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1. INTRODUCTION 

                          A. Motivation and Background 

 
Although winter highway maintenance has improved significantly over time (for 

instance, between 1995 to 2001, there was a 26% decline in crashes during sleet and 

snow weather conditions (Goodwin, 2003)), road users still experience delays and 

crashes due to unsatisfactory road conditions that result from poor winter weather. In 

2001, approximately 1000 people were killed and 95,000 people were injured in crashes 

on snowy and slushy pavement (FHWA, 2002). Annually there are 500 million hours of 

delays in major US highways due to adverse weather conditions (NOAA, 2002). While 

maintenance operations aim to provide road users with a safe highway that has limited 

delays, to achieve this condition maintenance agencies spend 2.3 billion dollars annually 

on Winter Highway Maintenance (FHWA, 2002). Given this high expenditure, an 

important goal for a winter maintenance agency is to find the optimal usage of limited 

resources. One way to reach this goal is to develop a performance measurement system. 

Such a system is typically composed of a series of quantitative measures that evaluate 

how well maintenance activities have been performed to meet a variety of road users’ 

expectations (Adams, 2003). By comparing the real-time performance outcome data with 

the pre-specified targets, performance measurement can inform winter maintenance 

agencies how well an operation has been conducted to improve mobility and safety.  The 

feedback from the performance measures will help an agency to improve their 

maintenance actions over time. 

The generally identified goals in the management of transportation systems are 

safety, mobility, effectiveness, environmental concern, and user-satisfaction. The two 

major goals of winter highway maintenance are safety and mobility. The commonly used 

outcome measures for mobility and safety are traffic speed and traffic flow rate and 

accident rate. However, in winter maintenance, it is more typical to measure either 

outputs (evaluate the result of maintenance activities, such as, cycle time, lane-miles 
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maintained) or different outcome measures (e.g. road surface condition observations or 

pavement friction). Output measures are often relatively simply to collect, but they are 

not directly tied to maintenance goals and objectives and cannot be easily communicated 

to road users. Likewise, the outcomes currently used are not necessarily easy to collect, 

nor are they easily translatable into a publicly accepted form of outcome measure.  

Based on the current literature search, it is clear that though there is a reasonable 

amount of performance measurement studies conducted in the winter maintenance area, 

few of them are comprehensive enough to evaluate winter maintenance outcomes (how 

safe and mobile traffic was able to get to its destination), while at the same time taking 

weather condition(the severity of individual storms), the specifications of road system 

being treated(Interstate or Primary, different AADT levels), various traffic specifications 

(urban vs. rural, day vs. night, traffic vs. non-peak, etc.) and the maintenance effort 

(frequency of plowing actions, quantity of chemicals, and other operational input) 

together into consideration.   

To establish a performance measurement system for operational use, the proposed 

performance measurement system needs to take those factors above into consideration.  

Among the above factors, weather conditions, specifications of road system 

characteristics and traffic specifications (Peak-hour or not, Day time or not) are used in 

this study as normalizing factors or classification variables to ensure an appropriate 

comparison across different storm events and maintenance routes. Maintenance input 

measures the cost to agencies in fighting a storm, which is a major concern and easy to 

quantify, but not a dominant factor. Measures of winter maintenance outcomes is the 

most important factor, and can also be understood as the value-added benefit to road 

users by improved traveling conditions.  

B. Challenges 

There are two particular challenges when trying to develop a performance 

measurement system. First of all, maintenance efforts and outcomes are largely 

dependent on the variability of individual storms. Therefore to make the maintenance 

effectiveness comparable across different storms, the individual storm severity must be 

quantified. However, until this study, there were no examples of storm severity indices 
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that measured severity on a storm by storm basis. Such weather indices measured 

behavior over a total winter season. 

Second, the complexity of relationships involved in the performance of the winter 

maintenance operations means that they are not only dependent on the maintenance input 

or effort, but they are also sensitive to all the other conditions, including weather severity 

variables, road classifications, and various traffic specifications. Thus, different targets 

need to be developed to accommodate these differences. The appropriate targets can only 

be set based on a sound understanding of these relationships. Even though there are some 

studies that examine the effect of weather on mobility and safety, the research findings on 

the effect of weather on safety are quite conflicting. Also, there is an absence of studies 

that examine the effects of maintenance actions (Andrey, 2003), and no studies model 

how the effects of maintenance and weather changes with the various conditions 

mentioned above.  

On the basis of these needs and challenges, this project constructs a performance 

measurement framework for the winter maintenance operational system. Operational 

goals have been established. Measures that evaluate the maintenance outcomes, as well as 

those sets of measurement variables upon which the winter highway maintenance 

outcomes depend have been identified and included in the performance measurement 

framework.  

Chapter 2 reviews the existing literature in the field, including general guidelines 

for performance measurement, and current performance measurement in winter highway 

maintenance practice. The review also identifies deficiencies in current practice. Further, 

literature on the effects of weather and maintenance operations and their complex 

interactions on safety and mobility have been reviewed.  

Chapter 3 develops a storm severity index used to quantify the severity of 

individual storms.  Multiple regression is used to built the model and the model was 

validated by expert feedback.  

Chapter 4 generalizes the current conflicting results of studies that have examined 

weather effects on safety. A hierarchical meta-analysis is applied. Effect size and 

proportional change in crash rates were used to standardize findings.  



 

4 
 

Chapter 5 investigates the effects of weather factors and maintenance actions on 

road surface conditions, and tests the possible interactions between these two sets of 

variables. CHAID (Chi-squared Interaction Detection) was applied in this step to identify 

the significant factors and interactions. MLR (Multinomial Logistic Regression) was used 

further to validate the result produced from CHAID, and quantify the effects.  

Chapter 6 explores the direct and indirect casual effects of weather and 

maintenance actions on mobility and safety. Also the important interactions between 

light, and road classifications were tested and included in the models. Structural Equation 

Modeling (SEM) was used in this chapter to estimate the direct and indirect effects.  

Chapter 7 presents the final performance measurement model, and shows typical 

results that would be obtained from the model. The results are evaluated by comparison 

with field data. This comparison shows that the performance model that has been 

developed is an effective measurement tool and can also be used for the planning use. 

Chapter 8 presents conclusions of the project, together with recommendations for 

further work. 

C. Contributions 

This proposed measurement system can be used to enable winter maintenance 

agencies to evaluate how well operations have been conducted to meet road users’ needs 

as specified in maintenance goals (as used for the post-event evaluation) by comparing 

the maintenance outcomes with the specified standards. Combining the modeling results, 

this work can enable the decision maker to determine the optimum decision through 

balancing the trade-offs between maintenance input and road user benefit in terms of 

traveling comfort and safety. 

The constructed prediction model in chapter 5 can be used to predict the road 

surface condition for a specified weather event given the traffic volume and maintenance 

procedures. The structural equation modeling results have established the effects of 

maintenance actions, weather conditions, and road surface conditions on traveling speed 

and volume and crash rates. Thus for a specified weather event, a given time of the day, 

and a given road class and AADT, the model can estimate the traveling speed and traffic 

volume, as well as crash rates with different maintenance operation input. Thus, this 
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model is a predictive tool for maintenance managers, and as such allows them to conduct 

“what if” experiments that will lead to optimization of maintenance practice over time.  

Clearly, observations of the road surface condition will continue to be effective 

measures of maintenance outcomes in the near future. Thus road surface condition 

prediction based upon maintenance and weather conditions can be used by the 

maintenance agency to do pre-event evaluations, and to evaluate and facilitate the 

selection of the best strategies for a variety of scenarios. This established relationship 

between road surface condition and the speed and volume could be used as the rationale 

to establish a Mobility index (such as that used in MDSS, Mahoney, 2005). Further, the 

relative magnitudes of the effects of different maintenance methods on mobility and 

safety that is predicted by the models will enable agencies to assign priorities, and to 

compare maintenance outcomes based on the input resource.   

Moreover, the study results can also be used to go from asking how maintenance 

affects mobility and safety to understanding how to maximize limited resources so as to 

improve maintenance effectiveness. For instance, by studying the relationship between 

performance outcomes and weather severity, road scope, and all the other variables, this 

study found some areas for potential improvement in current winter maintenance 

practice. On this basis, a series of recommendations for possible change in operational 

methods are presented herein.  

2. LITERITURE REVIEW 

This chapter covers the review of methods and guidelines for establishing an 

applicable performance measurement system. Studies of the current performance 

measurement practice in the winter maintenance field have been summarized and 

deficiencies have been identified.  All the major components of performance 

measurement systems and how they and their interactions affect maintenance outcomes 

have been reviewed. Additionally, studies on the weather and maintenance related impact 

on road mobility and safety have been reviewed.   

Information on the framework construction of performance measurement systems 

helps to identify the necessary components of such systems. The literature review on 
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winter maintenance operations identified that the most widely used performance 

measures used in these operations are various measures of road surface condition. While 

such measures have the advantage of being relatively easy to collect and thus easy to use 

operationally it should be noted that such measures are not directly related to safety and 

mobility goals.  

A. Performance Measurement System: A Review of the Literature 

Performance measurement is a well-established concept in the transportation 

arena. The Federal Highway Administration (FHWA) has already conducted many 

studies on performance measurement. According to the FHWA definition (FHWA, 

2004): “Performance measurement is a process of assessing progress toward achieving 

predetermined goals.” Generally the following broad categories would be useful to 

identify goals for performance measures: Safety, Accessibility, Mobility, Environmental 

and resource conservation, and Operational efficiency (NCHRP, 2000). 

Well-designed performance measures should be linked to objectives and goals 

(Neely, 1997). For instance, the likely performance measure to meet the goal of safety are 

rate of highway-related fatalities/ injuries (number of accidents per 100 million vehicle 

miles traveled) (FHWA, 2003). The likely performance measures for the goal of mobility 

are travel speed, delay, and quantity of travel (Vehicle miles traveled-VMT), and 

Average Annual Daily Traffic (AADT), together with both variability and reliability 

indexes (NCHRP, 2003).  The likely measures for productivity and environmental 

conservation are monetary values for the maintenance agencies and society. 

Principles in guiding performance measures selection have been discussed in a 

number of studies (Meyer 1995, TRB 2001, and Neely 1997): Performance measures 

should be customer-oriented and outcome-based (TRB, 2001). In addition to the 

traditional use of output-based performance measures that measure the product or service 

of the activity, outcome measures that measure progress toward achievement of the 

purpose should be combined with output measures (Cambridge, 2001). Generally, 

performance measures are classified in the following categories: 
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• Input measures, indicating the amount of resource used (such as types and 

quantity of material, frequency and types of mechanical removal, labor, 

equipment, etc.);  

• Uncontrollable factors, indicating those factors that organizations can’t 

change but contribute to the decreases of performance. ( such as natural 

hazard and emergency, etc);  

• Output measures, indicating effectiveness of resources transformed to 

service. ( such as road surface condition, maintenance cycle time) 

• Outcome measures, directly reflecting operation impact on goals (such as 

improved mobility and safety, or lower travel costs to customers). 

To develop a comprehensive performance system, the above factors must be taken 

into account. The input measures are directly associated with agency spending, and the 

outcome measures clearly reflect how well operations meet the organization goals and 

customer expectations. Moreover, to make the selected performance measures applicable 

in operations, data availability, sample size, and frequency of measurement are all major 

considerations. 

B. Performance Measurement in Winter Maintenance Operations 

Maintenance operations are typically performed to minimize the adverse weather 

effects on traffic in terms of traveling speed, and volume, and to minimize the adverse 

weather effects on safety in terms of crashes. Effective performance measures have 

significant importance to any agencies involved in winter maintenance. Through 

measuring performance, a maintenance agency will be able to make more informed 

decisions, and to track the process over time toward a goal or objective (TRB, 2001). A 

variety of performance measures have been developed for different purposes in the winter 

maintenance area. For instance, Adams et al. (Adams, 2003) explored the business uses 

of data gathered by a new winter maintenance vehicle equipped with AVL (automated 

vehicle location) system, GPS (global positioning system) receivers, and material sensors 

and provided systematic performance measures for budgeting and monitoring use. To 

best meet the customer expectation, Caltrans (California Department of Transportation) 

collected data from a public satisfaction survey, and used a custom rating scale to 
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evaluate operational effectiveness (Kuhl, 2000). Taking public perception into decision 

making can be good. However, public opinions may depend on personal preference and it 

is hard to evaluate each storm by survey.   

This study is focused on evaluating the effectiveness of winter highway 

maintenance operations and as a result to facilitate decision making. The primary goal for 

winter highway maintenance operations is to reduce undesirable road surface conditions. 

By doing so, an agency can reduce accidents and minimize delays and changes in travel 

times compared to normal weather conditions. As the public survey results indicated, the 

goal of safety and mobility are also the road user’s primary concerns (Alfelor, 1999). 

Perhaps the most relevant study is by Blackburn. For the purpose of evaluating the 

effectiveness of maintenance strategies and tactics, Blackburn established a Pavement Ice 

Condition Index (PSIC) by visual characterization of roadway surfaces descriptions 

(amount of ice/snow/slush on the road surface and condition of the interface: bonded or 

un-bonded). PSIC can be used to evaluate the during-storm performance, and the time 

needed to achieve a certain PSIC can be used to evaluate after-storm performance 

(Blackburn, 2004). This kind of road surface description is a typical measure to evaluate 

operation effectiveness around the world because of its ease of understanding and 

comparatively low cost to obtain, and also because it is associated with the maintenance 

end-goal of mobility and safety to some extent. However, there are two deficiencies 

associated with this measure. First, the measure, based on crew observation, is subjective. 

Second, the road surface description is not direct enough to indicate the safety and 

mobility effects to road users (speed, accident rate, traffic volume).  

As proposed by Nixon, friction is another promising indicator of road condition 

(Nixon, 1998). The measure of the friction ranges between 0 and 1, with 0 indicating 

most slippery icy surface, and 1 indicating normally dry surface condition. Friction is 

normally measured by a locked-wheel skid-resistance device attached to the maintenance 

truck or patrol vehicles (Hagiwara, 1990). Finland has established Winter Maintenance 

Level-of-Service based on the friction value (Leppannen, 2001). Japan has constructed a 

traffic accident reconstruction model, and it is noted that improving friction value of the 

pavement could greatly influence the safety especially when the friction value is around 

0.2 (Hosseinlou, 2000). However, the correlation between friction levels and traffic 
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speed/volume is still less than clear, and a reliable friction measurement device is still in 

the development stage for heavily traveled highways (Al-Qadi, 2002).   

C. Effect of Weather and Maintenance on Safety and Mobility  

Generally the number of crashes during a certain time unit is related to many 

factors, such as driver behavior, geometric characteristics, e.g. grade and curve radius, 

weather related variables, interactions between geometrics and weather, etc. (Shankar V, 

1995).  Other important interactions have been identified in the literatures including 

interactions between weather and traffic volume, holidays and weekly patterning of social 

activities e.g. weekday travel patterns (Levine et al., 1995). 

Sometimes researchers use crash rate, which is the ratio of crash counts and traffic 

exposure (flow rate, namely traffic volume per lane) as the measure of crashes (Amoros, 

2002). Mean speed and variation in speed are found to be positively related to crash rates 

(e.g. see Garber and Gadiraju, 1990; Garber and Ehrhart, 2000; Dickerson et al., 2000). 

Also the effects of speed and traffic flow rate on crash rates depend on the type of 

highway (Garber and Ehrhart, 2000). In terms of crash severity, Golob and Recker (2003) 

found that more adverse conditions were associated with the lowest traffic volumes and 

high variations in traffic flow. Other studies that have modeled the relationship between 

road accidents and traffic flows are Dickerson et al. (2000) and Martin (2002). 

Effect of Weather on Crash Rates 

Research on crashes during adverse weather conditions suggests that adverse 

weather is associated with an increase in the number of less severe crashes, such as minor 

injury and property damage only crashes (Andrey, 2003). However, adverse weather has 

only a minor influence on severe crashes, severe injury or fatal crashes. For instance, 

Evans (1991) stated that “the effect of inclement weather [snow fall] is more to reduce 

mobility by deterring travel or reducing speeds than to change safety [fatality].”  

Snow event type and poor visibility were found to be associated with both 

reductions in speed and increase of variation in speed (Idaho 2000, Liang 1998) ). 

Moreover, the effect of rain depends on the time of the day. Keay (2005) found a 5.2% 

increase in crash rates at night compared to a 1.9% increase during the day. The effect 



 

10 
 

also depends on the characteristics of the weather event (Andrey, 2003), and geometric 

and ambient temperature-related variation (Shankar V, 1995) and specific site or city 

characteristics. Eisenberg (2005) and Suggett (2002) both found that the risk of fatalities 

is significantly higher on the first snowy day of the season compared to subsequent 

snowy days during the same season. 

In terms of crash characteristics, (Andrey, 2003) “Snow events are associated 

with disproportionately more single vehicle crashes; more collisions at locations without 

traffic control and on roads with speed limits of 60 kph or higher; and they are less likely 

to involve a turning maneuver than ‘normal’ driving.” These findings have been 

confirmed by other studies (Mercer, 1986;  Andrey, 1989). Lane (1995) found “passing 

and lane changing were especially hazardous in winter driving conditions and the risk 

was increased by the tendency of slush and snow to build up between the right and left 

lanes and on the shoulders. Excessive vehicle speed for inclement roadway conditions 

was a factor in most of these crashes”. 

In terms of precipitation type, Suggett (2002) has found crash risk is particularly 

high for freezing rain or sleet events, and low for drizzle or dry snow. In addition it has 

been demonstrated that even after precipitation ends, crash risks stay elevated. One 

possible reason is the accumulated precipitation may lead to slippery road surface 

conditions, a conjecture that this dissertation research examines further. The studies 

exploring the interactions of weather with other factors on crash rates suggest that the 

effect of weather type (rain/ no rain) depends on the rural or urban settings. Bertness 

(1980) found over 100% more vehicle accidents under rain compared to non-

precipitation, particularly in urban areas, but the accident severity associated with rain 

was greater in rural areas.  

Effect of Weather on Traffic Volume 

Travelers can and do defer their trips during adverse weather. During rain fall, 

traffic volume on the highway decreases 1.35 to 2% depending on the precipitation rate. 

It also changes considerably with time of the day (Keay, 2005; Doherty et al. 1998, 

Colding, 1974). During snow fall, traffic volume decreases substantially from 7% to 56% 

(Hanbali, 1994) and 10% to 50% (Knapp, 2001).  
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In terms of the distribution of the traffic volume, it is likely to observe more 

frequent very low traffic volume, less frequent very high traffic volume during snow than 

non-precipitation or rain (EIDessouki, 2004).  

Effect of Weather on Traveling Speed 

There have been several studies that examined the relationship between weather 

and speed. Snow events and poor visibility were found to be associated with both 

reductions in speed and increase of variation in speed. For instance, the 2001 Traffic 

Flow Theory and Highway Capacity manual provide models that predict the average off-

peak winter weather vehicle speed reduction is 3.9 mph for low visibility (visibility 

below 0.4 km/0.25 mi) and 7.3 mph for snow cover on road ways. Brown and Baass 

(1997) found a 10% to 30% reduction in free flow speed. Liang (1998) found a three 

times larger variation in speed during a snow event. 

Moreover, these studies suggest that the decrease in speed and increase in speed 

variation during snow storms are influenced by road classification and vehicle type 

(passenger car or pick up trucks) (Padget 2001, Liang 1998). For instance, Hanbali and 

McBride (1994) found snowy/icy conditions are associated with an average 18% to 42% 

speed reduction on two-lane highways and 13% to 22% reduction on freeways (More 

reduction on lower level of road).  

In a summary, previous literatures demonstrate clearly that speed and volume and 

various variations of the indexes (reliability index, miserable index, etc.) are critical 

measures of mobility. Crash rates (fatality rate, injury rate, property-damage-only rates) 

and levels of severity are critical measures of safety. However, to incorporate these 

measures into the performance measurement process of winter highway maintenance 

operations requires filling two main gaps.  

First, Road Surface Conditions (RSC) as the traditional measure of maintenance 

outcome will continue be used as the primary performance measure in winter highway 

maintenance operations due to its low cost to obtain, and ease of use in making 

maintenance operation decisions. However, to date, there are not enough sound studies 

that link different types of RSC with direct measure of mobility and safety (speed, 

volume and crash rate). Lack of the studies in these areas make the evaluation of 
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maintenance outcome obscure to road users and maintenance agencies, and makes the 

process of meeting the goals of mobility and safety more difficult. 

Second, even when hourly measurement of speed and volume are possible to 

obtain, and maintenance agencies are willing to use speed and volume as their primary 

measure of the operational effectiveness, no study to date has accommodated appropriate 

targets with which real time performance measurement can be compared. Setting up the 

appropriate targets against which performance can be compared can be a daunting task, 

because it must be based on a thorough understanding of the system. However, there are 

no studies that quantify the influence of types and levels of maintenance methods on 

speed, volume and crash rates. Even though many studies examined the effects of adverse 

weather conditions, few of them include winter maintenance in to considerations. 

However, maintenance operations and weather conditions together influence the road 

surface conditions, and through changing road surface conditions, maintenance and 

weather have influence speed and volume and crash rates. Studies on effects of weather 

suggest that wind speed, precipitation, surface temperature, and visibility are all 

associated with different levels of reduction in speed and volume. Also interactions 

effects with light, Urban/Rural, Road Class etc. need to be taken in to consideration as 

well.  

3. STORM SEVERITY INDEX 

As discussed in the earlier chapters, in order to determine the performance of an 

agency in dealing with a particular winter storm it is critical that the severity of the storm 

be quantified in some way, so that the performance can be normalized with respect to the 

severity of the weather. In this chapter, the process of developing such an index is 

described, and the storm severity index is presented. The storm severity index quantifies 

to what extent an individual storm poses difficulty to maintenance activities.   

No study to date has evaluated the severity of individual storms as opposed to the 

severity of the whole winter season. Decker, 1998 developed a weather index, which 

incorporates daily new snow fall into consideration; but this is still a winter season based 

index. The only relevant studies are those that describe individual storms by 
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meteorological factors. One such is the storm description matrix developed in the FHWA 

Manual on Anti-Icing Practice (1996). Nixon and Stowe (2004) improved and extended 

the storm description matrix by incorporating pre and post storm behavior in the matrix.  

The development of the storm severity index was conducted in three steps. First 

the appropriate storm event classification and descriptions were developed. Second, 

based on the storm description, a multiple regression model was built to produce a storm 

severity index between 0 and 1. Third, representative storms were ranked in severity by 

winter maintenance supervisors and the model was modified to reflect this ranking. The 

storm severity index thus produced can be used as an objective measure of the challenge 

that an individual storm poses to a maintenance agency.  

A. Storm Event Classification and Description  

The matrix of possible storms developed by Nixon and Stowe (2004) can be 

represented schematically as shown in Figure 3.1. This is based upon the storm matrix in 

the FHWA manual on anti-icing practice (1996), but extends it especially in how it 

considers pre- and post-storm behavior. By combining one from each of the five 

categories or factors, a large number of potential storms can be described. Nixon and 

Stowe (2004) discarded some unlikely storm scenarios and considered a total of 312 

storm scenarios (96 for each of the snow events, and 12 each for the frost and freezing 

rain events).  
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Event classification

1
Event type

Heavy snow 
> 6 inches in 

24 hours

Medium snow 
2 ~ 6 inches

Light snow 
< 2 inches

2 Event 
temp 
range

Warm
> 32 F

Mid
25 ~ 32 F

Cool
15 ~ 25 F

3 Early 
event 

condition

Rain 

No rain

4 Surface 
temp 

trends

Rising 

Steady 

Dropping

5
Post event 
weather 

Undetermined

No rain 

No rain & wind 
>15 mph

Freezing rain 

Frost 

Cold
< 15 F Rain

 

Figure 3.1.  Event classification 

For the purposes of generating the storm severity index, these storm scenarios 

were adapted as discussed below.  

1. Because the focus of this effort was on storm events, it was decided to remove 

frost as a possible event type. Thus only four possible storm event types were considered: 

heavy snow, medium snow, light snow, and freezing rain.  

2. Because the levels of wind during a storm can have a significant impact on the 

challenges faced while maintaining roads during the storm it was decided to incorporate 

the in-storm wind condition as another factor. Wind condition during a winter storm is an 

important factor to be taken into account, because wind speeds in excess of about 12 to 

15 miles per hour may cause drifting snow problem and when the pavement is wet, cause 

retention of snow (e.g. see Illinois DOT, 1998). 
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3. It was decided to simplify the options for temperature ranges from four ranges 

(warm, mid, cool and cold) to three ranges by combining the cool range (15°F ~ 25°F) 

and the cold range ( < 15°F ) into one single range (< 25F ) in this classification. Thus the 

storm severity index has only three temperature ranges – warm, mid, and cool.  

4. The post-storm conditions seemed overly complex for the purposes of the 

storm index, and accordingly these were simplified into two categories rather than four. 

Thus the four conditions from Nixon and Stowe (2004) of “Undetermined”, “No rain”, 

“No rain with wind above 15 mph”, and “Rain”, are simplified to “Light wind” and 

“Strong wind” instead, because the impact of post-storm winds was considered to be 

much more important than the impact of post-storm rains. After these modifications, the 

event classification used in this study is as shown in Figure 3. 2.  

 

Define a storm

1
Storm 
type

Heavy snow 
> 6 inches  
in 24 hours

Medium snow 
2 ~ 6 inches 

Light snow
< 2 inches   

2
 In storm 

temperature 

Warm
> 32 F

Mid range 
25 ~ 32 F

Cold 
< 25 F

3 Early storm 
behavior

Starts as 
snow

Starts as 
rain

4  Wind 
condition
 in storm

Light
< 15 mph

Strong
> 15 mph

5
 Poststorm 
temperature

Same 
range as 
in storm

Warming

Cooling

6 Poststorm 
wind 

condition

Light 
< 15 mph

Strong
> 15 mph

Freezing rain
 

Figure 3.2.  Modified Event Classification 
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B. Development of a Multiple Regression Model that 
Produces the Storm Severity Index 

Using the above modifications, any given storm can now be described in terms of 

six variables: ST (Storm type); Ti (In storm road surface temperature); Wi (In storm wind 

condition); Bi (Early storm behavior); Tp (Post storm temperature); and Wp (Post storm 

wind condition). In order to develop a storm severity index between 0 and 1, each 

condition for the six variables must be assigned a score, and these scores must then be 

combined in some manner to create a composite score. This composite score can then be 

normalized so as to create the storm severity index. 

The format of the storm severity index was based upon that used by SHRP-H-350 

(Boselly, et al. 1993) for the development of a winter severity index. Thus the general 

form of the index equation is given as: 

5.0

])**[(*1
⎥⎦
⎤

⎢⎣
⎡ −+++= aWpTpBiWiTiST
b

SSI                 Eq. 3.1 

Where SSI is the storm severity index and a, b are parameters to normalize the 

storm severity index from 0 to 1. 

The storm type is clearly modified by the road surface temperature and the in-

storm wind condition, thus these three terms are multiplicative. The various pre- and 

post-storm behaviors are considered, in contrast, to be additive to the main storm and are 

expressed as such in equation 1. The two constants “a” and “b” are used to normalize the 

storm severity index between 0 and 1.  

Once the form of the equation is established, the relative scores between the 

values of the factors must be estimated. This involves attempting to assess how much 

worse a cold storm (with road surface temperatures below 25º F) is to handle than a warm 

storm (with surface temperatures above 32º F). A first approximation of these values can 

be obtained by studying the FHWA Manual of Practice recommended treatments (1999) 

and comparing how (for example) road temperature impacts treatment amounts and 

frequency, but this provides only an initial estimate. These initial estimates are listed in 

Table 3.1 (see below). 
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Table 3.1.  Modified scores for each storm index factor 

Storm Type 
 

Freezing rain Light Snow Medium Snow Heavy Snow
0.4 (0.72) 0.35 0.65 (0.52) 1 

Storm 
Temperature 

Warm Mid Range Cold  
0.25 0.6 (0.4) 1  

Wind 
Conditions 
in Storm 

Light Strong   
1 1.2   

Early Storm 
Behavior 

Starts as Snow Starts as Rain   
0 0.1   

Post Storm 
Temperature 

Same Warming Cooling  
0 -0.087 0.15  

Post Storm 
Wind 
Conditions 

Light Strong   
0 0.15 (0.25)   

*Values inside parentheses indicate values modified after the Supervisors’ evaluations. 
 

After these initial values had been applied, the model was adjusted to get an 

approximately normal distribution. Using the estimates for the six factors listed in Table 

3.1., the storm severity index was calculated for 252 different storms based on the initial 

algorithm and scores. Then the initial scores were modified (using the “a” and “b” 

constants) so that the computed storm severity index values have an approximately 

normal distribution (as shown in Figure 3.3.) The scores used for the six factors are 

shown in Table 3.1. 
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Storm index frequency and accumulation 
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Figure 3.3.  Storm severity index distribution 

C. Adjustment of Index by Expert Input 
To test and improve the accuracy and reliability of model, in the final step, ten 

storms were selected and were ranked in severity by winter maintenance garage 

supervisors. The ranks produced by the index were compared with the expert ranks 

provided by the supervisors. The major differences were discussed and the model was 

adjusted to ensure storm index ranks agree with the expert ranks.  

Selected ten storms ranked in severity by Winter 

Maintenance Supervisors 

Ten representative storm scenarios were selected out of 252 possible storm events 

and described in a survey form (Table 3.2). The storms were labeled A through J and 

their order on the survey form was randomized so as to minimize bias. Maintenance 

supervisors in Iowa ranked these ten scenarios according to the level of difficulty that 

these events would pose to them in their maintenance activities. The hardest was ranked 

as 10, and the easiest as 1. The storms were ranked by 38 supervisors around the State of 

Iowa.  
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Table 3.2.  Storm scenarios description from the expert survey form 

Storm 
scenarios Description: 

A 
A storm with freezing rain and temperatures in the warm-range (above 33 Fo) 
that starts as rain. Winds in the storm are strong (over15mph). After the storm, 
winds become light and temperatures warm up. 

B 
A storm with heavy snow (above 6 inches) and temperatures in the midrange 
(25Fo to 32Fo) that starts as snow. Winds in the storm are strong (over 15 mph). 
After the storm, winds become light and temperatures cool down. 

C 
A storm with heavy snow (above 6 inches) and temperatures in the warm-range 
(above 33Fo) that starts as rain. Winds in the storm are light (less than 15 mph). 
After the storm, winds become strong and temperatures cool down. 

D 
A storm with heavy snow (above 6 inches) and temperatures in the warm-range 
(above 33Fo) that starts as snow. Winds in the storm are light (less than 15 mph). 
After the storm, winds become strong and temperatures cool down. 

E 
A    A storm with light snow (up to 2 inches) and temperatures in the warm-
range (above 33Fo) that starts as snow. Winds in the storm are light (less than 15 
mph). After the storm, winds remain light and temperatures warm up. 

F 
A storm with freezing rain and temperatures in the cold-range (15Fo to 25Fo) that 
starts as rain. Winds in the storm are light (less than 15 mph). After the storm, 
winds remain light and temperatures remain cold. 

G 
A storm with medium snow (2 inches to 6 inches) and temperatures in the 
midrange (25Fo to 32Fo) that starts as snow. Winds in the storm are light (less 
than 15 mph). After the storm, winds become strong and temperatures warm up. 

H 
A storm with medium snow (2 inches to 6 inches) and temperatures in the 
midrange (25Fo to 32 Fo) that starts as snow. Winds in the storm are light (less 
than 15 mph). After the storm, winds remain light and temperatures remain in 
the midrange. 

I 
A storm with light snow (up to 2 inches) and temperatures in the midrange (25Fo 

to 32 Fo) that starts as rain. Winds in the storm are light (less than 15 mph). After 
the storm, winds remain light and temperatures warm up. 

J 
A storm with heavy snow (above 6 inches) and temperatures in the cold-range 
(15Fo to 25Fo) that starts as rain. Winds in the storm are strong (over 15 mph). 
After the storm, winds remain strong and temperatures remain cold. 

Storm index ranks in comparison with expert ranks  

 
The rankings of the ten storms were then compared with the initial storm severity 

index produced by the model. Table 3.3. shows the average rank that the 38 supervisors 

assigned to the ten storms, together with the rankings developed from the initial form of 

the storm severity index. It is clear that while there is general agreement between the 
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supervisors and the initial index, there are also areas of significant disagreement, as 

discussed further below. 

Table 3.3. Average expert rank vs. storm index rank for ten storm scenarios 

 

 

 
A more complete (and also more complex) representation of the responses 

obtained from the supervisors is given in Figure 3.4.  

 

Figure 3.4.  Expert ranks for ten storm scenarios 

The ten storms are listed on the x-axis in Figure 3.4., and for each storm the solid 

black line is the mean response. The box represents the upper and lower quartiles, and the 

Storm scenario E A I H G F D C B  J 

Storm Index rank 1 2 3 4 5 6 7 8 9 10 
Avg. Expert rank 1 4 2 3 5 9 7 8 6 10 
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bars represent the high and low data values. The other symbols represent statistical 

outliers that were discarded from the final analysis. 

Model adjustment to ensure storm index ranks agree with 

the expert ranks  

As indicated in the above section, there was less than perfect agreement between 

the initial storm severity index and the supervisor rankings. Three major areas of 

difference are considered below. On the basis of this comparison, the numerical values 

for certain of the factors were adjusted so that the storm severity index scores for these 

ten storms are now in agreement with the rankings given by the garage supervisors.  

1. Scenarios A, I, and H: Storm Scenario A (freezing rain) was ranked as more 

severe than storms H (medium snow) and I (light snow) by the supervisors, which 

contrasted markedly with the initial severity index. This indicated that the score assigned 

to freezing rain was relatively low and the score for medium snow was relatively high. 

The scores were adjusted accordingly (see the values in parentheses in Table 3.1).  

2. Scenarios D and B: There was a significant degree of disagreement between the 

supervisors with regard to storms B and D. 63% of the supervisors ranked Storm scenario 

B as less severe than storm scenario D while 27% of the supervisors took the opposite 

view. It appears that the majority of supervisors think that post-storm winds are worse 

operationally than in-storm winds. On the basis of this, the score for post-storm winds 

was increased (see the values in parentheses in Table 3.1).  

3. Scenario F, D, and B: Storm scenario F was ranked as more severe than storms 

D and B by the supervisors, again in contrast to the initial storm severity index. It appears 

that the lower temperature and the freezing rain condition (the latter as noted above) are 

considered to be operationally more severe conditions than a heavy snow storm. Thus the 

score for mid-range storm temperatures was also adjusted. 

As indicated in the above analysis, the discordant scores have been adjusted 

according to the supervisor rankings. The adjusted scores are the scores inside the 

parentheses, shown in Table 3.1. While the index now matches the evaluations of winter 

maintenance supervisors in Iowa, it is not clear how well it would match with evaluations 

of similar supervisors in other Mid-western States (who would experience similar 
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weather but may have differing operational responses) nor how it would compare with 

evaluations from supervisors from other climatic regions (e.g. Mountain States). While 

such comparisons are clearly of interest, they lie beyond the scope of the current study. 

D. Result and Discussion 

This chapter presents a model that takes the weather factors as the input and 

produces a storm severity index from 0 to 1, with 0 indicating very mild storm and 1 

indicating very severe storm. The initial regression model was given as Eq. 3.1 and the 

assigned values are given in Table 3.1. 

Using this model, the storm severity index for 252 different storm events can be 

provided.  The index was compared with rankings provided by winter maintenance 

supervisors from the Iowa Department of Transportation, and was adjusted to agree with 

those rankings.  

Development of the storm severity index is the first step in measuring the 

performance of winter maintenance operations. The index measures the level of difficulty 

that each individual storm events would pose to a maintenance agency in their 

maintenance activities. Thus it can be viewed as a normalizing factor that provides a 

basis for the fair comparison of the performance of maintenance operations under 

differing weather conditions.   

4. WEATHER AND TRAFFIC SAFETY 

Adverse weather conditions are known to be a major factor impacting traffic 

safety and mobility. A number of studies have attempted to quantify this impact, although 

the results of these studies are not consistent. The increased crash rate ranges from less 

than 100% to over 1000% during snowfall. There is also a debate on whether injury rate 

decreases during snowfall. Andrey (2002) noted that injury rate increased over 20% in 

Ottawa, Canada. Brown and Baass (1998) found fewer crashes involving injuries during 

winter in Quebec, Canada. The impact of severe weather on fatal crashes is even harder 

to quantify, because of the lower number of events involved and other confounding 

factors. Eisenberg and Warner (2005) estimated the effects of snowfall on US traffic 
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crash rates between 1975 and 2000, and concluded that fatal crash rate decreased during 

snow days compared to dry days, but nonfatal-injury crash rate and property-damage-

only crash rate increased, which seems to be in agreement with Knapp et al’s (2000) 

study in the state of Iowa.  

To present a clear idea of how weather impacts traffic safety, the method of meta-

analysis has been applied to examine the impact of adverse weather on crash rates. The 

basic idea of meta-analysis is to identify relevant studies by a systematic search and then 

use effect size standardizing on each study result. In addition, this approach corrects 

sampling error and other artifacts and can present an estimate of the total effect with 

minimized subjectivity (Hunter et al., 2004). Further, since different studies might be 

influenced by methodologies, time span and regions, hierarchy meta-analysis has been 

applied using these factors as grouping variables. Separate analyses are conducted for 

each group.  

A. Method 

The process used in the meta-analysis is outlined in Figure 4.1. After careful 

review of the included articles, two meta-analyses were conducted separately for 

comparison studies and regression studies. The first step was to conduct a comprehensive 

literature search. An inclusion criterion filter was then applied to the found literature. 

After careful review of the included articles, two separate meta-analyses were conducted 

for “comparison studies” and “regression studies”. Here, the “comparison studies” 

indicates those studies using binary weather indicators, for instance, comparing daily 

crash rates during snow and those during a non-snow condition. The “regression study” 

indicates those studies including continuous weather variables to predict the crash rates, 

such as inches of snow.  Effect size and percent change in crash rate were both applied to 

standardize the research results.  Due to insufficient data being available for effect size 

computation, only the percent change could be used to standardize research findings. In 

addition to the overall meta-analysis carried out for each weather factor category (snow, 

rain, snow depth, etc.), hierarchy meta-analyses were also conducted separately for the 

comparison studies stratified by validity score, by decades (time span) and by countries. 
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Figure 4.1. Study outline 

Literature Search 

A literature search for relevant studies published from 1970 to 2005 was 

conducted for both peer-reviewed literature and unpublished technical reports and theses. 

The search strategies used ensured this study contained enough primary studies for meta-

analysis, because meta-analysis based on a large number of studies even with a small 

sample size has been shown to be more accurate than that based on small number of 

studies with large sample size (Hunter and Schmidt 2004).  

After searching, 376 papers and reports were selected for further examination, of 

which 108 were determined to be pertinent. From these, 34 reports that provided 78 result 

records were selected for meta-analysis. 
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Study Inclusion Criteria 

Previous studies that explored the association between weather conditions and 

traffic safety have investigated diverse variables. These studies have also applied a 

variety of methods and were based on different types of data.  To ensure that the included 

studies were indeed comparable, the following study inclusion criteria were used: 

Subject: only studies that explored the associations between traffic safety and 

weather factors were included.  

Study design and method: Generally, two types of studies were included. One 

type of study used some form of comparison between adverse weather and normal 

weather conditions. Matched-pair study design was commonly used to control for 

extraneous factors in these studies: These studies identified the pairs similar in all 

respects (study area, time of a day, week or weekend), except for the weather factors 

being studied, so the other confounding factors were controlled. The studies then 

compared the crash rate during the precipitation days (events) to comparable non-

precipitation days (events) to get an averaged relative risk ratio1 (Bertness, 1980; Andrey 

and Olley, 1990; Andrey and Yagar, 1993; Sherretz and Farhar, 1978).  Similar 

approaches include the Wet Pavement Index method, and the Difference-in-Means 

method, which are variations upon the matched-pair method. However, the wet pavement 

index method subtracts non-precipitation hours during the precipitation days based on 

assumptions of wet pavement durations. As a result of this subtraction, these study types 

will tend to give a higher estimation than a straightforward matched-pair approach 

(Brodsky, 1988). 

Another type of study included was those using regression analyses. Most of the 

studies controlled for extraneous factors statistically. The results establish the change in 

crash rate or count associated with each unit change in a weather factor during a specified 

unit of time. Exposure measure2 can be included as a normalizing factor for the accident 

count. Alternatively, exposure may be one of the independent variables in the study. 

                                                 
1 In such studies typically the many accident rate ratios are averaged to produce a single value. 

2 Exposure usually measured by million Vehicle Miles Traveled (VMT) or Average Daily Traffic 
Volume (ADT)) 
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Either way, for this meta-analysis only those studies that consider exposure are included. 

The regression methods may vary from least-square regression (Andreescu and Frost, 

1998) to a Generalized Poisson Regression (Fridstrom et al., 1995, Eisenberg, 2004 and 

Eisenberg, 2005). Generalized Poisson Regression is more commonly used due to its 

advantages. These two types of studies (comparison and regression) have been analyzed 

separately, and they will be discussed further in the method section.  

Studies that investigated only the effect of weather conditions on crash frequency 

were excluded. Studies that investigated only the proportion of crashes with different 

levels of severity were also excluded, because the results are only informative about the 

relative frequencies of different types of crashes (Edwards, 1998; Bertness, 1980; 

Sherretz and Farhar, 1978). 

Outcome measures: to be included, a study must have used an appropriate 

outcome measure such as counts or rates of traffic crashes, injuries, or fatalities; or 

measures of crashes likely to be affected by adverse weather, such as winter crashes or 

summer crashes. Examples of appropriate measures include: Crash counts defined by 

number of crashes during a certain time unit (e.g. as used by Andreescu, 1998); Crash 

rate usually defined by ratio of crash counts and traffic exposure (Amoros, 2002); Crash 

risk (also called relative accident risk ratio) usually estimated by crash rate during 

precipitation events divided by crash rate during non-precipitation events (e.g. as used by 

ElDessouki, 2004). 

Measures of weather conditions: Snow and rain were the primary weather 

conditions among the identified studies. The commonly used measure in the comparison 

studies for the precipitation is whether it is a snow (rain) day (event) or not, which is 

mainly based on the precipitation type and total precipitation amount. For example, 

Andrey et al. define a snow event as snow or ice precipitation event of six-hours, in 

which total precipitation exceeds 0.4 mm (water equivalent). 

In the case of weather measures in the regression studies, the continuous variable 

of snow depth, together with snow intensity, and the dummy variable of sudden snow3 

                                                 
3 Sudden snow is defined as the first snowfall occurring during the winter or the year 
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(eg. Fridstrom et al, 1995) have all been used. These are all commonly used variables in 

the several studies being considered. Few studies investigated the effects of heavy or light 

precipitation, wind speed, or road surface conditions on traffic safety. However, to 

present a complete idea of how weather conditions can impact safety, data from this type 

of study were considered.   

Data: Only studies that provided sufficient quantitative data to permit the 

calculation of the effect of adverse weather on crashes were included. This criterion is 

discussed further below. 

Data Extraction 

Coding: For each study that met the inclusion criteria, variables were coded into 

two tables.  The general information table (see Table 4.1,) included document type, 

authors, publication year, country, study design, data source, and data on traffic volume. 

The study results information table (see Table 4.2.) included sample size, weather 

category (snow, rain, light snow, heavy snow, sudden snow, snow depth), weather 

specification, crash category (crashes, fatality, injury, property-damage-only), and 

percent change in crash rate. Table 4.1 and Table 4.2 show a few entries from the 

complete tables of this study to provide examples of these two table types.  

Table 4.1 General information 

Paper 
ID 

Author Document 
type 

Publication 
Date 

Study 
decade Country study method 

2 Andrey Journal 2002 1990-1998 Canada Matched-pair 

15 Fridtro
m Journal 1995 1975-1987 Finland Negative Binomial 

regression 
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Table 4.2 Data information 

ID Paper ID Sample 
size 

weather 
Category 

Crash 
Category 

Percentage change in crash 
rate 

12 2 469 rain Crash  112% 
15 2 302 snow Crash  47.00% 
16 2 159 rain Injury 69.00% 
17 2 128 snow Injury 21.00% 
48 15 144 snow depth Injury -1.46% 
49 15 144 sudden snow Injury 1.51% 

 
Assessing study quality by validity score: As shown in Table 4.3., scores were 

assigned to each study on the basis that the validity of each study could be estimated by 

assigning a validity score in each of three categories: study design, traffic volume data, 

and level of aggregation. (e.g., as used by Elvik, 2001) The total validity score of a study 

is then the sum of these three scores. Validity classifications are shown in Table 4.3. 

Table 4.3 Validity classification 

 Description Validity Score 

Study design 
Matched-pair approach  2 
Comparison study  with certain controls 1 

Traffic 
volume data 

Hourly record from Automatic Traffic Recording (ATR) 
stations 3 

Averaged daily traffic data 2 
Approximation from state-year vehicle miles traveled 1 
Approximation from gasoline sale  1 

Levels of 
Aggregation 

Specified type of road 2 
Aggregate by state or region  1 
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B. Comparison Studies with Percent Change as the Standard Measure 

This study calculated an effect size d as the standard measure for each of the analyzed 

studies, specifically, the study used:  

pooled

MMsdCohen
σ

21' −
= (Hunter and Schmidt 1990).                                       Eq. 4.1 

where M1 and M2 are the means of the two populations being considered, and σpooled is a 

function of the standard deviation of the two populations. To compute an effect size a 

parameter estimate and its standard error or variance estimation was needed. However, 

not all comparison studies consistently report those parameters. Thus as an alternative; 

percent change of crash rate (number of crashes per million vehicle miles traveled) to 

standardize outcome variables was selected.  

For the comparison studies using relative crash risk ratio ( iRisk ) as outcome variables, or 

for the studies providing crash rate ( iRate ) during precipitation vs. non-precipitation 

conditions ( ontrolcRate ), percent change ( iP ) was computed directly as shown in Eq. 4.2 

and Eq. 4.3.  

1−= ii RiskP                                                                                                          Eq. 4.2 

control

controli
i Rate

RateRate
P

−
=                                                                                               Eq. 4.3 

where i represents different adverse weather events. 

For some of the regression studies, information has been extracted to compute the percent 

change in crash rate during adverse weather. These computations were based on the 

expert knowledge of weather conditions; a certain range of weather factor was selected in 

the x –axis and from this computed the corresponding crash rate change was computed.  

Traffic Volume Deduction Correction 

To ensure all the percent changes are comparable, it is necessary to correct those 

studies that did not control for the reduced traffic volume associated with adverse 

weather. For studies that used relative accident risk ratio (crash count ratio) as outcome 

variables or studies that did not take traffic volume reduction into consideration because 
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of the insufficient traffic volume data, the effect of reduced traffic volume on the crash 

rate was incorporated. 

Two assumptions were made in order to do this correction as used in the study by 

Fridstrom et al. (2005): 

• Exposure is proportional to traffic volume. This assumption is made because for a 

specified segment of road, the exposure measure vehicle miles traveled (VMT) is 

normally estimated by multiplying traffic volume on each road segment with the 

length of road segment and then summing them together to get an entire area 

VMT.   

• Percent traffic volume reduction compare non-adverse weather condition can be 

defined as viP . Though traffic volume reduction data are not available for each 

study, it is reasonable to assume that the estimations are similar from comparable 

literatures.  

Doherty et al. (1998) suggested that during rain, traffic volume in Canada reduced 

2% in comparison with non-precipitation days; this estimation is the same as a study 

conducted in London (Colding, 1974). Keay (2005) showed that the traffic volume 

decreased 1.35% to 2.11% on wet days in winter and spring, and can decrease up to 

3.43% for heavier precipitation (2-10 mm). In terms of snow, traffic volume has a 

substantial reduction range from 7% to 56% (Hanbali, 1994) and 10% to 50% (Knapp et 

al., 2000). Knapp also estimated the average traffic volume reduction is 29% during 

heavy snow for interstate highways. Based on these studies, traffic volume reductions as 

shown Table 4.4 for a variety of precipitations were used.  

Table 4.4  Traffic volume reduction viP  due to different weather conditions 

 

Precipitation type light 
precipitation precipitation rain Light 

snow Snow heavy 
snow 

Percent deduction in 
traffic volume, viP  1.35% 1.65% 2% 10% 15% 29% 
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According to the these assumptions and Table 4.4, the percent change ( iP ) of 

each study that needs traffic volume correction has been modified by Eq. 4.4 to provide 

the corrected percent change in crash rate ( correctediP ). 

             1)1(
1

1 −+∗
−

= i
vi

correctedi P
P

P                                                                        Eq. 4.4 

Weight Each Study by Sample Size and Correct Sampling Error Variance 

The occurrence of crashes is subject to random variation (Fridstrom et al, 1995).  

Thus studies with small sample size tend to have great variability and may lead to biased 

results. Computing the mean percent change across studies can reduce the impact of 

sampling error because of the large sample size obtained in this manner.  

Because studies based on a large sample size would normally provide a better 

estimation, each study was weighed by its sample size. Also in many areas of scientific 

research, sampling error has been found to account for most of the observed variance, 

thus the sampling error variance was corrected by the Hunter-Schmidt method (Hunter 

and Schmidt, 2004).  

Sample size ( iN ), and the percent change in crash rate ( iP ) during adverse 

weather event were available for each study. For each weather factor category, the mean 

percent change was computed as shown in Eq. 4.5.                

∑ ∑= iii nPnP /                                                                                                       Eq. 4.5 

The observed variance is given in Eq. 4.6       

Variance = ∑∑ − iii nPPn /)( 2                                                                                Eq. 4.6 

Thus, the sample-size-weighted mean was obtained and the sample-size-weighted 

variance of observed crash rate change for each weather factor was calculated. The 

formula for the sampling-error variance of proportions is shown in Eq. 4.7. 

Sampling-Error Variance = nQiPi * , where PiQi −= 1                                         Eq. 4.7 
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A sample-weighted mean of the sampling-error variance of proportions to be 

cumulated was then obtained as shown in Eq. 4.8.                      

Mean of Variance of Proportions = ∑∑ ii nQiP /*                                              Eq. 4.8 

Then sampling error variance was corrected by subtracting the sampling-error 

variance from the observed variance. This provided an estimate of the true variance plus 

variance due to other artifacts. Because of the lack of necessary information to allow for 

correction due to other artifacts, this estimation was used as an approximation for the true 

variance and was also used to compute the confidence interval.  

C. Regression Studies Effect Size d and Percent Change as the Standard Measure 

The regression studies considered in this meta-analysis predicted the percent 

change in crash rate with a unit change in a certain weather factor. Most of the studies in 

this category applied Negative Binomial regression and provided sufficient information 

for effect size calculation. Thus effect size d (standardized mean different in crash rate) 

was applied to standardize each study result.  

Effect Size 

Normally effect size is the most reliable method to generalize studies. Effect size 

can be calculated in a number of different ways. Effect size d (Standardized mean 

difference) can be computed from a parameter estimate and its standard error or variance 

estimation, such as shown in Eq. 4.9. (Glass, 1981; Hunter and Schmidt, 1990).   Note 

that this is the same as Eq. 4.1 above.              

pooled

MMsdCohen
σ

21' −
=                                                                                                Eq. 4.9 

Or effect size d can also be computed from test statistics t, chi-square, or Z as 

shown in Eq. 4.10, Eq. 4.11 and Eq. 4.12 (Glass, 1981).              

df
td

2

2=                                                                                                                 Eq. 4.10 
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Depending on the information provided by each study, effect size d was 

appropriately calculated for each study.  Then each effect size d was weighted by its 

sample size, and the sampling error variance was subtracted from the pooled variance. 

Finally the confidence interval was calculated and is presented for the pooled effect size d 

at the 95% level.  

Percent Change  

Percent change ( iP ) here represents the percent crash rate change with per unit 

weather factor change. For Negative binomial regressions, it can be computed by 

reducing the exponential of the regression coefficient ( iB ) of weather variables by 1. 

D. Results 

General Findings for Comparison Studies 

A total of twenty nine comparison studies provided fifty three records, among 

which twenty four record crashes, eight record fatalities and seventeen record injuries. In 

addition four studies recorded property-damage-only crashes. Table 4.5 presents the 

estimated crash rate change during various weather conditions using 95% confidence 

intervals. Most of the percent changes were positive, indicating that during adverse 

weather conditions all types of crashes (fatality, injury, property-damage-only) exhibit 

some kind of increase in crash rate. Results also indicate that most precipitation events 

are associated with considerable increased crash risk, together with a somewhat lesser 

increase in injury risk and a minor increase in fatal crash risk. Generally, as the 

precipitation intensity increased, all levels of crash risk increased. High winds are also 

associated with an increase of the traffic crash rate.  
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Table 4.5  Crash rate change compare to non-adverse weather conditions.  

 

Fatal Injury Crashes 

N Estimate 
(%) 

95% C.I. 
(%) 

N Estimate
(%) 

95% C.I. 
(%) 

N Estimate(
%) 

95% C.I. 
(%) 

Snow 1 9 (9, 9) 4 75 (54, 96) 8 84 (68, 99) 

Rain  1 8 (8, 8) 7 49 (28, 70) 10 71 (31, 111) 

Wet pavement 3 384 (308, 459) \ \ \ 3 380 (249, 511) 

Heavy Snow \ \ \ 2 420 (350,490) \ \ \ 

Light snow \ \ \ \ \ \ 1 169 (169, 169) 

Heavy rain \ \ \ \ \ \ 1 93 (93, 93) 

High wind \ \ \ \ \ \ 1 100 (100, 100) 

* Heavy snow: hourly precipitation intensity above 5 mm 

* Snow: total six hour precipitation amount above 2 mm  

* Light snow: total daily precipitation less than 25 mm 

* Rain: total six hour precipitation amount above 0.4 mm 

* High wind: wind speed above 15 mph 
The “Wet Pavement Index” method was used in most of the studies that explored 

wet pavement related crashes. This method tends to overestimate the real crash risk 

(Brodsky and Hakkert, 1988). Also the “wet pavement” included in this analysis indicate all 

wet pavement events during winter months or cold temperature conditions, so the wet 

pavement actually represents various undesirable road surface conditions during the 

winter. As indicated in Table 4.5 above, on average the wet pavement conditions would 

increase both crash rate and fatal crash rate by over 300%. The estimated relative risk of 

crashes was increased on a slippery road surface without precipitation present, with an 

estimated injury risk of 1.70 (Andrey, 2003). A Swedish study showed the highest crash 

risk was associated with road slipperiness due to rain or sleet on a frozen road surface and 

the estimated increase of crash rate can be over 1000% (Norrman, 2000). 
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Figure 4.2 Effect of snow and rain on crash rate 

As shown in Figure 4.2., the average percent change in crash rates for rain and 

snow are 71%, and 84% respectively. Compared to rain, snow has a more positive 

significant impact on crashes and injuries.  

Contrary to some research findings that the fatal crash rate would decrease in 

adverse weather condition, the result shows that those who travel on the road during 

snow experience an 8% increase in fatality rate in comparison with dry days. Eisenberg 

suggested precipitation is negatively associated with fatal crashes (3.73% reduction per 

10 cm of precipitation). (Eisenberg, 2004). However, he acknowledged that the reduced 

traffic volume is not controlled in this study. Indeed, in this meta-analysis study, before 

controlling for the reduced exposure, the estimated fatality rate has a decrease of 7% 

during snow. However once the results were corrected for traffic volume reduction, the 

fatality rate does positively associate with precipitation. This result suggests the decline 

in traffic volume may result in less car crashes, but for those who traveled in adverse 

weather, the risk of a fatal crash is nonetheless increased. 
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E. Hierarchy Analysis Findings for Comparison Studies 

Results of Evaluating Studies by Decades 

Since these prior studies have spanned several decades, a hierarchy meta-analysis 

was conducted to assess to what extent patterns have changed over time.  Three 

subgroups were formed, using study decades as the grouping variable. However, in order 

to get meaningful results, it was not possible to simply consider each decade between 

1950 and 2005 individually. Ranges of years were selected such that the number of 

studies in each range were approximately equal. Thus, three studies fall into the first 

range (1950-1979), two into the second (1980-1989), and three into the third (1990-

2005).  Separate analyses were conducted for each subgroup. 

Table 4.6  Percent change of crash rate (fatal, injury and PDO) by decades  

Study decade 
Percent change of crash rate related 
with snow 

Percent change of crash rate related 
with rain 

N Mean(%) 95% CI(%) N Mean(%) 95% CI(%) 

All decades 8 84 (68, 99) 10 71 (31, 111) 
1950~1979 3 113 (79, 146) 4 80 (43, 118) 
1980~1989 2 71 (71, 72) 2 29 (10, 49) 
1990~ 2005 3 47 (33, 62) 4 70 (30, 111) 

Table 4.7  Percent change of injury rate by decades for rain 

Study decade 
Percent change of injury rate related with rain 

N Mean (%) 95% CI (%) 

1950~1989 4 74 (22, 125) 
1990~ 2005 3 47 (33, 62) 
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Figure 4.3 Percent change in crash rate by decades 

As shown in Table 4.6 and Table 4.7, the percent change of crash rates during 

snow has decreased over time. It dropped from 113% during decades 1950~ 1979 to 47% 

during 1990~ 2005. This conclusion can be further confirmed from the 95% confidence 

interval of the percent change as shown in Figure 4.3: From 1950 to1979, the estimated 

percent change of crash rate has the confidence interval from 70.6% to 146%, while after 

1990; the confidence interval is from 33% to 62%.  

One possible explanation for this is that winter maintenance methods and 

technologies have improved over time. For example, the pro-active technology of anti-

icing has been introduced into the U.S. since the early 1990s (Ketcham et al., 1996). 

While this strategy is not yet used throughout the U.S., there is clear evidence (Breen, 

2001) that anti-icing reduces crashes in winter weather. It would be useful to know which 

snow and ice control strategies are the most effective at reducing crashes. This, however, 

lies beyond the scope of the current study.  

In contrast, there is no statistically significant variation in the crash rate under rain 

conditions over this same time period. This tentatively suggested that any technological 

improvements related to safety in rain (e.g. improved tire design) have been 

overwhelmed by other factors.  
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Results of Evaluation Studies by Country 

Since these prior studies have spanned a number of countries, hierarchy meta-

analysis was conducted to assess how much results vary with country.  USA, Canada and 

Britain tree subgroups were selected. Table 4.8 indicates the change in crash rate varies 

across countries.  

Table 4.8  Percent crash and injury rate change for snow and rain by country 

Country Weather 
Category 

Injury Crashes 

N Estimate (%) 95% C.I. (%) N Estimate (%) 95% C.I. (%)

USA 
Snow 1 45 (45, 45) 2 73 (72,73) 

Rain 1 21 (21, 21) 3 58 (28, 88) 

Canada 
Snow 2 79 (61, 96) 4 85 (69, 100) 

Rain 2 50 (39, 61) 5 73 (32, 113) 

Britain 
Snow 1 50 (50, 50) 1 1.00 (100, 100) 

Rain 2 42 (28, 56) 1 0.24 (24, 24) 

Effects of precipitation on percent change of crash rates
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Figure 4.4 Effect of snow and rain on crash rate 
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In Figure 4.4, the impact of rain and snow on injury and crashes are shown for 

U.S.A., U.K. and Canada. When studies were evaluated by countries, there was 

considerable difference in the crash rate change, but there is no clear pattern. Different 

transportation policies, climate and the extent to which drivers can become accustomed to 

a specific weather driving condition might be an explanation for the differences.  

The average crash rate under snowfall conditions of the British studies has a 

higher increase than the other two counties. One explanation for the difference might be 

that snowfall is less frequent in the U.K. than the other two countries, so drivers in the 

U.K. are not as experienced at driving under the snow condition as drivers in the regions 

with frequent snow precipitations. Thus the crash rate might be expected to have a higher 

increase. Again, further work would be needed to clarify this issue. 

 

Results for Regression Studies 

There are five studies that are fall into this category. They all applied Negative 

Binomial regression to predict the percent change in crash rate with a unit change in a 

certain weather factor. However different measures of weather conditions made the 

studies hard to generalize. For example, different measures in studies were maximum 

snowfall amount in a month, snow grade interaction factor, or the number of days with 

snowfall in a month. After reviewing the literature, there are only two studies, in which 

the common dependent and independent variables can be found. One is by Eisenberg 

(2004) and another is by Fridstrom(1995). Fridstrom provides four separate regressions 

for four different countries, and these four regression studies were considered to be four 

records used in meta-analysis. The effect size d for these studies is presented in Table 4.9.  
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Table 4.9  Effect size d for each study 

Weather Category Snow Depth (cm) Precipitation (cm) Applied 
Equation 

Crash Category Fatal Injury Fatal Injury 

Eisenberg, 2004,U.S.A. -0.0907 -0.0578 -0.1371 0.1743 (11) 

Fridstrom, 1995,Demark \ \ 0.0002 0.0005 (8) 

Fridstrom, 1995,Finland \ -0.1207 \ \ (8) 

Fridstrom, 1995,Norway -0.0271 0.0106 \ \ (8) 

Fridstrom, 1995,Sweden -0.0431 -0.1023 \ \ (8) 

… … … … … … … … … … … … 
The results of the meta-analysis by both methods are presented in Table 4.10 and 

Table 4.11. In Table 4.10 the variable d is the size effect (see Eq. 4.1. and 4.9). Var (d) is 

the variance in the size effect, while Var (e) is the variance of the sampling error, with the 

asterisk denoting the fact that this variance has been corrected for bias. The methods by 

which these statistics are calculated are discussed at length in Hunter and Schmidt (1990). 

Table 4.10  Meta-analysis by effect size d 

Weather Category Snow Depth (cm) Precipitation (cm) 

Crash Category Fatal Injury Fatal Injury 

Average (d) -0.073 -0.062 -0.121 0.090 

Var(d) 0.001 0.003 0.002 0.008 

Var(e) *  0.001 0.002 0.001 0.002 

SD 0.010 0.035 0.038 0.074 

95% CI upper -0.093 -0.130 -0.195 -0.055 

95% CI lower -0.053 0.006 -0.047 0.235 
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Table 4.11  Meta analysis by percent change in crash rates 

 

Fatal Injury 

N Estimate (%) 95% C.I. (%) N Estimate (%) 95% C.I. (%) 

Snow depth (1cm) 3 -0.5 (-0.7, -0.4) 4 -0.3 (-0.5,-0.01) 

Precipitation (1cm) 2 -0.3 (-0.5, -0.1) 2 0.12 (-0.03, 0.3) 

 

 

Figure 4.5 The association between snow depth (1cm) with percent change of crash rate. 

Figure 4.5 shows how an increase in snow depth results in a change in crash rate.  

Based on the result from Table 4.11 and Figure 4.5, it would appear that snow depth has a 

negative impact on crash rate. For every one centimeter increase in snow depth, the 

predicted fatal crash rate decreases 0.5%, with 95% confidence interval (-0.7%, -0.4%). 
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The effect size for snow depth increase was -0.073, with 95% confidence interval           

(-0.093,-0.053) as shown in Table 4.11. 

However the effect of snow depth on injury rate is less clear. The 95% confidence 

interval for effect size for snow depth ranged from -0.13 to 0.006. However, with one 

unit increase in snow depth, the associated crash rate appears to increase 0.4% (see 

Figure 4.5, the first category, "crash"). Thus, if the road surface is snow covered, road 

users would be likely to experience a decreased fatal crash risk or severe injury risk, but 

would be more likely to have less serious crashes, such as a property-damage-only crash. 

These results partly can be explained by the driver’s behavior during the snowfall. As the 

visible snow depth increases, drivers may be more cautious and further decrease their 

driving speeds to compensate.  

F. Summary and Discussion 

The generalized results from studies that compared daily crash rates during 

adverse weather and those during non-adverse weather indicate the following: Most 

precipitation events are associated with a considerable increase in crash rate and injury 

rate. Snow has a greater effect than rain. It can increase the crash rate by 84 %( 95% 

confidence interval [CI] =0.68, 0.99), and the injury rate by 75% (95% CI = 0.54, 0.96), 

while rain can increase the crash rate by 71% and the injury rate by 49%. As precipitation 

intensity increases, the crash risk also increases. Most studies focused exclusively on the 

effect of precipitation on crashes, while few estimated crash risk during other adverse 

driving conditions, such as high winds, fog, low temperature, and their interactions with 

precipitation. Thus to have a clear understanding, further research about how road surface 

condition and other weather factors relate to crash rates would be required.  

Evans (1991) stated “The effect of inclement weather [snow fall] is more to 

reduce mobility by deterring travel or reducing speeds than to change safety (P.95),” after 

he analyzed the crash severity ratio from the province of Ontario. Although previous 

research show strong evidence that adverse weather is associated with reduced traffic and 

driving speed, and traffic speed and volume are clearly strong factors influencing crash 

rates, the effect of reduced traffic volume is not normally considered in most of the 

studies considered herein, and neither is reduced speed. In this study, from limited 
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evidence, the fatal crash rate increased 9% during snow vs. no-snow when the effect of 

the reduced traffic volume on the crash rate was considered, compared to an increase of 

7% when the effect is not considered. This estimation suggest the decline in the traffic 

volume may result in less car crashes, but for those who traveled in the adverse weather, 

the risk of a fatal crash is still increased. 

Weather interaction with other factors might be another area to explore. Some of 

the studies have explored the interactions of weather variables with other factors such as 

lighting (Codling, 1974, Andrey, 2002), grades and curves (Shankar, 1995), and with 

urban or rural conditions (Bertness, 1980).  

Goodwin (2002) stated that “Precipitation and undesirable pavement condition 

together constitute a greater hazard to the traveling public, than each alone, and the 

effects are a joint result of winter highway maintenance, weather and traffic.” However, 

only Norrman (2000) considered whether maintenance action had been performed or not 

in his estimation of weather impact on crash rates. Because studies did not control for the 

benefits of winter maintenance, this may explain  why the effect of snow on crash rate 

has a decreasing tendency over decades. The percent change of crash rate dropped from 

113% during 1950-1979 to 47% during 1990-2005. The percent change of crash rate 

during rain does not have the same decreasing tendency. Overall improvements in safety 

may be the reason, but the improvement in winter maintenance methods might be also an 

explanation. Thus further research is needed to explore to what extent winter highway 

maintenance can reduce crashes.  

5. EFFECTS OF WEATHER AND MAINTENANCE ON ROAD SURFACE 

CONDITION 

The purpose of the next three chapters is to establish numerical links between 

weather and maintenance impacts and various possible performance measures. 

Specifically, these chapters aim to first establish how the condition of the road surface is 

impacted by a variety of factors, and then, how that road surface condition, together with 

other factors, impacts traffic volumes, traffic speeds, and crash rates. Once these 

relationships are established, it should be possible to determine suitable target values of 
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speed reduction (for example) under given storm conditions, for a given level of service. 

These target values then become performance measures. If they are met or exceeded, then 

a given agency has achieved its performance goal. If not, then the agency has failed to 

achieve the goal. 

The purpose of this chapter is to investigate the effects of weather, maintenance 

and traffic on the road surface condition as classified by the State of Iowa. In particular, 

this chapter considers the interaction between weather variables and maintenance 

procedures and how these interactions changed the possibility of a road surface being 

classified as SNOW/ICE. (Note that various capitalized terms such as SNOW/ICE, 

CHEMICAL, PLOW, TEMPERATURE, WIND, PRECIPITATION, SAND and BRINE 

represent variables in the models that are developed and described in this chapter). 

Moreover, effects of different CHEMICAL applications, and PLOW use on road surface 

types were compared for similar types of weather conditions, and the results of this study 

can also be used to predict the probabilities of different road surface conditions based on 

weather conditions and maintenance operations. A total of 16,980 cases were used in the 

study. Weather data were extracted from the ASOS/RWIS sites and maintenance 

operation data were extracted from maintenance logs.   

This work is based on two combined methods: Chi-squared automatic interaction 

detector (CHAID, Kass, 1980) analysis was first used to identify the influential factors 

and the statistically significant (<0.05) interactions between weather variables and 

maintenance operations and how these interactions changed the possibility of road 

surface classifications or conditions. Then based on the segmentation and interaction 

identification from the CHAID analysis, a useful subset of weather and maintenance 

variables was used to build a Multinomial Logistic model for road surface condition 

prediction. The Multinomial Logistic Regression [MLR] (Hosmer and Lemeshow, 1989) 

results also indicate the strength of influence of weather factors, maintenance procedures, 

and interactions between them have upon the possibility of road surface conditions. This 

MLR model provides a tool for maintenance operations personnel to compare the effects 

of possible planned maintenance actions on the road surface conditions for specific 

weather scenarios.  
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The regression tree produced by CHAID indicated the data could be modeled in 

three separated subsets of maintenance activity: Anti-icing (activities before a storm 

starts), Phase I (activities during a storm) and Phase II (activities after a storm has ended). 

(No modeling of Frost Run activities was performed due to high levels (50%) of missing 

data).  Multinomial Logistic Regression confirms and further extends the results learned 

with the answer tree: generally surface temperature, wind speed, and chemical usage are 

determinant factors. In Phase I and Phase II, two interactions (liquid rate and traffic 

volume, and plow and traffic volume) also impact the road surface condition 

significantly.  

One of the primary goals of winter maintenance operations is to improve 

undesirable road surface conditions (Blackburn, 2004). Snow, ice and slush all create 

slippery road surfaces, and these surfaces are inherently less safe than dry roads. In the 

ideal, for a given weather condition, the result of a specific winter maintenance action on 

the road surface condition would be predictable. If this were the case, maintenance 

activities could be optimized to achieve the most desirable results with the least time and 

efforts.  

Even though many previous studies have evaluated weather effects on traffic 

mobility and safety (Sherretz and Farhar, 1978; Bertness, 1980; Shankar, 1995; Andrey 

and Olley, 1990; Knapp, 2000), few of them qualified the effect of maintenance (Hanbali, 

1994). Even fewer studies have evaluated how both weather and maintenance are 

associated with the road surface conditions. However, it appears that no study to date has 

evaluated how weather, maintenance and traffic together are associated with road surface 

condition. Road surface condition has considerable impact on traffic mobility and safety. 

However, the impact of maintenance on this condition is hard to qualify. The primary 

reason is that maintenance operations are not only dependent upon both the current and 

the forecast weather conditions and road surface conditions, but also the impact of these 

maintenance operations (chemical used, plowing or not, etc) vary with weather severity, 

road type, and traffic condition (mainly traffic volume). This situation presents a number 

of research questions, as discussed below.   

 

• How do weather factors influence Road Surface Conditions (RSC)? 
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First we are interested in how weather factors: (e.g. Temperature, Wind, and 

Precipitation) influence the RSC. The problem is complicated by the interactions between 

weather variables. Previous research indicated that lower temperature (less than or equal 

to 15°F) and higher wind speeds (greater than 12 mph) combined would be a much more 

severe problem than either of these two conditions alone. One study that quantified the 

severity of weather events (Nixon & Qiu, 2005) has suggested that the severity of 

weather is mainly determined by TEMPERATURE, WIND, and PRECIPITATION, and 

the severity of weather is not related to these three factors in an additive form, but in a 

multiplicative manner. An example of such interaction is the issue of blowing snow, 

typically triggered when wind speeds exceed 12 mph. Blowing snow will not only reduce 

the visibility greatly, but also has the high possibility of increasing the risk of ice on the 

road surface when the road surface is wet and road surface temperature is lower than 32 

ºF. The blowing snow problem depends on precipitation, temperature, and wind speed. 

Thus it is to be expected that wind speed interacts with temperature, and precipitation in 

its effect on the road surface condition.  

 

• How do maintenance operations influence RSC? 

More importantly, we are interested in how maintenance actions influence the 

RSC. Three types of maintenance action will be considered and are defined as: 

PLOWING (e.g. No-Plow, Wing-used, Ice-blade-used), SAND (e.g. Sand used or not, or 

Sand/Salt Percentage), CHEMICAL (e.g. Granular Salt, Brine, CaCl2 solution) activities. 

However the effect of a given maintenance action is even harder to quantify, because this 

effect not only depends on the weather condition, but also on whether other maintenance 

actions have been performed at the same time. Using the effect of one CHEMICAL – 

Sodium chloride solution (Brine) as an example: BRINE of 23.3% concentration won’t 

freeze until -6°F, but brine still can refreeze at relatively high temperature (e.g. 32°F) if 

brine has been diluted to near 0%. Therefore the possibility of a SNOW/ICE road 

condition after a certain amount of brine has been applied depends on not only the brine 

concentration and surface temperature, but also upon whether precipitation is ongoing 

and whether there is a large amount of snow currently on the road. Thus we cannot 
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consider only how a given factor influences road surface condition, but we must also 

consider the strong interactions between maintenance actions and weather factors. 

 

• How does traffic influence RSC? 

An additional factor for consideration is how traffic influences road surface 

condition. Many maintenance agencies have long assumed that traffic can influence the 

road surface type in different ways. However past research indicates that the effects of 

traffic volume on RSC are neither direct, nor easy to quantify. Traffic can blow off 

chemical particles from roads. Vehicle tires can compact, or disperse snow. Heat from 

traffic exhaust or tire friction can heat the pavement surface and may melt the snow on 

the road surface. As noted in the FHWA anti-icing manual, when road surface 

temperature is low, “melted snow by the heavy traffic exhaust from the congestion, or 

stops at the intersection can refreeze and form black ice on the road surface” (FHWA, 

1996). Clearly, traffic does influence road surface conditions both positively and 

negatively.  

The effect of traffic volume on the road surface condition depends on the amount 

of snow on the road, whether the road has been plowed, the road surface temperature, and 

the nature of the maintenance activities that have been used. Since it is important to 

quantify the effect of traffic and using the traffic information to facilitate operation 

decision making, one goal of this work is to analyze and quantify how traffic influences 

surface conditions.   

Driven by these research questions, and constrained by the data properties, the 

combined approach of CHAID and MLR have been used in this study. In this analysis, it 

is clear that there are complex interactions between the possible predictors considered in 

this study. In order to identify the influential factors and important interactions, the 

method of a classification tree has first been used to segment data and detect interactions. 

The classification tree method used herein provides detailed information and insights 

about interactions between weather factors and maintenance procedures. Moreover, the 

outcome variable (road surface condition or RSC) is presented as four mutually exclusive 

categories. It therefore cannot be treated as a continuous variable. Using the results 

produced by the tree, Multinomial Logistic Regression models (MLR) were constructed 
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to predict road surface conditions classified into four mutually exclusive categories. In 

this chapter, first data preparation and a brief description of the data summary is given. 

Then the two classification methods – CHAID and the MLR, are described. Finally, 

results of the analysis are presented. 

A. Method and Analysis 

The methods used to determine the relationships described above are described in 

detail in Appendix A. 

B.Results 

Descriptive information of variables 

An initial examination was conducted to discover the main features of the 

extensive data set. First, graphs and numeric summaries of each variable were examined 

as were relationships between the variables that may be thought to interact in their effect 

on the road surface conditions: such as chemical usage and surface temperature.  

Table 5-1 shows the summary of the measures included in our analysis, and the 

summary of data consistent with expected behavior. In the ANTI-ICING stage, among 

total 1,792 observations designated as being ANTI-ICING, only 14 cases (1.3%) 

indicated that the PLOW was being used and 3.7% indicated that SAND was applied. In 

Phase I, with a total of 18,707 observations, about 57% of the observations indicated 

PLOW usage. Regardless of PLOW usage, almost all of the Phase I cases (96%) 

exhibited some form of CHEMICAL applied, and also 26% of the cases had SAND 

applied. In Phase II, about 50% of the observations were without PLOW operation. In 

40% of the cases where no PLOW was used, no CHEMICAL was applied also.   
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Table 5.1  Summary of Measures 

CASE SUMMARY ANTI-ICING  PHASE I PHASE II 
    N % of Total N % of Total N % of Total 
ROAD SURFACE 
CLASSIFICATION       
 Dry 287 31.4 3151 30.4 433 35.9 
 Wet 198 21.7 1454 14.0 38 3.2 
 Snow/Ice 239 26.1 2228 21.5 321 26.6 
 Slush 190 20.8 3520 34.0 413 34.3 
PLOW(1)       
 No 902 98.7 4356 42.1 610 50.6 
 Yes 12 1.3 5997 57.9 595 49.4 
PLOW(2)       
 No 902 98.7 4356 42.1 610 50.6 
 Plowing 12 1.3 2106 20.3 262 21.7 
 Wing \ \ 753 7.3 97 8.0 
 Ice_Blade \ \ 1169 11.3 8 0.7 
 Wing & Ice_blade \ \ 1969 19.0 228 18.9 
SAND       
 None 880 96.3 7654 73.9 978 81.2 
 Sand 34 3.7 2699 26.1 227 18.8 
CHEMICAL(1)       
 Cacl2 \ \ 1737 16.8 344 28.5 
 Brine 710 77.7 3342 32.3 72 6.0 
 Salt 151 16.5 4633 44.8 362 30.0 
 No Chemical 53 5.8 641 6.2 427 35.4 
CHEMICAL(2)       
 Brine rate 30  6 0.7 250 2.4 24 2.0 
 Brine rate 40 361 39.5 1287 12.4 45 3.7 
 Brine rate 50 271 29.6 1423 13.7 \ \ 
 Brine rate 60+ 72 7.9 382 3.7 3 0.2 
 Granular Salt 151 16.5 4633 44.8 362 30.0 
 CaCl2 missing \ \ 973 9.4 150 12.4 
 CaCl2 Rate 30 \ \ 706 6.8 194 16.1 
 CaCl2 Rate 40/50 \ \ 58 0.6   
 No Chemical  53 5.8 641 6.2 427 35.4 
TEMPERATURE (F)       
 <15 131 14.3 1071 10.3 569 47.2 
 15-25 224 24.5 3141 30.3 411 34.1 
 25-32 258 28.2 3285 31.7 165 13.7 
 32-34 74 8.1 899 8.7 54 4.5 
 34+ 227 24.8 1957 18.9 6 0.5 
WIND SPEED (mph)       
  >15 51 5.6 2056 19.9 162 13.4 
   12-15 61 6.7 1749 16.9 201 16.7 
   8-12 262 28.7 2695 26.0 335 27.8 
   2-8 488 53.4 3456 33.4 459 38.1 
   <2 52 5.7 397 3.8 48 4.0 
        
Total cases 914   10353   1205   
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Inevitably, while the data sets available were large, the study was constrained by a 

high percentage of missing data. The preliminary data analysis indicated that for the most 

of weather variables, the records are complete, but over 25% of the ASOS precipitation 

records were missing for most of the sites. Among maintenance records, variable liquid 

rate has the highest percentage of missing data among all the maintenance variables: 30% 

missing for BRINE RATE and 54% missing for liquid CaCl2 RATE. This high 

percentage of missing data makes the analysis of the impact of different chemical rate on 

performance almost impossible. For this reason, the method of missing data imputation 

was applied (Royston, 2004) to substitute the missing value for the values by matching 

on other variables. For example, if an observation (Oi) from Site ID: “AL2070” has a 

missing value for the variable BRINE RATE, we know that the application rate is very 

likely to be the same at the same site for similar weather scenarios. Thus if we found 

another observation (Oj) from the same site, under similar weather conditions 

(temperature, wind speed) it is reasonable to assume that the missing observation of 

chemical rate (Oi) is the same as the chemical rate recorded in Oj. If there are several 

observations with similar patterns, any missing values are replaced by the average of 

these known observations.  

A data validity check was also performed. The cross-tab of maintenance operation 

with the precipitation rate shows that in the anti-icing stage, there are still a few records 

indicating the precipitation rate is above 12 mm (0.47 inch). There might be two reasons 

for this discrepancy. First, the precipitation measures of ASOS/AWOS stations are not an 

accurate representation of the actual precipitation rate at the RWIS sites, even though the 

sites are within 10 miles distance of each other. Second, when the precipitation rate is 

recorded as 0, it does not necessarily mean that there is no precipitation. Thus 

OPERATION is used as a proxy for PRECIPITATION, with the understanding that 

ANTI-ICING and FROST-RUN both indicate winter maintenance operations performed 

before precipitation events. Phase I indicates that operations are during a precipitation 

event; and Phase II implies operations after precipitation has ended.  
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Results of CHAID 

Major split: Temperature and Operation 

Figure 5.1 presents the first split from the CHAID analysis. Node 0 is the root 

node containing the full sample, 16,148 cases. In the full sample, because the sample size 

is large enough, the frequencies, which can also be treated as probabilities, for the four 

different “ROAD SURFACE”4 conditions are as follows: 24.1% for SNOW/ICE, 29.5% 

for SLUSH, 33% for DRY, and 12.7% for WET.  

Moving down the tree, the total sample was branched into mutually exclusive 

subsets of data. One of the most significant predictors of road surface classifications is 

road surface temperature as shown in Figure 5.1. By default CHAID divided road surface 

temperature into approximately 8 categories of equal size. For each category, the 

probability of observing the road surface condition to be SNOW/ICE varies. Using the 

FHWA Manual on Anti-Icing Practice (1996), the following 5 categories were further 

defined: less or equal to 15°F, 15°to 25°F, 25°to 32°F, 32°to 34°F and above 34°F 

respectively, as shown in Figure 5.1. The highlighted category is the road surface 

condition category with the highest possibility for that subgroup. In other words, the road 

surface condition is most likely to be that category.  

Consistent with the previous research, the general trend is that as temperature 

increases, the probability of SNOW/ICE decreases, but comparing the temperature 

subgroup, less than or equal to 15°F with the temperature subgroup, 15°F to 25°F, higher 

percentages of SNOW/ICE and SLUSH are found in the higher temperature group. One 

reason is that very low road surface temperatures are almost always associated with lower 

precipitation rates, and as a result, there are lower percentages of undesirable road surface 

conditions (i.e. SNOW/ICE, SLUSH).  

                                                 
4 “CAPITALIZED” Letters indicate the variables used in CHAID  
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Node 0
Category % n

33.8 5450Dry
24.1 3887Snow/Ice
29.5 4761Slush
12.7 2048Wet

Total 100 .0 16146

Temperature(F)
Adj. P-value=0.000, Chi-square=8765.

737, df=12

Road Surface Classification

Node 1
Category % n

50.5 1166Dry
25.0 578Snow/Ice
24.5 566Slush

0.0 1Wet
Total 14.3 2311

<15

Node 2
Category % n

27.7 1352Dry
36.2 1769Snow/Ice
36.2 1768Slush

0.0 0Wet
Total 30.3 4889

15-25

Node 3
Category % n

25.6 1257Dry
29.8 1462Snow/Ice
43.5 2133Slush

1.1 54Wet
Total 30.4 4906

25-32

Node 4
Category % n

21.9 281Dry
5.7 73Snow/Ice

22.0 282Slush
50.4 645Wet

Total 7.9 1281

32-34

Node 5
Category % n

50.5 1394Dry
0.2 5Snow/Ice
0.4 12Slush

48.9 1348Wet
Total 17.1 2759

34+

Dry
Snow/Ice
Slush
Wet

 

Figure 5.1  CHAID diagram: first split by road surface temperature 

OPERATION is found to be another major factor that affects the road surface 

condition. One reason is that OPERATION is largely related to different road treatments, 

such as the amount of chemical solution; the frequency of plowing; and the use or not of 

abrasives. The regression tree branch for the temperature subgroup 25-32 F is shown in 

Figure 2. For the temperature subgroup 25°-32°F, the average possibility for SLUSH is 

43% and 29.8% for SNOW/ICE. As figure 5.2 indicates when NO OPERATION is 

performed, the possibility of SNOW/ICE is 51.1%, an over 50% increase above the 

average of the temperature subgroup, which shows that maintenance activities do have a 

significant effect on reducing undesirable road surface conditions (as is to be expected). It 

is also noticeable the percentages of DRY and SNOW/ICE categories vary considerably 

across the temperature groups and the chi-squared tests are all significant at 0.001 levels.  

Thus the interaction of SURFACE-TEMP and OPERATION must be considered. 
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Figure 5.1.  Segmentation by OPERATION for the subgroup temperature 25°– 32°F 

Important split: Traffic 

Traffic is shown to an important factor that influences road surface conditions 

across the various OPERATION stages.  An example of this is shown in Figure 5.3:  For 

the temperature subgroup 15° to 25°F, OPERATION is further split by AADT category. 

Traffic level is shown to be an important factor for the ANTI-ICING and PHASE II 

operation stages, but not for the PHASE I operation stage. The tree results tend to suggest 

that the higher the traffic volume, the more likely the road surface condition will be DRY 

than SNOW/ICE. 
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Figure 5.2  Segmentation by OPERATION and AADT category for the subgroup 
temperature 15°-25°F 

The regression tree result also suggests that effect of WIND depends on levels of 

WIND and TEMPERATURE; that the variable PLOW interacts with OPERATION and 

surface TEMPERATURE in its effect on the road surface condition; and at the same 

TEMPERATURE and WIND level, there appears to be an interaction between 

CHEMICAL and the PLOW stages for the PHASE I and PHASE II but not for ANTI-

ICING and FROST RUN subgroups.  

The estimation accuracy of the regression tree is presented in Table 5-2. The risk 

of estimation is quite high with a value of 0.31, indicating that using this tree alone to 

predict the road surface condition will result in only a 70% chance that the prediction is 

right. Clearly, this model is not optimal.  
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Table 5.2  Risk Estimate of the Classification Tree 

                      Actual 
Category 
Predicted Category Dry Other Wet Snow/Ice Chemical Total 
Dry 6499 413 1798 193 70 8973 
Wet 374 74 720 35 42 1245 
Snow/Ice W 356 81 8 698 142 1285 
Chemical W 45 26 4 56 148 279 
Total 7274 594 2530 982 402 11782 

 Risk Statistics      
 Risk Estimate  0.315481      
 SE of Risk Estimate  0.00428124  

 

Summary of CHAID findings  
To improve the prediction accuracy, the results from the tree structure were used 

to construct a multinomial logistic regression model. The results from CHAID helped to 

determine the most important factors and interactions that should be considered in the 

model, but also provided important information regarding segmentations that should be 

used to split the sample to build different models. After running QUEST, C&RT and 

other algorithms and comparing those results to CHAID trees, it was decided to develop 

separate models for the three different OPERATION stages, even though 

TEMPERATURE as a variable provides the most distinct split.  There are three reasons 

for this. First TEMPERATURE is a continuous variable, and splitting continuous 

predictor variables is associated with loss of information. Second, OPERATION interacts 

with several variables in its effect on the probability of road surface condition. For 

instance, the effect of WIND depends on different levels of WIND and TEMPERATURE 

and also different OPERATION stages. The effects of CHEMICAL and PLOW also 

depend on OPERATION. Thus to minimize the interactions that must be included, but 

still not bias the estimate, separate analyses were necessary for different OPERATION 

stages. Third and most importantly, while it is clear that PRECIPITATION will have a 

major impact on road surface condition, none of the tree result shows PRECIPITATION 
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as a significant predictor. The reason is the reliability of the precipitation record. The 

large percentage of zero value record (90.6%) and 7% missing data makes 

PRECIPITATION not a valid predictor. Thus OPERATION is needed as a rough proxy 

for precipitation (this will be discussed in detailed in the section of MLR results).  

Results of MLR 

Multinomial Logistic regressions were used to build a model to predict road 

surface conditions. In the model, not only the main effect of each influential factor was 

tested, but also the possible interactions identified in the CHAID were tested to determine 

statistical significance in the MLR procedure.  

The predictors includes TEMPERATURE, WIND SPEED, and non-linear 

component WIND2, BRINE RATE2 , and also interactions between TEMP and PLOW, 

TEMP and WIND, OPERATION and WIND, PLOW and CHEMICAL, and finally 

PLOW and WIND. The non-linear component variables – WIND2, BRINE RATE2 were 

added to the regression equation because the tree splits also tend to suggest that WIND 

and BRINE RATE is non-linearly related to RSC. Interactions were tested by adding the 

cross-product variables (multiplying the two variables of interest) to the regression model 

and testing whether the cross-product term is statistically significant. If it was significant, 

the interaction was further explored by creating separate models for each level of the 

categorical variable, or splitting different levels of the continuous variable. Also for the 

categorical variables, different regroupings of these variables are tested.  

With all the above considerations, the best performing models were selected as 

the final result.  Finally models for the three operation stages were constructed. The final 

models exhibited overall chi-square test significance at the 0.0001 level, indicating that 

the final models outperform the null model. In addition the Pearson and Deviance 

goodness-of-fit statistics were above 0.5, suggesting that the models adequately fit the 

data.  The pseudo r-square statistics (to a maximum of 1) of the model for PHASE I 

indicate that 56% of the variation is explained by the model (with the value of 0.56), and 

51% for ANTI-ICING, 64% for PHASE II respectively.  

The parameter estimate produced in the model quantifies the effect of each 

predictor. The results of the MLR for weather factors are shown in Table 5-3 for the 
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operation stage Phase I and ANTI-ICING; MLR results for Maintenance variables for 

Phase I  are shown in Table 5-4 and results for traffic variable are in Table 5-5 for Phase I 

and Phase II respectively. For the ease of interpretation, the estimated coefficients 

provided were in exponential form, sometimes termed the odds ratio. 

Odds ratio is the ratio of the odds of the probability of choosing one outcome 

category over the probability of choosing the reference category. If odds ratios are above 

1 and are significant at 0.05 level (noted as *) then the model indicates an increase in the 

likelihood of that response category (DRY, WET or SLUSH) with respect to the 

reference category (SNOW/ICE).  Odds ratios less than 1 indicate a decrease in the 

likelihood of that response category. The coefficients for the continuous predictors 

answer the question, for a one unit change in the predictor variable, what is the predicted 

proportional change in the percentages of DRY vs. the reference category – SNOW/ICE.  

Effect of Weather 

The developed models indicate that both TEMPERATURE and WIND have 

statistically significant and strong effect on the possibilities of  RSC, and gives the 

estimates of changes. Further, the results confirmed that effects of TEMPERATURE 

depend on OPERATIONS (PRECIPITATION); effects of WIND depend on levels of 

WIND and TEMPERATURE; effects of the interaction of TEMPERATURE and WIND 

changes with the types of OPERATION. Thus a three way interaction exists between 

WIND, TEMPERATURE, and OPERATION.  

Table 5.3  Effect of weather 

 DRY WET SLUSH 
PHASE I Estimate 95%CI Estimate 95%CI Estimate 95%CI 
Temperature 1.052* 1.043 1.060 1.296* 1.276 1.315 1.01* 1.003 1.018 
Wind 0.886* 0.851 0.923 0.948 0.868 1.036 0.982 0.948 1.019 
Wind*Wind 0.984* 0.978 0.989 1.009 0.999 1.020 0.994* 0.990 0.999 
Temperature*Wind 1.005* 1.003 1.007 1.003* 1.001 1.006 1.002* 1.000 1.003 
ANTI-ICING          
Temperature 0.917 0.848 1.007 2.558* 1.501 4.360 1.017 0.980 1.056 
Wind 0.929 0.857 1.008 0.074* 0.009 0.639 1.093* 1.015 1.177 
Wind*Wind 1.015* 1.000 1.031 0.507* 0.322 0.796 1.031* 1.016 1.047 
Temperature*Wind 0.983* 0.971 0.995 1.784* 1.164 2.734 1.031* 1.013 1.049 

* indicates odds ratio above 1 and are significant at 0.05 level 
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Effect of Temperature 

In Phase I as shown in Table 5-3 , the odds ratio for the temperature variable is 

1.052 for DRY, which suggests that for a one unit increase in the variable “SURFACE 

TEMPERATURE”, the odds of the “ROAD SURFACE” being “DRY” rather than 

“SNOW/ICE” are expected to increase by 1.052 . In other words, the road surface will be 

5.2% more likely to be DRY than SNOW/ICE, similarly, the road surface is 29.6% more 

likely to be WET, and 1 % more likely to be SLUSH than SNOW/ICE with each 

additional one unit increase in TEMPERATURE. As previous research indicated that 

temperature is positively related to the road surface conditions, the results confirms that 

the increase in temperature is associated with rapid increase in possibility of WET; 

moderately increase in DRY, very slightly increase in possibility of SLUSH, and overall 

decrease in the possibility of SNOW/ICE.  

It is also of interest to compare the coefficients for TEMPERATURE in PHASE I 

to those in ANTI-ICING. There are noticeable changes in the coefficients: In the ANTI-

ICING phase, TEMPERATURE is not a significant predictor to differentiate DRY from 

SNOW/ICE, or SLUSH from SNOW/ICE. However, TEMPERATURE has a statistically 

significant and strong effect on the possibility of WET. With one F increase in 

TEMPERATURE, the road surface is 156% ((2.558-1)*100%) more likely to be WET 

than SNOW/ICE. Since the coefficients are different across the OPERATION stages, it 

indicates that surface temperature has differential effect for “Before precipitation” and 

“During Precipitation”. Thus it confirms that TEMPERATURE interacts with 

PRECIPITATION in its effect on the possibilities of road surface conditions.  

Effect of WIND  

The MLR test results confirm that the effect of WIND on road surface conditions 

depends on levels of WIND and TEMPERATURE.  

For the ease of interpretation, first we use the effect of WIND at 

TEMPERATURE 26 o F in PHASE I as an example (the centered TEMPERATURE 

variable has the value of zero, because the average of TEMPERATURE is 26 oF). Then 

the total effect of wind can be expressed as:  
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The odds for the WIND variable are less than 1 and significant at 0.05 

level(marked with * in the table), which suggests as a general trend - with one MPH 

increase in WIND speed, the Road Surface condition will be less likely to be DRY than 

SNOW/ICE. The non-linear component WIND2 is also significant, which indicates that 

the downward trend is also non-linear, and thus the likelihood of DRY is nonlinearly 

related to WIND.  

In a similar manner to the variation with TEMPERATURE, the WIND variable is 

centered at 9 mph, and thus the non-linearity has a critical point at (9-0.886 = 8.1mph). It 

means when surface temperature is at 26°F, before wind speed reach 8.1 mph, with one 

MPH increase in wind speed, the possibility of DRY will increase slightly, about 

(0.86+0.984(WIND-9)) %. However, once WIND exceeds 8.1 mph, as wind speed 

increases further, the possibility of DRY as a road surface condition will decrease 

quickly.  

The multiplication term WIND*TEMPERATURE is significant at the 0.05 level. 

It confirms that WIND and TEMPERATURE do interact in their effect on the possibility 

of the road surface condition. For example, during PHASE I operations, at a surface 

temperature of 15°F, with one mph increase in wind speed, the possibility of DRY would 

be further reduced by (1.005^11)*100% -1=5.6% compared to the reduction in likelihood 

at a surface temperature of 26°F. This result confirms that wind is a more severe problem 

at lower temperatures. This relationship is shown in Figure 5.4 below. 
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Figure 5.3.  Effect of Wind on RSC depends on levels of Wind and temperature 

The odds ratio for the TEMP*WIND variable changes with the OPERATION 

variable: 1.005* in Phase I, compared with 0.983 in anti-icing mode. This suggests that 

the effect of the interaction of TEMP and WIND changes with the type of OPERATION. 

This strongly suggests a three way interaction between TEMPERATURE, WIND and 

PRECIPITATION.   

Effect of Maintenance 

In the same model, when the effects of weather variables have been controlled, 

the effects of maintenance variables were quantified. The likelihood-ratio tests confirm 

that PLOW, CHEMICAL and the interaction between them are statistically significant in 

differentiating the likelihood of the road surface conditions being SNOW/ICE in PHASE 

I and PHASE II. To further explore these interactions, different models were developed 

for the PLOW or NOT PLOW groups.  
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Table 5.4  Effect of maintenance at three operations stages  

PHASE I OPERATION  Dry Wet Slush 
  Plow (Yes/No) No Yes No Yes No Yes 
Traffic AADT<5000 vs. AADT<5000 2.032* 0.656* 5.255* 1.558* 3.653* 1.543*
 Volume 1.001* 1 1.001* 1 1.001* 0.999*
Chemical 
(a) 

Brine-Rate 1.038* 0.966* 1.005 0.977 1.015 0.972*
Brine-Rate*Brine-Rate 0.993* 1.004* 0.998 0.998* 0.999 1 
Temperature*Brine-Rate 0.993* 1.001 0.995 1.006* 1.002* 1.004*

Chemical 
(b) 
  

Liquid CaCl2 vs. Granular Salt 0.37* 1.38* 0.17 0.84 0.59* 0.88 
Liqiuid NaCl vs. Granular Salt 0.87 0.92 0.08 0.53 1.04 1.16 
Liquid CaCl2 * Temp_Cent 0.99 1.11* 1.35 1.02 1.03 1.06* 
Liqiuid NaCl  * Temp_Cent 1.01 0.97* 1.86* 1.23 0.97* 1.01 

* indicates odds ratio above 1 and are significant at 0.05 level 
 

Effect of Plow  

In PHASE I, the likelihood ratio tests show that PLOW is a significant predictor 

of the road surface condition probabilities. The odds for the PLOW variable suggest that 

if there is no PLOW action during the previous hour, the road surface is 53% less likely 

to be DRY than if PLOW action is performed, and 119% more likely to be SLUSH than 

if PLOW action is performed after other variables are controlled for. It is reasonable to 

get these results, because plowing action will easily remove packed snow or slush from 

road. After the mechanical removal, if there is no more precipitation, the road surface is 

more likely to be dry; however, there are situations when the temperature is low, after the 

plowing of snow, when a very thin layer of snow that is left after maintenance will 

change to ice.  

When chemical is applied, but plowing action is not performed, the melted snow 

will take the form of slush and thus there is almost no possibility of road surface being 

dry under these operational conditions.   

To further explore these interactions, separate models were developed for the two 

groups of data: PLOW or PLOW_NOT. The CHEMICAL effect was tested based on this 

split. As expected, the odds ratios are different for these two groups (plow vs. no plow). 
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This indicates that brine rate has different effects on road surface condition for plow and 

non-plow conditions. These different effects mean that the regression coefficients 

associated with the possibility of the road being snow/ice will be different for the two 

groups if separate regressions are conducted for plow and non-plow conditions.  

Effect of Chemical 

After checking with the frequency of each variable, it was determined that brine 

rates should be re-grouped as brine rate less than 50 gallons per lane mile, and 50 or more 

gallons per lane mile. Therefore there are four categories for the variable CHEMICAL: 

Granular Salt, and CaCl2 solution, Brine less than 50 and Brine 50+.  For the variable 

CHEMICAL, GRANULAR SALT is chosen as the comparison group(sometimes termed 

as reference group). For the reason that across the OPERATION stage, GRANULAR 

SALT has a relatively large sample size for each subgroup thus making the comparison 

valid. Because the probability of the reference group is the denominator for calculating 

the odds ratio, if any of the other categories were used as the reference group, it is 

possible that there would be no observations for that category, making the denominator 

zero and the comparison invalid.  

Compared with the roads that were treated with Dry Salt, those that received no 

chemical treatment were significant less likely to have slushy road surface conditions 

than SNOW/ICE and those with brine treatment were significantly more likely to have 

slushy than snow/ice. Alternatively, the model can isolate only those instances in which 

BRINE was used. The exact application rate of Brine is recorded, so it can be treated as a 

continuous variable.  

BRINE_RATE was found to be significant. For example, the road treated with an 

brine application rate of lower than 30 gallons/lane mile was significantly more likely to 

be DRY than SNOW/ICE covered, and those that received a BRINE_RATE of 50 gallons 

per lane mile and over were significantly less likely to be Dry than snow/Ice compared 

with the roads treated with 40 gallons/lane mile. A one unit increase in LIQUID_RATE 

results in1.5 times more likelihood of SLUSH than SNOW/ICE. It is worth nothing here 

that similar to the interaction between VOLUME and PLOW, and between PLOW and 

CHEMICAL, there is an interaction between BRINE RATE and PLOW, as well as 
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BRINE RATE with VOLUME. For example, after all the other variables are controlled, a 

higher BRINE_RATE and high traffic volume tend to result in a slight increase in the 

probability of SNOW/ICE rather than SLUSH. Also, when there is heavy traffic volume, 

as liquid rate increases, together with heavier traffic volume on the road, the ROAD 

SURFACE is more likely to be DRY than SNOW/ICE.  

Effect of Traffic 

The effect of TRAFFIC has shown to be interact with PLOW and OPERATION. 

As shown in table 5-6. During precipitation (in Phase I), when PLOW is not used, heavily 

traveled roads would be much more likely to be Dry (203% times likely), Wet (525%), or 

Slush (365%), compared with a low traffic road.  

In comparison, when PLOW has occurred in the previous hour, the road surface 

condition of a heavily traveled road is more likely to be Wet (150%) and Slush (154%) 

rather than Snow/Ice, but also has a higher risk of Snow/Ice (36%) when compared with a 

low volume road  

This suggests that generally the heavily traveled roads have better road surface 

conditions at the same weather condition and maintenance operations than the low traffic 

road. However, when there is a low amount of snow on the road (no precipitation or 

during precipitation and after plowing), the heavily traveled road has a higher risk of 

Snow/Ice rather than dry compare to the low traffic road.  

Table 5.5  Effect of traffic volume 

AADT>5000 vs. AADT<5000 Dry  Wet Slush 
Phase I 2.032* 0.656* 5.255* 1.558* 3.653* 1.543* 
Phase II 2.452* 0.259* / / 1.08 0.665 

Prediction Ability 

Using the models developed above, it is possible to estimate each of the road 

surface classifications’ probability (see Table 5.6). With the input of the previous hours’ 

weather information and maintenance procedures, the models output the probability of 
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each of the four types of road surface conditions for the next hour. Conventionally, for 

each case, the predicted road surface type is assigned as the category with the highest 

model-predicted probability. For instance, during precipitation (at Phase I operation 

stage) when the surface temperature is 27°F, wind speed is 12.8 mph, and if plowing is 

not performed, the next hours’ road surface probability of being dry is 46%, being wet is 

7% and being snow/ice is 30%. In this circumstance, the model prediction is given as 

indicating that the road surface is more likely to be Dry than anything else.  

Table 5.6  Prediction results of maintenance actions based on the MLR model 

Operation Anti-
Icing 

Anti-
Icing Phase I Phase I Phase I Phase I 

Phase 
II 

Phase 
II 

Surface Temp (°F) 9.8 26.9 10 14 11.7 36.8 10 14.8 
Wind Speed (Mph) 20 12.8 16 14.7 4.8 13.6 9.8 6 
Plow(Yes/No) No No Yes Yes Yes Yes No No 
Chemical Type  

Brine Brine Salt 
No 

Chemical Brine Brine Salt Salt 
Liquid 
Rate(Kg/Lane*km) 40 60 / / 50 50 / / 
AADT <=5000 >5000 <=5000 <=5000 >=5000 >=5000 <=5000 <=5000
Road Class 1 1 2 2 1 1 2 2 
Volume (vehicle/hr) 150 670 91 65 433 1053 83 115 

Estimated 
RSC 
Probability  

Dry 27.91% 46.25% 4.12% 11.31% 41.04% 36.18% 47.53% 33.34% 
Wet 1.61% 7.10% 0.08% 0.47% 0.01% 36.72% 0.00% 0.00% 
Snow/Ice 40.27% 29.64% 43.04% 30.59% 25.34% 8.11% 23.96% 21.61% 
Slush 30.20% 17.01% 52.76% 57.63% 33.61% 18.99% 28.51% 45.04% 

Predicted RSC Snow/Ice Dry Slush Slush Dry Wet Dry Slush 
Observed RSC Snow/Ice Dry Slush Snow/Ice Dry Wet Dry Slush 

Road Class: 1. Interstate; 2. Primary 
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6. EFFECTS OF WEATHER AND MAINTENANCE ON MOBILITY – 

STRUCTURAL EQUATION MODELING 

A. Introduction 

 

Previous literatures do suggest that weather factors are all associated with 

different levels of reduction in speed and volume (See Chapter Two for more details). 

However, there are no studies that quantify the influence of types and levels of 

maintenance methods on speed and volume. Lack of studies in the area of winter 

highway maintenance make the evaluation of maintenance outcome obscure to road users 

and maintenance agencies, and complicates the process of meeting the goals of mobility. 

Thus the purpose of this Chapter is to quantify the relationship between weather, 

maintenance and traffic: how a variety of weather conditions and maintenance operations 

directly and indirectly influence traffic volume and speed. In particular, this chapter 

addresses the question of whether effects of weather and maintenance in nature are 

different across different road characters and traffic conditions: Interstate highways and 

primary roads with different levels of AADT and speed limit.  

While weather and maintenance actions have a clear effect on road surface 

conditions as results in Chapter 5 indicated, it is expected that they also have indirect 

effects on mobility through the road surface conditions, as well as direct effects as 

represent graphically in Figure 6-1. An example of the direct effect of winter 

maintenance on mobility is that plowing the road will tend to slow down traffic on an 

interstate highway, since plows do not operate at typical interstate speeds. Examples of 

the direct effects of weather on traveling speed are: Drivers may adjust to the undesirable 

weather conditions by reducing their driving speed, such as under conditions when 

precipitation reduces visibility, or when strong wind reduces vehicle stability.  However, 

in addition to these direct effects of weather and maintenance on vehicle speed, it is 

necessary to consider the indirect benefits of maintenance actions on mobility through 
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improved road surface conditions. In other words, by plowing and applying chemicals 

and abrasives, the road surface condition will likely be improved. This improved 

condition will likely result in increased mobility.  

 

Figure 6.1 . Weather and maintenance effects on mobility 

 

By using Structural Equation Modeling (SEM) the direct and indirect effects of 

weather and maintenance actions on mobility have been quantified in this chapter. The 

model uses road surface condition as an intermediate variable. Because the mediator is 

the categorical variable, and various maintenance variables are categorical, a particular 

type of SEM, termed Categorical Variable Methodology (CVM), was employed in 

dealing with the non-normal and ordinal data in this model. Also multiple group analysis 

in SEM was applied to determine whether the nature of influences of weather and 

maintenance on mobility is different across different road characteristics and traffic 

specifications.  

Understanding the effects of winter maintenance operations using structural 

equation models could offer significant advantages for winter highway maintenance 

decision making. For instance, with understanding of how performing plowing and 
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applying chemicals can increase speed during the hour of a winter precipitation, decision 

makes can better deploy maintenance operations according to pre-designed mobility 

goals. Also comparison of the effects between different highway groups could assist 

maintenance decision makers to prioritize the maintenance routes under the resource 

constraints that are faced.  

Method  

The methods used to develop the structural equation modeling for the study are 

presented in Appendix B. 

Result and Analysis 

 

For the illustration, we first considered a sub-set of the data consisting of traffic 

on the Non-peak hour during the day. Also to quantify the maintenance effect, the 

measure of speed and volume were taken after the hour that maintenance operations were 

performed. As explained in the method section, the underlying latent continuous 

variables were assumed for the categorical variables used in the analysis and for each 

latent continuous variable, the thresholds for entering categories were generated. PRELIS 

was used to compute the polychoric and asymptotic covariance matrices. Then Weighted 

Least Squares (WLS) were used to estimate the fit of the model. The structure model 

provides an overall acceptable fit as indicated by various fit indices: the RMSA is 0.062 

RMSEA (The root mean square error of approximation) less or equal to 0.06 indicates an 

acceptable fit.) The NNFI (Non-normed Fit Index) and IFI (Incremental fit index) for this 

model is 0.951 and 0.972 respectively. (For both NNFI and IFI values above 0.9 indicate 

a good fit.). Further, even the chi-square test is significant (Chi-square = 33.96, df= 7, P-

value= 0.0002), which is reasonable since a very large sample was used to fit the model 

(sample size more than 1,769 for each tested subgroup), which created excess power and 

resulted in easily detectable differences between the observed and implied covariance 

matrix. 

Given that the model fit the data well, as described above, as a first step, the 

relative importance of variables were compared. Because the coefficient estimates of 



 

68 
 

various weather and maintenance measurement are affected by the different scales being 

used, the standardized path coefficient estimates were used to facilitate the comparison, 

as presented in Figure 6-2. The standardized coefficient can be interpreted as, for a 

standard deviation increase in the predictor variable, the increase in the response 

variable’s standard deviation is the same as the estimated coefficient.  

Chi-square = 33.96, df= 7, P-value= 0.0002, RMSEA=0.082 

 

Figure 6.2.  Standardized solution of the structural model of effects of weather and 
maintenance on traffic mobility  

Strength of Influence of the Variables 

 
First, the statistically significant correlations between various maintenance and 

weather variables were confirmed. Not surprisingly, we see that the influences of PLOW 

action (-0.11) and CHEMICAL application (-0.14) on road surface conditions are much 

larger than the influence of SAND application (-0.02). Also road surface temperature      

(-0.10) has as much greater influence on road surface condition than the influence of 

wind speed (0.01). For example, for a unit change, a standard deviation decrease in road 
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surface temperature produced a roughly 10% standard deviation decrease in road surface 

slipperiness during a winter precipitation.  

Direct and Indirect Relationships 

 

Further, the indirect effect and the total effect can be derived from the path 

coefficients. For instance, the indirect effect of TEMP on SPEED intermediated through 

road surface condition is 0.187 = (-0.10)*(-1.87). It means a unit increase in road surface 

temperature is associated with 19% standard deviation increase in traveling speed. Since 

TEMP has no direct effect on SPEED, thus the total effect of TEMP on SPEED is the 

same as the indirect effect. Similarly, the indirect effect of PLOW on SPEED is 0.2057 = 

(-0.11)*(-1.87), and the direct effect of PLOW on SPEED is -0.15. The total effect of 

PLOW on SPEED is the sum of the direct and indirect effect, which is 0.0557. Similarly 

the total effect of CHEMICAL is 0.092. Thus it is concluded that even though during the 

hour that the maintenance operations are performed, vehicles driving behind trucks 

probably are slowed down about 15%~17% standard deviation of speed, the improved 

road surface friction after the maintenance operation more than compensated for the 

temporary reduction in speed.  

Associations between Maintenance and Weather Variables 

 

Considering associations between maintenance methods and weather factors, the 

correlation between the maintenance and weather variables is freed, to allow them to be 

correlated. As was speculated earlier, there are different levels of association between 

maintenance and weather factors. Notably, the associations between CHEMICAL and 

PLOW (-0.45), between CHEMICAL and TEMP (-0.25), between PLOW and TEMP 

(0.27) are quite strong compared to associations between other variables. The sign of the 

associations indicate that when large amount of chemical is applied, it is less likely that 

an ice-blade is used at the same time; similarly, when the road surface temperature is 

higher, it is less likely that large amount of chemical is applied.  
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Multiple Groups 

 

In order to compare if the nature of influence is different across groups, subgroups 

of data were created using the variables Operational stage, Time of the day(Dawn&Night, 

Daytime, Peakhour), ROAD CLASS (Interstate / Primary), AADT (10k+, 5k-10k, 1k-5k, 

<1k), and SPEED LIMIT (55/65). These classifications make different subgroups for 

comparison. The following charts shown in Figure 0-3 give graphic displays of the 

interrelationships between those variables. The different lines in the charts represent the 

four maintenance operations. “Other” indicates no operation performed, “Before” 

indicates the pro-active anti-icing operational stage, “During” indicates during a snow 

storm, and “After” indicates after the snow storm.  
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Figure 6-3:  Differential effects of storm events on speed by AADT, Road Class, Speed 

limit during different time of the day.  
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In addition, the equation and Table 6-1 presents part of the comparison results.  

Traffic speed = a + b* WINDSPEED + c*Road Surface + d*Plow + 

e*CHEMICAL 

* Traffic speed in miles/ h 

* Wind speed is in miles/h 

* Chemical is the measure of Brine rate in lbs/lane-mile 

Table 6.1  Estimated coefficients for subgroups 

 Primary  
< 1k, 55mph 

Primary 
1-5k, 65mph 

Interstate 
5-10k, 65mph 

Interstate  
10k+,  55mph 

a  56.13 69.07 67.41 54.67 
b  -0.29 -0.28 -0.19 -0.19 

c  

Dry 5.21 6.49 4.68 4.49 
Wet 4.22 5.23 2.72 2.58 
Snow/Ice(1) 0.00 0.00 0.00 0.00 
Chemical(2) 0.00 0.00 0.00 0.00 

d  [Plowing=0] -3.03 -1.82 -2.67 -2.83 
[Plowing=1] (3) 0.00 0.00 0.00 0.00 

e  0.015 0.018 0.014 -0.016 
R Square/Adjusted R2  0.658/0.629 0.442/0.416 0.566/0.515 0.430/0.402 

The comparison group is (2) With Chemical, but most of the chi-square tests do not show that (1) Snow/Ice 
condition is statistically significant from the With Chemical condition. Thus both categories have the 
number of zero. The number in Dry, can be interpreted as compare the Dry surface condition to With 
Chemical condition,  

 

Parameter a is the intercept, which means the average traveling speed for each 

type of highway when no maintenance actions were performed. It is noticeable that the 

Interstate highways with 10k+ traffic volume have the biggest speed reduction. During a 

typical winter storm, the driving speed reduced below the speed limit for this type of 

highway, which it is not the case for other type of highway (The average traveling speed 
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for most highways are roughly 5~6 mph above the speed limit.) The loss of mobility can 

in general be roughly estimated by the value of parameter a.  

Parameter b is the estimate coefficient for WIND. We noticed that drivers on 

interstate highways are not reducing their traveling speed (a 0.19 mph reduction in speed 

when wind increases 1 mph) as much as when they travel on the primary roads ( a 0.28~ 

0.29 mph reduction in speed when wind increases 1 mph ). The reason for this needs to 

be further investigated. 

Parameter c can be interpreted as the influences of the road surface condition. It is 

clearly evident that as the road surface condition worsened, the traffic speed decreased. 

As indicated in parameter c, we can see compared to dry road surface conditions, the 

surface with snow or ice reduces the speed by 4~6 miles/h, and the speed reduction varies 

depending on different subgroups.  

Parameters d and e combined show the effect of PLOW. We found when PLOW 

is used in the previous hour, the traveling speed are likely to increase 2 to 3 mph during 

the next hour, if plowing does not occur during the next hour  

Parameter e is the effect of CHEMICAL. However, we found the chemical does 

not have a consistent effect for each subgroup (the effects are negative for interstate 

highways with 10k+, while the effects are positive for other highways), although 

chemical application rate does have a positive effect on speed when all data are analyzed 

as a whole. One cause for this result might be that due to a large percentage of missing 

data in precipitation and visibility measurement, variable PRECIPITATION and 

VISIBILITY are not included in the model, while these two variables both appear to be 

influential factors upon driving speed and travel decision based on the existing literature. 

Thus there might be a situation that even for the same storm, higher application rates 

would be more likely to associate with better maintenance results. However, when we 

have no precipitation data to control the severity of the storm, the higher application rate 

might indicate a more severe storm condition (with higher precipitation rate). Because the 

effect of precipitation can not be accounted for in the model, this uncertainty of effects 

occurs.  
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For this reason, the estimated coefficients may not precisely reflect the structural 

relationships being tested. Also several important interaction effects and reciprocal 

relationships between traffic and road surface conditions need to be further explored in 

the future. However, this method has been demonstrated to be able to identify the causal 

effects of maintenance and weather. In the future, when reliable precipitation data can be 

included in the model, the performance of the model will likely to improve.  

In summary, in this chapter explanatory models are used to estimate how the 

types and levels of maintenance actions together with weather factors effect changes in 

speed and volume. We also estimated how road surface condition impacts speed and 

volume and what is the strength of these effects. In particular, we estimated if the nature 

of these effects differs across different road classifications. The challenge of the chapter 

is that the joint effects of winter maintenance and weather conditions normally are not 

easily separable. The results will be used in forming performance goals related to speed 

reductions. 

CHAPTER 7 

CRASH ANALYSIS DURING ADVERSE WEATHER 

A. Introduction 

The purpose of this chapter is to establish the contribution of various road 

attributes, together with weather conditions, and maintenance operations, to the 

possibility of crash involvement and the severity of crashes. In the absence of 

comprehensive theories of how winter maintenance operations influence on safety, the 

structure of the influence of maintenance on safety was first hypothesized. Then, Multiple 

Classification Analysis (MCA) was applied to give the estimates.  

While weather and maintenance actions have a clear (and quantifiable, see above 

chapter 5 and chapter 6) effect on mobility, in terms of traveling speed and traffic 

volume, they can also have indirect effects on safety as represent graphically in Figure 7-

1. On the one hand, it is expected that adverse weather reduces vehicle stability (for 

example, strong winds create particular difficulties for high-sided vehicles) and 
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controllability (by way of reduced pavement friction, should ice form on the road 

surface). Those suboptimal physical conditions are all associated with an increased risk 

of crashes and with different levels of increase in crash severities. At the same time, the 

effects of maintenance cannot be neglected. Maintenance is performed to increase the 

friction on the road surface (an icy road surface exhibits much lower friction when 

compared to dry surface conditions). Previous research has shown that the reduction in 

road surface friction is associated with an increase in crash risk; one reason for this is that 

low friction is associated with a longer stopping distance. 

 

Figure 7.1.  Weather and road surface conditions’ direct effects on safety 

On the other hand, undesirable weather conditions are associated with reduced 

traffic demand (traffic volume) on the road (Keay, 2005), and the reduced exposure is 

related to a smaller number of crashes. In addition, experienced drivers may adjust to the 

undesirable weather or road surface conditions by reducing their driving speed and being 

more cautious. These adjustments will depend on drivers’ experience in driving during 

adverse weather conditions. In summary, because of trip cancellation and drivers’ 

adjustments to the adverse weather conditions, we expect that adverse weather conditions 

and the corresponding maintenance operations may be related to both a reduced number 

of accidents and a reduction in the severity of crashes as illustrated in Figure 7-2.  
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Figure 7.2.  Weather and maintenance indirect effect through speed and volume 

In this chapter, two separate analyses have been conducted: a crash probability 

analysis and a crash severity analysis. The relationships mentioned above are estimated to 

provide important information to road users, and to allow maintenance managers to make 

effective assessments5. The results may allow managers to understand how maintenance 

operations are related to performance goals, which may lead to further improvement in 

operations.  

B. Method 

 
The methodology used to develop the models of crash probability and crash 

severity is described in detail in Appendix C. 

C Results 

Crash probability  

Table 7-1 summarizes the results of the four preliminary MCA’s. Because of the 0 

or 1 coding of the dependent variables, the unadjusted and adjusted mean scores are 

                                                 
5 Transportation research circular E-C063: snow removal and ice control technology pp 84-94 
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equivalent to the proportion of the hours in each category during which an injury crash 

happened, and the proportion of the hours during which a PDO happened, or in another 

words, the probability of having an injury or a PDO. Eta and Beta are produced to 

evaluate the relative importance of the variables contributing to crashes.  

Table 7-1  Preliminary MCA results 

 INDEPENDENT  
Injury  PDO  
Eta Beta Eta Beta 

MCA-1 AADT 0.018* 0.095* 0.042* 0.048* 
  Road Class 0.022* 0.104* 0.028* 0.048* 
  Speed Limit 0.018 0 0.037 0.018 
    R R Squared R R Squared 
    0.055 0.003 0.056 0.003 
MCA-2 Maintenance 0.006 0.007 0.015 0.001 
  Plowing 0.031* 0.03* 0.010 0.008 
  Sanding 0.009 0.004 0.002 0.004 
  Chemical 0.008 0.009 0.020 0.020* 
   R R Squared R R Squared 
    0.032 0.001 0.022 0.000 
MCA-3 Snow 0.018 0.022 0.040 0.037* 
 Visibility 0.017 0.028* 0.026 0.016 
  Temperature(F) 0.026 0.029* 0.040 0.038* 
  Wind Speed(mph) 0.027 0.027* 0.022 0.020 
   R R Squared R R Squared 
    0.048 0.002 0.061 0.004 
MCA-4 Volume  0.024* 0.027* 0.019* 0.028* 
  Speed Variance 0.022* 0.029* 0.038* 0.05* 
  Speed  0.016 0.018 0.019 0.021 
  RSC 0.028* 0.026* 0.042* 0.039* 
  Day 0.002 0.001 0.024 0.014 
  Peak Hour 0.008 0.008 0.019 0.014 
    R R Squared R R Squared 
    0.047 0.002 0.067 0.004 

*p<0.005 
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Eta measures the strength of relationship between a dependent variable and a predictor 

variable considered alone. Beta measures the strength of relationship between a 

dependent variable and a predictor while holding constant the effects of all other 

predictors included in this analysis. R and R squared indicate the proportion of variance 

in a dependent variable explained by all predictors jointly. 
 

Table 7-2 presents the MCA results of probability of injury involvement. On 

average during the adverse weather conditions the probability of having an injury is 

1.05%, driving on interstate or primary highways. Together 11 variables account for 11% 

of the variance in probability of injury involvement. Two sets of coefficients are 

provided: unadjusted and adjusted deviations from the grand mean on the dependent 

variable. The unadjusted gives deviations from the grand mean when the variable was 

considered alone, and the adjusted gives deviations from the grand mean when the 

confounding effects of all other variables in the table are taken into account. A positive 

coefficient indicates that the subgroup has an injury rate above the overall average in the 

sample, and a negative coefficient indicates a lower rate than the average.  
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Table 7.2  Probability of injury and PDO involvement during adverse weather conditions 

      INJURY  PDO 

      
Deviation from Grand 
Mean (0.00105) 

Deviation from Grand 
Mean (0.00306) 

    N Unadjusted Adjusted Unadjusted Adjusted 
Road Class Primary 6308 -0.001 -0.0027 -0.0015 -0.0022 
  Interstate 3248 0.002 0.0053 0.0028 0.0042 
AADT <1K 1402 -0.001 0.0025 -0.0027 0.0015 
  1-5K 5964 0.0003 0.0014 0.0003 0.0013 
  5-10K 2190 -0.0001 -0.0054 0.0009 -0.0044 
SNOW before 2557 -0.001 -0.0016 -0.0027 -0.0025 
  during 6228 0.0006 0.001 0.0015 0.0010 
  after 771 -0.001 -0.0016 -0.0027 -0.0018 
Temperature(F) <15 1566 -0.001 -0.0009 -0.0027 -0.0009 
  15-25 2822 -0.001 -0.0011 -0.0020 -0.0017 
  25-32 3092 0.0002 0.0001 0.0005 0.0008 
  32+ 2076 0.0018 0.002 0.0040 0.0017 
Wind Speed(mph) >15 1498 0.0003 0.0002 0.0013 0.0000 
  12-15 1372 0.0019 0.0017 0.0017 0.0009 
  8-12 2256 -0.001 -0.0009 0.0008 0.0009 
  2-8 3932 -0.0005 -0.0005 -0.0012 -0.0006 
  <2 498 0.003 0.0033 -0.0027 -0.0021 
VisiCatg <2mph 1444 -0.001 -0.0015 0.0028 0.0012 
  2-7mph 3346 -0.0004 -0.0008 0.0015 0.0005 
  7-10 mph 4766 0.0006 0.001 -0.0019 -0.0007 
RWIS_S0Cond Dry 3008 0.0009 0.0003 -0.0014 -0.0008 
  Wet 1106 0.0008 -0.0015 0.0063 0.0030 
  Snow/Ice 2522 -0.0003 0.0008 -0.0027 -0.0016 
  Slush 2920 -0.001 -0.0004 0.0014 0.0010 
Volume (Banded) < 83 4070 -0.0008 -0.0006 -0.0008 -0.0004 

84- 300 4053 0.0009 0.001 0.0007 0.0007 
301-797 1416 -0.0003 -0.0013 0.0001 -0.0008 
>797 17 -0.001 -0.0013 -0.0027 -0.0030 

SpeedVarCatg <40 3832 -0.0005 0 -0.0014 -0.0004 
  40-60 2141 -0.0006 -0.0007 0.0005 0.0004 
  60-100 1725 0.0013 0.0004 -0.0010 -0.0018 
  >100 1858 0.0006 0.0004 0.0032 0.0020 



 

80 
 

Road attributes  

 

Road attribute variables were used as the control variable. As table 7-2 indicates 

the probabilities of both injury and PDO involvements are higher on Interstate highways 

than primary roads. Also highways with lower AADT and higher speed limit tend to have 

higher crash probabilities. This result corroborates an earlier study by Maze (2004) 

examining crash data in the state of Iowa. 

In Iowa, Rural Interstate highways may have a speed limit of 65 mph and receive 

Level A winter maintenance service, and Primary highways may have a speed limit of 55 

when AADT is no more than 5K and receive level B or C winter maintenance service 

(See table 7-3 for more basic site information). Thus, speed limit is eliminated as a 

control variable in the final model, because it is highly correlated with road classification 

and AADT, and it a weaker predictor than the other two (as indicated by the beta values 

in table 7-1).  

Table 7.3  Road attributes of selected highways 

Road 
Class 

Speed 
Limit AADT 

Winter maintenance 
Level of Service 

Primary 55 <IK C 
  1-5K B 
 65 1-5K B 
  5-10K B 
Interstate 65 1-5K A 
  5-10K A 
  10K+ A 
 55 10K+ A 

 

In addition CHAID analysis was performed to assist in the comparison of crashes 

that happened under normal conditions with crashes during adverse weather conditions.  
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Figure 7.3.  CHAID diagram of crash during normal driving conditions by AADT, 
ROAD CLASS, and speed limit.  

For figure 7.3, it is notable that no crashes happened on interstate highways with 

AADT above 10K (including samples from 2 rural interstate and 1 municipal interstate). 

Compared with primary highways, interstate highways are likely to have more crashes 

and when crashes happened, they tended to be more severe.  

Because AADT emerges as the most influential factor to crash probabilities, 

another MCA was conducted to compare the crash probabilities during normal driving 

conditions to adverse driving conditions.  

0 no crash  

1 Fatality 

2 Major injury 

 3 Minor injury 

4 Possible/Unknown, 

 5 Property Damage Only 
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Table 7.4  Probability of Injuries and PDOs during normal driving conditions 

      INJURY  PDO 

      
Deviation from Grand 
Mean (0.00105) 

Deviation from Grand 
Mean (0.00306) 

    N Unadjusted Adjusted Unadjusted Adjusted 
Road Class Primary 145,805 -0.0001 -0.0003 0.0001 -0.0019 
  Interstate 194,918 0.0001 0.0002 -0.0001 0.0014 
AADT <1K 34,674 -0.0001 0.0001 0.0023 0.0050 
 1-5K 109,424 0.0001 0.0002 0.0010 0.0022 
  5-10K 105,297 0.0001 0.0000 -0.0001 -0.0007 
  10K+ 91,328 -0.0002 -0.0003 -0.0020 -0.0037 

 

Comparing the results in Table 7-2 and Table 7-4, it is further concluded that on 

average the probability of experiencing a crash with injuries increased during adverse 

weather conditions (the mean for injuries increased from 0.0002 in normal to 0.00105 in 

adverse weather), while at the same time the probability of having PDOs increased 

slightly from 0.002 during normal weather to 0.003 during adverse weather.  

Maintenance operations 

 

MCA -2 examines the relationships of winter maintenance operations to crash 

possibilities as shown in table 7-1. The etas and betas indicate that Plowing emerges as 

the strongest predictor of injury and chemical treatment seems to be related to PDO 

probabilities. However, the results can be accounted for by the fact that these two 

maintenance operational variables are inter-correlated with weather factors and road 

surface conditions (RSC) as shown in chapter 6.  When the weather factors and RSC are 

included in the model, none of the maintenance variables (Plowing or Chemical) were 

shown to be significant predictors of crash probability. Because maintenance operational 

variables do not directly contribute to crash probabilities, they are not shown in Table  

7-2.  



 

83 
 

Weather factors  

 

MCA-3 in table 7-1 examines the relationships of weather factors to crash 

possibilities. Temperature appears to be the most influential factor on crash likelihood, 

more so than visibility and wind speed. The second best predictor is the variable Snow, 

which describes whether the hour being considered is before, during or after a snow 

storm. As table 7-2 indicates for those crashes that happened during adverse weather 

conditions, the probability of having a crash are much higher during a snow storm as 

opposed to before or after the snow storm.  

Prevailing conditions 

 

MCA-4 examines the relationships of prevailing conditions to crash possibilities. 

Hourly traffic volume and speed variation are both shown to have relatively strong 

relationships with Injury crashes and PDOs. Comparatively, the average speed is a 

weaker predictor. For further analysis, speed is eliminated as the control variable, 

because it highly correlates with speed variance (0.87) and modestly with hourly volume 

(0.42), and it is a weaker predictor than the other two. What is also found is that RSC 

emerges as a strong predictor while neither Day nor Peak-Hour is a strong predictor when 

the effects of the other variables are held constant.  

As shown in table 7-2 crash probability increases steadily with speed variance. 

The higher the speed variance is, the higher the probability of getting involved in injuries 

or PDOs.  This result is in accord with the findings of Garber and Gadiraju ( 1990) and 

Golob and Recker (2003).   

Crash severity analysis 

 

All the crash records during the 3 year study period were then used for a crash 

severity analysis. Two types of crash severity index were created. One crash severity 

index is created by assigning 1 to Fatality, 2 to Major injury, 3 to Minor injury, 4 to 
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Possible/Unknown, 5 to Property Damage Only. The other index was created by 

assigning money values to different crash types, based on FHWA “Highway safety 

manual”, (3,000,000 for Fatal, 208,000 for Type A Injury, 42,000 for Type B Injury, 

22,000 for Type C Injury and 2,300 for PDO). The weighted severity index was created 

by calculating the total costs during a crash event and the money value was scaled from 1 

to 100. As in the crash probability analysis above, MCA is still the primary method of 

analysis. In addition, correspondence analysis was applied to facilitate the MCA analysis. 

Table 7-5 shows the results from MCA analysis.  

Table 7-5.  Effects of weather event and surface conditions on crash severity with 
controlling for road attributes and exposure 

CSeverity  N Unadjusted Adjusted for Factors Beta 
Road Class Primary 133 0.085 0.222 0.13 
 Interstate 335 -0.034 -0.088  
AADT <1K 37 0.359 0.292 0.14 
 1-5K 153 -0.102 -0.186  
 5-10K 278 0.009 0.063  
      
Speed Limit 55 111 0.018 0.007 0.04 
 65 357 -0.010 -0.002  
Weather 
Event 

Blowing 
sand/soil/dirt/snow 16 0.031 -0.155 

0.11 

Snow 55 0.074 -0.119  
 Severe winds 12 0.073 -0.066  
 Rain 18 -0.066 -0.020  
 Clear & Cloudy 341 -0.033 0.023  

 
Sleet/hail/freezing 
rain 26 0.271 0.095 

 

Surface 
Condition 

wet 39 -0.062 -0.096 0.23 
dry 292 -0.063 -0.079  

 ice 81 0.113 0.117  
 snow 42 0.132 0.237  
 slush 14 0.442 0.523  
Maintenance N 354 -0.047 -0.005 0.08 
 Y 114 0.147 0.014  
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Road attributes 

 

Because of the coding of the crash severity index, the lower the number is, the 

more severe the crash would be.  The results from table 7-5 indicate crashes that occur on 

interstate highways tend to be more severe than crashes occurring on primary roads. In 

addition, highways with AADT 1-5K are more likely to have severe crashes than 

highways with AADT less than 1K. Highways with volume 5-10K are less likely to have 

severe crashes compared to the other two groups.  

Maintenance & surface conditions 

Winter highway maintenance is a weak predictor of crash severity, as indicated by 

the Beta value. However, it appears that crashes that occur during the time when winter 

maintenance operations are being performed tend to be less severe (with deviation from 

grand mean, 0.014) than crashes when there is no maintenance operation (with -0.005).  

Given this result, more analyses were conducted to establish the relationship 

between road surface condition and crash severity, in order to give insight into how 

maintenance is related to crash severity.  

First, road surface conditions were ranked by severity of crashes from most severe 

to least severe: wet, dry, ice, snow, slush. The results indicates crashes occurred under 

wet conditions are likely to be most severe while crashes that occurred under slushy 

conditions seems to be least severe.  

The results could be explained in two ways. First, as found in the speed analysis 

results in the previous chapter, for interstate highways, the traveling speed was reduced 

about 5 mph for Snow/Ice surface conditions. A slushy road surface is associated with the 

highest speed reduction compared to dry, of 7 mph, while the driving speed on wet 

surface appears to be very close to that on dry surfaces. Since a lower traveling speed in 

general gives rise to a less severe crash, the different speed reductions for various road 

surface conditions may provide a partial explanation. Second, correspondence analyses 

were conducted to analyze the relations between surface type and crash manner, and also 

between crash types with crash manner. The relationships revealed from correspondence 
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analysis as shown in Figure 7.4 and Figure 7.5 give an explanation from another 

perspective.  

Figure 7.4 graphically illustrates how surface condition is associated with crash 

manner, figure 7.5 illustrates the relationship between crash manner and crash severity.  

In figure 7.4 and figure 7.5 row/column points that are close together are more alike than 

points that are far apart. It is easy to tell that crashes on wet surfaces are more likely to be 

Angle or Head-on collisions, whilst crashes on snow are closest to side swipe, opposite 

direction, and those on ice are associated with side-swipe and non-collision. Finally, 

slush seems to not be strongly associated with any particular crash manner. Figure 7.5 

shows that head-on crashes are closest to fatal, while rear-end crashes are most strongly 

associated with injuries.  

 

Figure 7.4.  Relationship between crash cross manner and surface condition 
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Figure 7.5.  Relationship between crash cross manner and crash severity 

D. Discussion 

As mentioned in the method section (see Appendix C), in order to verify the 

structural theory proposed earlier in the chapter, three separate models were constructed: 

in model 1, the included independent variables are road attributes, weather and 

maintenance factors. For model 2, road surface conditions were added to the variables in 

model 1. In model 3, traffic volume and speed variance were further added to model 2. 

The basic ideas behind these three stepwise models are to give understandings of the 

direct and indirect influence of weather, maintenance and road surface conditions on 

crash probabilities.  

Direct and indirect effects of maintenance operations 

It is found from model 1 that none of the maintenance variables are shown to be 

significant predictors of crash probability when weather and road attributes have been 
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controlled, while road surface condition has a relatively strong effect upon crash 

probability, with a beta of 0.028 as indicated by model 2. Further the results in MCA-4 

indicate road surface condition is a strong contributing factor to both injury crashes and 

PDO crashes, with betas of 0.026 and 0.039 respectively. As shown in Table 7.2, injury 

probability peaks with a snow surface condition. Thus it is concluded that the effects of 

maintenance actions on crash probability are fully mediated through the road surface 

conditions. In other words, maintenance operations have no direct effects on safety, but 

indirectly impact safety through reducing snow/ice surface conditions.  

Direct effects of road surface conditions and undesirable 

weather 

The effects estimated from model 3 (results shown in Table 7.2.) are the direct 

effects of weather and undesirable road surface conditions on crash probabilities. It is 

found that during a snow storm, the injury probability is 95% above the average 

(0.001/0.00105*100%), and the likelihood of PDOs is about 33% (0.001/0.00306*100%) 

above the average. Injuries and PDOs peaks at wind speeds 12-15 mph, about 160% and 

30% above the average respectively. A road surface condition that is snow/ice covered is 

associated with the highest injury and PDO probabilities, about 76% and 98% above the 

average.  

Indirect effects of weather and maintenance through speed 

and volume. 

After adding volume and speed in model 3, it was found that the effect of road 

surface condition decreased from 0.028 to 0.026. The effects of precipitation and surface 

temperature dropped slightly from 0.027, and 0.036 to 0.025, and 0.033 respectively. 

Wind effects remained the same, with a value of 0.028. These results indicate that the 

probability of involvement in an injury crash could be slightly reduced because of a 

driver’s adjustment to the adverse weather conditions by either canceling a trip or 

reducing the driving speed. The probability of injuries is not reduced much due to 

exposure.  
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8. DEVELOPMENT OF A PERFORMANCE INDEX 

 

There are a number of possible uses for a performance index. At least one 

bifurcation of uses concerns the strategic versus the tactical. In terms of winter 

maintenance, this may be thought of as the difference between performance in a single 

winter storm versus performance over a whole winter. There are benefits and drawbacks 

to each type of index, but if the purpose of having an index is, ultimately, for 

improvement in practice, then it is more likely that a storm by storm index will provide 

more readily identified opportunities for improvements than a winter long index. 

This distinction is particularly important in the matter of winter maintenance. The 

two main goals of winter maintenance can be thought of as safety and mobility of the 

traveling public. Safety can be measured by the crash rate and as discussed in chapter 4 

this is known to increase in winter weather. Presumably, the better the winter 

maintenance, the lower the increase in crash rate will be. Mobility can be measured by 

both traffic speed and traffic volume, and both are negatively impacted by winter weather 

(again, see above for discussion of these factors). However, traffic volume is not a good 

measure to be used as a performance index, since the traveling public is often advised to 

not travel during winter weather, and thus there could be conflicting reasons for a 

reduction in volume during a winter storm. It might be that people have heeded the 

advice not to travel, or it could be that winter maintenance has resulted in a less than 

optimal road surface condition. 

Ultimately, of course, it is the condition of the road surface that determines how 

safe it is to travel on the road, and how mobile the traffic will be upon that road (see 

Figure 7-2). And it is winter weather which causes the road surface condition to 

deteriorate and winter maintenance which strives to return that road surface condition to 

“normal” as quickly, efficiently, and effectively as possible. In some ways, it would seem 

that the best possible performance index would be some measure of the road surface 

condition. However, this is hampered by two factors. First, as discussed extensively 

above, the relationship between the road surface condition, safety and mobility is not 

straightforward. Second, measuring the road surface condition is also rather difficult. 

Current methods for doing this include either some form of visual observation, or some 
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form of friction measurement. Neither method provides an ideal measure, and even if one 

did, the step from there to safety and mobility is complex. 

Given this, it would seem that the best approach to a performance index for winter 

maintenance would be some form of direct measure of either safety or mobility. And 

probably the best measures of these two factors are crash rate and traffic speed. However, 

as discussed in Chapter 7, crashes are fortunately rare occurrences. While clearly 

beneficial in and of itself, because crashes are so infrequent, it is difficult to use them, 

even on a winter by winter basis, as a measure of winter maintenance performance. This 

means that the best possible tool to use as a performance index for winter maintenance is 

traffic speed. The hypothesis behind this is that if winter maintenance, for a given storm, 

is done well, traffic will be slowed down less than if the winter maintenance is done 

poorly. 

Table 8.3  Speed targets for different operational stages by road class, speed limit, AADT 
and time of the day  

    Primary Interstate 
   55 65 55 65 
    <1K 1-5K 1-5K 10K+ 1-5K 10K+ 
Daytime Normal 60 59 69 61 69 71 
  Anti-icing 0 0 0 -2 0 0 
  During storm -5 -2 -3 -3 -6 -4 
  After Storm -1 -1 0 0 0 0 
            
Peak Hour Normal 60 59 69 61 69 70 
  Anti-icing -2 -2 -2 -2 -2 0 
  During storm -8 -4 -6 -6 -7 -5 
  After Storm -3 0 0 0 -1 0 
            
Dawn & 
Night 

normal 58 58 68 59 67 69 

  Anti-icing -2 -2 -8 -5 -3 -2 
  During storm -13 -8 -12 -10 -9 -8 
  After Storm -9 -5 -9 -1 -4 -2 
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Table 8-1 shows how traffic speeds are impacted during a winter storm on 

different road types, at different times of day, and at different stages of the storm. These 

results can be used to provide a basis for a performance index, in the following way. 

First, the difference in impact on the different road types suggests strongly that roads 

with a different priority will experience, in the normal run of a winter storm, differing 

impacts on speed. Second, while there are clear differences in the speed reduction with 

time of day, it creates perhaps needless complications to differentiate between the various 

times of day in order to determine performance. Thus, the speed reductions will be 

grouped together into three road priority levels, and one value for any time of day. Third, 

the values in table 8-1 are average values (or predicted model values) and do not 

represent extreme values. Accordingly, such values will be adjusted by a factor to allow 

for the most extreme conditions. Finally, the base values obtained from these three steps 

will be scaled using the storm severity index developed in chapter 3. Thus if two storms 

are considered, one with a severity index of 0.9 and one with an index of 0.4, and if the 

base value of speed reduction for a given road classification is 10 miles per hour, then for 

the more severe storm, and reduction in speed less than 9 mph (0.9 x 10 mph) would 

indicate successful winter maintenance, while for the less severe storm, the reduction in 

speed would have to be less than 4 mph to indicate success. 

Table 8-2 indicates the “base” values of speed reduction for the three priority 

levels of the road way. These have been obtained from the modeling done in Chapter VI. 

Table 8.2  Base Speed Reduction (mph) for Road Priorities 

 Priority A Priority B Priority C 

Base Value of Speed Reduction (mph) 17 22 24 

These values are then modified by the storm severity index developed in Chapter 3. That 

index was of the form: 

5.0

])**[(*1
⎥⎦
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SSI                 Eq. 3.1 
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In this equation, the value of a is 0.0005, and the value of b is 1.6995. The values 

of the other variables are obtained from table VIII-3 which shows the final value of these 

variables (which brought the index into full agreement with the experts surveyed on the 

index). 

Table 8.3  Values of Variables in Equation 3.1 

Storm Type (ST) 
 

Freezing rain Light Snow Medium Snow Heavy Snow
0.72 0.35 0.52 1 

Storm Temperature (Ti) Warm Mid Range Cold  
0.25 0.4 1  

Wind Conditions in Storm (Wi) Light Strong   
1 1.2   

Early Storm Behavior (Bi) Starts as Snow Starts as Rain   
0 0.1   

Post Storm Temperature (Tp) Same Warming Cooling  
0 -0.087 0.15  

Post Storm Wind Conditions 
(Wp) 

Light Strong   
0 0.25   

 

Thus, using a multiplicative combination of the Storm Severity Index and the 

Base Speed Reduction, a target speed reduction for a given storm and priority level of 

highway is given. If speed reduction is less than this, winter maintenance has been 

satisfactory. Clearly, this index can be improved, and with experience it should be refined 

significantly, but given the uncertainties (discussed throughout this report) in determining 

the effects of the many varied factors on road mobility, it is felt that this index is a good 

place to begin. 

9. SUMMARY AND CONCLUSIONS 

Adverse weather during winter has significant impacts on roadway safety, 

mobility. Winter highway maintenance operations are performed to minimize the impact.  

For the purpose of achieving further improvement in the field, we constructed a 

performance measurement system that evaluates how well operations have been 

conducted to meet road users’ needs as specified in maintenance goals.  In the previous 

chapters, the goals for maintenance operations to meet were identified, the critical 
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measured used in measuring how well maintenance were performed in meeting with the 

maintenance goals were selected. Moreover, important relationships between weather, 

maintenance with mobility and safety were established, as well as the important 

interaction effects on mobility and safety. Thus the proposed measurement system can be 

not only used for the post storm evaluation, the system combined with the modeling 

results can also be used for the pre-event prediction and evaluation.  

For instance, the constructed prediction model in chapter 5 can be used to predict 

the road surface condition quite accurately for a specified weather event given the traffic 

volume and maintenance procedures, also at the same time, the structural equation 

modeling results from chapter 6 established the effects of the maintenance, weather 

intermediate by road surface condition on traveling speed and volume, and results from 

chapter 7 of effects on crash rates. Thus for a specified weather event, a given time of the 

day, road class and AADT, we can estimate the traveling speed and traffic volume, as 

well as crash probability with different  maintenance operation input.  

Summary 

Maintenance effect on road surface condition 

Winter maintenance actions do have significant influence on road surface 

conditions as explored in Chapter 5.  Plowing actions, applying chemicals are both found 

to be influential factors affecting road surface conditions. The effects of maintenance 

operations depend upon the temperature and wind speed and traffic on the road.  

Maintenance effect on speed and volume  

Mainly, winter maintenance actions have considerable positive effects on speed, 

although in some cases maintenance trucks do slow down traffic, and this effect is 

especially stronger during peak hours. Because the effect of maintenance depends on 

time of day, and peak hour, we would recommend that maintenance be performed ahead 

of peak hours, with application rates increased during night operations.  
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Maintenance operations also have positive effects on traffic volume. We found 

only a slight reduction in traffic volume during average winter storms for service routes 

that receive a high level of maintenance, especially for highways with constant 24-hour 

flow rates. In general, road users tend to make their trip decisions based on weather 

forecasts. Their trust and previous experiences of winter maintenance operations also 

play an important part in their decision-making.  

Maintenance effect on crash rates 

We found that the effects of maintenance operations on crash rates are fully 

meditated through road surface conditions. In other words, maintenance only has indirect 

effects on crashes. The modeling results suggest that: 1) maintenance operations have 

clear effects on speed and volume intermediated through road surface conditions; 2) 

maintenance is not a significant predictor of crash rates and crash types; and 3) road 

surface conditions have indirect effects on crash rates and crash types through the effects 

of speed and volume, as well as direct effects on crash rates and crash types.  

Finally, a performance index has been developed, based upon a target reduction in 

traffic speed during a storm. The target reduction is a function of the road priority level 

and the storm severity. If traffic speeds reduce less than the target level, winter 

maintenance has been satisfactory. 

Future Work 

Data needs 

A big constraint of the study is the availability and validity of the data.  We found 

that the atmospheric data (i.e. wind speed, temperature, visibility, etc.) are highly 

accurate, and are available from both ASOS and AWOS sites.  In comparison, data on 

precipitation amounts and visibility are only provided by ASOS, and are not consistently 

recorded, and there are no records at all for precipitation type.  Improved data of this type 

would be extremely valuable.  
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Besides mobility and safety, environmental quality and productivity are also goals 

for winter highway maintenance activities. How to select measures to meet the other 

goals, and how to facilitate the decision making using multiple criteria based on 

developed performance measures would be an important task for future research.   



 

96 
 

 

REFERENCES 

Adams, T. M., Danijarsa, M., Martinelli, T., Stanuch, G., and Vonderohe, A. (2003). 
Performance Measures For Winter Operations. In Transportation Research Record: 
Journal of the Transportation Research Board, No. 1824, TRB, National Research 
Council, Washington, D.C., pp. 87-97.  

A Guide for Performance-Based Transportation Planning. NCHRP Report No. 446. TRB, 
National Research Council, Washington, D.C., 2000. 

Alfelor, R., Hyman, W., and Niemi, G. Customer-Oriented Maintenance Decision 
Support System: Developing a Prototype. Transportation Research Record 1672, 
Transportation Research Board, 1–10. 1999 

Al-Qadi, I. et al. Feasibility of Using Friction Indicators to Improve Winter Maintenance 
Operations and Mobility. NCHRP Web Document 53 (Project 6-14): Contractor’s 
Final Report. TRB, National Research Council, Washington, D.C., 2002 

American Meteorological Society (2004) Weather and Highways: Report of a Policy 
Forum.    Washington, DC  

Andreescu MP and Frost DB (1998) Weather and traffic crashs in Montreal, Canada. 
Climate Research 9(3):225-230. 

Andrey J and B Mills (2003) Crashes, Casualties, and Costs: Weathering the elements on 
Canadian Roads. In: Loss Reduction Paper Series 33, department of Geography, 
University of Waterloo. 

Andrey J and Yagar S (1993) A temporal analysis of rain-related crash risk. Crash 
Analysis and Prevention 25:465–472. 

Andrey J, and Knapper C (2003) Weather and Transportation in Canada. Department of 
Geography Publication Series, University of Waterloo 

Andrey J, B Mills, and J Vandermolen (2001) Weather Information and Road Safety. 
Institute for Catastrophic Loss Reduction Paper Series 15, University of Western 
Ontario, London, Ontario, Canada. 

Andrey J, B Mills, M Leahy and J. Suggett (2003) Weather as a chronic hazard for road 
transportation in Canadian cities. Natural Hazards, 28:319-343. 

Andrey J, Mills B and J Vandermolen (2003) Temporal Analysis of Weather-Related 
Crashs Risk for Ottawa.  Proceedings of the 82th Annual Meeting of the 
Transportation Research Board, Washington D.C. 

Asano M, Hirasawa M and Oikawa S (2001) Recent situation of winter road management 
and traffic crashs in Hokkaido. Transportation Research Record 1741: 80-89. 

Bertness J (1980) Rain related impacts on selected transportation activities and utility 
services in the Chicago area.. Journal of Applied Meteorology 19:545-556. 



 

97 
 

Blackburn, RR; Amsler, DE, Sr; Bauer, KM  Guidelines for Snow and Ice Control 
Materials and Methods In Transportation Research Circular E-C063, TRB, National 
Research Council, Washington, D.C. pp. 31-49. June 2004 

Boselly, E. S., Thornes, E.J., and Ulburg, C. (1993) Road Weather Information Systems 
Volume 1: Research Report. Strategic Highway Research Program Publication - 
SHRP-H-350, National Research Council, Washington, D.C., pp 90-93. 

Breen, B.D. (2001) Anti-Icing Success Fuels Expansion of the Program in Idaho, Idaho 
Department of Transportation, http://www.transportation.org/sites/sicop/docs/US-
12%20Anti%20Icing%20Success.pdf accessed March 2008. 

Brewer Keith (1999) Overview of U.S. Crashes & Weather Environmental. Office of 
Human-Centered Research, Research & Development. National Highway Traffic 
Safety Administration.  

Brodsky H and Hakkert AS (1988) Risk of a Road Crash in Rainy Weather (requested).  
Crash Analysis and Prevention 20(3): 161-176 

Brorsson B, Ifver J and Rydgren H (1988) Injuries from single-vehicle crashes and snow 
depth. Crash Analysis and Prevention 20(5): 367-377 

Brown B and K Baass (1997) Seasonal Variation in Frequencies and Rates of Highway 
Crashs as Function of Severity. Transportation Research Record 1581: 59–65. 

Cambridge Systematics, Inc., Performance Measures and Targets for Transportation 
Asset Management. National cooperative highway research program (NCHRP) 20-60 

CCMTA(2000) Road Safety Vision 2001 – 2000 Update. Transport Canada, Ottawa. 
http://www.tc.gc.ca/roadsafety/vision/2000/pdf/RSV.pdf, Accessed June 2005. 

Codling P (1974) Weather and road crashes. In: Climatic Resources and Economic 
Activity, J. Taylor (ed.)  205-222. 

Decker, R., Bignell, J.L., Lambertson, C. M., and Porter, K.L. (2001). Measuring 
Efficiency of Winter Maintenance Practices. In Transportation Research Record: 
Journal of the Transportation Research Board, No. 1741, TRB, National Research 
Council, Washington, D.C., pp. 167-175.  

Doherty, S.T., Andrey, J.C. and Marquis, J.C. (1993) “Driver adjustments to wet weather 
hazards”, Climatological Bulletin, 27: 154-164. 

Edwards J (1994) Wind-related road crashs in England and Wales 1980-1990. Journal of 
Wind Engineering and Industrial Aerodynamics 52:293-303. 

Edwards J (1996) Weather-related road crashs. Journal of Transport Geography 4:201–
212. 

Edwards J B (1998) The relationship between road crash severity and recorded weather. 
Journal of Safety Research 29(4): 249-262 

Eisenberg D (2004) The mixed effects of precipitation on traffic crashes. Crash Analysis 
and Prevention 36(4): 637-647 



 

98 
 

Eisenberg D and Warner KE (2005) Effects of snowfalls on motor vehicle crashs, 
injuries, and fatalities. American Journal of Public Health 95(1): 120-124. 

ElDessouki and Ivan WJ (2004) Using Relative Risk Analysis to Improve Connecticut 
Freeway Traffic Safety under Adverse Weather Conditions. USDOT Region 1 UTC, 
Project UCNR14-5, Final Report 

Elvik R (2001) Area-wide urban traffic calming schemes: a meta-analysis of safety 
effects. Crash Analysis and Prevention 33(2001): 327-336 

Federal Highway Administration (FHWA) Road weather management program  2002 

FHWA office of Operations: Transportation Performance Measures 
http://ops.fhwa.dot.gov/Travel/Deployment_Task_Force/perf_measures.htm 

Fridstrom L, Ifver J, Ingebrigtsen S, Kulmala R, and Thomsen LK (1995) Measuring the 
Contribution of Randomness, Exposure, Weather, and Daylight to the Variation in 
Road Crash Counts. Crash Analysis and Prevention 27(1): 1-20 

Glass GV, McGaw B, Smith ML. (1981) Meta-Analysis in Social Research. Beverly 
Hills, CA: Sage 

Golob TF, Reeker WW and Levine DW (1990) Safety of freeway median high 
occupancy vehicle lanes: a comparison of aggregate and disaggregate analyses. Crash 
Analysis and Prevention. 22(1): 19-34. 

Goodwin, L. 2003b. Weather-related crashes on U.S. highways in 2001. Available at 
http://www.ops.fhwa.dot.gov/weather/docs/2001CrashAnalysisPaperV2.doc. 
Accessed at Jan 27, 2004  

Hanbali RM (1994) Economic Impact of Winter Road Maintenance on Road Users.  
Transportation Research Record 1442: 151–161. 

Hanbali RM. Influence of winter road maintenance on traffic crash rates. Ph.D. 
dissertation. Milwaukee 

Hijar M, Carrillo C, Flores M, Anaya R, and Lopez V (2000). Risk factors in highway 
traffic crashs: a case control study. Crash Analysis and Prevention 32(5): 703-709 

Hosmer, D.W., Lemeshow, S., 1989. Applied Logistic Regression. Wiley, New York. 

Hosseinlou, M. H., Nakatsuj, T., Kawamura, A., and Onodera, Y. Estimation of Friction 
Coefficients at Rear-End Collision on Winter Roads Taking Slip Ratio of Tire Into 
Account. Fifth International Symposium on Snow Removal and Ice Control 
Technology, Roanoke, VA, Paper No. E-3. 2000 

Hunter, John E, Schmidt and Frank L (2004) Methods of Meta-Analysis: Correcting 
Error and Bias in Research Findings. Sage Publications Inc ISBN: 141290479X 

Idaho Storm Warning System Warning System Operational Test. NIATT Report No. 
N00-04 December 2000.  
http://www.itsdocs.fhwa.dot.gov/jpodocs/repts_te/@cc01!.pdf 



 

99 
 

Iowa Department of Transportation home page http://www.dot.state.ia.us/technology.pdf. 
Accessed Jan 15, 2004 

Ivey D, Griffin LI, Newton TH, Lytten RL and Hankins KC (1981) Predicting wet 
weather crashes. Crash Analysis and Prevention 13:83-99. 

Jones B, Janssen and Mannering F (1991) Analysis of the frequency and duration of 
freeway crashes in Seattle. Crash Analysis and Prevention 23:239-255. 

Jovanis P and Delleur J (1981)Exposure-based analysis of motor vehicle crashes. Crash 
Analysis and Prevention 13:83-99. 

Keay K and Simmonds I (2005). The association of rainfall and other weather variables 
with road traffic volume in Melbourne, Australia. Crash Analysis and Prevention 
37(1): 109-124. 

Keay, K., and I. Simmonds, 2005: Road accidents and rainfall in a large Australian city. 
Accident Analysis and Prevention, 38(3), 445-454. 

Ketcham, S. A., Minsk, L.D., Blackburn, R.R., and Fleege, E. J. (1996). Manual of 
Practice for an Effective Anti-icing Program (A Guide For Highway Winter 
Maintenance  Personnel ) 1. Report No. FHWA-RD-95-202 Accessed Jan. 2004. 

Khattak A and Knapp K (2001). Interstate highway crash injuries during winter snow and 
non-snow events. Proceedings of the 80th Annual Meeting of the Transportation 
Research Board, Washington D.C. 

Khattak AJ, P Kantor and FM Council (1998) Role of Adverse Weather in Key Crash 
Types on Limited-Access Roadways – Implications for Advanced Weather Systems. 
Transportation Research Record 1621: 10-19. 

Knapp KK, Dennis Kroeger and Karen Giese (2000) The Mobility and Safety Impacts of 
Winter Storm Events. In a Freeway Environment Final Report, Iowa State Center for 
Transportation Research and Education  

Knapp KK, LD Smithson and AJ Khattak (2000) The use of multiple data sources to 
evaluate the volume and safety impacts of winter storm events. ITE Annual Meeting 
at Nashville, Tennessee, Institute of Transportation Engineers, Washington D.C., 
August 6-8, p 11 

Kuhl, K., and Takigawa, S. The development of customer-based level of service 
measures for snow and ice control by Caltrans.  2000 

Kyte M, Khatib Z, Shannon P, and Kitchener, F (2001). Effect of weather on free-flow 
speed. Traffic Flow Theory and Highway Capacity 2001, Transportation Research 
Board National research Council, Washington, 60-68 

Lane PL, McClafferty KJ, Green RN and Nowak ES (1995) A study of injury-producing 
crashes of median divided highways in southwestern Ontario. Crash Analysis and 
Prevention 27:175-184. 

Leppannen, A., and Penttinen, O., “Finland’s Revised Winter Maintenance Strategies and 
Quality Standards 2001.” XIth PIARC International Winter Road Congress, Sapporo, 
Japan 2002. 



 

100 
 

Levine N, Kim K and Nitz L (1995). Daily fluctuations in Honolulu motor vehicle 
crashes. Crash Analysis and Prevention 27:785-796. 

Liang WL, Kyte M, Kitchener F et al. (1998) Effect of Environmental Factors on Driver 
Speed: A Case Study. Transportation Research Record 1635: 155–161.  

McBride JC. (1977) Economic Impact of Snow and Ice Control. Report FHWA-RD-77-
95. FHWA, U.S. Department of Transportation  

Mende I (1982). An Analysis of Snowstorm-Related Crashs in Metropolitan Toronto. 
Master’s Thesis, Department of Civil Engineering, University of Toronto, Toronto, 
Ontario. 

Meyer, M.D., Alternative Performance Measures for Transportation Planning: Evolution 
Toward Multimodal Planning, 1995. 

Milton J and Mannering F (1998) The Relationship Among Highway Geometrics, 
Traffic-Related Elements and Motor-Vehicle Crash Frequencies. Transportation, 
25(4): 395-413.  

National Traffic Safety Board (NTSB) (1980) Fatal Highway Crashs on Wet Pavement—
The Magnitude Location and Characteristics, HTSB-HSS-80-1. NTIS, Springfield, 
VA. 

Neely, A.D., et al. Designing Performance Measures: A Structured Approach  
International Journal of Operations and Production Management, 17(11-12): 1131-
1153. 1997 

Nixon, W. A., The Potential of Using Friction as a Tool for Winter Maintenance. Final 
Report of Project TR 400, Iowa Department of Transportation and Iowa Research 
Board. 1998 

Nixon, W.A. and Stowe, R. (2004). Operational Use of Weather Forecasts in Winter 
Maintenance: A Matrix Based Approach. In Proceedings of 12th International Road 
Weather Conference SIRWEC, Bingen, Germany, June 16-18, 2004. 

NOAA, US Department of Commerce. Weather Information for Surface Transportation 
National Needs Assessment Report. FCM-R18-2002. December 2002. 

Norrman J, Eriksson, M and Lindqvist S (2000) Relationships between road slipperiness, 
traffic crash risk and winter road maintenance activity. Climate Research 15: 185-
193. 

NRC Key Transportation Indicators (National Research Council, 2002).NCHRP Project 
20-24(20) 2003 

O’Leary D (1978) Some Impacts of Weather on Modern Transportation Systems: A 
Natural Hazards Approach. B.A. Thesis. Wilfrid Laurier University, Waterloo, 
Ontario. 

OECD (Organization for Economic Cooperation and Development) Research Group 
1976. Adverse Weather, Reduced Visibility and Road Safety. Paris. 



 

101 
 

Padget, E.D., Knapp, K.K. and Thomas, G.B. (2001). Investigation of winter-weather 
speed variability in sport utility vehicles, pickup trucks, and passenger cars. Traffic 
Safety 2001: Americans with Disabilities Act; Driver and Vehicle Modeling; 
Situation Awareness; Licensing; Driver Behavior; Enforcement; Trucks; and 
Motorcycles. Transportation Research Board National research Council, Washington, 
116-124 

Peltola Harri (2000) Seasonally changing speed limits. Effects on speeds and crashes. 
Transportation Research Record 1734: 46 - 51. 

Performance Measures to Improve Transportation Systems and Agency Operations: 
Report of a Conference. In conference Proceedings 26, TRB, National Research 
Council, Washington, D.C., 2001 

Robinson A (1965). Road weather alerts. In What is Weather Worth? Pp. 41-43. 
Australian Bureau of Meteorology, Melbourne, Australia. 

Rooney JT (1967) The urban snow hazard in the United States. Geographical Review 57: 
538-559. 

Roosmark PO, Anderson K, and Ahlquist G (1976) The effects of studded tires on road 
crashes. National Swedish Road and Traffic Research Institute Report 72. 
Linkoeping, Sweden. 

Sabey B (1973) Road crashes in darkness. TRRL Report LR 536. Crowthorne, England. 

Sabey B and Taylor H (1980) The known risks we run: The highway. Supplementary 
report SR 567. Crowthome, United Kingdom: Transport and Road Research 
Laboratory; 1980. 

Shankar V, Mannering F and Barfield W (1995). Effect of Roadway Geometrics and 
Environmental-Factors on Rural Freeway Crash Frequencies. Crash Analysis and 
Prevention 27(3): 371-389 

Sherretz L and Farhar B (1978) An analysis of the relationship between rainfall and the 
occurrence of traffic crashs. Journal of Applied Meteorology 17:711-715. 

Smith J (1997) Preparing for winter: Proactive measures to prevent injury and property 
damage. Professional Safety 42(8): 28 

Smith K (1982) How seasonal and weather conditions influence road crashes in Glasgow. 
Scottish Geographical Magazine 98: 103-114. 

Suggett J (1999) The Effect of Precipitation on Traffic Safety in the City of Regina,  

The Illinois Department of Transportation (1998).Guidelines for Liquid Chemical 
Application for Snow and Ice Control., Division of Highways, Bureau of Operations.  

Transportation Research Board. (1991). Highway Deicing: Comparing Salt and Calcium 
Magnesium Acetate. Special Report 235, National Research Council, Washington 
DC, 1991 

Unpublished Master of Science Thesis, Saskatchewan: University of Regina.  



 

102 
 

WI: Marquette University; (1992) Solomon, D. Crashs on Main Rural Highways Related 
to Speed, Driver, and Vehicle. Bureau of Public Roads, U.S. Department of 
Commerce, Washington, D.C., 1964.  

Zhang C, Ivan J ElDessouki W and Anagnostou E (2005) Relative Risk Analysis for 
Studying the Impact of Adverse Weather Conditions and Congestion on Traffic 
Crashes. Transportation Research Board Annual Meeting, Washington, DC, Jan. 
2005. 

Zhou Min and Sisiopiku Virginia (1997) Relationship between Volume-to-Capacity 
Ratios and Crashs Rates. Transportation Research Record 1581: 47-52. 

Hagiwara, Toru, et al. (1990) Road surface conditions and accidents in winter. Surface 
characteristics of roadways: International Research and technologies, ASTM STP 
1031, W.E.Myer and J. Reichert, Eds., American Society for testing and materials, 
Philadelphia, 1990, pp.442-453.  

Hair,Joseph F. Tatham, Ronald L. et al. (1998) Multivariate Data Analysis. Prentice Hall 

Bagozzi, Richard P. (1994) Advanced Methods of Marketing Research. Blackwell, 
1994.Royston, Patrick. (2004). Multiple imputation of missing values. The Stata 
Journal. 4: 227- 241. 



 

103 
 

APPENDIX A: Methods used to determine the relationships between Road Surface 
Condition, Weather, Traffic, and Maintenance Activities. 

Data Preparation 

The research database includes 4 years of hourly data from 2001 to 2004. The 

road surface condition data is taken from RWIS (Road Weather Information System) 

stations in the State of Iowa. The atmospheric data are taken from ASOS (Automated 

Surface Observing System) or AWOS (Automated Weather Observing System) stations 

within 10 miles distance of each RWIS. Data were selected depending on which station 

(ASOS or AWOS) was closer to the RWIS. The maintenance data used in this analysis 

are taken from the winter highway maintenance garage log files provided by the Iowa 

Department of Transportation. For each snow event operation, the maintenance operators 

complete a report of that garage area. The report recorded the maintenance operations for 

three levels of service A, B or C (Interstate highways received the highest level of 

maintenance-Level A, most of the primary road receives level B and low volume primary 

roads receives the lowest level-C). For each level of maintenance routes, it recorded the 

time when the maintenance actions started, when it ended, together with what type of 

material (Sand or Sand salt mix) applied, what kind of liquid and how much used during 

the maintenance operations. The garage area within which each RWIS sites was located 

within were identified, and the weather data of each RWIS were merged together with the 

corresponding Level of winter maintenance data that the highway upon which the RWIS 

is located at receives. The selected sites’ information is shown in Table A-1.  

Table A-1. Sites Selection and Data Integration 

ATR_ 
HWY Road Class RWIS Station ATRID 

RWIS 
_ID  

ASOS/ 
AWIS_ID 

Garage 
_ID 

IA 110 State Highway Storm Lake (US 71/IA 3) SC2330 RSTO SLB 553805
US 18 US Highway Algona (US 18) AL2070 RALG AXA 552655
I-74 Interstate Davenport (I-80/I-280) BE7050 RDAV DVN 556812
IA 2 State Highway Sidney (I-29/IA 2) SI2400 RSID SDA 554808
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I-29 Interstate Missouri Valley (I-29) HO1000 RMIS CBF 554810
US 65 US Highway Altoona (I-80/US 65) PO2500 RALT IKV 551806
I-29 Interstate Sidney (I-29/IA 2) PA1020 RSID SDA 554808
US 20 US Highway Fort Dodge (US 20) WE2470 RFOD EBS 551611
I-80 Interstate Altoona (I-80/US 65) AL1173 RALT IKV 551806
I-80 Interstate Davenport (I-80/ I-280) LE1190 RDAV DVN 556812
I-80 Interstate Avoca (I-80) SH1100 RAVO HNR 554802
I-380 Interstate Urbana (I-380) BR1130 RURB VTI 556602
US 20 US Highway Waterloo (US 20) JE2450 RWAT IIB 552807
I-80 Interstate Altoona (I-80/US 65) AL1177 RALT IKV 551806
I-35 Interstate Williams (I-35) JE1040 RWIL EBS 551609
I-80 Interstate Williamsburg (I-80) WI1110 RWBG CID 556606

 

Measures of RSC, weather, maintenance, and traffic 

The outcome variable in this study is the Road Surface conditions classified by 

the State of Iowa. The original record of the ROAD SURFACE CONDITION retrieved 

from the RWIS stations has seven categories: DRY, DAMP, WET, WITH-CHEMCIAL, 

SNOW/ICE, NO-REPORT, and NONE. Outcomes were grouped into 4 mutually 

exclusive categories for the purposes of modeling and prediction: DRY, WET, SLUSH 

(WITH-CHEMCIAL), and SNOW/ICE. DAMP and NO REPORT situations accounted 

for less one 1% of the total sample, thus were excluded from the analysis. NONE was 

recoded as missing, which account for 15.4% in the total sample.  

Predictor variables include three weather factors (TEMPERATURE, WIND, and 

PRECIPITATION). TEMPERATURE is the measure of the road surface temperature, 

measured in F.  WIND is the measure of the wind speed, in mph; PRECIPITATION is 

the measure of the precipitation rate, measured in inches/hr. These weather variables 

were selected based on the results of a factor analysis (FA). The factor analysis identified 

the variables that are highly correlated, and only one of those variables was selected to 

avoid the multi-colinearity problem.  For example, with road surface temperature 

included, air temperature and dew point temperature are excluded, since they were found 

to be highly correlated with surface temperature.  
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The included maintenance variables are: OPERATION and CHEMICAL 

(BRINE-RATE), PLOW_NOT (PLOW), and OPERATION (The variables inside the 

parenthesis indicate the coding or representation of the same variable). The maintenance 

variables were selected based on a categorical principle component analysis (CAPCA) ( 

Nishisato, 1980). As for the factor analysis, the CAPCA is used to identify the common 

structure of 12 maintenance measurements (most of them are categorical variables).   The 

results of CAPCA analyses suggest that PLOW and CHEMICAL represent two distinct 

dimensions of maintenance operations. SAND application is related to the CHEMICAL 

choice. SAND was normally applied with granular SALT or CACL2 solution. The results 

also suggest that PLOW is moderately correlated with OPERATION. It can be easily 

understood that in ANTI-ICING and FROST RUN operations, no plow is used, while 

with Phase I operations, the plow is used intensively, and in Phase II, the plow is used 

less frequently than in Phase I. Because OPERATION also contains other important 

maintenance information, it was retained as well.   

OPERATION is one of the primary maintenance variables that describes the type 

of the maintenance activity performed. In the maintenance record, four types of activities 

were recorded: ANTI-ICING is a proactive maintenance procedure to apply chemicals on 

the road ahead of the precipitation, to prevent the formation of bond between road surface 

and snow; PHASE I normally denotes the common snow and ice control practice during a 

storm; Phase II denotes the subsequent cleaning stage after the storm; and FROST RUN 

is another common operation during winter weather. Because of the lack of reliability of 

precipitation records as described in the descriptive information of variables, also because 

precipitation is an influential factor to the road surface condition as indicated by previous 

research, OPERATION STAGE is used as a proxy for precipitation.  

The “PLOW” activities can be categorized as three different types of PLOW use: 

PLOW, WITH_WING, or WITH_ICE_BLADE. To facilitate the analysis, plow action 

also has a dummy coding – PLOW_NOT; coded 0 for No Plow, and 1 for Plow6.  

                                                 
6 Sometimes, the MLR regression with many categorical variables might be hard to converge, but 

the regrouping of the categorical variable into a new variable with fewer categories might solve the 
problem. Alternative coding of the maintenance variables with less categories were mainly provided for 
this reason. 
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CHEMICAL is categorized as Sodium Chloride Solution (BRINE), Calcium 

Chloride Solution (CACL2), or Granular Salt (SALT). Ideally, the application rate of 

different types of CHEMICAL would be recorded as a quantity as well as an action; 

however the quantity of CHEMCIAL were only recorded for the two CHEMCIAL 

solutions, BRINE and CACL2. Thus BRINE-RATE, which is the measure of the liquid 

rate in gallons per lane mile7 is included as an alternative measure of CHEMICAL.  The 

SAND variable is also coded into dummy variables with 0 for no sand applied, and 1 for 

sanding activity.  

The measure of traffic is traffic VOLUME in vehicle per hour. Other factors that 

might be influential to the RSC were Peak-Hour, AADT, and Speed-limit. Those 

variables were kept in the data file as well.  

Whether sand is used depends on the temperature range, road classification, and 

material availability. The dominant factor for sand being used is the temperature range - 

sand was applied to increase the vehicle traction rapidly when the temperature was 

extremely low (and thus when salt would have minimal effect). Previous studies suggest 

that sand might prevent salt from melting snow, and also suggest that the beneficial effect 

of sand diminishes after 50 vehicles has passed or 20 minutes after application. Thus sand 

was not included in the prediction model, but rather was used as a cross-tab to check the 

compliance of sand use verse the Surface Temperature.  

 

Chi-squared automatic interaction detector (CHAID)  

As the first stage in analyzing the data sets, the Chi-squared automatic interaction 

detector (CHAID) method (Bagozzi,1994) was applied to determine the important 

weather factors and maintenance actions that are most influential to the road surface 

conditions. In addition, CHAID was used to identify possible interactions between these 

variables. The software package applied in the data analysis is an add-in to SPSS version 

10.0 (SPSS, 1999) called Answer Tree.  CHAID uses chi-squared statistics to identify 

                                                 
7 CACL2 RATE has not been included, since in 53% of cases where CACL2 was used, the rate 

was not recorded.  
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optimal splits (Kass, 1980). CHAID automatically searches the data and tests each 

categorical variable to determine which variable categories make a significant split with 

respect to the dependent variable. Using the Chi-square statistics, it was determined 

which variables were significant and which were not. In other words, the first split results 

in the most distinctive subgroups. Also CHAID merges those categories that are not 

distinct from each other, and regroups these categories in order to construct significant 

categories. Further, for continuous variables, CHAID decides the critical values for 

splitting the variable into significant categories. When the stopping rules (sample size, 

significance level) specified by the user are met, CHAID stops searching the subgroups. 

The resulting subgroups will be more homogeneous than the original data set. (Breiman, 

1984). In this study, for the stopping rule, the significance level is specified at 0.05 and 

the minimum subgroup size is set at 40. 

Multinomial Logistic Regression (MLR) Method 

The Multinomial Logistic Regression (MLR) was used to validate and further 

extend the results learned from the decision tree. MLR (Hair, 1998) is chosen because the 

outcome variable, road surface classification, is multinomial (with more than two 

categories). The goal of multinomial logistic regression (MLR) is to describe, infer and 

predict the variable of interest. Compared with a logistic regression, MLR is more 

general because the dependent variable is not restricted to two values (Hosmer, 

2000). Also compared with probit model(Borooah, 2002), “it is computationally tractable 

and offers a closed-form representation of the choice probability”. Logistic regression 

transforms the dependent into a logit variable and uses maximum likelihood estimation 

(MLE) to estimate the coefficients. MLR has two assumptions. First MLR assumes a 

linear relationship between log transformed outcome (Road Surface Conditions) and 

predictors. Second, the error terms are assumed to be independent (Lattin, 2003). With 

these assumptions, the probability of one category being selected rather than another can 

be calculated. In this study, there are multiple categories for the outcome variable (the 

road surface condition): DRY, WET, SNOW/ICE, CHEMICAL. Traditionally previous 

research has indicated, SNOW/ICE surface condition is the most undesirable driving 

conditions -- road users want to avoid SNOW/ICE and maintenance agencies try to 
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minimize the amount of SNOW/ICE on the road. Thus the category “Snow/Ice Covered” 

(represented as SNOW/ICE) is the base category for the outcome variable, which may 

thus also be considered to be the comparison group.  

As mentioned earlier, MLR is also used to test and further explore the interactions 

identified by the regression tree. Interactions in the MLR are tested by creating a 

multiplication term. An important concern in testing interactions is that introducing 

interaction terms will increase multicolinearity (multicolinearity means linear relationship 

among two or more predictor variables). Severe multicolinearity makes the estimates 

sensitive to the specifications and thus the variance of the coefficient will increase. Hence 

for those interactions involving continuous variables, the centered new variables were 

created prior to the multiplication, in order to avoid multicolinearity (Aiken & West, 

1991).  

Centering is accomplished by subtracting the mean score of the variable from that 

variable. For instance, the interaction term of TEMPERATURE and WINDSPEED is 

created by multiplying the two centered variables: TEMP_CENT and WIND_CENT.  

TEMP_CENT was created as a centered version of SURFACE TEMPERATURE, by 

subtracting the mean for surface temperature (27.7 F,) from each hour’s temperature 

record. Similarly WIND_CENT values were created by subtracting the mean for wind 

speed (8 mph) from each hour’s wind speed. The centered variables have the same 

correlation with other variables, but a great reduction in multicolinearity with 

components (for example, an interaction term between temperature and wind built on the 

uncentered temperature variable correlated 0.875 with temperature, whereas the 

interaction term built on the centered variable correlated 0.23 with temperature). 
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APPENDIX B: Methods used in Structural Equation Modeling 

 

To study the effects of maintenance on mobility, it is possible to apply the 

multiple regression analyses by including weather factors, and road surface conditions all 

as the control variables in the models. However there are two particular reasons that such an 

analysis requires more advanced techniques than multiple regression analysis.  

First, the nature of relationships between these variables presents severe 

multicolinearity problems for the assumption of the regression analysis. Almost 

inevitably, the winter maintenance actions and weather factors are inter-correlated, since 

according to winter maintenance theory, most maintenance actions vary according to 

different weather events, presented or forecasted. Also, depending on the maintenance 

policy, we would expect that the various maintenance methods performed would be 

correlated. For instance, higher application rates (or a better freezing point depressant) 

are recommended for low temperature-storm situations; therefore it is likely that we will 

find that temperature is associated with chemical application rate or chemical choice. 

Second, the relationships between weather, maintenance and road surface condition can’t 

be revealed. As we presented in Figure 6-1., the presence of direct and indirect effects 

makes quantifying the maintenance impact on speed and volume complex. Lack of such 

understanding creates difficulties in selecting the optimum maintenance strategies and 

performing operations to fight with winter storms. 

General Description of the SEM 

 

For the above reasons, SEM (Structure equation modeling) has been chosen to 

facilitate analysis. Structural equation modeling (SEM) is a method similar to multiple 

regressions, but may be used as a more powerful alternative to multiple regression, path 

analysis, factor analysis, time series analysis, and analysis of covariance. SEM can be 

viewed as “an extension of the general linear model (GLM) of which multiple regression 
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is a part8”.    Also SEM has advantages over the general linear model because it can 

handle inaccurate input data, a capability the GLM lacks. Further, it can model the direct 

and indirect relationships between variables, and is more effective at resolving problems 

of multicolinearity. Put simply, SEM can be understood as several models that depict the 

relationships between variables optimized simultaneously. 

SEM as a powerful data analysis tool has strict assumptions. The popular normal 

theory (NT) estimators (maximum likelihood and generalized least square) used in SEM 

require the following four assumptions (Bentler and Dudgeon 1996, Bollen and Stine 

1992): Independent observations, large sample size, correctly specified model, and 

continuous and multivariate normally distributed data.  Since violation of the assumptions 

can produce biased results in terms of model fit, parameter estimate and significance test 

(Austin and Calderon 1996, Tremblay and Gardner 1996), the data were checked to 

determine if they met these assumptions. Preliminary analyses suggest that the presence 

of ordinal variables and also non-normal continuous variables used in the model violated 

the multivariate normality assumption. Moreover, the presence of different groups 

imposed particular challenges to the SEM. To address these problems, the method of 

Categorical Variable Methodology (CVM) and the multiple-group analyses of SEM were 

employed. 

Categorical Variable Methodology (CVM) 

 

In this study, not only are most of the maintenance variables to be modeled 

ordered categorical variables, but also the endogenous variable – Road Surface Condition 

(RSC) is categorical. Even though sometimes researchers treat ordinal data as if 

continuous in SEM, not only is bias present when ignoring the nature of the data, but also 

doing this can pose a great difficulty in the interpretation of data in the model. First, the 

inherently assumed equal distance between categories is not reflective of the true 

population. For instance, the record of Road Surface Conditions (RSC) provided by Iowa 

                                                 
8 Retrieved from: http://www2.chass.ncsu.edu/garson/pa765/structur.htm 
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Department of Transportation is an ordinal variable, with four categories: Dry, Wet, 

Snow/Ice covered, or With Chemical. If we treats the ordinal variables RSC as 

continuous, by assigning value 1 to 4 to from DRY to With Chemical categories, we 

inherently assumed when the road condition changed from Dry to Wet or from Wet to 

Snow, the impact of changes in RSC on traveling speed are the same. Second, ignoring 

the categorical nature of the variables, correlations between them are attenuated, and the 

fewer categories, the more severe the attenuation (Babakus, Ferguson and Joreskog 

1987).  

Categorical Variable Methodology (CVM) was recommended by Browne (1984) 

and Muthen (1985) when modeling non-normal and ordinal data. In the first step, an 

Asymptotically Distribution-Free (ADF) estimator was used in CVM. Unlike the ML 

estimator, ADF makes no assumption of normality (Browne 1984). After that an 

underlying continuous latent response variable was assumed for each ordinal variable and 

latent correlations were estimated to represent the theoretical relations; and then 

polychoric correlations were estimated instead of using more usual Pearson correlation 

(Muthen 1985). This strategy is explained below, using the covariance between road 

surface condition and chemical application as an example.  

First, a non-linear function relates y (the ordinal variable, such as road surface 

condition) to y* (an underlying continuous latent response variable, which can be 

understood as the slipperiness of the road surface). Here road surface condition is treated 

as an ordinal variable is based on the previous findings that from Dry to ICY, the road 

surface friction value is decreasing (the road surface is more slippery)(Leppannen, 2001). 

Similarly, we can assume an underlying variable for the chemical application.   
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 where  τi = thresholds for entering categories. Then τi were calculated 

using  
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    where Φ-1(.) = the inverse of the standard normal distribution function 

          c = number of categories 

         Nk = number in kth category 
As such, the polychoric correlations can be estimated for the underlying 

continuous variables. As illustrated in Figure B-1. 
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Figure B-1. Polychoric correlation between the underlying latent variables of the ordinal 
variables 

PRELIS (Joreskog and Sorbom 2004) will use maximum likelihood to estimate all 

possible correlations and then assemble into the polychoric correlation matrix ( *Σ̂ ). Then 

ADF estimator was employed, as illustrated in the following equation.  

    FWLS = [ ρ) – σ(θ)]' W-1[ ρ)  – σ(θ)]                           

where ρ)  = vector of ½(p+q)(p+q+1) elements containing the non-redundant 

polychoric, polyserial, and Pearson correlations among all pairs in 

x* and y*. 

σ(θ) = vector of ½(p+q)(p+q+1) elements corresponding to Σ(θ) 
W  = weight matrix, optimal W is asymptotic covariance matrix. 

 

The multiple-group analyses of SEM 

 

The data property in our analysis requires that SEM be conducted in multiple 

groups for the following two reasons. The primary reason is that previous literatures 

suggested the existence of interaction effects of adverse weather with Light, Urban/Rural, 

Road Class etc. on speed and volume (Hanbali, 1994; Liang, 1998; Padget, 2001; Knapp 

and Thomas, 2001). Similarly, we would suspect that effect of winter maintenance 

actions and road surface conditions also interacts with those variables in their effects on 

speed and volume. Normally there are two ways in dealing with interactions in SEM: 

either by including created interaction variables in the structural model or by modeling 

the data in subgroups. More importantly, the homogeneity test9 of the complete set of 

observation failed in the preliminary analysis, suggesting data have to be modeled in 

multiple groups in order to meet the homogeneity rule of the variable, otherwise 

                                                 
9 homogeneity of the variable: the variance of the variable is due to random errors rather than 

some systematic reason 
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structural equation models can produce misleading results. If we develop separate models 

by sites, we no longer have the problem of violating the homogeneity. However the 

models do not have much implication or application use for other sites in the state of 

Iowa that haven’t been sampled. Thus, three variables used in our analysis to capture the 

characteristics of the basic road conditions: ROAD CLASS, SPEED LIMIT, AADT, and 

also included Time of the day to capture the traffic flow characteristics.  

Data Preparation  

 

The research database includes 4 years of hourly detector data, comprising 

roughly 11 million records. Traffic volume and speed data are from 22 ATRs (Automatic 

traffic record) in the state of the Iowa.  The road surface condition data is from 18 RWIS 

(Road weather information system) stations that are selected within 10 miles distance of 

ATRs, also on the same Highways as the ATR. Because the road surface conditions may 

vary over short distance (Andrey & Olley 1990, Gustavsson 1995) The atmospheric data 

are from 11 ASOS (Automated Surface Observing System)/ AWOS (Automated Weather 

Observing System) stations within 10 miles distance of ATRs. The selection of a 10-mile 

maximum separation was tested by examing 18 different sites, treated as 9 pairs. In these 

pairs, distance between sensors varies from 3 to 21 miles. Correlation of temperature, 

wind speed and visibility (especially the later two) diminished significantly for 

separations above 10 miles. For separations of 10 miles or less, temperature correlations 

were 0.97 to 0.99, while wind speed and visibility were 0.76 to 0.89. The maintenance 

data used in this analysis are taken from the winter highway maintenance garage log files. 

Maintenance data were merged into the data set in a similar way as discussed in the 

previous chapter. After the sites selected, weather data and traffic data were merged by 

the criteria of the same hour at the same day of the same year. The basic sites’ traffic 

information is shown in Table B-1.  
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Table B-1. Sites Selection and Data Integration 

ATRID 
M- 
LOS 

Speed 
Limit Urban/Rural AADT

Road 
Class ATR_HWY

Total 
count

Maintenance 
(% of total) 

AL1173 A 65 Rural 10K+ Interstate I-80 21644 4 
AL1177 A 65 Rural 10K+ Interstate I-80 21796 4 
WI1110 A 65 Rural 10K+ Interstate I-80 47610 5 
BE7050 A 55 Urban 10K+ Interstate I-74 45522 3 
AT1150 A 65 Rural 5-10K Interstate I-80 47694 6 
BR1130 A 65 Rural 5-10K Interstate I-380 25162 5 
HO1000 A 65 Rural 5-10K Interstate I-29 46862 5 
JE1040 A 65 Rural 5-10K Interstate I-35 42878 5 
LE1190 A 65 Rural 5-10K Interstate I-80 32820 2 
ON1050 A 65 Rural 5-10K Interstate I-29 10740 4 
SH1100 A 65 Rural 5-10K Interstate I-80 48714 5 
PA1020 A 65 Rural 1-5K Interstate I-29 39110 4 
AF2160 B 55 Rural 1-5K Primary US 34/169 47766 4 
AL2070 B 55 Rural 1-5K Primary US 18 46756 5 
OS2190 B 55 Rural 1-5K Primary US 34 46984 4 
JE2450 B 65 Rural 1-5K Primary US 20 28382 5 
WE2470 B 65 Rural 1-5K Primary US 20 45342 5 
PO2500 B 65 Rural 5-10K Primary US 65 34070 4 
WE8160 B 55 Urban 5-10K Primary US 34 8912 2 
SC2330 C 55 Rural <1K Primary IA 110 45322 5 
WI2300 C 55 Rural <1K Primary US 169 46068 4 
SI2400 C 55 Rural <1K Primary IA 2 37504 4 

 
 

Extreme values were checked because the casual models can be very sensitive to 

the unusual observations. However, simply delete the extreme or influential values might 

overlook the fact that some of these outlier are represents some unique situations. Thus 

we identified the outliers and removed those observations only if we have justified 

reasons. In an example, 42 cases recorded that speed is zero. We looked through those 

observations case by case to check if traffic volume were recorded as 0 as well, or if any 

crashes happened during that hour. If either condition satisfied, the observations were 

removed from records.  
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Variables selection 

 

The prerequisite of SEM is to formulate the models to be tested based on strict 

theory.  Analytical methods itself can’t uncover the model. Our research questions and 

the understanding of the field determine the construct of the theoretical model and the 

variables of interests. In this study, we are interested in what precepts of maintenance are 

critical in understanding the nature of effects, and how the results could be used helping 

agencies in improving winter maintenance operations. For these reasons, primarily 

variables must be selected to represent different dimensions of influence. In addition, 

confounding factors need to be considered as much as possible in order to make unbiased 

estimates.  

As indicated in the literature, there are a variety of weather and maintenance 

indicators that could have potential influence upon speed and volume. In particular, 

maintenance garages keep record of a variety of variables as presented in Table B-2. 

Thus prior to constructing the model, the selection of the representative weather and 

maintenance indicators was first conducted based on previous literature and the data 

analyses.  
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Table B-2. Maintenances records from maintenance log 

 

 

Factor analysis (FA) was applied to facilitate the selections of weather variables. 

The factor analysis identifies those variables that are sharing the common construct, and 

only one of those variables sharing the same construct was selected to simplify the 

problem. For example, with road surface temperature included, air temperature and dew 

point temperature are excluded, since they were found to be highly correlated with 

surface temperature. Three selected weather factors are TEMPERATURE, WIND, and 

PRECIPITATION. TEMPERATURE is the measure of the road surface temperature, 

measured in F. WIND is the measure of the wind speed, in mph; PRECIPITATION is the 

measure of the precipitation rate, measured in inches/hr.  

Categorical Principle Component Analysis (CAPCA) was conducted to facilitate 

the selection of maintenance factors out of 9 maintenance measurements (most of them 

are categorical variables). Merging and Regrouping of the variables were conducted prior 

to the analysis. The included maintenance variables are: OPERATION and CHEMICAL 

(BRINE-RATE), PLOW_NOT (PLOW), and SAND. The variables inside the parenthesis 

indicate another coding or representation of the same variable. The results of CAPCA 

analyses suggest that PLOW and CHEMICAL represent two distinct dimensions of 

maintenance operations. SAND application is related to the CHEMICAL choice. SAND 

Variable Name Variable type  Variable Categories / Scale 

Operation Categorical Anti-icing, Frost-Run, Phase I, Phase II 
Maintenance Categorical Maintenance, No Maintenance 
Chemical type Categorical Brine, Salt, CaCl2 
Liquid rate Continuous Gallons/Lane mile 
Granular rate Continuous Gallons/ lane mile 
Plowing Categorical Plow, No plow 
Ice-blading Categorical Ice-blading, No Ice-blading 
Material Categorical Sand, Salt, Sand/Salt Mix 
Rotate snow 
blower Categorical  Rotating, No rotating 



 

118 
 

was normally applied with granular SALT or CACL2 solution. The results also suggest 

that PLOW is moderately correlated with OPERATION. It can be easily understood that 

in ANTI-ICING and FROST RUN, no plow is used, while with Phase I operations, the 

plow is used intensively, and in Phase II, the plow is used less frequently than in Phase I. 

Because OPERATION also contains other important maintenance information, it was 

retained as well.   
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APPENDIX C: Methods Used in Crash Modeling. 

 

As previous studies have indicated, many factors (the driver, the vehicle, road 

conditions and other circumstances) contribute to crash rates and crash severity. There is 

also a complex and subtle relationship between those factors and crashes (such as the 

curvilinear relationship between traffic volume and number of crashes). A variety of 

measures of safety have been used in previous research: crash counts, crash rates, crash 

risk, or crash severity. Although crash rates were used as the dependent variable in many 

previous studies, recent publications have scrutinized this measure, because of the pre-

assumed linearity between crash counts and traffic flow rate. (NCHRP SYNTHESIS 295: 

Statistical Methods in Highway Safety Analysis).  

To model crash counts, the commonly used regression methods are Negative 

binomial regression or Poisson regression. Compared with Poisson regression, Negative 

binomial regression is better with over-dispersed data, such as when the variance is large 

than the mean.  In addition, because during the majority of hours, no crash happened, 

most of the hourly crash and injury counts are zero. Normally the Zero-inflated Negative 

Binomial or Poisson model has been suggested for this situation. However initial 

attempts to regress crash counts on weather and maintenance factors have not yielded 

significant results.   

The original plan was to use structural equation modeling to estimate the direct 

and indirect effects of weather and maintenance on safety by way of an intermediate 

relationship with speed and volume. A major challenge in utilizing SEM is that the 

endogenous variables are the either count (number of crashes) or categorical variables 

(road surface condition). Thus transformation of these variables is required before 

modeling relations can be conducted.  (Kupek, 2006). However, the following difficulties 

emerged as the analysis proceeded.  The validity check of the critical variables revealed 

that apparent errors and distinct discrepancies existed between different measuring 

practices. For example, the road surface condition recorded in a police report in the crash 

file rarely matched those provided by the Road Weather Information System. Another 

difficulty was that the dependent variable- crash counts was for most of the time at a 
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value of zero (because most of the time no crashes happened during the hour of the 

observation) which made the sample extremely unbalanced and as a result, the initial 

check revealed a very weak relationship between either the number of crashes or the 

severity of crashes and all the variables of interests. These data properties made using the 

transformation or two level analyses infeasible.  Because of these factors, Multiple 

Classification Analysis (MCA) was used as the primary method for crash analysis.  

Method of Multiple Classification Analysis (MCA) 

 

The technique of Multiple Classification Analysis (MCA) developed by Andrews, 

et al. (1973) for social studies was employed. The analytical package incorporated in the 

ANOVA program in the Statistical Package for the Social Sciences (SPSS) was 

employed to do the analysis. MCA is an analysis of variance, but it examines the 

interrelations between categorical independent variables and an interval-scaled or 

dichotomous dependent variable more effectively than performing many cross-

tabulations. The technique of “dummy variable multiple regression” is similar, but that 

technique is more cumbersome and difficult to describe and execute than MCA (Andrew, 

1973). 

Unlike regression, MCA does not require interval-scaled predictor variables, and 

linear relationships are not required, and also distributions need not be bivariate normal. 

MCA can be used to estimate the relationships of a set of predictors and a dependent 

variable, while simultaneously controlling for the remaining predictors.  

Since the MCA coefficients are expressed as adjustments to the grand mean, to 

make the results more interpretable, the coding of the dependent variables were 

simplified. Rather than using crash counts during an hourly observation as the dependent 

variable, a zero or one coding is used to indicate where crashes (injuries or property 

damage only – PDO - events) happened during the hour of the observation.  
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Data 

Weather, traffic and maintenance information was complemented by crash data. 

During the 4 years study period the total number of crashes that happened on the same 

stretch of highways where 27 ATR sites are located and within 10 miles distance of a 

suitable weather station totaled 1879.  Of the 28 fatalities that occurred close to the study 

sites, 7 happened when adverse environmental conditions may have contributed to the 

crashes. Of the total hours included in the data, more than 99% had no crashes occurring 

during the given hour. The crash sample was further delimited so as to include only the 

crashes that occurred on interstate and primary highways segments, with no traffic 

control present.  

Some of the ATR stations were not working all the time, and the maintenance 

information is not always complete, thus reducing the data set with complete information 

further. In addition, for many events, precipitation and visibility data were not available. 

Accordingly two separate data files were prepared. The first one includes all the adverse 

weather conditions with variables indicating if there a crash happened, and if so what 

type of crash it was during the hour when the observations were taken. The second file 

comprises all the crash data during the 4 years study period, with weather, traffic and 

maintenance data supplemented to each crash record as available.  

Crash probability analysis 

A key purpose of this study is to establish the various contributions of road 

attributes, weather, maintenance actions, and other circumstances surrounding the crash 

involvement during adverse weather conditions.  

Two dependent measures were considered10: (a).Probability of having an injury 

crash (b) probability of having a Property-Damage-Only crash. Eighteen independent 

variables were selected as suggested by theory and previous research. The independent 

                                                 
10 The probability of having a fatal crash is not analyzed in this study due to limited observations 

during the study period: Two fatal crashes happened when adverse weather conditions were present, out of 
a  total of 28 fatal crashes during the study period.  
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variables can be categorized into the following groups: 1. Road attributes: including road 

classification, speed limit, urban/rural setting, AADT. 2. Weather condition, including 

different stage of winter precipitation (before, during or after snow storm), wind speed, 

road surface temperature, and visibility 3. Maintenance efforts, including winter 

maintenance level of service, whether maintenance has been performed, plowing, 

sanding, and chemical application. 4. Other prevailing conditions, including road surface 

condition, day or night, peak hour or not. The intermediate measures, including hourly 

traffic volume, mean speed, and speed variance were included as the control variables.  

A preliminary MCA was first conducted for each group of variables. From each 

group the strong predictors are used for estimates in a final MCA. In addition, to verify 

the structural theory proposed earlier in the chapter, three separate models were 

constructed:  

• Model 1, the included independent variables are road attributes, weather and 

maintenance factors.  

• Model 2, road surface conditions were included in addition to those in model 1.  

• Model 3, traffic volume and speed variance were further added to the second 

regression.  

The basic ideas behind these three stepwise models are every time when we add 

an intermediate variable into the model the effect estimates should be attenuated. The 

effects estimated from model 1 can be understood as the total effects of weather and 

maintenance on crash probabilities. The effects estimated from model 3 are the direct 

effects of weather and maintenance on crash probabilities. The effect difference between 

model 2 and model 1 is the indirect effect of weather and maintenance through road 

surface conditions, and the effect difference between model 2 and 3 are the indirect 

effects of weather and maintenance through speed and volume. 

 


