE	NUMBER 8
THICKNESS	=	12.00 INCHES
POROSITY	•	0.4630 VOL/VOL
FIELD CAPACITY	-	0.2320 VOL/VOL
WILTING POINT	•	0.1160 VOL/VOL
INITIAL SOIL WATER CONTENT	•	0.2320 VOL/VOL
EFFECTIVE SAT. HYD. COND.	-	0.369999994000E-03 CM/SEC

LAYER 2 ______

.

.

MATERIAL TEXT	URE	NUMBER 11
THICKNESS	-	30.00 INCHES
POROSITY	=	0.4640 VOL/VOL
FIELD CAPACITY	•	0.3100 VOL/VOL
WILTING POINT	•	0.1870 VOL/VOL
INITIAL SOIL WATER CONTENT		0.3100 VOL/VOL
EFFECTIVE SAT. HYD. COND.	-	0.639999998000E-04 CM/SEC

LAYER 3

TYPE 2 - LATER		
MATERIAL TEXT	ORE	NUMBER 20
THICKNESS	=	0.20 INCHES
POROSITY	-	0.8500 VOL/VOL
FIELD CAPACITY	=	0.0100 VOL/VOL
WILTING POINT	•	0.0050 VOL/VOL
INITIAL SOIL WATER CONTENT	-	0.0100 VOL/VOL
EFFECTIVE SAT. HYD. COND.	•	10.000000000 CN/SEC
SLOPE	•	19.00 PERCENT
DRAINAGE LENGTH	-	380.0 FEET

LAYER 4

TYPE 4 - FLEXIBLE MEMBRANE LINER NATERIAL TEXTURE NUMBER 36 THICKNESS = 0.04 INCHES POROSITY = 0.0000 VOL/VOL

POROSITY	æ	0.0000 VOL/VOL
FIELD CAPACITY	•	0.0000 VOL/VOL
WILTING POINT	-	0.0000 VOL/VOL
INITIAL SOIL WATER CONTENT	=	0.0000 VOL/VOL
EFFECTIVE SAT. HYD. COND.	-	0.399999993000E-12 CM/SEC
FML PINHOLE DENSITY	-	1.00 HOLES/ACRE
FML INSTALLATION DEFECTS	•	15.00 HOLES/ACRE
FML PLACEMENT QUALITY	-	4 - POOR

0.06 INCHES 0.0000 VOL/VOL

LAYER 5

TYPE 3 - BAR	RI ER	R SOIL LINER
MATERIAL TEXT	TURE	NUMBER 16
THICKNESS	•	12.00 INCHES
POROSITY	•	0.4270 VOL/VOL
FIELD CAPACITY		0.4180 VOL/VOL
WILTING POINT	•	0.3670 VOL/VOL
INITIAL SOIL WATER CONTENT	•	0.4270 VOL/VOL
EFFECTIVE SAT. HYD. COND.	•	0.10000001000E-06 CM/SEC

LAYER 6

TYPE 1 - VERTICAL	PΕ	RCOLATION LAYER
MATERIAL TEXT	URE	NUMBER 18
THICKNESS		1152.00 INCHES
POROSITY	•	0.6710 VOL/VOL
FIELD CAPACITY	-	0.2920 VOL/VOL
WILTING POINT	•	0.0770 VOL/VOL
INITIAL SOIL WATER CONTENT	•	0.2920 VOL/VOL
EFFECTIVE SAT. HYD. COND.	-	0.10000005000E-02 CM/SEC

LAYER 7

TYPE 2 - LATERA	гD	RAINAGE LAYER	
MATERIAL TEXT	URE	NUMBER O	
THICRIESS		12.00 INCHES	
POROSITY	=	0.3970 VOL/VOL	
FIELD CAPACITY	-	0.0320 VOL/VOL	
WILTING POINT	•	0.0130 VOL/VOL	
INITIAL SOIL WATER CONTENT	•	0.0467 VOL/VOL	
EFFECTIVE SAT. HYD. COND.	•	0.50000007000E-01 CM/SEC	
SLOPE		2.20 PERCENT	
DRAINAGE LENGTH	•	653.0 FEET	

LAYER 9

TYPE 4 - FLEXIBLE MEMBRANE LINER MATERIAL TEXTURE NUMBER 35

FIELD CAPACITY	•	0.0000 VOL/VOL
WILTING POINT	=	0.0000 VOL/VOL
INITIAL SOIL WATER CONTENT	•	0.0006 VOL/VOL
EFFECTIVE SAT. HYD. COND.	•	0.199999996000E-12 CM/SEC
FML PINHOLE DENSITY	•	1.00 HOLES/ACRE
FML INSTALLATION DEFECTS	•	10.00 HOLES/ACRE
FML PLACEMENT QUALITY	•	4 - POOR

THICKNESS POROSITY

LAYER 9

TYPE 3 - BARR	IER	SOIL LINER		•
NATERIAL TEXT	URE	NUMBER 16		
THICRIESS	•	36.00	INCHES	
POROSITY	•	0.4270	VOL/VOL	
FIELD CAPACITY	•	0.4180	VOL/VOL	
WILTING POINT		0.3670	VOL/VOL	
INITIAL SOIL WATER CONTENT	-	0.4270	VOL/VOL	
EFFECTIVE SAT. HYD. COND.	=	0.10000000	1000E-06	CM/SEC

GENERAL DESIGN AND EVAPORATIVE 20NE DATA

NOTE: SCS RUHOFF CURVE NUMBER WAS COMPUTED FROM DEFAULT Soil Data Base Using Soil texture # 8 with a Good Stand of Grass, a Surface slope of 19.3 And a slope length of 380. Feet.

SCS RUNOFF CURVE NUMBER	•	73.70	
FRACTION OF AREA ALLOWING RUNOFF	-	90.0	PERCENT
AREA PROJECTED ON HORIZONTAL PLANE	•	1.000	ACRES
EVAPORATIVE ZONE DEPTH	•	24.0	INCHES
INITIAL WATER IN EVAPORATIVE ZONE	•	6.504	INCHES
UPPER LIMIT OF EVAPORATIVE STORAGE	-	11.124	INCHES
LOWER LINIT OF EVAPORATIVE STORAGE	•	3.636	INCHES
INITIAL SNOW WATER	•	0.000	INCHES
INITIAL WATER IN LAYER MATERIALS	-	369.526	INCHES
TOTAL INITIAL WATER	-	369.526	INCHES
TOTAL SUBSURFACE INFLOW	•	0.00	INCHES/YEAR

EVAPOTRANSPIRATION AND WEATHER DATA

•

÷

	JAN/JUL	FEB/AUG	NAR/SEP	APR/OCT	MAY/NOV	JUN/DEC
PRECIPITATION						
TOTALS	1.56	2.15	3.09	3.37	3.44	4.42
	3.38	2.66	2.75	2.18	2.16	2.06
STD. DEVIATIONS	0.95	1.09		1.36	1.56	2.04
	1.87	1.38	1.45	1.28	1.38	1.14
RUNOFF						
TOTALS	0.166	0.454	0.287	0.013	0.002	0.021
	0.006	0.001	0.000	0.001	0.002	0.008
STD. DEVIATIONS	0.303	0.543	0.559	0.066	0.008	0.067
	0.021	0.005	0.003	0.005	0.008	0.021
EVAPOTRANSPIRATION						
TOTALS	0.508	0.632	2.126	3.273	4.651	4.550
	3.510	2.595	2.100	1.221	0.058	0.661
STD. DEVIATIONS	0.274		0.577	0.754	0.911	1.704
	1.509	1.179	1.077	0.286	0.262	0.198
LATERAL DRAINAGE COL	LECTED FROM	LAYER 3				
TOTALS	0.4658	0.5462	1.4450	1.1499	0.6219	0.285
	0.0985	0.0291	0.0079	0.0084	0.2722	0.541
STD. DEVIATIONS	0.4949					
	0.1388	0.0766	0.0324	0.0427	0.7985	0.793
PERCOLATION/LEAKAGE	THROUGH LAY	ER S				
TOTALS	0.0000	0.0000	0.0000	0.0000	0.0000	0.000
	0.0000	0.0000	0.0000	0.0000	0.0000	0.000
STD. DEVIATIONS	0.0000	0.0000	0.0000	0.0000	0.0000	0.000
	0.0000	0.0000	0.0000	0.0000	0.0000	0.000
LATERAL DRAINAGE COL						
TOTALS	0.0033			0.0003	0.0001	0.000
	0.0000	0.0000	0.0000	0.0000	0.0000	0.000
STD. DEVIATIONS	0.0179	0.0074	0.0038	0.0016	0.0008	0.000
	0.0002					

..... AVERAGE MONTHLY VALUES IN INCHES FOR YEARS 1 THROUGH 30

PERCOLATION/LEAKAGE THROUGH LAYER 9

 STATION LATITUDE
 39.10 DEGREES

 MAXIMUM LEAF AREA INDEX
 4.00

 STAAT OF GROUING SEASON (JULIAN DATE)
 98

 END OF GROUING SEASON (JULIAN DATE)
 300

 AVERAGE ANNUAL WIND SPEED
 10.40 NPH

 AVERAGE ANNUAL WIND SPEED
 10.40 NPH

 AVERAGE 1ST QUARTER RELATIVE HUNDITY
 73.00 %

 AVERAGE 2ND QUARTER RELATIVE HUNDITY
 71.00 %

 AVERAGE 4TH QUARTER RELATIVE HUNDITY
 74.00 %

NOTE: EVAPOTRANSPIRATION DATA WAS OBTAINED FROM ST. LOUIS MISSOURI

NOTE:	PRECIPITATION DATA	WAS SYNTHETICALLY	GENERATED USING
	COEFFICIENTS FOR	ST. LOUIS	MISSOURI

	NORNAL	MEAN MONTHLY	PRECIPITATION	(INCHES)	
JAN/JUL	FEB/AUG	MAR/SEP	APR/OCT	MAY/NOV	JUN/DEC
1.72	2.14	3.28	3.55	3.54	3.73
3.63	2.55	2.70	2.32	2.53	2.22

NOTE: TEMPERATURE DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR ST. LOUIS MISSOURI

NORMAL MEAN KONTHLY TEMPERATURE (DEGREES FAHRENHEIT)

JAN/JUL	FEB/AUG	MAR/SEP	APR/OCT	NAY/NOV	JUH/DEC
28.60	33.00	43.20	56.10	65.60	74.80
78.90	77.00	. 69.70	57.90	44.60	34.20

NOTE: SOLAR RADIATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR ST. LOUIS MISSOURI AND STATION LATITUDE © 39.10 DEGREES

TOTALS	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
STD. DEVIATIONS	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000
	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

AVERAGES OF MONTHLY AVERAGED DAILY HEADS (INCHES)

DAILY AVERAGE HEAD ON TOP OF LAYER 4

AVERAGES	0.0005	0.0007	0.0017	0.0014	0.0007	0.0003
	0.0001	0.0000	0.0000	0.0000	0.0003	0.0006
STD. DEVIATIONS	0.0006	0.0010	0.0009	0.0009	0.0006	0.0003
	0.0002	0.0001	0.0000	0.0001	0.0010	0.0009
AILY AVERAGE HEAD ON						
AILY AVERAGE HEAD ON						
AILY AVERAGE HEAD ON AVERAGES	0.0111	ER 9 0.0051	0.0023	0.0011	0.0005	0.0002
	TOP OF LAY	ER 8 0.0051 0.0000	0.0023	0.0011	0.0000	0.0000
	0.0111	ER 9 0.0051	0.0023	0.0011		

.....

AVERAGE ANNUAL TOTALS & (STD. DEVIATIONS) FOR YEARS 1 THROUGH 30

.....

	INC			CU. FEET	PERCENT
PRECIPITATION	33.21	(4.731)	120562.0	100.00
RUNOFF	0.962	¢	0.9127)	3490.91	2.896
EVAPOTRANSPIRATION	26.773	(2.9978)	97184.41	80.609
LATERAL DRAINAGE COLLECTED FROM LAYER 3	5.47212	ſ	2.10308)	19863.793	16.47600
PERCOLATION/LEAKAGE THROUGH	0.00002	(0.00001)	0.076	0.00006

LAYER 5				
AVERAGE HEAD ON TOP OF LAYER 4	0.001 (0.000)		
LATERAL DRAINAGE COLLECTED FRON LAYER 7	0.00587 (0.03207)	21.324	0.01769
PERCOLATION/LEAKAGE THROUGH LAYER 9	0.00003 (0.00013)	0.097	0.00008
AVERAGE HEAD ON TOP OF LAYER 8	0.002 (0.0091		
CHANGE IN WATER STORAGE	0.000 (1.3955)	1.44	0.001

.....

FINAL WATER STORAGE AT END OF YEAR 30

PEAK DAILY VALUES FOR YEARS		30 .
		(CU. FT.)
PRECIPITATION	3.44	12487.200
RUNOFF	1.923	6980.1426
DRAINAGE COLLECTED FROM LAYER 3	0.64979	2358.75439
PERCOLATION/LEAKAGE THROUGH LAYER 5	0.000002	0.00617
AVERAGE HEAD ON TOP OF LAYER 4	0.024	
MAXIMUM HEAD ON TOP OF LAYER 4	0.082	
LOCATION OF MAXIMUM HEAD IN LAYER 3 (DISTANCE FROM DRAIN)	0.0 FEET	
DRAINAGE COLLECTED FROM LAYER 7	0.00457	16.58160
PERCOLATION/LEAKAGE THROUGH LAYER 9	0.000017	0.06246
AVERAGE HEAD ON TOP OF LAYER 8	0.479	
MAXIMUM HEAD ON TOP OF LAYER 8	0.935	
LOCATION OF NAXIMUM HEAD IN LAYER 7 (DISTANCE FROM DRAIN)	14.9 FEET	
SNOW WATER	2.43	8821.5488
MAXIMUM VEG. SOIL WATER (VOL/VOL)	0.	4148
MINIMUN VEG. SOIL WATER (VOL/VOL)	0.	1515

*** Maximum heads are computed using McEnroe's equations. ***

Reference: Maximum Saturated Depth over Landfill Liner by Bruce M. McEnroe, University of Kansas ASCE Journal of Environmental Engineering Vol. 119, No. 2, March 1993, pp. 262-270.

...... -----LAYER (VOL/VOL) (INCHES) ı 3.2640 0.2720 9.0082 0.3003 2 3 0.0100 0.0020 0.0000 0.0000 4 0.4270 5 5.1240 336.3840 0.2920 6 0.3840 0.0320 7 0.0000 0.0000 8 9 15.3720 0.4270 SHOW WATER 0.000

	* * * * * * * * * * * * * * * * * * * *	

••		••
**		••
••	HYDROLOGIC EVALUATION OF LANDFILL PERFORMANCE	••
••	HELP KODEL VERSION 3.07 (1 NOVENBER 1997)	••
••	DEVELOPED BY ENVIRONMENTAL LABORATORY	••
••	USAE WATERWAYS EXPERIMENT STATION	••
••	FOR USEPA RISK REDUCTION ENGINEERING LABORATORY	••
••		••
••		••

PRECIPITATION DATA FILE:	C:\LF33\DATA4EC.D4
TEMPERATURE DATA FILE:	C:\LF33\DATA7EC.D7
SOLAR RADIATION DATA FILE:	C:\LF33\DATA13EC.D13
EVAPOTRANSPIRATION DATA:	C:\LF33\DATA11EC.D11
SOIL AND DESIGN DATA FILE:	C:\LF33\DATA10NC.D10
OUTPUT DATA FILE:	C:\LF33\NC47116.OUT

TIME: 09:50 DATE: 6/29/2010

•••••

.

TITLE: NORTHWESTERN AREA-70 YEAR AFTER POST CLOSURE-YEAR 47 TO 116

NOTE: INITIAL MOISTURE CONTENT OF THE LAYERS AND SNOW WATER WERE SPECIFIED BY THE USER.

LAYER 1

TYPE 1 - VERTICAL PERCOLATION LAYER

MATERIAL TEXT	URE	NUMBER 8	
THICKNESS	•	12.00	INCHES
POROSITY	•	0.4630	VOL/VOL
FIELD CAPACITY	•	0.2320	VOL/VOL
WILTING POINT	•	0.1160	VOL/VOL
INITIAL SOIL WATER CONTENT	-	0.2720	VOL/VOL
EFFECTIVE SAT. HYD. COND.	=	0.36999999	1000E-03 CM/SEC

LAYER S

TYPE 3 -	BARRIER	SOIL LINER		
NATERIAL	TEXTURE	NUMBER 0		
THICKNESS		12.00	INCHES	
POROSITY	-	0.4270	VOL/VOL	
FIELD CAPACITY	•	0.4180	VOL/VOL	
WILTING POINT	•	0.3670	VOL/VOL	
INITIAL SOIL WATER CONT	ENT -	0.4270	VOL/VOL	
EFFECTIVE SAT. HYD. CON	D. =	0.99999997	5000E-0S	CM/SEC

LAYER 6

TYPE 1 - VERTICAL		
MATERIAL TEXT	URE	NUMBER 18
THICKIESS	•	1152.00 INCHES
POROSITY	-	0.6710 VOL/VOL
FIELD CAPACITY	-	0.2920 VOL/VOL
WILTING POINT		0.0770 VOL/VOL
INITIAL SOIL WATER CONTENT	-	0.2920 VOL/VOL
EFFECTIVE SAT. HYD. COND.	•	0.10000005000E-02 CM/SEC

LAYER 7

TYPE 1 - VERTICAL		
NATERIAL TEXT	URE	NUMBER O
THICHIESS	•	12.00 INCHES
POROSITY	•	0.3970 VOL/VOL
FIELD CAPACITY	•	0.0320 VOL/VOL
WILTING POINT	-	0.0130 VOL/VOL
INITIAL SOIL WATER CONTENT	=	0.0320 VOL/VOL
EFFECTIVE SAT. HYD. COND.	-	0.50000007000E-01 CM/SEC

LAYER 8

	TYPE 4 - FL	EXIBLE NEN	RANÉ LI	ER
•	MATERIAL	TEXTURE NO	(BER 35	
THICKNESS		•	0.06	INCHES
POROSITY		-	0.0000	VOL/VOL

NOTE:	SATURATED HYDRAULIC	CONDUCTIVITY IS MULTIPLIED	BY 5.00
	FOR ROOT CHANNELS	IN TOP HALF OF EVAPORATIVE	ZONE.

LAYER 2

TYPE 1 - VERTICAL PERCOLATION LAYER MATERIAL TEXTURE HUMBER 11 THICKNESS = 30.00 HICKES POROSITY = 0.4640 VOL/VOL FIELD CAPACITY = 0.3100 VOL/VOL HILTING POINT = 0.1870 VOL/VOL EFFECTIVE SAT. NYD. COND. = 0.639999990000E-04 CK/SEC

LAYER 3

TYPE 2 - LATERA	L DP	VAINAGE LAYER	
MATERIAL TEXT	URE	NUMBER 0	
THICKNESS	=	0.20 INCHES	
POROSITY	=	0.8500 VOL/VOL	
FIELD CAPACITY	•	0.0100 VOL/VOL	
WILTING POINT	•	0.0050 VOL/VOL	
INITIAL SOIL WATER CONTENT	•	0.0100 VOL/VOL	
EFFECTIVE SAT. HYD. COND.	•	1.00000000000	CM/SEC
SLOPE	•	19.00 PERCENT	
DRAINAGE LENGTH	۹	380.0 FEET	

LAYER 4

TYPE 4 - FLEXIB	LE	MEMBRANE LINER
MATERIAL TEXT	URE	NUMBER 36
THICKNESS	•	0.04 INCHES
POROSITY	-	0.0000 VOL/VOL
FIELD CAPACITY		0.0000 VOL/VOL
WILTING POINT	•	0.0000 VOL/VOL
INITIAL SOIL WATER CONTENT	•	0.0000 VOL/VOL
EFFECTIVE SAT. HYD. COND.	-	0.399999993000E-12 CM/SEC
FML PINHOLE DENSITY	-	. 1.00 HOLES/ACRE
FML INSTALLATION DEFECTS	•	15.00 HOLES/ACRE
FML PLACEMENT QUALITY	•	4 - POOR

 FIELD CAPACITY
 0.0000 VOL/VOL

 WILTING POINT
 0.0000 VOL/VOL

 INITIAL SOIL WATER CONTENT
 0.0000 VOL/VOL

 EFFECTIVE SAT. HYD. COND.
 0.199999906002-12 CM/SEC

 FML FINHOLE DENSITY
 1.00
 HOLES/ACRE

 FML PLACEMENT QUALITY
 10.00
 HOLES/ACRE

LAYER 9

TYPE 3 - BARR				
MATERIAL TEXT	URE	NUMBER 16		
THICKNESS	•	36.00	INCHES	
POROSITY	•	0.4270	VOL/VOL	
FIELD CAPACITY		0.4180	VOL/VOL	
WILTING POINT	•	0.3670	VOL/VOL	
INITIAL SOIL WATER CONTENT	•	0.4270	VOL/VOL	
EFFECTIVE SAT. HYD. COND.	•	0.10000001	1000E-06	CN/SEC

GENERAL DESIGN AND EVAPORATIVE ZONE DATA

NOTE: SCS RUNOFF CURVE NUMBER WAS COMPUTED FROM DEFAULT Soil data base using soil texture # 8 with An Excellent Stand of Grass, A surface slope of 19.3 And A slope length of 380. Feet.

SCS RUNOFF CURVE NUMBER	-	71.20	
FRACTION OF AREA ALLOWING RUNOFF	-	95.0	PERCENT
AREA PROJECTED ON HORIZONTAL PLANE	•	1.000	ACRES
EVAPORATIVE ZONE DEPTH	•	24.0	INCHES
INITIAL WATER IN EVAPORATIVE 20NE	=	6.868	INCHES
UPPER LIMIT OF EVAPORATIVE STORAGE	•	11.124	INCHES
LOWER LIMIT OF EVAPORATIVE STORAGE	•	3.636	INCHES
INITIAL SHOW WATER	•	0.000	INCHES
INITIAL WATER IN LAYER MATERIALS	•	369.539	INCHES
TOTAL INITIAL WATER	-	369.539	INCHES
TOTAL SUBSURFACE INFLOW		0.00	INCHES/YEAR

EVAPOTRANSPIRATION AND WEATHER DATA

, , .: . , ____.

NOTE: EVAPOTRANSPIRATION DATA WAS OBTAINED FROM

		ST. LOUI	s	MISSOURI				JAN/JUL	FE8/AUG	MAR/SEP	APR/OCT	MAY/NOV	JUN/DEC
	M	TATION LATIT AXIMUM LEAF	AREA INDEX	JULIAN DATE)	- 39.10 D - 5.00 - 98	GREES	PRECIPITATION						
	EX	ND OF GROWIN VAPORATIVE 2	G SEASON (JU ONE DEPTH	LIAN DATE)	= 300 = 24.0 II = 10.40 M		TOTALS	1.81 3.43	2.12 2.50	3.31 2.65	3.55 2.29	3.59 2.30	4.08 2.10
,	AN	VERAGE 1ST Q VERAGE 2ND Q	UARTER RELAT	IVE HUMIDITY IVE HUMIDITY	□ 73.00 3 □ 67.00 3	ra	STD. DEVIATION	IS 0.97 1.79	1.03 1.41	1.40 1.34	1.37 1.39	1.65 1.36	2.04 1.22
				IVE HUMIDITY IVE HUMIDITY			RUNOFF						
						•	TOTALS	0.250 0.005	0.475 0.001	0.339 0.000	0.007 0.000	0.001 0.006	0.007 0.052
	NOTE:	COEFFICI	ENTS FOR	SYNTHETICAL ST. LOUIS	NISS		STD. DEVIATION	IS 0.426 0.025	0.546 0.003	0.639 0.000	0.045 0.001	0.007 0.036	0.031 0.212
				PRECIPITATIO			EVAPOTRANSPIRATI						
	JAN/JUL 1.72	FEB/AUG 2.14	MAR/SEP 3.20	APR/OCT 3.55	MAY/NOV 3.54	JUN/DEC 3.73	TOTALS	0.526	0.648 2.583	2.089 2.310	3.369 1.204	4.816 0.824	4.106 0.658
	3.63	2.55	2.70	2.32	2.53	2.22	STD. DEVIATION	is 0.237 1.659	0.349 1.230	0.548 1.022	0.709 0.356	1.002	1.901 0.194
	NOTE:			YNTHETICALLY			LATERAL DRAINAGE						
	***	COEFFICI ORMAL MEAN M		ST. LOUIS RATURE (DEGRI	MISS EES FAHRENHE		TOTALS	0.531 0.102	0.6762	1.7421			
	JAN/JUL	FEB/AUG	MAR/SEP	APR/OCT	MAY/NOV	JUN/DEC	STD. DEVIATION	IS 0.546					
	28.60 78.90	33.80 77.00	43.20 69.70	56.10 57.90	65.60 44.60	74.80 34.20	PERCOLATION/LEAN						
							TOTALS	0.000	5 0.0019				
	NOTE:	COEFFICI	ENTS FOR	AS SYNTHETIC ST. LOUIS DE = 39.10	MISSO		STD. DEVIATION	IS 0.001 0.000		0.0094			
			PERCOLATION/LEAN										
							TOTALS	0.000	6 0.0005				
•••		••••••	•••••	•••••	• • • • • • • • • • • •	•••••	STD. DEVIATION	15 0.000 0.000					

.

AVERAGE MONTHLY VALUES IN INCHES FOR YEARS 1 THROUGH 70

AVERAGES	OF NOWTHLY	AVERAGED	DALLT HE	ADS (INCH	53J	
						•
DAILY AVERAGE HEAD ON	TOP OF LAY	ER 4				
AVERAGES	0.0105	0.0377	0.1192	0.0355	0.0089	0.0034
	0.0012	0.0004	0.0001	0.0001	0.0265	0.0409
	0.0385	0.1245	0.2399	0.0998	0.0147	0.0038
STD. DEVIATIONS	0.0020	0.0011	0.2399	0.0006	0.1509	0.2830
					•	
DAILY AVERAGE HEAD ON	TOP OF LAY	ER 6				
AVERAGES	0.5179	0.5196	0.5281	0.5351	0.5366	0.5361
	0.5350	0.5336	0.5321	0.5305	0.5314	0.5337
STD. DEVIATIONS	0.3079	0.3085	0.3123	0.3149	0.3141	0.3132
SID. DEVIATIONS	0.3124	0.3115	0.3123	0.3099	0.3076	0.3101

.....

.....

AVERAGE ANNUAL TOTALS & (STD. DEVIATIONS) FOR YEARS 1 THROUGH 70

	INCHES			CU. FEET	PERCENT
PRECIPITATION	33.82	C	4.892)	122761.4	100.00
RUNOFF	1.142	C	0.9381)	4146.55	3.378
EVAPOTRANSPIRATION	26.649	C	3.2848)	96737.52	78.801
LATERAL DRAINAGE COLLECTED FROM LAYER 3	6.02291	(2.16775)	21863.158	17.80947
PERCOLATION/LEAKAGE THROUGH LAYER 5	0.01280	(0.01540)	46.456	0.03784
AVERAGE HEAD ON TOP OF LAYER 4	0.024 (0.033)		
PERCOLATION/LEAKAGE THROUGH LAYER 9	0.00679	(0.00367)	24.640	0.02007
AVERAGE HEAD ON TOP OF LAYER 8	0.531 (0.311)		

CHANGE IN WATER STORAGE	-0.003	(1.4394)	-10.45	-0.009

•

•

PEAK DAILY VALUES FOR YEARS	1 THROUGH	70
	(INCHES)	(CU. FT.)
PRECIPITATION	3.57	12959.100
RUNOFE	2.601	9443.1279
DRAINAGE COLLECTED FROM LAYER 3	0.55117	2000.73535
PERCOLATION/LEAKAGE THROUGH LAYER 5	0.028777	104.46230
AVERAGE HEAD ON TOP OF LAYER 4	23.042	
MAXIMUM HEAD ON TOP OF LAYER 4	40.877	
OCATION OF NAXIMUM HEAD IN LAYER 3 (DISTANCE FROM DRAIN)	30.8 FEET	
PERCOLATION/LEAKAGE THROUGH LAYER 9	0.000039	0.14055
VERAGE HEAD ON TOP OF LAYER 8	1.176	
SHOW WATER	3.24	11767.4912
AXIMUN VEG. SOIL WATER (VOL/VOL)	0.	4101
ININUM VEG. SOIL WATER (VOL/VOL)	0.	1515

*** Naximum heads are computed using McEnroe's equations. ***

Reference: Maximum Saturated Depth over Landfill Liner by Bruce M. McEncoe, University of Kanaas ASCE Journal of Environmental Engineering vol. 119, No. 2, March 1993, pp. 262-270.

.....

PRECIPITATION DATA FILE:	C:\LF33\DATA451.D4
TEMPERATURE DATA FILE:	C:\LF33\DATA751.D7
SOLAR RADIATION DATA FILE:	C:\LF33\DATA1351.D13
EVAPOTRANSPIRATION DATA:	C:\LF33\DATA1151.D11
SOIL AND DESIGN DATA FILE:	C:\LF33\DATA10S1.D10
OUTPUT DATA FILE:	C:\LF33\S10131.OUT

TIME: 93:37 DATE: 6/29/2018

TITLE: SOUTHERN AREA - ACTIVE LIFE - YEARS 1 TO 31

NOTE: INITIAL MOISTURE CONTENT OF THE LAYERS AND SNOW WATER WERE COMPUTED AS NEARLY STEADY-STATE VALUES BY THE PROGRAM.

LAYER 1

TYPE 1 - VERTICAL PERCOLATION LAYER NATERIAL TEXTURE NUMBER 11

THICRIESS	•	12.00 INCHES
POROSITY	œ	0.4640 VOL/VOL
FIELD CAPACITY	•	0.3100 VOL/VOL
WILTING POINT	•	0.1870 VOL/VOL
INITIAL SOIL WATER CONTENT	•	0.3377 VOL/VOL
EFFECTIVE SAT. HYD. COND.	•	0.639999998000E-04 CM/SEC

FINAL WATER	STORAGE AT	END OF YEAR 70	
LAYER	(INCHES)	(VOL/VOL)	
1	3.0552	0.2546	
2	8.5955	0.2865	
3	0.0020	0.0100	
4	0.0000	0.0000	
5	5.1240	0.4270	
6	336.3840	0.2920	
7	0.8047	0.0671	
8	0.0000	0.0000	
9	15.3720	0.4270	
SNOW NATER	0.000		

LAYER 2

TYPE 1 - VERTICAL	PE	RCOLATION LAYER
MATERIAL TEXT	URE	NUMBER 18
THICKNESS	•	1152.00 INCHES
POROSITY	•	0.6710 VOL/VOL
FIELD CAPACITY	•	0.2920 VOL/VOL
WILTING POINT	-	0.0770 VOL/VOL
INITIAL SOIL WATER CONTENT	•	0.2929 VOL/VOL
EFFECTIVE SAT. HYD. COND.	-	0.100000005000E-02 CM/SEC

LAYER 3

TYPE 2 - LATERA	гD	RAINAGE LAYER
NATERIAL TEXT	URE	NUMBER 0
THICKNESS	•	12.00 INCHES
POROSITY	•	0.3970 VOL/VOL
FIELD CAPACITY	-	0.0320 VOL/VOL
WILTING POINT	•	0.0130 VOL/VOL
INITIAL SOIL WATER CONTENT	•	0.0739 VOL/VOL
EFFECTIVE SAT. HYD. COND.	•	0.50000007000E-01 CM/SEC
SLOPE		2.20 PERCENT
DRAINAGE LENGTH	•	615.0 FEET
FIELD CAPACITY MILTING POINT INITIAL SOIL WATER CONTENT EFFECTIVE SAT. HYD. COND. SLOPE		0.0320 VOL/VOL 0.0130 VOL/VOL 0.0739 VOL/VOL 0.5000000700E-01 CM/SE 2.20 PERCENT

LAYER 4

TYPE 4 - FLEXIB	LE	NEMBRANE LINER
MATERIAL TEXT	URE	NUMBER 35
THICKNESS		0.06 INCHES
POROSITY	•	0.0000 VOL/VOL
FIELD CAPACITY	•	0.0000 VOL/VOL
WILTING POINT	•	0.0000 VOL/VOL
INITIAL SOIL WATER CONTENT	-	0.0000 VOL/VOL
EFFECTIVE SAT. HYD. COND.	•	0.199999996000E-12 CM/SEC
FML PINHOLE DENSITY	•	1.00 HOLES/ACRE
FML INSTALLATION DEFECTS	•	10.00 HOLES/ACRE
FML PLACEMENT QUALITY	-	4 - POOR

LAYER 5

TYPE 3 - BARRIER SOIL LINER

MATERIAL T	LATORE	MONDER 10		
THICKNESS		36.00	INCHES	
POROSITY	•	0.4270	VOL/VOL	
FIELD CAPACITY	-	0.4180	VOL/VOL	
WILTING POINT		0.3670	VOL/VOL	
INITIAL SOIL WATER CONTEN			VOL/VOL	
EFFECTIVE SAT. HYD. COND		0.10000001	1000E-06	CM/SEC

GENERAL DESIGN AND EVAPORATIVE ZONE DATA

NOTE: SCS RUHOFF CURVE HUNBER WAS COMPUTED FROM DEFAULT SOLL DATA BASE USING SOLL TEXTURE #11 UITH BARE GROWND CONDITIONS, A SURFACE SLOPE OF 14.3 AND A SLOPE LENGTH OF 630. FEET.

SCS RUNOFF CURVE NUMBER		94.60	
FRACTION OF AREA ALLOWING RUNOFF	•	75.0	PERCENT
AREA PROJECTED ON HORIZONTAL PLANE	-	1.000	ACRES
EVAPORATIVE ZONE DEPTH	۰	6.0	INCHES
INITIAL WATER IN EVAPORATIVE ZONE	•	1.889	INCHES
UPPER LIMIT OF EVAPORATIVE STORAGE	•	2.784	INCHES
LOWER LIMIT OF EVAPORATIVE STORAGE	-	1.122	INCHES
INITIAL SHOW WATER	•	0.000	INCHES
INITIAL WATER IN LAYER MATERIALS	•	357.738	INCHES
TOTAL INITIAL WATER	•	357.738	INCHES
TOTAL SUBSURFACE INFLOS	•	0.00	INCHES/YEAR

EVAPOTRANSPIRATION AND WEATHER DATA

NOTE: EVAPOTRANSPIRATION DATA WAS OBTAINED FROM ST. LOUIS MISSOURI

STATION LATITUDE		39.10	DEGREES
MAXIMUN LEAF AREA INDEX	•	0.00	
START OF GROWING SEASON (JULIAN DATE)	•	98	
END OF GROWING SEASON (JULIAN DATE)	•	300	
EVAPORATIVE ZONE DEPTH	•	6.0	INCHES
AVERAGE ANNUAL WIND SPEED	•	10.40	мен
AVERAGE 1ST QUARTER RELATIVE HUMIDITY	•	73.00	3
AVERAGE 2ND QUARTER RELATIVE HUNIDITY	-	67.00	3
AVERAGE 3RD QUARTER RELATIVE HUNIDITY		71.00	3

RUNOFF						
TOTALS	0.427	0.918	0.717	0.369	0.531	0.888
	0.667	0.342	0.403	0.251	0.305	0.212
STD. DEVIATIONS	0.514	0.729	0.676	0.395	0.468	0.799
	0.680	0.349	0.308	0.276	0.327	0.244
EVAPOTRANSPIRATION						
TOTALS	0.552	0.656	2.039	2.544	2.424	3.025
	2.198	1.936	1.842	1.430	1.242	0.859
STD. DEVIATIONS	0.339	0.397	0.567	0.892	0.980	1.092
	0.958	0.895	0.875	0.674	0.497	0.249
LATERAL DRAINAGE COLL	ECTED FROM	LAYER 3				
TOTALS	0.5517	0.3960	0.5337	0.7551	0.6470	0.5547
	0.6116	0.5464	0.4435	0.4529	0.3970	0.5052
STD. DEVIATIONS	0.3103	0.2780	0.2349	0.2943	0.3407	0.2586
	0.2843	0.2566	0.2402	0.2283	0.2010	0.2946
PERCOLATION/LEAKAGE T	HROUGH LAYE	R 5				
TOTALS	0.0017	0.0012	0.0017	0.0023	0.0020	0.0017
	0.0019	0.0017	0.0014	0.0014	0.0013	0.0016
STD. DEVIATIONS	0.0009	0.0008	0.0007	0.0008	0.0009	0.0007
	0.0008	0.0007	0.0007	0.0007	0.0006	0.0008

AVERAGES OF MONTHLY AVERAGED DAILY HEADS (INCHES)

AVERAGES	1.7558	1.3847	1.6985	2.4835	2.0592	1.824
	1.9465	1.7391	1.4586	1.4416	1.3057	1.608
STD. DEVIATIONS	0.9876	0.9751	0.7476	0.9681	1.0843	0.850
	0.9048	0.8168	0.7901	0.7266	0.6611	0.937

AVERAGE 4TH QUARTER RELATIVE HUMIDITY . 74.00 3

NOTE: PRECIPITATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR ST. LOUIS NISSOURI

NORMAL MEAN MONTHLY PRECIPITATION (INCHES)

JAN/JUL	FEB/AUG	MAR/SEP	APR/OCT	NAY/NOV	JUN/DEC
1.72	2.14	3.28	3.55	3.54	3.73
3.63	2.55	2.70	2.32	2.53	2.22

NOTE: TENPERATURE DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR ST. LOUIS MISSOURI

NORMAL MEAN NONTHLY TEMPERATURE (DEGREES FAHRENHEIT)

JAN/JUL	FEB/AUG	MAR/SEP	APR/OCT	HAY/NOV	JUN/DEC
20.60	33.80	43.20	56.10	65.60	74.60
78.90	77.00	69.70	57.90	44.60	34.20

NOTE: SOLAR RADIATION DATA HAS SYNTHETICALLY GENERATED USING Coefficients for St. Louis missouri And Station Latitude = 39.10 degrees

AVERAGE MONT	HLY VALUES I	N INCHES	FOR YEARS	1 THR	OUGH 31	
-						••••••
	JAN/JUL	FEB/AUG	MAR/SEP	APR/OCT	MAY/NOV	JUN/DEC
PRECIPITATION						
TOTALS	1.58	2.08	3.07	3.33	3.48	4.47
	3.42	2.67	2.69	2.10	2.13	2.04
STD. DEVIATIONS	0.94	1.14	0.91	1.35	1.55	2.02
	1.86	1.36	1.46	1.26	1.36	1.13

,

	INC	IES		CU. FEET	PERCENT
PRECIPITATION	33.16	7	4.662)	120357.9	100.00
RUNOFF	6.050	ť	1.7917)	21960.61	18.246
EVAPOTRANSPIRATION	20.746	ł	2.4780)	75309.70	62.571
LATERAL DRAINAGE COLLECTED FROM LAYER 3	6.39480	ſ	1.71870)	23213.115	19.20674
PERCOLATION/LEAKAGE THROUGH LAYER \$	0.01975	ſ	0.00486}	71.686	0.059
AVERAGE HEAD ON TOP OF LAYER 4	1.725 (0.465)		
CHANGE IN WATER STORAGE	-0.054	C	1.1240)	-197.18	-0.164

PEAK DAILY VALUES FOR YEARS 1 THROUGH 31 -----------(CU. FT.) (INCHES) PRECIPITATION 3.44 12487.200 RUNOFF 1.909 6928.9004 DRAINAGE COLLECTED FROM LAYER 3 0.06416 232.90303 PERCOLATION/LEAKAGE THROUGH LAYER 5 0.000178 0.64702 AVERAGE HEAD ON TOP OF LAYER 4 6.331 MAXINUM HEAD ON TOP OF LAYER 4 10.846 LOCATION OF MAXIMUM HEAD IN LAYER 3 (DISTANCE FROM DRAIN) 87.9 FEET SHOW MATER 2.43 8821.5488

•••	Maximum	heads	are	computed	using	McEnroe's	equations.	•••

MAXIMUM VEG. SOIL WATER (VOL/VOL)

NINIMUM VEG. SOIL WATER (VOL/VOL)

Reference: Maximum Saturated Depth over Landfill Liner by Bruce N. McEncoe, University of Kansas ASCE Journal of Environmental Engineering Vol. 119, No. 2, March 1993, pp. 262-270.

.....

0.4640

0.1870

**		••
••		••
••	HYDROLOGIC EVALUATION OF LANDFILL PERFORMANCE	••
••	HELP MODEL VERSION 3.07 (1 NOVEMBER 1997)	••
••	DEVELOPED BY ENVIRONMENTAL LABORATORY	••
••	USAE WATERWAYS EXPERIMENT STATION	••
••	FOR USEPA RISK REDUCTION ENGINEERING LABORATORY	••
* *		**
••	·	••
***********	***************************************	

PRECIPITATION DATA FILE:	C:\LF33\DATA42.D4
TEMPERATURE DATA FILE:	C:\LF33\DATA72.D7
SOLAR RADIATION DATA FILE:	C:\LF33\DATA132.D13
EVAPOTRANSPIRATION DATA:	C:\LF33\DATA112.D11
SOIL AND DESIGN DATA FILE:	C:\LF33\DATA1052.D10
OUTPUT DATA FILE:	C:\LF33\S13261.OUT

TIME: 94:13 DATE: 6/29/2018

TITLE: SOUTHERN AREA - 30 YEAR POST CLOSURE CARE - YEARS 32 TO 61

NOTE: INITIAL MOISTURE CONTENT OF THE LAYERS AND SNOW WATER WERE SPECIFIED BY THE USER.

LAYER 1

TYPE 1 - VERTICAL PERCOLATION LAYER NATERIAL TEXTURE NUMBER 0 THICKNESS = 12.00 INCHES POROSITY = 0.4603 VOL/VOL FIELD CARACITY = 0.2320 VOL/VOL WILTING POINT = 0.1160 VOL/VOL INITIAL SOLUL WARER CONTENT = 0.369999994000E-03 CN/SEC

(VOL/VOL)	(INCHES)	LAYER
0.2649	3.1793	1
0.2920	336.3040	2
0.0551	0.6609	3
0.0000	0.0000	4
0.4270	15.3720	\$
	0.458	SHOW WATER

NOTE: SATURATED HYDRAULIC CONDUCTIVITY IS MULTIPLIED BY 4.20 FOR ROOT CHANNELS IN TOP HALF OF EVAPORATIVE ZONE.

.

LAYER 2

TYPE 1 - VERTICAL	PE	RCOLATION LAYER
NATERIAL TEXT	URE	NUMBER 11
THICKNESS		30.00 INCHES
POROSITY	•	0.4640 VOL/VOL
FIELD CAPACITY		0.3100 VOL/VOL
WILTING POINT	•	0.1870 VOL/VOL
INITIAL SOIL WATER CONTENT	•	0.4640 VOL/VOL
EFFECTIVE SAT. HYD. COND.	•	0.639999998000E-04 CM/SEC

LAYER 3

TYPE 2 - LATERAL DRAINAGE LAYER Naterial texture number 20				
THICKNESS	UKE.	0.20 INCHES		
POROSITY	-	0.8500 VOL/VOL		
FIELD CAPACITY	-	0.0100 VOL/VOL		
WILTING POINT	•	0.0050 VOL/VOL		
INITIAL SOIL WATER CONTENT	•	0.0100 VOL/VOL		
EFFECTIVE SAT. HYD. COND.	•	10.000000000 CM/SEC		
SLOPE	•	14.50 PERCENT		
DRAINAGE LENGTH	•	630.0 FEET		

LAYER 4

TYPE 4 - FLEXIB	LE	MEMBRANE LINER
MATERIAL TEXT	URE	NUMBER 36
THICKNESS	-	0.04 INCHES
POROSITY	-	0.0000 VOL/VOL
FIELD CAPACITY	-	0.0000 VOL/VOL
WILTING POINT	•	0.0000 VOL/VOL
INITIAL SOIL WATER CONTENT	=	0.0000 VOL/VOL
EFFECTIVE SAT. HYD. COND.		0.399999993000E-12 CM/SEC
FML PINHOLE DENSITY	-	1.00 HOLES/ACRE
FML INSTALLATION DEFECTS		15.00 HOLES/ACRE
FML PLACEMENT QUALITY	•	4 - POOR

LAYER 5

TYPE 3 - BAI	RIER	SOIL LINER
NATERIAL TE	TURE	NUMBER 16
THICKNESS	-	12.00 INCHES
POROSITY	•	0.4270 VOL/VOL
FIELD CAPACITY	-	0.4180 VOL/VOL
WILTING POINT	=	0.3670 VOL/VOL
INITIAL SOIL WATER CONTENT	- 1	0.4270 VOL/VOL
EFFECTIVE SAT. HYD. COND.	=	0.100000001000E-06 CM/SEC

LAYER 6

TYPE 1 - VERTICAL	PE	RCOLATION LAYER
MATERIAL TEXT	URE	NUMBER 10
THICKNESS	-	1152.00 INCHES
POROSITY	•	0.6710 VOL/VOL
FIELD CAPACITY	=	0.2920 VOL/VOL
WILTING POINT	•	0.0770 VOL/VOL
INITIAL SOIL WATER CONTENT	•	0.2920 VOL/VOL
EFFECTIVE SAT. HYD. COND.	•	0.100000005000E-02 CM/SEC

LAYER 7

TYPE 2 - LATERAL DRAINAGE LAYER NATERIAL TEXTURE HUMBER 0 THICKNESS 12.00 POROSITY 0.3970 TIELD CAPACITY 0.320

POROSITY	•	0.3970 VOL/VOL
FIELD CAPACITY	=	0.0320 VOL/VOL
WILTING POINT	-	0.0130 VOL/VOL
INITIAL SOIL WATER CONTENT	=	0.0551 VOL/VOL
EFFECTIVE SAT. HYD. COND.	-	0.50000007000E-01 CM/SEC
SLOPE		2.20 PERCENT
DRAINAGE LENGTH	•	615.0 FEET

· LAYER 0

TYPE 4 - FLEXIBLE MEMBRANE LINER MATERIAL TEXTURE NUMBER 35

				_		0560556
51	ATION LATIT	JDE		-	39.10	DEGREES
			4 THE TANK CAMPA	-		
51	ART OF GROW	ING SEASON	(JULIAN DALL)	-	300	
E	D OF GROAIN	S SEASON ((JULIAN DATE) DULIAN DATE) ED	-	24 0	THOUSE
EV	APORALIVE C	JAL DEPIN	**	-	24.0	MAU
AV	ERAGE ANNUAL	L WIND SPL	LD ATIVE HUMIDITY		73 00	2
			ATIVE HUMIDITY			
			ATIVE HUMIDITY			
			ATIVE HUMIDITY			
AV	ENORGE ATH Q	JARIER RED	ALLVE NUMIDITI	-	/4.00	•
	COEFFICI	ENTS FOR EAN MONTHLY	AS SYNTHETICALI ST. LOUIS Y PRECIPITATION APR/OCT 3.55) (I	MIS NCHES)	SOURI
1.72	2.14	3.20	3.55		3.54	3.73
3.63	2.55	2.70	2.32		2.53	2.22
	COEFFICI	ENTS FOR	SYNTHETICALLY ST. LOUIS PERATURE (DEGRI		MIS	SOURI
JAN/JUL	FEB/AUG	MAR/SEP	APR/OCT	м	AY/NOV	JUN/DEC
				-		
28.60	33.60	43.20	56.10 57.90		65.60	74.60
78.90	77.00	69.70	57.90		44.60	34.20

NOTE: EVAPOTRANSPIRATION DATA WAS OBTAINED FROM ST. LOUIS MISSOURI

NOTE: SOLAR RADIATION DATA MAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR ST. LOUIS MISSOURI AND STATION LATITUDE = 39.10 DEGREES

THICKNESS	•	0.06 INCHES
POROSITY	-	0.0000 VOL/VOL
FIELD CAPACITY		0.0000 VOL/VOL
WILTING POINT	•	0.0000 VOL/VOL
INITIAL SOIL WATER CONTENT	•	0.0000 VOL/VOL
EFFECTIVE SAT. HYD. COND.	•	0.199999996000E-12 CN/SE
FML PINHOLE DENSITY	•	1.00 HOLES/ACRE
FML INSTALLATION DEFECTS		10.00 HOLES/ACRE
FML PLACEMENT QUALITY	=	4 - POOR

LAYER 9

TYPE 3 - BARR			
MATERIAL TEXT	URE	NUMBER 16	
THICKNESS		36.00	INCHES
POROSITY	e		VOL/VOL
FIELD CAPACITY	-	0.4180	VOL/VOL
WILTING POINT	-	0.3670	VOL/VOL
INITIAL SOIL WATER CONTENT	•	0.4270	VOL/VOL
EFFECTIVE SAT. HYD. COND.	•	0.10000000	LOODE-06 CN/SEC

GENERAL DESIGN AND EVAPORATIVE ZONE DATA

NOTE: SCS RUNOFF CURVE HUMBER WAS COMPUTED FROM DEFAULT Soil data base using soil texture # 0 with a Fair stand of Grass, a surface slope of 14.3 And a slope length of 630. Feet.

SCS RUNOFF CURVE NUMBER	-	79.50	
FRACTION OF AREA ALLOWING RUNOFF	•	90.0	PERCENT
AREA PROJECTED ON HORIZONTAL PLANE	•	1.000	ACRES
EVAPORATIVE ZONE DEPTH	•	24.0	INCHES
INITIAL WATER IN EVAPORATIVE ZONE	•	8.352	INCHES
UPPER LIMIT OF EVAPORATIVE STORAGE	•	11.124	INCHES
LOWER LIMIT OF EVAPORATIVE STORAGE	•	3.636	INCHES
INITIAL SNOW WATER	•	0.000	INCHES
INITIAL WATER IN LAYER MATERIALS	•	374.247	INCHES
TOTAL INITIAL WATER	•	374.247	INCHES
TOTAL SUBSURFACE INFLOW	•	0.00	INCHES/YEAR

EVAPOTRANSPIRATION AND WEATHER DATA

JAN/JUL FEB/AUG MAR/SEP APR/OCT MAY/NOV JUN/DEC PRECIPITATION TOTALS 1.56 2.15 2.66 3.09 2.75 3.37 2.18 3.44 2.16 4.42 2.06 0.95 1.09 1.30 0.92 1.36 1.28 1.56 1.38 2.04 STD. DEVIATIONS RUNOFF 0.166 0.026 0.458 0.292 0.020 0.004 0.018 0.014 0.065 TOTALS 0.157 0.026 0.539 0.024 0.041 0.036 STD. DEVIATIONS 0.301 0.077 0.560 0.017 0.080 EVAPOTRANSPIRATION TOTALS 2.154 2.135 4.374 0.917 4.763 0.686 0.638 2.592 3.264 1.282 0.515 3.510 STD. DEVIATIONS 0.280 0.373 0.572 0.785 0.850 1.667 1.179 1.029 0.294 0.195 LATERAL DRAINAGE COLLECTED FROM LAYER 3 0.5679 0.5417 0.2783 TOTALS 1.4088 1.1342 0.6071 0.0090 0.4858 0.1206 0.0321 0.0060 0.2575 0.7568 0.0757 0.7509 0.0193 0.6963 0.0435 0.5178 0.7744 0.2258 0.7270 STD. DEVIATIONS 0.7917 0.1714 PERCOLATION/LEAKAGE THROUGH LAYER 5 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 TOTALS STD. DEVIATIONS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 LATERAL DRAINAGE COLLECTED FROM LAYER 7 0.0053 0.0021 0.0001 TOTALS 0.0010 0.0004 0.0002 0.0000 0.0000 0.0292 0.0115 0.0001 0.0056 0.0023 0.0010 0.0004 STD. DEVIATIONS

PERCOLATION/LEAKAGE THROUGH LAYER 9

AVERAGE MONTHLY VALUES IN INCHES FOR YEARS 1 THROUGH 30

TOTALS	0.0000	0.0000	0.0000	0.0000	0.0000	0.000
	0.0000	0.0000	0.0000	0.0000	0.0000	0.000
STD. DEVIATIONS	0.0001	0.0000	0.0000	0.0000	0.0000	0.000
	0.0000	0.0000	0.0000	0.0000	0.0000	0.000

AVERAGES OF KONTHLY AVERAGED DAILY HEADS (INCHES)

DAILY AVERAGE HEAD ON TOP OF LAYER 4 AVERAGES 0.0015 0.0036 0.0015 0.0007 0.0014 0.0030 0.0003 STD. DEVIATIONS 0.0020 0.0021 0.0019 0.0001 0.0019 0.0013 0.0006 DAILY AVERAGE HEAD ON TOP OF LAYER 8 AVERAGES 0.0170 0.0074 0.0033 0.0014 0.0006 0.0003 STD. DEVIATIONS 0.0931 0.0406 0.0179 0.0076 0.0032 0.0014 0.0000

•••••

AVERAGE ANNUAL TOTALS & (STD. DEVIATIONS) FOR YEARS 1 THROUGH 30

	INC	HES	۱ 	CU. FEET	PERCENT
PRECIPITATION	33.21	(4.731)	120562.0	100.00
RUNOFF	1.086	t	0.9389)	3941.49	3.269
EVAPOTRANSPIRATION	26.831	ſ	2.9580)	97394.95	80.784
LATERAL DRAINAGE COLLECTED FROM LAYER 3	5.44906	ſ	1.96478)	19780.072	16.40656
PERCOLATION/LEAKAGE THROUGH	0.00004	t	0.00001)	0.141	0.00012

....

LAYER S AVERAGE HEAD ON TOP OF LAYER 4 0.001 (0.000) LATERAL DRAINAGE COLLECTED FROM LAYER 7 0.00924 (0.05042) 33.548 0.02783 PERCOLATION/LEAKAGE THROUGH LAYER 9 0.00004 (0.00019) 0.134 0.0001 AVERAGE HEAD ON TOP OF LAYER 8 0.003 (0.014) CHANGE IN MATER STORAGE -0.162 (1.4968) -588.17 -0.488

.....

FINAL WATER STORAGE AT END OF YEAR 30

•••••••••••••••••••••••••••••••••••••••	• • • • • • • • • • • • • • • • • • • •	
PEAK DAILY VALUES FOR YEARS	1 THROUGH	30
		(CU. FT.)
PRECIPITATION	3.44	12407.200
RUNOFF	1.924	6984.6318
DRAINAGE COLLECTED FROM LAYER 3	1.59259	5781.09424
PERCOLATION/LEAKAGE THROUGH LAYER 5	0.000007	0.02714
AVERAGE HEAD ON TOP OF LAYER 4	0.125	
MAXIMUM HEAD ON TOP OF LAYER 4	0.251	
LOCATION OF MAXIMUM HEAD IN LAYER 3 (DISTANCE FROM DRAIN)	0.0 FEET	
DRAINAGE COLLECTED FROM LAYER 7	0.00762	27.65036
PERCOLATION/LEAKAGE THROUGH LAYER 9	0.000026	0.0938
AVERAGE HEAD ON TOP OF LAYER 8	0.752	
MAXINUN HEAD ON TOP OF LAYER 8	1.451	
LOCATION OF MAXIMUM HEAD IN LAYER 7 (DISTANCE FROM DRAIN)	20.9 FEET	
SNOW WATER	2.43	8821.5488
NAXIMUM VEG. SOIL WATER (VOL/VOL)	0.	4149
NINIMUM VEG. SOIL WATER (VOL/VOL)	0.	1515

*** Maximum heads are computed using McEnroe's equations. ***

Reference: Maximum Saturated Depth over Landfill Liner by Bruce M. McEnroe, University of Kanasa ASCE Journal of Environmental Engineering Vol. 119, No. 2, March 1993, pp. 262-270.

.....

LAYER (INCHES) (VOL/VOL) 1 3.2705 0.2732 8.8416 0.2947 2 з 0.0020 0.0100 0.0000 0.0000 4 0.4270 5 5.1240 6 336.3840 0.2920 7 0.3840 0.0320 8 0.0000 0.0000 9 15.3720 0.4270 SNOW WATER 0.000

NOTE: SATURATED HYDRAULIC CONDUCTIVITY IS MULTIPLIED BY 4.90 FOR ROOT CHANNELS IN TOP HALF OF EVAPORATIVE 2011E.

LAYER 2

TYPE 1 - VERTI Material 1			
THICKNESS	-	30.00 INCHES	•
POROSITY	-	0.4640, VOL/VOL	
FIELD CAPACITY	-	0.3100 VOL/VOL	
WITTETHC BOTHE	-	0 1820 VOL/VOL	

FIELD CAPACITY	-	0.3100 VOL/VOL
WILTING POINT	•	0.1870 VOL/VOL
INITIAL SOIL WATER CONTENT	•	0.2947 VOL/VOL
EFFECTIVE SAT. HYD. COND.	=	0.639999998000E-04 CM/SEC

LAYER 3

TYPE 2 - LATERA	T DE	VAINAGE LAYER
MATERIAL TEXT	URE	NUMBER 0
THICKNESS	•	0.20 INCHES
POROSITY	•	0.8500 VOL/VOL
FIELD CAPACITY	-	0.0100 VOL/VOL
WILTING POINT		0.0050 VOL/VOL
INITIAL SOIL WATER CONTENT		0.0100 VOL/VOL
EFFECTIVE SAT. HYD. COND.	•	1.00000000000 CM/SEC
SLOPE	•	14.50 PERCENT
DRAINAGE LENGTH	-	630.0 FEET

LAYER 4

TYPE 4 - FLEXIB	LE	MEMBRANE LINER
MATERIAL TEXT	URE	NUMBER 36
THICRIESS	-	0.04 INCHES
POROSITY	-	0.0000 VOL/VOL
FIELD CAPACITY		0.0000 VOL/VOL
WILTING POINT	-	0.0000 VOL/VOL
INITIAL SOIL WATER CONTENT	-	0.0000 VOL/VOL
EFFECTIVE SAT. HYD. COND.	•	0.399999993000E-12 CM/SEC
EML PINHOLE DENSITY	•	1.00 HOLES/ACRE
FNL INSTALLATION DEFECTS	-	15.00 HOLES/ACRE
FML PLACEMENT QUALITY	-	4 - POOR

FIELD CAPACITY	•	0.0000 VOL/VOL
WILTING POINT		0.0000 VOL/VOL
INITIAL SOIL WATER CONTENT	-	0.0000 VOL/VOL
EFFECTIVE SAT. HYD. COND.	•	0.199999996000E-12 CM/SEC
FML PINHOLE DENSITY	•	1.00 HOLES/ACRE
FML INSTALLATION DEFECTS	٠	10.00 HOLES/ACRE
FML PLACEMENT QUALITY	•	4 - POOR

LAYER 9

TYPE 3 - BARF	IER	SOIL LINER		
MATERIAL TEXT	URE	NUMBER 16		
THICHIESS	•	36.00	INCHES	
POROSITY	-	0.4270	VOL/VOL	
FIELD CAPACITY	-	0.4180	VOL/VOL	
WILTING POINT	•	0.3670	VOL/VOL	
INITIAL SOIL WATER CONTENT	=	0.4270	VOL/VOL	
EFFECTIVE SAT. HYD. COND.	•	0.10000000	000E-06	CM/SEC

GENERAL DESIGN AND EVAPORATIVE 20% DATA

NOTE: SCS RUNOFF CURVE HUMBER WAS COMPUTED FROM DEFAULT Soil data base using soil texture # 8 with a Good Staid of Grass, a Surface Slope of 14.3 And a slope length of 630. Feet.

.

SCS RUNOFF CURVE NUMBER	•	72.70	
FRACTION OF AREA ALLOWING RUNOFF	•	95.0	PERCENT
AREA PROJECTED ON HORIZONTAL PLANE	=	1.000	ACRES
EVAPORATIVE ZONE DEPTH	-	24.0	INCHES
INITIAL WATER IN EVAPORATIVE ZONE	•	6.815	INCHES
UPPER LINIT OF EVAPORATIVE STORAGE	-	11.124	INCHES
LOWER LINIT OF EVAPORATIVE STORAGE	•	3.636	INCHES
INITIAL SNOW WATER	•	0.000	INCHES
INITIAL WATER IN LAYER MATERIALS	•	369.385	INCHES
TOTAL INITIAL WATER	-	369.385	INCHES
TOTAL SUBSURFACE INFLOW	•	0.00	INCHES/YEAR

EVAPOTRANSPIRATION AND MEATHER DATA

NOTE: EVAPOTRANSPIRATION DATA WAS OBTAINED FROM

 ...
 ...

 ...
 ...

 ...
 ...

 ...
 ...

 ...
 ...

 ...
 ...

 ...
 ...

 ...
 ...

 ...
 ...

 ...
 ...

 ...
 ...

 ...
 ...

 ...
 ...

 ...
 ...

 ...
 ...

 ...
 ...

 ...
 ...

 ...
 ...

 ...
 ...

 ...
 ...

 ...
 ...

 ...
 ...

 ...
 ...

 ...
 ...

 ...
 ...

 ...
 ...

 ...
 ...

 ...
 ...

 ...
 ...

 ...
 ...

 ...
 ...

 ...
 ...

 ...
 ...

 ...
 HYDROLOGIC EVALUATION OF LANDFILL PERFORMANCE HELP MODEL VERSION 3.07 (1 NOVEMBER 1997) Developed by Environmental Laboratory USAE WATERNAYS EXPERIMENT STATION FOR USEPA RISK REDUCTION ENGINEERING LABORATORY ••• ••• •••

......

PRECIPITATION DATA FILE:	C:\LF33\DATA43.D4
TEMPERATURE DATA FILE:	C:\LF33\DATA73.D7
SOLAR RADIATION DATA FILE:	C:\LF33\DATA133.D13
EVAPOTRANSPIRATION DATA:	C:\LF33\DATA113.D11
SOIL AND DESIGN DATA FILE:	C:\LF33\DATA1053.D10
OUTPUT DATA FILE:	C:\LF33\S162131.OUT

TIME: 94:36 DATE: 6/29/2018

.....

TITLE: SOUTHERN AREA - 70 YEAR AFTER POST CLOSURE -YEARS 62 TO 131

.....

NOTE: INITIAL MOISTURE CONTENT OF THE LAYERS AND SHOW WATER WERE SPECIFIED BY THE USER.

LAYER 1

TYPE 1 - VERTICAL PERCOLATION LAYER NATERIAL TEXTURE NUMBER 6 THICKNESS = 12.00 INCHES POROSITY = 0.4630 VOL/VOL FIELD CAPACITY = 0.2320 VOL/VOL NILTING POINT = 0.1160 VOL/VOL INITIAL SOLL WATER CONTENT = 0.369999994000E-03 CN/SEC

LAYER S

TYPE 3 - BAR	RIER	SOIL LINER		
MATERIAL TEXT	TURE	NUMBER 0		
THICKNESS		12.00	INCHES	
POROSITY	•	0.4270	VOL/VOL	
FIELD CAPACITY	•	0.4180	VOL/VOL	
WILTING POINT	•	0.3670	VOL/VOL	
INITIAL SOIL WATER CONTENT	•	0.4270	VOL/VOL	
EFFECTIVE SAT. HYD. COND.	-	0.99999997	5000E-05	CM/SEC

LAYER 6

TYPE 1 - VERTICAL	PE	RCOLATION LAYER
MATERIAL TEXT	URE	NUMBER 18
THICKNESS	•	1152.00 INCHES
POROSITY	•	0.6710 VOL/VOL
FIELD CAPACITY	a	0.2920 VOL/VOL
WILTING POINT	•	0.0770 VOL/VOL
INITIAL SOIL WATER CONTENT	•	0.2920 VOL/VOL
EFFECTIVE SAT. HYD. COND.	۰	0.10000005000E-02 CM/SEC

LAYER 7

TYPE 1 - VERTICAL	₽E	RCOLATION LAYER
MATERIAL TEXT	URE	NUMBER O
THICKIESS	•	12.00 INCHES
POROSITY	•	0.3970 VOL/VOL
FIELD CAPACITY	-	0.0320 VOL/VOL
WILTING POINT	•	0.0130 VOL/VOL
INITIAL SOIL WATER CONTENT	•	0.0320 VOL/VOL
EFFECTIVE SAT. HYD. COND.	-	0.500000007000E-01 CM/SEC

LAYER 8

	TYPE 4 - FLE Material 1	EXIBLE MENB Texture Num		ER
THICKNESS		•	0.06	INCHES
POROSITY			0.0000	VOL/VOL

Й	ST. LOUI TATION LATIT AXIMUN LEAF	UDE AREA INDEX	MISSOURI JULIAN DATE)	= 39.10 D = 4.00 = 98	EGREES	PRECIPITATION	JAN/JUL	FEB/AUG	MAR/SEP	APR/OCT	NAY/NOV	JUN/DEC
E	ND OF GROWIN VAPORATIVE 2 VERAGE ANNUA	G SEASON (JU ONE DEPTH	LIAN DATE)	= 300 = 24.0 I = 10.40 M		TOTALS	1.81 3.43	2.12 2.50	3.31 2.65	3.55 2.29	3.59 2.30	4.08
A	VERAGE 2ND Q VERAGE 3RD Q	UARTER RELAT Varter relat	IVE HUNIDITY IVE HUNIDITY IVE HUNIDITY	= 67.00 3 = 71.00 3		STD. DEVIATIONS	0.97 1.79	1.03	1.40 1.34	1.37 1.39	1.65 1.36	2.04
A	VERAGE 4TH Q	UARTER RELAT	IVE HUMIDITY	= 74.00 3		RUNOFF						
NOTE		100 0070 WAS	SYNTHETICAL			TOTALS	0.250 0.007	0.474 0.001	0.339 0.000	0.008 0.000	0.002 0.008	0.010 0.053
	COEFFICI	ENTS FOR	ST. LOUIS	MISS		STD. DEVIATIONS	0.426 0.033	0.546 0.006	0.638 0.001	0.046 0.002	0.011 0.042	0.040 0.212
				•		EVAPOTRANSPIRATION						
JAN/JUL	FEB/AUG	MAR/SEP	APR/OCT	MAY/NOV	JUN/DEC	TOTALS	0.530	0.652	2.101	3.341	4.771	4.136
1.72 3.63	2.14 2.55	3.28 2.70	3.55	3.54	3.73 2.22		3.514	2.501	2.269	1.234	0.867	0.679
		2.10	2.52	2.33	L. LL	STD. DEVIATIONS	0.242 1.657	0.355 1.229	0.546 0.991	0.712 0.356	1.024 0.239	1.900 0.195
NOTE:	TENPERATUR COEFFICI		YNTHETICALLY ST. LOUIS	GENERATED U		LATERAL DRAINAGE COLL		LAYER 3				
1 1	ORMAL MEAN N	DITHLY TEMPE	RATURE (DEGRI	EES FAHRENHE	IT)	TOTALS	0.5162 0.1160					
JAN/JUL	FEB/AUG	MAR/SEP	APR/OCT	MAY/NOV	JUN/DEC	STD. DEVIATIONS	0.5448 0.1757					
28.60 78.90	33.80 77.00	43.20 69.70	56.10 57.90	65.60 44.60	74.80 34.20	PERCOLATION/LEAKAGE T						
			AS SYNTHETIC			TOTALS	0.0017 0.0002	0.0042				
NOTE:	COEFFICI	ENTS FOR	ST. LOUIS DE = 39.10	MISS		STD. DEVIATIONS	0.0056 0.0003					
						PERCOLATION/LEAKAGE T						
						TOTALS	0.0017 0.0017	0.0015				
••••	••••••	•••••	•••••	••••••	• • • • • • • • • • • • • • • • • • • •	STD. DEVIATIONS	0.0010 0.0010					

AVERAGE MONTHLY VALUES IN INCHES FOR YEARS 1 THROUGH 70

DAILY AVERAGE HEAD ON	TOP OF LAY	ER 4				
AVERAGES	0.0337		0.4726	0.1301	0.0423	0.009
	0.0029	0.0009	0.0002	0.0003	0.0701	0.132
STD. DEVIATIONS	0.1428	0.3690	0.9422	0.4018	0.1486	0.016
	0.0044	0.0023	0.0009	0.0014	0.4169	0.821
AILY AVERAGE HEAD ON	TOP OF LAY	ER Ø				
AVERAGES	1.7167	1.7213	1.7494	1.7780	1.7041	1.782
	1.7791	1.7748	1.7703	1.7657	1.7671	1.772
STD. DEVIATIONS	1.1288	1.1306	1.1475	1.1635	1.1606	1.157
	1.1550	1.1522	1.1494	1.1466	1.1400	1.144

	INCHES		CU. FEET	PERCENT	
PRECIPITATION				122761.4	100.00
RUNOFF	1.153	(0.9386)	4104.65	3.409
EVAPOTRANSPIRATION	26.676	(3.2419)	96832.59	78.879
LATERAL DRAINAGE COLLECTED FROM LAYER 3	5.95611	(2.13737)	21620.691	17.61196
PERCOLATION/LEAKAGE THROUGH LAYER 5	0.04167	¢	0.04986)	151.251	0.12321
AVERAGE HEAD ON TOP OF LAYER 4	0.084 (0.100)		
PERCOLATION/LEAKAGE THROUGH LAYER 9	0.02001	¢	0.01206)	72.651	0.0591
AVERAGE HEAD ON TOP OF LAYER 8	1.763 (1.147)		

CHANGE IN WATER	STORAGE	0.014	¢	1.4857)	50.83	0.041
*****	• • • • • • • • • • • • • • • • • • •	••••	•••	•••••	• • • • • • • • • • • • • • • •	••••
						•
	·					•
					•	
•						

PEAK DAILY VALUES FOR YEARS		
		(CU. FT.)
PRECIPITATION	3.57	12959.100
RUHOFF	2.602	9446.6730
DRAINAGE COLLECTED FROM LAYER 3	0.25745	934.52740
PERCOLATION/LEAKAGE THROUGH LAYER 5	0.028587	103.77177
AVERAGE HEAD ON TOP OF LAYER 4	22.895	
MAXIMUM HEAD ON TOP OF LAYER 4	41.326	
LOCATION OF MAXIMUM HEAD IN LAYER 3 (DISTANCE FROM DRAIN)	49.5 FEET	
PERCOLATION/LEAKAGE THROUGH LAYER 9	0.000124	0.44838
AVERAGE HEAD ON TOP OF LAYER 8	4.233	
SNOW WATER	3.24	11767.4912
NAXIMUN VEG. SOIL WATER (VOL/VOL)	0.	4100
NINIMUM VEG. SOIL WATER (VOL/VOL)	0.	1515

*** · Maximum heads are computed using McEnroe's equations. ***

Reference: Maximum Saturated Depth over Landfill Liner by Bruce M. McEnroe, University of Kanaas ASCE Journal of Environmental Engineering Vol. 119, No. 2, March 1993, pp. 262-270.

_____ HYDROLOGIC EVALUATION OF LANDFILL PERFORMANCE
 HELP MODEL VERSION 3.07 (1 NOVEMBER 1997) ...

HYDROLOGIC EVALUATION OF LANDFILL PERFORMANCE HELP MODEL VERSION 3.07 (1 NOVEMBER 1997) DEVELOPED BY ENVIRONMENTAL LABORATORY USAE WATEMAYS EXPERIMENT STATION FOR USEPA RISK REDUCTION ENGINEERING LABORATORY

•• •••

PRECIPITATION DATA FILE:	C:\LF33\DATA4SA.D4
TEMPERATURE DATA FILE:	C:\LF33\DATA7SA.D7
SOLAR RADIATION DATA FILE:	C:\LF33\DATA13SA.D13
EVAPOTRANSPIRATION DATA:	C:\LF33\DATA11SA.D11
SOIL AND DESIGN DATA FILE:	C:\LF33\DATA105A.D10
OUTPUT DATA FILE:	C:\LF33\SA0131.OUT

TIME: 70:31 DATE: 6/29/2018

.

•• ...

TITLE: SOUTHERN AREA - ACTIVE LIFE - YEARS 1 TO 31

.....

NOTE: INITIAL MOISTURE CONTENT OF THE LAYERS AND SNOW WATER WERE COMPUTED AS NEARLY STEADY-STATE VALUES BY THE PROGRAM.

LAYER 1

TYPE 1 - VERTICAL PERCOLATION LAYER NATERIAL TEXTURE NUMBER 11 THICKNESS = 12.00 Inches POROSITY = 0.4640 VOL/VOL FIELD CARACITY = 0.3100 VOL/VOL INITIAL SOLUMATER CONTENT = 0.1870 VOL/VOL INITIAL SOLUMATER CONTENT = 0.3213 VOL/VOL EFFECTIVE SAT. HYD. COND. = 0.639999990000E-04 CM/SEC

۱.

FINAL W	ATER STORAGE AT	END OF YEAR 70
LAYER	(INCHES)	(VOL/VOL)
1	3.0592	0.2549
2	8.5246	0.2842
3	0.0020	0.0100
4	0.0000	0.0000
5	5.1240	0.4270
6	336.3840	0.2920
7	1.8997	0.1583
8	0.0000	0.0000
9	15.3720	0.4270
SNOW WATE	ER 0.000	

.....

NOTE: SATURATED HYDRAULIC CONDUCTIVITY IS KULTIPLIED BY 4.20 FOR ROOT CHANNELS IN TOP HALF OF EVAPORATIVE ZONE.

LAYER 2

TYPE 1 - VERTICAL	PE	RCOLATION LAYER
MATERIAL TEXT	URE	NUMBER 18
THICKVESS	•	1152.00 INCHES
POROSITY	•	0.6710 VOL/VOL
FIELD CAPACITY	-	0.2920 VOL/VOL
WILTING POINT	e	0.0770 VOL/VOL
INITIAL SOIL WATER CONTENT		0.2932 VOL/VOL
EFFECTIVE SAT. HYD. COND.		0.100000005000E-02 CH/SEC

LAYER 3

	TYPE 2 - LATERA	LD	RAINAGE LAY	ER	
	MATERIAL TEXT	URE	NUMBER 0		
THICKNESS		•	12.00	INCHES	
POROSITY		•	0.3970	VOL/VOL	
FIELD CAP	ACITY	•	0.0320	VOL/VOL	
WILTING P	DINT	•	0.0130	VOL/VOL	
INITIAL S	OIL WATER CONTENT	•	0.0464	VOL/VOL	
EFFECTIVE	SAT. HYD. COND.	-	0.5000000	7000E-01	CM/SEC
SLOPE		=	2.20	PERCENT	
DRAINAGE	LENGTH	•	615.0	FEET	

LAYER 4

TYPE 4 - FLEXIBLE MENBRANE LINER

MATERIAL TEXT	URE	NUMBER 35
THICKNESS	•	0.06 INCHES
POROSITY	-	0.0000 VOL/VOL
FIELD CAPACITY	•	0.0000 VOL/VOL
WILTING POINT	•	. 0.0000 VOL/VOL
INITIAL SOIL WATER CONTENT	•	0.0000 VOL/VOL
EFFECTIVE SAT. HYD. COND.	•	0.199999996000E-12 CM/SEC
FML PINHOLE DENSITY	•	1.00 HOLES/ACRE
FML INSTALLATION DEFECTS	-	10.00 HOLES/ACRE
FML PLACEMENT QUALITY	•	4 - POOR

MAY/NOV

3.54 2.53

MAY/NOV

65.60 44.60 JUN/DEC

3.73

JUH/DEC 74.80 34.20

LAYER 5

TYPE 3 - B.	ARRIER	SOIL LINER		
MATERIAL T	EXTURE	NUMBER 16		
THICKNESS	•	36.00	INCHES	
POROSITY	•	0.4270	VOL/VOL	
FIELD CAPACITY	•	0.4180	VOL/VOL	
WILTING POINT	•	0.3670	VOL/VOL	
INITIAL SOIL WATER CONTE	NT 🗢	0.4270	VOL/VOL	
EFFECTIVE SAT. HYD. COND	. •	0.10000003	60-3000	CM/SEC

GENERAL DESIGN AND EVAPORATIVE 2018 DATA

NOTE: SCS RUNOFF CURVE NUMBER WAS COMPUTED FROM DEFAULT SOIL DATA BASE USING SOIL TEXTURE NIL WITH A FAIR STAND OF GRASS, A SURFACE SLOPE OF 14.3 AND A SLOPE LENGTH OF 630. FEET.

SCS RUNOFF CURVE NUMBER	•	87.00	
FRACTION OF AREA ALLOWING RUNOFF	=	75.0	PERCENT
AREA PROJECTED ON HORIZONTAL PLANE	•	1.000	ACRES
EVAPORATIVE ZONE DEPTH	•	12.0	INCHES
INITIAL WATER IN EVAPORATIVE ZONE	•	3.055	INCHES
UPPER LIMIT OF EVAPORATIVE STORAGE	•	\$.568	INCHES
LOWER LIMIT OF EVAPORATIVE STORAGE	•	2.244	INCHES
INITIAL SNOW WATER	•	0.000	INCHES
INITIAL WATER IN LAYER MATERIALS	•	357.511	INCHES
TOTAL INITIAL WATER	=	357.511	INCHES
TOTAL SUBSURFACE INFLOW	•	0.00	INCHES/YEAR

EVAPOTRANSPIRATION AND WEATHER DATA

NOTE: EVAPOTRANSPIRATION DATA WAS OBTAINED FROM ST. LOUIS MISSOURI

STATION LATITUDE	•	39.10	DEGREES
MAXIMUM LEAF AREA INDEX	•	3.00	
START OF GROWING SEASON (JULIAN DATE)	۰.	98	
END OF GROWING SEASON (JULIAN DATE)	•	300	
EVAPORATIVE ZONE DEPTH	•	12.0	INCHES
AVERAGE ANNUAL WIND SPEED	•	10.40	MBH
AVERAGE 1ST QUARTER RELATIVE HUNIDITY	-	73.00	3

	COEFFICIENTS	FOR ST. LOUIS	S MISSOURI	
		LATITUDE = 3		
•••••	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • •
AVERAG	E MONTHLY VALUES	IN INCHES FOR 1	YEARS 1 THROUGH	31

AVERAGE 2ND QUARTER RELATIVE HUMIDITY•67.00 %AVERAGE 3RD QUARTER RELATIVE HUMIDITY•71.00 %AVERAGE 4TH QUARTER RELATIVE HUMIDITY•74.00 %

NOTE: PRECIPITATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR ST. LOUIS MISSOURI NORMAL MEAN MONTHLY PRECIPITATION (INCHES)

APR/OCT

3.55

APR/OCT

56.10 57.90

TEMPERATURE DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR ST. LOUIS MISSOURI

NORMAL MEAN MONTHLY TEMPERATURE (DEGREES FAMRENHEIT)

NOTE: SOLAR RADIATION DATA WAS SYNTHETICALLY GENERATED USING

MAR/SEP

3.28 2.70

MAR/SEP

43.20 69.70

JAN/JUL

1.72 3.63

JAN/JUL

28.60 78.90

NOTE:

FEB/AUG

2.14

FEB/AUG

33.80 77.00

	JAN/JUL	FEB/AUG	MAR/SEP	APR/OCT	MAY/NOV	JUN/DEC
PRECIPITATION						
TOTALS	. 1.58	2.08	3.07	3.33	. 3.48	4.47
101760	3.42	2.67	2.69	2.18	2.13	2.04
STD. DEVIATIONS	0.94	1.14	0.91	1.35	1.55	2.02

						•
	1.86	• 1.36	1.46	1.26	1.36	1.13
RUNOFF						
TOTALS	0.356	0.748	0.429	0.067	0.086	0.200
	0.124	0.036	0.051	0.029	0.061	0.068
STD. DEVIATIONS	0.460	0.677	0.682	A		
SID. DEVIATIONS	0.222	0.091	0.002	0.165 0.054	0.128	0.317
	0.222	0.091	0.078	0.054	0.099	0.121
EVAPOTRANSPIRATION						
TOTALS	0.537	0.666	2.250	3.194	3.107	4.192
	3.220	2.494	2.127	1.411	1.132	0.797
STD. DEVIATIONS	0.304	0.416	0.557	0.934	1.073	1.483
	1.385	1.113	1.004	0.441	0.359	
LATERAL DRAINAGE COLL	ECTED FROM	LAYER 3				
TOTALS	0.6331	0.4592	0.6307	0.9439	0.7792	0.5092
	0.4049	0.2470	0.1423	0.2006	0.2677	
STD. DEVIATIONS	0.4678	0.3685	0.3497	0.3941	0.4688	0.3715
	0.3477	0.2227			0.2997	
PERCOLATION/LEAKAGE T	HROUGH LAYE	R 5				
TOTALS	0.0019	0.0014	0.0019	0.0028	0.0023	0.0016
	0.0013	0.0008	0.0005	0.0007	0.0008	0.0015
STD. DEVIATIONS	0.0013	0.0011	0.0010	0.0011	0.0013	0.0010
	0.0010	0.0007	0.0004	0.0007	0.0009	0.0012
				0.0007	0.0003	0.0012

AVERAGES OF MONTHLY AVERAGED DAILY HEADS (INCHES)

 DAILY AVERAGE HEAD ON TOP OF LAYER 4

 AVERAGES
 2.0151
 1.64

 1.2887
 0.71
 ~ 1.6073 0.7861 2.0074 0.4679 3.1043 2.4799 1.6748 0.6385 . 0.8803 1.6228 STD. DEVIATIONS 1.4889 1.3652 0.7088 1.1130 0.4522 1.2962 0.7299 1.4921 0.9858 1.2219 1.3894 1.1066

	INC	HES		CU. FEET	PERCENT
PRECIPITATION	33.16	(4.662)	120357.9	100.00
RUNOFE	2.255	ŧ	1.2480)	8185.49	6.801
EVAPOTRANSPIRATION	25.197	¢	2.8333)	91464.38	75.994
LATERAL DRAINAGE COLLECTED FROM LAYER 3	5.72761	¢	2.14415)	20791.225	17.27450
PERCOLATION/LEAKAGE THROUGH LAYER 5	0.01748	t	0.00612)	63.448	0.0527
AVERAGE HEAD ON TOP OF LAYER 4	1.548 (0.501)		
CHANGE IN WATER STORAGE	-0.040	t	1.7014)	-146.63	-0.122

PEAK DAILY VALUES FOR YEARS		31
		(CU. FT.)
PRECIPITATION	3.44	12487.200
RUNOEF	1.879	6819.4351
DRAINAGE COLLECTED FROM LAYER 3	0.07223	262.18353
PERCOLATION/LEAKAGE THROUGH LAYER 5	0.000199	0.72099
AVERAGE HEAD ON TOP OF LAYER 4	7.126	
NAXINUM HEAD ON TOP OF LAYER 4	12.065	
LOCATION OF MAXIMUM HEAD IN LAYER 3 (DISTANCE FROM DRAIN)	94.2 FEET	
SHOW WATER	2.43	8821.5488
MAXIMUM VEG. SOIL WATER (VOL/VOL)	. 0.	4640
MINIMUM VEG. SOIL WATER (VOL/VOL)	o.	1870 .

*** Naximum heads are computed using McEnroe's equations. ***

.

Reference: Maximum Saturated Depth over Landfill Liner by Bruce M. McEnroe, University of Kanaas ASCE Journal of Environmental Engineering Vol. 119, No. 2, March 1993, pp. 262–270.

••		•
••		•
·· HYDROLOGIC	EVALUATION OF LANDFILL PERFORMANCE	•
	EL VERSION 3.07 (1 NOVENBER 1997)	•
	PED BY ENVIRONMENTAL LABORATORY	•
	WATERWAYS EXPERIMENT STATION	•
	ISK REDUCTION ENGINEERING LABORATORY	•
FOR USER R.	ISK REDUCTION ENGINEERING BEDONNIONT	•
		•
• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • •
	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • •
	······································	
	•••••••••••••••••••••••••••••••••••••••	• • • • • • • • • •
	•	• • • • • • • • • •
PRECIPITATION DATA FILE:	•	• • • • • • • • • •
PRECIPITATION DATA FILE:	C:\LF33\DATA4EB.D4	•••••
RECIPITATION DATA FILE: EMPERATURE DATA FILE: SOLAR RADIATION DATA FILE:	C:\LF33\DATA4EB.D4 C:\LF33\DATA7EB.D7 C:\LF33\DATA13EB.D13	••••
PRECIPITATION DATA FILE: TEMPERATURE DATA FILE: SOLAR RADIATION DATA FILE: EVAPOTRANSPIRATION DATA: SOIL AND DESIGN DATA FILE:	C:\LF33\DATA4EB.D4 C:\LF33\DATA7EB.D7 C:\LF33\DATA1EB.D13 C:\LF33\DATA1EB.D11	••••

	• •	·	
	•		•
UTPUT DATA FILE:	C:\LF33\SB3261.OUT		•
OIL AND DESIGN DATA FILE:	C:\LF33\DATA10SB.D10		
VAPOTRANSPIRATION DATA:	C:\LF33\DATA11EB.D11 '	•	
OLAR RADIATION DATA FILE:	C:\LF33\DATA13EB.D13		
EMPERATURE DATA FILE:	C:\LF33\DATA7EB.D7		

TINE: 71:57 DATE: 6/29/2018

.

TITLE: SOUTHERN AREA - 30 YEAR POST CLOSURE CARE - YEARS 32 TO 61

.....

NOTE: INITIAL NOISTURE CONTENT OF THE LAYERS AND SNOW WATER WERE SPECIFIED BY THE USER.

LAYER 1

TYPE 1 - VERTICAL	. PE	RCOLATION LAYER
MATERIAL TEXT	URE	NUMBER 6
THICKNESS	•	12.00 INCHES
POROSITY	•	0.4630 VOL/VOL
FIELD CAPACITY	•	0.2320 VOL/VOL
WILTING POINT	=	0.1160 VOL/VOL
INITIAL SOIL WATER CONTENT	•	0.2320 VOL/VOL
EFFECTIVE SAT. HYD. COND.	•	0.369999994000E-03 CM/SEC

(VOL/VOL)	(INCHES)	LAYER
0.3036	3.6431	1
0.2920	336.3839	2
0.0335	0.4020	3
0.0000	0.0000	4
0.4270	15.3720	\$
	0.458	SHOW WATER

NOTE: SATURATED HYDRAULIC CONDUCTIVITY IS MULTIPLIED BY 4.90 FOR ROOT CHANNELS IN TOP HALF OF EVAPORATIVE 20NE.

LAYER 2

TYPE 1 - VERTICAL	PE	RCOLATION LAYER
NATERIAL TEXT	URE	NUMBER 11
THICKNESS	=	30.00 INCHES
POROSITY	-	0.4640 VOL/VOL
FIELD CAPACITY	•	0.3100 VOL/VOL
WILTING POINT	•	0.1870 VOL/VOL
INITIAL SOIL WATER CONTENT	8	0.4640 VOL/VOL
EFFECTIVE SAT. HYD. COND.	۰	0.639999998000E-04 CM/SEC

LAYER 3

L DF	AINAGE LAYER	
URE	NUMBER 20	
•	0.20 INCHES	
•	0.8500 VOL/VOL	
•	0.0100 VOL/VOL	
•	0.0050 VOL/VOL	
•	0.0100 VOL/VOL	
-	10.000000000	CH/SEC
-	14.50 PERCENT	
•	630.0 FEET	
	URE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	 0.8500 VOL/VOL 0.0100 VOL/VOL 0.0050 VOL/VOL 0.0100 VOL/VOL 10.0000000000 14.50 PERCENT

LAYER 4

TYPE 4 - FLEXIBLE MEMBRANE LINER

MATERIAL TEXT	URE	NUMBER 36
THICKNESS	•	0.04 INCHES
POROSITY	-	0.0000 VOL/VOL
FIELD CAPACITY	•	0.0000 VOL/VOL
WILTING POINT	•	0.0000 VOL/VOL
INITIAL SOIL WATER CONTENT	•	0.0000 VOL/VOL
EFFECTIVE SAT. HYD. COND.	•	0.399999993000E-12 CM/SEC
FML PINHOLE DENSITY	-	1.00 HOLES/ACRE
FML INSTALLATION DEFECTS	•	15.00 HOLES/ACRE
FML PLACEMENT QUALITY	9	4 - 200R

· · · ·

INCHES

LAYER 5

TYPE 3 - BARF	IER	SOIL LINER
MATERIAL TEXT	URE	NUMBER 16
THICKIESS	•	12.00 INCHES
POROSITY	-	0.4270 VOL/VOL
FIELD CAPACITY	•	0.4180 VOL/VOL
WILTING POINT	•	0.3670 VOL/VOL
INITIAL SOIL WATER CONTENT	•	0.4270 VOL/VOL
EFFECTIVE SAT. HYD. COND.	•	0.10000001000E-06 CM/SEC

LAYER 6

TYPE 1 - VERTICAL	PE	RCOLATION LAYER
MATERIAL TEXT	URE	NUMBER 18
THICKNESS	۰	1152.00 INCHES
POROSITY	•	0.6710 VOL/VOL
FIELD CAPACITY	•	0.2920 VOL/VOL
WILTING POINT	=	0.0770 VOL/VOL
INITIAL SOIL WATER CONTENT	-	0.2920 VOL/VOL
EFFECTIVE SAT. HYD. COND.	-	0.10000005000E-02 CM/SEC

LAYER 7

TYPE 2 - LATERA	LD	RAINAGE LAYER
MATERIAL TEXT	URE	NUMBER 0
THICKNESS	•	12.00 INCHES
POROSITY	•	0.3970 VOL/VOL
FIELD CAPACITY	•	0.0320 VOL/VOL
WILTING POINT	•	0.0130 VOL/VOL
INITIAL SOIL WATER CONTENT	•	0.0335 VOL/VOL
EFFECTIVE SAT. HYD. COND.	•	0.500000007000E-01 CM/SEC
SLOPE	•	2.20 PERCENT
DRAINAGE LENGTH	•	615.0 FEET

LAYER 8

TYPE 4 - FLEXIBLE MEMBRANE LINER Material texture number 35

NOTE: EVAPOTRANSPIRATION DATA WAS OBTAINED FROM ST. LOUIS MISSOURI

STATION LATITUDE = MAXIMUM LEAF AREA INDEX = START OF GROWING SEASON (JULIAN DATE) = EVAPORATIVE 20HE DEPTH = AVERAGE ANNUAL WIND SPEED = AVERAGE ST QUARTER RELATIVE HUNIDITY = AVERAGE 3RD QUARTER RELATIVE HUNIDITY = AVERAGE 3RD QUARTER RELATIVE HUNIDITY = AVERAGE 4TH AVERAGE 4TH

MAR/SEP

3.28

MAR/SEP

43.20 69.70

JAN/JUL

1.72

JAN/JUL

28.60

FEB/AUG

2.14

FEB/AUG

33.80 77.00

NOTE: PRECIPITATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR ST. LOUIS MISSOURI NORMAL MEAN MONTHLY PRECIPITATION (INCHES)

NOTE: TEMPERATURE DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR ST. LOUIS MISSOURI NORMAL MEAN MONTHLY TEMPERATURE (DEGREES FAHRENHEIT)

APR/OCT

3.55

APR/OCT

56.10 57.90

39.10 DEGREES
 4.00
 98
 300
 24.0 INCHES
 10.40 MPH
 73.00 3
 67.00 3
 71.00 3
 74.00 5

MAY/HOV

3.54 2.53

MAY/NOV

65.60 44.60

JUN/DEC

3.73

JUN/DEC

74.80 34.20

POROSITY	•	0.0000 VOL/VOL
FIELD CAPACITY	•	0.0000 VOL/VOL
WILTING POINT	*	0.0000 VOL/VOL
INITIAL SOIL WATER CONTENT	•	0.0000 VOL/VOL
EFFECTIVE SAT. HYD. COND.	•	0.199999996000E-12 CM/SEC
FML PINHOLE DENSITY	•	1.00 HOLES/ACRE
FML INSTALLATION DEFECTS	•	10.00 HOLES/ACRE
FNL PLACEMENT QUALITY	•	4 - POOR

0.06

THICKNESS

LAYER 9

TYPE 3 - BARR	1.50	SOTI LINER		
MATERIAL TEXT				
THICKNESS	•	36.00	INCHES	
POROSITY	•	0.4270	VOL/VOL	
FIELD CAPACITY	•	0.4180	VOL/VOL	
WILTING POINT	•	0.3670	VOL/VOL	
INITIAL SOIL WATER CONTENT	-	0.4270	VOL/VOL	
EFFECTIVE SAT. HYD. COND.	-	0.10000000	1000E-06	CN/SEC

GENERAL DESIGN AND EVAPORATIVE ZONE DATA

NOTE: SCS RUNOFF CURVE NUMBER WAS COMPUTED FROM DEFAULT Soil Data base using soil texture # 0 with a Good Stand of Grass, a surface slope of 14.3 And a slope length of 630. Fet.

SCS RUNOFF CURVE NUMBER	•	72.70	
FRACTION OF AREA ALLOWING RUNOFF	-	90.0	PERCENT
AREA PROJECTED ON HORIZONTAL PLANE	•	1.000	ACRÉS
EVAPORATIVE ZONE DEPTH	•	24.0	INCHES
INITIAL WATER IN EVAPORATIVE ZONE	•	8.352	INCHES
UPPER LIMIT OF EVAPORATIVE STORAGE	•	11.124	INCHES
LOWER LIMIT OF EVAPORATIVE STORAGE	•	3.636	INCHES
INITIAL SNOW WATER		0.000	INCHES
INITIAL WATER IN LAYER MATERIALS	•	373.988	INCHES
TOTAL INITIAL WATER	•	373.988	INCHES
TOTAL SUBSURFACE INFLOW	•	0.00	INCHES/YEAR

EVAPOTRANSPIRATION AND WEATHER DATA

	JAH/JUL	FEB/AUG	NAR/SEP	APR/OCT	MAY/NOV	JUN/DEC
RECIPITATION						
TOTALS	1.56	2.15	3.09	3.37	3.44	4.42
	3.38	2.66	2.75	2.10	2.16	2.06
STD. DEVIATIONS	0.95 1.87	1.09	0.92 1.45	1.36	1.56	2.04 1.14
RUNOFF						
TOTALS	0.166	0.453	0.287	0.012	0.001	0.017
	0.004	0.001	0.000	0.001	0.002	0.008
STD. DEVIATIONS	0.302	0.543	0.558	0.065	0.006	0.057
	0.015	0.003	0.001	0.004	0.006	0.021
WAPOTRANSPIRATION				•		
TOTALS	0.508	0.633 2.594	2.126 2.192	3.256	4.670 0.859	4.546
STD. DEVIATIONS	0.274	0.366	0.576	0.784 0.287	0.913	1.703
ATERAL DRAINAGE COLL						
TOTALS	0.5959		1.4584	1.1494	0.6237	0.2894
	0.0975	0.0297				0.3414
STD. DEVIATIONS	0.0975				0.5104	
STD. DEVIATIONS		0.7667	0.7726	0.7113		0.2844
STD. DEVIATIONS PERCOLATION/LEAKAGE T	0.7971 0.1388	0.7667 0.0796	0.7726	0.7113		0.2844
•	0.7971 0.1388	0.7667 0.0796 ER 5	0.7726 0.0342	0.7113 0.0396	0.8014	0.2844 0.7969
PERCOLATION/LEAKAGE 1	0.7971 0.1388 HROUGH LAY	0.7667 0.0796 ER 5 0.0000	0.7726	0.7113 0.0396 0.0000	0.8014	0.2844 0.7969 0.0000
PERCOLATION/LEAKAGE 1	0.7971 0.1388 THROUGH LAY 0.0000	0.7667 0.0796 ER 5 0.0000 0.0000	0.7726 0.0342 0.0000 0.0000	0.7113 0.0396 0.0000 0.0000	0.8014	0.2844 0.7969 0.0000 0.0000
PERCOLATION/LEAKAGE T TOTALS	0.7971 0.1388 THROUGH LAY 0.0000 0.0000	0.7667 0.0796 ER 5 0.0000 0.0000 0.0000	0.7726 0.0342 0.0000 0.0000	0.7113 0.0396 0.0000 0.0000 0.0000	0.8014	0.2844 0.7969 0.0000 0.0000 0.0000
PERCOLATION/LEAKAGE T TOTALS	0.7971 0.1388 HROUGH LAY 0.0000 0.0000 0.0000 0.0000	0.7667 0.0796 ER 5 0.0000 0.0000 0.0000	0.7726 0.0342 0.0000 0.0000 0.0000	0.7113 0.0396 0.0000 0.0000 0.0000	0.8014	0.2844 0.7969 0.0000 0.0000 0.0000
PERCOLATION/LEAKAGE T TOTALS STD. DEVIATIONS	0.7971 0.1388 HROUGH LAY 0.0000 0.0000 0.0000 0.0000	0.7667 0.0796 ER 5 0.0000 0.0000 0.0000 0.0000 LAYER 7	0.7726 0.0342 0.0000 0.0000 0.0000	0.7113 0.0396 0.0000 0.0000 0.0000 0.0000	0.8014 0.0000 0.0000 0.0000 0.0000	0.2844 0.7969 0.0000 0.0000 0.0000 0.0000
PERCOLATION/LEAKAGE T TOTALS STD. DEVIATIONS LATERAL DRAINAGE COLL	0.7971 0.1388 HROUGH LAY 0.0000 0.0000 0.0000 0.0000 0.0000	0.7667 0.0796 ER 5 0.0000 0.0000 0.0000 0.0000 LAYER 7 0.0001	0.7726 0.0342 0.0000 0.0000 0.0000 0.0000	0.7113 0.0396 0.0000 0.0000 0.0000 0.0000	0.8014 0.0000 0.0000 0.0000 0.0000	0.2844 0.7969 0.0000 0.0000 0.0000 0.0000
PERCOLATION/LEAKAGE T TOTALS STD. DEVIATIONS LATERAL DRAINAGE COLL	0.7971 0.1368 HROUGH LAY 0.0000 0.0000 0.0000 0.0000 ECTED FROM	0.7667 0.0796 ER 5 0.0000 0.0000 0.0000 0.0000 LAYER 7 0.0001 0.0000	0.7726 0.0342 0.0000 0.0000 0.0000 0.0000	0.7113 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000	0.2844 0.7969 0.0000 0.0000 0.0000 0.0000

PERCOLATION/LEAKAGE THROUGH LAYER 9

•

NOTE: SOLAR RADIATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR ST. LOUIS MISSOURI AND STATION LATITUDE = 39.10 DEGREES

AVERAGE MONTHLY VALUES IN INCHES FOR YEARS 1 THROUGH 30

: :

TOTALS	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
STD. DEVIATIONS	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

AVERAGES OF MONTHLY AVERAGED DAILY HEADS (INCHES)

DAILY AVERAGE HEAD ON TOP OF LAYER 4

AVERAGES	0.0015	0.0016	0.0037	0.0030	0.0016	0.0008
	0.0002	0.0001	0.0000	0.0000	0.0007	0.0014
STD. DEVIATIONS	0.0020	0.0021	0.0020	0.0019	0.0013	0.0007
	0.0004	0.0002	0.0001	0.0001	0.0021	0.0020
AVERAGES	0.0011	0.0005	0.0002	0.0001	0.0001	0.0000
AVERAGES	0.0011	0.0005	0.0002	0.0001	0.0001	0.0000
STD. DEVIATIONS	0.0060	0.0026	0.0012	0.0005	0.0002	0.0001
STD. DEVIATIONS	0.0060 0.0000	0.0026	0.0012	0.0005	0.0002	

....

AVERAGE ANNUAL TOTALS & (STD. DEVIATIONS) FOR YEARS 1 THROUGH 30

	INC	HES		CU. FEET	PERCENT
PRECIPITATION	33.21	(4.731}	120562.0	100.00
RUNOFF	0.951	(0.9097}	3450.71	2.862
EVAPOTRANSPIRATION	26.776	ſ	3.0023)	97195.78	80.619
LATERAL DRAINAGE COLLECTED FROM LAYER 3	5.63411	¢	1.99288)	20451.822	16.96374
PERCOLATION/LEAKAGE THROUGH	0.00004	(0.00001)	0.145	0.0001

LAYER S				
AVERAGE HEAD ON TOP Of layer 4	0.001 (0.000)		
LATERAL DRAINAGE COLLECTED FRON LAYER 7	0.00063 (0.00327)	2.304	0.00191
PERCOLATION/LEAKAGE THROUGH LAYER 9	0.00001 (0.00002)	0.019	0.00002
AVERAGE HEAD ON TOP OF LAYER 8	0.000 (0.001)		
CHANGE IN WATER STORAGE	-0.148 (1.4151)	-538.66	-0.447

.

PEAK DAILY VALUES FOR YEARS	1 THROUGH	30
	(INCHES)	(CU. FT.)
PRECIPITATION	3.44	12407.200
RUNOFF	1.922	6977.6274
DRAINAGE COLLECTED FROM LAYER 3	1.59259	5781.1044
PERCOLATION/LEAKAGE THROUGH LAYER 5	0.000007	0.02714
AVERAGE HEAD ON TOP OF LAYER 4	0.125	
MAXIMUM HEAD ON TOP OF LAYER 4	0.250	
LOCATION OF MAXIMUM HEAD IN LAYER 3 (DISTANCE FROM DRAIN)	0.0 FEET	
DRAINAGE COLLECTED FROM LAYER 7	0.00049	1.7957
PERCOLATION/LEAKAGE THROUGH LAYER 9	0.000002	0.00799
AVERAGE HEAD ON TOP OF LAYER 8	0.049	
MAXIMUM HEAD ON TOP OF LAYER 9	0.098	
LOCATION OF NAXIMUM HEAD IN LAYER 7 (DISTANCE FROM DRAIN)	0.0 FEET	
SNOW WATER	2.43	8621.5488
MAXIMUM VEG. SOIL WATER (VOL/VOL)	0.4	1144
MINIMUM VEG. SOIL WATER (VOL/VOL)	0.1	1515

*** Maximum heads are computed using McEnroc's equations. ***

Reference: Maximum Saturated Depth over Landfill Liner by Bruce N. McEnroe, University of Kansas ASCE Journal of Environmental Engineering Vol. 119, No. 2, Narch 1993, pp. 262-270.

•••••

FINAL WATER	STORAGE AT	END OF YEAR 30
 LAYER	(INCHES)	(VOL/VOL)
1	3.2479	0.2707
2	9.0223	0.3007
з	0.0020	0.0100
4	0.0000	0.0000
5	5.1240	0.4270
6	336.3840	0.2920
7	0.3840	0.0320
8	0.0000	0.0000
9	15.3720	0.4270
SHOW WATER	0.000	

}

***************************************	NOTE: SATURATED HYDRAULIC CONDUCTIVITY IS MULTIPLIED BY 5.00 FOR ROOT CHANNELS IN TOP HALF OF EVAPORATIVE 20NE.
•• ••	
•• •• HYDROLOGIC EVALUATION OF LANDFILL PERFORMANCE ••	
** HELP MODEL VERSION 3.07 (1 NOVENBER 1997) **	
DEVELOPED BY ENVIRONMENTAL LABORATORY USAE WATERWAYS EXPERIMENT STATION ··	LAYER 2
** FOR USEPA RISK REDUCTION ENGINEERING LABORATORY **	
•• • • •	TYPE 1 - VERTICAL PERCOLATION LAYER
***************************************	NATERIAL TEXTURE NUMBER 11 Thickness = 30.00 Inches
***************************************	POROSITY = 0.4640 VOL/VOL
	FIELD CAPACITY = 0.3100 VOL/VOL WILTING POINT = 0.1870 VOL/VOL
	INITIAL SOIL WATER CONTENT = 0.3007 VOL/VOL
PRECIPITATION DATA FILE: C:\LFJ3\DATA4EC.D4 TEMPERATURE DATA FILE: C:\LFJ3\DATA7EC.D7	EFFECTIVE SAT. HYD. COND 0.6399999980008-04 CM/SEC
SOLAR RADIATION DATA FILE: C:\LF33\DATA13EC.D13	
EVAPOTRANSPIRATION DATA: C:\LF33\DATA11EC.D11 Soil and Design data file: C:\Lf33\data10sc.d10	
OUTPUT DATA FILE: C:\LF33\SC62131.OUT	LAYER 3
•	
	TYPE 2 - LATERAL DRAINAGE LAYER
TINE: 00: 5 DATE: 6/29/2018	MATERIAL TEXTURE NUMBER 0 THICKNESS • 0.20 INCHES
•	POROSITY - 0.8500 VOL/VOL
	FIELD CAPACITY O.0100 VOL/VOL ULITING POINT O.0000 VOL/VOL O.0000 VOL O.00000 VOL O.0000 VOL
•••••••••••••••••••••••••••••••••••••••	INITIAL SOIL WATER CONTENT - 0.0100 VOL/VOL
TITLE: SOUTHERN AREA - 70 YEAR AFTER POST CLOSURE -YEARS 62 TO 131	EFFECTIVE SAT. HTD. COND I.0000000000 CM/SEC
	SLOPE = 14.50 PERCENT DRAINAGE LENGTH = 630.0 FEET
•••••••••••••••••••••••••••••••••••••••	
NOTE: INITIAL MOISTURE CONTENT OF THE LAYERS AND SHOW WATER	LAYER 4
WERE SPECIFIED BY THE USER.	
	TYPE 4 - FLEXIBLE MEMBRANE LINER
· · · · · · · · · · · · · · · · · · ·	MATERIAL TEXTURE NUMBER 36
LAYER 1	- THICKNESS = 0.04 INCHES Porosity = 0.0000 Vol/Vol
	FIELD CAPACITY = 0.0000 VOL/VOL
TYPE 1 - VERTICAL PERCOLATION LAYER Material texture number 6	INITIAL SOLL HATER CONTENT - 0 0000 VOL (VOL
Thickness = 12.00 inches	EFFECTIVE SAT. HYD. COND. = 0.399999993000E-12 CM/SEC
POROSITY = 0.4630 VOL/VOL FIELD CAPACITY = 0.2320 VOL/VOL	FML PINHOLE DENSITY • 1.00 HOLES/ACRE FML INSTALLATION DEFECTS = 15.00 HOLES/ACRE
FIELD CAPACITY = 0.2320 VOL/VOL WILTING POINT = 0.1160 VOL/VOL INITIAL SOL WATER CONTENT = 0.2707 VOL/VOL	FML PLACEMENT QUALITY = 4 - POOR
INITIAL SOIL WATER CONTENT = 0.2707 VOL/VOL EFFECTIVE SAT. HYD. COND. = 0.369999994000E-03 CM/SEC	
	•
	FIELD CAPACITY = 0.0000 VOL/VOL
LAYER 5	WILTING POINT - 0.0000 VOL/VOL INITIAL SOIL WATER CONTENT - 0.0000 VOL/VOL
	EFFECTIVE SATE WATER CONTENT = 0.199999960000E-12 CH/SEC FML PINHOLE DENSITY = 1.00 HOLES/ACRE
TYPE 3 - BARRIER SOIL LINER	FML PINHOLE DENSITY = 1.00 HOLES/ACRE FML INSTALLATION DEFECTS = 10.00 HOLES/ACRE
MATERIAL TEXTURE NUMBER 0	FNL PLACEMENT QUALITY = 4 - POOR
THICKNESS = 12.00 INCHES POROSITY = 0.4270 VOL/VOL	
FIELD CAPACITY = 0.4180 VOL/VOL	
WILTING POINT = 0.3670 VOL/VOL INITIAL SOIL WATER CONTENT = 0.4270 VOL/VOL	
EFFECTIVE SAT. HYD. COND. = 0.999999975000E-05 CH/SEC	LAYER 9
	TYPE 3 - BARRIER SOIL LINER
	MATERIAL TEXTURE NUMBER 16
LAYER 6	THICKNESS = 36.00 INCHES POROSITY = 0.4270 VOL/VOL
	FIELD CAPACITY = 0.4180 VOL/VOL
TYPE 1 - VERTICAL PERCOLATION LAYER	WILTING POINT = 0.3670 VOL/VOL INITIAL SOIL WATER CONTENT = 0.4270 VOL/VOL
NATERIAL TEXTURE NUMBER 18	EFFECTIVE SAT. HYD. COND 0.100000001000E-06 CM/SEC
THICKNESS = 1152.00 INCHES	

1

.

TYPE 1 - VERTICAL PERCOLATION LAYER MATERIAL TEXTURE NUMBER 18

.

THICKNESS	•	1152.00 INCHES
POROSITY	÷	0.6710 VOL/VOL
FIELD CAPACITY		0.2920 VOL/VOL
WILTING POINT	•	0.0770 VOL/VOL
INITIAL SOIL WATER CONTENT	=	0.2920 VOL/VOL
EFFECTIVE SAT. HYD. COND.		0.10000005000E-02 CM/SEC

LAYER 7

TYPE 1 - VERTICAL	39	RCOLATION LAYER
MATERIAL TEXT	URE	NUMBER 0
THICKNESS	•	12.00 INCHES
POROSITY	-	0.3970 VOL/VOL
FIELD CAPACITY	=	0.0320 VOL/VOL
WILTING POINT	=	0.0130 VOL/VOL
INITIAL SOIL WATER CONTENT	٠	0.0320 VOL/VOL
EFFECTIVE SAT. HYD. COND.	•	0.50000007000E-01 CM/SEC

LAYER 8

TYPE 4 - FLEXIBLE MEMBRAHE LINER Material texture number 35 = 0.06 liches = 0.0000 vol/vol THICKNESS POROSITY

EVAPOTRANSPIRATION AND WEATHER DATA

GENERAL DESIGN AND EVAPORATIVE ZONE DATA

NOTE: SCS RUNOFF CURVE NUMBER WAS COMPUTED FROM DEFAULT Soil data base using soil texture # 8 with an Excellent Stand of Grass, a sufface slope of 14.5 AND a slope length of 630. Feet.

NOTE: EVAPOTRANSPIRATION DATA WAS OBTAINED FROM

SCS RUNOFF CURVE NUMBER = FRACTION OF AREA ALLOWING RUNOFF = AREA PROJECTED ON HORIZONTAL PLANE = EVAPORATIVE ZONE DEPTH = INITIAL WATER IN EVAPORATIVE ZONE = UPPER LIMIT OF EVAPORATIVE STORAGE = LOWER LIMIT OF EVAPORATIVE STORAGE = INITIAL SNGW WATER = INITIAL SNGW WATER = INITIAL WATER IN LAYER NATERIALS = TOTAL INITIAL WATER = TOTAL SUBSURFACE INFLOW = 70.00 95.0 PERCENT 1.000 ACRES 24.0 INCHES 6.057 INCHES 11.124 INCHES 1.636 INCHES 0.000 INCHES 369.535 INCHES 0.000 INCHES/YEAR ÷

		ST. LOUIS ATION LATIT XIMUN LEAF	IDE	MISSOURI	= 39.10 Di = 5.00	EGREES	PRECIPITATION	JAN/JUL	FEB/AUG	MAR/SEP		MAY/NOV	JUN/DEC
	51 E2		ING SEASON (S SEASON (JU	JULIAN DATE) LIAN DATE)		NCHES	TOTALS	1.81 3.43	2.12 2.50	3.31 2.65	3.55 2.29	3.59 2.30	4.08 2.10
1	AN AN	/ERAGE ANNUA /ERAGE 1ST Q	L WIND SPEED Jarter Relat	IVE HUNIDITY IVE HUNIDITY	= 10.40 M	PH	STD. DEVIATIONS	0.97 1.79	1.03	1.40 1.34	1.37 1.39	1.65 1.36	2.04 1.22
	A	ERAGE 3RD Q	JARTER RELAT	IVE HUMIDITY IVE HUMIDITY			RUNOFF						
							TOTALS	0.250 0.004	0.475 0.000	0.338 0.000	0.007 0.000	0.001 0.005	0.005 0.052
	NOTE:			SYNTHETICALL ST. LOUIS	Y GENERATED MISS		STD. DEVIATIONS	0.426 0.020	0.546 0.001	0.640 0.000	0.044 0.000	0.004 0.030	0.024 0.211
				PRECIPITATION			EVAPOTRANSPIRATION						
	JAH/JUL 1.72	FEB/AUG 2.14	MAR/SEP 3.28	APR/OCT 3.55	MAY/NOV 3.54	JUH/DEC 3.73	TOTALS	0.526 3.517	0.648 2.583	2.089 2.310	3.369 1.204	4.813 0.824	4.107 0.658
	3.63	2.55	2.70	2.32	2.53	2.22	STD. DEVIATIONS	0.237 1.659	0.349 1.231	0.548 1.021	0.708 0.356	1.083 0.230	1.902 0.193
	NOTE:			YNTHETICALLY	GENERATED U		LATERAL DRAINAGE COL						
	10	COEFFICI		ST. LOUIS RATURE (DEGRE			TOTALS	0.5323 0.1058					
	JAN/JUL	FEB/AUG	MAR/SEP	APR/OCT	MAY/NOV	JUN/DEC	STD. DEVIATIONS	0.5472					
	28.60 78.90	33.80 77.00	43.20 69.70	56.10 57.90	65.60 44.60	74.80 34.20	PERCOLATION/LEAKAGE						
	•			,			TOTALS	0.0017	0.0044				
	NOTE:	COEFFICI	ENTS FOR	AS SYNTHETIC ST. LOUIS DE = 39.10	MISS		STD. DEVIATIONS	0.0056 0.0003					
							PERCOLATION/LEAKAGE						
							TOTALS	0.0017	0.0016				
•••						•••••	STD. DEVIATIONS	0.0011					
	AVERA	SE MONTHLY V	ALUES IN INC	HES FOR YEAR	1 THROU	GH 70							

AVERAGES	OF MONTHLY	AVERAGED	DATLY HEA	ADS (INCH	ES)	
DAILY AVERAGE HEAD ON	TOP OF LAY	ER 4				
AVERAGES	0.0341	0.1154	0.5010	0.1294	0.0318	0.007
	0.0027	0.0009	0.0002	0.0002	0.0752	0.148
STD. DEVIATIONS	0.1432	0.3725	0.9614	0.4242	0.1167	0.006
	0.0044	0.0023	0.0009	0.0012	0.4357	0.92
DAILY AVERAGE HEAD ON		-				
DAILY AVERAGE HEAD ON	TOP OF LAT					
AVERAGES	1.7825	1.7873	1.8176	1.8474	1.8520	1.850
AVENAGES	1.8463	1.8418	1.6371	1.8324	1.8340	1.840
	1.0105					
STD. DEVIATIONS	1.1773	1.1787	1.1968	1.2139	1.2101	1.20
515. 55. INTIONS	1.2042	1.2013	1.1985	1.1956	1,1868	1.19

٠

		,		
CHANGE IN WATER STORAGE	0.014	(1.4540)	50.35	0.041
•••••		••••••		

!

.

.

....

AVERAGE AVINUAL TOTALS 6 (STD. DEVIATIONS) FOR YEARS 1 THROUGH 70

	100	HES		CU. FEET	PERCENT
PRECIPITATION	33.02	(4.892}	122761.4	100.00
RUNOFF	1.135	C	0.9369)	4119.29	3.356
EVAPOTRANSPIRATION	26.647	C	3.2857)	96729.06	78.794
LATERAL DRAINAGE COLLECTED FROM LAYER 3	6.00208	ſ	2.14369)	21787.555	17.74788
PERCOLATION/LEAKAGE THROUGH LAYER \$	0.04337	C	0.05248)	157.427	0.12824
AVERAGE HEAD ON TOP OF LAYER 4	0.087 (0.113)		
PERCOLATION/LEAKAGE THROUGH LAYER 9	0.02070	(0.01254)	75.134	0.06120
AVERAGE HEAD ON TOP OF LAYER 8	1.031 (1.196)		

····

PEAK DAILY VALUES FOR YEARS	1 THROUGH	70
	(INCHES)	(CU. FT.)
PRECIPITATION	3.57	12959.100
RUNOFF	2.601	9443.1279
DRAINAGE COLLECTED FROM LAYER 3	0.25761	935.13361
PERCOLATION/LEAKAGE THROUGH LAYER 5	0.031204	113.27204
AVERAGE HEAD ON TOP OF LAYER 4	24.936	
NAXIMUM HEAD ON TOP OF LAYER 4	44.741	
LOCATION OF MAXIMUM HEAD IN LAYER 3 (DISTANCE FROM DRAIN)	52.9 FEET	
PERCOLATION/LEAKAGE THROUGH LAYER 9	0.000129	0.46749
AVERAGE HEAD ON TOP OF LAYER 8	4.432	
SHOW WATER	3.24	11767.4912
MAXINUN VEG. SOIL WATER (VOL/VOL)	0	. 4101
MINIMUM VEG. SOIL WATER (VOL/VOL) 0.1515		

*** Maximum heads are computed using McEnroe's equations. ***

Reference: Maximum Saturated Depth over Landfill Liner by Bruce M. McEnrec, University of Kansas ASCE Journal of Environmental Engineering Vol. 119, Ho. 2, March 1993, pp. 262–270.

.

.

LAYER	(INCHES)	(VOL/VOL)
1	3.0553	0.2546
2	8.5981	0.2866
3	0.0020	0.0100
4	0.0000	0.0000
5	5.1240	0.4270
6	336.3840	0.2920
7	1.9709	0.1642
8	0.0000	0.0000
9	15.3720	0.4270
SNOW WATER	0.000	

.....

.....

0

APPENDIX I

SURROGATE ADSORPTION AND HALF LIFE VALUES

i

1

TEKLAB, INC.

ENVIRONMENTAL & CHEMICAL TESTING

#6 MEADOW HEIGHTS PROF. PARK COLLINSVILLE, ILLINOIS 62234

> TELE: 618-344-1004 FAX: 618-344-1005

August 17, 1994

REPORT #42200

Ms. Kim Pagliai AE Exploration Corporation 2813 North Dirksen Parkway Springfield, IL 62703 Project: Soil Testing

Sample Received: 08-10-94

ANALYSIS RESULTS

LAB ID	SAMPLE ID	TOTAL ORGANIC CARBON, mg/kg
940810-5	B94-1-St15 LF33	29900
940810-6	B94-2-St41 LF33	17300
940810-7	B94-2-St24 LF33	17600
940810-8	B94-3-S-6 LF33	2340
940810-9	B94-4-St24 LF33	1580
940810-10	B94-4-St19 LF33	12400

These tests were conducted in accordance with "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods", U.S. Environmental Protection Agency, SW-846 (Revised 1990).

TEKLAB INC. Lynr Director Labor

Select Language

Powered by Google Translate

¥

```
This page contains the EPI System Summary only.
For complete control of this information -
Download the free EPI SuiteTM v4.0 program : here
To Datasheet
CAS Num: 007664-41-7
SMILES : N
CHEM : Ammonia
MOL FOR: H3 N1
MOL WT : 17.03
 ----- EPI SUMMARY (v4.00) ------
Physical Property Inputs:
   Water Solubility (mg/L):
   Vapor Pressure (mm Hg) :
   Henry LC (atm-m3/mole) :
   Log Kow (octanol-water):
                             · - - - - - - -
   Boiling Point (deg C) :
                              ----
   Melting Point (deg C) :
                              ----
Log Octanol-Water Partition Coef (SRC):
   *** WARNING: Inorganic Compound (Outside Estimation Domain)
   Log Kow (KOWWIN v1.67 estimate) = 0.23
Boiling Pt, Melting Pt, Vapor Pressure Estimations (MPBPWIN v1.43):
  *** WARNING: Inorganic Compound (Outside Estimate Domain) ***
  *** WARNING: Estimations NOT VALID ***
   Boiling Pt (deg C): 602.75 (Adapted Stein & Brown method)
   Melting Pt (deg C): 260.60 (Mean or Weighted MP)
   VP(mm Hg,25 deg C): 1.66E-013 (Modified Grain method)
   VP (Pa, 25 deg C) : 2.21E-011 (Modified Grain method)
   Subcooled liquid VP: 6.25E-011 mm Hg (25 deg C, Mod-Grain method)
                      : 8.33E-009 Pa (25 deg C, Mod-Grain method)
Water Solubility Estimate from Log Kow (WSKOW v1.41):
   *** WARNING: Inorganic Compound (Outside Estimation Domain)**
   Water Solubility at 25 deg C (mg/L): 5.101e+004
      log Kow used: 0.23 (estimated)
      no-melting pt equation used
Water Sol Estimate from Fragments:
   *** WARNING: Inorganic Compound (Outside Estimation Domain)***
   *** WARNING: Wat Sol Estimation NOT Valid ***
   Wat Sol (v1.01 est) = 30231 mg/L
ECOSAR Class Program (ECOSAR v1.00):
   Class(es) found:
      Neutral Organics
Henrys Law Constant (25 deg C) [HENRYWIN v3.20]:
  *** WARNING: Inorganic Compound (Outside Estimation Domain) **
  *** WARNING: Estimation NOT VALID **
  Bond Method : 3.45E-006 atm-m3/mole (3.50E-001 Pa-m3/mole)
  Group Method:
                 Incomplete
For Henry LC Comparison Purposes:
  User-Entered Henry LC: not entered
  Henrys LC [via VP/WSol estimate using User-Entered or Estimated values]:
     HLC: 7.292E-020 atm-m3/mole (7.389E-015 Pa-m3/mole)
     VP:
           1.66E-013 mm Hg (source: MPBPVP)
```

```
Log Octanol-Air Partition Coefficient (25 deg C) [KOAWIN v1.10]:
    *** WARNING: Inorganic Compound (Outside Estimation Domain)**
   *** WARNING: Estimation NOT VALID ***
  Log Kow used: 0.23 (KowWin est)
  Log Kaw used: -3.851 (HenryWin est)
      Log Koa (KOAWIN v1.10 estimate): 4.081
      Log Koa (experimental database): None
 Probability of Rapid Biodegradation (BIOWIN v4.10):
    *** WARNING: Inorganic Compound (Outside Estimation Domain)**
    *** WARNING: Estimation NOT VALID ***
   Biowin1 (Linear Model)
                                      0.7394
   Biowin2 (Non-Linear Model)
                                      0.9409
 Expert Survey Biodegradation Results:
   Biowin3 (Ultimate Survey Model):
                                      3.1615
                                              (weeks
   Biowin4 (Primary Survey Model) :
                                      3.8232
                                              (days
                                                           )
 MITI Biodegradation Probability:
   Biowin5 (MITI Linear Model)
                                  :
                                      0.6522
   Biowin6 (MITI Non-Linear Model):
                                      0.9080
 Anaerobic Biodegradation Probability:
   Biowin7 (Anaerobic Linear Model): 0.3984
 Ready Biodegradability Prediction:
                                      YES
Hydrocarbon Biodegradation (BioHCwin v1.01):
    Structure incompatible with current estimation method!
 Sorption to aerosols (25 Dec C)[AEROWIN v1.00]:
  Vapor pressure (liquid/subcooled): 8.33E-009 Pa (6.25E-011 mm Hg)
  Log Koa (Koawin est ): 4.081
  Kp (particle/gas partition coef. (m3/ug)):
       Mackay model
                              : 360
      Octanol/air (Koa) model: 2.96E-009
  Fraction sorbed to airborne particulates (phi):
      Junge-Pankow model
                          : 1
      Mackay model
      Octanol/air (Koa) model: 2.37E-007
Atmospheric Oxidation (25 deg C) [AopWin v1.92]:
   *** WARNING: Inorganic Compound (Outside Estimation Domain)***
  Hydroxyl Radicals Reaction:
     OVERALL OH Rate Constant =
                                  0.0000 E-12 cm3/molecule-sec
     Half-Life =
                   -----
  Ozone Reaction:
     No Ozone Reaction Estimation
  Fraction sorbed to airborne particulates (phi):
     1 (Junge-Pankow, Mackay avg)
     2.37E-007 (Koa method)
   Note: the sorbed fraction may be resistant to atmospheric oxidation
Soil Adsorption Coefficient (KOCWIN v2.00):
  *** WARNING: Inorganic Coumpound (Outside Estimation Domain) **
  *** WARNING: Estimation NOT VALID **
     Кос
            : 13.22 L/kg (MCI method)
     Log Koc: 1.121
                           (MCI method)
     Кос
               1.582 L/kg (Kow method)
     Log Koc: 0.199
                           (Kow method)
Aqueous Base/Acid-Catalyzed Hydrolysis (25 deg C) [HYDROWIN v2.00]:
   Rate constants can NOT be estimated for this structure!
Bioaccumulation Estimates (BCFBAF v3.00):
  Log BCF from regression-based method = 0.500 (BCF = 3.162 L/kg wet-wt)
  Log Biotransformation Half-life (HL) = -1.5104 days (HL = 0.03088 days)
```

Log BCF Arnot-Gobas method (upper trophic) = -0.003 (BCF = 0.9924) Log BAF Arnot-Gobas method (upper trophic) = -0.003 (BAF = 0.9924) log Kow used: 0.23 (estimated) Volatilization from Water: Henry LC: 3.45E-006 atm-m3/mole (estimated by Bond SAR Method) Half-Life from Model River: 161.5 hours (6.727 days) Half-Life from Model Lake : 161.5 hours (6.727 days) Removal In Wastewater Treatment: Total removal: 2.05 percent Total biodegradation: 0.09 percent Total sludge adsorption: 1.76 percent Total to Air: 0.20 percent (using 10000 hr Bio P,A,S) Level III Fugacity Model: Mass Amount Half-Life Emissions (percent) (hr) (kg/hr) Air 1.62 1e+005 1000 Water 30.1 360 1000 Soil 68.2 720 1000 Sediment 0.0718 3.24e+003 0

Persistence Time: 589 hr

Rowe Ammonium Hydroxide Solution (1-5% ammonia)

ROWE SCIENTIFIC

Chemwatch: 4847-83 Version No: 5.1.1.1 Safety Data Sheet according to WHS and ADG requirements (Children Forder Alen (Forder S)

Issue Date: 30/08/2016 Print Date: 31/08/2016 S.GHS.AUS.EN

SECTION 1 IDENTIFICATION OF THE SUBSTANCE / MIXTURE AND OF THE COMPANY / UNDERTAKING

Product Identifier

Product name	Rowe Ammonium Hydroxide Solution (1-5% ammonia)
Synonyms	CA4201, CA4202, CA4207, CA4552
Other means of identification	Not Available

Relevant identified uses of the substance or mixture and uses advised against

Relevant identified	Laboratory reagent.				
uses		•	•	•	

Details of the supplier of the safety data sheet

Registered company name	
Address	11 Challenge Boulevard Wangara WA 6065 Australia
Telephone	+61 8 9302 1911
Fax	+61 8 9302 1905
Website	Not Available
Email	rowewa@rowe.com.au

Emergency telephone number

Association / Organisation	Not Available
Emergency telephone numbers	+61 8 9302 1911 (24 Hrs)
Other emergency telephone numbers	Not Available

SECTION 2 HAZARDS IDENTIFICATION

Classification of the substance or mixture

HAZARDOUS CHEMICAL. NON-DANGEROUS GOODS. According to the WHS Regulations and the ADG Code.

Poisons Schedule	S5
Classification ^[1]	Skin Corrosion/Irritation Category 2, Serious Eye Damage Category 1
Legend:	1. Classified by Chemwatch; 2. Classification drawn from HSIS ; 3. Classification drawn from EC Directive 1272/2008 - Annex VI
Legend:	1. Classified by Chemwatch; 2. Classification drawn from HSIS ; 3. Classification drawn from EC Directive 1272/2008 - An VI

Label elements

GHS label elements	
SIGNAL WORD	DANGER

Hazard statement(s)

Rowe Ammonium Hydroxide Solution (1-5% ammonia)

H315	Causes skin irritation.
H318	Causes serious eye damage.

Precautionary statement(s) Prevention

•	
· P280	Wear protective gloves/protective clothing/eye protection/face protection.

Precautionary statement(s) Response

P305+P351+P338	IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continu rinsing.		
P310	Immediately call a POISON CENTER or doctor/physician.		
P362	Take off contaminated clothing and wash before reuse.		
P302+P352	IF ON SKIN: Wash with plenty of soap and water.		
P332+P313	If skin irritation occurs: Get medical advice/attention.		

Precautionary statement(s) Storage

Not Applicable

Precautionary statement(s) Disposal

Not Applicable

SECTION 3 COMPOSITION / INFORMATION ON INGREDIENTS

Substances

See section below for composition of Mixtures

Mixtures

CAS No	%[weight]	Name
1336-21-6	<5	ammonia
7732-18-5	>95	water

SECTION 4 FIRST AID MEASURES

Description of first aid measures

Eye Contact	If this product comes in contact with the eyes: Wash out immediately with fresh running water.
	 Known out interfactory with restrictioning water. Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasional lifting the upper and lower lids. Seek medical attention without delay; if pain persists or recurs seek medical attention. Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.
Skin Contact	If skin contact occurs: Immediately remove all contaminated clothing, including footwear. Flush skin and hair with running water (and soap if available). Seek medical attention in event of irritation.
Inhalation	 If fumes or combustion products are inhaled remove from contaminated area. Lay patient down. Keep warm and rested. Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocke mask as trained. Perform CPR if necessary. Transport to hospital, or doctor, without delay.
Ingestion	 If swallowed do NOT induce vomiting. If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration. Observe the patient carefully. Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious. Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink. Seek medical advice.

Indication of any immediate medical attention and special treatment needed

Treat symptomatically.

For acute or short term repeated exposures to ammonia and its solutions:

Version No: 5.1.1.1

Rowe Ammonium Hydroxide Solution (1-5% ammonia)

- Mild to moderate inhalation exposures produce headache, cough, bronchospasm, nausea, vomiting, pharyngeal and retrosternal pain and conjunctivitis. Severe inhalation produces laryngospasm, signs of upper airway obstruction (stridor, hoarseness, difficulty in speaking) and, in excessively, high doses, pulmonary oedema.
- Warm humidified air may soothe bronchial irritation.
- + Test all patients with conjunctival irritation for corneal abrasion (fluoresceln stain, slit lamp exam)
- Dyspneic patients should receive a chest X-ray and arterial blood gases to detect pulmonary oedema.

SECTION 5 FIREFIGHTING MEASURES

Extinguishing media

- + There is no restriction on the type of extinguisher which may be used.
- Use extinguishing media suitable for surrounding area.

Special hazards arising from the substrate or mixture

Fire Incompatibility	None known.
Advice for firefighters	

	 Alert Fire Brigade and tell them location and nature of hazard. Wear breathing apparatus plus protective gloves in the event of a fire.
Fire Fighting	 Prevent, by any means available, spillage from entering drains or water courses. Use fire fighting procedures suitable for surrounding area.
	 DO NOT approach containers suspected to be hot. Cool fire exposed containers with water spray from a protected location. If safe to do so, remove containers from path of fire.
Fire/Explosion Hazard	 ▸ Non combustible. ▸ Not considered a significant fire risk, however containers may burn. Decomposition may produce toxic fumes of; nitrogen oxides (NOx)May emit poisonous fumes.

SECTION 6 ACCIDENTAL RELEASE MEASURES

Personal precautions, protective equipment and emergency procedures See section 8

Environmental precautions

See section 12

Methods and material for containment and cleaning up

Minor Spills	 Clean up all spills immediately. Avoid breathing vapours and contact with skin and eyes. Control personal contact with the substance, by using protective equipment. Contain and absorb spill with sand, earth, inert material or vermiculite. Wipe up. Place in a suitable, labelled container for waste disposal.
Major Spills	Moderate hazard. • Clear area of personnel and move upwind. • Alert Fire Brigade and tell them location and nature of hazard. • Wear breathing apparatus plus protective gloves. • Prevent, by any means available, spillage from entering drains or water course. • Stop leak if safe to do so. • Contain spill with sand, earth or vermiculite.

Personal Protective Equipment advice is contained in Section 8 of the SDS.

SECTION 7 HANDLING AND STORAGE

Precautions for safe handling

Safe handling	DO NOT allow clothing wet with material to stay in contact with skin
	► Limit all unnecessary personal contact.
	 Wear protective clothing when risk of exposure occurs.
	▶ Use in a well-ventilated area.
	► Avoid contact with incompatible materials.
	When handling, DO NOT eat. drink or smoke.
	Keep containers securely sealed when not in use.
	Avoid physical damage to containers.
	lexisten e de la ser succession e se succession en la construction de la succession de la service de la s

Version No: 5.1.1.1

Rowe Ammonium Hydroxide Solution (1-5% ammonia)

· Store in original containers. Keep containers securely sealed. Store in a cool, dry, well-ventilated area. Other Information Store away from incompatible materials and foodstuff containers. + Protect containers against physical damage and check regularly for leaks. Observe manufacturer's storage and handling recommendations contained within this SDS. Conditions for safe storage, including any incompatibilities

Suitable container	 Polyethylene or polypropylene container. Packing as recommended by manufacturer. Check all containers are clearly labelled and free from leaks. Glass container is suitable for laboratory quantities
Storage incompatibility	None known

SECTION 8 EXPOSURE CONTROLS / PERSONAL PROTECTION

Control parameters

OCCUPATIONAL EXPOSURE LIMITS (OEL)

INGREDIENT DATA

Source	Ingredient	Material name	TWA	STEL	Peak	Notes
Australia Exposure Standards	ammonia	Ammonia	17 mg/m3 / 25 ppm	24 mg/m3 / 35 ppm	Not Available	Not Available

EMERGENCY LIMITS

Ingredient	Material name	TEEL-1	TEEL-2	TEEL-3	
ammonia	Ammonium hydroxide	61 ppm	330 ppm	2300 ppm	
ammonia	Ammonia	Not Available	Not Available	Not Available	
Ingredient	Original IDLH		Revised IDLH		
ammonia	500 ppm	500 ppm		300 ppm	
water	Not Available		Not Available		

Exposure controls

Appropriate engineering controls	Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are: Process controls which involve changing the way a job activity or process is done to reduce the risk. Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use. Employers may need to use multiple types of controls to prevent employee overexposure.		
Personal protection			
Eye and face protection	 Safety glasses with side shields. Chemical goggles. Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. 		
Skin protection	See Hand protection below		
Hands/feet protection	 Wear chemical protective gloves, e.g. PVC. Wear safety footwear or safety gumboots, e.g. Rubber 		
Body protection	See Other protection below		

Version No: 5.1.1.1

Rowe Ammonium Hydroxide Solution (1-5% ammonia)

Other protection	 Overalls. P.V.C. apron. Barrier cream. Skin cleansing cream. Eye wash unit.
Thermal hazards	Not Available

Respiratory protection

Type K-P Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent)

SECTION 9 PHYSICAL AND CHEMICAL PROPERTIES

Information on basic physical and chemical properties

Appearance	Clear, colourless alkaline liquid with ammonia odour; mixes with water.			
Physical state	Liquid	Relative density (Water = 1)	Not Available	
Odour	Not Available	Partition coefficient n-octanol / water	Not Available	
Odour threshold	Not Available	Auto-ignition temperature (°C)	Not Applicable	
pH (as supplied)	>10	Decomposition temperature	Not Available	
Melting point / freezing point (°C)	Not Available	Viscosity (cSt)	Not Available	
Initial boiling point and boiling range (°C)	Not Available	Molecular weight (g/mol)	Not Applicable	
Flash point (°C)	Not Applicable	Taste	Not Available	
Evaporation rate	Not Available	Explosive properties	Not Available	
Flammability	Not Applicable	Oxidising properties	Not Available	
Upper Explosive Limit (%)	Not Applicable	Surface Tension (dyn/cm or mN/m)	Not Available	
Lower Explosive Limit (%)	Not Applicable	Volatile Component (%vol)	Not Available	
Vapour pressure (kPa)	Not Available	Gas group	Not Available	
Solubility in water (g/L)	Miscible	pH as a solution (1%)	Not Available	
Vapour density (Air = 1)	Not Available	VOC g/L	Not Available	

SECTION 10 STABILITY AND REACTIVITY

Reactivity	See section 7		
Chemical stability	 Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur. 		
Possibility of hazardous reactions	See section 7		
Conditions to avoid	See section 7		
ncompatible materials	See section 7		
Hazardous decomposition products	See section 5		

SECTION 11 TOXICOLOGICAL INFORMATION

Information on toxicological effects

Inhaled

There is some evidence to suggest that the material can cause respiratory irritation in some persons. The body's response to such irritation can cause further lung damage.

.

.

(

Rowe Ammonium Hydroxide Solution (1-5% ammonia)

	The highly irritant properties of ammonia vapour result as the gas dissolves in mucous fluids and forms irritant, even corrosive solutions.
	Inhalation of the ammonia fumes causes coughing, vomiting, reddening of lips, mouth, nose, throat and conjunctiva while higher concentrations can cause temporary blindness, restlessness, lightness in the chest, pulmonary oedema (lung damage), weak pulse and cyanosis.
	Inhalation of high concentrations of vapour may cause breathing difficulty, tightness in chest, pulmonary oedema and lung damage. Brief exposure to high concentrations > 5000 ppm may cause death due to asphyxiation (suffocation) or fluid in the lungs.
	Prolonged or regular minor exposure to the vapour may cause persistent irritation of the eyes, nose and upper respiratory tract. Massive ammonia exposures may produce chronic airway hyperactivity and asthma with associated pulmonary function changes. The average nasal retention of ammonia by human subjects was found to be 83%.
Ingestion	Accidental ingestion of the material may be damaging to the health of the individual. Large doses of ammonia or injected ammonium salts may produce diarrhoea and may be sufficiently absorbed to produce increased production of urine and systemic poisoning. Symptoms include weakening of facial muscle, tremor, anxiety, reduced muscle and limb control.
Skin Contact	The material may cause skin irritation after prolonged or repeated exposure and may produce on contact skin redness, swelling, the production of vesicles, scaling and thickening of the skin. The material may accentuate any pre-existing dermatitis condition
Eye	If applied to the eyes, this material causes severe eye damage.
Chronic	Prolonged or repeated minor exposure to ammonia gas/vapour may cause long-term irritation to the eyes, nose and upper respiratory tract. Repeated exposure or prolonged contact may produce dermatitis, and conjunctivitis. Other effects may include ulcerative changes to the mouth and bronchial and gastrointestinal disturbances. Adaptation to usually irritating concentrations may result in tolerance. In animals, repeated exposures to sub-lethal levels produces adverse effects on the respiratory tract, liver, kidneys and spleen. Exposure at 675 ppm for several weeks produced eye irritation in dogs and rabbits; corneal opacity, covering between a quarter to one half of the total surface area, was evident in rabbits.

Rowe Ammonium	τοχιςιτγ	IRRITATION
Hydroxide Solution (1-5% ammonia)	Not Available	Not Available
	τοχιζιτγ	IRRITATION
ammonia	Inhalation (rat) LC50: 2000 ppm/4hr ⁽²⁾	Eye (rabbit): 0.25 mg SEVERE
	Oral (rat) LD50: 350 mg/kg ^[2]	Eye (rabbit): 1 mg/30s SEVERE
	τοχιςιτγ	IRRITATION
water	Orat (rat) LD50: >90000 mg/kg ^[2]	Not Available
Legend:	1. Value obtained from Europe ECHA Registered Substances - Acute toxicity 2.* Value obtained from manufacturer's SDS. Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances	

	The material may produce severe irritation to the eye causing pronounced inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis.
AMMONIA	Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergenic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dyspnea, cough and mucus production.
AMMONIA & WATER	No significant acute toxicological data identified in literature search.
Acute Toxicity	Corcinementativ D

Acute Toxicity	S Carcinogenici	y 🛇
Skin Irritation/Corrosion	✓ Reproductivit	у 🛇
Serious Eye Damage/Irritation	✓ STOT - Sing Exposur	
Respiratory or Skin sensitisation	STOT - Repeate Exposur	e 🛇
Mutagenicity	S Aspiration Hazar	

Version No: 5.1.1.1

Rowe Ammonium Hydroxide Solution (1-5% ammonia)

Legena: R - Data available out does not till the criteria for classification

- ✓ Data required to make classification available
- S Data Not Available to make classification

SECTION 12 ECOLOGICAL INFORMATION

Toxicity

Ingredient	Endpoint	Test Duration (hr)	Species	Value	Source
ammonia	LC50	96	Fish	15mg/L	4
ammonia	NOEC	72	Fish	3.5mg/L	4
water	LC50	96	Fish	897.520mg/L	3
water	EC50	96	Algae or other aquatic plants	8768.874mg/L	. 3
water	EC50	384	Crustacea	199.179mg/L	3
Legend:	3. EPIWIN Suite	V3.12 - Aquatic Toxicity Dat	ope ECHA Registered Substances - a (Estimated) 4. US EPA. Ecolox dat apan) - Bioconcentration Data 7. MET	abase - Aquatic Toxicity	Data 5. ECETOC

DO NOT discharge into sewer or waterways.

Persistence and degradability

Ingredient	Persistence: Water/Soll	Persistence: Air
ammonia	LOW	LOW
water	LOW	LOW

Bioaccumulative potential

Ingredient	Bioaccumulation
ammonia	LOW (LogKOW = 0.229)
water	LOW (LogKOW = -1.38)

Mobility in soil

Ingredient	Mobility
ammonia	LOW (KOC = 14.3)
water	LOW (KOC = 14.3)

SECTION 13 DISPOSAL CONSIDERATIONS

Waste treatment methods

	Recycle wherever possible or consult manufacturer for recycling options.
Product / Packaging	 Consult State Land Waste Management Authority for disposal.
disposal	Bury residue in an authorised landfill.
	Recycle containers if possible, or dispose of in an authorised landfill.

SECTION 14 TRANSPORT INFORMATION

Labels Required

Marine Pollutant	NO
HAZCHEM	Not Applicable

Land transport (ADG): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Air transport (ICAO-IATA / DGR): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Sea transport (IMDG-Code / GGVSee): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Transport in bulk according to Annex II of MARPOL and the IBC code

Source	Product name	Pollution Category	Ship Type	
	The set of	AND AND AND A REAL OF A DAMAGE AND A 199 A	the balls common but me . When the set of the line is	

Rowe Ammonium Hydroxide Solution (1-5% ammonia)

IMO MARPOL (Annex II) - List of Noxious Liquid Ammonia aqueous (28% or less) Y 2 Substances Carried in Bulk

SECTION 15 REGULATORY INFORMATION

Safety, health and environmental regulations / legislation specific for the substance or mixture

AMMONIA(1336-21-6) IS FOUND ON THE FOLLOWING REGULATORY LISTS

Australia Exposure Standards

Australia Inventory of Chemical Substances (AICS)

Australia Hazardous Substances Information System - Consolidated Lists

WATER(7732-18-5) IS FOUND ON THE FOLLOWING REGULATORY LISTS

Australia Inventory of Chemical Substances (AICS)

National Inventory	Status
Australia - AICS	Y
Canada - DSL	Y
Canada - NDSL	N (ammonia; water)
China - IECSC	Y
Europe - EINEC / ELINCS / NLP	Y
Japan - ENCS	N (water)
Korea - KECI	Y
New Zealand - NZIoC	Y
Philippines - PICCS	Y
USA - TSCA	Y
Legend:	Y = All ingredients are on the inventory N = Not determined or one or more ingredients are not on the inventory and are not exempt from listing(see specific ingredients in brackets)

SECTION 16 OTHER INFORMATION

Other information

Ingredients with multiple cas numbers

Name	CAS No
ammonia	1336-21-6, 14798-03-9

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

A list of reference resources used to assist the committee may be found at:

www.chemwatch.net

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

This document is copyright.

Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.

A review of ammonium attenuation in soil and groundwater

S. R. Buss¹, A. W. Herbert¹, P. Morgan¹, S. F. Thornton² & J. W. N. Smith^{3,4}

¹Environmental Simulations International Ltd, Priory House, Priory Road, Shrewsbury SY1 1RU, UK ²Department of Civil and Structural Engineering, University of Sheffield, Mappin Street, Sheffield S1 3JD, UK ³Environment Agency, Science Group, Olton Court, 10 Warwick Road, Olton, Solihull B92 7HX, UK ⁴Present address: Department of Civil and Structural Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD, UK (e-mail: jonathan.smith@environment-agency.gov.uk)

Abstract

mmonium attenuation in subsoils and groundwater is predominantly due to cation exchange and/or nitrification (biological oxidation) processes. These processes have been little studied in UK formations and this relative lack of information can result in reduced consistency and robustness in the assessment of risks posed by ammonium contamination arising from landfills, effluent soakaways, contaminated sites and other sources. A review of ammonium fate and transport in the subsurface has been completed and guidance developed on the key processes that contribute to attenuation. The amount of relevant literature is small but sufficient to provide indicative ranges of partition coefficients and biological nitrification rates for ammonium in UK subsoils and aquifers. Ammonium attenuation was found to be highly sensitive to the clay mineralogy and pore size of the strata, the availability of oxygen and the chemical composition of the contaminated fluid. The values derived may have application in the initial (screening) phases of risk assessment where the conceptual model for the site under consideration matches that from which the presented data originate.

Keywords: environmental protection, groundwater contamination, ion exchange, risk assessment

Inorganic nitrogen in the form of ammonia (NH_3) and the ammonium ion (NH_4^+) is recognized as one of the most common groundwater contaminants arising from waste disposal activities, fertilizer use and contaminated land (Environment Agency 1996). (In this paper, NH_4^+ is used when referring to the ammonium ion, NH_3 when referring to ammonia, and NH_4 -N when presenting concentration data, which are reported throughout as ammonium measured as N.) In drinking water supplies NH_4^+ can reduce disinfection efficiency, lead to nitrite formation, and cause taste and odour problems (World Health Organization 1993). In surface water, un-ionized ammonia (NH_3) can cause fish mortality at very low concentrations (National Rivers Authority 1992; Environment Agency 1998).

Ammonium is a List II substance under both the Groundwater Directive (80/68/EEC) and the Dangerous Substances Directive (76/464/EEC). As such, its entry

Quarterly Journal of Engineering Geology and Hydrogeology, 37, 347-359

into groundwater and surface waters must be controlled to prevent pollution. The principal environmental drivers for limiting NH_4^+ discharges to the aquatic environment are its effect on ecology (particularly fish), and potable use of water. In addition, the Water Framework Directive (2000/60/EC) requires Member States to achieve good chemical status for groundwater bodies and good ecological status in surface water bodies. Furthermore, EU Member States must reverse significant and sustained upward trends in the concentration of pollutants in groundwater. The impact of NH_4^+ within a surface water body, and the effects of polluted groundwater discharging into surface waters are important factors that need to be assessed as part of the river basin characterization process.

Ammonium is typically present in landfill leachates, wastewater discharges and other industrial liquors, such as quench waters at coking plants and gasworks sites, at very high concentrations relative to relevant standards for drinking water or environmental quality (Table 1). Under certain conditions it is also a relatively mobile contaminant. For these reasons, it is common to use NH_4^+ as a key contaminant species in risk assessments for landfills, effluent soakaways and contaminated sites (Environment Agency 2003*a*).

Attenuation of ammonium

The transport of dilute aqueous contaminants in groundwater is generally represented by the advectiondispersion equation, which assumes that the contaminants neither decay nor interact with other aqueous species or mineral phases (Domenico & Schwartz 1998). However, reactive processes will be critical in determining the transport of the majority of contaminants. For NH_4^+ , the key reactive processes controlling subsurface transport are sorption as a result of cation exchange processes and biological degradation.

Although cation exchange processes have been widely studied, particularly with respect to nitrogen cycling in topsoils (Brady & Weil 2002), there has been relatively little research on the effects of cation exchange on NH_4^+ transport in subsoils and groundwater, particularly under the conditions prevailing in UK aquifers. Similarly, there are relative few field data on biological attenuation of NH_4^+ , as most research has focused on

1470-9236/04 \$15.00 (2004 Geological Society of London

Table 1. Typical concentrations of sources of dissolved NH₄⁺ to groundwater.

Occurrence	Reference	Typical concentration (mg(NH ₄ -N)1 ⁻¹	
Pumped urban groundwater (Birmingham)	Ford & Tellam 1994	<0.01- 0.93	
Sewage effluent (tertiary treatment)	Horan 1990	1-5	
Sewage effluent (secondary treatment)	Horan 1990	15-25	
Untreated sewage	Horan 1990	20-40	
Typical landfill leachate (recent wastes)	Department of the Environment 1995	800	
Typical gasworks soil	CL:AIRE 2003	up to 1000 mg kg ⁻¹¹	
Groundwater at cemeteries or graveyards	Environment Agency 1999a	up to 400	
Foot and mouth epidemic mass burial leachate	Environment Agency 2003c	1000-7000	

For comparison, the current UK Environmental Quality Standard (for ammonia) for freshwater salmonid fisheries is $0.015 \text{ mg}(\text{NH}_3\text{-N})1^{-1}$ and the Drinking Water Standard (for ammonium) is $0.39 \text{ mg}(\text{NH}_4\text{-N})1^{-1}$.

Soil concentration; no reported data on representative groundwater concentrations.

 NH_4^+ fate in wastewater and topsoils (USEPA 1993; Brady & Weil 2002).

The lack of data on NH_4^+ behaviour in the subsurface limits consistency and robustness in the assessment of risks posed by NH_4^+ contamination arising from landfills, effluent soakaways, contaminated sites and other sources. Some of these data were reviewed by Erskine (2000), who considered NH_4^+ attenuation at different scales in subsoils and aquifers and suggested parameter values for application in risk assessments.

To address the requirement for field-relevant data on NH_4^+ attenuation, the Environment Agency has undertaken a review of NH_4^+ fate and transport in the subsurface and developed guidance on the key processes that contribute to NH_4^+ attenuation in subsoil and groundwater under UK conditions (Environment Agency 2003b). This paper summarizes the findings of that literature review.

Attenuation of ammonium by sorption

Sorption is the process by which a contaminant partitions between the solid and aqueous phases in a porous media. It includes all surface-related reactions such as adsorption, absorption, surface complexation, surface precipitation and ion exchange (Stumm 1992). The effect of sorption is to slow or retard the rate of migration of the contaminant relative to the average (advective) groundwater flow velocity.

Sorption of NH_4^+ is primarily controlled by cation exchange reactions occurring at negatively charged mineral surfaces. In aqueous solutions of low to neutral pH, cation exchange occurs primarily on clay surfaces, but at pH values above neutral sorption to iron oxyhydroxides also makes a significant contribution (Sverjensky & Sahai 1996). This is because metal oxides have a variable negative charge as a function of pH. The extent of sorption to metal oxide surfaces depends on the ambient pH, amount of oxide present and point of zero charge (PZC) of the specific oxyhydroxide mineral. Metal oxides are negatively charged at pH values above the PZC. Manganese oxides (e.g. MnO_2) with a PZC of c. 4-4.5 are likely to contribute more exchange capacity for NH_4^+ sorption than Fe oxides (e.g. FeOOH), with PZC around 6-7 (Parks 1965). Sorption to metal oxides may be an important contribution to the attenuation of NH_4^+ in aquifers or geological materials containing these minerals as surface coatings on particles (e.g. Triassic sandstone).

The relative strength with which cations bond to a charged mineral surface is determined by their selectivity coefficients, which are a function of both the mineral surface and solution composition (Appelo & Postma 1993). The following series of relative selectivity has been presented in order of decreasing affinity for cation exchange sites (Domenico & Schwartz 1998), although other schemes have been proposed: $Al^{3+} > Ca^{2+} > Mg^{2+} > NH_4^+ > K^+ > H^+ > Na^+$.

In many contaminant plumes, NH_4^+ is not the most abundant cation. For example, sodium is usually the dominant cation in domestic landfill leachate (Department of the Environment 1995) and competes, along with potassium, calcium and magnesium, with NH_4^+ ions for exchange sites. Cations retained electrostatically are easily exchangeable with other cations in the groundwater with a high selectivity coefficient for the sorbent.

Estimates of sorption and retardation for the same geological formation, using different test methods (and especially different solution compositions), may vary by more than two orders of magnitude (e.g. Lower Chalk, Environment Agency 2000; Lias Clay, Cave & Taylor 2002). Factors that contribute significantly to this variability are:

• non-linear sorption isotherms, which apply at higher concentrations but can be measured by appropriately designed experiments;

• composition of the aqueous phase and solid exchanger material;

• non-equilibrium behaviour, which can be measured by longer duration column experiments (although flow velocities in such tests are generally higher than expected in the field); • non-ideal behaviour, which has been observed in laboratory and field experiments; this is thought to be predominantly due to field-scale heterogeneity in hydraulic conductivity and partition coefficients, K_{d} ;

• method, precision and validity of experimental testing procedures (e.g. the use of single solute solutions to represent competitive sorption in multi-solute field systems).

Sorption models

ł

Theory. The simplest sorption model relates the sorbed mass to the solute concentration by a constant of proportionality, termed the partition coefficient, K_{d} :

$$K_{\rm d} = \frac{C^*}{C} \tag{1}$$

where K_d is the partition coefficient $(l \text{ kg}^{-1})$, C^* is concentration of the sorbed contaminant (mg kg^{-1}) and C is aqueous concentration (mg l^{-1}) . Although this formulation should strictly use activities rather than concentrations, K_d tends in practice to be based upon measured concentrations without correction for ionic strength (e.g. Environment Agency 2000).

The principal limitation of the linear sorption model is that the substrate is assumed to have infinite sorption capacity, irrespective of solute concentration. This is unrealistic for natural materials and several alternative sorption models have been proposed that account for a maximum sorption limit.

The Langmuir isotherm (Appelo & Postma 1993) assumes that there are a finite number (β) of surface sites that have identical sorption characteristics. It is commonly written as

$$C^* = \beta \frac{aC}{1+aC} \tag{2}$$

where α is the partition coefficient $(l \text{ kg}^{-1})$ and β is the maximum amount of solute that can be sorbed by the solid (mg kg⁻¹). At low concentrations the Langmuir isotherm becomes linear with $K_d = \alpha\beta$.

Neither the linear nor the Langmuir model accounts for sorption heterogeneity in the substrate, although these models are additive if there are multiple homgeneous substrates. Taken to the limit of a continuous Gaussian-like distribution of α and β to represent a heterogeneous exchanger, Langmuir isotherms may be integrated to give the Langmuir-Freundlich isotherm (Sposito 1984):

$$C^{*} = \beta \frac{(a'C)^{N}}{1 + (a'C)^{N}}$$
(3)

where α' is the mean value of α in the distribution and N is a constant between zero and one that describes the degree of heterogeneity in the substrate. With N = 1 the

distribution becomes the Langmuir isotherm. At small values of C, the Langmuir-Freundlich isotherm can be approximated by the Freundlich equation:

$$C^* = KC^N \tag{4}$$

where K is a constant of proportionality. With N = 1, the Freundlich isotherm becomes the linear isotherm.

Both the Langmuir and Freundlich isotherms are non-linear but tend to linearity at low concentrations or over a limited concentration range. It is particularly important to note that the ratio C^*/C decreases at higher concentrations for the Langmuir and Freundlich isotherms. Therefore, if K_d values are determined from C^*/C ratios at low concentrations, the partition coefficients may be overestimated. This will overestimate the retardation factor and breakthrough time of NH_4^+ at a receptor, and underestimate the predicted length of a pollutant plume in an aquifer.

In this paper, when a partition coefficient is derived only for a given concentration (i.e. there is no evidence for a linear isotherm), the symbol K_d^* is used to denote the ratio C^*/C . The symbol K_d is therefore reserved for a partition coefficient that describes the slope of a linear isotherm. It should be noted that many publications reviewed did not make this distinction.

Experimental observations. Both linear and non-linear isotherms have been observed in studies where sufficient data were collected to derive sorption isotherms. In general, linear isotherms are obtained where NH_4^+ concentrations were relatively low. Ceazan *et al.* (1989) obtained linear isotherms for NH_4^+ in spiked uncontaminated groundwater at concentrations up to 25 mg(NH_4 -N) 1^{-1} . In contrast, DeSimone *et al.* (1996) obtained linear isotherms for groundwater containing NH_4^+ at concentrations up to 2 mg(NH_4 -N) 1^{-1} whereas the Freundlich model best represented the sorption relationship at higher concentrations, up to 22 mg(NH_4 -N) 1^{-1} .

Cave & Taylor (2002) fitted a Freundlich isotherm to experimental data for which the NH_4^+ concentration was as low as 2 mg(NH_4 -N) 1^{-1} , although data obtained at much higher concentrations, up to 280 mg(NH_4^- N) 1^{-1} , were required to fully define the shape of the isotherm. Colley (1991) used both Freundlich and Langmuir isotherms to fit experimental data from three different lithologies at concentrations in landfill leachate between 35 and 185 mg(NH_4 -N) 1^{-1} , whereas Jackson (1989) used Langmuir isotherms only to describe sorption for four lithologies at concentrations in landfill leachate between 316 and 575 mg(NH_4 -N) 1^{-1} .

 K_d values from column experiments are obtained by assuming that a linear isotherm applies, but there is often insufficient evidence for the validity of linear isotherms. However, Thornton *et al.* (1996) showed that, at least for the system examined (landfill leachate in

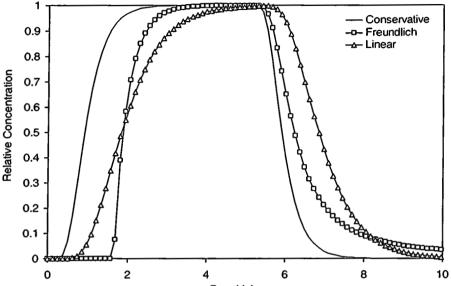
Sherwood Sandstone), a linear sorption isotherm for NH_4^+ could be used to reproduce the results of detailed cation exchange modelling using a numerical reactive transport code. The K_d values obtained for NH_4^+ by Thornton et al. (1996) are appropriate only for the leachate-aquifer systems studied. Moreover, the range of conditions under which complex multi-component ion-exchange reactions involving NH4⁺ can be described by a simple linear isotherm model remain poorly understood. Predictions of NH4⁺ transport under such conditions (e.g. landfill leachate plumes in geological media) should be undertaken using appropriate reactive transport codes. For example, PHREEQC or other models with comparable functionality use ion-exchange selectivity coefficients, which more correctly describe NH₄ exchange as a function of solution composition and exchanger properties (Appelo & Postma 1993; Tellam et al. 1997).

However, there is evidence that NH_4^+ sorption does not always occur by an exchange mechanism. Sorption of NH_4^+ to illite and other 2:1-type clay minerals may be an effectively irreversible process because the NH_4^+ ion fits into the intra-layer clay lattice. In soils with considerable illite content, interlayer-fixed NH_4^+ can typically account for 20–40% of the total nitrogen (Brady & Weil 2002). Discussing the data presented for Burntstump and Gorsethorpe landfills, Lewin *et al.* (1994*a, b*) and Harris (1988) noted that sorption of NH_4^+ is not accompanied by release of base cations as would be expected with ion exchange. Ceazan *et al.* (1989) obtained only 80% recovery of the NH_4^+ used to determine the sorption isotherm for a clay-poor sand and gravel.

Solution composition

There is abundant evidence that K_d values obtained in tests with NH_4^+ spiked artificial solutions (e.g. distilled or de-ionized water) can be significantly higher than K_d values obtained when real landfill leachate is used. The use of artificially spiked solutions therefore causes greater uptake of NH_4^+ by mineral surfaces than that which would be observed using real landfill leachate. This observation is generally ascribed to the effects of competition for exchange sites by other cations that are present in the landfill leachate but absent from a spiked solution.

This effect was clearly observed in both Chalk and Mercia Mudstone by the Environment Agency (2000). For Chalk, K_d^* values for an artificial NH_4^+ solution (10 mg(NH_4 -N) 1^{-1} ; pH 8) and leachate (4.24 mg(NH_4 -N) 1^{-1} ; pH 6.3) were 1.43 and 0.03 ml g⁻¹, respectively. This effect was, in part, probably due to the acidic leachate dissolving calcium from the rock matrix to compete with the NH_4^+ ions. In tests using Mercia Mudstone, artificial NH_4^+ solution and leachate (but at pH 7), K_d^* values of 7.78 and 5.24 ml g⁻¹, respectively, were obtained. Similar effects were observed by Freewood *et al.* (2001) in colliery spoils and by DeSimone *et al.* (1996) in sand and gravel. Cave *et al.* (2002) noted the opposite effect with leachate in which the NH_4^+ ion was in excess; these concentrations significantly affected the ability of the rock to adsorb potassium. These results indicate that either real landfill leachate or artificial solutions with the same ionic composition as the leachate or leachate-affected groundwater should be used to estimate NH_4^+ sorption if the techniques being used to predict transport do not account for multi-species competition.


Lithology

Sorption of cations in aquifers primarily occurs at clay surfaces (and metal oxide surfaces, depending on conditions). The degree of sorption can often be explicitly related to the proportion of clay minerals in the aquifer material. Both Griffin *et al.* (1976) and Thornton *et al.* (2001) used column experiments to measure the attenuation of NH_4^+ in mineral landfill liners using landfill leachate. Griffin *et al.* (1976) tested mixtures of sand and montmorillonite, whereas Thornton *et al.* (2001) used mixtures of sand and Oxford Clay or Coal Measures Clay. In both cases the K_d values varied linearly with clay content, within the concentration range of NH_4^+ in the leachates tested.

With regard to clay mineralogy, it has generally been found that mixed-layer clays (e.g. montmorillonitesmectite, including bentonite) adsorb NH_4^+ more strongly than two-layer clays, such as illite, which in turn adsorb NH_4^+ more strongly than single-layer clays, such as kaolinite (Stumm 1992). As such, partition coefficients of NH_4^+ to aquifer materials are implicitly related to their lithology and/or mineralogy. The Environment Agency (2000) reported K_d^* values for UK aquitards and the series of clay mineralogy that shows broadly decreasing NH_4^+ sorption is: smectite (Gault Clay) > illite (Mercia Mudstone) > kaolinite (Oxford Clay).

Implications for modelling of subsurface ammonium transport

In most cases competitive cation exchange will control NH_4^+ transport in a subsurface flow system. Under these conditions accurate description of NH_4^+ transport and attenuation requires the simultaneous solution of coupled non-linear equations. Although this is relatively simple for systems where transport processes are not important, such as landfill liners (Environment Agency 2002), the non-linearity of the equations prevents their use in simple transport equations. If transport is significant, numerical codes, such as PHREEQC (Pankhurst 1995) or MINTEQA2 (Allison *et al.* 1991), need to be used.

Pore Volumes

Fig. 1. Illustrative breakthrough and flushing curves for linear and Freundlich sorption models, generated using a model adapted from the column breakthrough model of Appelo & Postma (1993).

Modelling of column experiments shows that the sorption isotherm affects the shape of breakthrough curves (Appelo 1994). Because Langmuir and Freundlich isotherms adsorb relatively less at higher concentrations, they tend to have sharper initial breakthroughs and are shallower when approaching peak concentrations (Fig. 1). They also tend to have longer tails during flushing.

Indicative partition coefficients for ammonium sorption in UK lithologies

Many of the studies quoted above show that the linear sorption model is appropriate for use in predicting NH_4^+ transport in dilute solutions. It is generally considered reasonable to expect the linear isotherm to be true at low concentrations under a very wide range of conditions, even when there are many substances adsorbed and when there is some heterogeneity (Milne *et al.* 2002). Table 2 presents a compilation of reported K_d values from the reviewed literature, assuming that the linear sorption model is appropriate. They are considered relevant for screening risks associated with NH_4^+ transport and attenuation in different lithologies for dilute mixed solutions.

In Table 2, ranges are presented for probabilistic modelling purposes. Where two values for K_d are given this indicates that a uniform distribution is suggested. If three are presented, the data are of sufficient quality to justify the use of a triangular distribution. Where there is uncertainty in the lower bounding value, a value of zero has been assumed. The exception is where knowledge of the lithology suggests that there will always be some

attenuation, in which case a value of 10% of the upper bound is used. Where possible, Table 2 has been based solely on values derived for mixed solutions, such as dilute landfill leachate, as these are more representative of field conditions.

The values provided are unlikely to be valid (and will not be conservative) for the assessment of transport through landfill liners or the unsaturated zone where there is migration of high-strength NH_4^+ solutions. Under these conditions the use of a linear isotherm model is likely to overestimate the amount of sorption. Modelling fate and transport in these circumstances, or where the outcome of a risk assessment is critical, is better accomplished using modelling tools that incorporate ion exchange processes and can take into account the detailed site hydrochemistry.

Microbial attenuation of ammonium

Contributory processes

Nitrogen is an essential component of cells and significant quantities of NH_4^+ , nitrite, nitrate and organic nitrogen compounds may be utilized by active microorganisms. With the exception of highly fertile topsoils, microbial growth in the subsurface is constrained by the supply of oxidants, essential nutrients, substrates and other growth factors (Bitton & Gerba 1984). Consequently, biomass production is small and removal of NH_4^+ by uptake and incorporation into biomass will generally make an insignificant contribution to NH_4^+ attenuation in the subsurface.

Table 2. Estimated partition coefficients for ammonium reported for a selection of UK lithologies.

Lithology (and references) ¹	K_d range (ml g ⁻¹) ²	Comments
Chalk (7, 10)	0-0.03	Low confidence as isotherms have not been identified
Triassic Sherwood Sandstone (1, 4, 5, 7, 8, 10, 12)	0-0.2-0.6	Reasonable confidence as there have been several independent tests, although most values are from one site only (Burntstump)
Lincolnshire Limestone (7)	0.065-0.65	Low confidence as isotherms have not been identified
Lower Greensand 'Hassock' (4, 10)	0.18-1.8	Low confidence as no isotherms have been found. Measurements have been on the 'Hassock' lithology only. A lower bound of zero should be used for Lower Greensand in general
Lower Greensand (undifferentiated) (4, 10)	0-1.8	
Red Crag (10)	0.05-0.5	Low confidence as isotherms have not been identified
Oxford Clay (7, 13)	0.135-1.35	Based on modelling of column experiments
Mercia Mudstone (7)	0.5-5	Low confidence as isotherms have not been identified
Gault Clay (7)	0.65-6.5	Low confidence as isotherms have not been identified
Lias Clay (2)	1.2-2.6	Low confidence as isotherms have not been identified.
		Cave & Taylor (2002) presented higher K_d^* values for lower concentrations
Coal Measures Clay (13)	0.18-1.8	Based on modelling of column experiments, being derived from clay-sand mixtures. Value of 1.8 ml g ⁻¹ obtained for 100% clay system
Sand and gravel, clean (3, 6, 8, 11)	0-0.4-0.9	Reasonable confidence as there have been several independent tests. However, this is naturally a very heterogeneous lithology so a full site characterization should be made if the 'clayey' range of values is used
Sand and gravel, clayey (3, 6, 8, 11)	0.4-0.9	
Cohesive Boulder Clay (2) (Glacial Till)	2-4	Low confidence as isotherms have not been identified. Glacial Till is naturally a very heterogeneous lithology so a full site characterization should be made and the risk assessor must be very confident that there are no sandy sequences in the Till
Engineered clay landfill liners (9, 13)	0.1-0.5-5	Reasonable confidence as there have been a number of independent tests that yield seemingly consistent results. K_d has been shown to correlate with clay content and/or CEC so less conservatism might be permissible with suitable testing and justification. Consideration should be given to the dominant clay mineral present

References cited: (1) Butler et al. (2003); (2) Cave & Taylor (2002); (3) Ccazan et al. (1989); (4) Colley (1991); (5) Davison & Lerner (1998); (6) DeSimone et al. (1996); (7) Environment Agency (2000); (8) Erskine (2000); (9) Griffin et al. (1976); (10) Jackson (1989); (11) Kjeldsen & Christensen (1984); (12) Thornton et al. (2000); (13) Thornton et al. (2001).

¹Values are considered to apply equally to both the unsaturated and saturated zones.

²Where two values for K_d are given this indicates that a uniform distribution is suggested for probabilistic modelling; where three are presented then a triangular distribution is suggested.

Ammonium can also be oxidized by certain bacteria to generate energy, a process known as nitrification. Nitrification is generally a two-stage process; each stage is performed by different microorganisms, collectively known as nitrifiers:

 $NH_4^+ + 1.5O_2 \rightarrow NO_2^- + H_2O + 2H^+$ $NO_2^- + 0.5O_2 \rightarrow NO_3^-$.

Carbon for biosynthesis in nitrifying bacteria is provided by dissolved CO_2 (as bicarbonate). Representing the chemical composition of microbial biomass as $C_5H_7NO_2$, the two stages of nitrification can be combined to give an overall reaction (Horan 1990):

 $\begin{array}{rrrr} {\sf NH_4^+} &+ & 1.83\ {\sf O_2^-} + & 1.98\ {\sf HCO_3^-} \to & 0.021\ {\sf C_5H_7NO_2^-} + \\ & 1.041\ {\sf H_2O^-} + & 0.98\ {\sf NO_3^-} + & 1.88\ {\sf H_2CO_3^-}. \end{array}$

The process is aerobic (i.e. it requires oxygen) and oxygen consumption is c. 3.3 kg O₂ for each kilogram of NH₄-N degraded (i.e. 3.3 kg kg(NH₄-N)⁻¹). This means that nitrification requires a continuous supply of oxygen. Biomass yield from nitrification is also low, c. 0.13 kg kg(NH₄-N)⁻¹, which suggests that the growth of nitrifying bacteria will be slow.

Nitrification can also take place under anaerobic (i.e. oxygen-free) conditions with nitrate or manganese oxides acting as the oxidant, for example:

353

$$5NH_4^+ + 3NO_3^- \rightarrow 4N_2 + 9H_2O + 2H^+$$

 $2NH_4^+ + 3MnO_2 + 4H^+ \rightarrow N_2 + 6H_2O + 3Mn^{2+}$

These reactions were originally observed in wastewater treatment processes (Mulder *et al.* 1995; Van de Graaf *et al.* 1995), but have more recently been demonstrated in soils and sediments and may play an important role in the natural nitrogen cycle (Schmidt *et al.* 2001; Thamdrup & Dalsgaard 2002). The contribution of anaerobic NH_4^+ oxidation to subsurface attenuation has not been significantly assessed to date.

The nitrite and nitrate generated by aerobic nitrification of NH_4^+ are susceptible to biological degradation (denitrification) to nitrogen (N₂) under anaerobic conditions. Further discussion of denitrification is beyond the scope of this review, except to note that this could consume nitrate that might otherwise be available for anaerobic NH_4^+ oxidation.

The significance of nitrification in subsurface ammonium attenuation

There is clear evidence that nitrification can play a significant role in the attenuation of NH_4^+ in the unsaturated zone and groundwater (Erskine 2000). Such observations have been made for NH_4^+ contamination arising from contaminated sites (e.g. Torstensson *et al.* 1998), landfills (e.g. Bjerg *et al.* 1995) and effluent discharges to land (e.g. DeSimone *et al.* 1996; Lee & Bennett 1998). Under conditions where attenuation by cation exchange is limited, for example in clay-poor aquifers, nitrification can be the main process limiting development of an NH_4^+ plume (Christensen *et al.* 2000, 2001).

Most research has evaluated nitrification under aerobic conditions. Most studies have not determined the significance of anaerobic NH4⁺ oxidation under anoxic and anaerobic conditions. This is not surprising, as anaerobic NH4⁺ oxidation has only recently been recognized, but the study of Bjerg et al. (1995) had already highlighted the potential importance of anaerobic NH₄⁴ oxidation before it had been directly demonstrated in soils and sediments. These workers reported that nitrification was an important process controlling the attenuation of NH_4^+ in a landfill leachate plume in a Danish sand-gravel aquifer, and demonstrated a major contribution from anaerobic NH4⁺ oxidation, possibly linked to microbial manganese-reduction. In contrast, other field studies have suggested that little or no anaerobic NH_4^+ oxidation occurs (e.g. DeSimone et al. 1996; Ptacek 1998; Torstensson et al. 1998; Gooddy et al. 2002). Consequently, it is not yet clear whether anaerobic NH_4^+ oxidation is an important attenuation process for many plumes or whether the process becomes important only under particular conditions.

Environmental factors controlling subsurface nitrification

Nitrification is generally considered to be sensitive to environmental conditions and the presence of inhibitors, at least in wastewater treatment processes where most studies have been performed (USEPA 1993). Such inhibitory conditions may also arise in a contaminant plume and need to be taken into account when evaluating the behaviour of NH_4^+ pollution in the subsurface.

Oxygen. Aerobic nitrification in the subsurface will be limited by the supply of oxygen. This may be either the rate of oxygen (air) diffusion from the atmosphere or the infiltration of oxygenated recharge (Fetter 1999). As both nitrification and biodegradation of organic matter (either natural or contaminant compounds) consume oxygen, microbial activity in contaminated subsurface environments tends to consume oxygen more rapidly than it can be replenished and anaerobic conditions result (Christensen et al. 2001). In such cases, significant aerobic biological nitrification will be confined to the margins of the plume, where recharge by infiltration or mixing with uncontaminated, oxygenated groundwater by dispersion occurs. Furthermore, it should not be assumed that the unsaturated zone will contain oxygen, as monitoring at the Stangate East landfill indicated that the migration of methane could create anaerobic conditions in the subsoil beneath and around that landfill (Robinson 1989).

Anaerobic NH_4^+ oxidation is likely to occur only in the absence of oxygen, but the conditions that support this process in the subsurface are not known.

Temperature. Nitrification can be expected to occur at UK subsurface temperatures (groundwater typically around 11 °C). Rates used in assessing attenuation must be derived for ambient aquifer conditions.

Acidity. Nitrification is relatively sensitive to pH, in part because of the generation of ammonia (NH_3) under alkaline conditions and nitrous acid (HNO_2) under acidic conditions (USEPA 1993). Both substances inhibit nitrifying bacteria. The nitrification reaction itself generates acidity via the production of H⁺ (see reaction above).

It is reasonable to infer that pH 6.5-8 is the optimum pH range for nitrification, but rates are likely to be significantly decreased below pH 6.0 or above pH 8.5 (USEPA 1993). However, Allison & Prosser (1993) have measured nitrification in natural environments at pH values as low as 3.7.

Soils are generally well-buffered systems but significant pH changes can be induced by alkaline or acidic contaminants present at contaminated sites. For landfill leachates containing a high proportion of putrescible organic matter, highly acidic leachate (e.g. pH 5-6) can

arise during the early period of leachate generation in domestic waste landfills (Department of the Environment 1995). Although not explicitly considering nitrification, a review by Mather (1989) provides pertinent information on microbial activity in the unsaturated zone of the Chalk and sandstone aquifers underlying landfills. Chalk and other calcareous formations appear to be sufficiently buffered to prevent detrimental pH changes, as are strata that contain a high proportion of clay minerals (as a result of ion exchange, although this capacity will ultimately become exhausted). However, in formations containing little clay and only a few per cent carbonate minerals (e.g. much of the Permo-Triassic sandstone) the pH may drop below 6.0 during the early period of landfill leachate generation. This can cause a significant decline in microbial activity (e.g. Thornton et al. 1996; Tellam et al. 1997). Older landfill leachates tend to have a neutral pH value and microbial inhibition as a result of pH changes is generally transient, although it may persist for a number of years (Department of the Environment 1995; Environment Agency 1999b).

Ammonium concentration. Except for the production of ammonia (NH_3) or nitrous acid at pH values outside the optimum range, nitrification in the subsurface does not appear to be sensitive to the NH_4^+ concentration. For topsoil, Malhi & McGill (1982) considered 400-800 mg (NH_4-N) kg⁻¹ to be a reasonable upper concentration to ensure optimum nitrification under neutral conditions.

Water content. Nitrification does not take place in desiccated soils but is otherwise a viable process across the range of soil water contents normally found in the unsaturated zone in the UK (Malhi & McGill 1982; Flowers & O'Callaghan 1983). Rates of aerobic nitrification in unsaturated zone soils will tend to decrease at high water contents as a result of reduced oxygen availability.

Presence of other contaminants. Nitrification in wastewater treatment is often relatively sensitive to inhibition by organic and inorganic components (e.g. USEPA 1993), such as heavy metals and many organic contaminants that may also arise from industrially contaminated sites or landfills. However, there has been little research on their effects on nitrification in the subsurface.

Deni & Penninckx (1999) reported the effects of hydrocarbon contamination on the rate of nitrification in loamy sand topsoils obtained from an agricultural source and an oil refinery site. The addition to the soil of diesel fuel hydrocarbons at a concentration of 4000 mg kg^{-1} had no detrimental effect on nitrification in the agricultural soil but inhibited nitrification in the refinery soil by c. 50%. It was demonstrated that this inhibition was not due to toxic effects but rather to competition for mineral nutrients by hydrocarbondegrading bacteria stimulated by the addition of diesel.

Broholm & Arvin (2000) found no nitrification in laboratory microcosms constructed with samples from a coking waste-contaminated site on the Triassic Sherwood Sandstone aquifer, even after biodegradation had removed a significant proportion of the dissolved organic contaminants. Those workers noted that the lack of nitrification may have been due to the absence of aerobic nitrifying bacteria in the strongly anaerobic samples collected.

Salinity. Nitrifying bacteria appear to be relatively sensitive to changes in salinity. Many reports indicating nitrification inhibition at high concentrations of inorganic NH_4^+ have found that this was due to osmotic shock caused by the added salts (e.g. Malhi & McGill 1982; Flowers & O'Callaghan 1983).

Rapid changes in salinity can therefore affect nitrification rate. However, adaptation to elevated salinity occurs relatively readily (USEPA 1993) and dissolved salts in landfill leachates (Department of the Environment 1995) are not expected to have a significant detrimental long-term effect on nitrification.

The significance of hydraulic flow paths

The majority of microbial biomass in the subsurface is attached to solid surfaces. Consequently, most microbiological metabolism in subsoils and aquifers occurs at the mineral surface-water interface (Fredrickson & Fletcher 2001). The nature of hydraulic flow in the subsurface will therefore play a significant role in determining the rate and ultimate capacity of nitrification and other biological attenuation processes.

Intergranular flow provides a high surface area to volume ratio for microbial growth and the pore space is the location of greatest biomass and metabolic activity (see data for the Chalk and sandstone of Blakey & Towler (1988) and the Environment Agency (1999b)). The exception to this is when the pore spaces are too small to permit the entry of microorganisms. For example, Rees (1981) noted the absence of microbial activity in the pore spaces of unfissured Lower Chalk beneath a landfill in Oxfordshire. Whitelaw & Rees (1980) confirmed the presence of nitrifying bacteria in the unsaturated zone, to a depth of at least 50 m, of the Middle and Upper Chalk underlying agricultural land but proposed that microbial activity was confined to fissures. Both studies concluded that penetration of microbial cells (typical diameter 1 µm) was precluded by the small pore sizes of the Chalk matrix (median diameter 0.22 µm for the Lower Chalk and 0.5-0.7 µm for the Middle and Upper Chalk; Rees 1981). Based on these studies it appears unlikely that a large microbial population can develop in the pore space of the Chalk matrix. Consequently, there could be a much lower capacity for

nitrification in poorly fissured Chalk aquifers. In general, the pore sizes of the matrix of other UK aquifers are larger (British Geological Survey & Environment Agency 1997, 2000) and therefore are likely to have the capacity to support an active microbial population for nitrification (Environment Agency 2001).

Conversely, where large fractures represent the predominant flow pathway in a formation, there will be a small surface area for microbial growth relative to the fracture volume, and a comparatively short hydraulic residence time within the fractures. Consequently, the rate of biodegradation activity in a fracture flow system will be low compared with an otherwise similar intergranular system (Mather 1989). The reduced biodegradation potential of organic contaminants in aquifers during fracture flow is well known (e.g. Wealthall et al. 2001) and the aquifer capacity for nitrification may similarly be significantly less in such systems. Selection of a model that adequately simulates conceptual model assumptions (relating to both hydrogeological and microbiological processes), including both flow and degradation within fracture and matrix environments, is essential. The common approach of simulating flow and attenuation in fractured aquifers by assuming a low effective porosity value within a porous medium model is unlikely to be sufficiently robust to accurately represent pollutant behaviour in fractured aquifers.

Measured rates of nitrification in subsurface environments

There is relatively little information on subsurface nitrification rates, except for topsoils. DeSimone et al. (1996) reported a long-term mass balance evaluation for contaminants arising from a rural sewage treatment plant soakaway in Massachusetts, USA. Ammonium was almost completely removed during transport through the unsaturated subsoil zone (sandy soil) with nitrification being the predominant attenuation mechanism. The estimated rate of nitrification was c. 0.017 kg(NH₄-N) day⁻¹, corresponding to a half-life of c. 13 days at the discharge NH_4^+ concentration of 27 mg(NH_4^- N) 1^{-1} . However, such rates are likely to occur only where high biological growth rates can be supported by other nutrients in the contaminant mixture. The assumption adopted by DeSimone et al. (1996) and many others is that NH₄⁺ degradation is a first-order process, which requires estimation of a single parameter equivalent to a half-life.

The much slower rates of nitrification that can be expected under typical aquifer conditions were illustrated by Erskine (2000), who discussed nitrification rates obtained from field data for two landfill leachate plumes. At the Llwn Isaf landfill in North Wales, aerobic nitrification in the shallow sand-gravel aquifer was calculated to result in an NH_4^+ half-life of c. 6 years. Data for the Sherwood Sandstone aquifer underlying the Burntstump landfill in Nottinghamshire (Lewin et al. 1994a) suggested a half-life close to 3.5 years, although more recent work at the same site by Butler et al. (2003) suggested a half-life of 2.2 years.

Where a high concentration of NH_4^+ exists, the rate of nitrification in deeper subsoils and aquifers may be inadequate for it to be distinguished from abiotic processes, except at the margins of a plume. A similar situation may result from the presence of high concentrations of biodegradable organic contaminants. For example, in a mixed organics-ammonium plume in the Triassic Sherwood Sandstone, Torstensson *et al.* (1998) were unable to determine the rates of nitrification, although geochemical evidence clearly indicated that it took place. This may have been due to the relatively high concentrations of dissolved NH_4^+ , or to the preferential biodegradation of the organic contaminants (Broholm & Arvin 2000), or both.

Nitrification kinetics

The kinetics of nitrification in wastewater biotreatment processes have been intensively studied and modelled, commonly using Monod kinetics (USEPA 1993). Readers are directed to Kovárová-Kovar & Egli (1998) for a fuller description of the principles of Monod and related kinetic expressions. In contrast, nitrification kinetics in subsoil and groundwater have received little attention.

Selection of an appropriate kinetic model (Bekins et al. 1998; Suarez & Rifai 1999) for subsurface nitrification will be complicated by a number of factors. Where NH4⁺ concentrations show significant spatial variation (e.g. within a groundwater plume), different kinetic models may be appropriate in different regions of the plume. First-order kinetics, which have been widely applied for modelling biodegradation of organic contaminants, are applicable for biological processes only when the substrate concentration is significantly below the reaction half-saturation constant (K_s). Such conditions may well apply towards the margins of a plume, as K_s values for nitrifying bacteria are generally 0.2-5.0 mg(NH₄-N) I^{-1} (USEPA 1993). However, a zero- or second-order model may be more appropriate at other NH₄⁺ concentrations or where site data support its use. Monod and other kinetic expressions that incorporate microbial growth may be inappropriate in subsoil and groundwater where limiting conditions mean that net biomass growth of nitrifiers may be insignificant. Furthermore, a necessary input to these models is a number of biological parameters, few of which have been determined for nitrifying organisms growing under subsurface conditions. As a further complication, the greatest proportion of subsurface nitrification activity is

likely to result from biomass present on mineral surfaces (Fredrickson & Fletcher 2001), which may require special kinetic models.

In a study of biodegradation kinetics for groundwater contaminant fate and transport modelling, Davison & Lerner (1998) found that degradation rates were often relatively insensitive to the biological parameters applied in the Monod model. They concluded that it may be acceptable to assume that the degradation reaction is instantaneous relative to groundwater velocity. Based on a dataset from a column study, Davison & Lerner (1998) argued that the instantaneous reaction assumption could apply to aerobic nitrification, but noted considerable uncertainty as to when this assumption may be valid.

The selection and application of an appropriate kinetic model for nitrification is complicated and suffers from a lack of relevant parameter data. When the effect of biodegradation modelling plays a critical role in determining the impact of NH_4^+ contamination, the justification for the kinetic model applied ought to be carefully made on the basis of appropriate site-specific data, but for screening purposes a simpler approach may be used.

Of equal importance is the method used to simulate biodegradation of contaminants sorbed to aquifer minerals. Many contaminant fate and transport methods assume that degradation of contaminants can occur in both sorbed and aqueous phases. However, sorption may affect the bioavailability of contaminants (Bosma *et al.* 1997) and it may therefore be necessary to model biodegradation using different rate constants for the dissolved and sorbed contaminant fractions (Zheng & Bennett 1995). In the extreme case, degradation may be inhibited by sorption and although sorption may reduce the apparent velocity of a contaminant plume in an aquifer, it will not reduce the concentration eventually observed at the receptor.

Indicative rates of nitrification under UK subsurface conditions

There are very few data on measured rates of nitrification in unsaturated subsoils and aquifers. It is evident from the literature that nitrification can play a significant role in controlling the concentrations of NH_4^+ in infiltrating water and contaminated groundwater. Aerobic nitrification is particularly important at plume margins, where the influx of oxygenated groundwater via dispersion is sufficient to support this process. However, the literature is contradictory on whether anaerobic NH_4^+ oxidation is a significant process in the subsurface, especially at high contaminant concentrations.

It is apparent from the literature that nitrification can occur in most formations, except where intergranular

flow takes place through pore spaces too small to allow the access of microorganisms (an average pore diameter of $<1 \,\mu\text{m}$; Rees 1981). The dataset is insufficient to allow conclusions to be made on parameterization of kinetic models for nitrification in the subsurface. Estimated ranges for the first-order degradation half-life of NH.⁴ in UK subsoils and aguifers have been derived from the published literature (Table 3) but caution must be used in their application, as they are based on a very limited dataset and extrapolation from broader studies. With the present state of knowledge, it is not possible to provide more reliable guidance, and further research on subsurface nitrification under both aerobic and anaerobic conditions is essential. Although the rates of nitrification are slow, the long contaminant travel times that apply in many cases mean that indigenous nitrifiers may have the opportunity to achieve significant mass removal of NH₄⁺ (Robinson 1992).

Conclusions

Significant attenuation of NH4⁺ contamination in subsoils and groundwater is predominantly due to cation exchange and/or nitrification (biological oxidation) processes. A literature review (Environment Agency 2003b), of which this paper is a summary, has provided a moderate amount of data on NH₄⁺ sorption for a number of UK geological strata and engineered landfill liners. The degree of NH_4^+ attenuation is strongly dependent on the clay mineralogy of the strata and the chemical composition of the contaminated fluid. However, sufficient evidence was available to provide a range of partition coefficients for NH4⁺ in UK lithologies. The literature indicates that nitrification can be a significant mechanism for NH4⁺ attenuation in unsaturated subsoils under both aerobic and anaerobic conditions. However, in aquifers nitrification may be limited by the relatively low aqueous solubility of dissolved oxygen (maximum 10 mg l^{-1} at standard temperature and pressure) and physical mixing by dispersion of the anaerobic NH4⁺ plume with aerobic groundwater.

Based on the limited literature available, estimates of the typical degradation rate and attenuation capacity under both aerobic and anaerobic conditions have been derived (Tables 2 and 3). These values may be helpful in the initial (screening) phases of risk assessment for landfills, sewage effluent disposal to land, and potentially contaminated sites. However, the ranges provided are indicative and site-specific data will always be preferred and will be necessary for more detailed risk assessments or when the conceptual model for the site under consideration does not match that from which the presented data originate. In such cases, it is recommended that more sophisticated reactive transport modelling should be undertaken using codes that **Table 3.** Estimated half-lives for NH_4^+ biodegradation (nitrification) in different subsurface lithologies under aerobic and anaerobic conditions.

Lithology	NH₄ ⁺ half-life under aerobic conditions (years) ²	NH₄ ⁺ half-life under anaerobic conditions (years) ³	Comments		
Sands and gravels	1-6	œ	Based on range of literature-derived values (<1-6 years) in unsaturated subsoil and aquifers		
Unfissured Chalk and other strata with mean pore size of <1 µm	œ	ω	No degradation; pore size excludes entry of bacteria		
Strata with mean pore size of > I μm or showing a significant degree of fissure flow ⁴	5-10	∞	No kinetic data exist but attenuation has been demonstrated to take place. Suggested range (5–10 years) is considered reasonably conservative		
Landfill liners	α.	oo	No data, but pore size may exclude entry of bacteria. Assume no degradation to ensure liner design suitably conservative		

Estimated half-lives are taken from literature and extrapolated to representative systems, which must be consistent with the conceptual model to which the data are applied during risk assessments.

Values are considered to apply equally to both the unsaturated and saturated zones.

²Where a range is given a uniform distribution is recommended for probabilistic modelling.

³It is assumed that no anacrobic NH₄⁺ oxidation takes place unless site-specific data indicate otherwise.

⁴Where mean pore sizes in the matrix of dual porosity media are less than 1 µm (e.g. fissured Chalk) care should be taken that only the fraction of contaminant flowing in the fractures is degraded by the model used.

describe the fundamental ion-exchange reactions controlling NH_4^+ transport in natural porous media. This approach will provide a more accurate and robust prediction of NH_4^+ fate in the subsurface than that which can be achieved at present using partition coefficients.

The literature review has shown that there are few data on NH_4^+ sorption by cation exchange in UK subsoils and aquifer solids, and there is even less information on nitrification. Further evaluation and quantification of these processes *in situ* under UK conditions would be of significant benefit.

Acknowledgements. This work was funded under Environment Agency Science Group project NC/02/49. The views expressed here are those of the authors and do not necessarily reflect the policy or views of the Environment Agency or Environmental Simulations International Ltd. The authors are grateful for valuable discussions and information provided by P. Aldous, A. Butler, K. Lewin, J. Riley and J. Tellam.

References

ALLISON, J.D., BROWN, D.S. & NOVO-GRADAC, K.J. 1991. MINTEQA2IPRODEFA2, a geochemical assessment model for environmental systems: Version 3.0 User's Manual. US Environmental Protection Agency Report, EPA/600/3-91/021.

- ALLISON, S.H. & PROSSER, J.I. 1993. Ammonium oxidation at low pH by attached populations of nitrifying bacteria. Soil Biology and Biochemistry, 25, 935-941.
- APPELO, C.A.J. 1994. Some calculations on multicomponent transport with cation exchange in aquifers. Groundwater, 32, 968-975.
- APPELO, C.A.J. & POSTMA, D. 1993. Geochemistry, Groundwater and Pollution. Balkema, Rotterdam.
- BEKINS, B.A., WARREN, E. & GODSY, E.M. 1998. A comparison of zero-order, first-order, and Monod biotransformation models. *Ground Water*, 36, 261-268.
- BITTON, G. & GERBA, C.P. 1984. Groundwater Pollution Microbiology. Wiley, New York.
- BJERG, P.L., RÜGGE, K., PEDERSEN, J.K. & CHRISTENSEN, T.H. 1995. Distribution of redox sensitive groundwater quality parameters downgradient of a landfill (Grindsted, Denmark). Environmental Science and Technology, 29, 1387-1394.
- BLAKEY, N.C. & TOWLER, P.A. 1988. The effect of unsaturated/saturated zone property upon the hydrogeochemical and microbiological processes involved in the migration and attenuation of landfill leachate. Water Science and Technology, 20, 119-128.
- BOSMA, T.N.P., MIDDELDORP, P.J.M., SCHRAA, G. & ZEHNDER, A.J.B. 1997. Mass transfer limitation of biotransformation: quantifying bioavailability. *Environmental Science* and Technology, 31, 248-252.
- BRADY, N.C. & WEIL, R.R. 2002. The Nature and Properties of Soils 13th. Prentice-Hall, Englewood Cliffs, NJ.
- BRITISH GEOLOGICAL SURVEY & ENVIRONMENT AGENCY 1997. BGS Technical Report WD/97/34, Environment Agency R&D Publication 8 The physical properties of major aquifers in England and Wales. BGS, Keyworth.

- BRITISH GEOLOGICAL SURVEY & ENVIRONMENT AGENCY 2000. The physical properties of minor aquifers in England and Wales. BGS Technical Report WD/00/04, Environment Agency R&D Publication 68. BGS, Keyworth.
- BROHOLM, M.M. & ARVIN, E. 2000. Biodegradation of phenols in a sandstone aquifer under aerobic conditions and mixed nitrate and iron reducing conditions. *Journal of Contaminant Hydrology*, 44, 239-273.
- BUTLER, A.P., BROOK, C., GODLEY, A., LEWIN, K. & YOUNG, C.P., 2003. Attenuation of landfill leachate in unsaturated sandstone. In: CHRISTENSEN, T.H., COSSU, R. & STEGEMANN, R. (eds) Proceedings of the Ninth International Waste Management and Landfill Symposium, Sardinia, October 2003. CISA, Cagliari, Italy, 385-386.
- CAVE, M.R. & TAYLOR, H. 2002. Measurement of K_d values for ammonia, potassium and phosphorus in materials from the Throckmorton Foot and Mouth mass burial site. British Geological Survey Internal Report, CR/02/165.
- CAVE, M.R., TAYLOR, H. & REEDER, S. 2002. Initial scoping study for the measurement of chemical sorption in material from the Throckmorton Foot and Mouth mass burial site. British Geological Survey Internal Report, CR/02/051.
- CEAZAN, M.L., THURMAN, E.M. & SMITH, R.L. 1989. Retardation of ammonium and potassium transport through a contaminated sand and gravel aquifer: the role of cation exchange. *Environmental Science and Technology*, 23, 1402-1408.
- CHRISTENSEN, T.H., BJERG, P.L. & KJELDSEN, P. 2000. Natural attenuation: a feasible approach to remediation of groundwater pollution at landfills? *Ground Water Monitoring and Remediation*, 20, 69-77.
- CHRISTENSEN, T.H., KJELDSEN, P., ALBRECHTSEN, H.-J., HERON, G., NIELSEN, P.H., BJERG, P.L. & HOLM, P.E. 2001. Attenuation of landfill leachate pollutants in aquifers. *Critical Reviews in Environmental Science and Technology*, 24, 119-202.
- CL:AIRE 2003. Remediation of Basford gasworks using soil washing. CL:AIRE Technology Demonstration Project Report, TDP2.
- COLLEY, I. 1991. The use of shake tests to determine the attenuation of ammonia in methanogenic leachate by three different geological strata. BSc dissertation, University of Bradford.
- DAVISON, R.M. & LERNER, D.N. 1998. Modelling biodegradation in a groundwater environment: choosing an appropriate method. In: EDITOR, A. (ed.) Book title. Geological Society, London, Engineering Geology Special Publications, 14, 167-177.
- DENI, J. & PENNINCKX, M.J. 1999. Nitrification and autotrophic nitrifying bacteria in a hydrocarbon-polluted soil. Applied and Environmental Microbiology, 65, 4008–4013.
- DEPARTMENT OF THE ENVIRONMENT 1995. A review of the composition of leachates from domestic wastes in landfill sites. DOE Report CWM/072/95. Environment Agency, Bristol.
- DESIMONE, L.A., BARLOW, P.M. & HOWES, B.L. 1996. A nitrogen-rich septage-effluent plume in a glacial aquifer, Cape Cod, Massachusetts, February 1990 through December 1992. US Geological Survey Water Supply Paper, 245.
- DOMENICO, P.A. & SCHWARTZ, F.W. 1998. Physical and Chemical Hydrogeology 2nd. Wiley, New York.
- ENVIRONMENT AGENCY 1996. Evaluation of the extent and character of groundwater pollution from point sources in England and Wales. Environment Agency, Bristol.
- ENVIRONMENT AGENCY 1998. Proposed Environmental Quality Standards for list II substances in water: ammonia. R&D Technical Report P260. Environment Agency, Bristol.

- ENVIRONMENT AGENCY 1999*a.* Pollution potential of cemeteries. R&D Technical Report P223. Environment Agency, Bristol.
- ENVIRONMENT AGENCY 1999b. Long-term monitoring of noncontained landfills: Burntstump and Gorsethorpe on the Sherwood Sandstone. R&D Technical Report P226. Environment Agency, Bristol.
- ENVIRONMENT AGENCY 2000. CEC and K_d determination in landfill performance evaluation: a review of methodologies and preparation of standard materials for laboratory analysis. R&D Technical Report P340. Environment Agency, Bristol.
- ENVIRONMENT AGENCY 2001. Distribution of microbiological contaminants in Triassic Sandstone urban aquifers. R&D Technical Report P2-255/TR. Environment Agency, Bristol.
- ENVIRONMENT AGENCY 2002. Cation exchange capacity in composite landfill liners worksheet v1.0: User Manual. National Groundwater and Contaminated Land Centre Report NC/01/45. Environment Agency, Solihull.
- ENVIRONMENT AGENCY 2003a. Hydrogeological risk assessments for landfills and the derivation of groundwater control and trigger levels. Landfill Directive Project LFTGN01. Environment Agency, Bristol.
- ENVIRONMENT AGENCY 2003b. Review of animonium attenuation in soil and groundwater. National Groundwater & Contaminated Land Centre Report NC/02/49. Environment Agency, Solihull.
- ENVIRONMENT AGENCY 2003c. Foot and mouth epidemic: data on leachate chemistry for estimating the pollution potential from mass burial sites and pyre ash disposal sites. National Groundwater & Contaminated Land Centre Report NC/02/04/03. Environment Agency, Bristol.
- ERSKINE, A.D. 2000. Transport of ammonium in aquifers: retardation and degradation. *Quarterly Journal of Engineering Geology and Hydrogeology*, 33, 161–170.
- FETTER, C.W. 1999. Contaminant Hydrogeology 2nd. Prentice-Hall, Englewood Cliffs, NJ.
- FLOWERS, T.H. & O'CALLAGHAN, J.R. 1983. Nitrification in soils incubated with pig slurry or ammonium sulphate. Soil Biology and Biochemistry, 14, 393-399.
- FORD, M. & TELLAM, J.H. 1994. Source, type and extent of inorganic contamination within the Birmingham urban aquifer system, UK. Journal of Hydrology, 156, 101-135.
- FREDRICKSON, J.K. & FLETCHER, M. 2001. Subsurface Microbiology and Biogeochemistry. Wiley, New York.
- FREEWOOD, R.J., CRIPPS, J.C. & SMITH, C.C. 2001. Leachate attenuation characteristics of colliery spoils. In: THORNTON, S.F. & OSWALD, S.E. (eds) Groundwater Quality: Natural and Enhanced Restoration of Groundwater Pollution. IAHS Publication, 275, 159-164.
- GOODDY, D.C., CLAY, J.W. & BOTTRELL, S.H. 2002. Redoxdriven changes in porewater chemistry in the unsaturated zone of the chalk aquifer beneath unlined cattle slurry lagoons. *Applied Geochemistry*, 17, 903–921.
- GRIFFIN, R.A., SHIMP, N.F., STEELE, J.D., RUCH, R.R., WHITE, W.A. & HUGHES, G.M. 1976. Attenuation of pollutants in municipal landfill leachate by passage through clay. *Environmental Science and Technology*, 10, 1262-1268.
- HARRIS, R.C. 1988. Leachate migration and attenuation in the unsaturated zone of the Triassic sandstones. In: GRONOW, J.R., SCHOFIELD, A.N. & JAIN, R.K. (eds) Land Disposal of Hazardous Waste: Engineering and Environmental Issues. Ellis Horwood, Chichester, 175-186.
- HORAN, N.J. 1990. Biological Wastewater Treatment Systems. Wiley, Chichester.

- JACKSON, P. D. 1989. Attenuation of ammonia in landfill leachate by various geological strata. MSc dissertation, University of Leeds.
- KJELDSEN, P. & CHRISTENSEN, T.H. 1984. Soil attenuation of acid phase landfill leachate. Waste Management and Research, 2, 247-263.
- KOVÁROVÁ-KOVAR, K. & EGLI, T. 1998. Growth kinetics of suspended microbial cells: from single-substratecontrolled growth to mixed-substrate kinetics. *Microbiology and Molecular Biology Reviews*, 62, 646-666.
- LEE, R.W. & BENNETT, P.C. 1998. Reductive dissolution and reactive solute transport in a sewage-contaminated glacial outwash aquifer. *Ground Water*, 36, 583-595.
- LEWIN, K., YOUNG, C.P., BRADSHAW, K., FLEET, M. & BLAKEY, N.C. 1994a. Landfill Monitoring Investigations at Burntstump Landfill, Sherwood Sandstone, Nottingham 1978-1993 (ENV 9003). DoE Report CWM 035/94. Environment Agency, Bristol.
- LEWIN, K., YOUNG, C.P., FLEET, M., BLAKEY, N.C. & BRADSHAW, K. 1994b. Landfill Monitoring Investigations at Gorsethorpe Landfill, Sherwood Sandstone, Nottingham 1978-1992 (ENV 9003). DoE Report CWM 034/94. Environment Agency, Bristol.
- MALHI, S.S. & MCGILL, W.B. 1982. Nitrification in three Alberta soils: effect of temperature, moisture and substrate concentration. Soil Biology and Biochemistry, 14, 393–399.
- MATHER, J.D. 1989. The attenuation of the organic component of landfill leachate in the unsaturated zone: a review. Quarterly Journal of Engineering Geology, 22, 241-246.
- MILNE, C.J., KINNIBURGH, D.G., CAVE, M.R., LELLIOT, M. & QUIGLEY, S. 2002. Geochemical properties of aquifers and other geological formations in the UK. Phase 1: assessment of available data. British Geological Survey Commissioned Report, CR/02/224N. Environment Agency Report NC/01/64.
- MULDER, A., VAN DE GRAAF, A.A., ROBERTSON, L.A. & KUENEN, J.G. 1995. Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor. FEMS Microbiology Ecology, 16, 177-184.
- NATIONAL RIVERS AUTHORITY 1992. Predicting the toxicity of ammonia to freshwater fish. NRA R&D Note 83. Environment Agency, Bristol.
- PANKHURST, D.L. 1995. User's guide to PHREEQC—a computer program for speciation, reaction-path, advectivetransport, and inverse geochemical calculations. US Geological Survey Water Resources Investigations Report, 95-4227.
- PARKS, G.A. 1965. The isoelectric points of solid oxides, solid hydroxides and aqueous hydroxo complex systems. *Chemical Reviews*, 65(2), 177–195.
- PTACEK, C.J. 1998. Geochemistry of a septic-system plume in a coastal barrier bar, Point Pelee, Ontario, Canada. *Journal* of Contaminant Hydrology, 33, 293-312.
- REES, J.F. 1981. Landfill leachate attenuation in the Lower Chalk. The role of microbial processes. Report AERE-R 10271. United Kingdom Atomic Energy Authority, Harwell.
- ROBINSON, H.D. 1989. Unsaturated zone attenuation of leachate. In: CHRISTENSEN, T.H., COSSU, R. & STEAMANN, R. (eds) Sanitary landfilling: Process, Technology and Environmental Impact. Academic Press, London, 453-464.

- ROBINSON, H.D. 1992. Composition and attenuation of landfill leachates. In: MATHER, J.D. (ed.) Groundwater Pollution Conference, 1992. IBC Technical Services, London.
- SCHMIDT, I., SLIEKERS, O. & SCHMID, M. et al. 2001. Aerobic and anaerobic ammonia oxidizing bacteria—competitors or natural partners?. FEMS Microbiology Ecology, 39, 175-181.
- SPOSITO, G. 1984. The Surface Chemistry of Soils. Oxford University Press, New York.
- STUMM, W. 1992. Chemistry of the Solid-Water Interface. Wiley, New York.
- SUAREZ, M.P. & RIFAI, H.S. 1999. Biodegradation rates for fuel hydrocarbons and chlorinated solvents in groundwater. *Bioremediation Journal*, 3, 337–362.
- SVERJENSKY, D.A. & SAHAI, N. 1996. Theoretical prediction of single-site surface-protonation equilibrium constants or oxides and silicates in water. *Geochimica et Cosmochimica Acta*, 60, 3773–3797.
- TELLAM, J.H., THORNTON, S.F., LERNER, D.N., KLEINERT, U.O. & HARRIS, R.C. 1997. Leachate migration through the Triassic Sandstones at Burntstump landfill and elsewhere. Environment Agency R&D Report. Environment Agency, Bristol.
- THAMDRUP, B. & DALSGAARD, T. 2002. Production of N₂ through anaerobic ammonium oxidation coupled to nitrate reduction in marine sediments. *Applied and Environmental Microbiology*, 68, 1312-1318.
- THORNTON, S.F., LERNER, D.N. & TELLAM, J.H. 1996. Laboratory studies of landfill leachate-Triassic Sandstone interactions. DoE Report CWM035A/94. Environment Agency, Bristol.
- THORNTON, S.F., LERNER, D.N. & TELLAM, J.H. 2000. Attenuation of landfill leachate by UK Triassic sandstone aquifer materials, 1. Fate of inorganic pollutants. *Journal of Contaminant Hydrology*, 43, 327–354.
- THORNTON, S.F., TELLAM, J.H. & LERNER, D.N. 2001. Attenuation of landfill leachate by clay liner materials in laboratory columns, 2. Behaviour of inorganic contaminants. *Journal of Waste Management and Research*, 19, 70-88.
- TORSTENSSON, D., THORNTON, S.F., BROHOLM, M. & LERNER, D.N. 1998. Hydrochemistry of pollutant attenuation in groundwater contaminated by coal tar wastes. Geological Society, London, Engineering Geology Special Publications, 14, 149-157.
- USEPA 1993. Manual. Nitrogen control. Report EPA/625/-93/010. US Environmental Protection Agency, Washington DC.
- VAN DE GRAAF, A.A., MULDER, A., DE BRUIJN, P., JETTEN, M.S.M., ROBERTSON, L.A. & KUENEN, J.G. 1995. Anaerobic oxidation of ammonium is a biologically mediated process. *Applied and Environmental Microbiology*, 61, 1246–1251.
- WEALTHALL, G.P., THORNTON, S.F. & LERNER, D.N. 2001. Natural attenuation of MTBE in a dual porosity aquifer. In Situ and On-Site Bioremediation, 6 (1), 59-66.
- WHITELAW, K. & REES, J.F. 1980. Nitrate-reducing and ammonium oxidizing bacteria in the vadose zone of the Chalk aquifer of England. *Geomicrobiology Journal*, 2, 179–187.
- WORLD HEALTH ORGANIZATION 1993. Guidelines for Drinking Water Quality: Volume 1—Recommendations 2nd. WHO, Geneva.
- ZHENG, C. & BENNETT, G.D. 1995. Applied Contaminant Transport Modeling. Van Nostrand Reinhold, New York.

Received 15 January 2004; accepted 5 October 2004.

12.1.2 KETONES

12.1.2.1 Acetone

Common Name: Acetone Synonym: 2-propanone, dimethylketone, DMK Chemical Name: acetone, 2-propanone CAS Registry No: 67-64-1 Molecular Formula: C₃H₆O, CH₃COCH₃ Molecular Weight: 58.079 Melting Point (°C): -94.7 (Lide 2003) Boiling Point (°C): 56.05 (Lide 2003) Density (g/cm³ at 20°C): 0.7899 (Weast 1982-83) 0.7908 (Dean 1985) Molar Volume (cm³/mol): 73.5 (20°C, calculated-density) 74.0 (calculated-Le Bas method at normal boiling point) Enthalpy of Fusion ΔH_{fus} (kJ/mol): 5.690 (Riddick et al. 1986) Entropy of Fusion ΔS_{fus} (J/mol K): Fugacity Ratio at 25°C (assuming $\Delta S_{fus} = 56$ J/mol K), F: 1.0 Water Solubility (g/m³ or mg/L at 25°C or as indicated): (20°C, Palit 1947) miscible (Dean 1985; Yaws et al. 1990) miscible (Riddick et al. 1986; Howard 1990) miscible 217700, 453000 (pseudo-solubilities, Staples 2000) Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section): 29610* (interpolated-regression of tabulated data, temp range -59.4 to 56.5°C, Stull 1947) log (P/mmHg) = 7.19038 - 1233.4/(230 + t/°C) (Antoine eq., Dreisbach & Martin 1949) 30490 (Perry 1950) 51854* (37.68°C, temp range 37.68-56.02°C, Brown & Smith 1957) 30800 (Buttery et al. 1969) 30810 (Hoy 1970) 29923* (24.330°C, temp range -12.949 to 55.285°C, Boublik & Aim 1972; quoted, Boublik et al. 1984) $\log (P/mmHg) = [-0.2185 \times 10577.7/(T/K)] + 9.143231; temp range -20 to 96°C (Antoine eq., Weast 1972-73)$ 30780, 30800 (calculated-Antoine eq., Boublik et al. 1973) $\log (P/mmHg) = 7.15853 - 1231.232/(231.766 + t/^{\circ}C)$; temp range 37.6-56.02°C (Antoine eq. from reported exptl. data of Brown & Smith 1957, Boublik et al. 1973) $\log (P/mmHg) = 7.11714 - 1210.595/(229.664 + t/^{\circ}C)$; temp range -12.95 to 55.3°C (Antoine eq. from reported exptl. data, Boublik et al. 1973) 30810* (ebulliometry, fitted to Antoine eq., measured range 259-350.9 K, Ambrose et al. 1974) $\log (P/kPa) = 6.25632 - 1217.904/(T/K - 42.692);$ temp range 311.7-350.9 K, or for pressure range 53-202 kPa (Antoine eq., ebulliometry, Ambrose et al. 1975a) $\log (P/kPa) = 6.25478 - 1216.689/(T/K - 42.875);$ temp range 259.17-350.9 K, or for pressure below 225 kPa (Antoine eq., ebulliometry, Ambrose et al. 1974) 30870, 31520 (quoted exptl., calculated-Antoine eq., Boublik et al. 1984)

- $log (P/kPa) = 6.24039 1209.746/(229.574 + t/^{\circ}C);$ temp range -12.95 to 55.3°C (Antoine eq. from reported exptl. data, Boublik et al. 1984)
- log (P/kPa) = 6.26017 1214.208/(230.002 + t/°C); temp range -13.98 to 77.72°C (Antoine eq. from reported exptl. data of Ambrose et al. 1974, Boublik et al. 1984)
- $log (P/kPa) = 6.28185 1230.342/(231.665 + t/^{\circ}C)$; temp range 37.6-56.02°C (Antoine eq. from reported exptl. data of Brown & Smith 1957, Boublik et al. 1984)
- 30780 (calculated-Antoine eq., Dean 1985)

 $\log (P/mmHg) = 7.11714 - 1210.595/(229.664 + t/^{\circ}C)$, temp range: liquid (Antoine eq., Dean 1985, 1992)

24227, 30806 (20, 25°C, Riddick et al. 1986)

log (P/kPa) = 6.25478 - 1216.589/(230.275 + t/°C), temp range not specified (Antoine eq., Riddick et al. 1986) 30730 (interpolated-Antoine eq.-V, Stephenson & Malanowski 1987)

- log (P₁/kPa) = 6.24204 1210.6/(-43.49 + T/K); temp range 261-329 K (Antoine eq.-I, Stephenson & Malanowski 1987)
- log (P_L/kPa) = 6.75622 1566.69/(0.269 + T/K); temp range 329-488 K (Antoine eq.-II, Stephenson & Malanowski 1987)
- log (P_L/kPa) = 3.6452 469.5/(-108.21 + T/K); temp range 178-243 K (Antoine eq.-III, Stephenson & Malanowski 1987)
- log (P_L/kPa) = 6.19735 1190.382/(-45.373 + T/K); temp range 203–269 K (Antoine eq.-IV, Stephenson & Malanowski 1987)
- log (P_L/kPa) = 6.26483 1221.852/(-42.388 + T/K); temp range 257-334 K (Antoine eq.-V, Stephenson & Malanowski 1987)
- log (P_L/kPa) = 6.24554 1211.515/(-43.471 + T/K); temp range 323-379 K (Antoine eq.-VI, Stephenson & Malanowski 1987)
- $\log (P_L/kPa) = 6.69966 1542.465/(0.447 + T/K)$; temp range 374-464 K (Antoine eq.-VII, Stephenson & Malanowski 1987)
- $log (P/mmHg) = 28.5884 2.469 \times 10^{3}/(T/K) 7.351 \cdot log (T/K) + 2.8025 \times 10^{-10} \cdot (T/K) + 2.7361 \times 10^{-6} \cdot (T/K)^{2};$ temp range 178-508 K (vapor pressure eq., Yaws 1994)

Henry's Law Constant (Pa m³/mol at 25°C or as indicated and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section):

- 3.34 (partial pressure, Butler & Ramchandani 1935)
- 3.96 (shake flask, partial vapor pressure-GC, Burnett 1963)
- 3.25 (28°C, concn. ratio-GC, Nelson & Hoff 1968)
- 3.97 (shake flask, partial vapor pressure-GC, Buttery et al. 1969)
- 4.02, 3.93, 2.91 (exptl., calculated-group contribution, calculated-bond contribution, Hine & Mookerjee 1975)
 4.05 (headspace-GC, Vitenberg et al. 1975)
- 4.10 (calculated-activity coeff and vapor pressure, γ-P, Rathbun & Tai 1982)

0.908, 3.93 (0, 25°C, headspace-GC, Snider & Dawson 1985)

- 3.38 (review, Gaffney et al. 1987)
- 2.928* (gas-stripping-HPLC-UV, measured range 10-45°C, Zhou & Mopper 1990)
- ln $[K_{H'}/(M/atm)] = -5.00 + 1977/(T/K)$; temp range 10-45°C (gas stripping-HPLC measurements, freshwater, Zhou & Mopper 1990)
- ln $[K_{H'}/(M/atm)] = -3.60 + 1518/(T/K)$; temp range 25-45°C (gas stripping-HPLC measurements, seawater (salinity 35 ± 11), Zhou & Mopper 1990)

3.07* (gas stripping-GC, measured range -14.9 to 44.9°C, Betterton 1991)

- 4.33 (computed, Yaws et al. 1991)
- 0.722, 1.26, 2.045, 5.31, 7.514 (0.51, 9.0, 16.11, 31, 38.51°C, headspace-GC, de-ionized water, Benkelberg et al. 1995) 3.735* (headspace-GC, rain water, measured range -30 to 39.51°C, Benkelberg et al. 1995)
- 0.762, 2.19, 6.64, 10.30 (0, 14.51, 30, 39.51°C, headspace-GC, artificial seawater, Benkelberg et al. 1995)
- $\ln (k_H/atm) = (18.4 \pm 0.3) (5386 \pm 100)/(T/K)$, temp range 10-40°C (headspace-GC measurements, Benkelberg et al. 1995)
- 2.56 (20°C, selected from literature experimentally measured data, Staudinger & Roberts 1996)
 9.92 (EPICS-GC, Ayuttaya et al. 2001)
- 2.58 (20°C, selected from literature experimentally measured data, Staudinger & Roberts 2001)
- $\log K_{AW} = 3.742 1965/(T/K)$ (van't Hoff eq. derived from literature data, Staudinger & Roberts 2001)

Octanol/Water Partition Coefficient, log Kow:

- -0.24 (shake flask-CR, Collander 1951)
- -0.24 (shake flask at pH 7, Unger et al. 1978)
- -0.48 (shake flask-GC, Tanii et al. 1986)
- -0.24 (recommended, Sangster 1989, 1993)
- -0.31 (CPC centrifugal partition chromatography, Gluck & Martin 1990)
- -0.37 (calculated-UNIFAC activity coeff., Dallos et al. 1993)
- -0.24 (recommended, Hansch et al. 1995)

Octanol/Air Partition Coefficient, log KoA:

2.31 (head-space GC, Abraham et al. 2001)

Bioconcentration Factor, log BCF:

-0.187 (calculated, Staples 2000)

Sorption Partition Coefficient, log Koc:

-0.586 (calculated-K_{ow}, Kollig 1993)

-0.523 (quoted calculated value, Staples 2000)

Environmental Fate Rate Constants, k, or Half-Lives, t_{1/2}:

Volatilization: using Henry's law constant, $t_{1/2} = 20$ h was estimated for a model river 1 m deep flowing at 1 m/s with a wind velocity of 3 m/s (Lyman et al. 1982; quoted, Howard 1990).

- Photolysis: rate constant k = 1.4×10^{-5} s⁻¹ in the atmosphere (Carlier et al. 1986); calculated lifetime $\tau \sim 60$ d in air (Atkinson 2000)
- Oxidation: rate constant k, for gas-phase second order rate constants, k_{OH} for reaction with OH radical, k_{NO3} with NO₃ radical and k_{O3} with O₃ or as indicated, *data at other temperatures and/or Arrhenius expression see reference:
 - photooxidation $t_{1/2} = 11.3-453$ yr, based on measured data for the reaction with hydroxyl radical in aqueous solution (Dorfman & Adams 1973; selected, Howard et al. 1991)
 - photooxidation $t_{y_1} > 9.9$ d for the gas-phase reaction with hydroxyl radical in air, based on the rate of disappearance of hydrocarbon due to reaction with hydroxyl radical (Darnall et al. 1976)
 - $k_{OH} = (0.23 \pm 0.03) \times 10^{-12}$ cm³ molecule⁻¹ s⁻¹ at 300 K (flash photolysis-resonance fluorescence, Zetzsch 1982; quoted, Atkinson 1985)
 - $k_{OH} = (0.62 \pm 0.09) \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ at } 298 \text{ K}$ (relative rate technique to *n*-hexane, Chiorboli et al. 1983; quoted, Atkinson 1985)
 - k = 0.032 ± 0.006) M⁻¹ s⁻¹ for the reaction with ozone in water using 1 mM propyl alcohol as scavenger at pH 2 and 20-23°C (Hoigné & Bader 1983)
 - $k_{OH}(calc) = 2.2 \times 10^{-13} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}, k_{OH}(obs.) = 2.3 \times 10^{-13} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ at room temp.}$ (SAR structure-activity relationship, Atkinson 1985)
 - photooxidation $t_{y_2} = 279-2790$ h, based on measured data for the vapor-phase reaction with hydroxyl radical in air (Atkinson 1985; selected, Howard et al. 1991)
 - $k_{OH} = 2.16 \times 10^{-13}$ cm³ molecule⁻¹ s⁻¹ at 296 K and $k = 1.80 \times 10^{-13}$ cm³ molecule⁻¹ s⁻¹ for the aqueousphase reaction with hydroxyl radical in solution (Wallington & Kurylo 1987)
 - $k_{OH} = 2.16 \times 10^{-13}$ cm³ molecule⁻¹ s⁻¹; k(soln) = 1.8×10^{-13} cm³ molecule⁻¹ s⁻¹ for reaction with OH radical in aqueous solution (Wallington et al. 1988)

 $k_{OH}^* = 2.26 \times 10^{-11}$ cm³ molecule⁻¹ s⁻¹ at 298 K (recommended, Atkinson 1989)

 $k_{OH}(calc) = 0.18 \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ (molecular orbital calculations, Klamt 1996) Hydrolysis:

- Biodegradation: biodegradation rate constants, $k = 0.016-0.020 h^{-1}$ in 30 mg/L activated sludge after a time lag of 20-25 h (Urano & Kato 1986b);
 - t₁₆(aq. aerobic) = 24–168 h, based on unacclimated aqueous screening test data (Bridie et al. 1979; Dore et al. 1975; selected, Howard et al. 1991);
 - $t_{\frac{1}{2}}(aq. anaerobic) = 96-672$ h, based on estimated unacclimated aqueous aerobic biodegradation half-life (Howard et al. 1991);

 $k(exptl) = 0.0440 h^{-1}$ compared to predicted rate constants by group contribution method: $k = 0.0433 h^{-1}$ (nonlinear) and $k = 0.043 h^{-1}$ (linear) (Tabak & Govind 1993).

```
Biotransformation:
```

Bioconcentration, Uptake (k₁) and Elimination (k₂) Rate Constants:

Half-Lives in the Environment:

- Air: $t_{\nu_{h}} > 9.9$ d for the gas-phase reaction with hydroxyl radical in air, based on the rate of disappearance of hydrocarbon due to reaction with hydroxyl radical (Darnall et al. 1976);
 - photooxidation $t_{4} = 279-2790$ h, based on measured data for the vapor-phase reaction with hydroxyl radical in air (Howard et al. 1991);
 - calculated lifetimes $\tau = 53$ d and $\tau > 11$ yr for reactions with OH radical, NO₃ radical, respectively (Atkinson 2000);

photooxidation and photolysis $t_{1/2} = 36$ h (Staples 2000).

Surface water: photooxidation $t_{1/2} = 11.3-453$ yr, based on measured data for the reaction with hydroxyl radicals in aqueous solution (Dorfman & Adams 1973; quoted, Howard et al. 1991);

 $t_{\nu_{h}} = 24-168$ h, based on estimated unacclimated aqueous aerobic biodegradation half-life (Howard et al. 1991);

aerobic biodegradation $t_{42} = 96-168$ h (Staples 2000).

Ground water: $t_{1/2} = 48-336$ h, based on estimated unacclimated aqueous aerobic biodegradation half-life (Howard et al. 1991).

Sediment: anaerobic biodegradation $t_{y_2} = 384$ h or 16 d (Staples 2000).

Soil: $t_{y_2} = 24-168$ h, based on estimated unacclimated aqueous aerobic biodegradation half-life (Howard et al. 1991);

aerobic biodegradation $t_{1/2} = 96-168$ h (Staples 2000). Biota:

TABLE 12.1.2.1.1

Reported vapor pressures of acetone at various temperatures and the coefficients for the vapor pressure equations

$\log P = A - B/(T/K)$	(1)	$\ln P = A - B/(T/K)$	(la)
$\log P = A - B/(C + t/^{\circ}C)$	(2)	$\ln P = A - B/(C + t/^{\circ}C)$	(2a)
$\log P = A - B/(C + T/K)$	(3)		
$\log P = A - B/(T/K) - C \cdot \log (T/K)$	(4)		

1.

Stull 1947 summary of literature data		Brown & Smith 1957 Austr. J. Chem. 10, 423-		Boublik & Aim 1972 ref. in Boublik et al. 1984*			
-59.4	133.3	37.68	51854	-12.949	4524	36.649	49704
-40.5	666.6	41.58	. 60127	-5.424	6967	42.094	61295
-31.1	1333	44.96	68271	-0.103	9306	48.344	77125
-20.8	2666	45.0	68367	4.882	12046	55.285	98572
-9.40	5333	47.01	73603	8.666	14549	bp/°C	56.102
-2.0	7999	49.31	79969	13.019	17921	Antoine eq.	
7.7	13332	51.91	87727	16.831	21314	cq. 2	P/kPa
22.7	26664	56.02	101199	20.939	25780	A	6.24039
39.5	53329			24.330	29923	B	1209.746
56.5	101325			28.351	35493	С	229.574
				32.138	41470		
mp/°C	-94.6						

*ref. Collection Czech. Chem. Commun 37, 3513 (1972)

TABLE 12.1.2.1.1 (Continued)

2.

Ambrose et al. 1974

comparative ebulliometry

t/°C	P/Pa	t/°C	P/Pa
<i>i</i> · · · ·	r/ra		r/ra
10.075	40.53	cont'd	100444
-13.975	4257	55.876	100666
-11.019	5076	56.646	103344
-8.106	6005	60.963	119433
-4.982	7186	64.859	135602
-1.388	8691	69.512	157101
0.288	9497	73.943	180024
1.972	10376	77.724	201571
2.007	10391	25.0	30806
5.493	12417		
5.511	12432	eq. 3	P/kPa
9.077	14840	Α	6.25478
9.093	14851	В	1216.689
12.473	17480	С	-42.875
16.928	21525		
20.717	25544		
25.045	30867	Ambrose	et al 1975a
29.275	36912		
33.720	44267	bp/°C	56.067
28.601	53675	-	
42.834	63079	eq. 3	P/kPa
47.320	74449	A	6.25632
52.170	88536	В	1217.904
		С	-42.692
•		equation	for vapor
		•	sures
			200 kPa
		∆H _v /(kJ	mol-1) =
		at 25°C	31.3
		at bp	29.6

C

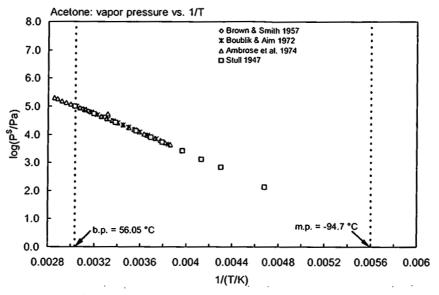


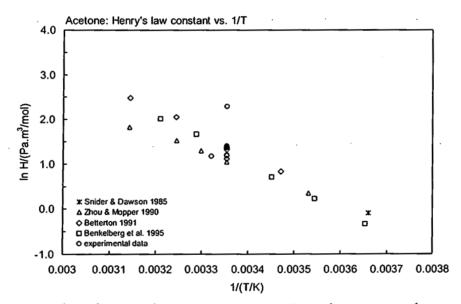
FIGURE 12.1.2.1.1 Logarithm of vapor pressure versus reciprocal temperature for acetone.

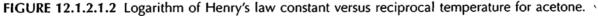
TABLE 12.1.2.1.2 Reported Henry's law constants of acetone at various temperatures and temperature dependence equations

$\ln K_{AW} = A - B/(T/K)$	(1)	$\log K_{AW} = A - B/(T/K)$	(la)
$\ln (1/K_{AW}) = A - B/(T/K)$	(2)	$\log (1/K_{AW}) = A - B/(T/K)$	(2a)
$\ln (k_{\rm H}/\rm{atm}) = A - B/(T/K)$	(3)		
$\ln [H/(Pa m^3/mol)] = A - B/(T/K)$	(4)	$\ln \left[\frac{H}{(atm \cdot m^3/mol)}\right] = A - B/(T/K)$	(4a)
$K_{AW} = A - B \cdot (T/K) + C \cdot (T/K)^2$	(5)		

1.

Snider & Dawson 1985		Zhou & Mopper 1990					Betterton 1991	
gas st	tripping-GC/FID	gas stripping-HPLC/UV		gas stripping-HPLC/UV		gas stripping-GC/FID		
t/°C	H/(Pa m³/mol)	t/°C	H/(Pa m³/mol)	t/°C	H/(Pa m ³ /mol)	t/.°C	H/(Pa m³/mol)	
			fresh water		sea water			
0	0.908	10	1.421	10	1.735	14.9	2.303	
25	3.935	17	-	17	2.356	25	3.070	
		25	2.846	25	3.311	25	3.269	
		30	3.658	30	4.037	25	3.897	
enthalpy c	of transfer	35	4.585	35	4.825	25	3.753	
ΔH =	37.24 kJ/mol	40	-	40	5.537	25	3.958	
		45	6.178	45	6.846	35.1	7.794	
						44.9	11.92	
		eg. la	K _H '/(M/atm)	eq. 1a	k _H '/(M/atm)			
		А	-5.00	Α	-3.60			
		В	-1977	В	-1518			


TABLE 12.1.2.1.2 (Continued)


2.

Benkelberg et al. 1995

equilibrium vapor phase concentration-headspace GC

t∕°C	H/(Pa m³/mol)	t/°C	H/(Pa m³/mol)			
-	deionized water		rain water	î		
0.51	0.7222	-28.0	0.742			
9.0	1.260	25.0	3.735			
16.61	2.0445	39.51	8.328			
31.0	5.313					
38.51	7.514		artificial sea water			
		0	0.757			
for deionia	zed and rain water:	14.51	2.189		,	
eg. 3	k _H /atm	30.0	6.639			
A .	18.4 ± 0.3	39.51	10.305			
В	5286 ± 100					

4.1.1.39 Benz[a]anthracene

Common Name: Be	enz[a]anthracene
Synonym: 1,2-benz	anthracene, 2,3-benzophenanthrene, naphthanthracene, BaA, B(a) a, tetraphene
Chemical Name: 1,	2-benzanthracene
CAS Registry No:	56-55-3
Molecular Formula	$C_{18}H_{12}$
Molecular Weight:	228.288
Melting Point (°C):	
160.5 (L	ide 2003)
Boiling Point (°C):	
438 (L	ide 2003)
Density (g/cm ³ at 2	0°C):
1.2544 (N	failhot & Peters 1988)
Molar Volume (cm ³	/mol):
211.8 (R	uelle & Kesselring 1997; Passivirta et al. 1999)
248.3 (ca	alculated-Le Bas method at normal boiling point)
Enthalpy of Fusion,	ΔH _{fus} (kJ/mol):
21.38 (R	uelle & Kesselring 1997; Chickos et al. 1999)
Entropy of Fusion,	ΔS _{fus} (J/mol K):
49.23, 44.1 (e)	sptl., calculated-group additivity method, Chickos et al. 1999)
49.2 (Pa	assivirta et al. 1999)
Fugacity Ratio at 25	5°C (assuming $\Delta S_{fus} = 56$ J/mol K), F: 0.0468 (mp at 160.5°C)
	Iculated, assuming $\Delta S_{fus} = 56$ J/mol K, Mackay et al. 1980)
0.0661 (ca	lculated, $\Delta S_{fus} = 49.2$ J/mol K, Passivirta et al. 1999)
Water Solubility (g/	m ³ or mg/L at 25°C or as indicated and reported temperature dependence equations. Additional
	mperatures designated * are compiled at the end of this section):
0.011	(27°C, shake flask-nephelometry, Davis & Parker 1942)
0.010	(shake flask-UV, Klevens 1950)
0.014	(shake flask-fluorescence, Mackay & Shiu 1977)
0.0094, 0.0122	(25, 29°C, generator column-HPLC/UV, May et al. 1978b)
	(25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
	May et al. 1978b, May 1980)
0.044	(shake flask-nephelometry, Hollifield 1979)
0.00837*	(generator column-HPLC, measured range 6.9–29.7°C, May 1980)
0.0086*	(generator column-HPLC, measured range 6.9–29.7°C, May 1980) (generator column-HPLC, measured range 6.9–29.7°C, May et al. 1983)
0.00935*	(generator column-fluo., measured range 10–30°C, Velapoldi et al. 1983)
0.011	(average lit. value, Pearlman et al. 1984)
0.0168	(generator column-HPLC/fluorescence, Walters & Luthy 1984)
0.00854	(generator column-HPLC/UV, measured range 3.7–25.0°C, Whitehouse 1984)
0.011	(recommended, IUPAC Solubility Data Series, Shaw 1989)
0.0146	(shake flask-HPLC, Haines & Sandler 1995)
0.0130	(generator column-HPLC/fluorescence, De Maagd et al. 1998)
	= -0.326 - 1119/(T/K) (supercooled liquid, Passivirta et al. 1998)
	6 – 5354.51/(T/K), temp range 5–50°C (regression eq. of literature data, Shiu & Ma 2000)
$m_{\lambda} = -5.00040$	0 - 5554.5 m (17K), temp range 5-50 C (regression eq. of merature data, sind & Ma 2000)
•	t 25°C or as indicated and reported temperature dependence equations. Additional data at other
temperatures de	signated * are compiled at the end of this section):
2.93 x 10 ⁻⁶ (20°	C Hover & Peperle 1958)

 2.93×10^{-6} (20°C, Hoyer & Peperle 1958)

log (P/mmHg) = 13.68 - 6250/(T/K); temp range 60-120°C (Knudsen effusion method, Hoyer & Peperle 1958)

 2.17×10^{-5} (solid, extrapolated from Antoine eq., Kelley & Rice 1964; quoted, Bidleman 1984) $\log (P/mmHg) = 11.528 - 5461/(T/K)$; temp range: 104-127°C (effusion method, Kelley & Rice 1964) 3.87×10^{-7} (effusion method, Wakayama & Inokuchi 1967) 1.47×10^{-5} (solid, effusion method, extrapolated-Antoine eq., Murray et al. 1974) $\log (P/mmHg) = 10.045 - 5929/(T/K)$; temp range: 330-390 K (effusion method, Murray et al. 1974) 6.67×10^{-7} (20°C, effusion, Pupp et al. 1974) $7.30 \times 10^{-6*}$ (effusion method, De Kruif 1980) 2.71 × 10⁻⁵* (gas saturation-HPLC/fluo./UV, Sonnefeld et al. 1983) $\log (P/Pa) = 9.684 - 4246.51/(T/K)$; temp range 10–50°C (solid, Antoine eq., Sonnefeld et al. 1983) 0.00107, 0.0003 (P_{GC} by GC-RT correlation, different GC columns, Bidleman 1984) 0.000543 (supercooled liquid P_{L} , converted from literature P_{S} with ΔS_{fus} Bidleman 1984) 2.49 × 10⁻⁴ (Yamasaki et al. 1984) 4.10×10^{-6} (selected, Howard et al. 1986) 1.51×10^{-5} , 2.17×10^{-5} (extrapolated-Antoine eq., Stephenson & Malanowski 1987) $\log (P_s/kPa) = 12.0507 - 5925/(T/K)$; temp range 330-390 K (solid, Antoine eq.-I, Stephenson & Malanowski 1987) $\log (P_{c}/kPa) = 10.653 - 5461/(T/K)$; temp range 377-400 K (solid, Antoine eq-II., Stephenson & Malanowski 1987) 5.43×10^{-4} (supercooled P₁, converted from literature P₅, Hinckley et al. 1990) 0.00107, 3.23×10^{-4} (P_{GC} by GC-RT correlation with different reference standards, Hinckley et al. 1990) $\log P_1/Pa = 12.63 - 4742/(T/K)$ (GC-RT correlation, Hinckley et al. 1990) 2.51 × 10⁻⁴ (supercooled liquid P₁, calculated from Yamasaki et al. 1984, Finizio et al. 1997) $(4.11-281) \times 10^{-7}$; 2.76×10^{-5} (P_s, quoted exptl., effusion; gas saturation, Delle Site 1997) 3.39×10^{-5} ; 5.29×10^{-5} , 1.48×10^{-5} , 2.57×10^{-5} (P_s, quoted lit., calculated; GC-RT correlation, Delle Site 1997) 5.47×10^{-4} ; 3.59×10^{-5} (quoted supercooled liquid P_L from Hinckley et al. 1990; converted to solid P_s with fugacity ratio F, Passivirta et al. 1999) $\log (P_s/P_a) = 11.91 - 4858/(T/K)$ (solid, Passivirta et al. 1999) $\log (P_1/P_a) = 9.34 - 3760/(T/K)$ (supercooled liquid, Passivirta et al. 1999) log (P/Pa) = 9.683 – 4246.51/(T/K); temp range 5-50°C (regression eq. from literature data, Shiu & Ma 2000)

Henry's Law Constant (Pa m³/mol at 25°C or as indicated and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section):

- 0.813 (gas stripping-GC, Southworth 1979)
- 0.102 (headspace solid-phase microextraction (SPME)-GC, Zhang & Pawliszyn 1993)
- 1.22* (gas stripping-GC; measured range 4.1–31°C, Bamford et al. 1999)
- ln K_{AW} = -7986.53/(T/K) + 19.124, $\Delta H = 66.4$ kJ mol⁻¹, measured range 4.1–31°C (gas stripping-GC, Bamford et al. 1999)
- $\log (H/(Pa m^3/mol)) = 9.67 2641/(T/K) (Passivirta et al. 1999)$

Octanol/Water Partition Coefficient, log Kow at 25°C and the reported temperature dependence equations:

- 5.61 (Radding et al. 1976)
- 5.66 (Leo 1986; quoted, Schüürmann & Klein 1988)
- 5.79 (HPLC-RT correlation, Wang et al. 1986)
- 5.91 (recommended, Sangster 1989, 1993)
- 5.84 (TLC retention time correlation, De Voogt et al. 1990)
- 5.79 (recommended, Hansch et al. 1995))
- 5.54 ± 0.19 , 5.50 ± 0.64 (HPLC-k' correlation: ODS column; Diol column, Helweg et al. 1997)
- 5.91 (range 5.74–6.04) (shake flask/slow stirring-HPLC/fluorescence, De Maagd et al. 1998)
- 5.75 (shake flask-SPME solid-phase micro-extraction, Paschke et al. 1999)
- 5.33; 4.98 (calibrated GC-RT correlation; GC-RT correlation, Lei et al. 2000)
- log K_{ow} = 1.238 + 1216.89/(T/K); temp range 5-55°C (temperature dependence HPLC-k' correlation, Lei et al. 2000)

Octanol/Air Partition Coefficient, log KoA:

- 9.50 (calculated-K_{OW}/K_{AW}, Wania & Mackay 1996)
- 9.54 (calculated, Finizio et al. 1997)

Bioconcentration Factor, log BCF:

- 4.56 (Smith et al. 1978; Steen & Karickhoff 1981)
- 4.0 (*Daphnia pulex*, Southworth et al. 1978)
- 4.0 (fathead minnow, Veith et al. 1979)
- 4.56, 5.0 (bacteria, Baughman & Paris 1981)
- 4.39 (activated sludge, Freitag et al. 1984)
- 4.0 (Daphnia pulex, correlated as per Mackay & Hughes 1984, Howell & Connell 1986)
- 4.39, 3.50, 2.54 (activated sludge, algae, fish, Freitag et al. 1985)
- 4.01 (Daphnia magna, Newsted & Giesy 1987)

4.303, 4266 (calculated-molecular connectivity indices, calculated-Kow, Lu et al. 1999)

Sorption Partition Coefficient, log Koc:

- 4.52 (22°C, suspended particulates, Herbes et al. 1980)
- 6.30 (sediments average, Kayal & Connell 1990)
- 7.30 (Baltic Sea particulate field samples, concn distribution-GC/MS, Broman et al. 1991)
- 5.62 (humic acid, HPLC-k' correlation; Nielsen et al. 1997)
- 5.77 (5.73-5.80), 5.47 (5.44-5.50) (sediments: Lake Oostvaardersplassen, Lake Ketelmeer, shake flask-HPLC/UV, de Maagd et al. 1998)
- 5.20 (soil, calculated-universal solvation model; Winget et al. 2000)
- 5.63-7.53; 4.50-6.70 (range, calculated from sequential desorption of 11 urban soils; lit. range, Krauss & Wilcke 2001)
 5.11; 6.33, 5.84, 6.18 (20°C, batch equilibrium, A2 alluvial grassland soil; calculated values of expt 1,2,3-solvophobic approach, Krauss & Wilcke 2001)

Environmental Fate Rate Constants, k or Half-Lives, ty:

Volatilization: aquatic fate rate $k = 8 \times 10^3 h^{-1}$ with $t_{1/2} \sim 90 h$ (Callahan et al. 1979);

- half-lives predicted by one compartment model: $t_{\frac{1}{2}} > 1000$ h in stream, eutrophic pond or lake and oligotrophic lake (Smith et al. 1978);
- calculated $t_{\frac{1}{12}} = 500$ h for a river of 1-m deep with water velocity of 0.5 m/s and wind velocity of 1 m/s (Southworth 1979; quoted, Herbes et al. 1980; Hallett & Brecher 1984).
- Photolysis: aquatic fate rate k $\sim 6 \times 10^{-5} \text{ s}^{-1}$ with $t_{1/2} = 10-50$ h (Callahan et al. 1979)
 - $t_{1/2} = 20$ h in stream, $t_{1/2} = 50$ h in eutrophic pond or lake and $t_{1/2} = 10$ h in oligotrophic lake, predicated by one compartment model (Smith et al. 1978)
- direct photochemical transformation t_{1/2}(calc) = 0.59 h, computed near-surface water, latitude 40°N, midday, midsummer and photolysis t_{1/2} = 3.7 d and 9.2 d in 5-m deep inland water body without and with sediment-water partitioning, respectively, to top cm of bottom sediment over full summer day, 40°N (Zepp & Schlotzhauer 1979)
 - $t_{1/2} = 0.58$ h in aquatics (quoted of EPA Report 600/7-78-074, Haque et al. 1980)
 - $t_{y_2} = 0.2$ d for early day in March (Mill et al. 1981);
 - $k = 1.93 h^{-1}$ (Zepp 1980; quoted, Mill & Mabey 1985)
 - $k = 13.4 \times 10^{-5} \text{ s}^{-1}$ in early March with $t_{1/2} = 5$ h in pure water at 366 nm, in sunlight at 23-28°C and $k = 2.28 \times 10^{-5} \text{ s}^{-1}$ at 313 nm with 1% acetonitrile in filter-sterilized natural water (Mill et al. 1981);
 - $k = 1.39 h^{-1}$ for summer midday at 40°N latitude (quoted, Mabey et al. 1982)
 - t_{1/2} = 1-3 h, atmospheric and aqueous photolysis half-life, based on measured photolysis rate constant for midday March sunlight on a cloudy day (Smith et al. 1978; quoted, Harris 1982; Howard et al. 1991) and adjusted for approximate summer and winter sunlight intensity (Lyman et al. 1982; quoted, Howard et al. 1991)
 - half-lives on different atmospheric particulate substrates (approx. 25 μ g/g on substrate): t_{1/2} = 4.0 h on silica gel, t_{1/2} = 2.0 h on alumina and t_{1/2} = 38 h on fly ash (Behymer & Hites 1985)
 - first order daytime decay k = 0.0125 min⁻¹ for soot particles loading of 1000-2000 ng/mg and k = 0.0250 min⁻¹ for soot particles loading of 30-350 ng/mg (Kamens et al. 1988)
 - photodegradation k = 0.0251 min⁻¹ with $t_{1/2} = 0.46$ h in ethanol-water (2:3, v/v) solution for initial concentration of 12.5 ppm by high pressure mercury lamp or sunlight (Wang et al. 1991)
 - pseudo-first-order direct photolysis k(exptl) = 0.0251 min^{-1} with the calculated $t_{\frac{1}{2}} = 0.46 \text{ h}$ and the predicted k = 0.0245 min^{-1} calculated by QSPR method in aqueous solution when irradiated with a 500 W medium pressure mercury lamp (Chen et al. 1996)

- direct photolysis $t_{4/2}(obs) = 0.94$ h, $t_{4/2}(calc) = 0.89$ h predicted by QSPR method in atmospheric aerosol (Chen et al. 2001)
- Photodegradation $k = 5.0 \times 10^{-4} \text{ s}^{-1}$ in surface water during the summertime at mid-latitude (Fasnacht & Blough 2002)

Oxidation: half-lives predicted by one compartment model: $t_{1/2} = 38$ h in stream, eutrophic pond or lake and oligotrophic lake based on peroxy radical concentration of 10⁻⁹ M (Smith et al. 1978)

aquatic fate rate $k = 5 \times 10^3 \text{ M}^{-1} \text{ s}^{-1}$ with $t_{1/2} = 38 \text{ h}$ (Callahan et al. 1979);

t_{1/2} = 6400 h for photosensitized oxygenation with singlet oxygen at near-surface natural water, 40°N, midday, midsummer (Zepp & Schlotzhauer 1979)

 $k = 5 \times 10^8 \text{ M}^{-1} \text{ h}^{-1}$ for singlet oxygen and $2 \times 10^4 \text{ M}^{-1} \text{ h}^{-1}$ for peroxy radical (Mabey et al. 1982)

 $k = 3.3 \times 10^{-4} h^{-1}$ with $t_{y_2} = 0.6 h$ under natural sunlight conditions; $k(aq.) = 5.0 \times 10^3 M^{-1} h^{-1}$ with $t_{y_2} = 1.6$ d for free-radical oxidation in air-saturated water (NRCC 1983)

- photooxidation $t_{y_2} = 0.801 8.01$ h, based on estimated rate constant for reaction with hydroxyl radical in air (Howard et al. 1991);
- photooxidation $t_{y_2} = 77-3850$ h in water, based on measured rate constant for reaction with hydroxyl radical in water (Howard et al. 1991)

Hydrolysis: not hydrolyzable (Mabey et al. 1982); no hydrolyzable groups (Howard et al. 1991).

Biodegradation: not observed during enrichment procedures (Smith et al. 1978)

- no significant degradation in 7 d for an average of three static-flask screening test (Tabak et al. 1981)
- $k = 3.3 \times 10^{-3} h^{-1}$ with $t_{b} = 208 h$ for mixed bacterial populations in stream sediment (NRCC 1983)
- $k = 1.0 \times 10^{-4} h^{-1}$ with $t_{y_2} = 288 d$; $k = 4.0 \times 10^{-6} h^{-1}$ with $t_{y_2} = 20$ yr for mixed bacterial populations in oilcontaminated and pristine stream sediments (NRCC 1983)
- $k = 0.0026 d^{-1}$ with $t_{y_2} = 261 d$ for Kidman sandy loam and $k = 0.0043 d^{-1}$ with $t_{y_2} = 162 d$ for McLarin sandy loam all at -0.33 bar soil moisture (Park et al. 1990)
- t₁₄(aq.aerobic) = 2448-16320 h, based on aerobic soil dieaway test data at 10-30°C (Howard et al. 1991)
 t₁₄(aq. anaerobic) = 9792-65280 h, based on estimated unacclimated aqueous aerobic biodegradation half-life (Howard et al. 1991).

Biotransformation: rate constant estimated to be 1×10^{-10} mL cell⁻¹ h⁻¹ for bacteria (Mabey et al. 1982). Bioconcentration, Uptake (k₁) and Elimination (k₂) Rate Constants:

 $k_1 = 669 h^{-1}$; $k_2 = 0.144 h^{-1}$ (*Daphnia pulex*, Southworth et al. 1978)

log k₁ = 2.83 h⁻¹; log k₂ = -0.84 h⁻¹ (*Daphnia pulex*, correlated as per Mackay & Hughes 1984, Hawker & Connell 1986)

 $k_1 = 138.6 \text{ mL g}^{-1} \text{ h}^{-1}; k_2 = 0.0022 \text{ h}^{-1} (4^{\circ}\text{C}, P. hoyi, \text{Landrum 1988})$

 $k_1 = 0.72 - 1.4 \text{ mg g}^{-1} \text{ h}^{-1}$; $k_2 = 0.0096 \text{ h}^{-1}$ (freshwater oligochaete from sediment, Van Hoof et al. 2001)

Half-Lives in the Environment:

- Air: $t_{1/2} = 1-3$ h, based on estimated photolysis half-life in air (Howard et al. 1991);
 - $t_{1/2} = 4.20$ h under simulated sunlight, $t_{1/2} = 1.35$ h in simulated sunlight + ozone (0.2 ppm), $t_{1/2} = 2.88$ h in dark reaction ozone (0.2 ppm), under simulated atmospheric conditions (Katz et al. 1979)
 - $t_{\frac{1}{2}} = 0.4$ h for adsorption on soot particles in an outdoor Teflon chamber with an estimated rate constant k = 0.0265 min⁻¹ at 1 cal cm⁻² min⁻¹, 10 g/m³ H₂O and 20°C (Kamens et al. 1988).
- Surface water: photolysis $t_{1/2} = 0.59$ h near surface water, $t_{1/2} = 3.7$ d and 9.2 d in 5-m deep water body without and with sediment-water partitioning in full summer day, 40°N; photosensitized oxygenation $t_{1/2} = 2.6$ h at near surface water, 40°N, midday, midsummer (Zepp & Schlotzhauer 1979)

 $t_{1/2} = 0.20$ d under summer sunlight (Mill & Mabey 1985);

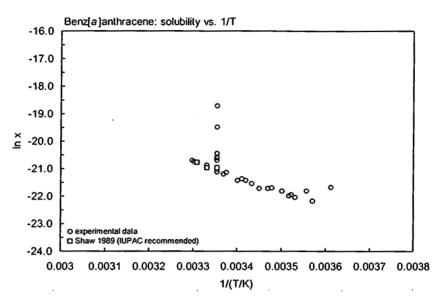
- $t_{1/2} = 1-3$ h, based on estimated photolysis half-life in water, Howard et al. 1991);
- photolysis $t_{y_2} = 0.46$ h (reported in units of minutes) in aqueous solution when irradiated with a 500 W medium pressure mercury lamp (Chen et al. 1996).
- Groundwater: $t_{\frac{1}{2}} = 4896-32640$ h, based on estimated unacclimated aqueous aerobic biodegradation half-life (Howard et al. 1991).
- Sediment: The uptake clearance from sediment was $k = (0.005 \pm 0.001)g$ of dry sediment g^{-1} of organism h^{-1} , and the elimination rate constants $k = (0.0014 \pm 0006)h^{-1}$ for amphipod, *P. hoyi* in Lake Michigan sediments at 4°C (Landrum 1989);

desorption $t_{y_2} = 11.1$ d from sediment under conditions mimicking marine disposal (Zhang et al. 2000). Soil: $t_{y_2} = 4-6250$ d (Sims & Overcash 1983; quoted, Bulman et al. 1987); t_{h} = 240 d for 5 mg/kg treatment and 130 d for 50 mg/kg treatment (Bulman et al. 1987);

biodegradation $k = 0.0026 d^{-1}$ with $t_{y_2} = 261 d$ for Kidman sandy loam soil, and $k = 0.0043 d^{-1}$ with $t_{y_2} = 162 d$ for McLaurin sandy loam soil (Park et al. 1990);

 $t_{\nu_2} \sim 2448 - 16320$ h, based on aerobic die-away test data at 10-30°C (Howard et al. 1991);

 $t_{\frac{1}{2}} > 50 d$ (Ryan et al. 1988).


Biota: depuration $t_{4} = 9$ d by oysters (Lee et al. 1978);

elimination $t_{y_2} = 4.3-17.8$ d from mussel *Mytilus edulis*; $t_{y_2} = 7-15.4$ d from Oyster, $t_{y_2} = 8.0$ d from clam *Mercenario mercenaria* (quoted, Meador et al. 1995).

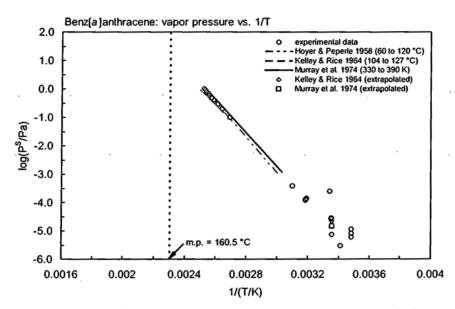
TABLE 4.1.1.39.1

Reported aqueous solubilities of benz[a]anthracene at various temperatures and reported temperature dependence equation

May 1980 generator column-HPLC		May et	al. 1978b	May et	al. 1983	Velapol	di et al. 1983
		generator column-HPLC		generator column-HPLC		generator column-fluo.	
t/°C	S/g·m ^{−3}	t/°C	S/g·m⁻³	t/°C	S/g·m ⁻³	t/°C	S/g⋅m ⁻³
6.9	0.00299	25	0.0094	6.9	0.00299	10	0.00342
10.7	0.00378	29	0.0.0122	10.7	0.00378	15	0.00475
14.3	0.00479	•		· 11.0	0.00361	20 ·	0.00669
19.3	0.00633			14.7	0.00558	25	0.00935
23.1	0.00837	temp depe	endence eq. 1	18.1	0.00634	30	0.01297
29.7	0.0127	S	μg/kg	19.3	0.00801		
		а	0.0003	23.6	0.00838		
temp dependence eq. 1		b	-0.0031	25.0	0.00862	eq. 2	mole fraction
S	μg/kg	с	0.1897	29.5	0.0124	A	-83.75982
a	0.0003	d	1.74	29.7	0.0127	В	41884.5
b	-0.0031					С	161.175
с	0.1897	∆H _{sol} /(kJ n	nol ⁻¹) = 44.81				
d	1.74	measured be	etween 5-30°C			∆H _{sol} /(kJ	mol ⁻¹) = 49.0
						301 1	at 25°C

FIGURE 4.1.1.39.1 Logarithm of mole fraction solubility $(\ln x)$ versus reciprocal temperature for benz[a]anthracene.

TABLE 4.1.1.39.2


Reported vapor pressures of benz[a]anthracene at various temperatures and the coefficients for the vapor pressure equations

$\log P = A - B/(T/K)$	(1)	$\ln P = A - B/(T/K)$	(la)
$\log P = A - B/(C + t/^{\circ}C)$	(2)	$\ln P = A - B/(C + t/^{\circ}C)$	(2a)
$\log P = A - B/(C + T/K)$	(3)		
$\log P = A - B/(T/K) - C \cdot \log (T/K)$	(4)		

Kelley & Rice 1964 effusion-electrobalance		Murray e	et al. 1972	de Kruif 1980		Sonnefeld et al. 1983	
		Knudsen effusion		torsion-, effusion method		generator column-HPLC	
t/°C	P/Pa	t/°C	P/Pa	t/°C	P/Pa	t/°C	P/Pa
data represented by		data presente	d by graph and	98.07	0.1	13.81	8.05 × 10-5
		eq. 2	P/atm	105.21	0.2	13.81	6.06 × 10 ^{-s}
eq. 1	P/mmHg	A	10.045	109.51	0.3	13.81	1.13 × 10-5
A	11.528	В	5925	112.62	0.4	25.1	2.66 × 10 ^{-s}
В	5461	temp range	2330-390 K	115.06	0.5	25.1	2.56 × 10-5
measured ra	nge 104–127°C			117.09	0.6	25.1	2.81 × 10 ⁻⁵
$\Delta H_{subl}/(kJ \text{ mol}^{-1}) = 104.56$				118.82	0.7	40.12	1.39 × 10 ⁻⁴
3001		∆H _{subi} /(kJ m	nol ⁻¹) = 113.5	120.32	0.8	40.12	1.41 × 10 ⁻⁴
mp/°C	160-161.5			121.66	0.9	40.12	1.36 × 10⁴
-				122.87	1.0	40.75	1.31 × 10 ⁻⁴
				25.0	7.3 × 10-6	40.85	1.17 × 10 ⁻⁴
					extrapolated	40.85	1.27 × 10 ⁻⁴
						40.85	1.21 × 10 ⁻⁴
Hoyer &	Peperle 1958			∆H _{sub} /(kJ	mol ⁻¹) = 113	49.56	3.87 × 10-4
effusion method						49.56	· 3.85 × 10-4
t/°C	P/Pa					49.56	3.88 × 10 ⁻¹
		-				34.93	2.69 × 10 ⁻⁴
data present	ed by equation.					25.0	2.80×10^{-5}
							Continued

(Continued)

Kelley & Rice 1964 effusion-electrobalance		Murray et al. 1972 Knudsen effusion		de Kruif 1980 torsion-, effusion method		Sonnefeld et al. 1983 generator column-HPLC	
eq. 1	P/mmHg					eq. 1	P/Pa
A	13.68					Α	9.684
В	6250					В	4246.51
for temp range 60–120°C				·		•••••	mol ⁻¹) = 51.83 ange 10–50°C

TABLE 4.1.1.39.3

Reported Henry's law constants of benz[a]anthracene at various temperatures and temperature dependence equations

$\ln K_{AW} = A - B/(T/K)$	(1)
$\ln (1/K_{AW}) = A - B/(T/K)$	(2)
$\ln (k_{\rm H}/\rm{atm}) = A - B/(T/K)$	(3)
$\ln [H/(Pa m^3/mol)] = A - B/(T/K)$	(4)
$K_{AW} = A - B \cdot (T/K) + C \cdot (T/K)^2$	(5)

Bamford et al. 1999

$\log K_{AW} = A - B/(T/K)$	(la)
$\log (1/K_{AW}) = A - B/(T/K)$	(2a)

$$\ln [H/(atm \cdot m^3/mol)] = A - B/(T/K)$$
 (4a)

gas stripping-GC/MS			
t/°C	H/(Pa m ³ /mol)	H/(Pa m³/mol)	
		average	
4.1	0.10, 0.22	0.15	
11.0	0.24, 0.41	0.31	
18.0	0.50, 0.79	0.63	
25.0	0.91, 1.64	1.22	
31.0	1.43, 3.13	2.11	

TABLE 4.	1.1.39.3 (Continued))
	Bamford et al. 1	999
	gas stripping-GC	/MS
t/°C	H/(Pa m ³ /mol)	H/(Pa m³/mol)
A	19.124	
В	7986.5	
enthalpy, e	ntropy change:	
∆H/(kJ·mo	I^{-1}) = 66.4 ± 6.9	
∆S/(J·K ⁻¹ r	nol-') = 159	
	at 25°C	

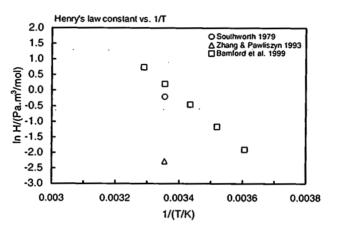
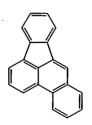



FIGURE 4.1.1.39.3 Logarithm of Henry's law constant versus reciprocal temperature for benz[a]anthracene.

R1741 **795**

()

4.1.1.40 Benzo[b]fluoranthene

Common Name: Benzo[b]fluoranthene

Synonym: 2,3-benzofluoranthene, 3,4-benzofluoranthene, benz[e]acephenanthrylene, B[b]F Chemical Name: 2,3-benzofluoranthene

CAS Registry No: 205-99-2

Molecular Formula: C₂₀H₁₂

Molecular Weight: 252.309

Melting Point (°C):

168 (Bjørseth 1983; Pearlman et al. 1984; Lide 2003)

Boiling Point (°C):

481 (Bjørseth 1983)

Density (g/cm³ at 20°C):

Molar Volume (cm³/mol):

222.8 (Ruelle & Kesselring 1997; Passivirta et al. 1999)

268.9 (calculated-Le Bas method at normal boiling point)

Enthalpy of Fusion, ΔH_{fus} (kJ/mol):

Entropy of Fusion, ΔS_{fus} (J/mol K):

56.5 (Passivirta et al. 1999)

Fugacity Ratio at 25°C (assuming $\Delta S_{fus} = 56$ J/mol K), F: 0.0395 (mp at 168°C)

Water Solubility (g/m³ or mg/L at 25°C or as indicated and reported temperature dependence equations):

0.0015 (generator column-HPLC/fluorescence, Wise et al. 1981)

0.0015 (average lit. value, Pearlman et al. 1984)

0.00109 (generator column-HPLC/fluo., De Maagd et al. 1998)

 $\log [S_L/(mol/L)] = -0.351 - 1303/(T/K)$ (supercooled liquid, Passivirta et al. 1999)

Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations):

 6.67×10^{-5} (20°C, estimated, Callahan et al. 1979)

 2.12×10^{-5} (Yamasaki et al. 1984)

 5.0×10^{-8} ; 1.30×10^{-6} (quoted solid P_s from Mackay et al. 1992; converted to supercooled liquid P_L with fugacity ratio F, Passivirta et al. 1999)

 $\log (P_s/Pa) = 12.43 - 5880/(T/K)$ (solid, Passivirta et al. 1999)

 $\log (P_L/Pa) = 9.48 - 4578/(T/K)$ (supercooled liquid, Passivirta et al. 1999)

 7.55×10^{-6} (supercooled liquid P_L, calibrated GC-RT correlation, Lei et al. 2002)

log (P_L/Pa) = -4682/(T/K) + 10.58, $\Delta H_{van} = -89.7 \text{ kJ} \cdot \text{mol}^{-1}$ (GC-RT correlation, Lei et al. 2002)

Henry's Law Constant (Pa m³/mol at 25°C or as indicated and reported temperature dependence equations.):

0.051 (20°C, gas stripping-HPLC/fluorescence, measured range 10-55°C, ten Hulscher et al. 1992) log [H/(Pa m³/mol)] = 9.83 - 3274/(T/K) (Passivirta et al. 1999)

0.0485 (20°C, selected from reported experimentally measured values, Staudinger & Roberts 1996, 2001) log $K_{AW} = 2.955 - 2245/(T/K)$, (van't Hoff eq. derived from literature data, Staudinger & Roberts 2001)

Octanol/Water Partition Coefficient, log Kow:

- 5.78 (HPLC-RT correlation, Wang et al. 1986)
- 5.78 (recommended, Sangster 1989, 1993)

Octanol/Air Partition Coefficient, log KOA:

Bioconcentration Factor, log BCF:

5.15	(microorganisms-water, Mabey et al. 1982)
4.00	(Daphnia magna, Newsted & Gicsy 1987)
0.959, 0.230	(Polychaete sp, Capitella capitata, Bayona et al. 1991)

Sorption Partition Coefficient, log Koc at 25°C or as indicated:

- 6.182; 6.00, 6.18 (sediment: concn ratio C_{sed}/C_w; concn-based coeff., areal-based coeff. of flux studies of sediment/water boundary layer, Helmstetter & Alden 1994)
- 5.45 (log K_{DOC} Aldrich humic acid, RP-HPLC, Ozretich et al. 1995)
- 6.57 (10°C), 6.55, 6.61 (20°C), 6.26 (35°C), 6.44, 6.45 (45°C) (log K_{DOC}, dissolved organic material from lake, gas-purge technique-HPLC/fluorescence, Lüers & ten Hulscher 1996)
- 6.20 (20°C, log K_{DOC}, particulate organic material from lake, Lüers & ten Hulscher 1996)
- 6.15-8.02; 5.70-7.50 (range, calculated from sequential desorption of 11 urban soils; lit. range, Krauss & Wilcke 2001, for benzo[b + j + k]fluoranthenes)
- 5.91; 6.50, 6.26, 6.68 (20°C, batch equilibrium, A2 alluvial grassland soil; calculated values of expt 1,2,3-solvophobic approach, Krauss & Wilcke 2001, for benzo[b + j + k]fluoranthenes)

Environmental Fate Rate Constants, k or Half-Lives, t_h:

Volatilization:

- Photolysis: atmospheric and aqueous $t_{y_2} = 8.7-720$ h, based on measured rate of photolysis in heptane irradiated with light > 290 nm (Howard et al. 1991);
 - first order daytime decay rate constants: $k = 0.0065 \text{ min}^{-1}$ for 1000-2000 ng/mg soot particles loading and $k = 0.0090 \text{ min}^{-1}$ with 30-350 ng/mg loading (Kamens et al. 1988);
 - $t_{\mu}(obs.) = 4.31$ h, $t_{\mu}(calc) = 1.49$ h predicted by QSPR in atmospheric aerosol (Chen et al. 2001)
 - Photodegradation $k = 3 \times 10^{-5} \text{ s}^{-1}$ in surface water during the summertime at mid-latitude (Fasnacht & Blough 2002).
- Oxidation: rate constant $k = 4 \times 10^7 \text{ M}^{-1} \text{ h}^{-1}$ for singlet oxygen and $k = 5 \times 10^3 \text{ M}^{-1} \text{ h}^{-1}$ for peroxy radical (Mabey et al. 1982);
 - photooxidation $t_{y_2} = 1.43-14.3$ h, based on estimated rate constant for reaction with hydroxyl radical in air (Howard et al. 1991).

Hydrolysis: not hydrolyzable (Mabey et al. 1982; no hydrolyzable groups (Howard et al. 1991).

Biodegradation:

- aerobic t_{y2} = 8640-14640 h, based on aerobic soil die-away test data (Coover & Sims 1987; quoted, Howard et al. 1991);
- $k = 0.0024 d^{-1}$ with $t_{y_2} = 294 d$ for Kidman sandy loam and $k = 0.0033 d^{-1}$ with $t_{y_2} = 211 d$ for McLarin sandy loam all at -0.33 bar soil moisture (Park et al. 1990);
- $t_{\nu}(aq. anaerobic) = 34560-58560$ h, based on estimated unacclimated aqueous aerobic degradation half-life (Howard et al. 1991).
- Biotransformation: estimated to be 3×10^{-12} mL cell⁻¹ h⁻¹ for bacteria (Mabey et al. 1982).

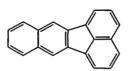
Bioconcentration, Uptake (k_1) and Elimination (k_2) Rate Constants:

 $k_1 = 0.11-0.38 \text{ mg g}^{-1} \text{ h}^{-1}$; $k_2 = 0.0029 \text{ h}^{-1}$ (freshwater oligochaete from sediment, Van Hoof et al. 2001) Sorption-Desorption Rate constants: desorption rate constant $k = 0.016 \text{ d}^{-1}$ with $t_{y_2} = 42.4 \text{ d}$ from sediment under conditions mimicking marine disposal (Zhang et al. 2000).

Half-Lives in the Environment:

Air: $t_{y_4} = 1.43 - 14.3$ h, based on estimated photooxidation half-life in air (Howard et al. 1991)

- half-lives under simulated atmospheric conditions: simulated sunlight $-t_{1/2} = 8.70$ h, simulated sunlight + ozone (0.2 ppm) $t_{1/2} = 4.20$ h, dark reaction ozone (0.2 ppm) $t_{1/2} = 52.70$ h (Katz et al. 1979; quoted, Bjørseth & Olufsen 1983);
- $t_{1/2} = 1.3$ h for adsorption on soot particles in an outdoor Teflon chamber with an estimated rate constant k = 0.0091 min⁻¹ at 1 cal cm⁻² min⁻¹, 10 g/m³ H₂O and 20°C (Kamens et al. 1988).
- Surface water: $t_{y_2} = 8.7-720$ h, based on estimated aqueous photolysis half-life (Lane & Katz 1977; Muel & Saguem 1985; quoted, Howard et al. 1991).


Groundwater: $t_{y_2} = 17280-29280$ h, based on estimated unacclimated aqueous aerobic biodegradation half-life (Howard et al. 1991).

Sediment: desorption $t_{y_2} = 42.4$ d from sediment under conditions mimicking marine disposal (Zhang et al. 2000). Soil: biodegradation rate constant k = 0.0024 d⁻¹ with $t_{y_2} = 294$ d for Kidman sandy loam soil, and k = 0.0033 d⁻¹ with $t_{y_2} = 211$ d for McLaurin sandy loam soil (Park et al. 1990);

 $t_{1/2} = 8640 - 14640$ h, based on aerobic die-away test data (Coover & Sims 1987; quoted, Howard et al. 1991); $t_{1/2} = 42$ wk, 9.0 yr (quoted, Luddington soil, Wild et al. 1991).

Biota: elimination $t_{y_2} = 5.7-16.9$ d from mussel *Mytilus edulis*; $t_{y_2} = 7.7$ d from Oyster (isomer unspecified), $t_{y_2} = 3.9$ d from clam *Mercenario mercenaria* (isomer unspecified) (quoted, Meador et al. 1995).

4.1.1.42 Benzo[k]fluoranthene

Common Name: Benzo[k]fluoranthene

Synonym: 8,9-benzofluoranthene, 11,12-benzofluoranthene, B[k]F

Chemical Name: 8,9-benzofluoranthene

CAS Registry No: 207-08-9

Molecular Formula: C₂₀H₁₂

Molecular Weight: 252.309

Melting Point (°C):

217 (Weast 1977; Bjørseth 1983; Stephenson & Malanowski 1987; Lide 2003) Boiling Point (°C):

480 (Stephenson & Malanowski 1987; Lide 2003)

Density (g/cm³ at 20°C):

Molar Volume (cm³/mol):

222.8 (Ruelle & Kesselring 1997; Passivirta et al. 1999)

268.9 (calculated-Le Bas method at normal boiling point)

Enthalpy of Fusion, ΔH_{fus} (kJ/mol):

Entropy of Fusion, ΔS_{fus} (J/mol K):

56.6 (Passivirta et al. 1999)

Fugacity Ratio at 25°C (assuming $\Delta S_{fus} = 56$ J/mol K), F: 0.0131 (mp at 217°C) 0.0126 (calculated, Passivirta et al. 1999)

Water Solubility (g/m³ or mg/L at 25°C and reported temperature dependence equations):

0.0008 (generator column-HPLC/UV, Wise et al. 1981)

0.00081 (average lit. value, Pearlman et al. 1984)

0.00109 (generator column-HPLC/fluorescence, De Maagd et al. 1998)

 $\log [S_L/(mol/L)] = -0.351 - 1448/(T/K)$ (supercooled liquid, Passivirta et al. 1999)

Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations):

 1.28×10^{-8} (20°C, Radding et al. 1976)

 6.70×10^{-5} (20°C, Mabey et al. 1982)

 2.07×10^{-5} (Yamasaki et al. 1984)

 5.20×10^{-8} , 4.93×10^{-6} (20°C, lit. mean solid P_s, supercooled liquid value P_L, Bidleman & Foreman 1987)

 1.29×10^{-7} (extrapolated, Antoine eq., Stephenson & Malanowski 1987)

 $\log (P_s/kPa) = 12.8907 - 6792/(T/K)$; temp range 363-430 K (Antoine eq., Stephenson & Malanowski 1987)

 2.09×10^{-5} (supercooled liquid P_L, calculated from Yamasaki et al. 1984, Finizio et al. 1997)

 5.20×10^{-8} ; 4.14×10^{-6} (quoted solid P_s from Mackay et al. 1992; converted to supercooled liquid P_L with fugacity ratio F, Passivirta et al. 1999)

 $\log (P_s/Pa) = 12.43 - 5874/(T/K)$ (solid, Passivirta et al. 1999)

 $\log (P_L/Pa) = 9.48 - 4427/(T/K)$ (supercooled liquid, Passivirta et al. 1999)

 8.96×10^{-6} (supercooled liquid P_L, calibrated GC-RT correlation, Lei et al. 2002)

 $\log (P_L/Pa) = -4623/(T/K) + 10.46; \Delta H_{vap} = -88.5 \text{ kJ} \cdot \text{mol}^{-1}$ (GC-RT correlation, Lei et al. 2002)

Henry's Law Constant (Pa m³/mol at 25°C or as indicated and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section):

0.111 (15°C, calculated, Baker & Eisenreich 1990)

0.043* (20°C, gas stripping-HPLC/fluorescence, measured range 10-55°C, ten Hulscher et al. 1992) log (H/(Pa m³/mol)) = 9.83 - 2979/(T/K) (Passivirta et al. 1999)

0.0422 (20°C, selected from reported experimentally measured values, Staudinger & Roberts 1996, 2001) log $K_{AW} = 3.498 - 2421/(T/K)$ (van't Hoff eq. derived from literature data, Staudinger & Roberts 2001)

800

Octanol/Water Partition Coefficient, log Kow:

6.84	(calculated-fragment const., Callahan et al. 1979)
6.06	(calculated-f const., Mabey et al. 1982)
6.44	(calculated-MCI χ as per Rekker & De Kort 1979)
6.40	(Bayona et al. 1991)
6.50	(calculated-S and mp, Capel et al. 1991)
7.20	(calculated-K _{oc} , Broman et al. 1991)
6.00	(selected, Mackay et al. 1992; quoted, Finizio et al. 1997)
6.30	(computed-expert system SPARC, Kollig 1995)
6.50-6.85; 6.73	(quoted lit. range; lit. mean, Meador et al. 1995)
6.11	(range 5.86-6.28) (shake flask/slow stirring-HPLC/fluo., De Maagd et al. 1998)
5.94; 6.16	(quoted lit.; calculated, Passivirta et al. 1999)

Octanol/Air Partition Coefficient, log KOA:

11.19 (calculated, Finizio et al. 1997)

Bioconcentration Factor, log BCF:

- 5.15 (microorganisms-water, calculated from K_{ow}, Mabey et al. 1982)
- 4.12 (Daphnia magna, Newsted & Giesy 1987)

Sorption Partition Coefficient, log Koc at 25°C or as indicated:

5.99 (sediments average, Kayal & Connell 1990)

- 7.00 (Baltic Sea particulate field samples, concn distribution-GC/MS, Broman et al. 1991)
- 6.80 (10°C), 6.74, 6.89 (20°C), 6.46 (35°C), 6.44, 6.45 (45°C) (log K_{DOC} dissolved organic material from lake, gas-purge technique- HPLC/fluorescence, Lüers & ten Hulscher 1996)
- 6.30 (20°C, log K_{POC} particulate organic material from lake, Lüers & ten Hulscher 1996)
- 6.04 (5.93-6.12), 5.47 (5.39-5.54) (sediments: Lake Oostvaardersplassen, Lake Ketelmeer, shake flask-HPLC/UV, de Maagd et al. 1998)
- 6.15-8.02; 5.70-7.50 (range, calculated from sequential desorption of 11 urban soils; lit. range, Krauss & Wilcke 2001, for benzo[b + j + k]fluoranthenes)
- 5.91; 6.50, 6.26, 6.68 (20°C, batch equilibrium, A2 alluvial grassland soil; calculated values of expt 1, 2, 3-solvophobic approach, Krauss & Wilcke 2001, for benzo[b + j + k]fluoranthenes)

Environmental Fate Rate Constants, k or Half-Lives, t₄:

Volatilization:

Photolysis: atmospheric and aqueous photolysis $t_{1/2} = 3.8-499$ h, based on measured rate of photolysis in heptane under November sunlight and adjusted by ratio of sunlight photolysis half-lives in water versus heptane (Howard et al. 1991);

first-order daytime decay constants: $k = 0.0047 \text{ min}^{-1}$ for soot particles loading of 1000-2000 ng/mg and $k = 0.0013 \text{ min}^{-1}$ with 30-350 ng/mg loading (Kamens et al. 1988);

direct photolysis t_{1/2}(obs) = 0.88 h, t_{1/2}(calc) = 0.80 h predicted by QSPR in atmospheric aerosol (Chen et al. 2001)

Photodegradation $k = 3 \times 10^{-5} \text{ s}^{-1}$ in surface water during the summertime at mid-latitude (Fasnacht & Blough 2002)

Oxidation: rate constant $k = 4 \times 10^7 \text{ M}^{-1} \text{ h}^{-1}$ for singlet oxygen and $k = 5 \times 10^3 \text{ M}^{-1} \text{ h}^{-1}$ for peroxy radical (Mabey et al. 1982);

photooxidation $t_{\nu_e} = 1.1-11$ h, based on estimated rate constant for reaction with hydroxyl radical in air (Howard et al. 1991).

Hydrolysis: not hydrolyzable (Mabey et al. 1982);

no hydrolyzable groups (Howard et al. 1991).

Biodegradation:

aerobic $t_{y_2} = 21840-51360$ h, based on aerobic soil die-away test data (Howard et al. 1991);

t_k(aq. anaerobic) = 87360-205440 h, based on estimated unacclimated aqueous aerobic biodegradation halflife (Howard et al. 1991). Biotransformation: estimated to be 3×10^{-12} mL cell⁻¹ h⁻¹ for bacteria (Mabey et al. 1982). Bioconcentration, Uptake (k₁) and Elimination (k₂) Rate Constants:

Half-Lives in the Environment:

Air: $t_{y_2} = 1.1 - 11$ h, based on estimated photooxidation half-life in air (Howard et al. 1991);

- $t_{1/2} = 14.10$ h in simulated sunlight: $t_{1/2} = 3.90$ h in simulated sunlight + ozone (0.2 ppm), $t_{1/2} = 34.90$ h in dark reaction ozone (0.2 ppm) u) under simulated atmospheric conditions (Katz et al. 1979);
- $t_{y_2} = 0.8$ h for adsorption on soot particles in an outdoor Teflon chamber with an estimated rate constant k = 0.0138 min⁻¹ at 1 cal cm⁻² min⁻¹ and 10 g/m³ H₂O at 20°C (Kamens et al. 1988).

Surface water: $t_{4} = 3.8-499$ h, based on photolysis half-life in water (Howard et al. 1991).

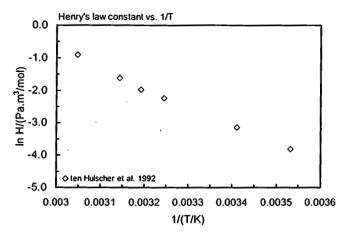
Groundwater: $t_{\frac{1}{2}} = 42680-102720$ h, based on estimated unacclimated aqueous aerobic biodegradation half-life (Howard et al. 1991).

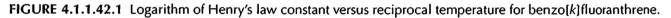
Sediment: desorption $t_{y_2} = 23.2$ d from sediment under conditions mimicking marine disposal (Zhang et al. 2000). Soil: $t_{y_2} = 21840-51360$ h, based on aerobic soil die-away test data Howard et al. 1991);

 $t_{4} > 50 d$ (Ryan et al. 1988);

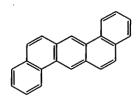
mean $t_{y_2} = 8.7$ yr for Luddington soil (Wild et al. 1991).

Biota: elimination $t_{y_2} = 11.9$ d from mussel *Mytilus edulis*; $t_{y_2} = 7.7$ d from Oyster (isomer unspecified), $t_{y_1} = 3.9$ d from clam *Mercenario mercenaria* (isomer unspecified) (quoted, Meador et al. 1995).


TABLE 4.1.1.42.1


Reported Henry's law constants of benzo[k]fluoranthene at various temperatures and temperature dependence equations

$\ln K_{AW} = A - B/(T/K)$	(1)	$\log K_{AW} = A - B/(T/K)$	(la)
$\ln (1/K_{AW}) = A - B/(T/K)$	(2)	$\log (1/K_{AW}) = A - B/(T/K)$	(2a)
$\ln (k_{\rm H}/\rm{atm}) = A - B/(T/K)$	(3)		
$\ln [H/(Pa m^3/mol)] = A - B/(T/K)$	(4)	$\ln \left[\frac{H}{(atm \cdot m^3/mol)}\right] = A - B/(T/K)$	(4a)
$K_{AW} = A - B \cdot (T/K) + C \cdot (T/K)^2$	(5)		


ten Hulscher et al. 1992

gas s	stripping-HPLC/fluorescence	
t/°C	H/(Pa m ³ /mol)	
10.0	0.022	
20.0	0.043	
35.0	0.107	
40.1	0.138	
45.0	0.198	
55.0	0.403	
$\ln K_{AW} = -\Delta$	$M_{vol}/RT + \Delta S_{vol}/R$	
ΔS_{vol}	16.41	
ΔH _{vol}	5893.7	
	volatilization:	
∆H _{voi} /(kJ·mo	ol-') = 49 ±1.9	
entropy of v	olatilization, ∆S	
T∆S _{vol} /(kJ·m	$(101^{-1}) = 40 \pm 4$	
	at 20°C	

4.1.1.52 Dibenz[*a*,*h*]anthracene

Common Name: Dibenz[a,h]anthracene Synonym: DB[a,h]A, 1,2,5,6-dibenzanthracene, 1,2:5,6-dibenzanthracene Chemical Name: 1,2:5,6-dibenzanthracene CAS Registry No: 53-70-3 Molecular Formula: C₂₂H₁₄ Molecular Weight: 278.346 Melting Point (°C): 269.5 (Lide 2003) Boiling Point (°C): 524 (Weast 1977) Density (g/cm³ at 20°C): Molar Volume (cm³/mol): 252.6 (Ruelle & Kesselring 1997; Passivirta et al. 1999) 299.9 (calculated-Le Bas method at normal boiling point) Enthalpy of Fusion, ΔH_{fus} (kJ/mol): 31.165 (Ruelle & Kesselring 1997) 31.16 (exptl., Chickos et al. 1999) Entropy of Fusion, ΔS_{fus} (J/mol K): 58.26, 44.0 (exptl., calculated-group additivity method, Chickos et al. 1999) 57.3 (Passivirta et al. 1999) Fugacity Ratio at 25°C (assuming $\Delta S_{fus} = 56$ J/mol K), F: 0.00399 (mp at 269.5°C) 0.00389 (calculated, Passivirta et al. 1999) Water Solubility (g/m³ or mg/L at 25°C or as indicated and the reported temperature dependence equations): 0.0005 (27°C, shake flask-nephelometry, Davis et al. 1942) 0.0006 (shake flask-UV, Klevens 1950) 0.0025 (shake flask-LSC, Means et al. 1980b) 0.00056 (lit. mean, Pearlman et al. 1984) $\log [S_1/(mol/L)] = -1.409 - 1631/(T/K)$ (supercooled liquid, Passivirta et al. 1999) Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section): 1.33×10^{-8} (20°C, estimated, Callahan et al. 1979) $3.70 \times 10^{-10*}$ (effusion method, De Kruif 1980) log (P/Pa) = 16.049 - 7395.4/(T/K); temp range: 163-189°C (torsion-effusion, de Kruif 1980) log (P/Pa) = 15.876 - 7312/(T/K); temp range: 163-189°C (weighing-effusion, de Kruif 1980) $\log (P/Pa) = 15.962 - 7730/(T/K);$ temp range: 163-189°C (mean, de Kruif 1980) 4.25×10^{-10} (extrapolated-Antoine eq., Stephenson & Malanowski 1987) log (Ps/kPa) = 12.515 - 7420/(T/K); temp range 403-513 K (Antoine eq., Stephenson & Malanowski 1987) 3.70×10^{-10} ; 9.31×10^{-8} (quoted solid P_s from Mackay et al. 1992; converted to supercooled liquid P₁ with fugacity ratio F, Passivirta et al. 1999)

 $\log (P_s/Pa) = 12.82 - 5824/(T/K)$ (solid, Passivirta et al. 1999)

 $\log (P_L/Pa) = 9.82 - 5002/(T/K)$ (supercooled liquid, Passivirta et al. 1999)

 2.51×10^{-7} (supercooled liquid P_L, calibrated GC-RT correlation, Lei et al. 2002)

 $\log (P_L/Pa) = -5193/(T/K) + 10.82; \Delta H_{vap} = -99.4 \text{ kJ} \cdot \text{mol}^{-1}$ (GC-RT correlation, Lei et al. 2002)

830

Henry's Law Constant (Pa m³/mol at 25°C and reported temperature dependence equations):

- 0.0074 (calculated-P/C, Mabey et al. 1982)
- 0.0076 (calculated-P/C, Eastcott et al. 1988)

 $\log [H/(Pa m^3/mol)] = 11.23 - 3371/(T/K)$, (Passivirta et al. 1999)

Octanol/Water Partition Coefficient, log Kow:

- 6.50 (shake flask-LSC, Means et al. 1980b)
- 6.88 (HPLC-RT/MS, Burkhard et al. 1985)
- 5.80 (Hansch & Leo 1985)
- 6.75 ± 0.40 (recommended, Sangster 1989, 1993)
- 7.11 (TLC retention time correlation, De Voogt et al. 1990)
- 6.60 (shake flask-UV, pH 7.4, Alcorn et al. 1993)
- 6.50 (recommended, Hansch et al. 1995)

 6.54 ± 0.19 , 6.60 ± 0.78 (HPLC-k' correlation: ODS column; Diol column, Helweg et al. 1997)

Octanol/Air Partition Coefficient, log KoA:

Bioconcentration Factor, log BCF:

5.84	(microorganisms-water, calculated from K _{ow} , Mabey et al. 1982)
4.63	(activated sludge, Freitag et al. 1984)
3.38, 4.63, 1.0	(algae, activated sludge, fish, Freitag et al. 1985)
4.00	(Daphnia magna, Newsted & Giesy 1987)

Sorption Partition Coefficient, log Koc:

- 6.31 (average of 14 soil/sediment samples, equilibrium sorption isotherms by shake flask-LSC, Means et al. 1980b)
- 6.22, 6.18 (calculated-regression of k_p versus substrate properties, calculated-K_{OW}, Means et al. 1980b)

6.22; 6.11, 5.30, 5.62 (quoted; calculated-Kow, calculated-S and mp, calculated-S, Karickhoff 1981)

(calculated-Kow, Mabey et al. 1982)

5.20 (calculated, Pavlou 1987)

6.31; 6.44; 3.75-5.77 (soil, quoted exptl.; calculated-MCI 'χ, calculated-K_{ow} range, Sabljic 1987a,b)

5.77 (soil, calculated-K_{ow} based on model of Karickhoff et al. 1979, Sabljic 1987b)

5.66 (soil, calculated-K_{ow} based on model of Means et al. 1982, Sabljic 1987b)

4.60 (soil, calculated-K_{ow} based on model of Chiou et al. 1983, Sabljic 1987b)

4.61 (soil, calculated-K_{ow} based on model of Kenaga 1980, Sabljic 1987b)

- 3.75 (soil, calculated-K_{ow} based on model of Briggs 1981, Sabljic 1987b)
- 6.22 (calculated-MCI 'χ, Sabljic et al. 1995)
- 6.44 (humic acid, HPLC-k' correlation, Nielsen et al. 1997)

6.00; 6.30 (soil, calculated-universal solvation model; quoted exptl., Winget et al. 2000)

6.76-8.42; 5.80-8.50 (range, calculated from sequential desorption of 11 urban soils; lit. range, Krauss & Wilcke 2001)

6.03; 7.0, 6.76, 7.32 (20°C, batch equilibrium, A2 alluvial grassland soil; calculated values of expt 1,2,3solvophobic approach, Krauss & Wilcke 2001)

Environmental Fate Rate Constants, k or Half-Lives, t_{1/2}:

Volatilization:

6.52

- Photolysis: atmospheric and aqueous photolysis $t_{1/4} = 782$ h, based on measured rate of photolysis in heptane under November sunlight (Muel & Saguim 1985; quoted, Howard et al. 1991) and $t_{1/4} = 6$ h after adjusting the ratio of sunlight photolysis in water versus heptane (Smith et al. 1978; Muel & Saguem 1985; quoted, Howard et al. 1991);
 - pseudo-first-order direct photolysis rate constant k(exptl) = 0.014 min^{-1} with the calculated $t_{1/2} = 0.83$ h and the predicted k = 0.0216 min^{-1} calculated by QSPR method in aqueous solution when irradiated with a 500 W medium pressure mercury lamp (Chen et al. 1996);
 - direct photolysis $t_{y_2}(obs.) = 0.31$ h, $t_{y_2} = 0.38$ h predicted by QSPR method in atmospheric aerosol (Chen et al. 2001).

- Oxidation: rate constant $k = 5 \times 10^8 \text{ M}^{-1} \text{ h}^{-1}$ for singlet oxygen and $k = 1.5 \times 10^4 \text{ M}^{-1} \text{ h}^{-1}$ for peroxy radical (Mabey et al. 1982);
 - photooxidation $t_{4} = 0.428-4.28$ h, based on estimated rate constant for reaction with hydroxyl radical in air (Atkinson 1987; quoted, Howard et al. 1991).

Hydrolysis: not hydrolyzable (Mabey et al. 1982); no hydrolyzable groups (Howard et al. 1991).

Biodegradation: aerobic t_{4} = 8664-22560 h, based on aerobic soil die-away test data (Coover & Sims 1987; Sims 1990; quoted, Howard et al. 1991);

 $k = 0.0019 d^{-1}$ with $t_{y_2} = 361 d$ for Kidman sandy loam and $k = 0.0017 d^{-1}$ with $t_{y_2} = 420 d$ for McLarin sandy loam all at -0.33 bar soil moisture (Park et al. 1990).

Biotransformation: estimated to be 3×10^{-12} mL cell⁻¹ h⁻¹ for bacteria (Mabey et al. 1982).

Bioconcentration, Uptake (k_1) and Elimination (k_2) Rate Constants:

Half-Lives in the Environment:

Air: half-lives under simulated atmospheric conditions: $t_{1/2} = 9.6$ h in simulated sunlight, $t_{1/2} = 4.8$ h in simulated sunlight + ozone (0.2 ppm), $t_{1/2} = 2.71$ h in dark reaction ozone (0.2 ppm) (Katz et al. 1979; quoted, Bjørseth & Olufsen 1983);

- $t_{y_3} = 0.428 4.28$ h, based on estimated photooxidation half-life in air (Atkinson 1987; quoted, Howard et al. 1991).
- Surface water: t_{1/2} = 6-782 h, based on sunlight photolysis half-life in water (Smith et al. 1978; Muel & Saguem 1985; quoted, Howard et al. 1991);

photolysis $t_{\nu_2} = 0.83$ h in aqueous solution when irradiated with a 500 W medium-pressure mercury lamp (Chen et al. 1996).

Groundwater: $t_{\nu_{A}} = 17328-45120$ h, based on estimated unacclimated aqueous aerobic biodegradation half-life (Howard et al. 1991).

Sediment:

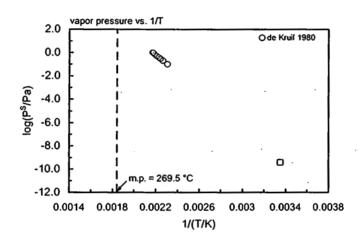
Soil: biodegradation rate constant k = 0.0019 d⁻¹ with $t_{1/2}$ = 361 d for Kidman sandy loam soil and k = 0.117 d⁻¹ with $t_{1/2}$ = 420 d for McLaurin sandy loam soil (Park et al. 1990);

t_{1/2} ~ 8664-22560 h, based on aerobic soil dieaway test data (Coover & Sims 1987; Sims 1990; quoted, Howard et al. 1991);

mean $t_{16} = 20.607$ wk (quoted, Wild et al. 1991).

de Kruif 1980

Biota:


TABLE 4.1.1.52.1

Reported vapor pressures of dibenz[a,h]anthracene at various temperatures and the coefficients for the vapor pressure equations

$\log P = A - B/(T/K)$	(1)	$\ln P = A - B/(T/K)$	(1a)
$\log P = A - B/(C + t/^{\circ}C)$	(2)	$\ln P = A - B/(C + t/^{\circ}C)$	(2a)
$\log P = A - B/(C + T/K)$	(3)		
$\log P = A - B/(T/K) - C \cdot \log (T/K)$	(4)		

torsion-, weighing effusion	
P/Pa	t/°C
0.1	160.38
0.2	168.21
0.3	172.93
0.4	176.33
0.5	179.01
0.6	181.22
0.7	183.11
0.8	184.76

TABLE 4.1.1	.52.1 (Continued)		
de Kruif 1980			
torsion-,	weighing effusion	•	
t/°C	P/Pa	•	
186.22	0.9		
187.54	1.0		
25.0	3.7×10^{-10}		
	extrapolated		
∆H _{subi} /(kJ mol ⁻	(1) = 140.0		

.

ż

5.1.2.5 1,2-Dibromoethane

Br

Common Name: 1,2-Dibromoethane
Synonym: ethylene bromide, ethylene dibromide, sym-dibromoethane, EDB
Chemical Name: 1,2-dibromoethane
CAS Registry No: 106-93-4
Molecular Formula: C ₂ H ₄ Br ₂ , CH ₂ BrCH ₂ Br
Molecular Weight: 187.861
Melting Point (°C):
9.84 (Lide 2003)
Boiling Point (°C):
131.6 (Lide 2003)
Density (g/cm ³ at 20°C):
2.1792, 2.1688 (20°C, 25°C, Dreisbach 1959; Horvath 1982)
2.1791, 2.1687 (20°C, 25°C, Riddick et al. 1986)
Molar Volume (cm ³ /mol):
86.25 (20°C, calculated-density, Stephenson & Malanowski 1987)
98.4 (calculated-Le Bas method at normal boiling point)
Enthalpy of Vaporization, ΔH_v (kJ/mol):
41.73, 36.35 (25°C, at bp, Riddick et al. 1986)
Enthalpy of Fusion, ΔH_{fus} (kJ/mol):
10.03 (calculated, Dreisbach 1959)
10.945 (quoted, Riddick et al. 1986)
Entropy of Fusion, ΔS _{fus} (J/mol K):
Fugacity Ratio at 25°C, F: 1.0
Water Solubility (g/m ³ or mg/L at 25°C or as indicated. Additional data at other temperatures designated * are compiled at the end of this section):
3920, 4310 (15°C, 30°C, shake flask-interferometer, Gross & Saylor 1931)
4040* (measured range 0–50°C, van Arkel & Vles 1936)
4017 (Seidell 1940; quoted, Deno & Berkheimer 1960; Hine & Mookerjee 1975)
8600 (shake flask-volumetric method, Booth & Everson 1948)
4200 (measured by Dow Chemical, Dreisbach 1959)
3510* (20°C, shake flask-GC, measured range 3–34°C, Chiou & Freed 1977)
2910 (shake flask-GC, Jones et al. 1977/78)
3520 (shake flask-GC, Chiou et al. 1977)
4320, 4321 (20°C, 25°C, shake flask-GC, Mackay et al. 1980)
4152* (summary of literature data, Horvath 1982)
4310 (30°C, Verschueren 1983)
4290 (30°C, selected, Riddick et al. 1986)
3120 (shake flask-reverse phase polarography, Tokoro et al. 1988)
4120*, 4310(19.5°C, 30.7°C, shake flask-GC/TC, measured range 10.0–90.6°C, Stephenson 1992)
4192 (20°C, limiting activity coeff. by equilibrium air stripping-GC, Hovorka & Dohnal 1997)
3910* (tentative value, temp range 0–75°C. IUPAC-NIST Solubility Data Series, Hovath & Getzen 1999a)
$S/(wt\%) = 3.8651 - 2.7921 \times 10^{-2} \cdot (T/K) + 5.45647 \times 10^{-5} \cdot (T/K)^2$, temp range 273-348 K (eq. derived from
$S/(wto) = 5.8051 - 2.7921 \times 10^{-3}(17K) + 5.45047 \times 10^{-3}(17K)^2$, temp range 275-548 K (eq. derived from literature solubility data, Horvath & Getzen 1999a)
meratere soluonity data, 1101 vali & October 1997aj
Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations):
1333 (18.2°C, summary of literature data, temp range -27 to 131.1°C, Stull 1947)
1550 (algorithm of Article and Provident 1050)

- 1560 (calculated-Antoine eq., Dreisbach 1959)
- log (P/mmHg) = $7.06245 1469.7/(220.0 + t/^{\circ}C)$; temp range 43–215°C (Antoine eq. for liquid state, Dreisbach 1959)

.

.

ì

 $log (P/mmHg) = [-0.2185 \times 9229.4/(T/K)] + 7.93581; temp range -27 to 304°C (Antoine eq., Weast 1972-73) 1466, 2266 (20°C, 30°C, Verschueren 1983)$

- 1626 (interpolated-Antoine eq., Boublik et al. 1984)
- $log (P/kPa) = 5.62666 1156.346/(2187.446 + t/^{\circ}C);$ temp range 52.56-131.41°C (Antoine eq. from reported exptl. data, Boublik et al. 1984)
- log (P/mmHg) = $6.72148 1280.82/(201.75 + t/^{\circ}C)$; temp range $52-131^{\circ}C$ (Antoine eq., Dean 1985, 1992) 1540 (lit. average, Riddick et al. 1986)
- log (P/kPa) = 4.32297 1560.3/(230.0 + t/°C); temp range not specified (Antoine eq., Riddick et al. 1986)
- $\log (P_s/kPa) = 10.03 2863/(T/K)$; temp range 228-248 K (Antoine eq.-I, Stephenson & Malanowski 1987)
- $\log (P_s/kPa) = 9.009 2606.5/(T/K)$; temp range 251-281 K (Antoine eq.-II, Stephenson & Malanowski 1987)
- log (P_L/kPa) = 7.501-2181.1/(T/K); temp range 283-317 K (liquid, Antoine eq.-III, Stephenson & Malanowski 1987)
- $\log (P_L/kPa) = 6.18375 1469.7/(-53.15 + T/K);$ temp range 316-488 K (Antoine eq.-IV, Stephenson & Malanowski 1987)
- log (P_L/kPa) = 6.16941 3200/(117.25 + T/K); temp range 404-578 K (Antoine eq.-V, Stephenson & Malanowski 1987)
- $log (P/mmHg) = 16.8759 2.4267 \times 10^{3}/(T/K) 3.0891 \cdot log (T/K) 6.0088 \times 10^{-10} \cdot (T/K) + 3.5901 \times 10^{-7} \cdot (T/K)^{2};$ temp range 283-650 K (vapor pressure eq., Yaws 1994)

Henry's Law Constant (Pa m³/mol at 25°C):

- (calculated as $1/K_{AW}$, C_W/C_A , reported as exptl., Hine & Mookerjee 1975)
- 15.64, 110.7 (calculated-group contribution method, calculated-bond contribution, Hine & Mookerjee 1975)
- 65.86^{*} (EPICS-GC, measured range 10–30°C, Ashworth et al. 1988)

 $\ln [H/(atm m^3 mol^{-1})] = 5.703 - 3876/(T/K); temp range 10-30°C (EPICS-GC, Ashworth et al. 1988)$

- 71.49, 133.12 (quoted, calculated-QSAR, Nirmalakhandan & Speece 1988)
- 83.07 (20-25°C and low ionic strength, quoted, Pankow & Rosen 1988; Pankow 1990)
- 70.77 (computed value, Yaws et al. 1991)
- 52.6 (20°C, equilibrium air stripping-GC, Hovorka & Dohnal 1997)
- 52.02 (20°C, exponential saturator EXPSAT technique, Dohnal & Hovorka 1999)
- 54.84 (20°C, selected from reported experimental determined values, Staudinger & Roberts 2001)
- log K_{AW} = 3.661 1556/(T/K) (summary of literature data, Staudinger & Roberts 2001)

Octanol/Water Partition Coefficient, log Kow:

- 1.96 (shake flask, Log P Database, Hansch & Leo 1987)
- 1.96 (recommended, Sangster 19943)
- 1.96 (recommended, Hansch et al. 1995)

Bioconcentration Factor, log BCF:

0.778 (calculated-S as per Kenaga & Goring 1978, Kenaga 1980)

0.301 (calculated-K_{oc} as per Kenaga & Goring 1978, Kenaga 1980)

Sorption Partition Coefficient, log Koc:

- 1.556 (soil, equilibrium sorption isotherm, Chiou et al. 1979)
- 1.643 (soil, quoted, Kenaga 1980; Kenaga & Goring 1980)
- 1.699 (soil, calculated as per Kenaga & Goring 1978, Kenaga 1980)
- 1.643 (soil, selected, Jury et al. 1990)
- 1.64 (soil, organic carbon $OC \ge 0.5\%$, average, Delle Site 2001)

Environmental Fate Rate Constants, k and Half-Lives, t₄:

Volatilization: estimated volatilization $t_{y_2} \sim 6.1$ h from water (Thomas 1982) Photolysis:

Oxidation: rate constant k, for gas-phase second order rate constants, k_{OH} for reaction with OH radical, k_{NO3} with NO₃ radical and k_{O3} with O₃ or as indicated, *data at other temperatures see reference:

 $k_{OH} = 2.5 \times 10^{-13}$ cm³ molecule⁻¹ s⁻¹ at 296 K (discharge flow system, Howard & Evenson 1976)

- $k_{OH}(calc) = 2.9 \times 10^{-13} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}, k_{OH}(obs.) = 2.5 \times 10^{-13} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ at room temp.}$ (SAR [structure-activity relationship], Atkinson 1985)
- $k_{OH} = 2.5 \times 10^{-13} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ with a loss rate of 0.01 d⁻¹, $k_{O3} < 10^{-23} \text{ cm}^3$ molecule⁻¹ s⁻¹ with a loss rate of $< 6 \times 10^{-7} \text{ d}^{-1}$ at room temp. (Atkinson 1985)
- $k_{03}(aq.) \le 0.014 \text{ M}^{-1} \text{ s}^{-1}$ for direct reaction with ozone in water at pH 2 and 22°C, with a half-life of 28 d at pH 7 (Yao & Haag 1991).
- Hydrolysis: EDB hydrolyzes to ethylene glycol and bromoethanol in water at pH 7 and 25°C with $t_{\frac{1}{2}} = 5-10 \text{ d}$ (Leinster et al. 1978; quoted, Verschueren 1983);
 - $k = 9.9 \times 10^{-6} h^{-1}$ at pH 7 and 25°C with a calculated $t_{1/2} = 8.0 \text{ yr}$ (Jungclaus & Cohen 1986; quoted, Ellington 1989);
 - rate constant $k = (8.9 \pm 0.1) \times 10^{-9} \text{ s}^{-1}$ in water at 25°C and pH 7.5 with an estimated half-life of 2.5 yr (Vogel & Reinhard 1986);
 - $t_{\frac{1}{2}} = 2.2$ yr, based on measured neutral hydrolysis rate constant at pH 7 and 25°C (Weintraub et al. 1986; quoted, Howard et al. 1991).
- Biodegradation: aerobic t_{1/2}(aq.) = 672-4320 h, based on unacclimated aqueous aerobic biodegradation screening test data (Bouwer & McCarty 1983; quoted, Howard et al. 1991);
 - anaerobic t_k(aq.) = 48-360 h, based on anaerobic stream and pond water sediment die-away test data (Jafvert & Wolfe 1987; quoted, Howard et al. 1991).

Biotransformation:

Bioconcentration, Uptake (k₁) and Elimination (k₂) Rate Constants or Half-Lives:

Half-Lives in the Environment:

- Air: disappearance $t_{1/2} = 2.4-24$ h for the reaction with OH radical in air (USEPA 1974; quoted, Darnall et al. 1976); photooxidation $t_{1/2} = 257-2567$ h, based on estimated rate constant for the reaction with hydroxyl radical in air (Atkinson 1987; quoted, Howard et al. 1991).
- Surface water: t_{1/2} = 672–4320 h, based on unacclimated aqueous aerobic biodegradation (Howard et al. 1991); k(exptl) ≤ 0.014 M⁻¹ s⁻¹ for direct reaction with ozone in water at pH 2 and 22°C, with t_{1/2} ≥ 28 d at pH 7 (Yao & Haag 1991).
- Ground water: $t_{4/2} = 470-2880$ h, based on data from anaerobic ground water ecosystem study (Wilson et al. 1986; quoted, Howard et al. 1991) and data from an aerobic ground water ecosystem study (Swindoll et al. 1987; quoted, Howard et al. 1991).
- Sediment: calculated $t_{1/2} = 1500$ d at 25°C and pH 7, based on studies in pure water and in barely saturated subsurface sediment at 25–60°C (Haag & Mill 1988).

Soil: estimated $t_{1/2} \sim 3650$ d of volatilization loss from soil (Jury et al. 1990);

disappearance $t_{14} < 2.0$ d, estimated from the volatilization loss of mixtures (Anderson et al. 1991);

 $t_{y_2} = 672-4320$ h, based on unacclimated aqueous aerobic biodegradation half-life (Howard et al. 1991). Biota:

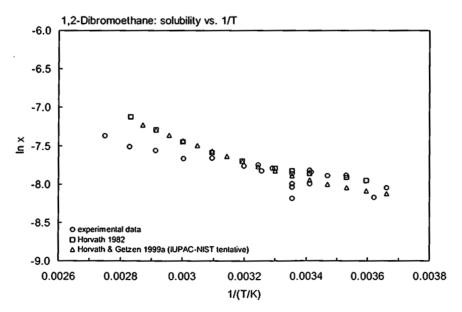
TABLE 5.1.2.5.1

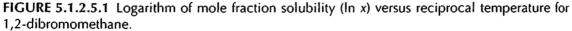
Reported aqueous solubilities of 1,2-dibromoethane at various temperatures

$$S/(wt\%) = 0.36583 + 1.4836 \times 10^{-3} \cdot (t^{\circ}C) + 3.48175 \times 10^{-6} \cdot (t^{\circ}C)^{2} + 6.47685 \times 10^{-7} \cdot (t^{\circ}C)^{3}$$
(1)

$$S/(wt\%) = 3.8651 - 2.7921 \times 10^{-2} \cdot (T/K) + 5.45647 \times 10^{-5} \cdot (T/K)^{2},$$
(2)

1.


Gross & Saylor 1931 shake flask-interferometer		van Arkel & Vles 1936		Chiou & Freed 1977		Horvath 1982	
				shake flask-GC		summary of	literature data
t/°C	S/g·m ⁻³	t/°C	S∕g·m-³	t/°C	S/g·m⁻³	t/°C	S/g·m- ³
15	3920	0	3340	3	2960	5	3658
30	4310	20	4020	20	3510	10	3817
		35	4490	34	4150	20	4012
		50	5290			25	4152


(Continued)

R1756 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

Gross & Saylor 1931		van Arkel	van Arkel & Vles 1936		Chiou & Freed 1977		th 1982
shake flas	k-interferometer		shake flask-GC		summary of	literature data	
t/°C	S/g·m⁻³	t/°C	C S∕g·m- ³	t/°C	S/g·m- ³	t/°C	S/g·m⁻³
- ···						30	4310
						40	4722
						50	5297
						60	6073
						70	7089
						80	8384
						eq.1	S/wt%

		etzen 1999a	Horvath & G		ison 1992	Stepher
		JPAC-NIST	tentative, Il		flask-GC	shake
	S/g·m ⁻³	t/°C	S/g·m ⁻³	. t/°C	S/g⋅m ⁻³	t/°C
		continued				
	5780	55	3090	0	3950	10.1
	6190	60	3200	5	4120	19.5
	6630	65	3340	10	4310	30.7
	7090	70	3500	15	4440	39.6
	7580	75	3690	20	4930	50
			3910	25	4890	59.9
	S/wt%	eq. 2	4150	30	5420	70.2
,			4420	35	5720	80.3
		*	4720	40	6580	90.6
			5050	45		
			5400	50		

2.

TABLE 5.1.2.5.2 Reported Henry's law constants of 1,2-dibromoethane at various temperatures

As	hworth et al. 1988	
	EPICS-GC	-
t/°C	H/(Pa m ³ /mol)	-
10	30.4	
15	48.6	
20	61.8	
25	65.9	
30	81.1	
In [H/(atm∙	m3/mol)] = A - B/(T/K)	
Α	5.703	
В	3876	

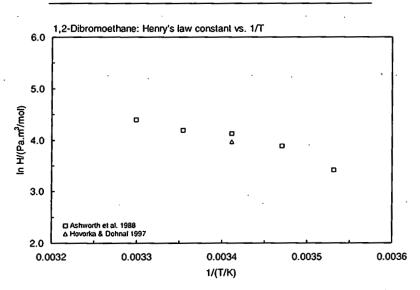


FIGURE 5.1.2.5.2 Logarithm of Henry's law constant versus reciprocal temperature for 1,2-dibromomethane.

930

5.1.1.2 Dichloromethane

Common Name: Dichloromethane Synonym: methylene chloride, methylene dichloride, methane dichloride, methylene bichloride Chemical Name: dichloromethane CAS Registry No: 75-09-2 Molecular Formula: CH₂Cl₂ Molecular Weight: 84.933 Melting Point (°C): -95.2 (Lide 2003) Boiling Point (°C): 40 (Lide 2003) Density (g/cm³ at 20°C): 1.3255, 1.3163 (20°C, 25°C, Dreisbach 1959; 1961) (Horvath 1982; Weast 1982-83) 1.3266 1.3256, 1.131678 (20°C, 25°C, Riddick et al. 1986) Molar Volume (cm³/mol): 64.0 (calculated-density, Wang et al. 1992) 71.4 (calculated-Le Bas method at normal boiling point) Enthalpy of Vaporization, ΔH_v (kJ/mol): (25°C, bp, Riddick et al. 1986) 28.56, 28.98 Enthalpy of Fusion, ΔH_{fus} (kJ/mol): (calculated, Dreisbach 1959; 1961) 1.435 1.472 (quoted, Riddick et al. 1986) Entropy of Fusion, ΔS_{fus} (J/mol K): Fugacity Ratio at 25°C, F: 1.0 (Suntio et al. 1988) Water Solubility (g/m³ or mg/L at 25°C or as indicated and reported temperature dependence equations. Additional data at other temperatures designated * are complied at the end of this section): 20000* (20°C, volumetric method, Rex 1906) 19910 (Seidell 1940) 13200 (25°C, data presented between 0-50°C in graph, McGovern 1943) 34480 (shake flask-residue volume method, Booth & Everson 1948) 13200 (20°C, McConnell et al. 1975; Pearson & McConnell 1975) 20000* (Archer & Sterns 1977; Andelman 1978; measured range 0-30°C, quoted, Horvath 1982) 22700, 19400 (1.5, 20°C, literature average, Dilling 1977) (shake flask-titration/turbidity, Coca et al. 1980) 13700 13030* (summary of literature data, Horvath 1982) 13000 (selected, Thomas 1982; Riddick et al. 1986; Howard 1990) 16700 (Verschueren 1983; selected, Valsaraj 1988) (calculated-UNIFAC activity coeff., Banerjee 1985) 19020 17200* (26.8°C, shake flask-GC/TC, measured range 0-35.7°C, Stephenson 1992) 19260, 19830, 19500, 19500 (20, 30, 35, 40°C, infinite dilution activity coeff. γ°-GC, Tse et al. 1992) 18080, 19995, 20880, 21850 (20, 30, 35, 40°C, infinite dilution activity coeff. γ°-UNIFAC, Tse et al. 1992) 20080, 18800, 18880 (10, 20, 30°C, activity coeff. γ° -differential pressure transducer, Wright et al. 1992) 18650 (gas stripping-GC, Li et al. 1993) 20340 (20°C, limiting activity coeff. by equilibrium air stripping-GC, Hovorka & Dohnal 1997) Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section):

46510, 68170 (20°C, 30°C, Rex 1906)

57120 (interpolated from graph, temp range –40 to 110°C, McGovern 1943)

58100 (calculated-Antoine eq., Dreisbach 1959; 1961)

- log (P/mmHg) = 7.07138 1134.6/(231.0 + t/°C); temp range -28 to 121°C (Antoine eq. for liquid state, Dreisbach 1955)
- 49704* (21.199°C, temp range -9.03 to 39.429°C, Boublik 1960; quoted, Boublik et al. 1984)
- 70530* (29.993°C, temp range 29.993–39.993°C, Mueller & Ignatoswski 1960)
- log (P/mmHg) = $7.0803 1138.91/(231.45 + t/^{\circ}C)$; temp range -28 to $73^{\circ}C$ (Antoine eq. for liquid state, Dreisbach 1961)
- 57390 (calculated-Antoine eq., temp range -70 to 40.7°C, Weast 1972-73)
- $\log (P/mmHg) = [-0.2185 \times 7572.3/(T/K)] + 8.18330$; temp range -70 to 40.7°C (Antoine eq., Weast 1972-73)
- 58275, 57270 (calculated-Antoine eq., Boublik et al. 1973)
- log (P/mmHg) = $9.72567 2979.516/(395.553 + t/^{\circ}C)$; temp range 30-40°C (Antoine eq. from reported exptl. data, Boublik et al. 1973)
- 48200 (20°C, McConnell et al. 1975; Pearson & McConnell 1975)
- 21065, 57062 (1.5, 25°C, Dow Chemicals data, Dilling 1977)
- 57950, 57980 (calculated-Antoine eq., Boublik et al. 1984)
- log (P/kPa) = 5.96841 1014.441/(216.227 + t/°C); temp range 30-40°C (Antoine eq. from reported exptl. data, Boublik et al. 1984)
- $\log (P/kPa) = 6.18791 1127.232/(229.764 + t/^{\circ}C)$; temp range -9.05 to 38.4°C (Antoine eq. from reported exptl. data, Boublik et al. 1984)
- 47990 (selected, Daniels et al. 1985)

 $\log (P/mmHg) = 7.4092 - 1325.9/(252.6 + t/^{\circ}C)$; temp range -40 to 40°C (Antoine eq., Dean 1985, 1992)

58100 (selected, Riddick et al. 1986)

log (P/kPa) = 6.07622 - 1070.07/(223.24 + t/°C); temp range not specified (Antoine eq., Riddick et al. 1986) 57990 (calculated-Antoine eq., Stephenson & Malanowski 1987)

- $\log (P_L/kPa) = 6.18649 1126.53/(-43.46 + T/K);$ temp range 264-312 K (Antoine eq.-I, Stephenson & Malanowski 1987)
- log (P_L/kPa) = 6.88926 1545.323/(3.375 + T/K); temp range 311-383 K (Antoine eq.-II, Stephenson & Malanowski 1987)
- log (P_L/kPa) = 5.87285 861.817/(-94.102 + T/K); temp range 379-455 K (Antoine eq.-III, Stephenson & Malanowski 1987)
- $\log (P_L/kPa) = 5.20540 449.586/(-193.701 + T/K);$ temp range 450-510 K (Antoine eq., Stephenson & Malanowski 1987)
- 47660, 71000, 85640, 102540 (20, 30, 35, 40°C, quoted from DIPPR, Tse et al. 1992)

 $log (P/mmHg) = 32.5069 - 2.5166 \times 10^{3} / (T/K) - 8.8015 \cdot log (T/K) + 1.2934 \times 10^{-10} \cdot (T/K) + 3.3194 \times 10^{-6} \cdot (T/K)^{2};$ temp range 178-510 K (vapor pressure eq., Yaws 1994)

57844 (selected summary of literature data, temp range 178.25–338.15 K, Xiang 2002)

70486 (30°C, vapor-liquid equilibrium study, Pathare et al. 2004)

```
Henry's Law Constant (Pa m<sup>3</sup>/mol at 25°C or as indicated and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section):
```

231.3 (calculated as $1/K_{AW}$, C_W/C_A , reported as exptl., Hine & Mookerjee 1975)

301.0 (McConnell et al. 1975; Pearson & McConnell 1975)

- 322.3 (calculated, Neely 1976)
- 292, 271.5 (exptl., calculated-C_A/C_w, Dilling 1977)
- 111.3 (20°C, calculated-P/C, Kavanaugh & Trussell 1980)

 $\log (k_{\rm H}/atm) = 7.92 - 1821.84/(T/K)$ (least-square regression of data from lit., Kavanaugh & Trussell 1980)

295 (equilibrium cell-concn ratio-GC/FID, Leighton & Calo 1981)

295* (24.9°C equilibrium cell-concn ratio-GC/FID, measured range 1.9–24.9°C Leighton & Calo 1981)

ln (k_H/atm) = 17.42 - 3645/(T/K); temp range 1.9-24.9°C (equilibrium cell-concn ratio measurements, Leighton & Calo 1981)

- 205.7 (calculated-P/C, Mabey et al. 1982)
- 303.9 (calculated-P/C, Thomas 1982)
- 229.1 (20°C, EPICS-GC, Lincoff & Gossett 1983)
- 227.9 (20°C, EPICS-GC, Lincoff & Gossett 1984)

ln [H/(atm m³/mol)] = 8.200 - 4191/(T/K); temp range 10-30°C (EPICS measurements, Lincoff & Gossett 1984)

In [H/(atm m³/mol)] = 9.035 - 4472/(T/K); temp range 10-30°C (batch air stripping measurements, Lincoff & Gossett 1984)

- 222.0 (EPICS-GC, Gossett 1987)
- 173.0* (20°C, EPICS-GC/FID, measured range 9.6–34.6°C, Gossett 1987)

ln [H/(atm m³/mol)] = 9.843 - 5612/(T/K); temp range: 9.6-34.6°C (EPICS measurements, Gossett 1987)

- 187.7 (20°C, EPICS, Yurteri et al. 1987)
- 323 (gas stripping-GC, Warner et al. 1987)
- 300* (EPICS-GC/FID, measured range 10–30°C, Ashworth et al. 1988)
- $\ln [H/(atm \cdot m^3/mol)] = 8.483 4268/(T/K)$; temp range 10-30°C (EPICS measurements, Ashworth et al. 1988)
- 451.1 (calculated-QSAR, Nirmalakhandan & Speece 1988)
- 202.6 (20-25°C and low ionic strength, Pankow & Rosen 1988; Pankow 1990)
- 254.4 (calculated-P/C, Suntio et al. 1988)
- 251 (computed value, Yaws et al. 1991)
- 213, 314, 375, 456 (20, 30, 35, 40°C, infinite dilution activity coeff. γ°-GC, Tse et al. 1992)
- 128, 209, 308 (10, 20, 30°C, activity coeff. γ°-differential pressure transducer, Wright et al. 1992)
- 266 (γ^{∞} from gas stripping-GC, Li et al. 1993)
- 16.72, 26.04 (35, 50°C, from infinite dilution activity coefficient determined by relative GC technique, Bhatia & Sandler 1995)
- 197 (20°C, inert gas stripping-GC, Hovorka & Dohnal 1997)
- 244.1 (modified EPICS method-GC, Ryu & Park 1999)
- 260; 221; 211 (EPICS-GC; quoted lit.; calculated-P/C, David et al. 2000)

220 (20°C, selected from reported experimental determined values, Staudinger & Roberts 1996, 2001) log $K_{AW} = 4.561 - 1644/(T/K)$ (summary of literature data, Staudinger & Roberts 2001)

- Octanol/Water Partition Coefficient, log K_{ow} at 25°C or as indicated. Additional data at other temperatures designated * are compiled at the end of this section:
 - 1.25 (shake flask-GC, Hansch et al. 1975; Hansch & Leo 1979; Hansch & Leo 1985)
 - 1.51 (Hansch & Leo 1979)
 - 1.22 (HPLC-k' correlation, Hafkenscheid & Tomlinson 1983)
 - 1.25 (HPLC-k' correlation, Tomlinson & Hafkenscheid 1986)
 - 1.25 (recommended, Sangster 1989)
 - 1.35* (infinite dilution activity coefficient determined by relative GC technique, measured range 25–50°C, Bhatia & Sandler 1995)
 - 1.25 (recommended, Hansch et al. 1995)
 - 1.25 (calculated-fragment const. with correction factors in multiCASE program, Damborsky et al. 2001)

Octanol/Air Partition Coefficient, log KoA at 25°C:

2.27 (head-space GC, Abraham et al. 2001)

Bioconcentration Factor, log BCF:

- 0.699 (calculated as per Lyman et al. 1982, Howard 1990)
- 0.778 (microorganism-water, calculated from K_{ow}, Mabey et al. 1982)
- 0.600 (calculated-MCI χ, Koch 1983)
- 0.362 (selected, Daniels et al. 1985)

Sorption Partition Coefficient, log Koc:

- 0.944 (calculated-K_{ow}, Mabey et al. 1982)
- 1.440 (calculated- MCI χ, Koch 1983; quoted, Bahnick & Doucette 1988)
- 1.000 (selected, Daniels et al. 1985)
- 1.390 (calculated-MCI χ, Bahnick & Doucette 1988)

Sorption Partition Coefficient, log KOM:

1.44, 1.23 (quoted, calculated-MCI χ , Sabljic 1984)

Environmental Fate Rate Constants, and Half-Lives, t₄:

- Volatilization: t₄(calc) = 2.23 min (Mackay & Wolkoff 1973; quoted, Dilling et al. 1975; Callahan et al. 1979); t₄(calc) = 20.7 min (Mackay & Leinonen 1975; quoted, Dilling 1977; Callahan et al. 1979);
 - t₁₂(exptl) = (21 ± 3) min for 1 ppm in water at 25°C when stirred at 200 rpm in water (Dilling et al. 1975; quoted, Callahan et al. 1979; Mills et al. 1982);

evaporation $t_{1/2}(exptl) = (18.3-25.2) \text{ min}, t_{1/2}(calc) = 2.23 \text{ and } 20.7 \text{ min at } 25^{\circ}C \text{ and } t_{1/2}(exptl.) = 34.9 \text{ min}, t_{1/2} = 24.5 \text{ min at } 1.5^{\circ}C \text{ (Dilling 1977)}$

 $t_{1/2} \sim 3.0$ h from water (estimated, Thomas 1982);

 $t_{46} \sim 100$ d from soil (estimated, Jury et al. 1990).

Photolysis: estimated photodecomposition $t_{4/2} > 250$ h from a simulated environmental sunlight exposure (> 290 nm at 27 ± 1°C) study (Dilling et al. 1976; quoted, Callahan et al. 1979);

photodegradation $t_{y_1} = 30-120$ d (Darnall et al. 1976; quoted, Daniels et al. 1985);

photocatalyzed mineralization by the presence of TiO₂ with a rate of 1.6 ppm/min per gram of catalyst (Ollis 1985).

Oxidation: rate constant k, for gas-phase second order rate constants, k_{OH} for reaction with OH radical, k_{N03} with NO₃ radical and k_{O3} with O₃ or as indicated, *data at other temperatures and/or the Arrhenius expression see reference:

 $k_{OH} = 1.24 \times 10^{-13}$ cm³ molecule⁻¹ s⁻¹ at 298 K corresponding to a lifetime of 0.30 yr (relative rate method, Cox et al. 1976; quoted, Callahan et al. 1979)

- $k_{OH}^{*} = (1.16 \pm 0.05) \times 10^{-13} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ at } 298 \text{ K} \text{ with lifetime of } 0.39 \text{ yr}, \text{ measured range } 245-375 \text{ K}$ (flash photolysis-resonance fluorescence, Davis et al. 1976)
- $k_{OH} = 1.55 \times 10^{-13}$ cm³ molecule⁻¹ s⁻¹ at 298 K (discharge flow-LMR, Howard & Evenson 1976a)

 $k_{OH} = (14.5 \pm 2.0) \times 10^{-14} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ at } 298.5 \text{ K}$ and the calculated tropospheric half-life of ~ 0.05 yr in lower troposphere (flash photolysis-RF, Perry et al. 1976)

- $k_{OH} = 1.5 \times 10^{-13}$ cm³ molecule⁻¹ s⁻¹, residence time of 77 d, loss of 1.3% in 1d or 12 sunlit hours at 300 K in urban environments (Singh et al. 1981)
- $k_{OH}^* = 1.53 \times 10^{-13}$ cm³ molecule⁻¹ s⁻¹ at 292 K, measured range 251–455 K (discharge flow-resonance fluorescence, Jeong & Karfman 1982)
- $k \ll 360 \text{ M}^{-1} \text{ h}^{-1}$ for singlet oxygen and 0.2 M⁻¹ h⁻¹ for peroxy radical at 25°C (Mabey et al. 1982)

 $k \le 0.1 \text{ M}^{-1} \text{ s}^{-1}$ for reaction with O₃ in water as scavenger at pH 2 and 20–23°C (Hoigné & Bader 1983)

photooxidation $t_{y_1} = 458-4584$ h based on measured rate data for the vapor phase reaction with OH radical in air (Atkinson 1985; quoted, Howard et al. 1991)

 $k = 4.0 \times 10^7 \text{ M}^{-1} \text{ s}^{-1}$ with reference to CH₃CCl₃ (Buxton et al. 1988; quoted, Haag & Yao 1992)

 $k_{OH} = 1.42 \times 10^{-13} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}; \text{ k(soln)} = 9.6 \times 10^{-14} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ for reaction with OH radical in aqueous solution (Wallington et al. 1988b)}$

 $k_{OH}^* = 1.42 \times 10^{-13} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ at } 298 \text{ K} \text{ (recommended, Atkinson 1989)}$

 $k_{OH}^* = 1.76 \times 10^{-14}$ cm³ molecule⁻¹ s⁻¹ at 295 K, measured range 298–775 K (laser photolysis/laser induced fluorescence technique, Taylor et al. 1989)

 $k = (9 \pm 6) \times 10^7 \text{ M}^{-1} \text{ h}^{-1}$ for the reaction with OH radical in aqueous solution at pH 8.5 (Haag & Yao 1992) Hydrolysis: a minimum hydrolysis $t_{\frac{1}{2}} = 18$ months was estimated from aqueous reactivity experiments (Dilling et al. 1975; quoted, Callahan et al. 1979; Howard 1990);

rate constant $k = 3.2 \times 10^{-11} \text{ s}^{-1}$ with a maximum $t_{\frac{1}{2}} = 704 \text{ yr}$ for hydrolysis at pH 7 and 25°C was reported from the extrapolated experimental data obtained at 100–150°C (Radding et al. 1977; quoted, Callahan et al. 1979; Mabey et al. 1982)

 $t_{y_2} = 260000 \text{ d in natural waters at pH 7 (Capel & Larson 1995)}$

- Biodegradation: completely biodegradable under aerobic conditions with sewage seed or activated sludge between 6 h to 7 d (Rittman & McCarty 1980; Davis et al. 1981; Tabak et al. 1981; Klecka 1982; Stover & Kincannon 1983; quoted, Howard 1990)
 - t₁(aq. aerobic) = 168-672 h based on unacclimated aerobic screening test data (Kawasaki 1980; Tabak et al. 1981; quoted, Howard et al. 1991); t₁(aq. anaerobic) = 672-2688 h based on unacclimated aerobic biodegradation half-life (Howard et al. 1991).
 - $t_{\nu}(aerobic) = 7 d$, $t_{\nu}(anaerobic) = 28 d$ in natural waters (Capel & Larson 1995)

Biotransformation:

Bioconcentration and Uptake and Elimination Rate Constants (k₁ and k₂):

Half-Lives in the Environment:

- Air: tropospheric $t_{1/2} = 33$ wk when exposed outdoors to diurnal and climatic variations of incident radiation and temperature (Pearson & McConnell 1975)
 - disappearance $t_{1/2} = 2.4-24$ h from air for the reaction with OH radical (USEPA 1974; quoted, Darnall et al. 1976)
 - lifetime of 4.4 yr in troposphere for the reaction with OH radical (Altshuller 1980)
 - estimated disappearance time to be 12 h to 1.0 year in simulated troposphere chamber (Dilling & Goersch 1979; quoted, Lyman 1982)
 - residence time of 77 d, loss of 1.3% in 1d or 12 sunlit hours at 300 K in urban environments estimated as toxic chemical for the reaction with OH radical (Singh et al. 1981)

estimated residence time in troposphere to be 160-250 d (Lyman 1982);

t_{1/2} = 458-4584 h, based on photooxidation half-life in air (Atkinson 1985; quoted, Howard et al. 1991)

- Surface water: estimated $t_{1/2} = 33-38$ d in various locations in the Netherlands in case of a first order reduction process (Zoeteman et al. 1980)
 - t_{1/2} = 168-672 h, based on estimated unacclimated aqueous aerobic biodegradation half-life (Howard et al. 1991)
 - biodegradation t_{1/4}(aerobic) = 100 d, t_{1/4}(anaerobic) = 400 d, hydrolysis t_{1/4} = 3800 d at pH 7 in natural waters (Capel & Larson 1995)
 - $t_{\nu_4} = 1-1.2$ d for the first days up to 4 d and 2.71-2.80 d for a period of up to 14 d for disappearance from water calculated from a pseudo first order equation of mesocosms experiment (Merlin et al. 1992)
- Ground water: estimated for the first days up to 4 d and $t_{\frac{1}{2}} = 2.71-2.80$ d for a period of up to 14 d of 10 yr in the ground water of The Netherlands (Zoeteman et al. 1981)
 - t_{1/2} = 336-1344 h, based on estimated unacclimated aqueous aerobic biodegradation half-life (Howard et al. 1991).

Sediment:

Soil: $t_{1/2} = 10-50 d$ (Ryan et al. 1988);

volatilization t₄ ~ 100 d from soil (Jury et al. 1990);

- biodegradation $t_{1/4}$ (aerobic) = 1.3 d (0.16 ppm, conc of dichloromethane), $t_{1/4}$ = 9.4 d (0.5 ppm), $t_{1/4}$ = 191.4 d (5 ppm), all in sandy loam soil; $t_{1/4}$ = 54.8 d in sand (0.5 ppm); $t_{1/4}$ = 12.7 d (0.5 ppm) in sandy clay loam soil; $t_{1/4}$ = 7.2 d (0.5 ppm) in clay with 50 d lag and $t_{1/4}$ (anaerobic) = 21.5 d (5 ppm) with 70 d lag (Davis & Madsen 1991);
- $t_{1/2} = 168-672$ h, based on estimated unacclimated aqueous aerobic biodegradation half-life (Howard et al. 1991).

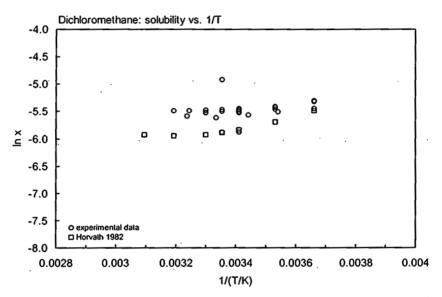
Biota: $t_{4} = 10-50$ d, subject to plant uptake in soil via volatilization (Ryan et al. 1988);

 $t_{16} = 0.4-0.5$ d to eliminate from small fish (McCarty et al. 1992).

TABLE 5.1.1.2.1 Reported aqueous solubilities of dichloromethane at various temperatures

$$S/(wt\%) = 1.961 - 4.4883 \times 10^{-2} \cdot (t^{\circ}C) + 8.6617 \times 10^{-4} \cdot (t^{\circ}C)^2 + 4.9463 \times 10^{-6} \cdot (t^{\circ}C)^3$$
(1)

1.


R	Rex 1906		Andelman 1978		Horvath 1982		son 1992
volum	etric method			summary of literature data		shake	flask-GC
t/°C	S/g⋅m ⁻³	t/°C	S/g·m⁻³	t/°C	S/g·m ⁻³	t/°C	S/g·m⁻³
0	23630	0	23100	0	19610	0	20300
10	21220	10	20800	10	15938	9.2	19200
20	20000	20	19600	20	13702	17.3	18000
30	19690	25	20000	25	13030	26.8	17200
		30	19000	30	12605	35.7	17700
•				40	12350		
				50	12640		
				eq.1	S/wt%		

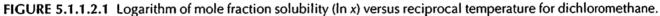

.

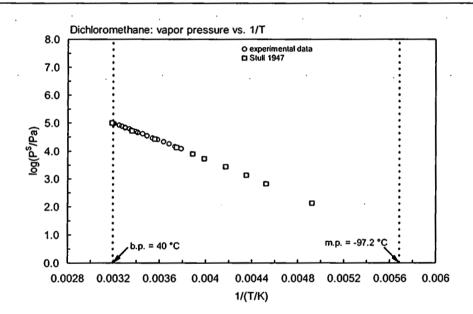
TABLE 5.1.1.2.1 (Continued)

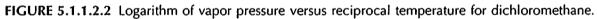
2.

Tse et al. 1992 activity coefficient -GC		Wright et al. 1992 activity coefficient	
20	19260	10	20080
30	19830	20	18880
35	19500	30	18880
40	19500		

TABLE 5.1.1.2.2

Reported vapor pressures of dichloromethane at various temperatures and the coefficients for the vapor pressure equations


$\log P = A - B/(T/K)$	(1)	$\ln P = A - B/(T/K)$
$\log P = A - B/(C + t/^{\circ}C)$	(2)	$\ln P = A - B/(C + t/^{\circ}C)$
$\log P = A - B/(C + T/K)$	(3)	
$\log P = A - B/(T/K) - C \cdot \log (T/K)$	(4)	


960, thesis	Boublik 1960, thesis in Boublik et al. 1984		Mueller & Ignatoswski 1960		Stull 1947	
et al. 1984				summary of literature data		
P/Pa	t/°C	P/Pa	t/°C	P/Pa	t/°C	
12046	-9.03	70530	29.993	133.3	-70.0	
14549	-5.45	85175	34.993	666.6	-52.1	
17921	-1.322	98070	38.993	1333	-43.3	
21314	2.228	102117	39.993	2666	33.4	
25780	6.230			5333	-22.3	
29923	9.457			7999	-15.7	
35493	13.289			13332	-6.30	

(Continued)

(1a) (2a)

St	ull 1947	Mueller & Ign	atoswski 1960	Boublik 1	960, thesis	
summary o	of literature data			in Boublik	et al. 1984	
t/°C	P/Pa	t/°C	P/Pa	t/°C	P/Pa	
8.0	26664			16.693	41470	
24.1	53329			21.199	49704	
40.7	101325			26.393	61295	
				32.337	77123	
mp/°C	-96.7			39.429	96484	
				eq. 2	P/kPa	
				Α	6.18791	
				В	127.232	
				С	229.764	
				bp	39.767	

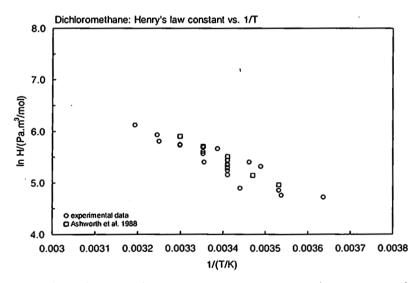


TABLE 5.1.1.2.3

Reported Henry's law constants of dichloromethane at various temperatures and temperature dependence equations

$\ln K_{AW} = A - B/(T/K)$	(1)	$\log K_{AW} = A - B/(T/K)$	(1a)
$\ln (1/K_{AW}) = A - B/(T/K)$	(2)	$\log (1/K_{AW}) = A - B/(T/K)$	(2a)
$\ln (k_{\rm H}/\rm{atm}) = A - B/(T/K)$	(3)		
$\ln H = A - B/(T/K)$	(4)	$\log H = A - B/(T/K)$	(4a)
$K_{AW} = A - B \cdot (T/K) + C \cdot (T/K)^2$	(5)		

Leight	Leighton & Calo 1981		ghton & Calo 1981 Gossett 1987		Ashwe	orth et al. 1988	Ts	e et al. 1992
equilibrium cell-GC		EPICS-GC		EPICS-GC		activity coefficient		
t/°C	H/(Pa m ³ /mol)	t/°C	H/(Pa m³/mol)	t/°C	H/(Pa m ³ /mol)	t/°C	H/(Pa m³/mol)	
1.9	112	9.6	116.5	10	142	20	213	
13.5	203	17.5	132.7	15	171	30	314	
15.7	222	24.8	221.9	20	247	35	375	
22.0	286.5	34.6	330.3	25	. 300	40.	456	
24.9	295			30	366			
25	295.3	eg. 4	H/(atm m ³ /mol)					
		Α	6.653	eq. 4	H/(atm m ³ /mol)	Wri	ght et al. 1992	
eq. 3	k _H /atm	·B	4215	A	8.483	activ	vity coefficient	
Α	17.42			В	4268			
В	3645					10	128	
				•		20	209	
						30	308	

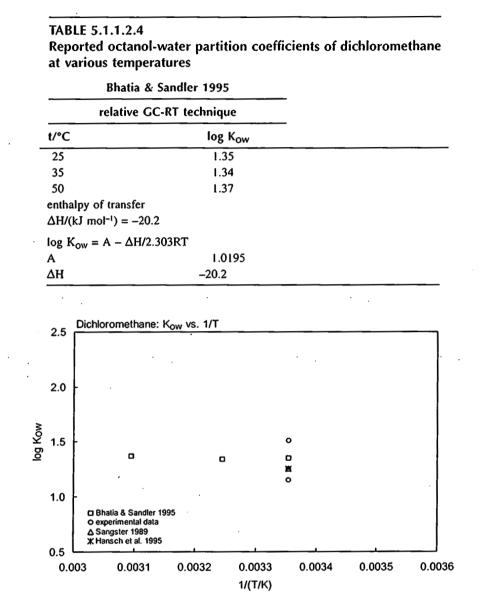


FIGURE 5.1.1.2.4 Logarithm of Kow versus reciprocal temperature for dichloromethane.

12.1.2.2 2-Butanone (Methyl ethyl ketone)

Common Name: Methyl ethyl ketone Synonym: 2-butanone, butan-2-one, MEK Chemical Name: 2-butanone, methyl ethyl ketone CAS Registry No: 78-93-3 Molecular Formula: C₄H₈O, CH₃CH₂COCH₃ Molecular Weight: 72.106 Melting Point (°C): -86.64 (Lide 2003) Boiling Point (°C): 79.59 (Lide 2003) Density (g/cm^3 at 20°C): 0.8054 (Weast 1982-83) 0.7997 (25°C, Riddick et al. 1986) Molar Volume (cm³/mol): 89.9 (calculated-density, Rohrschneider 1973) 96.2 (calculated-Le Bas method at normal boiling point) **Dissociation Constant:** 14.7 (pK_a, Riddick et al. 1986) -7.2 (pK_{BH}⁺, Riddick et al. 1986) Enthalpy of Fusion ΔH_{fus} (kJ/mol): (Riddick et al. 1986) 8.439 Entropy of Fusion ΔS_{fus} (J/mol K): Fugacity Ratio at 25°C (assuming $\Delta S_{fus} = 56$ J/mol K), F: 1.0 Water Solubility (g/m³ or mg/L at 25°C or as indicated. Additional data at other temperatures designated * are compiled at the end of this section): 240000 (20°C, synthetic method, Jones 1929; quoted, Palit 1947; Dean 1985; Riddick et al. 1986) 255700* (shake flask-volumetric method, measured range 20-30°C Ginnings et al. 1940) 343550 (shake flask-volumetric, Ginnings et al. 1940) 228020 (estimated, McGowan 1954) 12420 (20°C, Amidon et al. 1975) (generator column-GC, Wasik et al. 1981; Tewari et al. 1982) 136280 353000 (20°C, Verschueren 1983) 249000 (selected, Yaws et al. 1990) 276000*, 235000 (19.3°C, 29.7°C, shake flask-GC, measured range 0-70.2°C, Stephenson 1992) Vapor Pressure (Pa at 25°C and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section): 12954* (interpolated-regression of tabulated data, temp range -48.3 to 79.6°C, Stull 1947) log (P/mmHg) = 7.22200 - 1343.6/(230 + t/°C), (Antoine eq., Dreisbach & Martin 1949) 16500* (31.84°C, ebulliometry, measured range 31.84–79.5°C, Dreisbach & Shrader 1949) 25158* (41.46°C, flow calorimetry, measured range 41.46–79.5°C, Nickerson et al. 1961) 26568* (42.778°C, ebulliometry, measured range 42.778-88.444°C, Collerson et al. 1965) $\log (P/mmHg) = 7.06376 - 1261.455/(221.982 + t/^{\circ}C)$; temp range 42.778-88.444°C (Antoine eq., ebulliometric measurements, Collerson et al. 1965)

log (P/mmHg) = 19.48322 - 2328.0/(T/K) - 3.92657 log (T/K); temp range 42.778-88.444°C (Kirchhoff eq., ebulliometric measurements, Collerson et al. 1965)

log (P/mmHg) = $[-0.2185 \times 8149.5/(T/K)] + 7.959295$; temp range -48.3 to $79.6^{\circ}C$ (Antoine eq., Weast 1972-73)

- 12079* (ebulliometry, Ambrose et al. 1975a; quoted, Riddick et al. 1986; Howard 1990)
- 12000, 12060, 12640 (extrapolated-Antoine eq., Boublik et al. 1984)
- $log (P/kPa) = 6.02273 1167.861/(211.199 + t/^{\circ}C); temp range 41.46-97.42^{\circ}C (Antoine eq. from reported exptl. data, Boublik et al. 1984)$
- $log (P/kPa) = 6.18397 1258.948/(221.725 + t/^{\circ}C)$; temp range 42.78-86.44°C (Antoine eq. from reported exptl. data of Ambrose et al. 1975, Boublik et al. 1984)
- $log (P/kPa) = 6.18838 1261.297/(222.964 + t/^{\circ}C)$; temp range 42.79-88.4°C (Antoine eq. from reported exptl. data, Boublik et al. 1984)
- 12020 (extrapolated-Antoine eq., Dean 1985)
- log (P/mmHg) = 7.06356 1261.34/(221.97 + t/°C); temp range 43-88°C (Antoine eq., Dean 1985, 1992)
- 12700 (Howard et al. 1986; quoted, Banerjee et al. 1990)
- 12120 (interpolated-Antoine eq.-I, Stephenson & Malanowski 1987)
- log (P_L/kPa) = 6.24715 1294.53/(-47.442 + T/K); temp range 294–352 K (Antoine eq-I., Stephenson & Malanowski 1987)
- log (P_L/kPa) = 6.18479 1259.519/(-51.359 + T/K); temp range 315–363 K (Antoine eq-II., Stephenson & Malanowski 1987)
- log (P_L/kPa) = 6.22518 1286.794/(-47.766 + T/K); temp range 353-403 K (Antoine eq-III., Stephenson & Malanowski 1987)
- 5425 (calculated-solvatochromic parameters, Banerjee et al. 1990)
- log (P/mmHg) = $47.706 3.0965 \times 10^{3}/(T/K) 15.184 \cdot \log (T/K) + 7.4846 \times 10^{-3} \cdot (T/K) 1.7084 \times 10^{-13} \cdot (T/K)^{2}$; temp range 186–536 K (vapor pressure eq., Yaws 1994)
- 12071* (static method-manometry, measured range 0–50°C, Garriga et al. 1996)
- Henry's Law Constant (Pa m³/mol or as indicated and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section):
 - 4.710 (shake flask, partial vapor pressure-GC, Buttery et al. 1969)
 - 4.723 (quoted, exptl., Hine & Mookerjee 1975)
 - 5.549, 4.408 (calculated-group contribution, calculated-bond contribution, Hine & Mookerjee 1975)

3.87 (headspace-GC, Vitenberg et al. 1975)

6.191, 4.215 (calculated-γP, calculated-MW, Rathbun & Tai 1982)

0.987, 5.76 (0, 25°C, gas stripping-GC, Snider & Dawson 1985)

13.17* (EPICS-GC/FID, measured range 10–30°C, Ashworth et al. 1988)

- $\ln [H/(atm \cdot m^3/mol)] = -26.32 5214/(T/K), \text{ temp range 10-30°C}, \text{ (EPICS measurements, Ashworth et al. 1988)}$ 5.210 (gas stripping-HPLC/UV, Zhou & Mopper 1990)
- 5.117* (gas-stripping-HPLC-UV, measured range 10-45°C, Zhou & Mopper 1990)
- ln $[K_{H'}/(M/atm)] = -6.03 + 2184/(T/K)$, temp range 10-45°C (gas stripping-HPLC measurements, freshwater, Zhou & Mopper 1990)
- ln $[K_{H'}/(M/atm)] = -5.97 + 2138/(T/K)$, temp range 10-45°C (gas stripping-HPLC measurements, seawater (salinity 35 ± 1 l), Zhou & Mopper 1990)

18.28* (45°C, equilibrium headspace-GC, measured range 45–80°C, Ettre et al. 1993)

- log (1/K_{AW}) = -3.7973482 + 1889.5294/(T/K), temp range 45-80°C (equilibrium headspace-GC measurements, Ettre et al. 1993)
- 3.85 (20°C, selected from literature experimentally measured data, Staudinger & Roberts 1996)
- 3.95 (20°C, selected from literature experimentally measured data, Staudinger & Roberts 2001)
- $\log K_{AW} = 4.764 2213/(T/K)$, (van't Hoff eq. derived from literature data, Staudinger & Roberts 2001)
- 5.04 3.54 (27°C, equilibrium headspace-GC, solute concn 10.01-85.10 mg/L, measured range 300-315 K, Cheng et al. 2003)
- 5.04* (27°C, equilibrium headspace-GC, measured range 27-42°C, Cheng et al. 2003)

Octanol/Water Partition Coefficient, log Kow:

- 0.26 (shake flask-CR, Collander 1957)
- 0.28 (shake flask-UV, Fujita et al. 1964, Hansch & Leo 1979)
- 0.32 ± 0.01 (shake flask-UV, calculated, Iwasa et al. 1965)
- 0.29 (shake flask-UV, GC, Hansch & Anderson 1967; Hansch et al. 1968; Leo et al. 1969, 1971)

0.28 ± 0.02 (shake flask at pH 7, Unger et al. 1978)

0.69 (generator column-GC, Wasik et al. 1981; Tewari et al. 1982)

0.26 (shake flask-GC, Tanii et al. 1986)

0.62 (calculated-activity coeff. γ from UNIFAC, Banerjee & Howard 1988)

- 0.29 (recommended, Sangster 1989, 1993)
- 0.29 (recommended, Hansch et al. 1995)
- Octanol/Air Partition Coefficient, log KoA:

2.77 (head-space GC, Abraham et al. 2001)

Bioconcentration Factor, log BCF:

0.00 (estimated-K_{ow}, Lyman et al. 1982; quoted, Howard 1990)

Sorption Partition Coefficient, log Koc:

1.53 (soil, estimated-K_{ow}, Lyman et al. 1982; quoted, Howard 1990)

1.47 ± 0.55, 1.53 ± 0.88; 1.50 (Captina silt loam, McLaurin sandy loam; weighted mean, batch equilibriumsorption isotherm, Walton et al. 1992)

- 0.070 (predicted-K_{ow}, Walton et al. 1992)
- -0.03 (calculated-K_{ow}, Kollig 1993)

Environmental Fate Rate Constants, k, or Half-Lives, t4:

Volatilization: based on lab. data for evaporation relative to the reaeration rate of 0.27 (Mackay et al. 1982; Rathbun & Tai 1982; quoted, Howard 1990) and typical reaeration rates of rivers and lakes (Mill et al. 1982; quoted, Howard 1990),

 $t_{1/2} = 3$ d for evaporation from a river and $t_{1/2} = 12$ d from lake (Howard 1990).

- Photolysis: rate constant k = 1.4×10^{-5} s⁻¹ in the atmosphere (Carlier et al. 1986); calculated lifetime $\tau \sim 4$ d in air (Atkinson 2000)
- Oxidation: rate constant k, for gas-phase second order rate constants, k_{OH} for reaction with OH radical, k_{NO3} with NO₃ radical and k_{O3} with O₃ or as indicated, *data at other temperatures and/or the Arrhenius expression see reference:

photooxidation $t_{1/2} = 48.8 - 81.4$ yr, based on measured rate data for the reaction with hydroxyl radical in aqueous solution (Anbar & Neta 1967; selected, Howard et al. 1991)

photooxidation $t_{\nu_a} = 2.4 - 24$ h in air for the gas-phase reaction with hydroxyl radical, based on the rate of disappearance of hydrocarbon due to reaction with hydroxyl radicals (Darnall et al. 1976)

 $k_{OH} = (0.20 \pm 0.06) \times 10^{10} \text{ cm}^3 \text{ M}^{-1} \text{ s}^{-1}$ at 1 atm and 305 ± 2 K (relative rate method, Winer et al. 1976)

 $k < 2.0 \times 10^2 \text{ M}^{-1} \text{ s}^{-1}$ for oxidation with singlet oxygen at 25°C in aquatic systems with $t_{\frac{1}{2}} > 00$ yr (Foote 1976; Mill 1979; quoted, Mill 1982)

 $k_{OH} = 1.9 \times 10^9 \text{ M}^{-1} \text{ s}^{-1}$ at 25°C with $t_{y_2} = 2.9 \text{ d}$ (Hendry & Kenley 1979; quoted, Mill 1982)

 $k_{OH} = (0.95 \pm 0.09) \times 10^{-12}$ cm³ molecule⁻¹ s⁻¹ at (295 ± 2) K in air (relative rate technique to ethene Cox et al. 1981; quoted, Atkinson 1985)

- $k_{OH} = (1.20 \pm 0.20) \times 10^{-12}$ cm³ molecule⁻¹ s⁻¹ at 300 K in air (flash photolysis-resonance fluorescence, Zetzsch 1982; quoted, Atkinson 1985)
- k = (0.12 ± 0.02) M⁻¹ s⁻¹ for the reaction with ozone in water using 20-300 mM *t*-BuOH as scavenger at pH 2 and 20-23°C (Hoigné & Bader 1983)
- $k_{OH}(calc) = 1.38 \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}, k_{OH}(obs.) = 1.0 \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ at room temp.}$ (SAR structure-activity relationship, Atkinson 1985)
- $k_{OH} = 0.97 \times 10^{-12}$ cm³ molecule⁻¹ s⁻¹ at 24°C with an atmospheric lifetime $\tau = 12$ d (Edney et al. 1986)

 $k_{OH} = 1.15 \times 10^{-13} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ at } 296 \text{ K} \text{ and } \text{k(soln)} = 1.50 \times 10^{-13} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ for the aqueous-phase reaction with OH radical in solution (Wallington & Kurylo 1987; quoted, Wallington et al. 1988)} k_{OH}^* = 1.15 \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ at } 298 \text{ K} \text{ (recommended, Atkinson 1989)}$

photooxidation $t_{1/2} = 64.2 - 642$ h, based on measured rate data for the vapor phase reaction with hydroxyl radical (Howard et al. 1991)

 $k_{OH}(calc) = 1.65 \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ (molecular orbital calculations, Klamt 1996)}$

Hydrolysis: first-order hydrolysis $t_{\nu_4} > 0$ yr, based on nonreactive hydrolysis from pH 5 to 9 at 15°C (Kollig et al. 1987; selected, Howard et al. 1991).

Biodegradation:

- $k = 0.021 0.025 h^{-1}$ in 30 mg/L activated sludge after a time lag of 5 h (Urano & Kato 1986b)
- t_{1/2}(aq. aerobic) = 24 168 h, based on unacclimated grab sample of aerobic freshwater (Dojilido 1979; selected, Howard et al. 1991) and aerobic aqueous screening test data (Takemoto et al. 1981; selected, Howard et al. 1991)
- $t_{k}(aq. anaerobic) = 96 672 h$, based on estimated unacclimated aqueous aerobic biodegradation half-life (Howard et al. 1991)
- $t_{ij}(aerobic) = 1 d$, $t_{ij}(anaerobic) = 28 d$ in natural waters (Capel & Larson 1995)

Biotransformation:

Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants:

Half-Lives in the Environment:

Air: $t_{\nu_2} = 2.4-24$ h in air for the gas-phase reaction with hydroxyl radical, based on the rate of disappearance of hydrocarbon due to reaction with hydroxyl radical (Darnall et al. 1976);

photodecomposition $t_{1/2} = 9.8$ h under simulated atmospheric conditions, with NO (Dilling et al. 1976)

- t_{1/2} = 2.3 d for the atmospheric reaction with photochemically produced hydroxyl radical (Cox et al. 1981; quoted, Howard 1990);
- photooxidation $t_{4/2} = 64.2-642$ h, based on measured rate data for the vapor phase reaction with hydroxyl radical (Atkinson 1985; selected, Howard et al. 1991);
- calculated atmospheric lifetime $\tau = 12$ d due to reaction with OH radical (Edney et al. 1986) atmospheric transformation lifetime $\tau < 1$ d (estimated, Kelly et al. 1994);

calculated lifetime $\tau = 10$ d for reaction with OH radical (Atkinson 2000).

Surface water: photooxidation $t_{1/2} = 48.8-81.4$ yr, based on measured rate data for the reaction with hydroxyl radical in aqueous solution (Anbar & Neta 1967; quoted, Howard et al. 1991); $t_{1/2} = 24-168$ h, based on unacclimated grab sample of aerobic freshwater (Dojlido 1979; selected, Howard et al. 1991) and aerobic aqueous screening test data (Takemoto et al. 1981; selected, Howard et al. 1991)

 $t_{1/2}(aerobic) = 1 d$, $t_{1/2}(anaerobic) = 28 d in natural waters (Capel & Larson 1995).$

Ground water: t_{4} = 48–336 h, based on estimated unacclimated aqueous aerobic biodegradation half-life (Howard et al. 1991).

Sediment:

- Soil: calculated $t_{\frac{1}{2}} = 4.9$ d from first-order kinetic of degradation under both sterile and nonsterile conditions (Anderson et al. 1991);
 - $t_{y_3} = 24-168$ h, based on estimated unacclimated aqueous aerobic biodegradation half-life (Howard et al. 1991).

Biota:

TABLE 12.1.2.2.1

Reported aqueous solubilities of 2-butanone (methyl ethyl ketone) at various temperatures

Ginnings et al. 1940		Stephe	nson 1992	
volum	volumetric method		lask-GC/TC	
t/°C	S∕g·m ⁻³	t/°C	S/g·m ⁻³	
20	273300	0	367000	
25	255700	9.6	310000	
30	240700	19.3	276000	
		29.7	245000	
bp∕°C	80.7-80.8	39.6	220000	
d ²⁵	0.8007	49.7	206000	
		60.6	180000	
		70.2	182000	

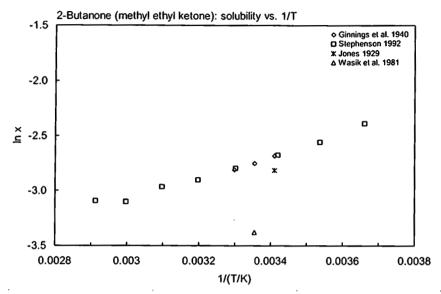


FIGURE 12.1.2.2.1 Logarithm of mole fraction solubility (ln x) versus reciprocal temperature for 2-butanone.

TABLE 12.1.2.2.2

Reported vapor pressures of 2-butanone (methyl ethyl ketone) at various temperatures and the coefficients for the vapor pressure equations

$\log P = A - B/(T/K)$	(1)	$\ln P = A - B/(T/K)$	(la)
$\log P = A - B/(C + t/^{\circ}C)$	(2)	$\ln P = A - B/(C + t/^{\circ}C)$	(2a)
$\log P = A - B/(C + T/K)$	(3)	$\ln P = A - B/(C + T/K)$	(3a)
$\log P = A - B/(T/K) - C \cdot \log (T/K)$	(4)		

1.

Stu	Stull 1947		Shrader 1949	Nickerson et al. 1961		Collerson et al. 196	
summary of literature data		ebulliometry		flow calorimetry		ebulliometry	
t/°C	P/Pa	t/°C	P/Pa	t/°C	P/Pa	t/°C	P/Pa
-48.3	133.3	31.84	16500	41.46	25158	42.778	26568
-28.0	666.6	54.29	42066	65.54	63368	48.148	33024
-17.7	1333	67.36	67661	79.39	101098	53.026	39963
-6.50	2666	79.5	101325	89.43	137282	57.08	46591
6	5333			97.42	173212	60.821	53469
14	7999					64.005	59954
25	13332			eq. 4	P/mm Hg	67.009	66625
41.6	26664			A	21.78963	69.734	73184
60	53329			в	2441.9	72.343	79933
79.6	101325			С	4.70504	74.839	86849
						76.95	93063
mp/°C	-85.9					79.221	100135
						81.268	106887
						83.161	113428
						85.013	120126
						86.715	126547
						88.44	133353
						mp/°C	-86.69
						bp/°C	79.589

 $(\overline{ })$

Stu	ull 1947	Dreisbach &	Shrader 1949	Nickerson	et al. 1961	Collerson	et al. 1965
summary o	of literature data	ebulliometry		flow calorimetry		ebulliometry	
t/°C	P/Pa	t/°C	P/Pa	t/°C	P/Pa	t/.°C	P/Pa
						Antoine eq.	
						eq. 2	P/mmHg
						A	7.06376
						В	1261.455
						С	221.982
						Kirchhoff eq.	
						eq. 4	P/mmHg
						A	19.48322
						В	2328
						С	3.92657
						$\Delta H_{v}/(kJ \text{ mol}^{-1}) = 31.6^{\circ}$	

Ambrose	et al. 1975(a)	Garriga e	t al. 1996		
comparativ	ve ebulliometry	static metho	d-manometry		
t/°C	P/Pa	t/°C	P/Pa		
25	12079	5	4277		
42.778	26568	10	5644		
48.137	33023	15	7334		
53.016	39963	20	9435		
57.07	46591	25	12071		
60.812	53468	30	15281		
63.996	59953	35	19110		
67.001	66625	40	23682		
69.726	73184	45	29132		
72.335	79933	50	35540		
74.832	86848				
76.944	93063	Antoine eq.			
79.215	100136	eq. 3a	P/kPa		
81.262	106887	A	14.133009		
83.156	113427	В	2843.871		
85.009	120125	С	-53.875		
86.711	126545				
88.444	133352				
bp/°C	79.583				
eq. 2	P/kPa				
A	6.18444				
В	1259.223				
С	-51.392				
∆H _v /(kJ m	ol-') =				
at 25°C	34.7				
at bp	31.8			•	

 \bigcirc

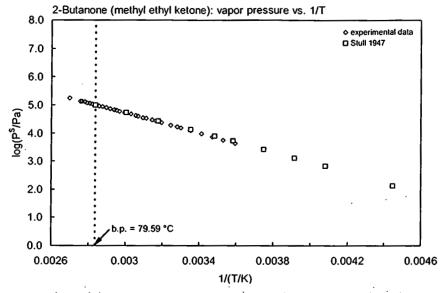


FIGURE 12.1.2.2.2 Logarithm of vapor pressure versus reciprocal temperature for 2-butanone.

TABLE 12.1.2.2.3

Reported Henry's law constants of 2-butanone (methyl ethyl ketone) at various temperatures and temperature dependence equations

$\ln K_{AW} = A - B/(T/K)$	(1)	$\log K_{AW} = A - B/(T/K)$	(la)
$\ln (1/K_{AW}) = A - B/(T/K)$	(2)	$\log (1/K_{AW}) = A - B/(T/K)$	(2a)
$\ln (k_{H}/atm) = A - B/(T/K)$	(3)		
$\ln [H/(Pa m^3/mol)] = A - B/(T/K)$	(4)	$\ln [H/(atm \cdot m^3/mol)] = A - B/(T/K)$	(4a)
$K_{AW} = A - B \cdot (T/K) + C \cdot (T/K)^2$	(5)		

Snider & Dawson 1985 gas stripping-GC		Ashworth et al. 1988 EPICS-GC		Zhou & Mopper 1990			
				gas stripping-HPLC/UV		gas stripping-HPLC/UV	
t/°C	H/(Pa m³/mol)	t/°C	H/(Pa m ³ /mol)	t/°C	H/(Pa m³/mol)	t/°C	H/(Pa m³/mol)
				fresh water sea water		sea water	
0	0.9873	10	28.37	10	2.068	10	2.702
25	5.765	15	39.52	17	-	17	3.943
		20	19.25	25	5.117	25	6.666
enthalpy of transfer:		25	13.17	30	7.186	30	8.735
$\Delta H/(kJ \text{ mol}^{-1}) = 46.024$		30	11.15	35	9.296	35	10.78
				40	-	40	14.07
		eg. 4a	H/(atm m ³ /mol)	45	14.27	45	18.09
		Α	-26.32				•
		В	-5214	eq. la	K _H '/(M/atm)	eq. la	K _H '/(M/atm)
				A	-6.03	A	-5.97
				В	-2184	В	-2138

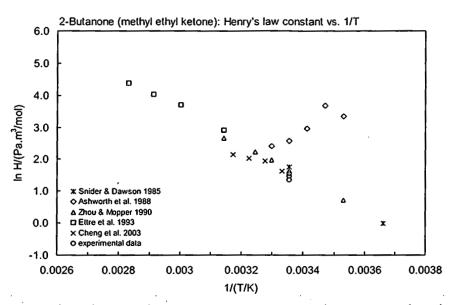


FIGURE 12.1.2.2.3 Logarithm of Henry's law constant versus reciprocal temperature for 2-butanone.

14.1 LIST OF CHEMICALS AND DATA COMPILATIONS

14.1.1 ALKYLPHENOLS AND OTHER SUBSTITUTED PHENOLS

14.1.1.1 Phenol

Common Name: Phenol

Synonym: carbolic acid, phenic acid, phenylic acid, phenyl hydrate, phenyl hydroxide, hydroxybenzene, oxybenzene Chemical Name: phenol

CAS Registry No: 108-95-2

Molecular Formula: C₆H₅OH

Molecular Weight: 94.111

Melting Point (°C):

40.89 (Lide 2003)

Boiling Point (°C):

181.87 (Lide 2003)

Density (g/cm³ at 20°C):

1.5479 (supercooled liq., Ericksen & Dobbert 1955)

1.0576 (Weast 1982)

Acid Dissociation Constant, pK_a:

9.90 (Blackman et al. 1955, McLeese et al. 1979)

10.02 (Herington & Kynaston 1957; Callahan et al. 1979)

9.82 (Sillén & Martell 1971; Kaiser et al. 1984; Shigeoka et al. 1988)

10.0 (Serjeant & Dempsey 1979; Paris et al. 1982; Miyake et al. 1987; Tratnyek & Hoigné 1991)

9.92 (Könemann 1981; Könemann & Musch 1981; Ugland et al. 1981; Varhaníčková et al. 1995)

10.05 (Saarikoski 1982; Saarikoski & Viluksela 1982)

9.90 (UV absorption, Hoigné & Bader 1983; Scully & Hoigné 1987)

9.99 (Dean 1985; Schultz & Cajina-Quezada 1987; Hersey et al. 1989)

10.93 (Miyake et al. 1987)

10.12 (UV spectrophotometry, Nendza & Seydel 1988)

Molar Volume (cm³/mol):

89.0 (20°C, calculated-density)

103.4 (calculated-Le Bas method at normal boiling point)

Enthalpy of Vaporization, ΔH_v (kJ/mol):

56.13, 45.83 (25°C, bp, Dreisbach 1955)

47.30 (at normal bp, Biddiscombe & Martin 1958)

45.689 (at normal boiling point, Andon et al. 1960)

Enthalpy of Sublimation, ΔH_{subl} (kJ/mol):

68.66 (at 25°C, Biddiscombe & Martin 1958; Andon et al. 1960)

Enthalpy of Fusion, ΔH_{fus} (kJ/mol):

11.514 (Riddick et al. 1986)

Entropy of Fusion, ΔS_{fus} (J/mol K):

36.63 (Tsonopoulos & Prausnitz 1971)

36.0, 56.5 (observed, estimated, Yalkowsky & Valvani 1980)

Fugacity Ratio at 25°C (assuming $\Delta S_{fus} = 56$ J/mol K), F: 0.698 (mp at 40.89°C)

Water Solubility (g/m³ or mg/L at 25°C or as indicated and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section):

86600* (synthetic method, measured range 20–65.86°C, Hill & Malisoff 1926)

83000 (20°C, synthetic method, Jones 1929)

89300* (22.7°C, thermostatic and synthetic methods, measured range 22.7–60.9°C, Morrison 1944)

- (shake flask-UV at pH 5.1, Blackman et al. 1955)
- 79000* (20°C, synthetic method/shake flask-optical, measured range 0-68.3°C, Ericksen & Dobbert 1955)
- 80000 (20°C, Mulley & Metcalf 1966)
- 78000 (shake flask-spectrophotometry, Roberts et al. 1977)
- 79750 (shake flask-GC, Kraij & Sincic 1980)
- 76514 (generator column-HPLC, Wasik et al. 1981)
- 150580 (20°C, shake flask-UV, Hashimoto et al. 1984)
- 87000 (solid-phase microextraction SPME-GC, Buchholz & Pawliszyn 1994)
- 84045* (shake flask-conductimetry, measured range 15.1–35°C, Achard et al. 1996)
- 94100[#] (25.35°C, shake flask-optical method, measured range 298.5–336.7 K, Jaoui et al. 1999)
- 83119* (23.15°C, shake flask-optical method, measured range 292.5–333.6 K, Jaoui et al. 2002)
- In [S/(mol kg⁻¹)] = 7.3013 853.62/(T/K); temp range 288–313 K (eq.-I derived using reported exptl. data, Jaoui et al. 2002)
- In [S/(mol kg⁻¹)] = 10.731 1931.7/(T/K); temp range 313-332 K (eq.-II derived using reported exptl. data, Jaoui et al. 2002)
- Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section):
 - 133.3^{*} (44.8 °C, static method-manometer, measured range 44.8–181.4 °C, Kahlbaum 1898)
 - 28531* (141.1 °C, mercury manometer, measured range 141.1-181.1 °C, Goldblum et al. 1947)
 - $\log (P/mmHg) = -2510/(T/K) + 8.395$; temp range: 141.1-181.1°C (Hg manometer, Goldblum et al. 1947)
 - 55.54* (extrapolated-regression of tabulated data, temp range 40.1–181.9°C, Stull 1947)

7605* (107.15 °C, ebulliometry, measured range 107.15–181.75 °C, Dreisbach & Shrader 1949)

- 1333* (70.50 °C, ebulliometry, measured range 70.50–181.7 °C, Vonterres et al. 1955)
- 70.75 (calculated-Antoine eq., Dreisbach 1955)
- log (P/mmHg) = 7.57893 1817.0/(205.0 + t/°C), temp range: 93-240°C, (Antoine eq. for liquid state, Dreisbach 1955)
- 44.26^{*} (24.85°C, gas saturation and diaphragm manometer measurements, measured range 0-37.5°C, Biddiscombe & Martin 1958)
- 45.71 (gas saturation and diaphragm manometer fitted to Antoine eq., Biddiscombe & Martin 1958)
- log (P/mmHg) = 11.5638 3586.36/(t/°C + 273); temp range 9-40°C (Antoine eq. from gas-saturation and diaphragm manometer methods, Biddiscombe & Martin. 1958; Andon et al. 1960)
- log (P_L/mmHg) = 7.13457 1615.072/(t/°C + 174.569); temp range 110-200°C (Antoine eq. from gas-saturation and diaphragm manometer methods, Biddiscombe & Martin. 1958; Andon et al. 1960)
- 45.07 (interpolated- Antoine eq., Andon et al. 1960)
- 70.70 (20°C, supercooled liq., Andon et al. 1960)

83.95 (extrapolated supercooled liquid value, Antoine eq., Weast 1972-73)

- $\log (P/mmHg) = [-0.2185 \times 11891.5/(T/K)] + 8.513843; temp range 40.1-418.7^{\circ}C (Antoine eq., Weast 1972-73) (extrapolated-Antoine eq., Boublik et al. 1973)$
- $log (P/mmHg) = 7.13301 1516.79/(174.954 + t/^{\circ}C)$; temp range 107-182°C (Antoine eq. from reported exptl. data of Dreisbach & Shrader 1949, Boublik et al. 1973)
- 26.66, 133.3 (20°C, 40°C, Verschueren 1977, 1983)
- 16.27 (extrapolated-Cox eq., Chao et al. 1983)
- log (P/mmHg) = $[1 454.610/(T/K)] \times 10^{1.00375 8.88757 \times 10^{-4} \cdot (T/K) + 6.83750 \times 10^{-7} \cdot (T/K)^{2}]$; temp range: 323.205-694.25 K, (Cox eq., Chao et al. 1983)
- 46.91, 54.74 (extrapolated-Antoine eq., Boublik et al. 1984)
- $log (P/kPa) = 6.25543 1515.182/(174.182 + t/^{\circ}C)$; temp range 107-181.75°C (Antoine eq. from reported exptl. data of Dreisbach & Shrader 1949, Boublik et al. 1984)
- $log (P/kPa) = 6.70346 1793.899/(200.218 + t/^{\circ}C); temp range 70.5-181.7^{\circ}C (Antoine eq. from reported exptl. data, Boublik et al. 1984)$
- 47.00 (extrapolated-Antoine eq., Dean 1985)
- log (P/mmHg) = 7.1330 1516.79/(174.95 + t/°C); temp range 107-182°C (Antoine eq., Dean 1985, 1992)
- 55.00 (selected, Riddick et al. 1986)
- 45.7, 45.32 (interpolated-Antoine eq., Stephenson & Malanowski 1987)

- log (P_s/kPa) = 10.6887 3586.36/(T/K); temp range 282–313 K (Antoine eq.-I, solid, Stephenson & Malanowski 1987)
- log (P_s/kPa) = 10.71099 3594.703/(T/K); temp range 273-313 K (Antoine eq.-II, solid, Stephenson & Malanowski 1987)
- $\log (P_L/kPa) = 6.25947 1516.072/(-98.581 + T/K);$ temp range 383-473 K (Antoine eq.-III, liquid, Stephenson & Malanowski 1987)
- $\log (P_L/kPa) = 6.34757 1482.82/(-113.862 + T/K);$ temp range 455-655 K (Antoine eq.-IV, liquid, Stephenson & Malanowski 1987)
- $\log (P_L/kPa) = 6.57957 1710.287/(-80.273 + T/K)$; temp range 314-395 K (Antoine eq.-V, liquid, Stephenson & Malanowski 1987)
- $\log (P_L/kPa) = 6.26694 1522.07/(-97.834 + T/K);$ temp range 387-456 K (Antoine eq.-VI, liquid, Stephenson & Malanowski 1987)
- log (P_L/kPa) = 6.30177 1548.368/(-94.612 + T/K); temp range 449–526 K (Antoine eq.-VII, liquid, Stephenson & Malanowski 1987)
- log (P_L/kPa) = 6.92874 2146.053/(-17.025 + T/K); temp range 520-625 K (Antoine eq.-VIII, liquid, Stephenson & Malanowski 1987)
- 61.16 (extrapolated-four-parameter vapor pressure eq., Nesterova et al. 1990)
- $\log (P/Pa) = 37.91650 4155.615/(T/K) 9.02308 \log (T/K) + 0.04526 \times 10^{-2} (T/K);$ temp range: 394-455 K (four-parameter vapor pressure eq. using expt1 data of Biddiscombe & Martin 1958, Nesterova et al. 1990)
- log (P/Pa) = $127.08645 7292.585/(T/K) 42.92601 \cdot \log (T/K) + 1.76834 \times 10^{-2} \cdot (T/K)$; temp interval of investigation 380-455 K (four-parameter vapor pressure eq. derived using data of Dreisbach & Shrader 1949, Nesterova et al. 1990)

log (P/mmHg) = $23.5332 - 3.4961 \times 10^{3}/(T/K) - 4.899 \log (T/K) + 1.216 \times 10^{-4} \cdot (T/K) + 9.6537 \times 10^{-13} \cdot (T/K)^{2}$; temp range 314-694 K (vapor pressure eq., Yaws 1994)

- 173* (40.09°C, ebulliometry, measured range 40–90°C, Tabai et al. 1997)
- Henry's Law Constant (Pa m³/mol at 25°C or as indicated and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section):
 - 0.0402 (exptl., Hine & Mookerjee 1975; Howard 1989)
 - 0.065, 1.082 (calculated-group contribution, calculated-bond contribution, Hine & Mookerjee 1975)

0.0718* (27.0°C, gas stripping-GC, measured range -2.0 to 27.0°C Abd-El-Bary et al. 1986)

 $k_{\rm H}/kPa = 2.69 \times 10^9 \exp[-6120/(T/K)]$, temp range -2 to 90°C (gas stripping-GC measurements plus reported data at higher temp., Abd-El-Bary et al. 1986)

1.245, 2.193, 3.322 (75.9, 88.7, 98.5°C, vapor-liquid equilibrium-GC, Dohnal & Fenclová 1995)

- 0.0607* (extrapolated from temp dependence eq., Dohnal & Fenclová 1995)
- In K_{AW} = 8.701 5760/(T/K), temp range 20–100°C (vapor-liquid equilibrium measurements with additional literature data, Dohnal & Fenclová 1995)
- 0.0342* (313.24 K, derived from measured P, temp range 313.240-363.14 K, Tabai et al. 1997)
- k_H/kPa = 670.117 39274.5/(T/K) 94.6679; temp range 313-363 K (activity coefficient by ebulliometric method, Tabai et al. 1997)
- < 0.240 (gas stripping-GC, Altschuh et al. 1999)
- 0.0536 (20°C, single equilibrium static technique SEST, Sheikheldin et al. 2001)
- 0.0320* (gas stripping-UV, measured range 284-302 K, Harrison et al. 2002)
- $\ln [H/(M \text{ atm}^{-1})] = 5850/(T/K) 11.6$; temp range 284-302 K, Harrison et al. 2002)
- 0.157* (dynamic equilibrium/gas stripping-GC/MS, measured range 5-25°C, Feigenbrugel et al. 2004)

Octanol/Water Partition Coefficient, log K_{ow}. Additional data at other temperatures designated * are compiled at the end of this section:

- 1.46 (shake flask-UV, Fujita et al. 1964)
- 1.46 ± 0.01 (shake flask-UV, Iwasa et al. 1965)
- 1.42 (shake flask-UV at pH 7.4, Rogers & Cammarata 1969)
- 1.60 (shake flask, Kiezyk & Mackay 1971)
- 1.47 (Leo et al. 1971)
- 1.51 (shake flask-UV at pH 7.45, Umeyama et al. 1971)
- 1.49 (shake flask, Korenman 1972)

- 1.510* (20 °C, shake flask-concn ratio, measured range 10-60 °C, Korenman & Udalova 1974)
- 1.46, 1.61 (LC-k' correlation, calculated- π const., Carlson et al. 1975)
- 1.54 (shake flask-UV, Davis et al. 1976)
- 1.45 (HPLC-RT correlation, Mirrlees et al. 1976)
- 1.48 ± 0.02 (shake flask at pH 7, Unger et al. 1978)
- 1.48, 1.46, 1.49, 1.51, 0.62, 2.20 (literature values, Hansch & Leo 1979)
- 1.46 (HPLC-k' correlation, Butte et al. 1981; Butte et al. 1987)
- 1.45 (generator column-HPLC/UV, Wasik et al. 1981)
- 1.54 (RP-HPLC-k' correlation, D'Amboise & Hanai 1982)
- 1.28, 1.54 (RP-LC-k' correlation, calculated-fragment const. as per Rekker 1977, Hanai & Hubert 1982)
- 1.54 (HPLC-k' correlation, Miyake & Terada 1982; Miyake et al. 1987)
- 1.62 (inter-laboratory, shake flask average, Eadsforth & Moser 1983)
- 1.16 (inter-laboratory, HPLC average, Eadsforth & Moser 1983)
- 1.49, 1.53 ± 0.09 (selected best lit. value, exptl.-ALPM, Garst 1984)
- 1.46, 1.55 ± 0.07 (selected best lit. value, exptl.-ALPM, Garst & Wilson 1984)
- 1.08 (calculated-activity coeff. γ from UNIFAC, Campbell & Luthy 1985)
- 1.46 (RP-HPLC-RT correlation, Chin et al. 1986)
- 1.00, 1.42 (HPLC-k' correlation, Eadsforth 1986)
- 1.46 (shake flask-CPC centrifugal partition chromatography, Berthod et al. 1988)
- 1.46 (RP-HPLC-capacity ratio correlation, Minick et al. 1988)
- 1.46 (HPLC-RT correlation, Shigeota et al. 1988)
- 1.52 ± 0.01 (filter chamber-UV, Hersey et al. 1989)
- 1.50 (recommended, Sangster 1989, 1993)
- 1.52, 1.58, 1.69 (CPC-RV correlation, Gluck & Martin 1990)
- 1.47 (shake flask-UV, Kramer & Henze 1990)
- 1.37 ± 0.06 (liquid-liquid extraction-flow injection-UV, Kubá 1991)
- 1.57 (shake flask-GC, Kishino & Kobayashi 1994)
- 1.46 (recommended, Hansch et al. 1995)

Bioconcentration Factor, log BCF:

- 4.16 (total ¹⁴C in fathead minnow, mean exposure level 0.0025 μg·mg⁻¹, Call et al. 1980)
- 4.23 (total ¹⁴C in fathead minnow, mean exposure level 0.0327 μg·mg⁻¹, Call et al. 1980)
- 4.20 (total ¹⁴C in fathead minnow, mean value, Call et al. 1980)
- 2.20 (goldfish, rate constant ratio k_1/k_2 , Nagel & Urich 1980)
- 0.97 (microorganisms-water, calculated-K_{ow}, Mabey et al. 1982)
- 1.30, 2.30, 3.34 (golden ide, algae, activated sludge, Freitag et al. 1985)
- 2.30 (chlorella fusca, Freitag et al. 1985; quoted, Howard 1989)
- 1.20 (algae, maximum apparent BCF, Hardy et al. 1985)
- 0.544 (algae, real BCF with biotransformation, Hardy et al. 1985)
- 3.14 (*daphnia magna*, estimated-¹⁴C activity and on dry wt. basis, Dauble et al. 1986)
- 2.44 (*daphnia magna*, based on elimination phase, Dauble et al. 1986)
- 1.28 (*daphnia magna*, Dauble et al. 1986; quoted, Geyer et al. 1991)
- 1.24 (zebrafish, Butte et al. 1987)

Sorption Partition Coefficient, log Koc:

- 1.43 (soil, Kenaga & Goring 1980)
- 1.48 (20°C, sorption isotherm, converted form K_{OM} organic carbon in soils, Briggs 1981)
- 1.15 (sediment-water, calculated-K_{ow}, Mabey et al. 1982)
- 1.57, 1.96 (silt loams, Scott et al. 1983, quoted, Howard 1989)
- 3.46 (untreated fine sediment, Isaacson & Frink 1984)
- 3.49 (untreated coarse sediment, Isaacson & Frink 1984)
- 1.35 (HPLC-k' correlation, mobile phase buffered to pH 3, Hodson & Williams 1988)
- 2.17 (soil, calculated-K_{ow}, Howard 1989)
- 2.4, 2.43 (soil: quoted, calculated-MCI χ , Meylan et al. 1992)

- 2.68, 2.38 (natural zeolite modified with a cation surfactant HDTMA with surface coverage of 100, 200 mmol/kg at pH 7, shake flask-sorption isotherm, Li et al. 2000)
- 1.43 (soil, calculated-MCI ¹χ, Sabljic et al. 1995)
- 1.42, 1.00. 1.24 (RP-HPLC-k' correlation on 3 different stationary phases, Szabo et al. 1995)
- 1.59, 1.67 (HP:LC-k' correlation, C₁₈ column, Hong et al. 1996)
- 1.32; 2.43 (HPLC-screening method; calculated-PCKOC fragment method, Müller & Kördel 1998)
- 1.56, 1.556, 1.255, 1.307, 1.52 (soil, first generation Eurosoils ES-1, ES-2, ES-3, ES-4, ES-5, shake flask/batch equilibrium-HPLC/UV, Gawlik et al. 1998, 1999)
- 1.310, 1.750, 1.281, 1.601, 1.544 (soil, second generation Eurosoils ES-1, ES-2, ES-3, ES-4, ES-5, shake flask/batch equilibrium-HPLC/UV, Gawlik et al. 1999)
- 1.310, 1.750, 1.281, 1.601, 1.544 (soil, second generation Eurosoils ES-1, ES-2, ES-3, ES-4, ES-5, shake flask/batch equilibrium-HPLC/UV and HPLC-k' correlation, Gawlik et al. 2000)
- 1.37, 1.34 (soils: organic carbon OC $\ge 0.1\%$ and pH 3.2–7.4, OC $\ge 0.5\%$, average, Delle Site 2001)
- Environmental Fate Rate Constants, k, or Half-lives, t₄:
 - Volatilization: estimated $t_{1/2} \sim 3.2$ months for evaporation from water (Howard 1989);
 - $t_{v_2} = 88$ d, calculated for evaporation from a model river of 1 m deep with a current of 3 m/s and with a wind velocity of 3 m/s (Lyman et al. 1982; quoted, Howard 1989).
 - Photolysis: phototransformation rate k = 0.015 h⁻¹ with $t_{y_2} = 46$ h in the summer (mean temp 24°C) and k = 0.0040 h⁻¹ with $t_{y_2} = 173$ h in the winter (mean temp 10°C) in distilled water; k = 0.018 h⁻¹ with $t_{y_2} = 39$ h in the summer and k = 0.0074 h⁻¹ with $t_{y_2} = 94$ h in the winter in estuarine water when exposed to full sunlight and microbes (Hwang et al. 1986);
 - photomineralization rate $k = 0.04 h^{-1}$ with $t_{1/2} = 16 d$ in the summer and $k = 0.0041 h^{-1}$ with $t_{1/2} = 169 d$ in the winter in distilled water; $k = 0.095 h^{-1}$ with $t_{1/2} = 7 d$ in the summer and $k = 0.010 h^{-1}$ with $t_{1/2} = 73 d$ in winter in estuarine water when exposed to full sunlight and microbes (Hwang et al. 1986);
 - atmospheric $t_{1/2} = 46$ to 173 h, based on reported half-life for photolysis under sunlight for phenol in distilled water in the summer and winter; aquatic photolysis $t_{1/2} = 46$ to 173 h, based on reported half-life for photolysis under sunlight for phenol in distilled water in the summer and winter (Howard et al. 1991) Apparent first-order rate constant phototransformation at $\lambda > 285$ nm, k = (3.10 ± 0.10) × 10⁻² h⁻¹ in purified
 - water (Zamy et al. 2004) Oxidation: rate constant k, for gas-phase second order rate constants, k_{OH} for reaction with OH radical, k_{NO3}
 - with NO₃ radical and k₀₃ with O₃ or as indicated, *data at other temperatures see reference:
 - $k = 1 \times 10^4$ M⁻¹ s⁻¹ for the reaction with RO₂ radical at 30°C in aquatic systems with t_{1/2} = 0.8 d (Howard 1972; Hendry et al. 1974; quoted, Mill 1982)
 - $k < 2 \times 10^2$ M⁻¹ s⁻¹ for the reaction with singlet oxygen at 25°C with $t_{1/2} > 100$ yr (Foote 1976; Mill 1979; quoted, Mill 1982)
 - $k_{NO3} = (2.0 \pm 0.4) \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ at } (300 \pm 1) \text{ K} \text{ (Carter et al. 1981)}$
 - k = 6.5 × 10³ s⁻¹, dye-sensitized photooxidation first-order rate constant, second order k = (1.3 ± 0.2) × 10³ M⁻¹ s⁻¹ for the reaction with ozone in water using 1 mM PrOH as scavenger at pH 1.7-2.0 and 20-23°C (Hoigné & Bader 1983a)
 - $k_{NO3} = (2.10 \pm 0.50) \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ at } 296 \pm 2 \text{ K} \text{ (Atkinson et al. 1984)}$
 - $k_{NO3} = (3.64 \pm 0.14) \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ at } 294 \text{ K} \text{ with reference to reaction for NO}_3 \text{ radical with 2-methyl-2-butene (Atkinson et al. 1984; quoted, Atkinson 1991)}$
 - $k_{OH}(exptl) = 28.0 \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}, k_{OH}(calc) = 45.5 \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ at room temp.}$ (Atkinson et al. 1985)
 - $k_{OH}(calc) = 36 \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$, and $k_{OH}(obs) = 28.3 \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ at room temp. (SAR, Atkinson 1987; quoted, Sabljic & Güsten 1990; Müller & Klein 1991)
 - $k = (2 \text{ to } 3) \times 10^{6} \text{ M}^{-1} \text{ s}^{-1} \text{ at pH 8}, 1.9 \times 10^{7} \text{ M}^{-1} \text{ s}^{-1} \text{ at pH 9}, 4.6 \times 10^{7} \text{ M}^{-1} \text{ s}^{-1} \text{ at pH 9.5}, 9.0 \times 10^{7} \text{ M}^{-1} \text{ s}^{-1}$ at pH 10 and $1.8 \times 10^{8} \text{ M}^{-1} \text{ s}^{-1}$ at pH 11.5 for the reaction with singlet oxygen at $(19 \pm 2)^{\circ}$ C in water (Scully & Hoigné 1987)
 - $k_{NO3} = 3.63 \times 10^{-12}$ cm³ molecule⁻¹ s⁻¹ at 298 K (Atkinson et al. 1988; quoted, Sabljic & Güsten 1990; Müller & Klein 1991)
 - $k_{OH} = 26.3 \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ at } 298 \text{ K} \text{ (recommended, Atkinson 1989, 1990)}$
 - $k_{NO3} = (2.59 \pm 0.52) \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ at } 300 \pm 1 \text{ K}$ with reference to reaction for NO₃ radicals with *cis*-2-butene (Atkinson 1991)

 $k = (2.6 \pm 4) \times 10^6 \text{ M}^{-1} \text{ s}^{-1}$ for the reaction with singlet oxygen in aqueous phosphate buffer at $(27 \pm 1)^{\circ}$ C (Tratynyek & Hoigné 1991)

 $k_{OH} = 10.45 \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}, k_{NO3} = 11.44 \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ (Müller & Klein 1991) $k_{NO3} = (3.92 \pm 0.25) \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ at } 296 \pm 2 \text{ K}$ with reference to reaction for NO₃ radical with

- 2-methyl-2-butene; $k_{OH} = 26.5 \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ at room temp.}$ (Atkinson et al. 1992)
- $k_{OH}(calc) = 12 \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ (molecular orbital estimation method, Klamt 1993)}$
- $k_{OH} = 2.6 \times 10^{-11}$ cm³ mol⁻¹ s⁻¹, and $k_{OH}(aq.) = 6.7 \times 10^9$ M⁻¹ s⁻¹, the calculated atmospheric lifetime $\tau = 0.45$ d under clear sky; $\tau = 0.38$ d under cloudy conditions at 298 K, reduced to 0.26 d due the average temperature of tropospheric clouds at 283 K (Feigenbrugel et al. 2004)
- Hydrolysis: no hydrolyzable function group (Howard et al. 1991).
- Biodegradation: t_{1/2} =1-2 d for bacteria to utilize 95% of 300 ppm in parent substrate (Tabak et al. 1964) decomposition by soil microflora within 1 d (Alexander & Lustigman 1966; quoted, Verschueren 1983)
 - complete disappearance in soil suspensions in 2 d (Woodcock 1971; quoted, Verschueren 1983)
 - $k_B = 80.0 \text{ mg COD g}^{-1} \text{ h}^{-1}$ based on measurements of COD decrease using activated sludge inoculum with 20-d of adaptation to the substrate (Pitter 1976; quoted, Scow 1982)
 - $k_B = (0.094 \pm 0.003) h^{-1}$ at feed concentration of 180 mg/L at 20°C and $k = (0.095 \pm 0.007) h^{-1}$ at feed concentration of 360 mg/L at 20°C in a continuous stirred reactor (Beltrame et al. 1984)
 - $k_B = 0.035 d^{-1}$ with $t_{y_2} = 20 d$ in ground water; $k_B = 0.065 d^{-1}$ with $t_{y_2} = 11 d$ in Lester River water; $k_B = 0.247 d^{-1}$ with $t_{y_2} = 3 d$ in Superior harbor waters (Vaishnav & Babeu 1987)
 - $k_B = 0.03 h^{-1}$ and $t_{1/2} = 28 h$ for estuarine water in summer (mean temp 24°C) and $k_B = 0.011 h^{-1}$ with $t_{1/2} = 62 h$ in winter (mean temp. 10°C); $k_B = 0.4 h^{-1}$ with $t_{1/2} = 2 d$ in summer and $k_B = 0.0051 h^{-1}$ with $t_{1/2} = 146 d$ in winter in darkness with microbes (Hwang et al. 1986)
 - $k_{\rm B} = 0.041 0.028 \, \text{h}^{-1}$ in 10-100 mg/L sludge (Urano & Kato 1986)
 - complete degradation within 1 d in water from 3 lakes, and degradation is somewhat slower in salt water with $t_{y_2} = 9$ d in estuary river (Howard 1989)
 - $k_B(exptl., average) = 0.0498 h^{-1}; k_B(calc) = 0.0545 h^{-1} (nonlinear) and k_B(calc) = 0.0503 h^{-1} (linear) (group contribution method, Tabak & Govind 1993)$
 - $t_{i6}(aerobic) = 0.25 d$, $t_{i6}(anaerobic) = 8.0 d$ in natural waters (Capel & Larson 1995)
- Biotransformation: microbial transformation $k = (7.1 \pm 1.3) \times 10^{-12} \text{ L} \cdot \text{organism}^{-1} \text{ h}^{-1}$ (Paris et al. 1982); estimated bacterial transformation $k = 3 \times 10^{-6} \text{ mL cell}^{-1} \text{ h}^{-1}$ in water (Mabey et al. 1982);
 - microbial transformation rate constants in pond and river samples $k = (2.0 \pm 1.5) \times 10^{-10}$ to $(4.8 \pm 3.1) \times 10^{-10}$ L organism⁻¹ h⁻¹ at five different sites (Paris et al. 1983; quoted, Steen 1991);
 - degradation rate constants $k = 1.08 \times 10^{-16}$ mol cell⁻¹ h⁻¹ from pure culture studies and $k = 0.90 \times 10^{-12}$ to 3.00×10^{-12} mol cell⁻¹ h⁻¹ with microorganisms in Seneca River waters (Banerjee et al. 1984).
 - Bioconcentration, Uptake (k₁) and Elimination (k₂) Rate Constants:
 - $k_1 = 3.15 h^{-1}$; $k_2 = 0.02 h^{-1}$ (goldfish, Nagel & Urich 1980)

Half-Lives in the Environment:

Air: $t_{16} = 0.61$ d by reaction with OH radicals in air (Howard 1989);

- $t_{\frac{1}{2}}$ = 2.28 to 22.8 h, based on reaction with OH radical (Howard et al. 1991)
- degradation k = 0.0462 d⁻¹ corresponding to t_{16} = 360 h in air (Guinee & Heijungs 1993);

atmospheric transformation lifetime was estimated to be < 1 d (Kelly et al. 1994);

calculated lifetimes of 5.3 h and 9.0 min for reactions with OH, NO₃ radical, respectively (Atkinson 2000). atmospheric lifetime $\tau = 0.45$ d under clear sky and $\tau = 0.38$ d under cloudy conditions based on reactions with OH radical in gas and aqueous phases at 298 K, reduced to $\tau = 0.26$ d due to average temperature of tropospheric cloud at 283 K (Feigenbrugel et al. 2004)

- Surface water: rate constant $k = (1.3 \pm 0.2) \times 10^3 \text{ M}^{-1} \text{ s}^{-1}$ for the reaction with ozone at pH 2.0-6.0 (Hoigné & Bader 1983);
 - $t_{y_1} = 46$ h in summer, $t_{y_2} = 173$ h in winter in distilled water and $t_{y_2} = 39$ h in summer, $t_{y_2} = 94$ h in winter in estuarine water, based on phototransformation rate when exposed to full sunlight and microbes (Hwang et al. 1986)
 - $t_{1/2} = 43$ h in summer, $t_{1/2} = 118$ h in winter in poisoned estuarine water, based on photo-transformation rate and $t_{1/2} = 384$ h or 16 d in summer, $t_{1/2} = 2640$ h or 110 d in winter in poisoned estuarine water, based on photomineralization rate (Hwang et al. 1986);

- $t_{y_2} = 384$ h or 16 d in summer, $t_{y_2} = 4056$ h or 169 d in winter in distilled water; and $t_{y_2} = 168$ h or 7 d in summer, $t_{y_2} = 1752$ h or 73 d in winter in estuarine water, based on photo-mineralization rate when exposed to full sunlight and microbes (Hwang et al. 1986);
- $t_{1/2} = 2000$ h in water at pH 8 and $19 \pm 2^{\circ}$ C for the reaction with singlet oxygen (Scully & Hoigné 1987); biodegradation $t_{1/2} = 11$ d in river waters and $t_{1/2} = 3$ d in Superior harbor waters (Vaishnav & Babeu 1987); complete degradation within 1 d in water from 3 lakes, and degradation is somewhat slower in salt water with $t_{1/2} = 9$ d in estuary river (Howard 1989);

 $t_{y_2} = 77$ to 3840 h in water, based on reported reaction rate constant for RO₂ radical with the phenols class, $t_{y_2} = 5.3$ to 56.5 h, based on estimated aqueous aerobic biodegradation half-life (Howard et al. 1991);

degradation rate constant k = 0.0217 d⁻¹ corresponding to a $t_{\frac{1}{2}}$ = 766 h in water (quoted from Howard 1989, Guinee & Heijungs 1993)

 $t_{ig}(aerobic) = 0.25 \text{ d}, t_{ig}(anaerobic) = 8 \text{ d} \text{ in natural waters (Capel & Larson 1995)}$

Groundwater: biodegradation $t_{16} = 20$ d (Vashinav & Babeu 1987);

 $t_{y_2} = 12$ to 168 h, based on estimated aqueous aerobic biodegradation half-life (Howard et al. 1991).

Soil: Days for complete disappearance by microbial decomposition in soil suspension: 2 d in Dunkirk silt loam, 1 d in Mardin silt loam (Alexander & Aleem 1961)

degradation in soil completed in 2–5 d even in subsurface soils and $t_{1/2} = 2.70$ and 3.51 h of low concentration of phenol in 2 silt loam soils (Howard 1989);

 $t_{\nu_0} = 24$ to 240 h, based on aerobic soil die-away data (Howard et al. 1991);

t_{1/2} = 4.1 d in a slightly basic sandy loam soil containing 3.25% organic matter and t_{1/2} = 23 d in acidic clay soil with < 1.0% organic matter, based on aerobic batch lab microcosm experiments (Loehr & Matthews 1992)</p>

degradation rate constant k = 0.227 d⁻¹ corresponding to a $t_{1/2}$ = 73.3 h in soil (quoted from Howard 1989, Guinee & Heijungs 1993).

Biota: elimination from goldfish within 4 h (Nagel & Urich 1980);

depuration $t_{1/4}(obs) = 336$ h, $t_{1/4}(calc) = 385$ h for exposure level of 0.0025 µg mL⁻¹ and $t_{1/4}(obs.) = 438$ h, $t_{1/4}(calc) = 497$ h for exposure level of 0.0375 µg mL⁻¹ (Call et al. 1980);

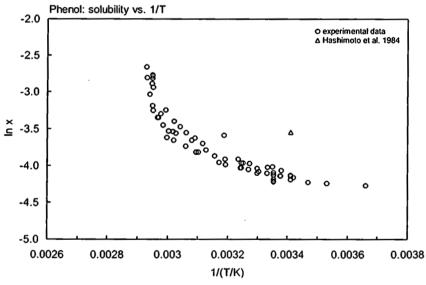
depuration $t_{46}(calc) = 8$ to 44 min in algae (Hardy et al. 1985);

half-lives in fish $t_{\mu} < 1$ d for goldfish, $t_{\mu} = 14-18$ d for minnow (Niimi 1987)

TABLE 14.1.1.1.1

Reported aqueous solubilities of phenol at various temperatures

1.


Hill & Malisoff 1926 volumetric method		Morrison 1944 thermostatic and synthetic		Erichsen & Dobbert 1955 shake flask-optical method		Achard et al. 1996	
						shake flake-conductivity	
t/°C	S/g⋅m ⁻³	t/°C	S/g·m ⁻³	t/°C	S/g·m⁻³	t/°C	S/g·m ⁻³
20.0	83600	22.7	89300	0	73000.	15.1	76044
25.0	86600	26.9	93159	10	75000	25.0	84045
30.0	92200	32.3	98617	20	79000	35.0	93098
35.0	99100	36.0	104169	30	86000		
57.30	148700	43.7	108968	40	97000		
62.74	193500	47.7	128823	50	115000		
65.79	277700	50.5	138892	60	153000		
66.01	291300	53.5	149807	62	166000		
65.79	202100	55.8	162323	64	183000		
65.84	313500	57.8	174650	66	215000		
65.86	322300	60.9	203538	67	252000		
65.84	327900			68	316000		
				68.3	365000		

(Continued)

TABLE 14.1.1.1.1 (Continued)

2.

Jaoui et al. 1999 static visual method		Jaoui et al. 2002 static visual method*			
/K	S/g⋅m ⁻³	T/K	S/g·m- ³		
8.5	94100	292.5	81011		
5	99328	296.1	82959		
4	104556	296.3	83119		
.7	143764	300.2	86290		
.8	118149	302.7	88341		
.8	134877	305.8	90901		
.5	151606	308.4	93065		
7	182970	313.3	97186		
		315.4	100169		
		322.4	114416		
		326.8	124024		
		331.3	134394		
		333.6	139814		
•		some data from Achard et al. 1996, Jaoui et al. 1999			

TABLE 14.1.1.1.2

Reported vapor pressures of phenol at various temperatures and the coefficients for the vapor pressure equations

$\log P = A - B/(T/K)$	(1)	$\ln P = A - B/(T/K)$	(1a)
$\log P = A - B/(C + t/^{\circ}C)$	(2)	$\ln P = A - B/(C + t/^{\circ}C)$	(2a)
$\log P = A - B/(C + T/K)$	(3)		
$\log P = A - B/(T/K) - C \cdot \log (T/K)$	(4)		

1.

Kahlb	Kahlbaum 1898*		Stull 1947		Goldblum et al. 1947		Dreisbach & Shrader 1949		
static	manometer	summary of literature data mercury manometer ebulliometry		mercury manometer		summary of literature data mercury manometer		iometry	
t/°C	P/Pa	t/°C	P/Pa	t/°C	P/Pa	t/°C	P/Pa		
44.8	133.3	40.1	133.3	141.1	28531	107.15	7605		
51.5	266.6	62.5	666.6	152.6	42263	113.81	10114		
55.8	400.0	73.8	1333	164.4	61061	125.95	16500		
59.3	533.3	86.0	2666	168.3	68661	152.37	42066		
62.5	666.6	100.1	5333	173.5	80127	167.63	67661		
73.5	1333.2	108.4	7999	181.0	98659	181.75	101325		
85.8	2666.4	121.4	13332	140.2	27598				
93.8	3999.7	139.0	26664	145.1	32797	bp/°C	181.75		
99.8	5533	160.0	53329	171.4	75194		•		
104.4	6661	181.9	101325	176.6	87060				
113.7	9992			181.1	98525				
120.2	13332	mp/°C	40.6						
139.0	26664			eq. 1	P/mmHg				
151.0	39997			А	8.395				
160.0	53329			В	2510				
167.0	66661								
173.0	79993								
179.0	93326								
181.4	101325								

2.

Vonterres et al. 1955		Biddiscombe & Martin 1958				Tabai et	al. 1997
ebul	liometry	gas saturation/diaphragm manometer		eter	ebulliometry		
t/°C	P/Pa	t/°C	P/Pa	t/°C	P/Pa	t/°C	P/Pa
		solid		liquid			
70.50	1333	0	3.746	121.25	13583	40.09	173
90.20	3333	5.1	6.159	131.183	20005	50.0	345
104.2	6666	9.25	9.413	138.014	25635	60.0	655
113.0	9999	9.85	10.40	140.704	28226	70.03	1187
121.5	13332	10.4	10.47	147.204	35310	79.97	2048
132.5	19998	14.5	16.0	155.343	46139	89.99	3415
140.1	26664	18.25	22.93	156.196	47902		
147.0	33330	18.25	23.20	156.528	53130		
152.0	39997	19.6	26.66	159.799	54843		
153.0	43330	22.0	35.60	160.124	58843		
156.0	46663	24.85	44.26	163.795	60104		
160.0	53329	28.15	63.73	168.945	70154		

(Continued)

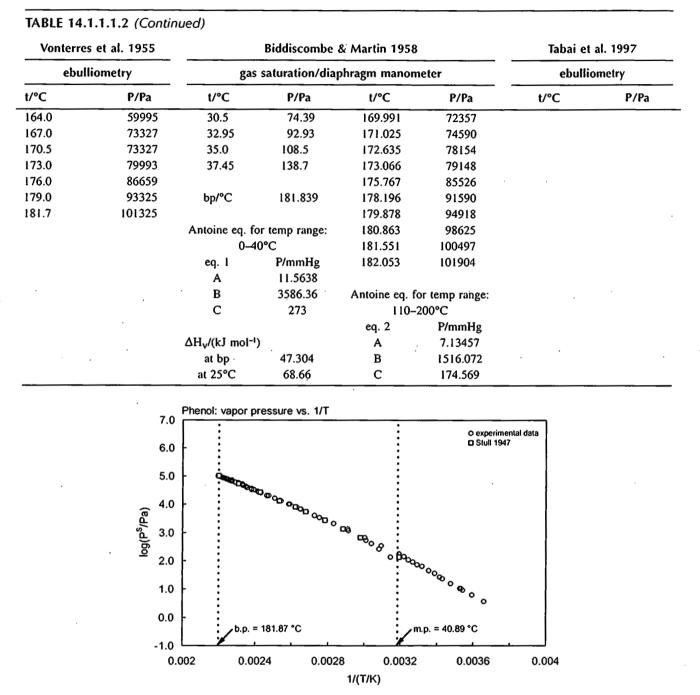


TABLE 14.1.1.1.3

.

	$\ln K_{AW} = A - B/(T/K)$)	(1)	log K _{AW} =	A – B/(T/K)		(la)
	$\ln (1/K_{AW}) = A - B/(7)$	ſ/K)	(2)	log (1/K _{aw}) = A - B/(T/K)		(2a)
	$\ln (k_{\rm H}/\rm{atm}) = A - B/(1)$	T/K)	(3)				
	$\ln H = A - B/(T/K)$		(4)	$\log H = A$	– B/(T/K)		(4a)
	$\ln k_{\rm H} = A - B/(T/K) -$	- C·ln (T/K)	(5)	-			
Abd-E	l-Bary et al. 1986	Dohnal &	& Fenclová 1995	Tabai	i et al. 1997	Feigenbr	ugel et al. 2004
gas s	tripping-GC/FID	vapor-lic	luid equilibrium	derived f	rom measured P	gas stri	pping-GC/MS
t/°C	H/(Pa m³/mol)	t/°C	H/(Pa m³/mol)	T/K	H/(Pa m³/mol)	Т/К	H/(Pa m ³ /mol)
-2.0	0.0072	4.0	0.0127*	313.24	0.0342	278.15	0.0222
4.0	0.0127	18.3	0.0373*	323.15	0.090	278.15	0.0299
18.3	0.0373	27.0	0.0721*	333.15	0.202	278.20	0.0280
27.0	0.0718	80.3	1.552*	343.18	0.355	278.25	0.0337
44.4	0.193*	100.0	3.537*	353.12	0.506	283.05	0.0340
56.3	0.437*	75.9	1.245	363.14	0.999	283.15	0.0456
75.0	1.233*	88.7	2.193			283.15	0.0328
90.0	2.376*	98.6	3.322	eq. 5	k _H /kPa	283.25	0.0428
•		25.0	0.0607#	А	670.117	283.25	0.0404
*data from	m literature	25.0	0.0605\$	в	29374.5	288.15	0.0590
		#calcul	ated from eq. 1	С	94.6679	288.15	0.0928
		\$calcul	ated from eq. 3	temp ra	nge 313–363 K	288.25	0.0560
		*data 1	from literature			293.15	0.1166
eq. 3	k _H /kPa					293.15	0.169
Α	21.7128	eq. i	K _{AW}	Harris	on et al. 2002	293.15	0.1093
В	6120.0	Α	8.701	gas s	tripping-UV	293.15	0.1065
eq. derive	d included lit. data	·B	5760	T/K	H/(Pa m³/mol)	293.25	0.0960
		enthalp	y of hydration:			293.25	0.1071
		ΔH _κ /(kJ m	nol^{-1}) = 47.9 ± 0.5	284	0.0122	298.15	0.0904
		OR		284.5	0.0110	298.15	0.2022
		eq. 3	k _H /kPa	289.5	0.0199	298.15	0.1375
		Â	21.443	293.5	0.0262		
		В	6032	298	0.0320		
		ΔH _κ /(kJ m	$(101^{-1}) = 50.2 \pm 0.4$	302	0.0379		
				eq. 4	H/(M atm ⁻¹)		
				Α	-11.6		
				В	-5850		

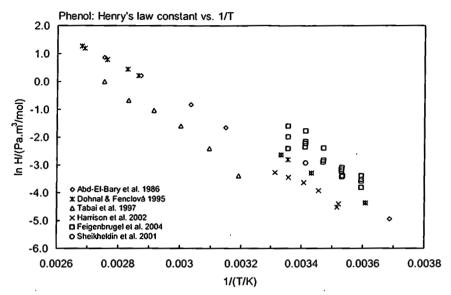
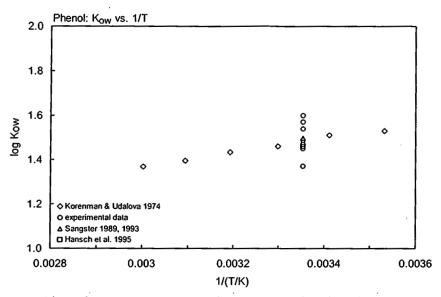
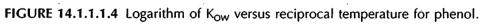




FIGURE 14.1.1.1.3 Logarithm of Henry's law constant versus reciprocal temperature for phenol.

TABLE 14 Reported		artition coefficients of phenol at various temperatures
Korenman	& Udalova 1974	
shake fl	ask-concn ratio	
t/°C	log K _{ow}	
10	1 531	

10	1.531		
20	1.510		
30	1.461		
40	1.433		
50	1.396		
60	1.369		
log K _{ow} =	= A – B/(T/K)		
Α	0.4479		
В	-305.877 ⁻		

R1787

10.1.1.11 Tetrahydrofuran

Common Name: Tetrahydrofuran

Synonym: 1,4-epoxybutane, diethylene oxide, oxacyclopentane, tetramethylene oxide Chemical Name: 1,4-epoxybutane, diethylene oxide, oxacyclopentane, tetrahydrofuran, tetramethylene oxide CAS Registry No: 109-99-9 Molecular Formula: C₄H₈O Molecular Weight: 72.106 Melting Point (°C): -108.44 (Lide 2003) Boiling Point (°C): 65 (Lide 2003) Density (g/cm³ at 20°C): 0.8880 (Verschueren 1983) 0.8892 (Riddick et al. 1986) Molar Volume (cm³/mol): 81.1 (20°C, calculated-density) 88.3 (calculated-Le Bas method at normal boiling point) Enthalpy of Fusion, ΔH_{fus} (kJ/mol): (quoted, Riddick et al. 1986) 8.535 8.54 (exptl., Chickos et al. 1999) Entropy of Fusion, ΔS_{fus} (J/mol K): Fugacity Ratio at 25°C, F: 1.0 Water Solubility (g/m³ or mg/L at 25°C): miscible (Verschueren 1983; Riddick et al. 1986) Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations Additional data at other temperatures designated * are compiled at the end of this section); 23465* (dynamic-ebulliometry, measured 15-65°C, Flom et al. 1951) 434076* (121.11°C, static-Bourdon gauge, measured range 121.11-265.56°C, Kobe et al. 1956) 19920* (23.139°C, measured range 23.2-99.7°C, Scott et al. 1970) 21646* (measured range 0.35-35°C, Koizumi & Ouchi 1970; quoted, Boublik et al. 1984) $\log (P/mmHg) = [1 - 339.244/(T/K)] \times 10^{0.830424 - 6.81525 \times 10^{-4} \cdot (T/K) + 6.84786 \times 10^{-7} \cdot (T/K)^{2}]; \text{ temp}$ range 253.15-540.15 K (Cox eq., Chao et al. 1983) 17530, 26340 (20°C, 30°C, quoted, Verschueren 1983) 21610, 21630 (calculated-Antoine eq., Boublik et al. 1984) log (P/kPa) = 6.59372 - 1446.15/(249.982 + t/°C); temp range 0.35-35°C (Antoine eq. from reported exptl. data, Boublik et al. 1984)

 $\log (P/kPa) = 6.12023 - 1202.394/(226.267 + t/^{\circ}C);$ temp range 23.139-99.7°C (Antoine eq. from reported exptl. data, Boublik et al. 1984)

 $\log (P/mmHg) = 6.97231 - 540.5/(260.10 + t/^{\circ}C);$ temp range not specified (Antoine eq., Dean 1985, 1992) 19920, 21600, 26870 (23.139, 25, 30°C, Riddick et al. 1986)

 $\log (P/kPa) = 6.79696 - 1157.06/(t/^{\circ}C + 206.75)$, temp range: 90-140°C, (Antoine eq., Riddick et al. 1986) 21620, 21900 (calculated-Antoine eq., Stephenson & Malanowski 1987)

 $\log (P_L/kPa) = 5.92617 - 1101.47/(-57/95 + T/K);$ temp range 273-339 K (Antoine eq.-I, Stephenson & Malanowski 1987)

log (P_L/kPa) = 6.12052 - 1202.561/(-46.863 + T/K); temp range 296-373 K (Antoine eq.-II, Stephenson & Malanowski 1987)

 $\log (P_1/kPa) = 6.63507 - 1626.656/(15.041 + T/K);$ temp range 399-479 K (Antoine eq.-III, Stephenson & Malanowski 1987)

- $\log (P_L/kPa) = 6.73137 1702.922/(23.613 + T/K);$ temp range 467-541 K (Antoine eq.-IV, Stephenson & Malanowski 1987)
- $log (P/mmHg) = 34.870 2.7523 \times 10^{3}/(T/K) 9.5958 \cdot log (T/K) + 1.9889 \times 10^{-10} \cdot (T/K) + 3.5465 \times 10^{-6} \cdot (T/K)^{2};$ temp range 165-540 K (vapor pressure eq., Yaws 1994)
- Henry's Law Constant (Pa m³/mol at 25°C):

7.15 (calculated- $1/K_{AW}$, C_W/C_A , reported as exptl., Hine & Mookerjee 1975)

10.33, 142.6 (calculated-group contribution calculated-bond contribution method, Hine & Mookerjee 1975)

Octanol Water Partition Coefficient, log Kow:

- 0.46 (calculated-f const., Hansch & Leo 1979)
- 0.22 (shake flask-GC, Funasaki et al. 1985)
- 0.46 (shake flask, Log P Database, Hansch & Leo 1987)
- 0.46 (recommended, Sangster 1989)
- 0.46 (recommended, Hansch et al. 1995)

Octanol/Air Partition Coefficient, log KoA:

2.86 (head-space GC, Abraham et al. 2001)

Bioconcentration Factor, log BCF:

Sorption Partition Coefficient, log Koc:

1.37, 1.26; 1.33 (Captina silt loam, McLaurin sandy loam; weighted mean, batch equilibrium-sorption isotherm, Walton et al. 1992)

Environmental Fate Rate Constants, k, and Half-Lives, t_h:

Volatilization:

Photolysis:

- Oxidation: rate constant k, for gas-phase second order rate constants, k_{OH} for reaction with OH radical, k_{NO3} with NO₃ radical and k_{O3} with O₃ or as indicated, *data at other temperatures see reference:
 - $k_{OH} = (1.59 1.63) \times 10^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ at } 298 \text{ K} \text{ (FP-RF flash photolysis-resonance fluorescence, Ravishankara & Davis 1978)}$
 - $k_{OH}(calc) = 1.66 \times 10^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}, k_{OH}(obs.) = 1.5 \times 10^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ at room temp.}$ (SAR structure-activity relationship, Atkinson 1987)
 - $k_{OH}(exptl) = 1.50 \times 10^{-11} \text{ cm}^3 \cdot \text{molecule}^{-1} \text{ s}^{-1}, k_{OH}(calc) = 1.28 \times 10^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ at room temp. (Atkinson 1986, 1987; quoted, Sabljic & Güsten 1990)
 - k_{OH}(calc) = 1.28 × 10⁻¹¹ cm³ molecule⁻¹ s⁻¹ at room temp. (SAR structure-activity relationship, Atkinson 1987, 1988; quoted, Müller & Klein 1991)
 - $k_{NO3} = 4.875 \times 10^{-15}$ cm³ molecule⁻¹ s⁻¹ at 296 ± 2 K (Atkinson et al. 1988; quoted, Sabljic & Güsten 1990; Atkinson 1991)

 $k_{NO3} = 4.88 \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ at } 296 \text{ K} \text{ (relative rate method, Atkinson et al. 1988, Atkinson 1991)}$ $k_{OH} = 1.78 \times 10^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ at } 296 \text{ K} \text{ (RP-RF method, Wallington et al. 1988b)}$

 $k_{OH} = 1.61 \times 10^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ at } 298 \text{ K} \text{ (recommended, Atkinson 1989)}$

 $k_{OH}^* = 18.0 \times 10^{-12}$ cm³ molecule⁻¹ s⁻¹ by relative rate method; $k_{OH} = 16.7 \times 10^{-12}$ cm³ molecule⁻¹ s⁻¹ by pulse laser photolysis-laser induced fluorescence and atmospheric lifetime calculated to be 16 h at 298 ± 2 K; measured range 263-372 K (Moriarty et al. 2003)

Hydrolysis:

Biodegradation:

Biotransformation:

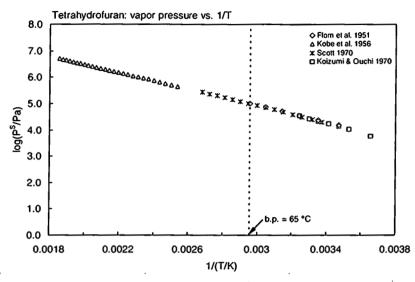
Bioconcentration, Uptake (k_1) and Elimination (k_2) Rate Constants or Half-Lives:

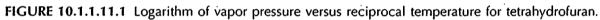
Half-Lives in the Environment:

Air: disappearance $t_{y_2} < 0.24$ h from air for the reaction with OH radical (USEPA 1974; quoted, Darnall et al. 1976). Surface water: Ground water:

Sediment:

Soil: disappearance $t_{y_2} = 5.7$ d was calculated from measured first-order rate constant (Anderson et al. 1991). Biota:


TABLE 10.1.1.11.1


Reported vapor pressures of tetrahydrofuran at various temperatures and the coefficients for the vapor pressure equations

$\log P = A - B/(T/K)$	(1)
$\log P = A - B/(C + t/^{\circ}C)$	(2)
$\log P = A - B/(C + T/K)$	(3)
$\log P = A - B/(T/K) - C \cdot \log (T/K)$	(4)

ln P = A - B/(T/K)(1a) $ln P = A - B/(C + t/^{\circ}C)$ (2a)

Flom et al. 1951		Kobe e	t al. 1956	Koizumi &	Ouchi 1970	Scot	tt 1970	
dynamic	e-ebulliometry	static-Bou	static-Bourdon gauge in Boublik et al. 1984 co		don gauge in Boublik et al. 1984 compara		rative ebulliometry	
t/°C	P/Pa	t/°C	· P/Pa	t/°C	P/Pa	t/°C	P/Pa	
15	15199	121.11	434076	0.35	567	23.139	19920	
25	23465	126.67	509867	10	10732	28.362	25007	
35	35064	132.22	578768	15	13687	33.62	31160	
45	51329	137.78	661450	20	17240	38.917	38547	
55	73327	143.33	744131	25	21646	44.251	47359	
65	101325	148.89	833702	30	26842	49.62	57803	
		154.44	909493	35	35031	55.029	70109	
bp/°C	66.1	160	1005955			60.475	84525	
		165.56	1116196			65.965	101325	
		171.11	1233328			71.489	120.789	
		176.67	1364240			77.054	143.268	
		182.22	1502042			82.659	169052	
		187.78	1653624			88.3	198530	
		193.33	1777646			93.98	232087	
		198.89	1984349			99.7 [~]	270110	
		204.44	2156601					
		210	2349524			mp/°C		
		215.56	2549337			-		
		21.11	2769820					
		226.67	3004084					
		232.22	3252127					
		237.78	3507061					
		243.33	3782655					
		248.89	4078939		•			
		254.44	4388994					
		260	4705938	•				
		265.56	5050443					

ENVIRONMENTAL IMPACT OF SOLVENTS

17.1 THE ENVIRONMENTAL FATE AND MOVEMENT OF ORGANIC SOLVENTS IN WATER, SOIL, AND AIR^a

WILLIAM R. ROY Illinois State Geological Survey, Champaign, IL, USA

17.1.1 INTRODUCTION

Organic solvents are released into the environment by air emissions, industrial and waste-treatment effluents, accidental spillages, leaking tanks, and the land disposal of solvent-containing wastes. For example, the polar liquid acetone is used as a solvent and as an intermediate in chemical production. ATSDR¹ estimated that about 82 million kg of acetone was released into the atmosphere from manufacturing and processing facilities in the U.S. in 1990. About 582,000 kg of acetone was discharged to water bodies from the same type of facilities in the U.S. ATSDR² estimated that in 1988 about 48,100 kg of tetrachloroethylene was released to land by manufacturing facilities in the U.S.

Once released, there are numerous physical and chemical mechanisms that will control how a solvent will move in the environment. As solvents are released into the environment, they may partition into air, water, and soil phases. While in these phases, solvents may be chemically transformed into other compounds that are less problematic to the environment. Understanding how organic solvents partition and behave in the environment has led to better management approaches to solvents and solvent-containing wastes. There are many published reference books written about the environmental fate of organic chemicals in air, water, and soil.³⁻⁷ The purpose of this section is to summarize the environmental fate of six groups of solvents (Table 17.1.1) in air, water, and soil. A knowledge of the likely pathways for the environmental fate of organic solvents can serve as the technical basis for the management of solvents and solvent-containing wastes.

Alcohols	Chlorinated Fluorocarbons
n-Butyl alcohol	Trichlorofluoromethane (F-11),
Isobutyl alcohol	1,1,2,2-Tetrachloro-1,2-difluoroethane (F-112)
Methanol	1,1,2-Trichloro-1,2,2-trifluoroethane (F-113)
	1,2,-Dichlorotetrafluoroethane (F-114)
Benzene Derivatives	
Benzene	Ketones
Chlorobenzene	Acetone
o-Cresol	Cyclohexanone
o-Dichlorobenzene	Methyl ethyl ketone
Ethylbenzene	Methy isobutyl ketone
Nitrobenzene	
Toluene	Others
o-Xylene	Carbon disulfide
	Diethyl ether
Chlorinated Aliphatic Hydrocarbons	Ethyl acetate
Carbon tetrachloride	Hexane
Dichloromethane	Decane (a major component of mineral spirits)
Tetrachloroethylene	Pyridine
1,1,1-Trichloroethane	Tetrahydrofuran
Trichloroethylene	

Table 17.1.1. The six groups of solvents discussed in this section

17.1.2 WATER

17.1.2.1 Solubility

One of the most important properties of an organic solvent is its solubility in water. The greater a compound's solubility, the more likely that a solvent or a solvent-containing waste will dissolve into water and become part of the hydrological cycle. Hence, water solubility can affect the extent of leaching of solvent wastes into groundwater, and the movement of dissolved solvent into rivers and lakes. Aqueous solubility also determines the efficacy of removal from the atmosphere through dissolution into precipitation. The solubility of solvents in water may be affected by temperature, salinity, dissolved organic matter, and the presence of other organic solvents.

17.1.2.2 Volatilization

Solvents dissolved in water may volatilize into the atmosphere or soil gases. A Henry's Law constant (K_H) can be used to classify the behavior of dissolved solvents. Henry's Law describes the ratio of the partial pressure of the vapor phase of an ideal gas (P_i) to its mole fraction (X_i) in a dilute solution, viz.,

$$K_{H(i)} = P_i / X_i$$
 [17.1.1]

In the absence of measured data, a Henry's Law constant for a given solvent may be estimated by dividing the vapor pressure of the solvent by its solubility in water (S_i) at the same temperature;

$$K_{H(i)} = P_i (atm) / S_i (mol/m^3 solvent)$$
[17.1.2]

A $K_{\rm H}$ value of less than 10⁻⁴ atm-mol/m³ suggests that volatilization would probably not be a significant fate mechanism for the dissolved solvent. The rate of volatilization is

more complex, and depends on the rate of flow, depth, and turbulence of both the body of water and the atmosphere above it. In the absence of measured values, there are a number of estimation techniques to predict the rate of removal from water.⁸

17.1.2.3 Degradation

The disappearance of a solvent from solution can also be the result of a number of abiotic and biotic processes that transform or degrade the compound into daughter compounds that may have different physicochemical properties from the parent solvent. Hydrolysis, a chemical reaction where an organic solvent reacts with water, is not one reaction, but a family of reactions that can be the most important processes that determine the fate of many organic compounds.⁹ Photodegradation is another family of chemical reactions where the solvent in solution may react directly under solar radiation, or with dissolved constituents that have been made reactive by solar radiation. For example, the photolysis of water yields a hydroxyl radical:

$$H_2O + hv \rightarrow HO \bullet + H$$

[17.1.3]

Other oxidants such as peroxy radicals ($RO_2 \bullet$) and ozone can react with solvents in water. The subject of photodegradation is treated in more detail under atmospheric processes (17.1.4).

Biodegradation is a family of biologically mediated (typically by microorganisms) conversions or transformations of a parent compound. The ultimate end-products of biodegradation are the conversion of organic compounds to inorganic compounds associated with normal metabolic processes.¹⁰ This topic will be addressed under Soil (17.1.3.3).

17.1.2.4 Adsorption

Adsorption is a physicochemical process whereby a dissolved solvent may be concentrated at solid-liquid interfaces such as water in contact with soil or sediment. In general, the extent of adsorption is inversely proportional to solubility; sparingly soluble solvents have a greater tendency to adsorb or partition to the organic matter in soil or sediment (see Soil, 17.1.3.2).

17.1.3 SOIL

17.1.3.1 Volatilization

Volatilization from soil may be an important mechanism for the movement of solvents from spills or from land disposed solvent-containing wastes. The efficacy and rate of volatilization from soil depends on the solvent's vapor pressure, water solubility, and the properties of the soil such as soil-water content, airflow rate, humidity, temperature and the adsorption and diffusion characteristics of the soil.

Organic-solvent vapors move through the unsaturated zone (the interval between the ground surface and the water-saturated zone) in response to two different mechanisms; convection and diffusion. The driving force for convective movement is the gradient of total gas pressure. In the case of diffusion, the driving force is the partial-pressure gradient of each gaseous component in the soil air. The rate of diffusion of a solvent in bulk air can be described by Fick's Law, viz.,

 $Q = -D_f \nabla_a$

[17.1.4]

[17.1.5]

where:

Q

- diffusive flux (mass/area-time)
- D_f diffusion coefficient (area/time)

 ∇_a concentration gradient (mass/volume/distance)

Compared with the relatively unobstructed path for the diffusion of solvents in the atmosphere, diffusion coefficients for solvents in soil air will be less because of the tortuosity of the soil matrix pathways. Several functional relationships have been developed that relate the soil diffusion coefficient (D_s) to various soil properties (see Roy and Griffin¹¹), such as the Millington Equation¹²

$$D_{s} = D_{t} \eta_{a}^{3.3} / \eta_{t}^{2}$$

where:

the air-filled porosity, and

total soil porosity

17.1.3.2 Adsorption

η

η

As discussed in 17.1.2.4., adsorption by soil components can remove solvents dissolved in water. Furthermore, the rate of movement of dissolved solvents through soil may be retarded by adsorption-desorption reactions between the solvents and the solid phases. The partitioning of solvents between the liquid phase and soil is usually described by an adsorption isotherm. The adsorption of solvents may be described by the Freundlich Equation:

$$x / m = K_t C^{1/n}$$
 [17.1.6]

where:

x	the mass adsorbed
m	mass of sorbent
Кr	the Freundlich constant, a soil-specific term
С	the equilibrium concentration of the solvent in water, and
n	the Freundlich exponent which describes the degree of non-linearity of the isotherm

When n is equal to one, the Freundlich Equation becomes a relatively simple partition function:

x/m = KC [17.1.7]

where K is an adsorption or distribution coefficient which is sometimes written as K_d . It has been known since the 1960s that the extent of adsorption of hydrophobic (sparingly soluble in water) solvents often correlates with the amount of organic matter in the soil.¹³ When K_d is divided by the amount of organic carbon in the soil, the resulting coefficient is the organic carbon-water partition coefficient (K_{re}):

$$K_d \times 100/organic \ carbon(\%) = K_{ac}$$
[17.1.8]

The organic carbon-water partition coefficient is a compound-specific term that allows the user to estimate the mobility of a solvent in saturated-soil water systems if the amount or organic carbon is known. For hydrophilic solvents, K_{oc} values have been measured for many compounds. Other values were derived from empirical relationships drawn between water solubility or octanol-water partition coefficients.¹³

R1736

17.1.3.3 Degradation

Solvents may be degraded in soil by the same mechanisms as those in water. In biodegradation, microorganisms utilize the carbon of the solvents for cell growth and maintenance. In general, the more similar a solvent is to one that is naturally occurring, the more likely that it can be biodegraded into other compound(s) because the carbon is more available to the microbes. Moreover, the probability of biodegradation increases with the extent of water solubility of the compound. It is difficult to make generalities about the extent or rate of solvent biodegradation that can be expected in soil. Biodegradation can depend on the concentration of the solvent itself, competing processes that can make the solvent less available to microbes (such as adsorption), the population and diversity of microorganisms, and numerous soil properties such as water content, temperature, and reduction-oxidation potential. The rate and extent of biodegradation reported in studies appears to depend on the conditions under which the measurement was made. Some results, for example, were based on sludge-treatment plant simulations or other biological treatment facilities that had been optimized in terms of nutrient content, microbial acclimation, mechanical mixing of reactants, or temperature. Hence, these results may overestimate the extent of biodegradation in ambient soil in a spill or waste-disposal scenario.

First-order kinetic models are commonly used to describe biodegradation because of their mathematical simplicity. First-order biodegradation is to be expected when the organisms are not increasing in abundance. A first-order model also lends itself to calculating a half-life $(t_{1/2})$ which is a convenient parameter to classify the persistence of a solvent. If a solvent has a soil half-life of 6 months, then about half of the compound will have degraded in six months. After one year, about one fourth the initial amount would still be present, and after 3 half-lives (1.5 years), about 1/8 of the initial amount would be present.

Howard et al.¹⁴ estimated ranges of half-lives for solvents in soil, water, and air. For solvents in soil, the dominant mechanism in the reviewed studies may have been biodegradation, but the overall values are indicative of the general persistence of a solvent without regard to the specific degradation mechanism(s) involved.

17.1.4 AIR

17.1.4.1 Degradation

As introduced in 17.1.2.3, solvents may be photodegraded in both water and air. Atmospheric chemical reactions have been studied in detail, particularly in the context of smog formation, ozone depletion, and acid rain. The absorption of light by chemical species generates free radicals which are atoms, or groups of atoms that have unpaired electrons. These free radicals are very reactive, and can degrade atmospheric solvents. Atmospheric ozone, which occurs in trace amounts in both the troposphere (sea level to about 11 km) and in the stratosphere (11 km to 50 km elevation), can degrade solvents. Ozone is produced by the photochemical reaction:

$$O_2 + hv \to O + O \tag{[17.1.9]}$$

$$O + O_2 \rightarrow O_3 + M \tag{17.1.10}$$

where M is another species such as molecular nitrogen that absorbs the excess energy given off by the reaction. Ozone-depleting substances include the chlorofluorocarbons (CFC) and carbon tetrachloride in the stratosphere.

17.1.4.2 Atmospheric residence time

Vapor-phase solvents can dissolve into water vapor, and be subject to hydrolysis reactions and ultimately, precipitation (wet deposition), depending on the solubility of the given solvent. The solvents may also be adsorbed by particulate matter, and be subject to dry deposition. Lyman¹⁶ asserted that atmospheric residence time cannot be directly measured; that it must be estimated using simple models of the atmosphere. Howard et al.¹⁴ calculated ranges in half-lives for various organic compounds in the troposphere, and considered reaction rates with hydroxyl radicals, ozone, and by direct photolysis.

17.1.5 THE 31 SOLVENTS IN WATER

17.1.5.1 Solubility

The solubility of the solvents in Table 17.1.1 ranges from those that are miscible with water to those with solubilities that are less than 0.1 mg/L (Table 17.1.2). Acetone, methanol, pyridine and tetrahydrofuran will readily mix with water in any proportion. The solvents that have an aqueous solubility of greater than 10,000 mg/L are considered relatively hydrophillic as well. Most of the benzene derivatives and chlorinated fluorocarbons are relatively hydrophobic. Hexane and decane are the least soluble of the 31 solvents in Table 17.1.1. Most material safety data sheets for decane indicate that the n-alkane is "insoluble" and that the solubility of hexane is "negligible." How the solubility of each solvent affects its fate in soil, water, and air is illustrated in the following sections.

Solubility, mg/L	Solvent (reference)	
~	Acetone (1) Methanol (1) Pyridine (1) Tetrahydrofuran (1)	Miscible
239,000	Methyl ethyl ketone (4)	
77,000 76,000 64,000 60,050 25,950 23,000 20,400 13,000	n-Butyl alcohol (4) Isobutyl alcohol (4) Ethyl acetate (4) Diethyl ether (4) o-Cresol (17) Cyclohexanone (4) Methyl isobutyl ketone (4) Dichloromethane (4)	Relatively hydrophillic
2,100 1,900 1,780 1,495 1,100 1,080	Carbon disulfide (4) Nitrobenzene (18) Benzene (19) 1,1,1-Trichloroethane (4) Trichloroethylene (4) F-11 (4)	

Table 17.1.2. The solubility of the solvents in water at 25°C

Solubility, mg/L	Solvent (reference)	
805 535 472 175 170 161 156 150 130 120	Carbon tetrachloride (4) Toluene (20) Chlorobenzene (17) o-Xylene (4) F-113 (4) Ethylbenzene (17) o-Dichlorobenzene (17) Tetrachloroethylene (4) F-114 (4) F-112 (4)	Relatively hydrophobic
9.5	Hexane (21)	
0.05	Decane (22)	"Insoluble"

17.1.5.2 Volatilization from water

Henry's Law constants were compiled for each of the solvents in Table 17.1.1. The numerical values ranged over 7 orders of magnitude (Table 17.1.3). Based on these values, it can be expected that volatilization from water will be a significant fate mechanism for decane, hexane, the chlorinated fluorocarbons, carbon tetrachloride, tetrachloroethylene and trichloroethylene. Many of the solvents in Table 17.1.1 are characterized by K_H values of 10⁻³ to 10⁻² atm-m³/mole; volatilization from water can be an important pathway for these solvents, depending on the specific situation. Volatilization may be a relatively slow process for the remaining solvents. The actual rate of volatilization of some solvents from water has been experimentally measured.^{4,17} However, experimental data are lacking for some compounds, and the diversity of experimental conditions makes generalizations difficult. Thomas⁸ described a two-layer model of the liquid-gas interface that is based on a Henry's Law constant and mass-transfer coefficients. To illustrate the relative volatilities of the solvents in water, the half-lives of each solvent in a shallow stream were compiled (Table 17.1.4). The stream was assumed to be 1 meter deep and flowing at a rate of 1 meter per second. With the exception of hexane, it was also assumed that there was a breeze blowing across the stream at a rate of 3 meters per second. Under these conditions, the predicted half-lives of many of the solvents in Table 16.1.1 are less than 10 hours, indicating that volatilization into the atmosphere can be a relatively rapid pathway for solvents released to surface water. The volatilization of pyridine, isobutyl alcohol, and cyclohexanone may be a slow process, and other fate processes may be more important in water.

17.1.5.3 Degradation in water

As mentioned in 17.1.3.3, Howard et al.¹⁴ compiled ranges of half-life values for most of the organic solvents given in Table 17.1.1. If a "rapid" half-life is defined as in the range of 1 to 10 days, then about 12 of the solvents in Table 17.1.1 may degrade rapidly in surface water by primarily biodegradation (Figures 17.1.1 and 17.1.2). Abiotic mechanisms such as photo-oxidation, photolysis, and hydrolysis appear to be either slow or not significant. If "slow degradation" is defined as that taking longer than 100 days, then it appears that F-11 and most of the chlorinated hydrocarbons may be relatively persistent in surface water. The available data suggest that the half-life of nitrobenzene and isobutyl alcohol may be variable. Note that data were not available for all of the solvents listed in Table 17.1.1. In

K _H , atm-m ³ /mole	Solvent (reference)
6.98	Decane (22)
2.8	F-114 (4)
1.69	Hexane (21)
0.53	F-113 (4)
9.74 x 10 ⁻²	F-112 (4)
9.70 x 10 ⁻²	F-11 (4)
3.04 x 10 ⁻²	Carbon tetrachloride (4)
1.49 x 10 ⁻²	Tetrachloroethylene (4)
1.03 x 10 ⁻²	Trichloroethylene (4)
9.63 x 10 ⁻³	Tetrahydrofuran (4)
8.4 x 10 ⁻³	Ethylbenzene (17)
8.0 x 10 ⁻³	1,1,1-Trichloroethane (4)
7.0 x 10 ⁻³	Pyridine (4)
5.94 x 10 ⁻³	Toluene (4)
5.43 x 10 ⁻³	Benzene (4)
5.1 x 10 ⁻³	o-Xylene (4)
3.58 x 10 ⁻³	Chlorobenzene (23)
2.68 x 10 ⁻³	Dichloromethane (4)
1.4 x 10 ⁻³	Carbon disulfide (4)
1.2 x 10 ⁻³	o-Dichlorobenzene (4)
7.48 x 10 ⁻⁴	Diethyl ether (11)
4 x 10 ⁻⁴	Isobutyl alcohol (4)
1.35 x 10 ⁻⁴	Methanol (4)
1.2 x 10 ⁻⁴	Ethyl acetate (4)
9.4 x 10 ⁻⁵	Methyl isobutyl ketone (4)
4.26 x 10 ⁻⁵	Acetone (1)
2.44 x 10 ⁻⁵	Nitrobenzene (2)
1.2 x 10 ⁻⁵	Cyclohexanone (4)
1.05 x 10 ⁻⁵	Methyl ethyl ketone (4)
5.57 x 10 ⁻⁶	n-Butyl alcohol (4)
1.2 x 10 ⁻⁶	o-Cresol (4)

Table 17.1.3.	Henry's Law	/ constants (K _H)
for the solven	ts at 25°C	

Table 17.1.4. Estimated half-lives for the solvents in water at 20°C

Half life, h	Solvent
1.6	Tetrahydrofuran
2.6	Carbon disulfide
2.7	Hexane ^a
2.9	Toluene
3.0	Dichloromethane
3.1	Ethylbenzene
3.2	o-Xylene
3.4	Trichloroethylene, F-11
3.7	Carbon tetrachloride
4.0	F-112, F-113, F-114
4.2	Tetrachloroethylene
4.4	o-Dichlorobenzene
4.6	Chlorobenzene
5.3	Methanol
10	Ethyl acetate
18	Acetone
45	Nitrobenzene
74	Cyclohexanone
80	Isobutyl alcohol
90	Pyridine

^aBased on a wind speed of 1 meter per second.²¹

groundwater, the half-life values proposed by Howard et al.¹⁴ appear to be more variable than those for surface water. For example, the half-life of benzene ranges from 10 days in aerobic groundwater to 2 years in anaerobic groundwater.¹⁹ Such ranges in half-lives make meaningful generalizations difficult. However, it appears that methanol, n-butyl alcohol, and other solvents (see Figures 17.1.1 and 17.1.2) may biodegrade in groundwater with a half-life that is less than 60 days. As with surface water, the

chlorinated hydrocarbons may be relatively persistent in groundwater. Howard et al.¹⁴ cautioned that some of their proposed half-life generalizations were based on limited data or from screening studies that were extrapolated to surface and groundwater. Scow¹⁰ summarized that it is currently not possible to predict rates of biodegradation because of a lack of standardized experimental methods, and because the variables that control rates are not well understood. Hence, Figures 17.1.1 and 17.1.2 should be viewed as a summary of the potential for each solvent to degrade, pending more site-specific information.

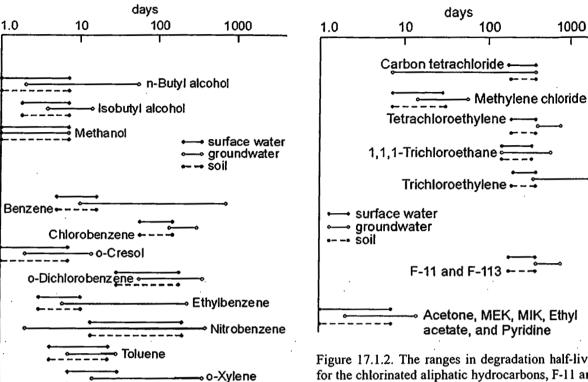
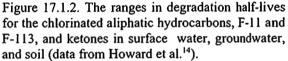



Figure 17.1.1. The ranges in degradation half-lives for the alcohols and benzene derivatives in surface water, groundwater, and soil (data from Howard et al.¹⁴).

17.1.6 SOIL

17.1.6.1 Volatilization

Soil diffusion coefficients were estimated for most of the solvents in Table 17.1.1. Using the Millington Equation, the resulting coefficients (Table 17.1.5) ranged from 0.05 to 0.11 m^2/day . Hence, there was little variation in magnitude between the values for these particular solvents. As discussed in Thomas²⁴ the diffusion of gases and vapors in unsaturated soil is a relatively slow process. The coefficients in Table 17.1.5 do not indicate the rate at which olvents can move in soil; such rates must be either measured experimentally or predicted using models that require input data such as soil porosity, moisture content, and the concentrations of the solvents in the vapor phase to calculate fluxes based solely on advective movement. Variations in water content, for example, will control vapor-phase movement. The presence of water can reduce the air porosity of soil, thereby reducing the soil diffusion coefficient (Eq. 17.1.5). Moreover, relatively water-soluble chemicals may dissolve into water in the vadose zone. Hence, water can act as a barrier to the movement of solvent vapors from the subsurface to the surface.

Solvents spilled onto the surface of soil may volatilize into the atmosphere. The Dow Method²⁴ was used in this section to estimate half-life values of each solvent if spilled on the surface of a dry soil. The Dow Method is a simple relationship that was derived for the evaporation of pesticides from bare soil;

$$t_{1/2}$$
 (days) = 1.58 x 10⁻⁸ ($K_{oc}S/P_{v}$)

[17.1.11]

coefficients D_s (from Roy and Griffin¹¹) D_s , m²/day Solvent 0.062 (25°C) n-Butyl alcohol Isobutyl alcohol 0.050 (0°C) 0.111 (25°C) Methanol Benzene 0.060 (15°C) Chlorobenzene 0.052 (30°C) o-Cresol 0.053 (15°C) o-Dichlorobenzene 0.049 (20°C) Ethylbenzene 0.046 (0°C) 0.050 (20°C) Nitrobenzene Toluene 0.058 (25°C) o-Xylene 0.049 (15°C) Carbon tetrachloride 0.051 (25°C) Dichloromethane 0.070 (15°C) 0.051 (20°C) Tetrachloroethylene 1,1,1-Trichloroethane 0.075 (20°C) Trichloroethylene 0.058 (15°C) F-11 0.060 (15°C) F-112 F-113 0.053 (15°C) F-114 0.056 (15°C) Acetone 0.076 (0°C) Cyclohexanone Methyl ethyl ketone Methyl isobutyl ketone Carbon disulfide 0.074 (25°C) Diethyl ether 0.054 (0°C) Ethyl acetate 0.059 (25°C) Hexane Mineral spirits -Pyridine -Tetrahydrofuran

Table 17.1.5. Estimated soil diffusion

Solvent	Half-life, min.
o-Cresol	38
Nitrobenzene	19
n-Butyl alcohol	18
Pyridine	8
Decane	4
Isobutanol Cyclohexanone	1

Table 17.1.6. Estimated soil-evapora-

where:

t_{1/2} K_{oc}

All other solvents

evaporation half-life (days) organic carbon-water partition

<1

coefficient (L/kg) solubility in water (mg/L), and

S solubility in water (mg/L), and P_v vapor pressure (mm Hg at 20°C)

The resulting estimated half-life is inversely proportional to vapor pressure; the greater the vapor pressure, the greater the extent of volatilization. Conversely, the rate of volatilization will be reduced if the solvent readily dissolves into water or is adsorbed by the soil. Organic carbon-water partition coefficients were compiled for each solvent (see 17.1.6.2.), and vapor pressure data (not shown) were collected from Howard.⁴ The resulting half-life estimates (Table 17.1.6) indicated that volatilization would be a major pathway if the liquid solvents were spilled on soil; all of the half-life estimates were less than one hour. Thomas²⁴ cautioned, however, that soil moisture, soil type, temperature, and wind conditions were not incorporated in the simple Dow Model.

K _{oc} , L/kg	Solvent (reference)	
<1	Methanol (13), Tetrahydrofuran ^a	
1 4 7 8 9	Acetone (13) Methyl ethyl ketone (13) Pyridine (13) Ethyl acetate, isobutyl alcohol (13) Diethyl ether (13)	Mobile
10 20 24 25 63 67 72 97	Cyclohexanone (13) o-Cresol (17) Methyl isobutyl ketone (13) Dichloromethane (13) Carbon disulfide (13) Nitrobenzene (13) n-Butyl alcohol (4) Benzene (13)	
110 152 155 164 242 303 318 343 363 372 437 457 479	Carbon tetrachloride (4) Trichloroethylene (13) 1,1,1-Trichloroethane (13) Ethylbenzene (17) Toluene (26) Tetrachloroethylene (13) Chlorobenzene (13) o-Dichlorobenzene (25) o-Xylene (13) F-113 (13) F-114 (13) F-112 (13) F-111 (13)	Relatively mobile
1,950	Hexane (21)	Deletinelo Immehile
57,100ª	Decane	Relatively Immobile

Table 17.1.7. The organic carbon-water partition coefficients (K_{oc}) of the solvents at 25°C

³Calculated using the relationship $\log K_{oc} = 3.95 - 0.62 \log S$ where S = water solubility in mg/L (see Hassett et al.²⁵)

17.1.6.2 Adsorption

Organic carbon-water partition coefficients were compiled (Table 17.1.7) for each of the solvents in Table 17.1.1. A K_{oc} value is a measure of the affinity of a solvent to partition to organic matter which in turn will control the mobility of the solute in soil and groundwater under convective flow. Although the actual amount of organic matter will determine the extent of adsorption, a solvent with a K_{oc} value of less than 100 L/kg is generally regarded as relatively mobile in saturated materials. Hence, adsorption may not be a significant fate mechanism for 16 of the solvents in Table 17.1.1. In contrast, adsorption by organic matter may be a major fate mechanism controlling the fate of three of the benzene derivatives, and most of the chlorinated compounds. Hexane and particularly decane would likely be relatively immobile. However, when the organic C content of an adsorbent is less than about 1

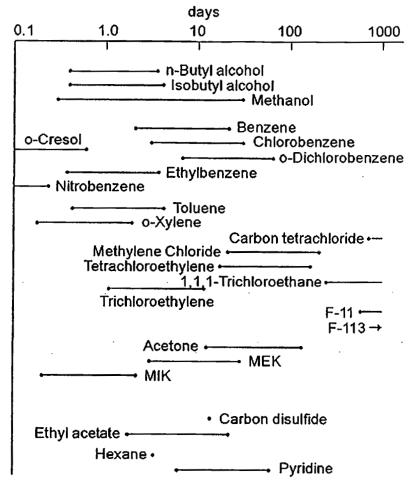


Figure 17.1.3. The ranges in atmospheric half-life of the solvents in Table 17.1.1 (data from Howard et al.¹⁴ and ATSDR²¹).

g/kg, the organic C fraction is not a valid predictor of the partitioning of nonpolar organic compounds,²⁷ and other properties such as pH, surface area, or surface chemistry contribute to or dominate the extent of adsorption. Moreover, pyridine occurs at a cation (pKa = 5.25) over a wide pH range, and thus it is adsorbed by electrostatic interactions rather than by the hydrophobic mechanisms that are endemic to using K_{oc} values to predict mobility.

The desorption of solvents from soil has not been extensively measured. In the application of advection-dispersion models to predict solute movement, it is generally assumed that adsorption is reversible. However, the adsorption of the solutes in Table 17.1.1 may not be reversible. For example, hysteresis is often observed in pesticide adsorption-desorption studies with soils.²⁸ The measurement and interpretation of desorption data for solid-liquid systems is not well understood.^{29,30} Once adsorbed, some adsorbates may react further to become covalently and irreversibly bound, while others may become physically trapped in the soil matrix.²⁸ The non-singularity of adsorption-desorption may sometimes result from experimental artifacts.^{28,31}

17.1.6.3 Degradation

As discussed in 17.1.3.3., Howard et al.¹⁴ also estimated soil half-life values (Figures 17.1.1 and 17.1.2) for the degradation of most of the solvents in Table 17.1.1. Biodegradation was cited as the most rapid process available to degrade solvents in a biologically active soil. The numerical values obtained were often the same as those estimated for surface water.

Consequently, it appears likely that the alcohols, ketones, o-cresol, ethyl acetate, and pyridine will degrade rapidly in soil if rapidly is defined as having a half-life of 10 days or less. Most of the benzene derivatives, F-11, and the chlorinated aliphatic hydrocarbons may be relatively persistent in soil. Analogous information was not located for diethyl ether, hexane, decane, or tetrahydrofuran. ATSDR²¹ for example, found that there was little information available for the degradation of n-hexane in soil. It was suggested that n-hexane can degrade to alcohols, aldehydes, and fatty acids under aerobic conditions.

17.1.7 AIR

Once released into the atmosphere, the most rapid mechanism to attenuate most of the solvents in Table 17.1.1 appears to be by photo-oxidation by hydroxyl radicals in the troposphere. Based on the estimates by Howard et al.,¹⁴ it appeared that nine of the solvents can be characterized by an atmospheric residence half-life of 10 days or less (Figure 17.1.3). The photo-oxidation of solvents yields products. For example, the reaction of OH radicals with n-hexane can yield aldehydes, ketones, and nitrates.²¹

The reaction of some of the solvents with ozone may be much slower. For example, the half-life for the reaction of benzene with ozone may be longer than 100 years.¹⁹ Solvents such as carbon tetrachloride, 1,1,1-trichloroethane, and the chlorinated fluorocarbons may be relatively resistant to photo-oxidation. The major fate mechanism of atmospheric 1,1,1-trichloroethane, for example, may be wet deposition.³²

REFERENCES

- 1 Agency for Toxic Substances and Disease Registry. Toxicological Profile for Acetone. ATSDR, Atlanta, Georgia, 1994.
- 2 Agency for Toxic Substances and Disease Registry. Toxicological Profile for Tetrachloroethylene. ATSDR, Atlanta, Georgia, 1991.
- 3 D. Calamari (ed.) Chemical Exposure Predictions, Lewis Publishers, 1993.
- 4 P. H. Howard, Handbook of Environmental Fate and Exposure Data for Organic Chemicals. Vol. II Solvents. Lewis Publishers, Chelsea, Michigan, 1990.
- 5 W. J. Lyman, W. F. Reehl, and D. H. Rosenblatt (eds). Handbook of Chemical Property Estimation Methods, American Chemical Society, Washington, D.C., 1990.
- 6 R. E. Ney. Fate and Transport of Organic Chemicals in the Environment. 2nd ed. Government Institutes, Inc. Rockville, MD, 1995.
- 7 B. L. Sawhney and K. Brown (eds.). Reactions and Movement of Organic Chemicals in Soils, Soil Science Society of America, Special Publication Number 22, 1989.
- 8 R. G. Thomas, Volatilization From Water, W. J. Lyman, W. F. Reehl, and D. H. Rosenblatt (eds). in Handbook of Chemical Property Estimation Methods, American Chemical Society, Washington, D.C, Chap. 15, 1990.
- 9 J. C. Harris. Rate of Hydrolysis, Lyman, W. J., W. F. Reehl, and D. H. Rosenblatt (eds). in Handbook of Chemical Property Estimation Methods, *American Chemical Society*, Washington, D.C, Chap. 7, 1990.
- 10 K. M. Scow, 1990, Rate of Biodegradation, W. J. Lyman, W. F. Reehl, and D. H. Rosenblatt (eds). in Handbook of Chemical Property Estimation Methods, American Chemical Society, Washington, D.C, Chap. 9, 1990.
- 11 W. R. Roy and R. A. Griffin, Environ. Geol. Water Sci., 15, 101 (1990).
- 12 R. J. Millington, Science, 130, 100 (1959).
- 13 W. R. Roy and R. A. Griffin, Environ. Geol. Water Sci., 7, 241 (1985).
- 14 P. H. Howard, R. S. Boethling, W. F. Jarvis, W. M. Meylan, and Edward M. Michalenko. Handbook of Environmental Degradation Rates, *Lewis Publishers*, Chelsea, Michigan, 1991.
- 15 M. Alexander and K. M. Scow, Kinetics of Biodegradation, B. L. Sawhney, and K. Brown (eds.). in Reactions and Movement of Organic Chemicals in Soils. Soil Science Society of America Special Publication, Number 22, Chap. 10, 1989.
- 16 W. J. Lyman, Atmospheric Residence Time, W. J. Lyman, W. F. Reehl, and D. H. Rosenblatt (eds). in Handbook of Chemical Property Estimation Methods. *American Chemical Society*, Washington, D.C, Chap. 10, 1990.

- 17 P. H. Howard, Handbook of Environmental Fate and Exposure Data for Organic Chemicals. Vol. I. Large Production and Priority Pollutants. *Lewis Publishers*, Chelsea, Michigan, 1989.
- 18 Agency for Toxic Substances and Disease Registry. Toxicological Profile for Nitrobenzene. ATSDR, Atlanta, Georgia, 1989.
- 19 Agency for Toxic Substances and Disease Registry. Toxicological Profile for Benzene. ATSDR, Atlanta, Georgia, 1991.
- 20 Agency for Toxic Substances and Disease Registry. Toxicological Profile for Toluene. ATSDR, Atlanta, Georgia, 1998.
- 21 Agency for Toxic Substances and Disease Registry. Toxicological Profile for Hexane. ATSDR, Atlanta, Georgia, 1997.
- 22 D. MacKay and W. Y. Shiu, J. Phys. Chem. Ref. Data, 4, 1175 (1981).
- 23 Agency for Toxic Substances and Disease Registry. Toxicological Profile for Chlorobenzene. ATSDR, Atlanta, Georgia, 1989.
- 24 R. G. Thomas. Volatilization from Soil in W. J. Lyman, W. F. Reehl, and D. H. Rosenblatt (eds). Handbook of Chemical Property Estimation Methods. *American Chemical Society*, Washington, D.C, Chap. 16, 1990.
- 25 J. J. Hassett, W. L. Banwart, and R. A. Griffin. Correlation of compound properties with soil sorption characteristics of nonpolar compounds by soils and sediments; concepts and limitations In C. W. Francis and S. I. Auerback (eds), Environmental and Solid Wastes, Characterization, Treatment, and Disposal, Chap. 15, p. 161-178, Butterworth Publishers, London, 1983.
- 26 J. M. Gosset, Environ. Sci. Tech., 21, 202 (1987).
- 27 T. Stauffer W. G. MacIntyre. 1986, Tox. Chem., 5, 949 (1986).
- 28 W. C. Koskinen and S. S. Harper. The retention process, mechanisms. p. 51-77. In Pesticides in the Soil Environment. Soil Science Society of America Book Series, no. 2, 1990.
- 29 R. E. Green, J. M. Davidson, and J. W. Biggar. An assessment of methods for determining adsorption-desorption of organic chemicals. p. 73-82. In A. Bainn and U. Kafkafi (eds.), Agrochemicals in Soils, Pergamon Press, New York, 1980.
- 30 R. Calvet, Environ. Health Perspectives, 83,145 (1989).
- 31 B. T. Bowman and W. W. Sans, J. Environ. Qual., 14, 270 (1985).
- 32 Agency for Toxic Substances and Disease Registry. Toxicological Profile for 1,1,1-Trichloroethane. ATSDR, Atlanta, Georgia, 1989.

17.2 FATE-BASED MANAGEMENT OF ORGANIC SOLVENT-CONTAINING WASTES^a

WILLIAM R. ROY Illinois State Geological Survey, Champaign, IL, USA

17.2.1 INTRODUCTION

The wide spread detection of dissolved organic compounds in groundwater is a major environmental concern, and has led to greater emphasis on incineration and waste minimization when compared with the land disposal of solvent-containing wastes. The movement and environmental fate of dissolved organic solvents from point sources can be approximated by the use of computer-assisted, solute-transport models. These models require information about the composition of leachate plumes, and site-specific hydrogeological and chemical data for the leachate-site system. A given land-disposal site has a finite capacity to attenuate organic solvents in solution to environmentally acceptable levels. If the attenuation capacity of a site can be estimated, then the resulting information can be used as criteria to make decisions as to what wastes should be landfilled, and what quantities of solvent in a given waste can be safely accepted. The purpose of this section is to summarize studies¹⁻³ that were conducted that illustrate how knowledge of the environmental fate and movement of the solvents in Section 17.1 can be used in managing solvent-containing wastes. These studies were conducted by using computer simulations to assess the fate of organic compounds in leachate at a waste-disposal site.

17.2.1.1 The waste disposal site

There are three major factors that will ultimately determine the success of a land-disposal site in being protective of the environment with respect to groundwater contamination by organic solvents: (1) the environmental fate and toxicity of the solvent; (2) the mass loading rate, i.e., the amount of solvent entering the subsurface during a given time, and (3) the total amount of solvent available to leach into the groundwater. The environmental fate of the solvents was discussed in 17.1.

The hypothetical waste-disposal site used in this evaluation (Figure 17.2.1) had a single waste trench having an area of 0.4 hectare. Although site-specific dimensions may be as-

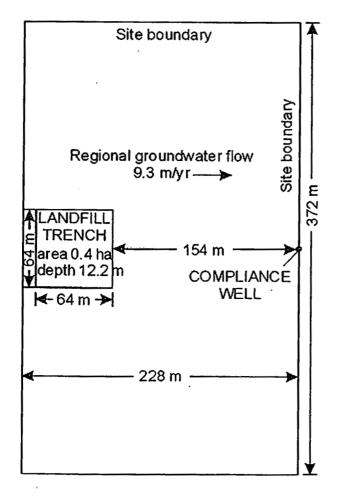


Figure 17.2.1. Design of the waste-disposal site model used in the simulations (Roy et al.¹).

signed with actual sites, this hypothetical site was considered representative of many situations found in the field. The trench was 12.2 meters (40 ft) deep and was constructed with a synthetic/compacted-soil double-liner system. The bottom of the trench was in direct contact with a sandy aquifer that was 6.1 meters (20 ft) thick. The top of the water table was defined as being at the top of the sandy aquifer. Thus, this site was designed as a worst-case scenario. The sandy aquifer directly beneath the hazardous-waste trench would offer little resistance to the movement of contaminants. To further compound a worst-case situation, it was also assumed that the entire trench was saturated with leachate, generating a 12.2 meter (40 ft) hydraulic head through the liner. This could correspond to a situation where the trench had completely filled with leachate because the leachate collection system had either failed or the site had been abandoned.

The following aquifer properties, typical of sandy materials,¹ were used in the study: saturated hydraulic conductivity = 10^{-3} cm/sec saturated volumetric water content = 0.36 cm³/cm³ dry bulk density = 1.7 g/cm³ hydraulic gradient = 0.01 cm/cm mean organic carbon content = 0.18%

These aquifer properties yield a groundwater flow rate of 9.3 meters (30 ft) per year. The direction of groundwater flow is shown in Figure 17.2.1 to be from left to right. The edge of the disposal trench was 154 meters (500 ft) from a monitoring well that was open to the entire thickness of the aquifer. This monitoring well served as a worst-case receptor because it was placed in the center of the flow path at the site boundary and it served as the compliance point for the site. The downgradient concentrations of organic solvents at the compliance well, as predicted by a solute-transport model, were used to evaluate whether the attenuation capacity of the site was adequate to reduce the contaminants to acceptable concentrations before they migrated beyond the compliance point.

17.2.1.2 The advection-dispersion model and the required input

The 2-dimensional, solute-transport computer program PLUME was used to conduct contaminant migration studies. Detailed information about PLUME, including boundary conditions and quantitative estimates of dispersion and groundwater dilution, were summarized by Griffin and Roy.³ In this relatively simple and conservative approach, PLUME did not take into account volatilization from water. Volatilization is a major process for many of the solvents (see Section 17.1). Adsorption was assumed to be reversible, and soil-water partition coefficients were calculated by assuming that the aquifer contained 0.18% organic carbon (see Roy and Griffin⁴). A degradation half-life was assigned to each solvent (Table 17.2.1). In many cases, conservative half-life values were used. For example, all of the ketones were assigned a half-life of 5 years, which is much longer than those proposed for ketones in groundwater (see Section 17.1). The movement of each solvent was modeled separately whereas it should be recognized that solvents in mixtures may have different chemical properties that can ultimately affect their fate and movement.

17.2.1.3 Maximum permissible concentrations

Central to the type of assessment is a definition of an environmentally acceptable concentration of each contaminant. These acceptable levels were defined as Maximum Permissible Concentrations (MPC), and were based on the toxicological assessments of solvents in drinking water by George and Siegel.⁵ These MPC levels (Table 17.2.1) are not the same levels as the current Maximum Contaminant Levels (MCL) that were promulgated by the U.S. Environmental Protection Agency for drinking water.

17.2.1.4 Distribution of organic compounds in leachate

An initial solute concentration must be selected for the application of solute transport models. An initial concentration for each solvent was based on the chemical composition of leachates from hazardous-waste sites.¹ Where available, the largest reported concentration was used in the modeling efforts (Table 17.2.1). No published data were located for some of the solvents such as cyclohexanone. In such cases, the initial concentration was arbitrarily assigned as 1,000 mg/L or it was equated to the compound's solubility in water. Hexane, decane, and tetrahydofuran were not included in these studies.

The amount of mass of each organic compound entering the aquifer via the double-liner system was calculated using these initial leachate concentrations. There was a continuous 12.2-meter head driving the leachate through the liner. Leachate was predicted to (----;)

break through the liner in 30 years. Under these conditions, approximately 131,720 L/year/acre of leachate would seep through the liner. The assumptions used in deriving this flow estimate were summarized in Roy et al.¹

Table 17.2.1. The six groups of solvents discussed in this section, their corresponding Maximum Permissible Concentrations (MPC), the largest reported concentrations in leachate (LC), and the assigned half-lives from Roy et al.¹

	MPC,µg/L	LC, mg/L	Half-life, years
Alcohols			
n-Butyl alcohol	2,070	1,000	5
Isobutyl alcohol	2,070	1,000	5
Methanol	3,600	42.4	5
Benzene Derivatives			
Benzene	1.6	7.37	20
Chlorobenzene	488	4.62	20
o-Cresol	304	0.21	20
o-Dichlorobenzene	400	0.67	50
Ethylbenzene	1,400	10.1	10
Nitrobenzene	19,800	0.74	20
Toluene	14,300	100	10
o-Xylene	14,300	19.7	10
Chlorinated Aliphatic Hydrocarbons			
Carbon tetrachloride	0.4	25.0	50
Dichloromethane	0.19	430	20
Tetrachloroethylene	0.80	8.20	20
1,1,1-Trichloroethane	6.00	590	50
Trichloroethylene	2.70	260	20
Chlorinated Fluorocarbons			
Trichlorofluoromethane (F-11)	0.19	0.14	50
1,1,2,2-Tetrachloro-1,2-difluoroethane (F-112)	0.19	120	50
1,1,2-Trichloro-1,2,2-trifluoroethane (F-113)	0.19	170	stable
1,2,-Dichlorotetrafluoroethane (F-114)	0.19	130	stable
Ketones			
Acetone	35,000	62	5
Cyclohexanone	3,500	1,000	5
Methyl ethyl ketone	30,000	53.0	5

	MPC,µg/L	LC, mg/L	Half-life, years
Methyl isobutyl ketone	143	10.0	5
Others			
Carbon disulfide	830	1,000	10
Diethyl ether	55,000	1,000	5
Ethyl acetate	55,000	1,000	5
Pyridine	207	1,000	20

A mass-loading rate was conservatively calculated for each solvent as,

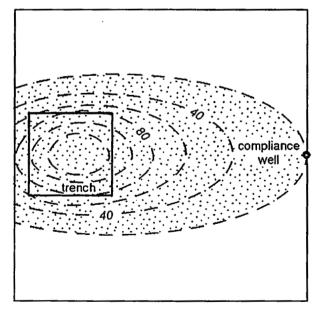
 $M_{lr} = Q \times C_{l}$

Q

C,

[17.2.1]

where:


M _{Ir}	the mass loading rate (mass/time/area),
-----------------	---

calculated leachate flux (131.7 kL/year/hectare), and

largest concentration of the solvent in leachate (mg/L)

17.2.2 MOVEMENT OF SOLVENTS IN GROUNDWATER

Ketones and alcohols have little tendency to be adsorbed by soil materials (see Section 17.1), and would appear at the compliance point only a few years after liner breakthrough (Figure 17.2.2). Because the mass loading rates were held constant, the ketones and alcohols assumed maximum steady-state concentrations after approximately 40 to 50 years (Figure 17.2.3). These two classes of organic solvents degrade readily, reducing their downgradient concentrations. The distribution of the benzene derivatives at the compliance well depended substantially on their soil-water partition coefficients, their tendencies to de-

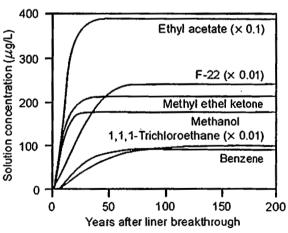


Figure 17.2.2. The predicted distribution of methyl ethyl ketone (mg/L) in the aquifer 100 years after the leachate has broken through the liner (Griffin and Roy^3).

Figure 17.2.3. The predicted concentrations of methyl ethyl ketone, methanol, benzene, 1,1,1-trichloroethane, ethyl acetate, and F-22 at the compliance point as a function of time (Roy et al.¹).

grade, and the initial concentrations. Under the conditions described, the relative steady-state concentrations of the benzene derivatives were: toluene > benzene > chlorobenzene > p-xylene > nitrobenzene > o-dichlorobenzene > o-cresol > ethyl benzene. Methylene chloride and 1,1,1-trichlorethane would dominate the chlorinated hydrocarbons. Among the group of unrelated organic solvents, the concentration of pyridine at the well was predicted to increase rapidly. Pyridine would eventually dominate this group in the relative order: pyridine > carbon disulfide > ethyl acetate > diethyl ether. The relative order of fluorocarbons at the compliance well in terms of concentration was: F-21, F-22 >> F-12 > F-113 > F-114 > F-112 > R-112a > FC-115 >> F-11.

In brief, the computer simulations predicted that all 28 organic compounds would eventually migrate from the waste trench, and be detected at the compliance well. The predicted concentrations varied by four orders of magnitude, and were largely influenced by the initial concentrations used in calculating the mass loading rate to the aquifer.

17.2.3 MASS LIMITATIONS

The next step in this analysis was to determine whether these predicted concentrations would pose an environmental hazard by evaluating whether the site was capable of attenuating the concentrations of the organic compounds to levels that are protective of human health. In Figure 17.2.4 the predicted steady-state concentrations of the organic compounds

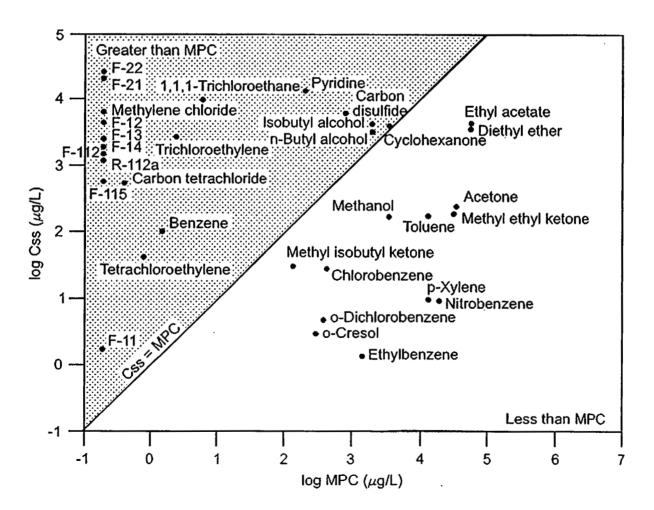


Figure 17.2.4. The predicted steady-state concentrations (Css) of each solvent in groundwater at the compliance point as a function of its Maximum Permissible (MPC) Concentration (Roy et al.¹).

[17.2.2]

in groundwater at the compliance well were plotted against their MPCs. The boundary shown in Figure 17.2.4 represents the situation where the steady-state concentration (Css) equals the MPC. Consequently, the predicted Css is less than its corresponding MPC when the Css of a given compound plots in the lower-right side. In this situation, these organic compounds could enter the aquifer at a constant mass loading rate without exceeding the attenuation capacity of the site. The steady-state concentrations of twenty solvents exceeded their corresponding MPCs. The continuous addition of these organic compounds (i.e., a constant mass loading rate) would exceed the site's ability to attenuate them to environmentally acceptable levels in this worst-case scenario. There are two avenues for reducing the steady-state concentrations downgradient from the trench: (1) reduce the mass loading rate, and/or (2) reduce the mass of organic compound available to leach into the aquifer. Because, the RCRA-required double liner was regarded as the state-of-the-art with respect to liner systems, it was not technically feasible to reduce the volume of leachate seeping into the aquifer under the conditions imposed. The worst-case conditions could be relaxed by assuming a lower leachate head in the landfill or by providing a functional leachate-collection system. Either condition would be reasonable and would reduce the mass loading rate. Another alternative is to reduce the mass available for leaching. In the previous simulations, the mass available to enter the aquifer was assumed to be infinite. Solute transport models can be used to estimate threshold values for the amounts of wastes initially landfilled.² A threshold mass (M₁) can be derived so that the down-gradient, steady-state concentrations will be less than the MPC of the specific compound, viz.,

$$M_t = V(MPC \times 1000) t$$

where:

t

M_t the threshold mass in g/hectare

V the volume of leachate entering the aquifer in L/yr/hectare

MPC the maximum permissible concentration as g/L, and

time in years; the amount of time between liner breakthrough and when the predicted concentration of the compound in the compliance well equals its MPC.

Using this estimation technique, Roy et al.¹ estimated mass limitations for the compounds that exceeded their MPCs in the simulations. They found that benzene, carbon tetrachloride, dichloromethane, pyridine, tetrachloroethylene, 1,1,1-trichloroethylene, trichloroethylene and all chlorinated fluorocarbons would require strict mass limitations (<250 kg/ha). Other solvents could be safely landfilled at the site without mass restrictions: acetone, chlorobenzene, cresols, o-dichlorobenzene, diethyl ether, ethyl acetate, ethylbenzene, methanol, methyl ethyl ketone, methyl isobutyl ketone, nitrobenzene, toluene, and xylene. Some solvents (cyclohexanone, n-butyl alcohol, isobutyl alcohol, and carbon disulfide) would require some restrictions to keep the attenuation capacity of the site from being exceeded.

These studies,¹⁻³ demonstrated that the land disposal of wastes containing some organic solvents at sites using best-available liner technology may be environmentally acceptable. Wastes that contain chlorinated hydrocarbons, however, may require pretreatment such as incineration or stabilization before land disposal. If the mass-loading rate is controlled and the attenuation capacity of the site is carefully studied, the integrated and multidisciplinary approach outlined in this section can be applied to the management of solvent-containing wastes. 17.3 Environmental fate of glycol ethers

REFERENCES

- 1 W. R. Roy, R. A. Griffin, J. K. Mitchell, and R. A. Mitchell, Environ. Geol. Water Sci., 13, 225 (1989).
- 2 W. R. Roy and R. A. Griffin, J. Haz. Mat., 15, 365 (1987).
- R. A. Griffin and W. R. Roy. Feasibility of land disposal of organic solvents: Preliminary Assessment. 3 Environmental Institute for Waste Management Studies, Report No. 10, University of Alabama, 1986. 4
- W. R. Roy and R. A. Griffin, Environ. Geol. Water Sci., 7, 241 (1985).
- 5 W. J. George and P. D. Siegel. Assessment of recommended concentrations of selected organic solvents in drinking water. Environmental Institute for Waste Management Studies, Report No. 15, University of Alabama, 1988.

17.3 ENVIRONMENTAL FATE AND ECOTOXICOLOGICAL EFFECTS OF GLYCOL ETHERS

JAMES DEVILLERS CTIS, Rillieux La Pape, France AURÉLIE CHEZEAU, ANDRÉ CICOLELLA, AND ERIC THYBAUD INERIS, Verneuil-en-Halatte, France

17.3.1 INTRODUCTION

()

Glycol ethers and their acetates are widely used as solvents in the chemical, painting, printing, mining and furniture industries. They are employed in the production of paints, coatings, resins, inks, dyes, varnisnes, lacquers, cleaning products, pesticides, deicing additives for gasoline and jet fuel, and so on.1 In 1997, the world production of glycol ethers was about 900,000 metric tons.²

There are two distinct series of glycol ethers namely the ethylene glycol ethers which are produced from ethylene oxide and the propylene glycol ethers derived from propylene oxide. The former series is more produced and used than the latter. Thus, inspection of the 42,000 chemical substances recorded by INRS (France) in the SEPIA data bank, between 1983 and 1998, reveals that 10% of them include ethylene glycol ethers and about 4% propylene glycol ethers.² However, due to the reproductive toxicity of some ethylene glycol monoalkyl ethers,³⁻⁵ it is important to note that the worldwide tendency is to replace these chemicals by glycol ethers belonging to the propylenic series.²

Given the widespread use of glycol ethers, it is obvious that these chemicals enter the environment in substantial quantities. Thus, for example, the total releases to all environmental media in the United States for ethylene glycol monomethyl ether and ethylene glycol monoethyl ether in 1992 were 1688 and 496 metric tons, respectively.⁶ However, despite the potential hazard of these chemicals, the problems of the environmental contaminations with glycol ethers have not received much attention. There are two main reasons for this. First, these chemicals are not classified as priority pollutants, and hence, their occurrence in the different compartments of the environment is not systematically investigated. Thus, for example, there are no glycol ethers on the target list for the Superfund hazardous waste site cleanup program.6 Second, glycol ethers are moderately volatile colorless liquids with a high water solubility and a high solubility with numerous solvents. Consequently, the clas-

Table 1: Existing Unit Baseline and Sensitivity Parameters

Deposit Data		······
No. of Layers		2
Laplace Transform Parameters	Tau	7
	N	20
	Sig	0
	RNU	2
Darcy Velocity	m/A	0
Distance to Zone of Attenuation	m	30.45
Time Period	A	145

Layer Dat		Units	BASELINE	MIN	MAX
-	No. of Sublayer	-	10	5	20
Situ er	Thickness	m	3.05	-	-
er 1 - In S Soil Liner	Dry Density	g/cm ³	1.91	1.61	2.12
er 1 Soil	Porosity		0.36	0.29	0.42
Layer 1 Soil L	Diffusion Coefficient	m²/A	0.018	0.00315	0.0315
	Distribution Coefficient	mL/g	0		-
5	No. of Sublayer		40	20	90
Aquifer	Thickness	m	27.4	-	
- Aq	Dry Density	g/cm ³	1.69	1.13	1.99
Layer 2	Porosity	-	0.41	0.32	0.5
	Diffusion Coefficient	m²/A	0.018	0.00315	0.0315
	Distribution Coefficient	mL/g	0	-	-

Boundary Conditions							
Top Boundary Condition	Constant	Constant Concentration					
Bottom Boundary Condition	Infinite Th	ickness					
Variable Properties						1	
Property Increments within Groups	Yes						
Number of Time Periods	7						
Start Time	0	0					
Type of Profile	Sublayer						
Time Period	1	2	3	4	5	6	7
End Time	5	15	16	19	20	75	145
No of Increments	5	2	1	3	1	11	14
Beginning Concentration	100	100	100	100	100	100	100
Darcy Velocity	0	0.0378	0.0378	0.0378	0	0	0
Dispersivity	0.9	0.9	0.9	0.9	0.9	0.9	0.9
Concentration Increment	0	0	0	0	0	0	0.5
Darcy Velocity Increment	0.00756	0	0	-0.0126	0	0	0.0027

Landfill 33 Groundwater Impact Assessment (September 2018) Andrews Engineering, Inc.

 $\left(\begin{array}{c} \\ \\ \end{array} \right)$

1.1

J:\L\Landfill 33\GEO\2018 GIA\Model Results Tables

-

Table 2: South Unit Baseline and Sensitivity Parameters

Deposit Data			
No. of Layers		2	
	Tau	7	
Laplace Transform Parameters	N	20	
	Sig	0	
	RNU	2	
Darcy Velocity	m/A	0.00107	
Distance to Zone of Attenuation	m	30.45	
Time Period	A	131	

Layer Dat	a	Units	BASELINE	MIN	MAX
=	No. of Sublayer	-	1	-	-
E	Thickness	m	0.00152	-	
r 1 - 6(HDPE	Dry Density	g/cm ³	0.94	-	
HD HD	Porosity	-	1	-	-
Layer 1 - 60 mil HDPE	Diffusion Coefficient	m²/A	0.00008	0.000008	0.0008
	Distribution Coefficient	mL/g	0	-	-
ye	No. of Sublayer	-	3	1	9
- 10	Thickness	m	0.914	•	-
Layer 2 - Recompacted Clay Liner	Dry Density	g/cm ³	1.91	1.61	2.12
Layer 2 mpacte Liner	Porosity	-	0.36	0.29	0.42
Con	Diffusion Coefficient	m²/A	0.018	0.00315	0.0315
Re	Distribution Coefficient	mL/g	0		-
5	No. of Sublayer	-	15	10	20
uife	Thickness	m	38.7	· · · ·	-
Aq	Dry Density	g/cm ³	1.69	1.13	1.99
72.	Porosity	-	0.41	0.32	0.5
Layer 2 - Aquifer	Diffusion Coefficient	m²/A	0.064	0.00315	0.173
	Distribution Coefficient	mL/g	0		-

Boundary Conditions	
Top Boundary Condition	Constant Concentration
Bottom Boundary Condition	Infinite Thickness

Landfill 33 Groundwater Impact Assessment (September 2018) Andrews Engineering, Inc.

(-)

C

()

J:\L\Landfill 33\GEO\2018 GIA\Model Results Tables

Table 3: Northwest Unit Baseline and Sensitivity Parameters

	No. of Landfills				1	
ta	No. of Layers				3	
Da		Tau			7 .	
eral	Laplace Transform	N			11	
General Data	capiace mansionin	Sig			0	
G		RNU			1	
	Gauss Integration	Normal				
	Top Boundary	Constant Concentration -	Surface			
	Bottom Boundary	Aquifer				
			Units	BASELINE	MIN	MAX
Suc		Offset Distance	m	0		-
Boundary Conditions	Top Boundary Condition	Landfill Base Width	m	61	45.7	76.2
ouo	is position for a line of the	Landfill Surface Width	m	366	351	381
20		Surface Concentration	mg/L	1		-
dar		Base Thickness	m	2.44	0.305	3.81
un		Base Half-Life	yrs	0	1000-000	-
B	Bottom Boundary Condition	Sink Removal	m/a	0		-
	contain boundary condition	Base Porosity	•	0.34	0.14	0.49
		Outflow Velocity	m/a	0.42	0.042	4.42
		Dispersion Coefficient	m2/a	1.53	0.153	15.3
		Number of Sublayers	-	1 .		-
		Thickness	m	0.00152	•	-
		Dry Density	g/cm3	0.94		-
		Porosity		1		-
		Distribution Coefficient	mL/g	0		
	Layer 1: 60 mil HDPE	Vertical Diffusion	m2/a	0.00008	0.000008	0.000
		Horizontal Diffusion	m2/a	0		
		Vertical Velocity	m/a	0.00107	0.000107	0.010
		Horizontal Velocity	m/a	0		•
		Decay Half-Life	yrs	0	-	
		Sink Removal	m/a	0	-	-
		Number of Sublayers	-	3	1	6
		Thickness	m	0.914	-	
		Dry Density	g/cm3	1.91	1.61	2.12
æ		Porosity	-	0.36	0.29	0.43
Layer Data		Distribution Coefficient	mL/g	0		-
er	Layer 2: Recompacted Clay	Vertical Diffusion	m2/a	0.018	0.00315	0.0315
Lay		Horizontal Diffusion	m2/a	0.018	0.00315	0.0319
_		Vertical Velocity	m/a	0.00107	0.000107	0.0107
		Horizontal Velocity	m/a	0		-
		Decay Half-Life	yrs	0	-	
		Sink Removal	m/a	0	-	-
		Number of Sublayers		15	1	30
		Thickness	m	2.44	1.52	4.57
		Dry Density	g/cm3	1.91	1.61	2.12
		Porosity		0.36	0.29	0.43
		Distribution Coefficient	mL/g	0		
	Layer 3: In situ Clay	Vertical Diffusion	m2/a	0.018	0.00315	0.0315
		Horizontal Diffusion	m2/a	0.018	0.00315	0.0315
		Vertical Velocity	m/a	0.00107	0.000107	0.0107
		Horizontal Velocity	m/a	0		
		Decay Half-Life	yrs	0		
		Sink Removal	m/a	0		
of Distances	8	30.48, 45.72, 4				
Number of Times	25	years 5 through	115 at 5 y	ear incremer	nts and year 1	16

Landfill 33 Groundwater Impact Assessment (September 2018) Andrews Engineering, Inc.

 $\left(\begin{array}{c} \\ \end{array}\right)$

-

.

Table 4: Northwest

	Ko	c, OctWa	ter Part. Co	oef.	f	K Diet		t _{1/2} , F	lalf-Life (y	ears)	
Parameter	M	in	N	lax	f _{oc} , Frac.	K _d , Dist.	N	Min		Max	
	$\log K_{oc}$	K _{oc} (mL/g)	log K _{oc}	K _{oc} (mL/g)	of Org. C (%)	Coef (mL/g)	t _{1/2} (hrs)	t _{1/2} (yrs)	t _{1/2} (hrs)	t _{1/2} (yrs)	t _{1/2} (yrs)
Surrogate 1 (SUR001) - F	Pnictogen I	lydride					·				
Ammonia as N, total	0.199	1.58	1.58	14.3		0.0213	8760	1 1	52560	6	6
Surrogate 2 (SUR002) - F	olynuclea	r Aromatic	Hydrocar	bon				· · · · · · · · · · · · · · · · · · ·	02000		0
Benzo(a)anthracene	4.52	33113	7.3	19952623			4896	0.559	32640	3.73	
Benzo(b)fluoranthene	5.45	281838	8.02	1.05E+08		75.9	17280	1.97	29280	3.34	11.7
Benzo(k)fluoranthene	5.47	295121	8.02	1.05E+08			42680	4.87	102720	11.7	
Dibenzo(a,h)anthracene	3.75	5623	8.5	3.16E+08			17328	1.98	45120	5.15	
Surrogate 3 (SUR003) - H	lalogenate	d Aliphatic	Hydrocar	bon						0.10	
Methylene Chloride	0.944	8.79	1.44	27.5	0.0135	0.440	336	0.0384	1344	0.153	
1,2-Dibromoethane	1.556	36	1.699	50		0.119	470	0.0537	2880	0.329	0.329
Surrogate 4 (SUR004) - A	liphatic Et	her			1					0.020	
Tetrahydrofuran	1.26	18.2	1.37	23.4		0.246	1.6	0.000183	1.6	0.000183	0.000183
Surrogate 5 (SUR005) - H	letone									0.000100	0.000100
Acetone	-0.586	0.259	-0.523	0.3		0.0005	48	0.00548	336	0.0384	
2-Butanone (MEK)	-0.03	0.933	2.41	257		0.0035	48	0.00548	336	0.0384	0.0384
Surrogate 6 (SUR006) - P	henolics					•				5.0001	
Phenolics	1.15	14.1	3.49	3090		0.302	12	0.00137	168	0.0192	0.0192

Landfill 33 Groundwater Impact Assessment (September 2018) Andrews Engineering, Inc.

Parameter	Units	List	Max	AGQS		ing Unit		h Unit		vest Un
1,1,1,2-Tetrachloroethane				_		1.0002E-06	MPF =	8.5377E-16	MPF =	3.215
The second	ug/L	LI	50	2.5	S.00E-05	PASS	4.27E-14	PASS	0.16075	P/
1.1.1-Trichloroelhane	ug/L	L1	50	2.5	5.00E-05	PASS	4.27E-14	PASS	0.16075	PA
1.1,2,2-Tetrachloroethane	ug/L	L1	50	2.5	5.00E-05	PASS	4.27E-14	PASS	0.16075	PA
1,1,2-Trichloroethane	ug/L	L1	50	2.5	5.00E-05	PASS	4.27E-14	PASS	0.16075	PA
1,1-Dichloroethane	ug/L	L1	50	2.5	5.00E-05	PASS				
1.1-Dichloroethene	ug/L	LI	50	2.5			4.27E-14	PASS	0.16075	PA
1,1-Dichloropropene	ug/L	LI			5.00E+05	PASS	4.27E-14	PASS	0.16075	P/
1.2.3-Trichlorobenzene			50	2.5	5.00E-05	PASS	4.27E-14	PASS	0.16075	PA
	ug/L	L1	50	2.5	5.00E-05	PASS	4.27E-14	PASS	0.16075	PA
1,2,3-Trichloropropane	ug/L	L1	50	2.5	5.00E-05	PASS	4.27E-14	PASS	0.16075	P/
1.2.4-Trichlorobenzene	ug/L	L1	50	2.5	5.00E-05	PASS	4.27E-14	PASS	0.16075	PA
1,2,4-Trimethylbenzene	ug/L	L1	130	2.5	1.30E-04	PASS	1.116-13	PASS	0.41795	_
1,2-Dibromo-3-chloropropane	ug/L	L1	50	2.5	5.00E-05	PASS				PA
1,2-Dibromoethane	ug/L	LI	-				4.27E-14	PASS	0.16075	PA
1,2-Dichlorobenzene			50	0.05	5.00E-05	PASS	4.27E-14	PASS	8.77E-25	PA
	ug/L	L1	50	2.5	5.00E-05	PASS	4.27E-14	PASS	0.16075	PA
1,2-Dichloroethane	ug/L	L1	50	2.5	5.00E-05	PASS	4.27E-14	PASS	0.16075	PA
1.2-Dichloropropane	ug/L	L1	50	2.5	5.00E-05	PASS	4.27E-14	PASS	0.16075	PA
1.3,5-Trimethylbenzene	ug/L	L1	50	2.5	5.00E-05	PASS	4.27E-14	PASS		
1,3-Dichlorobenzene	Ug/L	L1	50	2.5	5.00E-05				0.16075	PA
1.3-Dichloropropane	ug/L	LI	50			PASS	4.27E-14	PASS	0.16075	PA
				2.5	5.00E-05	PASS	4.27E-14	PASS	0.16075	PA
1,3-Dichloropropene	ug/L	LI	150	2.5	1.50E-04	PASS	1.28E-13	PASS	0.48225	PA
1,4-Dichlorobenzene	ug/L	L1	50	2.5	5.00E-05	PASS	4.27E-14	PASS	0.16075	PA
1-Propanol	ug/L	L1	20000	na		-				
2,2-Dichloropropane	ug/L	L1	50	2.5	5.00E-05	PASS	4.27E-14	PASS	0.16075	PA
2.4.5-TP (Silvex)	ug/L	L1	1	1	1.00E-06	PASS	8.54E-16			
2,4,6-Trichlorophenol	ug/L	L1	500	na	1.000-00	PASS	0.340-10	PASS	0.003215	PA
2.4-D	ug/L	LI	190						•	-
2,4-Dichlorophenol				5	1.90E-04	PASS	1.62E-13	PASS	0.61085	PA
	ug/L	L1	100	na			•		-	
2.4-Dimethylphenol	ug/L	L1	100	na						-
2.4-Dinitrophenol	ug/L	L1	500	na	•					
2,4-Dinitrotoluene	ug/L	L1	100	na						
2,6-Dinitrotoluene	ug/L	L1	100	na						
2-Bulanone (MEK)	ug/L	LI						•		
2-Chloroethyl vinyl ether			8000	5	8.00E-03	PASS	6.83E-12	PASS	0 ⁵	PAS
	ug/L	L1	50	na			-		-	
2-Chloronaphthalene	ug/L	L1	100	na						-
2-Chlorophenol	ug/L	L1	100	na	-					
2-Chlorotoluene	ug/L	L1	50	2.5	5.00E-05	PASS	4.27E-14	PASS	0.16075	PA
2-Hexanone (MBK)	ug/L	L1	100	5	1.00E-04	PASS	8.54E-14			
2-Nitrophenol	ug/L	L1	500	na				PASS	0.3215	PA
Propanol									•	
.3'-Dichlorobenzidine	ug/L	L1	12000	na	•		•		-	•
and the second se	ug/L	L1	200	na					•	-
.4'-DDD	ug/L	L1	1	na	•					
.4'-DDE	ug/L	L1	1	na						
.6-Dinitro-2-methylphenol	ug/L	L1	500	na	•					
-Bromophenyl-phenylether	ug/L	L1	100	na						•
-Chlorophenyl-phenylether					· · ·	•				•
	ug/L	LI	100	na	-	· ·		-	-	
-Chlorotoluene	ug/L	L1	50	2.5	5.00E-05	PASS	4.27E-14	PASS	0.16075	PAS
-Methyl-2-pentanone (MIBK)	ug/L	L1	170	5	1.70E-04	PASS	1.45E-13	PASS	0.54655	PAS
-Melhylphenol	ug/L	L1	1500	5	1.50E-03	PASS	1.28E-12	PASS	4.8225	PAS
Nitrophenol	ug/L	L1	500	na						110
cenaphthene	ug/L	LI	100	1	1.00E-04	PASS	9 545 14	DACC	0.3335	
cetone							8.54E-14	PASS	0.3215	PAS
	ug/L	L1	2800	5	2.80E-03	PASS	2.39E-12	PASS	05	PAS
lachlor	ug/L	L1	4	0.0445	4.00E-06	PASS	3.42E-15	PASS	0.01286	PAS
ldicarb	ug/L	L1	17	1.725	1.70E-05	PASS	1.45E-14	PASS	0.054655	PAS
Idrin	ug/L	L1	0.5	0.025	5.00E-07	PASS	4.27E-16	PASS	0.0016075	PAS
Ikalinity, bicarbonate	mg/L	LI	5400	na	5.002.07		4.272.10		5.0010075	PAS
pha-BHC	ug/L	LI	0.5	0.05				DACC	0.000	
luminum, total		and the second second second second			5.00E-07	PASS	4.27E-16	PASS	0.0016075	PAS
	ug/L	LI	24000	968966	2.40E-02	PASS	2.05E-11	PASS	77.16	PAS
mmonia as N, total	mg/L	L1	850	0.346	8.50E-04	PASS	7.26E-13	PASS	0.00093761	PAS
nthracene	ug/L	L1	100	1	1.008-04	PASS	8.54E-14	PASS	0.3215	PAS
ntimony, total	ug/L	LI	60	30	6.00E-05					
rsenic, total						PASS	5.12E-14	PASS	0.1929	PAS
	ug/L	L1	540	7.1	5.40E-04	PASS	4.61E-13	PASS	1.7361	PAS
trazine	ug/L	L1	9.7	0.151	9.70E-06	PASS	8.28E-15	PASS	0.0311855	PAS
arium, total	ug/L	L1	1400	222	1.40E-03	PASS	1.20E-12	PASS	4.501	PAS
enzene	ug/L	L1 .	50	2.5	5.00E-05	PASS	4.27E-14	PASS	0.16075	
enzo(a)anthracene						-	in the second	_		PAS
	ug/L	L1	100	0.13	1.00E-04	PASS	8.54E-14	PASS	02	PAS
enzo(a)pyrene	ug/L	L1	100	5	1.00E-04	PASS	8.54E-14	PASS	0.3215	PAS
enzo(b)fluoranthene	ug/L	L1	100	0.18	1.00E-04	PASS	8.54E-14	PASS	02	PAS
enzo(g.h.i)perylene	ug/L	L1	100	na		.				

Landfill 33

Groundwater Impact Assessment (September 2018) Andrews Engineering, Inc.

Parameter	Units	List	Max	AGQS		ng Unit	Sout	h Unit	Northw	est Unit
Papillium totat						1.0002E-06		8.5377E-16		3.215E-03
Beryllium, total	ug/L	LI	20	5	2.00E-05	PASS	1.71E-14	PASS	0.0643	PASS
beta-BHC	ug/L	LI	0.5	na			•	•	•	
Biochemical Oxygen Demand	mg/L	L1	29700	6.5			-		•	
bis(2-chloroethoxy)methane	ug/L	LI	100	na	•				•	
bis(2-chloroethyl)ether	ug/L	L1	100	na	· ·		•		•	
bis(2-chloroisopropyl)ether	ug/L	1 11	100	nə	•					
bis(2-ethylhexyl)phthalate	ug/L	L1	100	1	1.00E-04	PASS	8.54E-14	PASS	0.3215	PASS
bis(chloromethyl)ether	ug/L	L1	100000	6n				-		
Boron, total	ug/L	L1	9700	504	9.70E-03	PASS	8.28E-12	PASS	31.1855	PASS
Bromobenzene	ug/L	L1	50	2.5	5.00E-05	PASS	4.27E-14	PASS	0.16075	PASS
Bromochloromethane	ug/L	L1	50	2.5	5.00E-05	PASS	4.27E-14	PASS	0.16075	PASS
Bromodichloromethane	ug/L	L1	50	2.5	5.00E-05	PASS	4.27E-14	PASS	0.16075	PASS
Bromoform	ug/L	L1	50	2.5	5.00E-05	PASS	4.27E-14	PASS	0.16075	PASS
Bromomethane	ug/L	LI	50	2.5	5.00E-05	PASS	4.27E-14	PASS	0.16075	PASS
Butanol	ug/L	LI	10000	na					•	•
Butylbenzylphthalate	ug/L	LI	100	na	·	•	•	•	•	
Cadmium, total	ug/L	L1	4.5	3.1	4.50E-06	PASS	3.84E-15	PASS	0.0144675	PASS
Calcium, total Carboluran	mg/L	LI	690	295.81	6.90E-04	PASS	5.89E-13	PASS	2.21835	PASS
	ug/L	LI	15	2.03	1.50E-05	PASS	1.28E-14	PASS	0.048225	PASS
Carbon Disulfide Carbon Tetrachloride	ug/L	L1	50	5	5.00E-05	PASS	4.27E-14	PASS	0.16075	PASS
	ug/L	L1	50	2.5	5.00E-05	PASS	4.27E-14	PASS	0.16075	PASS
Chemical Oxygen Demand Chlordane	mg/L	LI	37400	28					•	•
Chloride, total	ug/L	L1	10	0.05	1.00E-05	PASS	8.54E-15	PASS	0.03215	PASS
Chlorobenzene	mg/L	L1	3700	211.53	3.70E-03	PASS	3.16E-12	PASS	11.8955	PASS
Chloroethane	ug/L	L1	50	2.5	5.00E-05	PASS	4.27E-14	PASS	0.16075	PASS
Chloroform	ug/L	L1	50	2.5	5.00E-05	PASS	4.27E-14	PASS	0.16075	PASS
Chloromethane	ug/L	L1	50 50	2.5	5.00E-05	PASS	4.27E-14	PASS	0.16075	PASS
Chromium, total	ug/L	LI	99	S	5.00E-05	PASS	4.27E-14	PASS	0.16075	PASS
Chrysene	ug/L	L1		64.5	9.90E-05	PASS	8.45E-14	PASS	0.318285	PASS
cis-1,2-Dichloroethene	ug/L	L1	100	1	1.00E-04	PASS	8.54E-14	PASS	0.3215	PASS
Cobalt, Iotal	ug/L	L1	200	2.5	2.002-04	PASS	1.71E-13	PASS	0.643	PASS
Copper, total	ug/L		42	48.1	4.20E-05	PASS	3.59E-14	PASS	0.13503	PASS
Cyanide, total	ug/L mg/L	LI	0.0091	97.5 0.0066	5.30E-05	PASS	4.52E-14	PASS	0.170395	PASS
DDT	ug/L	L1	1	0.0066	9.10E-09 1.00E-06	PASS	7.77E-18	PASS PASS	2.92576-05	PASS
felta-BHC	ug/L	LI	1.1	0.05 na	1.002-00	PASS	8.54E-16	PASS	0.003215	PASS
Dibenzo(a,h)anthracene					1.00E-04	DACC		0455	0'	
Dibromochloromethane	ug/L	L1	100	0.3		PASS	8.54E-14	PASS		PASS
Dibromomethane	ug/L	L1	50	S	5.00E-05	PASS	4.27E-14	PASS	0.16075	PASS
Dichlorodifluoromethane	ug/L	L1	50	5	5.00E-05	PASS	4.27E-14	PASS	0.16075	PASS
Dieldrin	ug/L	L1	50	2.5	5.00E-05	PASS	4.27E-14	PASS	0.16075	PASS
	ug/L	L1	1	0.025	1.00E-06	PASS	8.54E-16	PASS	0.003215	PASS
Diethylphthalate	ug/L	L1	100	5	1.00E-04	PASS	8.54E-14	PASS	0.3215	PASS
Dimethylphthalate	ug/L	L1	100	5	1.002-04	PASS	8.54E-14	PASS	0.3215	PASS
Di-n-bulylphthalate	ug/L	L1	100	5	1.00E-04	PASS	8.54E-14	PASS	0.3215	PASS
Di-n-octylphthalate	ug/L	L1	100	na	· ·			•	·	·
Endosulfan I	ug/L	L1	1	na	•	•	•		•	•
Endosulfan II	ug/L	L1	1	nə	•	•	•	•	•	
Endosulfan Sulfale	ug/L	L1	1	na	1.000.00			-		
Endrin Endrin Aldebude	ug/L	L1	1	0.05	1.00E-06	PASS	8.54E-16	PASS	0.003215	PASS
Endrin Aldehyde	ug/L	L1	1	na	· ·	•	•	•	•	•
thyl Acetate	ug/L	L1	540	na						
Ihylbenzene	ug/L	L1	50	2.5	5.00E-05	PASS	4.27E-14	PASS	0.16075	PASS
ecal Coliform Bacteria	/100 mL	L1	60000	na						
luoranthene	ug/L	L1	100	1	1.00E-04	PASS	8.54E-14	PASS	0.3215	PASS
luorene	ug/L	L1	100	1	1.00E-04	PASS	8.54E-14	PASS	0.3215	PASS
luoride, total	mg/L	L1	2.5	0.4485	2.50E-06	PASS	2.13E-15	PASS	0.0080375	PASS
amma-BHC (Lindane)	ug/L	L1	0.5	0.025	5.00E-07	PASS	4.27E-16	PASS	0.0016075	PASS
leptachlor	ug/L	L1	0.5	0.025	5.00E-07	PASS	4.27E-16	PASS	0.0016075	PASS
leptachlor Epoxide	ug/L	L1	0.5	0.5	S.00E-07	PASS	4.27E-16	PASS	0.0016075	PASS
lexachlorobenzene	ug/L	L1	100	na				•		
lexachlorobuladiene	ug/L	L1	100	2.5	1.00E-04	PASS	8.54E-14	PASS	0.3215	PASS
lexachlorocyclopentadiene	ug/L	L1	100	0.5	1.00E-04	PASS	8.54E-14	PASS	0.3215	PASS
lexachloroethane	ug/L	L1	100	na	•			•		•
ndeno(1,2,3-cd)pyrene	_ug/L	L1	100	0.4	1.00E-04	PASS	8.54E-14	PASS	0.3215	PASS
odomethane	ug/L	L1	50	5	5.00E-05	PASS	4.27E-14	PASS	0.16075	PASS
on, total	ug/L	L1	1400000	29727.6	1.40E+00	PASS	1.20E-09	PASS	4501	PASS
opropylbenzene	ug/L	L1	50	2.5	5.00E-05	PASS	4.27E-14	PASS	0.16075	PASS
ead, total	ug/L	L1	14	31	1.40E-05	PASS	1.20E-14	PASS	0.04501	PASS
18p-Xylene	ug/L	L1	100	2.5	1.00E-04	PASS	8.54E-14	PASS	0.3215	PASS

 \bigcap

C

Landfill 33 Groundwater Impact Assessment (September 2018) Andrews Engineering, Inc.

Parameter	Units	List	Max	AGQS		ng Unit 1.0002E-06	South Unit MPF = 8.5377E-16		Northwest Unit MPF = 3.215E-03	
Magnesium, total	mg/L	L1	170	204.58	1.70E-04	PASS	1.45E-13	PASS	0.54655	PASS
Manganese, lotal	ug/L	L1	48000	4849	4.80E-02	PASS	4.10E-11	PASS	154.32	PASS
Mercury, total	ug/L	L1	0.9	0.1	9.00E-07	PASS	7.68E-16	PASS	0.0028935	PASS
Methoxychlor	ug/L	L1	5	1	5.00E-06	PASS	4.27E-15	PASS	0.016075	PASS
Melhylene Chloride	ug/L	LI	1900	2.5	1.90E-03	PASS	1.62E-12	PASS	3.33E-23 ³	PASS
Naphthalene	ug/L	LI	100	5	1.00E-04	PASS	8.54E-14	PASS		
n-Butylbenzene	ug/L	LI	50	2.5	5.00E-05	PASS	4.27E-14	PASS	0.3215	PASS PASS
Nickel, total	ug/L	L1	240	41.5	2.40E-04	PASS	2.05E-13	PASS	0.16075	PASS
Nitrate as N, total	mg/L	L1	3.7	4.474	3.70E-06	PASS	3.16E-15	PASS	0.0118955	PASS
Nitrobenzene	ug/L	L1	100	na					0.0110555	FA35
N-Nitrosodimethylamine	ug/L	L1	100	na						
N-Nitroso-di-n-propylamine	ug/L	L1	100	na	-			-		
N-Nitrosodiphenylamine	ug/L	L1	100	na						
n-Propylbenzene	ug/L	L1	50	2.5	5.00E-05	PASS	4.27E-14	PASS	0.16075	PASS
Oil (Hexane Soluble)	mg/L	L1	912	5	9.12E-04	PASS	7.792-13	PASS	2.93208	PASS
-Xylene	ug/L	L1	50	2.5	5.00E-05	PASS	4.27E-14	PASS	0.16075	PASS
Paralhion	ug/L	L1	50	5	5.00E-05	PASS	4.27E-14	PASS	0.16075	PASS
Pentachlorophenol	ug/L	L1	50	25	5.00E-05	PASS	4.27E-14	PASS	0.16075	PASS
oH (field)	S.U.	L1	7.76	6.39 - 7.87					0.100/5	
Phenanlhrene	ug/L	L1	100	na						-
henolics	ug/L	L1	6700	12.2	6.70E-03	PASS	5.72E-12	PASS	06	PASS
Phosphorus, total	mg/L	L1	1200	na			5.726-12		0	PASS
-Isopropylloluene	ug/L	L1	50	2.5	5.00E-05	PASS	4.27E-14	PASS	0.16075	PASS
Polychlorinated Biphenyls(PCBs)	ug/L	L1	10	25	1.00E-05	PASS	8.54E-15	PASS	0.03215	PASS
Potassium, total	mg/L	LI	600	5.796	6.00E-04	PASS	5.12E-13	PASS	1.929	PASS
oyrene	ug/L	L1	100	1	1.00E-04	PASS	8.54E-14	PASS	0.3215	PASS
ec-Butylbenzene	ug/L	L1	500	2.5	5.00E-04	PASS	4.27E-13	PASS	1.6075	PASS
Selenium, total	ug/L	L1	99	2.7	9.902-05	PASS	8.45E-14	PASS	0.318285	PASS
Silver, total	ug/L	L1	50	5	5.00E-05	PASS	4.27E-14	PASS	0.16075	PASS
Sodium, total	mg/L	L1	2700	212.69	2.70E-03	PASS	2.31E-12	PASS	8.6805	PASS
Specific Conductance (field)	umhos/cm	L1	24000	5600			2.51012	1705	0.0003	FRSS
Styrene	ug/L	L1	50	2.5	5.00E-05	PASS	4.27E-14	PASS	0.16075	PASS
Sulfate, total	mg/L	L1	1100	720.25	1.10E-03	PASS	9.39E-13	PASS	3.5365	PASS
ert-Butylbenzene	ug/L	LI	50	2.5	5.00E-05	PASS	4.27E-14	PASS	0.16075	PASS
etrachlorodibenzo-p-Dioxins	ug/L	LI	500	na	5.002.05		4.270-14	1455	0.100/3	-
etrachloroethene	ug/L	L1	50	2.5	5.00E-05	PASS	4.27E-14	PASS	0.16075	PASS
etrahydrofuran	ug/L	L1	1200	2.5	1.208-03	PASS	1.02E-12	PASS	04	PASS
hallium, total	ug/L	LI	4.5	5	4.50E-06	PASS	3.84E-15	PASS	0.0144675	PASS
in, total	ug/L	LI	270	na	1.502.00		5.040-15		0.0144075	
oluene	ug/L	L1	110	2.5	1.10E-04	PASS	9.39E-14	PASS	0.35365	PASS
otal Dissolved Solids	mg/L	L1	34000	2237.9						
otal Organic Carbon	mg/L	L1 I	1800	10.27						
otal Suspended Solids	mg/L	L1	390	na		.				
oxaphene	ug/L	L1	10	1	1.00E-05	PASS	8.54E-15	PASS	0.03215	PASS
ans-1,2-Dichloroethene	ug/L	L1	200	2.5	2.00E-04	PASS	1.71E-13	PASS	0.643	PASS
ans-1,3-Dichloropropene	ug/L	LI	50	5	5.00E-05	PASS	4.27E-14	PASS	0.16075	PASS
ans-1,4-Dichloro-2-Butene	ug/L	L1	50	1	5.00E-05	PASS	4.27E-14	PASS	0.16075	PASS
richloroethene	ug/L	L1	50	2.5	5.00E-05	PASS	4.27E-14	PASS	0.16075	PASS
richlorofluoromethane	ug/L	LI	50	2.5	5.00E-05	PASS	4.27E-14	PASS	0.16075	
inyl Acetate	ug/L	LI	50	2.5	5.00E-05	PASS	4.27E-14	PASS	0.16075	PASS
inyl Chloride	ug/L	L1	50	2.5	5.00E-05	PASS	4.27E-14	PASS	0.16075	PASS
ylenes (Total)	ug/L	LI	150	2.5	1.50E-04	PASS				PASS
hours (, orall	Ugri	L1	150	2.5	1.506-04	PASS	1.28E-13	PASS	0.48225	PASS

1 - Surrogate 1, MPF = 1.103e-6

2 - Surrogate 2, MPF = 0 3 - Surrogate 3, MPF = 1.754e-26

4 - Surrogate 4, MPF = 0 5 - Surrogate 5, MPF = 0

C

3

6 - Surrogate 6, MPF = 0

Landfill 33 Groundwater Impact Assessment (September 2018) Andrews Engineering, Inc.

Parameter	Units	AGQS	MAPC
1,1,1,2-Tetrachloroethane	ug/L	2.5	2.5
1,1,1-Trichloroethane	ug/L	2.5	2.5
1,1,2,2-Tetrachloroethane	ug/L	2.5	2.5
1,1,2-Trichloroethane	ug/L	2.5	2.5
1,1-Dichloroethane	ug/L	2.5	2.5
1,1-Dichloroethene	ug/L	2.5	2.5
1,1-Dichloropropene	ug/L	2.5	2.5
1,2,3-Trichlorobenzene	ug/L	2.5	2.5
1.2.3-Trichloropropane	ug/L	2.5	2.5
1,2,4-Trichlorobenzene	ug/L	2.5	2.5
1,2,4-Trimelhylbenzene	ug/L	2.5	2.5
1,2-Dibromo-3-chloropropane	ug/L	2.5	2.5
1,2-Dibromoethane	ug/L	0.05	0.05
1,2-Dichlorobenzene	ug/L	2.5	2.5
1,2-Dichloroethane	ug/L	2.5	2.5
1,2-Dichloropropane	ug/L	2.5	2.5
1,3,5-Trimelhylbenzene	ug/L	2.5	2.5
1,3-Dichlorobenzene	ug/L	2.5	2.5
1,3-Dichloropropane	ug/L	2.5	2.5
1,3-Dichloropropene	ug/L	2.5	2.5
1,4-Dichlorobenzene	ug/L	2.5	2.5
1-Propanol	ug/L	na	
2,2-Dichloropropane	ug/L	2.5	2.5
2,4,5-TP (Silvex)	ug/L	1	
2,4,6-Trichlorophenol	ug/L		1
2,4-D	ug/L ug/L	na 5	na
2,4-Dichlorophenol			5
2,4-Dimethylphenol	ug/L	na	na
	ug/L	na	na
2,4-Dinitrophenol	ug/L	na	na
2,4-Dinitrotoluene	ug/L	na	na
2,6-Dinitrotoluene	ug/L	na	na
2-Butanone (MEK)	ug/L	5	5
2-Chloroethyl vinyl ether	ug/L	na	nə
2-Chloronaphthalene	ug/L	na	na
2-Chlorophenol	ug/L	na	na
2-Chlorotoluene	ug/L	2.5	2.5
2-Hexanone (MBK)	ug/L	5	5
2-Nitrophenol	ug/L	na	na
2-Propanol	ug/L	na	na
3,3'-Dichlorobenzidine	ug/L	na	na
4.4'-DDD	ug/L	na	na
4,4'-DDE	ug/L	na	na
4,6-Dinitro-2-methylphenol	ug/L	na	nə
4-Bromophenyl-phenylether	Ug/L	na	na
4-Chlorophenyl-phenylether	ug/L	na	na
4-Chlorotoluene	ug/L	2.5	2.5
4-Methyl-2-pentanone (MIBK)	ug/L	5	5
4-Methylphenol	ug/L	5	5
1-Nitrophenol			
Acenaphthene	ug/L	<u>па</u> 1	na
Acetone	ug/L	1	1
	ug/L	5	5
Alachlor	Ug/L	0.0445	0.0445
Aldicarb	ug/L	1.725	1.725
Aldrin	ug/L	0.025	0.025
Alkalinity, bicarbonate	mg/L	na	na
Ipha-BHC	ug/L	0.05	0.05
Numinum, total	ug/L	968966	968966
mmonia as N, total	mg/L	0.346	0.346
Inthracene	ug/L	1	1
Intimony, total	ug/L	30	30
rsenic, total	ug/L	7.1	7.1
Irazine	ug/L	0.151	0.151
Barium, total	ug/L	222	222
Benzene		2.5	25
	ug/L ug/L	2.5 0.13	2.5

Landfill 33 Groundwater Impact Assessment (September 2018) Andrews Engineering, Inc.

(----

C

~

Table 6: Existing and South Unit AGQS and MAPC Values

Parameter	Units	AGQS	MAPC
Benzo(b)fluoranthene	ug/L	0.18	0.18
Benzo(g,h,i)perylene	ug/L	na	na
Benzo(k)fluoranthene	ug/L	0.17	0.17
Beryllium, total	ug/L	5	5
beta-BHC	ug/L	na	na
Biochemical Oxygen Demand	mg/L	6.5	6.5
bis(2-chloroethoxy)methane	ug/L	na	na
bis(2-chloroethyl)ether bis(2-chloroisopropyl)ether	ug/L	na	na
bis(2-ethylhexyl)phthalate	ug/L	na	na
bis(chloromethyl)ether	ug/L	1	1
Boron, total	ug/L ug/L	na 504	na 504
Bromobenzene	ug/L	2.5	2.5
Bromochloromethane	ug/L	2.5	2.5
Bromodichloromethane	ug/L	2.5	2.5
Bromoform	Ug/L	2.5	2.5
Bromomethane	ug/L	2.5	2.5
Bulanol	ug/L	na	na
Butylbenzylphthalate	Ug/L	па	na
Cadmium, total	ug/L	3.1	3.1
Catcium, total	mg/L	295.81	295.81
Carboluran	ug/L	2.03	2.03
Carbon Disulfide	ug/L	5	5
Carbon Tetrachloride	ug/L	2.5	2.5
Chemical Oxygen Demand	mg/L	28	28
Chlordane	ug/L	0.05	0.05
Chloride, total	mg/L	211.53	211.53
Chlorobenzene	ug/L	2.5	2.5
Chloroethane	ug/L	2.5	2.5
Chloroform	ug/L	2.5	2.5
Chloromethane	ug/L	5	5
Chromium, total	ug/L	64.5	64.5
Chrysene	ug/L	1	1
cis-1,2-Dichloroethene	ug/L	2.5	2.5
Cobali, total	ug/L	48.1	48.1
Copper, total	ug/L	97.5	97.5
Cyanide, total	mg/L	0.0066	0.0066
	ug/L	0.05	0.05
delta-BHC	ug/L	na	na
Dibenzo(a,h)anthracene	ug/L	0.3	0.3
Dibromochloromethane	ug/L	5	5
Dibromomethane	ug/L	5	5
Dichlorodifluoromethane	ug/L	2.5	2.5
Dieldrin	ug/L	0.025	0.025
Dielhylphthalate	ug/L	5	5
Dimethylphthalate	ug/L	5	5
Di-n-bulylphthalate	ug/L	5	5
Di-n-octylphthalate	ug/L	na	nə
ndosulfan I	ug/L	na	па
ndosulfan II	ug/L	na	na
ndosulfan Sulfate	ug/L	na	na
Indrin Aldobudo	ug/L	0.05	0.05
ndrin Aldehyde	ug/L	na	na
thyl Acetate	ug/L	na	na
Ihylbenzene	Ug/L	2.5	2.5
ecal Coliform Bacteria	/100 mL	na	nə
luoranthene	ug/L	1	1
luorene	ug/L	1	1
luoride, lotal	mg/L	0.4485	0.4485
amma-BHC (Lindane)	ug/L	0.025	0.025
leptachlor leptachlor Epoxide	ug/L	0.025	0.025
lexachlorobenzene	ug/L ug/L	0.5	0.5
lexachlorobutadiene		na 2 5	na
lexachlorocyclopentadiene	ug/L	2.5	2.5
a subiolocyclopellaulene	ug/L	0.5	0.5

Landfill 33 Groundwater Impact Assessment (September 2018) Andrews Engineering, Inc.

(C

C

 \mathcal{L}

Table 6: Existing and South Unit AGQS and MAPC Values

Parameter	Units	AGQS	MAPC
Indeno(1,2,3-cd)pyrene	ug/L	0.4	0.4
lodomethane	ug/L	5	S
Iron, total	ug/L	29727.6	29727.6
Isopropylbenzene	ug/L	2.5	2.5
Lead, total	ug/L	31	31
m&p-Xylene	ug/L	2.5	2.5
Magnesium, total	mg/L	204.58	204.58
Manganese, total	ug/L	4849	4849
Mercury, total	ug/L	0.1	0.1
Methoxychlor	Ug/L	1	1
Methylene Chloride	ug/L	2.5	2.5
Naphthalene	ug/L	5	5
n-Bulylbenzene	ug/L	2.5	2.5
Nickel, total	ug/L	41.5	41.5
Nitrate as N, total	mg/L	4.474	4.474
Nilrobenzene	ug/L	na	na
N-Nitrosodimethylamine	ug/L	na	na
N-Nitroso-di-n-propylamine	ug/L	na	na
N-Nitrosodiphenylamine	ug/L	na	na
n-Propylbenzene	ug/L	2.5	2.5
Oil (Hexane Soluble)	mg/L	5	5
o-Xylene	ug/L	2.5	2.5
Parathion	ug/L	5	5
Pentachlorophenol	ug/L	25	25
pH (field)	S.U.	6.39 - 7.87	6.39 - 7.87
Phenanthrene	ug/L	na	па .
Phenolics	ug/L	12.2	12.2
Phosphorus, total	mg/L	na	па
p-isopropylioluene	ug/L	2.5	2.5
Polychlorinated Biphenyls(PCBs)	Ug/L	25	25
Polassium, total	mg/L	5.796	5.796
Pyrene	ug/L	1	1
sec-Butylbenzene	ug/L	2.5	2.5
Selenium, total	ug/L	2.7	2.7
Silver, total	ug/L	5	5
Sodium, total	mg/L	212.69	212.69
Specific Conductance (field)	umhos/cm	5600	5600
Styrene	ug/L	2.5	2.5
Sulfate, total	mg/L	720.25	720.25
ert-Butylbenzene	ug/L	2.5	2.5
Tetrachlorodibenzo-p-Dioxins	ug/L	na	na
fetrachloroethene	ug/L	2.5	2.5
Felrahydrofuran	ug/L	2.5	2.5
Fhallium, total	ug/L	5	5
Fin, total	ug/L	. na	na
Foluene	ug/L	2.5	2.5
Total Dissolved Solids	mg/L	2237.9	2237.9
Total Organic Carbon	mg/L	10.27	10.27
Total Suspended Solids	mg/L		
Toxaphene		na 1	1
	ug/L		
rans-1,2-Dichloroethene rans-1,3-Dichloropropene	ug/L	2.5	2.5
	ug/L	5	5
rans-1,4-Dichloro-2-Butene	ug/L	1	1
richloroethene	ug/L	2.5	2.5
richlorofluoromethane	ug/L	2.5	2.5
/inyl Acetate	ug/L	2.5	2.5
/inyl Chloride	ug/L	2.5	2.5
(ylenes (Total)	Ug/L	2.5	2.5
Linc, total	ug/L	297.8	297.8

R1822

Landfill 33 Groundwater Impact Assessment (September 2018) Andrews Engineering, Inc.

Parameter	Units	AGQS	MAPC
1,1,1,2-Tetrachloroethane	ug/L	2.5	2.93
1,1,1-Trichloroethane	ug/L	2.5	2.93
1,1,2,2-Tetrachloroethane	ug/L	2.5	2.93
1,1,2-Trichloroethane	ug/L	2.5	2.93
1,1-Dichloroethane	ug/L	2.5	2.93
1,1-Dichloroethene	ug/L	2.5	2.93
1,1-Dichloropropene	ug/L	2.5	2.93
1,2,3-Trichlorobenzene	ug/L	2.5	2.93
1,2,3-Trichloropropane	ug/L	2.5	2.93
1,2,4-Trichlorobenzene	ug/L	2.5	2.93
1,2,4-Trimethylbenzene	ug/L	2.5	2.93
1,2-Dibromo-3-chloropropane	ug/L	2.5	2.93
1,2-Dibromoethane	ug/L	0.05	0.59 ²
1,2-Dichlorobenzene	ug/L	2.5	2.93
1,2-Dichloroethane	ug/L	2.5	2.93
1,2-Dichloropropane	ug/L	2.5	2.93
1,3,5-Trimethylbenzene	ug/L	2.5	2.93
1,3-Dichlorobenzene	ug/L	2.5	2.93
1,3-Dichloropropane 1,3-Dichloropropene	ug/L	2.5	2.93
	ug/L	2.5	2.93
1,4-Dichlorobenzene 1-Propanol	ug/L	2.5	2.93
2,2-Dichloropropane	. ug/L	na	na .
2,4,5-TP (Silvex)	ug/L ug/L	2.5	2.93
2,4,6-Trichlorophenol		1	1.17
2,4-D	ug/L ug/L	na 5	na 5.85
2,4-Dichlorophenol			
2,4-Dimethylphenol	ug/L ug/L	na	na
2,4-Dinitrophenol	ug/L	na	na na
2,4-Dinitrololuene	ug/L	na	na
2,6-Dinitrotoluene	ug/L	na	na
2-Bulanone (MEK)			53
2-Chloroethyl vinyl ether	ug/L	5	-
2-Chloronaphthalene	ug/L	na	na
2-Chlorophenol	ug/L	na	na
2-Chlorotoluene	ug/L ug/L	na 2.5	na 2.93
2-Hexanone (MBK)	ug/L	5	5.85
2-Nitrophenol	ug/L	na	5.65 na
2-Propanol	ug/L	na	na
3,3'-Dichlorobenzidine	ug/L	na	na
4,4'-DDD	ug/L	na	na
4,4'-DDE	ug/L	na	na
4,6-Dinitro-2-methylphenol	ug/L	na	na
4-Bromophenyl-phenylether	ug/L	na	na
4-Chlorophenyl-phenylether	ug/L	na	na
4-Chlorotoluene	ug/L	2.5	2.93
4-Methyl-2-pentanone (MIBK)	ug/L	5	5.85
4-Methylphenol	ug/L	5	5.85
4-Nitrophenol	ug/L	na	na
Acenaphthene	ug/L	1	1.17
Acetone		5	53
Alachior	ug/L ug/L	0.0445	0.0521
Aldicarb		1.725	
Aldrin	ug/L ug/L	0.025	2.02
Alkalinity, bicarbonate	mg/L	0.025 na	0.0293 na
alpha-BHC	ug/L	0.05	0.0585
Aluminum, total	ug/L ug/L	968966	1133690
Ammonia as N, total			0.3911
Anthracene	mg/L	0.346	
Antimony, total	ug/L	1 30	1.17
	ug/L	30	35.1
Arsenic, total Atrazine	ug/L	7.1	8.31
	ug/L	0.151	0.177
Barium, total	ug/L	222	260
Benzene	ug/L	2.5	2.93 0.13 ³
		0 12	0 124
Benzo(a)anthracene	ug/L	0.13	
Benzo(a)anIhracene Benzo(a)pyrene	ug/L ug/L	5	5.85 0.18 ³

Landfill 33 Groundwater Impact Assessment (September 2018) Andrews Engineering, Inc.

 \bigcirc

Ċ

0

Parameter	Units	AGQS	MAPC
Benzo(g.h.i)perylene	ug/L	na	na
Benzo(k)fluoranthene	ug/L	0.17	0.173
Beryllium, total	ug/L	5	5.85
beta-BHC	ug/L	nə	па
Biochemical Oxygen Demand	mg/L	6.5	6.5 ⁴
bis(2-chloroethoxy)methane	ug/L	na	nə
bis(2-chloroethyl)ether	ug/L	na	na
bis(2-chloroisopropyl)ether	ug/L	na	na
bis(2-ethylhexyl)phthalate	ug/L	1	1.17
bis(chloromethyl)ether	ug/L	na	na
Boron, lolal Bromobenzene	ug/L	504	590
Bromochloromethane	ug/L	2.5	2.93
Bromodichloromethane	ug/L	2.5	2.93
Bromoform	ug/L ug/L	2.5	2.93
Bromomethane	ug/L	2.5	2.93
Butanol	ug/L	na	2.93 na
Bulyibenzylphthalate	ug/L	na	na
Cadmium, total	ug/L	3.1	3.63
Calcium, total	mg/L	295.81	346
Carboluran	ug/L	2.03	2.38
Carbon Disulfide	ug/L	5	5.85
Carbon Tetrachloride	ug/L	2.5	2.93
Chemical Oxygen Demand	mg/L	28	284
Chlordane	ug/L	0.05	0.0585
Chloride, total	mg/L	211.53	247
Chlorobenzene	ug/L	2.5	2.93
Chloroethane	ug/L	2.5	2.93
Chloroform	ug/L	2.5	2.93
Chloromethane	ug/L	5	5.85
Chromium, total	ug/L	64.5	75.5
Chrysene	ug/L	1	1.17
cis-1,2-Dichloroethene	ug/L	2.5	2.93
Cobalt, total	ug/L	48.1	56.3
Copper, total	ug/L	97.5	114
Cyanide, total	mg/L	0.0066	0.00772
	ug/L	0.05	0.0585
della-BHC	ug/L	na	na
Dibenzo(a,h)anthracene	ug/L	0.3	0.33
Dibromochloromethane	ug/L	5	5.85
Dibromomethane	ug/L	5	5.85
Dichlorodifluoromethane	ug/L	2.5	2.93
Dieldrin	ug/L	0.025	0.0293
Diethylphthalate	ug/L	5	5.85
Dimethylphthalate	ug/L	5	5.85
Di-n-butylphthalate	ug/L	5	5.85
Di-n-octylphthalate	ug/L	na	na
Endosulfan I Endosulfan II	ug/L	nə	na
ndosulfan Sulfate	ug/L	na	6n
ndosulan Sullate	ug/L	na 0.05	0.0595
Indrin Aldehyde	ug/L	0.05	0.0585
Ihyl Acelate	ug/L	na	na
thylbenzene	ug/L ug/L	na 2.5	na 2.93
ecal Coliform Bacteria	/100 mL	2.5 na	
luoranthene	ug/L	na 1	na 1.17
luorene	ug/L	1	1.17
luoride, total	mg/L	0.4485	0.525
amma-BHC (Lindane)	ug/L	0.025	0.0293
leptachlor	ug/L	0.025	0.0293
leptachlor Epoxide	ug/L	0.5	0.585
lexachlorobenzene	ug/L	na	na
lexachlorobuladiene	ug/L	2.5	2.93
lexachlorocyclopentadiene	ug/L	0.5	0.585
lexachloroethane	ug/L	na	na
lexachloroethane ndeno(1,2,3-cd)pyrene	ug/L ug/L	na 0.4	na 0.468

Landfill 33 Groundwater Impact Assessment (September 2018) Andrews Engineering, Inc.

(-)

C

-)

Parameter	Units	AGQS	MAPC
Iron, total	ug/L	29727.6	34781
Isopropylbenzene	ug/L	2.5	2.93
Lead, total	ug/L	31	36.3
m&p-Xylene	ug/L	2.5	2.93
Magnesium, total	mg/L	204.58	239
Manganese, total	ug/L	4849	5,673
Mercury, total	ug/L	0.1	0.117
Methoxychlor	ug/L	1	1.17
Methylene Chloride	ug/L	2.5	2.95 ²
Naphthalene	ug/L	5	5.85
n-Butylbenzene	ug/L	2.5	2.93
Nickel, total	ug/L	41.5	48.6
Nitrate as N, total	mg/L	4.474	5.23
Nitrobenzene	ug/L	na	na
N-Nitrosodimethylamine	ug/L	na	na
N-Nitroso-di-n-propylamine	ug/L	na	na
N-Nitrosodiphenylamine	ug/L	na	nə
n-Propylbenzene	ug/L	2.5	2.93
Oil (Hexane Soluble)	mg/L	5	54
o-Xylene	ug/L	2.5	2.93
Parathion	ug/L	5	5.85
Pentachlorophenol	ug/L	25.	29.3
oH (field)	S.U.	6.39 - 7.87	6.39 - 7.87
Phenanthrene	ug/L	na	na
Phenolics	ug/L	12.2	12.23
Phosphorus, total	mg/L	na	12.2
o-Isopropyltoluene	ug/L	2.5	2.93
Polychlorinated Biphenyls(PCBs)	ug/L	25	29.3
Potassium, total	mg/L	5.796	6.78
Pyrene	ug/L	1	1.17
ec-Butylbenzene	ug/L	2.5	2.93
Selenium, total	ug/L	2.7	3.16
Silver, total	ug/L	5	5.85
Sodium, total	mg/L	212.69	249
Specific Conductance (field)	umhos/cm	5600	5600 ⁴
Styrene	ug/L	2.5	2.93
Sulfate, total	mg/L	720.25	843
ert-Butylbenzene	ug/L	2.5	2.93
Tetrachlorodibenzo-p-Dioxins	ug/L	na	na
etrachloroethene	ug/L	2.5	2.93
etrahydrofuran	ug/L	2.5	2.53
hallium, total		5	
in, total	ug/L		5.85
oluene	ug/L	na	50.2
	ug/L	2.5	2.93
otal Dissolved Solids	mg/L	2237.9	2237.9 ⁴
otal Organic Carbon	mg/L	10.27	10.27 ⁴
otal Suspended Solids	mg/L	na	na
oxaphene	ug/L	1	1.17
ans-1,2-Dichloroethene	ug/L	2.5	2.93
ans-1,3-Dichloropropene	ug/L_	5	5.85
ans-1,4-Dichloro-2-Butene	ug/L	1	1.17
richloroethene	ug/L	2.5	2.93
richlorofluoromethane	ug/L	2.5	2.93
inyl Acetate	ug/L	2.5	2.93
inyl Chloride	ug/L	2.5 •	2.93
ylenes (Total)	ug/L	2.5	2.93
inc, total			

BASELINE WPF = 1.17

1 - Surrogate 1 WPF = 1.13

2 - Surrogate 3 WPF = 1.18

3 - Surrogates 2, 4, 5 and 6 WPF = 1

4 - Non-Fickian Parameter WPF = 1

 \bigcirc