ILLINOIS REGISTER

POLLUTION CONTROL BOARD

NOTICE OF PROPOSED AMENDMENTS

1) <u>Heading of the Part</u>: Mobile Sources

(r) -

3)

2) <u>Code Citation</u>: 35 Ill. Adm. Code 240

Section Numbers:	Proposed Action:
240.102	Amend
240.104	Amend
240.105	Amend
240.106	Amend
240.107	Amend
240.151	Amend
240.152	Amend
240.153	Amend
240.161	Repeal
240.162	Repeal
240.163	Repeal
240.164	Repeal
240.165	Repeal
240.171	Amend
240.181	Amend
240.182	Amend
240.191	Amend
240.TABLE A	Repeal
240.TABLE B	Repeal
240.TABLE C	Repeal

R11-19

received CLERK'S OFFICE

 $\frac{1}{11}$

JAN 20 2011 STATE OF ILLINOIS Pollution Control Board

- 4) <u>Statutory authority</u>: Implementing Section 13C-20 of the Vehicle Emissions Inspection Law of 2005 [625 ILCS 5/13C-20] and authorized by Sections 10, 27, and 28 of the Environmental Protection Act [415 ILCS 5/10, 27, 28]
- 5) <u>A complete description of the subjects and issues involved</u>: This proposal for public comment amends Part 240 to reflect the Vehicle Emissions Inspection Law of 2005 [625 ILCS 5/13C], which replaces and continues the Vehicle Emissions Inspection Law of 1995. Chief provisions of this proposal exempt model year 1995 and older vehicles from inspection, replace the transient loaded mode (IM 240) emissions inspection test with the OBD inspection test as the primary test, and maintain the steady-state idle exhaust gas analysis and evaporative system integrity emissions tests as secondary emissions tests. The proposal also includes clarification, updates, and clean-ups.

POLLUTION CONTROL BOARD

NOTICE OF PROPOSED AMENDMENTS

For a more detailed description of this rulemaking, see the Board's December 16, 2010, first-notice opinion and order: Revision of Enhanced Vehicle Inspection and Maintenance (I/M) Regulations: Amendments to 35 Ill. Adm. Code Part 240 (R11-17).

- Published studies or reports, and sources of underlying data, used to compose this rulemaking: The Illinois Environmental Protection Agency filed this proposal and states that its preparation relied upon the following sources:
 - a) Clean Air Act (42 U.S.C. 7401 et seq.)
 - **b**) Vehicle Emissions Inspection Law of 2005 (625 ILCS 5/13C)
 - c) 40 CFR 51, subpart S (2009)
 - d) 40 CFR 85, subpart W (2009)
 - e) 66 Fed. Reg. 18156-79 (Apr. 5, 2001)
 - f) "Reinventing the Illinois I/M Program, 2005 Clean Air Conference", James Matheny, Illinois Environmental Protection Agency, September 2005.
 - g) "The Road to OBD Only Insights and Changes, I/M Solutions", Stephen W. Thorpe, Illinois Environmental Protection Agency, June 2, 2009.
 - h) "VOC Reduction (TPD) for the Chicago Area from the Pre-'07 I/M Program and the '07-On Program", Sam Long, Illinois Environmental Protection Agency, June 11, 2009.
 - "VOC Reduction (TPD) for the Metro-East Area from the Pre-'07 I/M Program i) and the '07-On Program", Sam Long, Illinois Environmental Protection Agency. October 2010.
- 7) Will this rulemaking replace any emergency rulemaking currently in effect? No
- Does this rulemaking contain an automatic repeal date? No 8)
- 9) Does this rulemaking contain incorporations by reference? No

6)

ILLINOIS REGISTER

POLLUTION CONTROL BOARD

NOTICE OF PROPOSED AMENDMENTS

10) Are there any other proposed rulemakings pending on this Part? No

- Statement of statewide policy objectives: This proposed rulemaking does not create or enlarge a State mandate, as defined in Section 3(b) of the State Mandates Act [30 ILCS 805/3(b) (2008)].
- 12) <u>Time, place and manner in which interested persons may comment on this proposed</u> <u>rulemaking</u>: The Board will accept written public comment on this proposal. Comments should reference docket R11-19 and be addressed to:

John Therriault Clerk's Office Illinois Pollution Control Board James R. Thompson Center, Suite 11-500 100 W. Randolph St. Chicago, IL 60601

Address all questions to Timothy Fox at 312-814-6085.

Interested persons may obtain copies of the Board's opinion and order by downloading them from the Board's Web site at www.ipcb.state.il.us or by calling the Clerk's office at 312-814-3620.

13) <u>Initial regulatory flexibility analysis</u>:

4

- A) <u>Types of small businesses, small municipalities, and not-for-profit corporations</u> <u>affected</u>: The proposal would affect a small business, small municipality, or notfor-profit corporation to the extent that it owned a vehicle subject to emissions inspection.
- B) <u>Reporting, bookkeeping or other procedures required for compliance</u>: The proposal is not expected to require new reporting, bookkeeping, or other procedures for compliance.
- C) <u>Types of professional skills necessary for compliance</u>: No professional skills beyond those currently required by the existing state and federal air pollution control requirements are expected to be necessary.

<u>3</u> 11

ILLINOIS REGISTER

<u>4</u> 11

POLLUTION CONTROL BOARD

NOTICE OF PROPOSED AMENDMENTS

14) <u>Regulatory Agenda on which this rulemaking was summarized</u>: July 2010

The full text of the Proposed Amendments begins on the next page:

.

TITLE 35: ENVIRONMENTAL PROTECTION SUBTITLE B: AIR POLLUTION CHAPTER I: POLLUTION CONTROL BOARD SUBCHAPTER k: EMISSION STANDARDS AND LIMITATIONS FOR MOBILE SOURCES PART 240 MOBILE SOURCES RECEIVED SUBPART A: DEFINITIONS AND GENERAL PROVISIONS CLERK'S OFFICE Section JAN 20 2011 240.101 Preamble 240.102 Definitions STATE OF ILLINOIS Prohibitions 240.103 **Pollution Control Board** 240.105 Penalties 240.106 Determination of Violation 240.107 Incorporations by D Incorporations by Reference SUBPART B: EMISSIONS Section 240.121Smoke Emissions240.122Diesel Engine Emissions Standards for Locomotives240.123Liquid Petroleum Gas Fuel Systems240.124Vehicle Exhaust Emission Standards (Repealed) 240.125 Compliance Determination (Repealed) SUBPART C: SMOKE OPACITY STANDARDS AND TEST PROCEDURES FOR DIESEL-POWERED HEAVY DUTY VEHICLES Section 240.140 Applicability Smoke Opacity Standards and Test Procedures for Diesel-Powered Heavy 240.141 Duty Vehicles SUBPART D: STEADY-STATE IDLE MODE TEST EMISSION STANDARDS Section 240.151 Applicability Steady-State Idle Mode Vehicle Exhaust Emission Standards 240.152 240.153 Compliance Determination SUBPART E: TRANSIENT LOADED MODE TEST EMISSION STANDARDS (Repealed) Section 240.161 Applicability (Repealed) 240.162 Vehicle Exhaust Emission Start op Standards (Repealed)
240.163 Vehicle Exhaust Emission Final Standards (Repealed) Vehicle Exhaust Emission Start-Up Standards (Repealed) 240.164240.165 Vehicle Exhaust Emission Fast-Pass Standards (Repealed) 240.165 Compliance Determination (Repealed) SUBPART F: EVAPORATIVE TEST STANDARDS Section Applicability 240.171

240.172	Evaporative	System	Integrity	Test	Standa	irds
240.173	Evaporative	System	Purge Test	: Star	ndards	(Repealed)

SUBPART G: ON-ROAD REMOTE SENSING TEST EMISSION STANDARDS

Section

. .

240.181	Applicabil	ity			
240.182	On-Road Re	mote Se	ensing	Emission	Standards
240.183	Compliance	Detern	ninatio	on	

SUBPART H: ON-BOARD DIAGNOSTIC TEST STANDARDS

Section

240.191	Applicability
240.192	On-Board Diagnostic Test Standards
240.193	Compliance Determination

240.Appendix ARuleAPPENDIX ARuleintoSection Table240.Appendix BSection intoRuleTable240.APPENDIX BSection into RuleTable AVehicle240.TABLE AVehicle Exhaust Emission Start-Up Standards (Repealed)240.TableTABLE BVehicle Exhaust Emission Final Standards (Repealed)240.TableTABLE CVehicle Exhaust Emission Fast-Pass Standards (Repealed)

AUTHORITY: Implementing Sections 9 and, 10 and $\frac{13}{10}$ authorized by Sections 27 and 28 of the Environmental Protection Act [415 ILCS 5/9, 10, $\frac{13}{13}$, and 27, and 28] and Section $13\frac{\text{CBC}}{200519952005}$ [625 ILCS $5/13\frac{\text{CBC}}{2005}$.

SOURCE: Adopted as Chapter 2: Air Pollution, Part VII: Mobile Sources, filed and effective April 14, 1972; codified at 7 Ill. Reg. 13628; amended in R85-25, at 10 Ill. Reg. 11277, effective June 16, 1986; amended in R90-20 at 16 Ill. Reg. 6184, effective April 7, 1992; amended in R94-20 at 18 Ill. Reg. 18013, effective December 12, 1994; amended in R94-19 at 18 Ill. Reg. 18228, effective December 20, 1994; amended in R98-24 at 22 Ill. Reg. 13723, effective July 13, 1998; expedited correction at 22 Ill. Reg. 21120, effective July 13, 1998; amended in R01-12 at 24 Ill. Reg. 19188, effective December 18, 2000; amended in R01-8 at 25 Ill. Reg. 3680, effective February 26, 2001; amended in R02-8 at 25 Ill. Reg. 16379, effective December 18, 2001; amended in R11-19 at 35 Ill. Reg. _____, effective

BOARD NOTE: This **part**<u>Part</u> implements the Environmental Protection Act as of July 1, 1994.

NOTE: Capitalization denotes statutory language.

SUBPART A: DEFINITIONS DEFINITIONS AND GENERAL PROVISIONS

Section 240.102 Definitions

All terms whichthat appear in this Part have the definitions specified in this SectionPartSection, the Vehicle Emissions Inspection Law of 2005 [625 ILCS 5/13C], and 35 Ill. Adm. Code 201 and 211. WhereWhen conflicting definitions occur between this Section and 35 Ill. Adm. Code 201 or 211, the definitions of this Section apply in this Part."Adjusted loaded vehicle weight ("ALVW")-means-the value of the vehicle curb weight plus gross vehicle weight rating divided by two.

"Agency" means the Illinois Environmental Protection Agency.

"Diesel engine" means all types of internal-combustion engines in which air is compressed to a temperature sufficiently high to ignite fuel injected directly into the cylinder area.

"Diesel locomotive" means a diesel engine vehicle designed to move cars on a railway.

"Evaporative system integrity test" means a test of a vehicle's evaporative system. The test shall either consist of a leak check of a vehicle's fuel cap with a fuel cap pressure decay tester (fuel cap pressure decay test), a fuel cap leak flow tester (fuel cap leak flow test), or a visual functional check, as applicable.

"Fuel cap" means a device used to seal a vehicle's fuel inlet.

1.1.1

"Fuel cap leak flow test" means a test which may be performed in accordance with this Part on a vehicle's fuel cap using a fuel cap leak flow tester to determine whether the vehicle complies with the evaporative system emission standards of this Part.

"Fuel cap leak flow tester" means a device used to determine the leak flow integrity of a vehicle's fuel cap by comparing the measured leak flow of the fuel cap with an established fuel cap leak flow standard.

"Fuel cap pressure decay test" means the test performed in accordance with this Part on a vehicle's fuel cap using a fuel cap pressure decay tester to determine whether the vehicle complies with the evaporative system emission standards of this Part.

"Fuel cap pressure decay tester" means a device used to determine the pressure decay integrity of a vehicle's fuel cap by monitoring the pressure behind the fuel cap for a ten second period and comparing the measured pressure decay of the fuel cap to an established fuel cap pressure decay standard.

"Fuel cap visual functional test" means the test performed in accordance with this Part on a vehicle's fuel cap using visual analysis to determine whether the vehicle complies with the evaporative system emission standards of this Part.

"Full power position" means the throttle position at which the engine fuel delivery is at maximum flow."Gross vehicle weight rating (GVWR)" means the value specified by the manufacturer as the maximum design loaded weight of a single vehicle.

"Heavy duty vehicle" means any motor vehicle rated at more than 8500 pounds GVWR or that has a vehicle curb weight of more than 6000 pounds or that has a basic vehicle frontal area in excess of 45 square feet.

"High idle" means a vehicle operating condition with engine disconnected from an external load (placed in either neutral or park) and operating at speed of 2500 + 300 RPM."IM240" means the transient mass emissions inspection procedure that the USEPA developed and has been implemented for the use in the Illinois Enhanced Vehicle Inspection and Maintenance Program. 240 refers to the 240 second maximum duration of the driving cycle that the vehicle undergoes as it is

positioned on the dynamometer and essentially driven for the purpose of measuring the mass-amount of emissions coming out of the tail pipe.<u>+ 300 RPM.</u>

- - r

"Idle mode" means that portion of a vehicle emission test procedure conducted with the engine disconnected from an external load and operating at minimum throttle.

"Initial idle mode" means the first of up to two idle mode sampling periods during a steady-state idle mode test, during which exhaust emission measurements are made with the vehicle in "as-received" condition.

"Light duty truck 1" means a motor vehicle rated at 6000 pounds maximum GVWR or less and which has a vehicle frontal area of 45 square feet or less, and which is designed primarily for purposes of transportation of property or is a derivation of such a vehicle, or is designed primarily for transportation of persons and has a capacity of more than 12 persons, or is available with special features enabling off-street or off-highway operation and use.

"Light duty truck 2" means a motor vehicle rated between 6001 and 8500 pounds maximum GVWR and which has a vehicle frontal area of 45 square feet or less, and which is designed primarily for purposes of transportation of property or is a derivation of such a vehicle, or is designed primarily for transportation of persons and has a capacity of more than 12 persons, or is available with special features enabling off-street or off-highway operation and use.

"Light duty vehicle" means a passenger car or passenger car derivative capable of seating 12 passengers or fewer. "Loaded mode" means that portion of a vehicle emission test procedure conducted with the vehicle positioned and operating under load on a chassis dynamometer.---

"Loaded vehicle weight (LVW)" means the vehicle curb weight plus 300 pounds."Measured values" means five-second running averages of exhaust emission concentrations sampled at a minimum rate of twice per second.

"Model year" means the year of manufacture of a motor vehicle based upon the annual production period as designated by the manufacturer and indicated on the title and registration of the vehicle. If the manufacturer does not designate a production period for the vehicle, then "model year" means the calendar year of manufacture.

"Motor vehicle" as used in this Part, shall have the same meaning as in Section 1-146 of the Illinois Vehicle Code [625 ILCS 5/1-146].

"Opacity" means the percentage of light transmitted from a source that is prevented from reaching a light detector.

"Preconditioning mode" means a period of steady-state loaded mode or high-idle operation conducted to ensure that the engine and emissions control system components are operating at normal operating temperatures, thus minimizing false failures caused by improper or insufficient warm-up.

"Second-chance idle mode" means the second of two idle mode sampling periods during a steady-state idle mode test, preceded by a preconditioning mode and utilized as a second chance to pass idle exhaust emission standards immediately following an initial idle mode failure. "Snap-acceleration test" means a test to measure exhaust smoke opacity from heavy-duty diesel powered vehicles in accordance with the SAE J1667 procedure, incorporated by reference at Section 240.107 of this Subpart.

"Steady-state idle test" means a vehicle emission test procedure consisting of an initial idle mode measurement of exhaust emissions followed, if necessary, by a loaded or high idle preconditioning mode and a second-chance idle mode."Transient loaded mode test" or "IM240 testing" or "transient IM240 loaded mode exhaust emission test procedure" or "transient IM240 test procedure" means a vehicle emissions test run on an inertial and power absorbing dynamometer using USEPA's IM240 driving cycle consisting of accelerations and decelerations simulating on road driving conditions.

"Vehicle curb weight" means the actual vehicle weight plus standard equipment and a full fuel tank.

(Source: Amended at 35 Ill. Reg.____, effective _____)

Section 240.104 Inspection

a) All motor vehicles subject to inspection pursuant to Section 13CBC-15 of the Vehicle Emissions Inspection Law of 200519952005 [625 ILCS 5/13CBC-15] shall comply with applicable vehicle emission standards contained in Sections 240.152, 240.162, 240.163, 240.172, 240.182, and 240.192 of this Part.

b) All diesel-powered vehicles subject to inspection pursuant to Section 13-109.1 of the Illinois Vehicle Code [625 ILCS 5/13-109.1] must comply with applicable smoke opacity standards set forth in Section 240.141(a) of this Part.

(Source: Amended at 35 Ill. Reg.____, effective _____)

Section 240.105 Penalties

a) Any violations of Sections 240.103, 240.121, 240.122, orand or 240.123 of this Part shall be subject to the penalties as set forth in Section 42 of the Act [415 ILCS 5/42].

b) Any violations of Sections 240.104(b), 240.152, 240.162, 240.163, 240.172, 240.182, orand or 240.192 of this Part shall be subject to the penalties as set forth in Sections 13CBC-55 and 13CBC-60 of the Vehicle Emissions Inspection Law [625 ILCS 5/13CBC-55 and 13CBC-60].

c) Any violation of Section 240.141(a) of this Part will be subject to penalties as set forth in Section 13-109.1 of the Illinois Vehicle Code [625 ILCS 5/13-109.1].

(Source: Amended at 35 Ill. Reg.____, effective _____)

Section 240.106 Determination of Violation

a) Any violations of Sections 240.103, 240.121, 240.122, orand or 240.123 of this Part shall be determined by visual observation or by a test procedure employing an opacity measurement system as qualified by 35 Ill. Adm. Code 201, Subpart J.

Any violations of Sections 240.152, 240.162, 240.163, 240.172, 240.182, or
 240.192 of this Part shall be determined in accordance with test procedures
 adopted by the Agency in 35 Ill. Adm. Code 276.

c) Any violation of Section 240.141(a) of this Part will be determined in accordance with test procedures set forth in Section 240.141(b) of this Part.

(Source: Amended at 35 Ill. Reg.____, effective _____)

Section 240.107 Incorporations by Reference

The following materials is are material is incorporated by reference and includes no later editions or amendments:

a) Society of Automotive Engineers (SAE), 400 Commonwealth Drive, Warrendale, PA 15096-0001, www.sae.org: Report J1667 Snap-Acceleration Smoke Test Procedure for Heavy-Duty Diesel Powered Vehicles (February 1996).

b) United States Environmental Protection Agency (USEPA), "High Tech I/M Test-Procedures, Emission Standards, Quality Control Requirements, and Equipment-Specifications: IM240 and Functional Evaporative System Tests, Revised Technical Cuidance," Report EPA-AA-RSPD-IM-96-1 (June 1996), 2565 Plymouth Road, Ann Arbor, MI 48105.

(Source: Amended at 35 Ill. Reg.____, effective _____)

SUBPART D: STEADY-STATE IDLE MODE TEST EMISSION STANDARDS

Section 240.151 Applicability

The standards of this Subpart D-apply to thoseallthose vehicles identified in subsection 13C-25(d) inspected upon implementation of the Vehicle Emissions Inspection Law of 20051995 and identified in Subsections 13CB-25(c) and (d) of that law utilizing steady-state exhaust emission test procedures-adopted by the Agency.2005.

(Source: Amended at 35 Ill. Reg.____, effective _____)

Section 240.152 Steady-State Idle Mode Vehicle Exhaust Emission Standards

a) Exhaust emissions from light duty vehicles shall not exceed the following limitations:

Model YearCarbon	MonoxideHydrocarbons	as Hexane (%)	<u> </u>
(ppm)1968 - 1971	9.0	9001972 - 1974	8.0
8001975 - 1977 -	7.0	7001978 - 1979 - 7001978 - 1979 - 7001978 - 1979 - 7001978 - 70001978 - 70001978 - 7001978 - 7001978 - 7001978 - 7001978 - 70	6.0
6001980	3.0	300199681 and newerlate	er 1.2
220(%)(ppm)1996	and newer1.2220		

b) Exhaust emissions from light duty trucks 1 and light duty trucks 2 shall not exceed the following limitations:

Model YearCarbon Monoxide	Hydrocarbons as	Hexane	(%)_		
(ppm)1968 1971	9.0	9001972	<u> </u>		
8001975 1978	7.0		1980	6.0	
600199681 and newerlater	1.2		220(%)(ppm)1996 and	
newer1 2220					

c) Exhaust emissions from heavy duty vehicles shall not exceed the following limitations:

Model Year			
Carbon MonoxideHydrocarbon	s as Hexane	(%)	(ppm)1968 -
1971 9.5	15001972	1978	9.0
9001979 - 1984 - 7	.0	700199685 a	nd newerlater
3.0	rCarbon MonoxideHy	drocarbons a	s Hexane(%) (ppm)1996 and
newer3.0300			
(Source: Amended at	35 Ill. Reg	, effectiv	e)

Section 240.153 Compliance Determination

Compliance shall be determined based upon the measurement of exhaust emissions using the steady-state idle test while the vehicle to be tested is operating in the idle mode. The vehicle shall pass exhaust emissions inspection if at any time during the initial idle mode or second-chance idle mode of the steady-state idle test the measured values are at or below the applicable limits of Section 240.152 of this Subpart. Vehicles failing the initial idle mode shall undergo a loaded or high idle preconditioning mode and receive a second-chance idle mode unless no measured values less than 1800 ppm HC are obtained within an elapsed time of 30 seconds.

(Source: Amended at 35 Ill. Reg.____, effective _____)

SUBPART E: TRANSIENT LOADED MODE TEST EMISSION STANDARDS (Repealed)

Section 240.161 Applicability (Repealed)

The standards of this Subpart apply to model year 1981 and newer light duty vehicles, light duty trucks 1, and light duty trucks 2 which are inspected utilizing transient IM240 loaded mode exhaust emission test procedures adopted by the Agency in 35 Ill. Adm. Code 276.

(Source: Repealed at 35 Ill. Reg.____, effective _____)

Section 240.162 Vehicle Exhaust Emission Start-Up Standards (Repealed)

Vehicle exhaust emission start-up standards contained in Section 240.Table A ofthis Part shall apply for all vehicles subject to inspection until January 31, 2001. From February 1, 2001, onward, these standards shall continue to apply toall model year 1981 through model year 1987 LDV, LDT1, and LDT2 vehicles. All standards are expressed in grams per mile (gpm).

(Source: Repealed at 35 Ill. Reg.____, effective _____)

Section 240.163 Vehicle Exhaust Emission Final Standards (Repealed)

Beginning February 1, 2001, vehicle exhaust emission final standards contained in Section 240.Table B of this Part shall apply for all vehicles subject to except for model year 1981 through model year 1987 LDV, LDT1, and LDT2 vehicles, which shall continue to use the standards contained in Section 240.Table A of this Part as described in Section 240.162. All standards are expressed in grams per mile (gpm).

(Source: Repealed at 35 Ill. Reg.____, effective _____)

Section 240.164 Vehicle Exhaust Emission Fast-Pass Standards (Repealed)

Vehicle exhaust emissions fast pass standards contained in Section 240.Table C of this Part will apply for all vehicles subject to inspection under Section 240.161 of this Part utilizing the IM240 transient loaded mode exhaust emission test procedures that have been adopted by the Agency in 35 Ill. Adm. Code 276. All standards are expressed as the cumulative grams for each second of the composite and Phase 2 tests.

(Source: Repealed at 35 Ill. Reg.____, effective _____)

Section 240.165 Compliance Determination (Repealed)

Vehicle Exhaust Emission Start Up and Final Standards Compliance shall abe determined based upon the measurement of exhaust emissions while operating the vehicle on a dynamometer and following the driving cycle as specified for the transient IM240 test procedures adopted by the Agency. If the corrected, composite emission rates exceed standards for any pollutant, additional analysis of-test results shall review the second phase ("Phase 2") of the driving cycleseparately. Phase 2 shall include second 94 through second 239 of the driving cycle. Second by second emission rates in grams and composite emission rates in grams per mile for Phase 2 and for the entire composite test shall be recorded for each pollutant. For any given pollutant, if the composite emission level is at or below the composite standard or if the Phase 2 grams per mile emission level is at or below the applicable Phase 2 standard, then the vehicle shall pass the test for that pollutant. Composite and Phase 2 emission rates shall be calculated in accordance with procedures specified in "High Tech I/M Procedures,-Emissions Standards, Quality Control Requirements, and Equipment Specifications: IM240 and Functional Evaporative System Tests, Revised Technical Guidance", incorporated by reference at Section 240.107(c) of this Part.

b) Vehicle Exhaust Emission Fast Pass Standards Compliance will be determined based upon the measurement of exhaust emissions while operating the vehicle on a dynamometer and following the driving cycle as specified for the transient IM240 test procedures adopted by the Agency. Vehicles will be fastpassed using the following algorithm:

1) Beginning at second 30 of the driving cycle, cumulative second by second emission levels for each second, calculated from the start of the cycle in grams, will be compared to the cumulative fast pass emission standards for the second under consideration. Beginning at second 109, fast pass decisions are based upon analysis of cumulative emissions in Phase 2, the portion of the testbeginning at second 94, as well as emission levels accumulated from the beginning of the composite test.

2) A vehicle will pass the transient IM240 test for a given pollutant if either of the following conditions occurs:

A) cumulative emissions of the pollutant are below the full cycle fast pass standard for the second under consideration; or

B) at second 109 and later, cumulative Phase 2 emissions are below the Phase 2 fast pass standards for the second under consideration.

3) Testing may be terminated when fast-pass criteria are met for all subjectpollutants in the same second.

4) If a fast pass determination cannot be made for all subject pollutants before the driving cycle ends, the pass/fail determination for each component

will be based on composite or Phase 2 emissions over the full driving cycleaccording to the procedures in subsection (a) of this Section. In cases where fast-pass standards are not used, composite emission rates in grams per mile for-Phase 2 and for the entire composite test will be recorded for each pollutant.

5) Composite and Phase 2 emission rates will be calculated in accordance with procedures specified in "High-Tech I/M Procedures, Emissions Standards, Quality Control Requirements, and Equipment Specifications: IM240 and Functional Evaporative System Tests, Revised Technical Guidance" incorporated by reference at Section 240.107(c) of this Part.

(Source: Repealed at 35 Ill. Reg.____, effective _____)

SUBPART F: EVAPORATIVE TEST STANDARDS

Section 240.171 Applicability

The standards of this Subpart apply to those vehicles identified in subsection 13C-25(d) of the Vehicle Emissions Inspection Law of 2005The standards of Section 240.172 of this Subpart shall apply to all model year 1968 and newer vehicles required at the time of manufacture to be equipped with evaporative emission control systems.<u>2005.</u>

(Source: Amended at 35 Ill. Reg.____, effective _____)

SUBPART G: ON-ROAD REMOTE SENSING TEST EMISSION STANDARDS

Section 240.181 Applicability

The standards of this Subpart apply to thoseall those vehicles tested pursuant to subsection 13C-15(b)(11) of the Vehicle Emissions Inspection Law of 2005which are inspected utilizing the on-road remote sensing exhaust emission test procedures that will be adopted by the Agency in 35 Ill. Adm. Code 276.2005.

(Source: Amended at 35 Ill. Reg.____, effective _____)

Section 240.182 On-Road Remote Sensing Emission Standards

Exhaust emissions from all subject vehicles and trucks shall not exceed the following limitations:

Model Year <u>(ppm)</u> Carbon Monoxide		Hydrocarbons		<u>YearHydrocarbons</u>		
	<u>4002.0</u>	(ppm)		(%)1996	and newer 2+	
1988-1991		450	3.0			
1981-1987		- 650	5.0			
1975-1980		- 1300	7.0			
1968-1974		1700	8.0			
(Source: Am	ended at 35 I	11. Reg	,	effectiv	e)

SUBPART H: ON-BOARD DIAGNOSTIC TEST STANDARDS

Section 240.191 Applicability

The standards of this Subpart apply to those vehicles tested pursuant to subsection 13C-25(c) of the Vehicle Emissions Inspection Law of 2005all 1996 and newer model year light duty vehicles, light duty trucks 1, and light duty trucks 2 that are required to meet the standards contained in 40 CFR § 86.094-17 and which are inspected utilizing the on-board diagnostic test procedures contained in 35 Ill. Adm. Code 276.209. Vehicles that receive a result of fail do not thereby fail their emissions test until January 1, 2002.2005.

(Source: Amended at 35 Ill. Reg.____, effective _____)

Section 240.TABLE A Vehicle Exhaust Emission Start-Up Standards (Repealed)

Light Duty Vehicles:

Model YearsHydrocarbonsCarbon MonoxideOxides of Nitrogen Composite Phase-2 Composite Phase-2 Composite Phase 2 (gpm) (gpm) (gpm) (gpm) (gpm) 1996+0.80 0.50 15.0 12.0 20 Reserved1991-19951.200.7520.016.02.5Reserved1983-19902.001.2530.024.03.0Reserved1981-19822.001.2560.048.03.0Reserved Light Duty Trucks 1: Model YearsHydrocarbonsCarbon MonoxideOxides of NitrogenCompositePhase 2CompositePhase 2CompositePhase 2(gpm)(gpm)(gpm)(gpm)(gpm) 1996+ (< 3750 LVW)0.800.5015.012.02.0Reserved (> 3750-LVW) 1.000.6320.016.02.5Reserved1991-19952.401.5060.048.03.0Reserved1988-19903.202.0080.064.03.5Reserved1984-19873.202.0080.064.07.0Reserved1981-19837.505.00100.080.07.0Reserved Light Duty Trucks 2: Model YearsHydrocarbonsCarbon-MonoxideOxides of NitrogenCompositePhase 2CompositePhase 2CompositePhase 2(qpm) (qpm) (qpm) (qpm) (qpm) 1996+ (< 5750 ALVW) 1.000.6320.016.02.5Reserved (> 5750-ALVW) 2.401.5060.048.04.0Reserved1991-19952.401.5060.048.04.5Reserved1988-19903.202.0080.064.05.0Reserved1984-19873.202.0080.064.07.0Reserved1981-19837.505.00100.080.07.0Reserved (Source: Repealed at 35 Ill. Reg.____, effective ____)

Section 240.TABLE B Vehicle Exhaust Emission Final Standards (Repealed) (Source: Repealed at 35 Ill. Reg. _____, effective _____)

Light Duty Vehicles: Section 240.TABLE B Vehicle Exhaust Emission Final Standards (Repealed)

```
Model YearsHydrocarbonsCarbon MonoxideOxides of Nitrogen
CompositePhase 2CompositePhase 2(gpm) (gpm) (g
```

LVW)0.800.5013.010.01.8Reserved1988-19951.601.0040.032.02.5Reserved1984-19871.601.0040.032.04.5Reserved1981-19833.402.0070.056.04.5Reserved Light Duty Trucks 2:

(Source: Repealed at 35 Ill. Reg. , effective)

Model YearsHydrocarbonsCarbon MonoxideOxides of NitrogenCompositePhase 2CompositePhase 2CompositePhase 2(gpm)(gpm)(gpm)(gpm)(gpm) 1996+ (< 5750 ALVW)0.800.5013.010.01.8Reserved (> 5750 ALVW)0.800.5015.012.02.0Reserved1988 19951.601.0040.032.03.5Reserved1984 19871.601.0040.032.04.5Reserved1981 19833.402.0070.056.04.5Reserved Section 240.TABLE C Vehicle Exhaust Emission Fast-Pass Standards (Repealed)

(Source: Repealed at 35 Ill. Reg.____, effective _____)

Section 240.TABLE C Vehicle Exhaust Emission Fast-Pass Standards (Repealed)

a) Vehicles having composite hydrocarbon emission limitations of less than 1.25grams per mile, in Section 240.Table A or Section 240.Table B, shall use the hydrocarbon fast pass standards contained in this subsection. Vehicles having composite carbon monoxide emission limitations of less than 20.0 grams per mile, in Section 240.Table A or Section 240.Table B, shall use the carbon monoxide fast-pass standards contained in this subsection:

	Hydrocarbor	is Carb e	n Monoxide		
	Second	Composite-	Phase 2	Composite-	Phase 2
30	0.124	N/A	0.693	N/A	
31	0.126	N/A	0.773	N/A	
32	0.129	N/A	0.837	N/A	
33	0.135	N/A	0.851	N/A	
34	0.140	N/A	0.853	N/A	
35	0.146	N/A	0.857	N/A	
36	0.150	N/A	0.900	N/A	
37	0.153	N/A	0.960	N/A	
38	0.156	N/A	1.034	N/A	
39	0.160	N/A	1.070	N/A	
40	0.165	N/A	1.076	N/A	
41	0.169	N/A	1.083	N/A	

42	0.172	N/A	$\frac{1.102}{1.102}$	N/A
43	0.173	N/A	$\frac{1.111}{1.111}$	N/A
44	0.177	N/A	$\frac{1.114}{1.114}$	N/A
45	0.197	N/A	$\frac{1.157}{1.157}$	N/A
46	0.200	N/A	1.344	N/A
47	0.208	N/A	1.482	N/A
48	0.221	N/A	1.530	N/A
49	0.222	N/A	1.542	N/A
50	0.235	N/A	1.553	N/A
51	0.238	N/A	1.571	N/A
52	0.240	N/A	1.595	N/A
53	0.242	N/A	1.633	N/A
54	0.246	N/A	1.685	N/A
55	0.249	N/A	1.689	N/A
56	0.252	N/A	1.693	N/A
57	0.261	N/A	$\frac{1.700}{1.700}$	N/A
58	0.271	N/A	$\frac{1.700}{1.723}$	N/A
59	0.276	N/A	1.852	N/A
60	0.278	N/A	$\frac{1.832}{1.872}$	N/A
61	0.280	N/A	$\frac{1.872}{1.872}$	N/A
62	0.282	N/A	$\frac{1.872}{1.872}$	N/A
63	0.283	N/A N/A	$\frac{1.072}{1.900}$	N/A
64	0.284	N/A	$\frac{1.900}{1.917}$	N/A
65	0.285	N/A N/A	$\frac{1.91}{1.944}$	N/A
66	0.286	N/A	2.000	N/A
67	0.288	N/A	2.000	N/A
68	$\frac{0.200}{0.291}$	N/A	$\frac{2.000}{2.064}$	N/A
69	0.294	N/A N/A	2.004 2.076	N/A
35 70	0.296	N/A N/A	2.104	N/A
$\frac{70}{71}$	0.298	N/A	$\frac{2.104}{2.117}$	N/A
$\frac{71}{72}$	0.300	N/A	$\frac{2.117}{2.125}$	N/A
$\frac{72}{73}$	0.302	N/A N/A	$\frac{2.129}{2.130}$	N/A
73 74	$\frac{0.302}{0.304}$	N/A	$\frac{2.130}{2.138}$	N/A
74 75	$\frac{0.304}{0.307}$	N/A N/A	2.150 2.152	N/A
75 76	0.308	N/A N/A	$\frac{2.152}{2.170}$	N/A
70 77	0.308	N/A	2.188	N/A
77 78	0.308	N/A	2.200	N/A
70 79	$\frac{0.300}{0.314}$	N/A	2.212	N/A
79 80	$\frac{0.314}{0.320}$	N/A	$\frac{2.212}{2.212}$	N/A
81 82	0.324 0.327	N/A N/A	$\frac{2.221}{2.222}$	N/A N/A
83	0.329	N/A	$\frac{2.222}{2.227}$	N/A
83	0.333	N/A	2.236	N/A
	0.336	N/A	2.243	N/A
85				N/A
86	0.339	N/A	2.262	
87	0.343	N/A	$\frac{2.271}{2.291}$	N/A
88	0.347	N/A	2.284	N/A
89 00	0.350 0.356	N/A	2.299	N/A
90 91	0.356	N/A	2.308	N/A
91	0.358	N/A	2.326	N/A
92	0.360	N/A	$\frac{2.330}{2.331}$	N/A
93	0.363	N/A	$\frac{2.331}{2.344}$	N/A
94	0.367	N/A	$\frac{2.344}{2.347}$	N/A
95	0.370	N/A	2.347	N/A
96	0.372	N/A	2.355	N/A
97	0.376	N/A	2.395	N/A
98	0.388	N/A	2.451	N/A

· ·

99	0.396	N/A	2.508	N/A
100	0.405	N/A	2.590	N/A
101	0.410	N/A	2.660	N/A
102	0.411	N/A	2.749	N/A
103	0.412	N/A	2.913	N/A
104	0.413	N/A	3.162	N/A
105	0.421	N/A	3.170	N/A
106	0.428	N/A	3.197	N/A
107	0.430	N/A	3.288	N/A
108	0.455	N/A	3.419	N/A
109	0.459	0.015	3.587	0.168
110	0.462	0.017	3.595	0.173
111	0.464	0.021	3.640	0.237
112	0.466	0.024	3.740	0.266
113	0.468	0.024	3.868	0.280
114	0.471	0.025	3.877	0.291
115	0.488	0.026	3.934	0.314
116	0.513	0.029	4.015	0.331
117	0.538	0.032	4.061	0.345
118	0.561	0.035	4.063	0.350
119	0.577	0.035	4.079	0.356
120	0.580	0.036	4.140	0.367
121	0.586	0.038	4.185	0.388
122	0.594	0.040	4.199	0.407
123	0.603	0.041	4.205	0.463
124	0.610	0.042	4.212	0.480
125	0.615	0.042	4.232	0.506
126	0.624	0.042	4.298	0.518
127	0.628	0.045	4.344	0.522
128	0.632	0.046	4.361	0.525
129	0.637	0.046	4.366	0.528
130	0.641	0.049	4.369	0.530
131	0.643	0.050	4.372	0.530
132	0.644	0.052	4.435	0.534
133	0.645	0.054	4.523	0.550
134	0.647	0.054	4.524	0.554
135	0.651	0.054	4.525	0.590
136	0.658	0.055	4.531	0.616
137	0.663	0.055	4.534	0.639
138	0.666	0.056	4.542	0.653
139	0.668	0.059	4.553	0.662
140	0.670	0.061	4.554	0.683
141	0.672	0.061	4.554	0.696
142	0.675	0.061	4.554	0.708
143	0.678	0.063	4.554	0.721
144	0.681	0.064	4.554	0.739
145	0.684	0.065	4.554	0.742
146	0.686	0.066	4.554	0.743
147	0.688	0.067	4.554	0.745
148	0.690	0.068	4.554	0.748
149	0.692	0.069	4.554	0.751
150	0.694	0.070	4.554	0.762
151	0.696	0.071	4.556	0.789
152	0.698	0.072	4.556	0.790
153	0.700	0.073	4.565	0.794
154	0.702	0.073	4.612	0.799
155	0.704	0.074	4.834	0.805

150	0 700	0 077	F 700	0 010	
156	0.706	0.077	5.702	0.842	
157	0.708	0.079	5.841	0.990	
158	0.710	0.082	6.170	1.038	
159	0.712	0.082	6.670	1.357	
160	0.716	0.086	7.425	1.455	
161	0.750	0.095	8.379	1.546	
162	0.784	0.107	9.648	1.824	
163	0.805	0.115	10.918	2.746	
164	0.840	0.122	$\frac{12.157}{12}$	3.073	
165	0.853	0.127	$\frac{12.731}{12.731}$	3.633	
166	0.874	0.159	$\frac{12.831}{2}$	4.505	
167	0.903	0.186	$\frac{12.892}{2}$	4.952	
168	0.910	0.189	12.932	5.254	
169	0.914	0.200	13.702	5.730	
170	0.916	0.220	14.139	6.051	
171	0.919	0.236	14.964	6.333	
172	0.931	0.247	$\frac{15.704}{15}$	6.490	
173	0.948	0.257	$\frac{16.253}{1}$	6.796	
174	0.983	0.267	16.907	7.205	
175	1.018	0.283	17.655	8.151	
176	1.027	0.295	18.020	8.230	
$\frac{177}{177}$	1.035	0.312	$\frac{10.020}{18.349}$	8.584	
178	1.055 1.051	0.312	$\frac{10.519}{18.671}$	8.800	
179	$\frac{1.031}{1.074}$	0.323	$\frac{10.071}{18.972}$	8.847	
180	1.074 1.084	0.325	$\frac{10.972}{19.228}$	8.913	
$\frac{100}{181}$	$\frac{1.004}{1.099}$	$\frac{0.337}{0.345}$	$\frac{19.220}{20.123}$	9.122	
$\frac{101}{182}$	$\frac{1.055}{1.121}$	0.350	$\frac{20.125}{20.405}$	9.532	
$\frac{102}{183}$	$\frac{1.121}{1.132}$	$\frac{0.350}{0.359}$	$\frac{20.405}{20.754}$	$\frac{9.552}{10.256}$	
184	$\frac{1.152}{1.152}$	0.387	21.684	10.862	
185	$\frac{1.161}{1.161}$	0.398	21.955	10.996	
186	1.168	0.400	22.650	11.206	
187	1.175	0.402	22.989	11.514	
188	1.181	0.405	23.535	11.894	
189	1.188	0.418	23.876	12.019	
190	1.203	0.429	24.018	$\frac{12.170}{12.170}$	
191	1.219	0.442	24.464	12.517	
192	1.233	0.457	24.685	12.598	
193	$\frac{1.251}{1.251}$	0.473	24.931	12.625	
194	1.255	0.487	$\frac{25.188}{25.188}$	12.653	
195	1.258	0.501	25.468	12.777	
196	1.265	0.510	25.627	12.906	
197	1.280	0.512	25.746	12.989	
198	1.293	0.514	25.850	13.060	
199	1.301	0.516	25.974	13.165	
200	1.313	0.518	26.141	13.242	
201	1.324	0.527	26.225	13.412	
202	1.332	0.540	26.338	13.662	
203	1.341	0.547	26.547	13.773	
204	1.357	0.553	26.818	13.942	
205	1.375	0.559	27.052	14.090	
206	1.392	0.563	27.393	14.224	
207	1.408	0.567	27.501	14.426	
208	1.422	0.571	27.632	14.498	
209	1.433	0.575	27.803	$\frac{14.776}{14.776}$	
$\frac{209}{210}$	$\frac{1.443}{1.443}$	0.579	27.953	14.907	
$\frac{210}{211}$	1.453	0.595	28.205	14.916	
212	$\frac{1.463}{1.463}$	0.605	28.543	$\frac{11.910}{15.014}$	
	1.100	0.000	201010		

· ·

	213	1.468	0.614	28.997	$\frac{15.221}{}$
	214	1.470	0.622	29:000	15.472
	215	1.474	0.627	29.005	15.555
	216	1.478	0.638	29.081	15.652
	217	1.481	0.643	29.281	15.969
	218	1.484	0.643	29.483	16.028
	219	1.487	0.645	29.734	$\frac{16.375}{1}$
	220	1.490	0.651	29.803	16.487
	221	1.493	0.655	29.821	$\frac{16.524}{1}$
	222	1.504	0.663	29.847	16.578
	223	1.522	0.671	29.862	16.684
	224	1.547	0.675	29.873	16.755
	225	1.549	0.684	30.008	16.770
	226	1.562	0.694	30.126	16.805
	227	1.574	0.701	30.127	16.865
	228	1.579	0.702	30.127	16.960
	229	1.584	0.708	30.208	16.960
	230	1.589	0.708	30.314	16.962
	231	1.590	0.709	30.323	16.988
	232	1.596	0.710	30.325	$\frac{17.072}{}$
ŝ	233	1.598	0.710	30.368	17.094
	234	1.604	0.711	30.411	17.184
	235	1.610	0.712	30.416	17.187
	236	1.612	0.712	30.428	17.188
	237	1.613	0.712	30.430	$\frac{17.189}{17.189}$
	238	1.614	0.713	30.452	$\frac{17.241}{}$
	239	1.615	0.716	30.488	$\frac{17.370}{17.370}$

b) Vehicles having composite hydrocarbon emission limitations of at least 1.25 grams per mile but less than 2.00 grams per mile, in Section 240.Table A or Section 240.Table B, shall use the hydrocarbon fast-pass standards contained inthis subsection. Vehicles having and composite carbon monoxide emissionlimitations of at least 20.0 grams per mile but less than 30.0 grams per mile, in Section 240.Table A or Section 240.Table B, shall use the carbon monoxide fast-pass standards contained in this subsection; <u>JCAR350240-1100129r01</u>

2.162

2-307

2.343

2.376

2.406

N/A

N/A

N/A

N/A

N/A

Hydrocarbons-Carbon Monoxide Second <u>Composite</u> Phase 2 Composite Phase 2 0.247 N/A 1.502 N/A 30 N/A 1.546 N/A 31 0.253 1.568 N/A 0.258 N/A 32 33 0.263 N/A 1.582 N/A N/A 1.593 N/A 34 0.268 35 1.602 N/A 0.277 N/A 1.621 0.283 N/A N/A 36 37 0.293 N/A 1.631N/A N/A 38 0.297 N/A 1.7021.78439 0.298 N/A N/A 0.313 1.879 N/A 40 N/A

N/A

N/A

N/A

N/A

N/A

0.320

0.327

0.342

0.360

0.376

41

42

43

44

46	0.389	N/A	2.433	N/A
47	0.408	N/A	2.458	N/A
48	0.423	N/A	2.483	N/A
49	0.434	N/A	2.774	N/A
50	0.444	N/A	2.844	N/A
51	0.454	N/A	2.900	N/A
52	0.465	N/A	2.936	N/A
53	0.472	N/A	3.133	N/A
54	0.478	N/A	3.304	N/A
55	0.485	N/A	3.407	N/A
56	0.493	N/A	3.456	N/A
57	0.500	N/A	3.480	N/A
58	0.505	N/A	3.518	N/A
59	0.514	N/A	3.560	N/A
60	0.537	N/A	3.593	N/A
61	0.540	N/A	3.628	N/A
62	0.543	N/A	3.641	N/A
63	0.546	N/A	3.655	N/A
64	0.551	N/A	3.680	N/A
65	0.559	N/A	3.700	N/A
66	0.567	N/A	3.728	N/A
67	0.575	N/A	3.857	N/A
68	0.588	N/A	3.894	N/A
69	0.595	N/A	3.943	N/A
70	0.601	N/A	3.983	N/A
71	0.606	N/A	4.009	N/A
72	0.610	N/A	4.023	N/A
73	0.617	N/A	4.023	N/A
74	0.631	N/A	4.053	N/A
75	0.643	N/A	4.063	N/A
76	0.651	N/A	4.077	N/A
77	0.659	N/A	4.225	N/A
78	0.667	N/A	4.243	N/A
79	0.676	N/A	4.260	N/A
80	0.681	N/A	4.282	N/A
81	0.685	N/A	4.322	N/A
82	0.689	N/A	4.398	N/A
83	0.694	N/A	4.482	N/A
84	0.700	N/A	4.515	N/A
85	0.705	N/A	4.518	N/A
86	0.709	N/A	4.520	N/A
87	0.713	N/A	4.522	N/A
88	0.717	N/A	4.522	N/A
89	0.721	N/A	4.523	N/A
90	0.724	N/A	4.526	N/A
91	0.727	N/A	4.527	N/A
92	0.729	N/A	4.527	N/A
93	0.731	N/A	4.528	N/A
94	0.734	N/A	4.528	N/A
95	0.740	N/A	4.528	N/A
96	0.748	N/A	4.529	N/A
97	0.759	N/A	4.575	N/A
98	0.771	N/A	4.703	N/A
99	0.783	N/A	4.805	N/A
100	0.793	N/A	4.886	N/A
101	0.810	N/A	4.957	N/A
102	0.823	N/A	5.104	N/A

•

103	0.836	N/A	5.340	N/A
104	0.853	N/A	5.496	N/A
105	0.871	N/A	5.625	N/A
106	0.887	N/A	5.815	N/A
107	0.899	N/A	6.473	N/A
108	0.931	N/A	7.037	N/A
109	0.947	0.040	7.419	0.246
110	0.957	0.047	7.643	0.257
111	0.965	0.052	7.759	0.286
112	0.971	0.056	7.824	0.379
113	0.977	0.061	7.889	0.425
114	0.983	0.064	7.960	0.457
115	1.003	0.072	8.024	0.477
116	1.030	0.081	8.076	0.494
117	1.041	0.082	8.111	0.504
118	1.050	0.083	8.130	0.512
119	1.052	0.092	8.148	0.519
120	1.055	0.094	8.211	0.529
121	1.061	0.097	8.478	0.529
122	$\frac{1.071}{1.071}$	0.100	8.548	0.530
123	1.081	0.103	8.561	0.531
124	1.091	0.106	8.568	0.532
125	$\frac{1.102}{1.102}$	0.108	8.572	0.533
126	$\frac{1.110}{1.110}$	0.110	8.584	0.548
127	$\frac{1.116}{1.116}$	0.112	8.592	0.610
128	1.121	0.114	8.596	0.614
129	1.125	0.116	8.597	0.622
130	1.128	0.118	8.601	0.631
131	1.130	0.120	8.605	0.640
132	$\frac{1.132}{1.132}$	0.122	8.608	0.646
133	1.134	0.123	8.626	0.650
134	$\frac{1.135}{1.135}$	0.124	8.650	0.652
135	1.143	0.127	8.660	0.738
136	$\frac{1.147}{1.147}$	0.130	8.767	0.754
137	1.156	0.134	9.029	0.780
138	1.163	0.139	9.238	0.795
139	1.186	0.146	9.389	0.804
140	1.253	0.149	9.493	0.810
141	1.262	0.151	9.583	0.815
142	$\frac{1.271}{1.271}$	0.153	9.626	0.818
143	$\frac{1.277}{1.000}$	0.155	9.669	0.821
144	1.283	0.157	9.716	0.825
145	1.291	0.162	9.763	0.840 0.847
146	1.294	0.164	9.809 9.852	0.847 0.855
147	1.296	0.166 0.168	9.852 9.885	0.865
148	$\frac{1.298}{1.202}$	$\frac{0.168}{0.169}$	9.932	$\frac{0.865}{0.874}$
149	1.303		9.932 9.986	0.874 0.891
150	$\frac{1.316}{1.330}$	0.170 0.171	$\frac{9.986}{10.039}$	0.891 0.914
151 152	$\frac{1.330}{1.342}$	$\frac{0.171}{0.172}$	$\frac{10.035}{10.072}$	$\frac{0.914}{0.929}$
$\frac{152}{153}$	$\frac{1.342}{1.348}$	$\frac{0.172}{0.173}$	$\frac{10.072}{10.090}$	0.925 0.937
$\frac{153}{154}$	$\frac{1.348}{1.353}$	$\frac{0.173}{0.175}$	$\frac{10.090}{10.105}$	$\frac{0.937}{0.942}$
154 155	$\frac{1.353}{1.362}$	$\frac{0.175}{0.178}$	$\frac{10.105}{10.146}$	0.942 0.949
155 156	$\frac{1.362}{1.365}$	$\frac{0.170}{0.180}$	$\frac{10.140}{10.245}$	1.375
$\frac{150}{157}$	$\frac{1.365}{1.366}$	$\frac{0.180}{0.189}$	$\frac{10.245}{10.397}$	$\frac{1.575}{1.576}$
157 158	$\frac{1.300}{1.373}$	$\frac{0.109}{0.198}$	$\frac{10.997}{10.923}$	1.943
150 159	$\frac{1.375}{1.397}$	$\frac{0.203}{0.203}$	$\frac{10.923}{11.970}$	2.820
139	1.557	0.205	11.970	2.020

· .

160	1.422	0.207	13.421	3.281	
161	1.440	0.214	15.289	3.483	
162	1.452	0.221	15.912	3.620	
163	1.465	0.229	16.530	4.168	
164	1.509	0.247	17.622	4.338	
165	1.533	0.274	18.366	4.682	
166	1.555	0.309	19.869	5.633	
167	1.576	0.318	20.711	6.137	
168	1.598	0.322	22.319	6.853	
169	1.618	0.333	23.751	7.136	
170	1.636	0.343	24.842	7.320	
171	1.666	0.356	25.410	7.685	
172	1.685	0.385	25.798	8.052	
173	1.726	0.409	26.122	8.344	
174	1.742	0.433	26.353	8.602	
175	1.756	0.453	26.638	8.898	
176	1.769	0.463	27.219	9.251	
177	1.784	0.507	27.279	10.253	
178	1.802	0.523	27.320	10.828	
179	1.822	0.528	27.352	10.933	
180	1.843	0.541	27.822	11.060	
181	1.864	0.549	28.763	11.188	
182	1.884	0.559	29.402	11.345	
183	1.896	0.571	29.971	11.733	
184	1.915	0.584	30.276	12.598	
185	1.940	0.598	30.988	12.953	
186	1.958	0.613	31.095	13.213	
187	1.972	0.624	31.314	14.131	
188	1.985	0.629	31.833	14.839	
189	1.991	0.629	32.239	15.137	
190	1.993	0.638	32.547	15.138	
191	1.995	0.648	32.855	15.141	
192	2.001	0.659	33.153	15.595	
193	2.015	0.663	33.444	15.658	
194	2.031	0.671	33.482	15.704	
195	2.047	0.681	33.516	15.729	
196	2.063	0.693	33.549	16.058	
197	2.079	0.709	33.653	16.987	
198	2.094	0.725	33.973	17.064	
199	2.109	0.740	34.159	17.073	
200	2.122	0.754	34.191	17.153	
201	2.130	0.767	34.250	17.332	
202	2.137	0.775	34.469	17.406	
203	2.157	0.787	34.716	17.641	
204	2.172	0.795	34.969	17.922	
205	2.194	0.803	35.144	18.484	
206	2.222	0.854	35.418	18.553	
207	2.245	0.859	35.766	18.658	
208	2.268	0.872	35.949	18.953	
209	2.279	0.892	36.010	19.266	
210	2.288	0.896	36.548	19.309	
211	2.301	0.903	37.179	19.731	
212	2.316	0.924	37.651	19.902	
213	2.332	0.938	38.041	20.012	
214	2.345	0.941	38.591	20.260	
215	2.354	0.951	38.852	20.739	
216	2.362	0.966	38.861	21.346	

.

.

217	2.368	0.979	38.926	21.810
218	2.376	0.980	39.194	22.001
219	2.384	0.981	39.474	22.290
220	2.391	1.005	39.668	22.324
221	2.395	1.016	39.781	22.343
222	2.400	1.022	39.890	22.522
223	2.405	1.028	39.954	22.661
224	2.409	1.035	39.984	22.666
225	2.413	1.041	39.989	22.667
226	2.415	1.045	39.990	22.668
227	2.417	1.051	39.990	22.669
228	2.419	1.055	39.990	22.670
229	2.420	1.059	39.991	22.671
230	2.421	1.062	40.012	22.671
231	2.423	1.063	40.061	22.672
232	2.425	1.063	40.116	22.673
233	2.427	1.063	40.249	22.673
234	2.429	1.064	40.253	22.673
235	2.430	1.064	40.290	22.674
236	2.431	1.066	40.385	22.675
237	2.432	1.069	40.488	22.675
238	2.433	1.072	40.720	22.675
239	2.434	1.075	40.763	22.677

c) Vehicles having composite hydrocarbon emission limitations of 2.00 grams per mile or greater, in Section 240.Table A or Section 240.Table B, shall use the hydrocarbon fast pass standards contained in this subsection. Vehicles having composite carbon monoxide emission limitations of 30.0 grams per mile or greater, in Section 240.Table A or Section 240.Table B, shall use the carbonmonoxide fast pass standards contained in this subsection:

	Hydrocarbo	ns Carbo	n Monoxide		
	Second	Composite-	Phase 2	Composite-	Phase 2
30	0.407	N/A	3.804	N/A	
31	0.415	N/A	3.985	N/A	
32	0.423	N/A	4.215	N/A	
33	0.436	N/A	4.440	N/A	
34	0.451	N/A	4.579	N/A	
35	0.464	N/A	4.688	N/A	
36	0.468	N/A	4.749	N/A	
37	0.475	N/A	4.783	N/A	
38	0.487	N/A	4.813	N/A	
39	0.506	N/A	4.876	N/A	
40	0.530	N/A	5.104	N/A	
41	0.549	N/A	5.217	N/A	
42	0.569	N/A	5.383	N/A	
43	0.588	N/A	5.571	N/A	
44	0.609	N/A	5.888	N/A	
45	0.621	N/A	6.199	N/A	
46	0.636	N/A	6.245	N/A	
47	0.649	N/A	6.318	N/A	
48	0.666	N/A	6.418	N/A	
49	0.679	N/A	6.540	N/A	
50	0.696	N/A	6.690	N/A	
51	0.712	N/A	6.875	N/A	

5	2	0.727	N/A	7.029	N/A	
5	3	0.745	N/A	7.129	N/A	
5	4	0.760	N/A	7.359	N/A	
5.	5	0.776	N/A	7.722	N/A	
5	6	0.797	N/A	8.017	N/A	
5	7	0.814	N/A	8.249	N/A	
5	8	0.826	N/A	8.425	N/A	
5	9	0.837	N/A	8.563	N/A	
6	0	0.849	N/A	8.686	N/A	
6	1-	0.862	N/A	8.804	N/A	
63	2	0.872	N/A	8.916	N/A	
6	3-	0.887	N/A	9.025	N/A	
6	4	0.895	N/A	9.138	N/A	
6!	5	0.903	N/A	9.250	N/A	
6	6	0.925	N/A	9.354	N/A	
6	7	0.933	N/A	9.457	N/A	
61	8	0.945	N/A	9.575	N/A	
6!	9	0.959	N/A	9.728	N/A	
74	Ð	0.970	N/A	9.938	N/A	
7:	£	0.980	N/A	10.140		N/A
73	2	0.988	N/A	10.222		N/A
7	3-	0.997	N/A	10.261		N/A
74	1	1.022	N/A	10.278		N/A
7	5	1.037	N/A	10.290		N/A
74	5	1.051	N/A	10.715		N/A
7.	7	1.064	N/A	10.790		N/A
74	3	1.075	N/A	10.844		N/A
79	9	1.087	N/A	10.921		N/A
8(÷	1.097	N/A	$\frac{11.010}{11.010}$		N/A
83	Ł	1.105	N/A	11.090		N/A
83	2	$\frac{1.114}{1.114}$	N/A	11.136		N/A
83	3	1.136	N/A	11.136		N/A
84	1	1.160	N/A	11.165		N/A
85	5	1.182	N/A	11.191		N/A
86	5	1.201	N/A	11.205		N/A
87	7	$\frac{1.217}{1.217}$	N/A	11.211		N/A
88	3	1.233	N/A	$\frac{11.211}{11.211}$		N/A
89	9	1.248	N/A	$\frac{11.211}{11.211}$		N/A
9(÷	1.262	N/A	11.211		N/A
. 93	Ł	1.271	N/A	11.220		N/A
92	2	1.279	N/A	11.294		N/A
<u>.</u> 93	3	1.287	N/A	11.332		N/A
94	1	1.295	N/A	11.355		N/A
بو	5	1.302	N/A	11.383		N/A
96	5	1.309	N/A	11.410		N/A
97	7	1.316	N/A	11.433		N/A
98	3	1.325	N/A	11.516		N/A
99	₽	1.339	N/A	11.820		N/A
10	00	1.356	N/A	12.104		N/A
1()1	1.365	N/A	12.344		N/A
1()2	1.378	N/A	$\frac{12.781}{2}$		N/A
1()3	1.397	N/A	13.472		N/A
10	94	1.420	N/A	14.405		N/A
1()5	1.445	N/A	14.808		N/A
1()6	1.470	N/A	14.965		N/A
1()7	1.491	N/A	15.121		N/A
10	98	1.506	N/A	15.372		N/A

*

109	1.517	0.151	15.530	1.113
110	1.528	0.159	15.687	1.213
111	1.542	0.172	16.018	1.344
112	1.559	0.186	16.527	1.399
113	$\frac{1.578}{1.578}$	0.199	16.810	1.520
114	1.594	0.207	16.961	1.640
1 15	1.605	0.216	$\frac{17.120}{17.120}$	1.684
116	1.615	0.229	17.135	1.693
117	$\frac{1.625}{1.625}$	0.235	17.249	1.786
118	$\frac{1.642}{1.642}$	0.240	17.451	2.007
119	$\frac{1.670}{1.670}$	0.245	17.509	2.084
120	$\frac{1.694}{1.694}$	0.213	17-605	2.179
121	$\frac{1.091}{1.705}$	0.267	$\frac{17.734}{17.734}$	2.264
122	$\frac{1.703}{1.717}$	0.277	18.049	2.328
123	$\frac{1.717}{1.732}$	$\frac{0.287}{0.287}$	$\frac{18.019}{18.447}$	2.375
124	$\frac{1.752}{1.747}$	0.298	18.592	2.437
125	$\frac{1.747}{1.763}$	0.308	18.657	2.543
126	$\frac{1.705}{1.779}$	0.316	18.796	2.593
127	1.795	0.322	18.952	2.641
128	$\frac{1.755}{1.810}$	0.329	19.137	2.663
	$\frac{1.810}{1.823}$	0.338	19.329	2.672
129			19.519	
130	1.835	0.346		2.676
131	1.845	0.354	19.707	2.683
132	1.854	0.356	19.882	2.817
133	1.862	0.357	19.905	2.992
134	1.870	0.359	20.049	3.111
135	1.883	0.362	20.460	3.234
136	1.888	0.364	20.746	3.304
137	1.896	0.368	21.068	3.310
138	1.911	0.378	21.380	3.320
139	1.928	0.391	21.748	3.354
140	1.949	0.402	22.046	3.436
141	1.969	0.408	22.348	3.443
142	1.982	0.422	22.397	3.452
143	1.999	0.428	22.407	3.490
144	2.011	0.432	22.417	3.552
145	2.022	0.434	22.922	3.588
146	2.035	0.439	22.951	3.600
147	2.043	0.450	22.976	3.616
148	2.049	0.460	23.017	3.627
149	2.063	0.467	23.073	3.636
150	2.085	0.472	23.161	3.676
151	2.104	0.480	23.218	3.882
152	2.117	0.491	23.253	4.011
153	2.127	0.503	23.337	4.047
154	2.138	0.505	23.425	4.067
155	2.152	0.515	23.534	4.081
156	2.168	0.522	23.652	4.116
157	2.186	0.527	23.739	4.251
158	2.205	0.537	24.606	5.099
159	2.224	0.549	25.615	5.383
160	2.242	0.568	26.073	6.362
161	2.268	0.586	28.496	7.926
162	2.200	0.500	29.772	8.429
163	2.352	0.648	31.056	9.201
164	2.406	0.677	33.351	10.825
165	$\frac{2.400}{2.421}$	0.699	34.890	$\frac{10.025}{12.291}$
100			51.000	

,* .

166	2.435	0.720	35.937	13.366
167	2.470	0.738	37.012	14.428
168	2.501	0.767	37.892	15.318
169	2.537	0.828	39.028	15.699
170	2.571	0.855	40.406	16.073
$\frac{171}{171}$	2.625	0.869	41.379	16.475
172	2.657	0.885	42.033	17.158
173	2.683	0.900	42.432	$\frac{17.532}{17.532}$
174	2.701	0.941	42.742	17.965
175	$\frac{2.717}{2}$	0.979	43.399	$\frac{18.242}{18}$
176	2.732	$\frac{1.002}{1.002}$	43.895	18.283
177	2.756	$\frac{1.025}{1.025}$	44.227	$\frac{18.480}{18}$
178	2.781	1.047	44.926	19.576
179	2.811	1.065	45.256	20.015
180	2.853	1.089	45.553	20.203
181	2.898	1.109	45.753	20.433
182	2.946	$\frac{1.133}{1.153}$	46.210	21.025
183	2.988	1.158	47.017	21.882
184	3.023	$\frac{1.184}{1.000}$	48.185	22.204
185	3.057	$\frac{1.209}{1.209}$	48.741	22.859
186	3.076	$\frac{1.222}{1.221}$	49.462	$\frac{23.533}{24.281}$
187	3.101	$\frac{1.231}{1.239}$	50.313 51.285	$\frac{24.281}{25.078}$
188 100	3.120	$\frac{1.239}{1.254}$	$\frac{51.205}{52.076}$	$\frac{25.076}{25.276}$
189 100	3.136 3.151	$\frac{1.254}{1.278}$	52.070 52.857	25.270 25.578
190 191	$\frac{3.151}{3.163}$	$\frac{1.270}{1.300}$	52.876	25.859
$\frac{191}{192}$	3.209	$\frac{1.300}{1.313}$	53.067	25.985
$\frac{192}{193}$	3.223	$\frac{1.313}{1.324}$	53.777	$\frac{25.903}{26.153}$
$\frac{195}{194}$	3.237	$\frac{1.324}{1.340}$	54.242	$\frac{26.582}{26.582}$
191 195	3.263	$\frac{1.340}{1.367}$	54.489	20.902
195 196	3.203 3.302	$\frac{1.307}{1.387}$	54.601	27.456
190 197	3.338	$\frac{1.307}{1.402}$	54.912	27.805
198	$\frac{3.330}{3.372}$	$\frac{1.417}{1.417}$	55.588	28.070
199	3.390	1.432	56.266	28.590
200	3.428	1.446	56.617	28.914
201	3.470	1.460	56.863	29.063
202	3.493	$\frac{1.477}{1.477}$	57.204	29.502
203	3.509	1.492	57.371	29.697
204	3.522	1.501	57.487	29.713
205	3.533	1.510	57.728	29.783
206	3.550	$\frac{1.522}{1.522}$	58.097	29.942
207	3.578	1.561	58.572	30.284
208	3.607	1.585	59.024	30.755
209	3.630	1.597	59.321	31.287
210	3.658	1.607	59.715	31.549
211	3.701	1.627	60.045	31.820
212	3.745	1.645	60.453	32.250
213	3.778	1.656	60.935	32.546
214	3.814	1.663	61.307	32.808
215	3.825	1.669	61.666	33.060
216	3.835	$\frac{1.674}{1.674}$	62.148	33.204
217	3.844	1.685	62.532	33.341
218	3.853	1.700	62.546	33.414
219	3.864	1.704	62.559	33.514
220	3.874	1.706	62.570	33.640
221	3.891	1.709	62.846	33.692
222	3.928	1.711	63.097	33.711

3#0

.

000	2 0 6 6	1 714	62 150	22 822
223	3.966	$\frac{1.714}{1.714}$	63.150	33.733
224	4.008	1.718	63.150	33.770
225	4.010	1.721	63.150	33.796
226	4.012	1.723	63.150	33.810
227	4.016	1.726	63.150	33.821
228	4.019	1.729	63.150	33.839
229	4.057	1.731	63.150	33.865
230	4.065	1.733	63.150	33.894
231	4.071	1.735	63.150	33.918
232	4.073	1.743	63.150	33.944
233	4.075	1.749	63.150	33.985
234	4.077	1.753	63.153	34.014
235	4.079	1.757	63.159	34.032
236	4.081	1.762	63.173	34.051
237	4.083	1.767	63.193	34.067
238	4.084	1.772	63.214	34.079
239	4.085	1.776	63.233	34.085

(Source: Repealed at 35 Ill. Reg.____, effective ____)

ILLINOIS RECISTER

POLLUTION CONTROL BOARD

NOTICE OF PROPOSED AMENDMENTS

Document comparison done by DeltaView on Wednesday, December 22, 2010 2:34:23 PM

Input:	
Document 1	file://I:/Input/35-240-Agency(issue1).doc
Document 2	file://I:/Input/35-240-JCARr01(issue1).doc
Rendering set	Standard

Legend:	
Insertion	
Deletion	
Moved from	
Moved to	
Style change	
Format change	
Moved deletion	
Inserted cell	
Deleted cell	
Moved cell	
Split/Merged cell	
Padding cell	

a.

 $\sim 10^{-1}$

Statistics:			
	Count		
Insertions	84		
Deletions	762		
Moved from	0		
Moved to	0		
Style change	0		
Format changed	0		
Total changes	846		

1ST NOTICE VERSION

JCAR350240-1100129r01

1		TITLE 35: ENVIRONMENTAL PROTECTION
2		SUBTITLE B: AIR POLLUTION
3		CHAPTER I: POLLUTION CONTROL BOARD
4		SUBCHAPTER k: EMISSION STANDARDS AND LIMITATIONS
5		FOR MOBILE SOURCES
6		
7		PART 240
8		MOBILE SOURCES
9		
10 11		SUBPART A: DEFINITIONS AND GENERAL PROVISIONS 🦷 💦 👞
12	Section	SUBPART A: DEFINITIONS AND GENERAL PROVISIONS Preamble Definitions Prohibitions Inspection Penalties Determination of Violation
12	240.101	Preamble
14	240.101	Definitions
15	240.102	Prohibitions Pollutie On 2011
16	240.103	Inspection
17	240.104	Penalties
18	240.105	Determination of Violation
19	240.100	Incorporations by Reference
20	240.107	incorporations by Reference
21		SUBPART B: EMISSIONS
22		SODIARI D. LINISSIONS
23	Section	
24	240.121	Smoke Emissions
25	240.122	Diesel Engine Emissions Standards for Locomotives
26	240.123	Liquid Petroleum Gas Fuel Systems
27	240.124	Vehicle Exhaust Emission Standards (Repealed)
28	240.125	Compliance Determination (Repealed)
29		1 (
30	SUE	BPART C: SMOKE OPACITY STANDARDS AND TEST PROCEDURES
31		FOR DIESEL-POWERED HEAVY DUTY VEHICLES
32		
33	Section	
34	240.140	Applicability
35	240.141	Smoke Opacity Standards and Test Procedures for Diesel-Powered Heavy Duty
36		Vehicles
37		
38	SUBI	PART D: STEADY-STATE IDLE MODE TEST EMISSION STANDARDS
39		
40	Section	
41	240.151	Applicability
42	240.152	Steady-State Idle Mode Vehicle Exhaust Emission Standards
43	240.153	Compliance Determination

 ${\mathcal R}^{\mu}$

44					
45	SUB	PART E: TRANSIENT LOADED MODE TEST EMISSION STANDARDS			
46					
47	Section				
48	240.161	Applicability (<u>Repealed</u>)			
49	240.162	Vehicle Exhaust Emission Start-Up Standards (Repealed)			
50	240.163	Vehicle Exhaust Emission Final Standards (Repealed)			
51	240.164	Vehicle Exhaust Emission Fast-Pass Standards (Repealed)			
52	240.165	Compliance Determination (Repealed)			
53					
54		SUBPART F: EVAPORATIVE TEST STANDARDS			
55					
56	Section				
57	240.171	Applicability			
58	240.172	Evaporative System Integrity Test Standards			
59	240.173	Evaporative System Purge Test Standards (Repealed)			
60					
61	SUBF	ART G: ON-ROAD REMOTE SENSING TEST EMISSION STANDARDS			
62					
63	Section				
64	240.181	Applicability			
65	240.182	On-Road Remote Sensing Emission Standards			
66	240.183	Compliance Determination			
67					
68		SUBPART H: ON-BOARD DIAGNOSTIC TEST STANDARDS			
69	~ .				
70	Section				
71	240.191	Applicability			
72	240.192	On-Board Diagnostic Test Standards			
73	240.193	Compliance Determination			
74					
75	240.APPEN				
76	240.APPEN				
77	240.TABLE	$-\Gamma$			
78	240.TABLE				
79	240.TABLE	C Vehicle Exhaust Emission Fast-Pass Standards (Repealed)			
80	ATITUODIT				
81	AUTHORITY: Implementing Sections 9 and 10 and authorized by Sections 27 and 28 of the				
82	Environmental Protection Act [415 ILCS 5/9, 10, 27, and 28] and Section 13C-20 of the Vehicle				
83	Emissions In	spection Law of 2005 [625 ILCS 5/13C-20].			
84 85	SOLDCE.	dented on Chapter 2. Air Dellution Dert VIII. Malile Gamme Cl. 1. 1. C. d			
85 86		Adopted as Chapter 2: Air Pollution, Part VII: Mobile Sources, filed and effective			
00	April 14, 197	2; codified at 7 Ill. Reg. 13628; amended in R85-25, at 10 Ill. Reg. 11277, effective			

*

87	June 16, 1986; amended in R90-20 at 16 Ill. Reg. 6184, effective April 7, 1992; amended in R94-
88	20 at 18 Ill. Reg. 18013, effective December 12, 1994; amended in R94-19 at 18 Ill. Reg. 18228,
89	effective December 20, 1994; amended in R98-24 at 22 Ill. Reg. 13723, effective July 13, 1998;
90	expedited correction at 22 Ill. Reg. 21120, effective July 13, 1998; amended in R01-12 at 24 Ill.
91	Reg. 19188, effective December 18, 2000; amended in R01-8 at 25 Ill. Reg. 3680, effective
92	February 26, 2001; amended in R02-8 at 25 Ill. Reg. 16379, effective December 18, 2001;
93	amended in R11-19 at 35 Ill. Reg, effective
94	
95	BOARD NOTE: This Partpart implements the Environmental Protection Act as of July 1, 1994.
96	r
97	SUBPART A: DEFINITIONS AND GENERAL PROVISIONS
98	
99	Section 240.102 Definitions
100	
101	All terms that which appear in this Part have the definitions specified in this Section, the Vehicle
102	Emissions Inspection Law of 2005 [625 ILCS 5/13C], Part and 35 Ill. Adm. Code 201 and 211.
103	<u>When Where</u> conflicting definitions occur between this Section and 35 Ill. Adm. Code 201 or
104	<u>211</u> , the definitions of this Section apply in this Part.
105	$\underline{211}$, the definitions of this Section apply in this 1 at.
105	"Adjusted loaded vehicle weight ("ALVW") means the value of the vehicle curb
107	weight plus gross vehicle weight rating divided by two.
107	worght plus gross veniere worght luting drylded by two.
100	"Agency" means the Illinois Environmental Protection Agency.
110	Agency means the minors Environmental Protection Agency.
111	"Diesel engine" means all types of internal-combustion engines in which air is
112	compressed to a temperature sufficiently high to ignite fuel injected directly into
112	the cylinder area.
114	ule cyllinder alea.
114	"Diggal locomotiva" magne a diggal angine vehicle designed to many our or
115	"Diesel locomotive" means a diesel engine vehicle designed to move cars on a
	railway.
117	
118	"Evaporative system integrity test" means a test of a vehicle's evaporative system.
119	The test shall either consist of a leak check of a vehicle's fuel cap with a fuel cap
120	pressure decay tester (fuel cap pressure decay test), a fuel cap leak flow tester
121	(fuel cap leak flow test), or a visual functional check, as applicable.
122	
123	"Fuel cap" means a device used to seal a vehicle's fuel inlet.
124	
125	"Fuel cap leak flow test" means a test which may be performed in accordance
126	with this Part on a vehicle's fuel cap using a fuel cap leak flow tester to determine
127	whether the vehicle complies with the evaporative system emission standards of
128	this Part.
129	

r

"Fuel cap leak flow tester" means a device used to determine the leak flow integrity of a vehicle's fuel cap by comparing the measured leak flow of the fuel cap with an established fuel cap leak flow standard.

"Fuel cap pressure decay test" means the test performed in accordance with this Part on a vehicle's fuel cap using a fuel cap pressure decay tester to determine whether the vehicle complies with the evaporative system emission standards of this Part.

"Fuel cap pressure decay tester" means a device used to determine the pressure decay integrity of a vehicle's fuel cap by monitoring the pressure behind the fuel cap for a ten second period and comparing the measured pressure decay of the fuel cap to an established fuel cap pressure decay standard.

- "Fuel cap visual functional test" means the test performed in accordance with this Part on a vehicle's fuel cap using visual analysis to determine whether the vehicle complies with the evaporative system emission standards of this Part.
 - "Full power position" means the throttle position at which the engine fuel delivery is at maximum flow.

"Gross vehicle weight rating (GVWR)" means the value specified by the manufacturer as the maximum design loaded weight of a single vehicle.

"Heavy duty vehicle" means any motor vehicle rated at more than 8500 pounds GVWR or that has a vehicle curb weight of more than 6000 pounds or that has a basic vehicle frontal area in excess of 45 square feet.

"High idle" means a vehicle operating condition with engine disconnected from an external load (placed in either neutral or park) and operating at speed of 2500 \pm 300 RPM.

"IM240" means the transient mass emissions inspection procedure that the USEPA developed and has been implemented for use in the Illinois Enhanced Vehicle Inspection and Maintenance Program. 240 refers to the 240 second maximum duration of the driving cycle that the vehicle undergoes as it is positioned on the dynamometer and essentially driven for the purpose of measuring the mass amount of emissions coming out of the tail pipe.

"Idle mode" means that portion of a vehicle emission test procedure conducted with the engine disconnected from an external load and operating at minimum throttle.

173 "Initial idle mode" means the first of up to two idle mode sampling periods during 174 a steady-state idle mode test, during which exhaust emission measurements are 175 made with the vehicle in "as-received" condition. 176 177 "Light duty truck 1" means a motor vehicle rated at 6000 pounds maximum 178 GVWR or less and which has a vehicle frontal area of 45 square feet or less, and 179 which is designed primarily for purposes of transportation of property or is a 180 derivation of such a vehicle, or is designed primarily for transportation of persons 181 and has a capacity of more than 12 persons, or is available with special features 182 enabling off-street or off-highway operation and use. 183 184 "Light duty truck 2" means a motor vehicle rated between 6001 and 8500 pounds 185 maximum GVWR and which has a vehicle frontal area of 45 square feet or less. 186 and which is designed primarily for purposes of transportation of property or is a derivation of such a vehicle, or is designed primarily for transportation of persons 187 188 and has a capacity of more than 12 persons, or is available with special features 189 enabling off-street or off-highway operation and use. 190 191 "Light duty vehicle" means a passenger car or passenger car derivative capable of 192 seating 12 passengers or fewer. 193 "Loaded mode" means that portion of a vehicle emission test procedure conducted 194 195 with the vehicle positioned and operating under load on a chassis dynamometer. 196 197 "Loaded vehicle weight (LVW)" means the vehicle curb weight plus 300 pounds. 198 199 "Measured values" means five-second running averages of exhaust emission 200 concentrations sampled at a minimum rate of twice per second. 201 202 "Model year" means the year of manufacture of a motor vehicle based upon the 203 annual production period as designated by the manufacturer and indicated on the 204 title and registration of the vehicle. If the manufacturer does not designate a 205 production period for the vehicle, then "model year" means the calendar year of 206 manufacture. 207 "Motor vehicle" as used in this Part, shall have the same meaning as in Section 1-208 209 146 of the Illinois Vehicle Code [625 ILCS 5/1-146]. 210 211 "Opacity" means the percentage of light transmitted from a source that is 212 prevented from reaching a light detector. 213 214 "Preconditioning mode" means a period of steady-state loaded mode or high-idle 215 operation conducted to ensure that the engine and emissions control system

216				
216 217		components are operating at normal operating temperatures, thus minimizing false		
		failures caused by improper or insufficient warm-up.		
218				
219		"Second-chance idle mode" means the second of two idle mode sampling periods		
220		during a steady-state idle mode test, preceded by a preconditioning mode and		
221		utilized as a second chance to pass idle exhaust emission standards immediately		
222		following an initial idle mode failure.		
223				
224		"Snap-acceleration test" means a test to measure exhaust smoke opacity from		
225		heavy-duty diesel powered vehicles in accordance with the SAE J1667 procedure,		
226		incorporated by reference at Section 240.107 of this Subpart.		
227				
228		"Steady-state idle test" means a vehicle emission test procedure consisting of an		
229		initial idle mode measurement of exhaust emissions followed, if necessary, by a		
230		loaded or high idle preconditioning mode and a second-chance idle mode.		
231		rouded of high full preconditioning mode and a second-chance full mode.		
232		"Transient loaded mode test" or "IM240 testing" or "transient IM240 loaded mode		
232				
233		exhaust emission test procedure" or "transient IM 240 test procedure" means a		
234				
236	0			
237				
238		"Vehicle curb weight" means the actual vehicle weight plus standard equipment		
239		and a full fuel tank.		
240				
241	(Sou	rce: Amended at 35 Ill. Reg, effective)		
242				
243	Section 240.	104 Inspection		
244				
245	a)	All motor vehicles subject to inspection pursuant to Section 13 <u>CB-15</u> of the		
246		Vehicle Emissions Inspection Law of 20051995 [625 ILCS 5/13CB-15] shall		
247		comply with applicable vehicle emission standards contained in Sections 240.152,		
248		240.162, 240.163, 240.172, 240.182, and 240.192 of this Part.		
249				
250	b)	All diesel-powered vehicles subject to inspection pursuant to Section 13-109.1 of		
251	0)	the Illinois Vehicle Code [625 ILCS 5/13-109.1] must comply with applicable		
252		smoke opacity standards set forth in Section 240.141(a) of this Part.		
252		$\frac{1}{2}$		
255	(Sour	rce: Amended at 35 Ill. Reg, effective)		
255	(JUCC)	, enecutve		
255				
250	Section 240.	105 I CIIAIIICS		
258		Any violations of Sections 240, 102, 240, 101, 240, 102, 1040, 102, 011, D		
230	a)	Any violations of Sections 240.103, 240.121, 240.122, <u>orand-</u> 240.123 of this Part		

259		shall be subject to the penalties as set forth in Section 42 of the Act [415 ILCS
260		5/42].
261		
262	b)	Any violations of Sections 240.104(b), 240.152, 240.162, 240.163, 240.172 ,
263		240.182, orand-240.192 of this Part shall be subject to the penalties as set forth in
264		Sections 13 <u>C</u> B-55 and 13 <u>C</u> B-60 of the Vehicle Emissions Inspection Law [625
265		ILCS 5/13 <u>C</u> B-55 and 13 <u>C</u> B-60].
266		
267	c)	Any violation of Section 240.141(a) of this Part will be subject to penalties as set
268		forth in Section 13-109.1 of the Illinois Vehicle Code [625 ILCS 5/13-109.1].
269		
270	(Sourc	e: Amended at 35 Ill. Reg, effective)
271		
272	Section 240.1	06 Determination of Violation
273		
274	a)	Any violations of <u>Sections</u> 240.103, 240.121, 240.122, <u>orand</u> 240.123 of
275		this Part shall be determined by visual observation or by a test procedure
276		employing an opacity measurement system as qualified by 35 Ill. Adm. Code 201,
277		Subpart J.
278		
279	b)	Any violations of <u>Sections</u> 240.152, 240.162, 240.163, 240.172, 240.182,
280		or 240.192 of this Part shall be determined in accordance with test procedures
281		adopted by the Agency in 35 Ill. Adm. Code 276.
282		
283	c)	Any violation of Section 240.141(a) of this Part will be determined in accordance
284		with test procedures set forth in Section 240.141(b) of this Part.
285	(0	
286	(Sourc	e: Amended at 35 Ill. Reg, effective)
287	0 11 010 1	
288	Section 240.1	07 Incorporations by Reference
289	The 6-11	
290		material ismaterials are incorporated by reference and <u>includesinclude</u> no later
291	editions or am	lenaments:
292	-)0:	
293	a)Society of Automotive Engineers (SAE), 400 Commonwealth Drive, Warrendale, PA	
294	15096-0001, www.sae.org: Report J1667 Snap-Acceleration Smoke Test Procedure for	
295	Heavy	-Duty Diesel Powered Vehicles (February 1996).
296 297	b)	United States Environmental Distantion Account (LIGEDA) HILL 1 TO 1 ADA TO
297	b)	United States Environmental Protection Agency (USEPA), "High Tech I/M Test
298 299		Procedures, Emission Standards, Quality Control Requirements, and Equipment
300		Specifications: IM240 and Functional Evaporative System Tests, Revised
300		Technical Guidance," Report EPA AA-RSPD IM-96-1 (June 1996), 2565
201		Plymouth Road, Ann Arbor, MI 48105.

302						
302	(Sour	rce: Amended at 35 II	1. Reg, effective)		
304	(1000)	ice. Amended at 55 h	1. Rog, chicouve			
305	SUBPART D: STEADY-STATE IDLE MODE TEST EMISSION STANDARDS					
306	5031					
307	Section 240.	151 Applicability				
308						
309	The standards of this Subpart D apply to thoseall vehicles identified in subsection 13C-					
310	25(d)inspected upon implementation of the Vehicle Emissions Inspection Law of 20051995 and					
311	identified in Subsections 13B-25(c) and (d) of that law utilizing steady-state exhaust emission					
312	test procedur	es adopted by the Ag	ency .			
313						
314	(Sour	ce: Amended at 35 Il	l. Reg, effective)		
315						
316	Section 240.	152 Steady-State Id	le Mode Vehicle Exhaus	t Emission Standards		
317	ς.					
318	a)		from light duty vehicles s	hall not exceed the following		
319		limitations:				
320		Madal Waan	(1, 1, 1)	TT 1 1 TT		
		Model Year	Carbon Monoxide	5		
		1060 1071	(%)	(ppm)		
		1968 1971	9.0	900		
		1972 1974	8.0 7.0	800		
		1975 - 1977	7.0	700		
		1978 1979	6.0 2.0	600		
		1980 100(1081 1	3.0	300		
		19961981 and	1.2	220		
321		<u>newer</u> later				
322	b)	Exhaust emissions	from light duty trucks 1 a	nd light duty trucks 2 shall not		
323	b) Exhaust emissions from light duty trucks 1 and light duty trucks 2 shall not exceed the following limitations:					
324			g mintations.			
		Model Year	Carbon Monoxide	Hydrocarbons as Hexane		
			(%)	(ppm)		
		1968 1971	9.0	900		
		1972 1974	8.0	800		
		1975 - 1978	7.0	700		
		1979 - 1980	6.0	600		
		<u>1996</u> 1981 and	1.2	220		
		newerlater				
325						
326	c)	c) Exhaust emissions from heavy duty vehicles shall not exceed the following				
327		limitations:				

÷

t
	Model Year	Carbon Monoxide	Hydrocarbons as Hexane
		(%)	(ppm)
	1968 1971	9.5	1500
	1972 - 1978	9.0	900
	1979 1984	7.0	700
	1996 1985 and	3.0	300
	newer later		
329			
330	(Source: Amended at 35 Ill.	Reg effective)
331	(bouroe. Amenada ut 55 m.	, onochive)
332	Section 240.153 Compliance Dete	rmination	
333	Section 240.155 Comphance Dete	I IIIIIation	
334	Compliance shall be determined bas	ed upon the measureme	nt of exhaust emissions using the
335	-	-	
	steady-state idle test while the vehic		
336	shall pass exhaust emissions inspect		
337	chance idle mode of the steady-state		
338	limits of Section 240.152 of this Sub	part. Vehicles failing t	he initial idle mode shall undergo a
339	loaded or high idle preconditioning		
340	measured values less than 1800 ppm	HC are obtained within	n an elapsed time of 30 seconds.
341			
342	(Source: Amended at 35 Ill.	Reg, effective)
343			
344	SUBPART E: TRANSIENT	LOADED MODE TES	ST EMISSION STANDARDS
345			
346	Section 240.161 Applicability (Re	pealed)	
347			
348	The standards of this Subpart apply	to model year 1981 and	newer light duty vehicles, light duty
349	trucks 1, and light duty trucks 2 whi	ch are inspected utilizin	g transient IM240 loaded mode
350	exhaust emission test procedures add	opted by the Agency in i	35 Ill. Adm. Code 276.
351			
352	(Source: Repealed at 35 Ill.)	Reg, effective)
353	· · ·	- <u>-</u>	
354	Section 240.162 Vehicle Exhaust l	Emission Start-Up Star	ndards (Repealed)
355		*	· · · · · · · · · · · · · · · · · · ·
356	_Vehicle exhaust emission start-up st	tandards contained in Se	ection 240. Table A of this Part shall
357	apply for all vehicles subject to insp		
358	onward, these standards shall contin		
359	LDV, LDT1, and LDT2 vehicles. Al		
360	, , .		Orang Let unit (Dhun),
361	(Source: Repealed at 35 Ill.	Reg effective)
362	(Source: Repeated at 55 III.))
363	Section 240.163 Vehicle Exhaust I	Emission Final Standa	rds (Renealed)
202	Souther attends of child Panaust 1	annission rillar Stallua	

.

ă III I

364							
365	Beginning Fe	bruary 1, 2001, vehicle exhaust emission final standards contained in Section					
366							
367		el year 1987 LDV, LDT1, and LDT2 vehicles, which shall continue to use the					
368		tained in Section 240.Table A of this Part as described in Section 240.162. All					
369		expressed in grams per mile (gpm).					
370		entre of the second per mine (Bhur).					
371	(Sour	ce: Repealed at 35 Ill. Reg, effective)					
372		, encourte)					
373	Section 240.1	164 Vehicle Exhaust Emission Fast-Pass Standards (Repealed)					
374		(or vende Exhaust Enhiston 1 ust 1 uss Standards <u>(Reptartu)</u>					
375	Vehicle exha	ust emissions fast pass standards contained in Section 240. Table C of this Part will					
376		vehicles subject to inspection under Section 240.161 of this Part utilizing the IM240					
377	transient load	ed mode exhaust emission test procedures that have been adopted by the Agency in					
378	35 Ill_Adm_(Code 276. All standards are expressed as the cumulative grams for each second of					
379		and Phase 2 tests.					
380	the composite						
381	(Sour	ce: Repealed at 35 Ill. Reg, effective)					
382	(Dom)	, chechive)					
383	Section 240.1	65 Compliance Determination (<u>Repealed</u>)					
384	Section 240.1	tos comphance beter mination (<u>Repeated)</u>					
385	a)	Vehicle Exhaust Emission Start-Up and Final Standards - Compliance shall be					
386	u)	determined based upon the measurement of exhaust emissions while operating the					
387		vehicle on a dynamometer and following the driving cycle as specified for the					
388		transient IM240 test procedures adopted by the Agency. If the corrected,					
389		composite emission rates exceed standards for any pollutant, additional analysis					
390		of test results shall review the second phase ("Phase 2") of the driving cycle					
391		separately. Phase 2 shall include second 94 through second 239 of the driving					
392		cycle. Second by second emission rates in grams and composite emission rates in					
393		grams per mile for Phase 2 and for the entire composite test shall be recorded for					
394		each pollutant. For any given pollutant, if the composite emission level is at or					
395		below the composite standard or if the Phase 2 grams per mile emission level is at					
396		or below the applicable Phase 2 standard, then the vehicle shall pass the test for					
397		that pollutant. Composite and Phase 2 emission rates shall be calculated in					
398		accordance with procedures specified in "High-Tech I/M Procedures, Emissions					
399		Standards, Quality Control Requirements, and Equipment Specifications: IM240					
400		and Functional Evaporative System Tests, Revised Technical Guidance",					
401		incorporated by reference at Section 240.107(c) of this Part.					
402		moorporated by reference at beenon 240.107(c) of this rait.					
403	b)	Vehicle Exhaust Emission Fast-Pass Standards - Compliance will be determined					
404	0	based upon the measurement of exhaust emissions while operating the vehicle on					
404		a dynamometer and following the driving cycle as specified for the transient					
405		IM240 test procedures adopted by the Agency. Vehicles will be fast passed using					
TUU		1112 to test procedures adopted by the rigency. Veneries will be last passed using					

з

407 408	the following algorithm:				
408	1)	Degi	nning at second 30 of the driving cycle, cumulative second by second		
410	17	•	sion levels for each second, calculated from the start of the cycle in		
411			s, will be compared to the cumulative fast pass emission standards		
412			e second under consideration. Beginning at second 109, fast pass		
413			ions are based upon analysis of cumulative emissions in Phase 2, the		
414			on of the test beginning at second 94, as well as emission levels		
415		-	nulated from the beginning of the composite test.		
416		accui	nutated from the beginning of the composite test.		
417	2)	Aval	nicle will pass the transient IM240 test for a given pollutant if either		
418			following conditions occurs:		
419		01-trik	Tonowing conditions occurs.		
420		A)	cumulative emissions of the pollutant are below the full cycle fast-		
421		11)	pass standard for the second under consideration; or		
422			pass standard for the second under consideration; or		
423		B)	at second 109 and later, cumulative Phase 2 emissions are below		
424		2)	the Phase 2 fast pass standards for the second under consideration.		
425			the Thuse 2 fust puss standards for the second and of consideration.		
426	3)	Testi	ng may be terminated when fast pass criteria are met for all subject		
427	•)		tants in the same second.		
428		pona			
429	4)	If a f í	ast-pass determination cannot be made for all subject pollutants		
430			e the driving cycle ends, the pass/fail determination for each		
431			onent will be based on composite or Phase 2 emissions over the full		
432		_	ng cycle according to the procedures in subsection (a) of this Section.		
433			ses where fast pass standards are not used, composite emission rates		
434			ams per mile for Phase 2 and for the entire composite test will be		
435		-	ded for each pollutant.		
436			•		
437	5)	Com	posite and Phase 2 emission rates will be calculated in accordance		
438		with j	procedures specified in "High Tech I/M Procedures, Emissions		
439		Stand	ards, Quality Control Requirements, and Equipment Specifications:		
440			0 and Functional Evaporative System Tests, Revised Technical		
441		Guida	ance" incorporated by reference at Section 240.107(c) of this Part.		
442					
443	(Source: Rep	ealed a	t 35 Ill. Reg, effective)		
444					
445		SUBP	ART F: EVAPORATIVE TEST STANDARDS		
446					
447	Section 240.171 Ap	plicabi	llity		
448					
449	9 The standards of this Subpart apply to those vehicles identified in subsection 13C-25(d) of the				

450 451 452	apply to all model year 1968 and newer vehicles required at the time of manufacture to be							
453 454 455		•	, effective)				
456 457	SUBPAF	RT G: ON-ROAD REMOT	E SENSING TEST EMISSI	ON STANDARDS				
458 459	Section 240.18	1 Applicability						
460 461 462 463	15(b)(11) of the road remote sen	The standards of this Subpart apply to <u>thoseall</u> vehicles <u>tested pursuant to subsection 13C-15(b)(11)</u> of the Vehicle Emissions Inspection Law of 2005 which are inspected utilizing the on- road remote sensing exhaust emission test procedures that will be adopted by the Agency in 35						
463 464 465	Ill. Adm. Code:		, effective	``				
465 466 467)				
468 469	Section 240.182 On-Road Remote Sensing Emission Standards Exhaust emissions from all subject vehicles and trucks shall not exceed the following							
470 471	limitations:							
	Model Year	Hydrocarbons (ppm)	Carbon Monoxide (%)					
	<u>1996 and</u> newer 1992+	400	2.0					
	1988 1991	450	3.0					
	1981—1987	650	5.0					
	1975 1980	1300	7.0					
472	1968—1974	1700	8.0					
473 474	(Source: Amended at 35 Ill. Reg, effective)							
475 476	S	SUBPART H: ON-BOARD	DIAGNOSTIC TEST STA	NDARDS				
477 478	Section 240.191 Applicability							
479 480	The standards or the Vehicle Emi	f this Subpart apply to <u>those</u> issions Inspection Law of 20	e vehicles tested pursuant to 005all 1996 and newer mode	subsection 13C-25(c) of el year light duty vehicles,				

e

481 light duty trucks 1, and light duty trucks 2 that are required to meet the standards contained in 40
482 CFR 86.094 17 and which are inspected utilizing the on-board diagnostic test procedures
483 contained in 35 III. Adm. Code 276.209. Vehicles that receive a result of fail do not thereby fail
484 their emissions test until January 1, 2002.
485
486 (Source: Amended at 35 III. Reg. _____, effective _____)

487 Section 240.TABLE A Vehicle Exhaust Emission Start-Up Standards (Repealed) 488

Light Duty Vehicles:

.e

Model Years	Hydrocarbons		Carbon Monoxide		Oxides of Nitrogen	
	Composite (gpm)	Phase 2 (gpm)	Composite (gpm)	Phase 2 (gpm)	Composite (gpm)	Phase 2 (gpm)
1996+	0.80	0.50	15.0	12.0	2.0	Reserved
1991-1995	1.20	0.75	20.0	16.0	2.5	Reserved
1983-1990	2.00	1.25	30.0	24.0	3.0	Reserved
1981-1982	2.00	1.25	60.0	48.0	3.0	Reserved

Light Duty Trucks 1:

Model Years	Hydroca	arbons	Carbon Monoxide		Oxides of Nitrogen	
	Composite (gpm)	Phase 2 (gpm)	Composite (gpm)	Phase 2 (gpm)	Composite (gpm)	Phase 2 (gpm)
1996 +						
(≤ 3750 LVW)	0.80	0.50	15.0	12.0	2.0	Reserved
(>3750 LVW)	1.00	0.63	20.0	16.0	2.5	Reserved
1991-1995	2.40	1.50	60.0	48.0	3.0	Reserved
1988-1990	3.20	2.00	80.0	64.0	3.5	Reserved
1984-1987	3.20	2.00	80.0	64.0	7.0	Reserved
1981-1983	7.50	5.00	100.0	80.0	7.0	Reserved

Light Duty Trucks 2:

Model Years	Years Hydrocarbons Carbon Monoxide		onoxide	Oxides of Nitrogen		
	Composite (gpm)	Phase 2 (gpm)	Composite (gpm)	Phase 2 (gpm)	Composite (gpm)	Phase 2 (gpm)
1996+						
(≤ 5750 ALVW)	1.00	0.63	20.0	16.0	2.5	Reserved
(>5750 ALVW)	2.40	1.50	60.0	48.0	4.0	Reserved
1991-1995	2.40	1.50	60.0	48.0	4 .5	Reserved
1988-1990	3.20	2.00	80.0	64.0	5.0	Reserved
1984-1987	3.20	2.00	80.0	64.0	7.0	Reserved
1981-1983	7.50	5.00	100.0	80.0	7.0	Reserved

489

490

.

(Source: Repealed at 35 Ill. Reg. _____, effective _____)

491 Section 240.TABLE B Vehicle Exhaust Emission Final Standards (Repealed)

492

493 494

. .

Light Duty Vehicles:

Model Years	Hydroc	arbons	Carbon M	onoxide	Oxides of Nitrogen	
	Composite (gpm)	Phase 2 (gpm)	Composite (gpm)	Phase 2 (gpm)	Composite (gpm)	Phase 2 (gpm)
1996+	0.60	0.40	10.0	8.0	1.5	Reserved
1983-1995	0.80	0.50	15.0	12.0	2.0	Reserved
1981-1982	0.80	0.50	30.0	24.0	2.0	Reserved
Light Duty Trucks	1:					
Model Years	Hydroc	arbons	Carbon M	onoxide	Oxides of	Nitrogen
	Composite	Phase 2	Composite	Phase 2	Composite	Phase 2
	(gpm)	(gpm)	(gpm)	(gpm)	(gpm)	(gpm)
1996+						
(≤ 3750 LVW)	0.60	0.40	10.0	8.0	1.5	Reserved
(>3750 LVW)	0.80	0.50	13.0	10.0	1.8	Reserved
1988-1995	1.60	1.00	40.0	32.0	2.5	Reserved
1984-1987	1.60	1.00	40.0	32.0	4 .5	Reserved
1981-1983	3.40	2.00	70.0	56.0	4 <u>.5</u>	Reserved
Light Duty Trucks 2	<u>2:</u>					
Model Years	Hydroc	arbons	Carbon M	onoxide	Oxides of Nitrogen	
	Composite	Phase 2	Composite	Phase 2	Composite	Phase-2
	(gpm)	(gpm)	(gpm)	(gpm)	(gpm)	(gpm)
1996+						
(<u>≤ 5750 LVW</u>	0.80	0.50	13.0	10.0	1.8	Reserved
(>5750 LVW)	0.80	0.50 0.50	15.0 15.0	$\frac{10.0}{12.0}$	2.0	Reserved
1988-1995	1.60	1.00	40.0	32.0	2.0 3.5	Reserved
1984-1987	1.60	1.00 1.00	40.0	32.0	4.5	Reserved
1981-1983	3.40	2.00	70.0	52.0	4.5	Reserved
	5.10	2.00	10.0	20.0	ਜ ਾਤ	ICOULIE
(Source: Repealed at 35 Ill. Reg, effective)						

495 Section 240.TABLE C Vehicle Exhaust Emission Fast-Pass Standards (Repealed)

fast-pass standards contained in this subsection:

- 496
- 497

a)

Vehicles having composite hydrocarbon emission limitations of less than 1.25

grams per mile, in Section 240. Table A or Section 240. Table B, shall use the

hydrocarbon fast-pass standards contained in this subsection. Vehicles having

composite carbon monoxide emission limitations of less than 20.0 grams per mile, in Section 240.Table A or Section 240.Table B, shall use the carbon monoxide

- 498
- 499
- 500 501
- 502
- 503

	Hydrocarbons		Carbon Monoxide	
Second	Composite	Phase 2	Composite	Phase 2
30	0.12 4	N/A	0.693	N/A
31	0.126	N/A	0.773	N/A
32	0.129	N/A	0.837	N/A
33	0.135	N/A	0.851	N/A
3 4	0.140	N/A	0.853	N/A
35	0.146	N/A	0.857	N/A
36	0.150	N/A	0.900	N/A
37	0.153	N/A	0.960	N/A
38	0.156	N/A	1.034	N/A
39	0.160	N/A	1.070	N/A
40	0.165	N/A	1.076	N/A
41	0.169	N/A	1.083	N/A
4 2	0.172	N/A	1.102	N/A
43	0.173	N/A	1.111	N/A
44	0.177	N/A	1.114	N/A
45	0.197	N/A	1.157	N/A
4 6	0.200	N/A	1.344	N/A
47	0.208	N/A	1.482	N/A
48	0.221	<mark>N∕A</mark>	1.530	N/A
49	0.232	N/A	1.542	N/A
50	0.235	N/A	1.553	N/A
51	0.238	N/A	1.571	N/A
52	0.240	N/A	1.595	N/A
53	0.242	<mark>₩/</mark> Α	1.633	N/A
5 4	0.246	N/A	1.685	N/A
55	0.249	<mark>₩/</mark> Α	1.689	N/A
56	0.252	<mark>N/A</mark>	1.693	N/A
57	0.261	N/A	1.700	N/A
58	0.271	N/A	1.723	N/A
59	0.276	N/A	1.852	N/A
60	0.278	N/A	1.872	N/A
61	0.280	N/A	1.872	N/A

62	0.282	N/A	1.872	N/A
63	0.283	N/A	1.900	N/A
6 4	0.284	N/A	1.917	N/A
65	0.285	N/A	1.9 44	N/A
66	0.286	N/A	2.000	N/A
67	0.288	N/A	2.060	N/A
68	0.291	N/A	2.064	N/A
69	0.294	N/A	2.076	N/A
70	0.296	N/A	2.104	N/A
71	0.298	N/A	2.117	N/A
72	0.300	N/A	2.125	N/A
73	0.302	N/A	2.130	N/A
74	0.304	N/A	2.138	N/A
75	0.307	N/A	2.152	N/A
76	0.308	N/A	$\frac{2.170}{2.170}$	N/A
77	0.308	N/A	2.188	N/A
78	0.308	N/A	2.200	N/A
79	0.314	N/A	2.212	N/A
80	0.320	N/A	2.212	N/A
81	0.324	N/A	2.221	N/A
82	0.327	N/A	2.222	N/A
83	0.329	N/A	2.227	N/A
84	0.333	N/A	2.236	N/A
85	0.336	N/A	2.243	N/A
86	0.339	N/A	2.262	N/A
87	0.343	N/A	2.271	N/A
88	0.347	N/A	2.284	N/A
89	0.350	N/A	2.299	N/A
90	0.356	N/A	2.308	N/A
91	0.358	N/A	2.326	N/A
92	0.360	N/A	2.330	N/A
93	0.363	N/A	2.331	N/A
9 4	0.367	N/A	2.3 44	N/A
95	0.370	N/A	2.347	N/A
96	0.372	N/A	2.355	N/A
97	0.376	N/A	2.395	N/A
98	0.388	N/A	2.451	N/A
99	0.396	N/A	2.508	N/A
100	0.405	N/A	2.590	N/A
101	0.410	N/A	2.660	N/A
102	0.411	N/A	2.749	N/A
103	0.412	N/A	2.913	N/A
104	0.413	N/A	3.162	N/A

105	0.421	N/A	3.170	N/A
106	0.428	N/A	3.197	N/A
107	0.430	N/A	3.288	N/A
108	0.455	N/A	3/419	N/A
109	0.459	0.015	3.587	0.168
110	0.462	0.017	3.595	0.173
$\frac{111}{111}$	0.464	0.021	3.640	0.237
112	0.466	0.024	3.740	0.266
113	0.468	0.024	3.868	0.280
114	0.471	0.025	3.877	0.291
115	0.488	0.026	3.93 4	0.314
116	0.513	0.029	4.015	0.331
117	0.538	0.032	4 .061	0.350
119	0.577	0.035	4.079	0.356
120	0.580	0.036	4.140	0.367
121	0.586	0.038	4 .185	0.388
122	0.594	0.040	4.199	0.407
123	0.603	0.041	4 .205	0.463
124	0.610	0.042	4 .212	0.480
125	0.615	0.042	4 .323	0.506
126	0.624	0.042	4.298	0.518
127	0.628	0.045	4.3 44	0.522
128	0.632	0.046	4.361	0.525
129	0.637	0.046	4 .366	0.528
130	0.641	0.049	4.369	0.530
131	0.643	0.050	4.372	0.530
132	0.644	0.052	4.435	0.534
133	0.645	0.054	4 .523	0.550
13 4	0.647	0.054	4.524	0.544
135	0.651	0.05 4	4.525	0.590
136	0.658	0.055	4 .531	0.616
137	0.663	0.055	4 .53 4	0.639
138	0.666	0.056	4.542	0.653
139	0.668	0.059	4 .553	0.662
140	0.670	0.061	4 .55 4	0.683
141	0.672	0.061	4.554	0.696
142	0.675	0.061	4.554	0.708
143	0.678	0.063	4 .55 4	0.721
144	0.681	0.064	4.554	0.739
145	0.68 4	0.065	4.554	0.742
146	0.686	0.066	4.554	0.743
147	0.688	0.067	4.55 4	0.745
148	0.690	0.068	4.55 4	0.748

х

149	0.692	0.069	4.554	0.751
150	0.694	0.070	4.554	0.762
151	0.696	0.071	4 .556	0.789
152	0.698	0.072	4.556	0.790
153	0.700	0.073	4 .565	0.794
154	0.702	0.073	4.612	0.799
155	0.704	0.074	4.834	0.805
156	0.706	0.077	5.702	0.842
157	0.708	0.079	5.841	0.990
158	0.710	0.082	6.170	1.038
159	0.712	0.082	6.670	1.357
160	0.716	0.086	7.425	1.455
161	0.750	0.095	8.379	1.546
162	0.784	0.107	9.648	1.824
163	0.805	0.115	10.918	2.746
164	0.840	0.122	12.157	3.073
165	0.853	0.127	12.731	3.633
166	0.874	0.159	12.831	4.505
167	0.903	0.186	12.892	4.952
168	0.910	0.189	12.932	5.254
169	0.91 4	0.200	13.702	5.730
170	0.916	0.220	14.139	6.051
171	0.919	0.236	14.964	6.333
172	0.931	0.247	15.704	6.490
173	0.948	0.257	16.253	6.796
174	0.983	0.267	16.907	7.205
175	1.018	0.283	17.655	8.151
176	1.027	0.295	18.020	8.230
177	1.035	0.312	18.349	8.58 4
178	1.051	0.318	18.671	8.800
179	1.074	0.323	18.972	8.847
180	1.084	0.337	19.228	8.913
181	1.099	0.345	20.123	9.122
182	1.121	0.350	20.405	9.532
183	1.132	0.359	20.754	10.256
184	1.152	0.387	21.68 4	10.862
185	1.161	0.398	21.955	10.996
186	1.168	0.400	22.650	11.206
187	1.175	0.402	22.989	11.514
188	1.181	0.405	23.535	11.894
189	1.188	0.418	23.876	12.019
190	1.203	0.429	24.018	12.170
191	1.219	0.442	24.464	12.517

.

192	1.233	0.457	24.685	12.598
193	1.251	0.473	24.931	12.625
194	1.255	0.487	25.188	12.653
195	1.258	0.501	25.468	12.777
196	1.265	0.510	25.627	12.906
197	1.280	0.512	25.746	12.989
198	1.293	0.514	25.850	13.060
199	1.301	0.516	26.974	13.165
200	1.313	0.518	26.141	13.242
201	1.324	0.527	26.225	13.412
202	1.332	0.540	26.338	13.662
203	1.3 41	0.547	26.547	13.773
20 4	1.357	0.553	26.818	13.942
205	1.35	0.559	27.052	14.090
206	1.392	0.563	27.393	14.224
207	1.408	0.567	27.501	14.426
208	1.422	0.571	27.632	14.498
209	1.433	0.575	27.803	14.776
210	1.443	0.579	27.953	14.907
211	1.453	0.595	28.205	14.916
212	1.463	0.605	28.543	15.014
213	1.468	0.614	28.997	15.221
214	1.470	0.622	29.000	15.472
215	1.474	0.627	29.005	15.555
216	1.478	0.638	29.081	15.652
217	1.481	0.643	29.281	15.969
218	1.484	0.643	29.483	16.028
219	1.487	0.645	29.73 4	16.375
220	1.490	0.651	29.803	16.487
221	1.493	0.655	29.821	16.524
222	1.504	0.663	29.847	16.578
223	1.522	0.671	29.862	16.684
22 4	1.547	0.675	29.873	16.755
225	1.549	0.684	30.008	16.770
226	1.562	0.694	30.126	16.805
227	1.574	0.701	30.127	16.865
228	1.579	0.702	30.127	16.960
229	1.584	0.708	30.208	16.960
230	1.589	0.708	30.314	16.962
231	1.590	0.709	30.323	16.988
232	1.596	0.710	30.325	17.072
233	1.598	0.710	30.368	17.094
23 4	1.604	0.711	30.411	17.184

×

235	1.610	0.712	30.416	17.187
236	1.612	0.712	30.428	17.188
237	1.613	0.712	30.430	17.189
238	1.614	0.713	30.452	17.241
239	1.615	0.716	30.488	$\frac{17.241}{17.370}$

b)

511

512

Vehicles having composite hydrocarbon emission limitations of at least 1.25 grams per mile but less than 2.00 grams per mile, in Section 240.Table A or Section 240.Table B, shall use the hydrocarbon fast pass standards contained in this subsection. Vehicles having composite carbon monoxide emission limitations of at least 20.0 grams per mile but less than 30.0 grams per mile, in Section 240.Table A or Section 240.Table B, shall use the carbon monoxide fastpass standards contained in this subsection:

	Hydrocarbons		Carbon Monoxide	
Second	Composite	Phase 2	Composite	Phase 2
30	0.247	N/A	1.502	N/A
31	0.253	N/A	1.546	N/A
32	0.258	N/A	1.568	N/A
33	0.263	N/A	1.582	N/A
3 4	0.268	N/A	1.593	N/A
35	0.277	N/A	1.602	N/A
36	0.283	N/A	1.621	N/A
37	0.293	N/A	1.631	N/A
38	0.297	N/A	1.702	N/A
39	0.298	N/A	1.784	N/A
40	0.313	N/A	1.879	N/A
41	0.320	N/A	2.162	N/A
4 2	0.327	N/A	2.307	N/A
43	0.342	N/A	2.343	N/A
44	0.360	₩A	2.376	N/A
4 5	0.376	N/A	2.406	N/A
4 6	0.389	N/A	2.433	N/A
47	0.408	N/A	2.458	N/A
48	0.423	N/A	2.483	N/A
49	0.434	N/A	2.774	N/A
50	0.444	N/A	2.844	N/A
51	0.454	<mark>N∕A</mark>	2.900	N/A
52	0.465	<mark>₩/</mark> Α	2.936	N/A
53	0.472	N/A	3.133	N/A
54	0.478	N/A	3.30 4	N/A
55	0.485	<mark>N/A</mark>	3.407	N/A
56	0.493	N/A	3.456	N/A

57	0.500	N/A	3.480	N/A
58	0.505	N/A	3.518	N/A
59	0.514	N/A	3.560	N/A
60	0.537	N/A	3.593	N/A
61	0.540	N/A	3.628	N/A
62	0.543	N/A	3.641	N/A
63	0.546	N/A	3.655	N/A
6 4	0.551	N/A	3.680	N/A
65	0.559	N/A	3.700	N/A
66	0.567	N/A	3.728	N/A
67	0.575	N/A	3.857	N/A
68	0.588	N/A	3.894	N/A
69	0.595	N/A	3.943	N/A
70	0.601	N/A	3.983	N/A
71	0.606	N/A	4.009	N/A
72	0.610	N/A	4.023	N/A
73	0.617	N/A	4.023	N/A
74	0.631	N/A	4.053	N/A
75	0.643	N/A	4.063	N/A
76	0.651	N/A	4 .077	N/A
77	0.659	N/A	4.225	N/A
78	0.667	N/A	4.243	N/A
79	0.676	N/A	4.260	N/A
80	0.681	N/A	4.282	N/A
81	0.685	N/A	4 <u>.322</u>	N/A
82	0.689	N/A	4 .398	N/A
83	0.69 4	N/A	4.482	N/A
8 4	0.700	N/A	4.515	N/A
85	0.705	N/A	4.518	N/A
86	0.709	N/A	4.520	N/A
87	0.713	N/A	4.522	N/A
88	0.717	N/A	4 .522	N/A
89	0.721	N/A	4.523	N/A
90	0.724	N/A	4 .526	N/A
91	0.727	N/A	4 <u>.527</u>	N/A
92	0.729	N/A	4 <u>.527</u>	N/A
93	0.731	N/A	4.528	N/A
9 4	0.734	N/A	4 .528	N/A
95	0.740	N/A	4 <u>.528</u>	N/A
96	0.748	<mark>∖\/</mark> A	4.529	N/A
97	0.759	N/A	4.575	N/A
98	0.771	N/A	4 .703	N/A
99	0.783	N/A	4 .805	N/A

e.

100	0.793	N/A	4.886	N/A
101	0.810	N/A	4.957	N/A
102	0.823	N/A	5.104	N/A
103	0.836	N/A	5.340	N/A
104	0.853	N/A	5.496	N/A
105	0.871	N/A	5.625	N/A
106	0.887	N/A	5.815	N/A
107	0.899	N/A	6.473	N/A
108	0.931	N/A	7.037	N/A
109	0.947	0.040	7.419	0.246
110	0.957	0.047	7.643	0.257
111	0.965	0.052	7.759	0.286
112	0.971	0.056	7.824	0.379
113	0.977	0.061	7.889	0.425
114	0.983	0.064	7.960	0.457
115	1.003	0.072	8.02 4	0.477
116	1.030	0.081	8.076	0.494
117	1.041	0.082	8.111	0.504
118	1.050	0.083	8.130	0.512
119	1.052	0.092	8.148	0.519
120	1.055	0.094	8.211	0.529
121	1.061	0.097	8.478	0.529
122	1.071	0.100	8.548	0.530
123	1.081	0.103	8.561	0.531
12 4	1.091	0.106	8.568	0.532
125	1.102	0.108	8.572	0.533
126	1.110	0.110	8.584	0.548
127	1.116	0.112	8.592	0.610
128	1.121	0.114	8.596	0.614
129	1.125	0.116	8.597	0.622
130	1.128	0.118	8.601	0.631
131	1.130	0.120	8.605	0.640
132	1.132	0.122	8.608	0.646
133	1.134	0.123	8.626	0.650
13 4	1.135	0.124	8.650	0.652
135	1.143	0.127	8.660	0.738
136	1.147	0.130	8.767	0.754
137	1.156	0.134	9.029	0.780
138	1.163	0.139	9.238	0.795
139	1.816	0.146	9.389	0.804
140	1.253	0.149	9.493	0.810
141	1.262	0.151	9.583	0.815
142	1.271	0.153	9.626	0.818

٠

 $\mathbf{r}^{(i)}$

143	$\frac{1.277}{1.277}$	0.155	9.669	0.821	
1 44	1.283	0.157	9.716	0.825	
145	1.291	0.162	9.763	0.840	
146	1.29 4	0.164	9.809	0.847	
147	1.296	0.166	9.852	0.855	
148	1.298	0.168	9.885	0.865	
149	1.303	0.169	9.932	0.874	
150	1.316	0.170	9.986	0.891	
151	1.330	0.171	10.039	0.914	
152	1.342	0.172	10.072	0.929	
153	1.348	0.173	10.090	0.937	
15 4	1.353	0.175	10.105	0.942	
155	1.362	0.178	10.146	0.949	
156	1.365	0.180	10.245	1.375	
157	1.366	0.189	10.397	1.576	
158	1.373	0.198	10.923	1.943	
159	1.397	0.203	11.970	2.820	
160	1.422	0.207	13.421	3.281	
161	1.440	0.214	15.289	3.482	
162	1.452	0.221	15.912	3.620	
163	1.465	0.229	16.530	4.168	
164	1.509	0.247	17.622	4.338	
165	1.533	0.274	18.366	4.682	
166	1.555	0.309	19.869	5.633	
167	1.576	0.318	20.711	6.137	
168	1.598	0.322	22.319	6.853	
169	1.618	0.333	23.751	7.136	
170	1.636	0.343	24.842	7.320	
171	1.666	0.356	25.410	7.685	
172	1.685	0.385	25.798	8.052	
173	1.726	0.409	26.122	8.344	
174	1.742	0.433	26.353	8.602	
175	1.756	0.453	26.638	8.898	
176	1.769	0.463	27.219	9.251	
177	1.784	0.507	27.279	10.253	
178	1.802	0.523	27.320	10.828	
179	1.822	0.528	27.352	10.933	
180	1.843	0.541	28.822	11.060	
181	1.864	0.549	28.763	11.188	
182	1.884	0.559	29.402	11.345	
183	1.896	0.571	29.971	11.733	
184	1.915	0.584	30.276	12.598	
185	1.940	0.598	30.988	12.953	

9 (1

186	1.958	0.613	31.095	13.213
187	1.972	0.624	31.31 4	14.131
188	1.985	0.629	31.833	14.839
189	1.991	0.629	32.239	15.137
190	1.993	0.638	32.547	15.138
191	1.995	0.648	32.855	15.141
192	2.001	0.659	33.153	15.595
193	2.015	0.663	33.444	15.658
194	2.031	0.671	33.482	15.704
195	2.047	0.681	33.516	15.729
196	2.063	0.693	33.549	16.058
197	2.079	0.709	33.653	16.987
198	2.094	0.725	33.973	17.064
199	2.109	0.740	34.159	17.073
200	2.122	0.754	34.191	17.153
201	2.130	0.767	34.250	17.332
202	2.137	0.775	34.469	17.406
203	2.157	0.787	34.716	17.641
20 4	2.172	0.795	34.969	17.922
205	2.194	0.803	35.144	18.484
206	2.222	0.854	35.418	18.553
207	2.245	0.859	35.766	18.658
208	2.268	0.872	35.949	18.953
209	2.279	0.892	36.010	19.266
210	2.288	0.896	36.548	19.309
211	2.301	0.903	37.179	19.731
212	2.316	0.92 4	37.651	19.902
213	2.332	0.938	38.041	20.012
214	2.345	0.941	38.591	20.260
215	2.35 4	0.951	38.852	20.739
216	2.362	0.966	38.861	21.346
217	2.368	0.979	38.926	21.810
218	2.376	0.980	39.194	22.001
219	2.384	0.981	39.474	22.290
220	2.391	1.005	39.668	22.324
221	2.395	1.016	39.781	22.343
222	2.400	$\frac{1.022}{1.022}$	39.890	22.522
223	2.405	1.028	39.95 4	22.661
22 4	2.409	1.035	39.98 4	22.666
225	2.413	1.041	39.989	22.667
226	2.415	1.045	39.990	22.668
227	2.417	1.051	39.990	22.669
228	2.419	1.055	39.990	22.670

. . .

229	2.420	1.059	39.991	22.671
230	2.421	1.062	4 0.012	22.671
231	2.423	1.063	40.061	22.672
232	2.425	1.063	40.116	22.673
233	2.427	1.063	40.249	22.673
23 4	2.429	1.064	40.253	22.673
235	2.430	1.064	40.290	22.674
236	2.431	1.066	4 0.385	22.675
237	2.432	1.069	40.488	22.675
238	2.433	1.072	40.720	22.675
239	2.43 4	1.075	40.763	22.677

c)

5

517

518

519

520

Vehicles having composite hydrocarbon emission limitations of 2.00 grams per mile or greater, in Section 240. Table A or Section 240. Table B, shall use the hydrocarbon fast pass standards contained in this subsection. Vehicles having composite carbon monoxide emission limitations of 30.0 grams per mile or greater in Section 240. Table A or Section 240. Table B, shall use the carbon monoxide fast-pass standards contained in this subsection:

	Hydrocarbons		Carbon Monoxide	
Second	Composite	Phase 2	Composite	Phase 2
30	0.407	N/A	3.804	N/A
31	0.415	N/A	3.985	N/A
32	0.423	N/A	4.215	N/A
33	0.436	N/A	4.440	N/A
34	0.451	<mark>N/A</mark>	4.579	N/A
35	0.46 4	N/A	4.688	N/A
36	0.468	N/A	4.749	N/A
37	0.475	N/A	4 .783	N/A
38	0.487	N/A	4 .813	N/A
39	0.506	N/A	4.876	N/A
40	0.530	N/A	5.104	N/A
41	0.549	N/A	5.217	N/A
4 2	0.569	N/A	5.383	N/A
43	0.588	N/A	5.571	N/A
44	0.609	N/A	5.888	N/A
4 5	0.621	N/A	6.199	N/A
46	0.636	N/A	6.245	N/A
47	0.649	N/A	6.318	N/A
48	0.666	N/A	6.418	N/A
4 9	0.679	N/A	6.540	N/A
50	0.696	N/A	6.690	N/A
51	0.712	N/A	6.875	N/A

52	0.727	N/A	7.029	N/A
53	0.745	N/A	7.129	N/A
5 4	0.760	N/A	7.359	N/A
55	0.776	N/A	7.722	N/A
56	0.797	N/A	8.017	N/A
57	0.814	N/A	8.249	N/A
58	0.826	N/A	8.425	N/A
59	0.837	N/A	8.563	N/A
60	0.849	N/A	8.686	N/A
61	0.862	N/A	8.804	N/A
62	0.872	N/A	8.916	N/A
63	0.887	N/A	9.025	N/A
64	0.895	N/A	9.138	N/A
65	0.903	N/A	9.250	N/A
66	0.925	N/A	9.354	N/A
67	0.933	N/A	9.457	N/A
68	0.945	N/A	9.575	N/A
69	0.959	N/A	9.728	N/A
70	0.970	N/A	9.938	N/A
71	0.980	N/A	10.140	N/A
72	0.988	N/A	10.222	N/A
73	0.997	N/A	10.261	N/A
74	1.022	N/A	10.278	N/A
75	1.037	N/A	10.290	N/A
76	1.051	N/A	10.715	N/A
77	1.064	N/A	10.790	N/A
78	1.075	N/A	10.844	N/A
79	1.087	N/A	10.921	N/A
80	1.097	N/A	11.010	N/A
81	1.105	N/A	11.090	N/A
82	1.114	N/A	11.136	N/A
83	1.136	N/A	11.136	N/A
84	1.160	N/A	11.165	N/A
85	1.182	N/A	11.191	N/A
86	1.201	N/A	11.205	N/A
87	1.217	N/A	11.211	N/A
88	1.233	N/A	11.211	N/A
89	1.248	N/A	11.211	N/A
90	1.262	N/A	11.211	N/A
91	1.271	N/A	11.220	N/A
92	1.279	N/A	11.294	N/A
93	1.287	N/A	11.332	N/A
94	1.295	N/A	11.355	N/A

. . · ·

95	1.302	N/A	11.383	N/A
96	1.309	N/A	11.410	N/A
97	1.316	N/A	11.433	N/A
98	1.325	N/A	11.516	N/A
99	1.339	N/A	11.820	N/A
100	1.356	N/A	12.104	N/A
101	1.365	N/A	12.344	N/A
102	1.378	N/A	12.781	N/A
103	1.397	N/A	13.472	N/A
104	1.420	N/A	14.405	N/A
105	1.445	N/A	14.808	N/A
106	1.470	N/A	14.965	N/A
107	1.491	N/A	15.121	N/A
108	1.506	N/A	15.372	N/A
109	1.517	0.151	15.530	1.113
110	1.528	0.159	15.687	1.213
111	1.542	0.172	16.018	1.344
112	1.559	0.186	16.527	1.399
113	1.578	0.199	16.810	1.520
114	1.594	0.207	16.961	1.640
115	1.605	0.216	17.120	1.684
116	1.615	0.229	17.135	1.693
117	1.625	0.235	17.249	1.786
18	1.642	0.240	17.451	2.007
119	1.670	0.245	17.509	2.084
120	1.69 4	0.261	17.605	2.179
121	1.705	0.267	17.734	2.644
122	1.717	0.277	18.049	2.328
123	1.732	0.287	18.447	2.375
124	1.747	0.298	18.592	2.437
125	1.763	0.308	18.657	2.543
126	1.779	0.316	18.796	2.593
127	1.795	0.322	18.952	2.641
128	1.810	0.329	19.137	2.663
129	1.823	0.338	19.329	2.672
130	1.835	0.346	19.519	2.676
131	1.845	0.354	19.707	2.683
132	1.854	0.356	19.882	2.817
133	1.862	0.357	19.905	2.992
134	1.870	0.359	20.049	3.111
135	1.883	0.362	20.460	3.234
136	1.888	0.36 4	20.746	3.304
137	1.896	0.368	21.310	3.310

. · · ·

138	1.911	0.378	21.380	3.320
139	1.928	0.391	21.748	3.35 4
140	1.949	0.402	22.046	3.436
141	1.969	0.408	22.348	3.443
142	1.982	0.422	22.397	3.452
143	1.999	0.428	322.407	3.490
144	2.011	0.432	22.417	3.552
145	2.022	0.434	22.922	3.588
146	2.035	0.439	22.951	3.600
147	2.043	0.450	22.976	3.616
148	2.049	0.460	23.017	3.627
149	2.063	0.467	23.073	3.636
150	2.085	0.472	23.161	3.676
151	2.104	0.480	23.218	3.882
152	2.117	0.491	23.253	4.011
153	2.127	0.503	23.337	4.047
154	2.138	0.505	23.425	4.067
155	2.152	0.515	23.534	4.081
156	2.168	0.522	23.652	<u>4.116</u>
157	2.186	0.527	23.739	4.251
158	2.205	0.537	24.606	5.099
159	2.22 4	0.549	25.615	5.383
160	2.242	0.568	26.073	6.362
161	2.268	0.586	28.496	7.926
162	2.308	0.610	29.772	8.429
163	2.352	0.648	31.056	9.201
164	2.406	0.677	33.351	10.825
165	2.421	0.699	34.980	12.291
166	2.435	0.720	35.937	13.366
167	2.470	0.738	37.012	14.428
168	2.501	0.767	37.892	15.318
169	2.537	0.828	39.028	15.699
170	2.571	0.855	40.406	16.073
171	2.625	0.869	41.379	16.475
172	2.657	0.885	42.033	17.158
173	2.683	0.900	42.432	17.532
174	2.701	0.941	4 <u>2.742</u>	17.965
175	$\frac{2.717}{2.717}$	0.979	4 3.399	18.242
176	2.732	1.002	4 3.895	18.283
177	2.756	1.025	44 <u>.227</u>	18.480
178	2.781	1.047	44 .926	19.576
179	2.811	1.065	4 5.256	20.015
180	2.853	1.089	4 5.553	20.203

с. . . е. С

181	2.898	1.109	4 5.753	20.433
182	2.946	1.133	4 6.210	21.025
183	2.988	1.158	47.017	21.882
184	3.023	1.184	4 8.185	22.204
185	3.057	1.209	48.741	22.859
186	3.076	1.222	4 9.462	23.533
187	3.101	1.231	50.313	24.281
188	3.120	1.239	51.285	25.078
189	3.136	1.25 4	52.076	25.276
190	3.151	1.278	52.857	25.578
191	3.163	1.300	52.876	25.859
192	3.209	1.313	53.067	25.985
193	3.223	1.32 4	53.777	26.153
194	3.237	1.340	54.242	26.582
195	3.263	1.367	54.489	27.067
196	3.302	1.387	54.601	27.456
197	3.338	1.402	54.912	27.805
198	3.372	1.417	55.588	28.070
199	3.390	1.432	56.266	28.590
200	3.428	1.446	56.617	28.914
201	3.470	1.460	56.863	29.063
202	3.493	1.477	57.204	29.502
203	3.509	1.492	57.371	29.697
204	3.522	1.501	57.487	29.713
205	3.533	1.510	57.728	29.783
206	3.550	1.522	58.097	29.942
207	3.578	1.561	58.572	30.284
208	3.607	1.585	59.024	30.755
209	3.630	1.597	59.321	31.287
210	3.658	1.607	59.715	31.549
211	3.701	1.627	60.045	31.820
212	3.745	1.645	60.453	32.250
213	3.778	1.656	60.935	32.546
214	3.814	1.663	61.307	32.808
215	3.825	1.669	61.666	33.060
216	3.835	1.674	62.148	33.204
217	3.8 44	1.685	62.532	33.341
218	3.853	1.700	62.546	33.414
219	3.86 4	1.704	62.559	33.514
220	3.874	1.706	62.570	33.640
221	3.891	1.709	62.846	33.692
222	3.928	1.711	63.097	33.711
223	3.966	1.714	63.150	33.733

	224	4.008	1.718	63.150	33.770		
	225	5.010	1.721	63.150	33.796		
	226	4.012	1.723	63.150	33.810		
	227	4.016	1.726	63.150	33.821		
	228	4.019	1.729	63.150	33.839		
	229	4 .057	1.731	63.150	33.865		
	230	4.065	1.733	63.150	33.894		
	231	4.071	1.735	63.150	33.918		
	232	4.073	1.743	63.150	33.944		
	233	4.075	1.749	63.150	33.985		
	234	4.077	1.753	63.153	34.014		
	235	4.079	1.757	63.159	34.032		
	236	4.081	1.762	63.173	34.051		
	237	4.083	1.767	63.193	34.067		
	238	4.084	1.772	63.21 4	34.079		
	239	4.085	1.776	63.233	34.085		
(Source:	Repealed a	tt 35 Ill. Reg.	, effe	, effective			

521 522

р **Г**