BEFORE THE ILLINOIS POLLUTION CONTROL BOARD

JAN 1 1 2001

IN THE MATTER OF:)	Pollution Control Board
PROPOSED NEW 35 III. ADM. CODE 217, SUBPART U, NOx CONTROL AND TRADING PROGRAM FOR SPECIFIED Nox GENERATING UNITS, SUBPART X, VOLUNTARY Nox EMISSIONS REDUCTION PROGRAM, AND AMENDMENTS TO 35 III. ADM CODE 211)	R01-17 (Rulemaking-Air)

NOTICE OF FILING

TO: Ms. Dorothy M. Gunn

Clerk of the Board

Illinois Pollution Control Board James R. Thompson Center 100 West Randolph Street

Suite 11-500

Chicago, IL 60601

(VIA Certified U.S. MAIL)

Bobb A. Beauchamp, Esq.

Hearing Officer

Illinois Pollution Control Board James R. Thompson Center 100 West Randolph Street

Suite 11-500

Chicago, IL 60601

(VIA FAX)

PLEASE TAKE NOTICE that I have filed today with the Office of the Illinois Pollution Control Board comments on behalf of the University of Illinois, a copy of which is herewith served upon you.

Respectfully submitted,

OFFICE FOR PLANNING AND BUDGETING

UNIVERSITY OF ILLINOIS

By:

Lyle D. Wachtel, P.E.

Dated: January 8, 2001

Lyle D. Wachtel, P.E. Director, Office for Planning and Budgeting 338 Henry Administration Building 506 South Wright Street Urbana, IL 61801 (217) 333-0375 The University, in support of seeking relief to the continuous emissions requirements of the current NOx SIP Call, offers the following comments to the Board for their thoughtful consideration.

In September 1961, The Babcock and Wilcox Company (B & W), a manufacturer of stoker boilers, responded to a bid solicited by the Board of Trustees of the University of Illinois. This proposal was to furnish a 150 Mlb/Hr coal fired steam boiler for the Urbana campus of the University of Illinois. B & W also provided as an alternate bid, a 200 Mlb/Hr coal fired steam boiler. These ratings were based on continuous operation.

The University selected the larger alternate and the boiler was installed at the Abbott power plant in 1962. As part of the installation, an owner's manual that documented the boilers specifications was provided. Four pages of this manual have been copied and are attached for reference as Exhibit A.

On page two of Exhibit A, two ratings are referenced for the boiler operation: a two hour maximum peak rating of 220 Mlb/Hr and a continuous rating of 200 Mlb/Hr. Using the continuous rating, the rating that the boiler was designed to operate over the long term, the specifications indicate that a fuel quantity of 21,200 lbs of coal/hour (Exhibit A, page 3, line 9) was the maximum rate of fuel input. Furthermore, based on the coal available from a mine in Vermillion County, Illinois, with a heat content of 11,500 BTU/lb (Exhibit A, page 4, line 50), the total heat input of the boiler was designed for 243.8 million BTU/Hr (21,200 lb/Hr X 11,500 BTU/lb). This heat input is less than

the 250 million BTU required for inventory classification under the current NOx SIP Call.

The Title V permit submitted to the Agency by the University was in error by including the peak rating of the boiler as a nameplate operation and not the continuous rating as provided in the specifications. If the Agency desires, the University will submit corrected documents reflecting this oversight to better reflect the true continuous heat input of boiler #7.

Note that the Vermillion County mine, that produced coal specified for boiler #7 in 1962, has since closed. The coal available for use at Abbott for the past ten years has been limited to two suppliers based in Illinois. Attached for reference as Exhibit B (existing coal supplier) and Exhibit C (previous coal supplier) are the coal analyses of the two suppliers competing for the University business. In both cases, the heat content is less than 11,500 BTU/lb (Exhibit B 10,597 BTU/lb – Exhibit C 11,074 BTU/lb) originally specified by the boiler manufacturer. Consequently, based on the boiler input rate and because of the boiler grate size and fire box dimensions, this lower quality coal will never provide enough heat input to exceed the 250 million BTU/Hr threshold provided under the current NOx SIP Call.

It is unfortunate the University did not correct this oversight prior to the NOx SIP Call, but it is the expressed desire of the University to have this rating corrected in the Agency's inventory prior to finalization of this rule. The University believes that as long

as the NOx budget of the State is not affected, then this adjustment could be possible pursuant to the precedent set and described under the rule revision found in the Federal Register (Dec. 21, 2000, Volume 65, Number 246). The Board has heard testimony of another entity requesting additions to the inventory and this adjustment provides an opportunity to accommodate this entity.

Respectfully submitted, UNIVERSITY OF ILLINOIS

 $\mathbf{R}_{\mathbf{V}}$

le D. Wachtel, P.E

Director

Office for Planning and Budgeting

Dated: January 8, 2001

Lyle D. Wachtel, P.E. Director, Office for Planning and Budgeting 338 Henry Administration Building 506 South Wright Street Urbana, IL 61801 (217) 333-0375

INSTRUCTIONS

BLR - 7

EXHIBIT A

for the

CARE AND OPERATION

of

BABCOCK & WILCOX EQUIPMENT

FURNISHED ON CONTRACT

113-0104

5-10104

for

UNIVERSITY OF ILLINOIS

ABBOTT POWER PLANT

CHAMPAIGN, ILLINOIS

1

DESCRIPTION OF UNIT

MAXIMUM CONTINUOUS HIGH PRESSURE STEAM OUTPUT

LB/HR:

200,000

2 HR. PEAK

220,000

STEAM CONDITIONS AT SUPERHEATER OUTLET

TEMPERATURE, F:

760

PRESSURE, PSI:

875

DESIGN PRESSURE, PSI.

BOILER:

975

ECONOMIZER:

1,050

HEATING SURFACE, SQ. FT.

BOILER:

14,114

FURNACE:

2,160

SUPERHEATER:

3,671

ECONOMIZER:

6,600

APPROXIMATE WATER HOLDING CAPACITY
IN POUNDS PER UNIT

NORMAL:

98,400

HYDROSTATIC:

124,200

STEAM, ACTUAL, M LB/MR		200	220			
*						
TYPE OF FUEL		Coal	Coal			
	NO LOAD DURATION, HR	Cont.	2 Hr. Pk.			
	E LIBERATION, KB/CU FT-HR					
EXCESS	SAIR LEAVING BOILER %	25	25			
-	S, NO. IN USE PER FURNACE		, <u></u> .	-		
LB/HR	CONTINUOUS BLOWDOWN	0	0			
==	FUEL	21.2				·
QUAN N. L	FLUE GAS LEAVING BOTLER	243.5				
-	AIR LEAVING A H 头头	189.5				
PRESSURES LB/SQ 1N	STEAM AT S H OUTLET	875	875			
Sus	MIN OPER IN BOILER DRUM	907			ļ	
RES B/s	DROP, DRUM TO S H OUTLET	32			ļ	
	DROP THRU ECON	55			1	ļ
	SUPERHEATED STEAM	760	762		l	ļ
S	FLUE GAS LEAVING BLR	681			ļ	ļ
J WE	FLUE GAS LEAVING ECON	489 r				ļ
TEMPERATURES F	FLUE GAS LEAVING A H	350		ļ	1	
꾶	WATER ENTERING ECON	380	388	<u> </u>		
=	WATER ENTERING BLR	458		<u> </u>		
	AIR ENTERING A H	7.00	100			1
ll	AIR LEAVING A H	293		1		
	FURNACE	0.1			L	
ន∝	BOILER AND SUPERHEATER	0.8				
LOSSES WA TER	ECONOMIZER	1.6		<u> </u>		<u></u>
7.	AIR HEATER	2.0		<u> </u>		<u> </u>
DRAFT IM.OF	DUST COLLECTOR	2.5				
5-	FLUES	1.2				
	NET DRAFT LOSS	8.2	9.9			
ER.	STOKER AND WINDBOX	1.7				
RESIS.	DUCTS	1.5				ļ
₩ 50	AIR HEATER& STM. A.H.	0.7	<u> </u>			ļ
< <u>=</u>	NET RESISTANCE	3,9	1.7			ļ
	DRY GAS	5.4				-
S	H2 AND H20 IN FUEL	5.4				<u> </u>
r Loses	MOISTURE IN AIR	0.2				1
PK	UNBURNED COMBUSTIBLE *	3.5		<u> </u>	.] . <u></u>	
HEAT	RADIATION	0.6				
I	UNACCOUNTED FOR	1.5				.
 .	TOTAL HEAT LOSS	16.8				.
EFF 10	CIENCY OF UNIT, %	83.2	82,6			.]
<u>*</u> B	ased on cinder returns	from boile	r hoppers an	d cinder tra	n only	
**					. 4	i
					<u> </u>	. }
	ALLOWABLE BOILER CONC. PPM	1500		.		.}
SOL	IDS IN STEAM PPM	1			.	
	NO. IN USE PER FURNACE	ļ		.	.	·
PULVER 12ER	AIR TEMP TO PULV, F			.]	_	.
ÆR	TOTAL POWER, KW HR/TON			,	_	
1 2	% THRU NO. 200 U.S. SIEVE					,
	% THRU NO. 50 U.S. SIEVE	1	<u> </u>	.}	_	.][
		EXPECT	ED PERFORMAN	CE		

SOURCE	SAMPLE ANALYS		ners Specifica	tions	
301		Cus con	ers precirice	101019	
	KIND		,		
	A.S.T. M	CLASS			**************************************
		GROUP			
		MINE	·		****
	S S S	SEAM			
	SOURCE	DISTRICT			
	"	COUNTY	Vermilion		
	SIZE	STATE	Illinois		<u> </u>
	GRINDA	BILITY	1 1/4:		
SOLID		E MOIST., %	:		
20	88	MOISTURE	12.6 V		
	=	VOL MATTER	40.5		
	ANAL	FIXED CARBON	38.3		
	PR OX	ASH	8.6		
		TOTAL	100.0		
	<u> </u>	T	_	REDUCTING	OX ID IZ ING
	TEMP	INITIAL DEFOR	MAT ION		0/10/2/110
		SOFTENING		2020.	
	ASH	LIQUID .			
	KIND	···			
9	KIND				· · · · · · · · · · · · · · · · · · ·
LIQUID	GRAV IT	Y, DEG A.P.I.			
				The state of the s	
Ω,	KIND	N =		e e e e e e e e e e e e e e e e e e e	
ASEOUS	SP GR	REL TO AIR			
GA S			· · ·		
	ļ <u></u>		T		· · · · · · · · · · · · · · · · · · ·
	FUEL	<u>4, 7</u>	Coal		
	% BY	4 .	Wt.		
			8.6		
	\$ H ₂		4.53		
	C		63.00		
YSE	СНи		1		
MAL	C ₂ H ₄				
Ή	C ₂ H ₆				
₹	СО				
ULTIMATE ANALYSES	CO ₂	· · · · · · · · · · · · · · · · · · ·	 		
	S0 ₂	· · · · · · · · · · · · · · · · · · ·	<u> </u>		
	H ₂ 0		12.6		
	N ₂ 0 ₂		1.0		
	TOTAL		7.45		
	BTU/LB		11,500		_
	8TU/CU	FT AT	1		
	1 60 E	30 IN. HG	, .		

EXHIBIT B

Date Rec'd. 4/04/2000 to 3/31/2000

Sampled By CLIENT

STANDARD LABORATORIES, INC. 8451 River King Dr. (Shipping)
Freeburg, IL 62243-0039

Page: 1 of 1

Date: 04/21/2000 08:48:25

Sample ID: 20000048201

P.O.# 652-8801

TURRIS COAL COMPANY

P.O. BOX 21

ELKHART, IL 62634

ATTN: TIM LAZOEN

Remark: TURRIS STOKER COAL 03/31/2000

				Wei	ght %
DDOUTMAN OF THE TANK OF THE	As	Dry		As	Dry
PROXIMATE ANALYSIS	Received	Basis	ULTIMATE ANALYSIS	Received	Basis
Moisture D3302	16.68	****	% Moisture D3302	16.68	****
% Ash D3174	9.01	10.81	% Carbon D5373	58.47	70.18
% Volatile D3175	34.03	40.84	<pre>% Hydrogen D5373</pre>	3.98	4.78
% Fixed Carbon D3172	40.29	48.35	% Nitrogen D5373	1.05	1.26
BTU D1989	10597	12719	% Chlorine D2361	0.21	0.25
MAF-BTU D1989	14	261	% Sulfur D4239	3.20	3.84
otal Sulfur D4239	3.20	3.84	% Ash D3174	9.01	10.81
			% Oxygen (Diff.) D3176	7.40	8.88
SULFUR FORMS	•	5			
Pyritic D2493	1.30	1.56	MINERAL ANALYSIS D6349	% Ignited	Basis
Sulfate D2492	0.02	0.02	Phos. Pentoxide, P205	J	0.06
Organic D2492	1.88	2.26	Silica, SiO2	*	52.42
Total Sulfur D4239	3.20	3.84	Ferric Oxide, Fe2O3		21.40
			Alumina, Al203		13.78
VATER SOLUBLE			Titania, TiO2		0.74
Na2O ASME1974	0.132	0.158	Lime, CaO		3.62
K2O ASME1974	0.003	0.003	Magnesia, MgO		0.55
Chlorine ASME1974	****	****	Sulfur Trioxide, SO3		3.76
•			Potassium Oxide, K20		1.34
Alkalies as Na20 ASME197	0.22	0.26	Sodium Oxide, Na20	*	1.50
			Barium Oxide, BaO		0.03
USION TEMP. OF ASH D1857	Reducing	Oxidizing	Strontium Oxide, Sro		0.03
.D.	1955	2340	Manganese Dioxide, MnC	12	0.03
!=W	1970	2375	Undetermined	, <u> </u>	0.71
I=1/2W	2000	2440	Type of Ash ASME197	a pi	uminous
Pluid	2205	2610	Silica Value ASME197		67.21
	2002	2020	T250 Deg B&W	TE	2385
GRINDABILITY INDEX D409	59 @ 2.1	5 % Moist.	Base/Acid Ratio ASME197	1	0.42
RIND INDEX UNCONDITIONED *		* % Moist.	lb Ash/mm BTU	.	****
	Ü	· NOLDE.	lb SO2/mm BTU		6.03
REE SWELLING INDEX D720	2.5		Fouling Index ASME197	4	0.63
	, e . J		Slagging Index ASME197		
pparent Specific Gravity o	£ 01 w-3ra		production times womera	*	1.61

quilibrium Moisture D1412 13.11

Respectfully Submitted,

al merint

TURRIS COAL COMPANY

P.O. BOX 21 ELKHART, IL 62634

ATTN: TIM LAZOEN

Remark: TURRIS STOKER COAL 03/31/2000

STANDARD LABORATORIES, INC. (Shipping)

Freeburg , IL 62243-0039

Page: 1 of 1

Date: 04/18/2000 13:08:16

Sample ID: 20000048201

P.O.# 652-8801

TRACE ELEMI	ENT	DRY BASIS		RESULTS	METHOD
ANTIMONY	SB	PPM		0.48	ASTM PS52 - GFAA
ARSENIC	AS	PPM		1.6	ASTM PS52 - ICP-AES
BARIUM	BA	PPM		23	ASTM PS52 - ICP-AES
BERYLLIUM	BE	PPM		2.8	ASTM PS52 - ICP-AES
BORON	В	PPM		NA	HCL BOMB - ICP-AES
BROMINE	BR	PPM		NA	BOMB-ISE
CADMIUM	CD	PPM	•	0.17	ASTM PS52 - GFAA
CHLORINE	CL	PPM		NA	ASTM D2361-95 MOD
CHROMIUM	CR	PPM		. 11	ASTM PS52 - ICP-AES
COBALT	CO	PPM		2.4	ASTM PS52 - ICP-AES
COPPER	CU	PPM		5	ASTM PS52 - ICP-AES
FLUORINE	F	- PPM		NA	ASTM D3761 - ISE
IRON	FE	PPM		NA	ASTM PS52 - ICP-AES
LEAD	PB	PPM	* * *	2	ASTM PS52 - ICP-AES
LITHIUM	LI	PPM		4.2	ASTM PS52 - ICP-AES
MAGNESIUM	MG	PPM		NA	ASTM PS52 - ICP-AES
Manganese	MN	PPM	.*	37	ASTM PS52 - ICP-AES
MERCURY	HG	PPM		0.07	ASTM D3684-94 - FICVAA
MOLYBDENUM	MO	PPM		3.2	ASTM PS52 - ICP-AES
NICKEL	NI	PPM		7	ASTM PS52 - ICP-AES
SELENIUM	SE	PPM		1.6	ASTM D3684 - GFAA
SILVER	AG	PPM		0.06	ASTM PS52 - ICP-AES
STRONTIUM	SR	PPM		23	ASTM PS52 - ICP-AES
THALLIUM	\mathtt{TL}	PPM		NA	ASTM PS52 - GFAA
TIN	SN	PPM		0.4	ASTM PS52 - ICP-AES
URANIUM	บ	PPM		AN	ASTM PS52 - ICP-AES
VANADIUM	V	PPM		19	ASTM PS52 - ICP-AES
ZINC	ZN	PPM		13	ASTM PS52 - ICP-AES
ZIRCONIUM	ZR	PPM		12.5	ASTM PS52 - ICP-AES

NA = NOT ANALYZED

Respectfully Submitted,

EXHIBIT C

COMMERCIAL TESTING & ENGINEERING CO.

GENERAL OFFICES: 1918 SOUTH MIGHLAND AVE., SUITE 210-B. LOMBARD, ILLINOIS 60146 • (312) 953-9300

August 16, 1995

Member of the SGS Group (Sociáté Générale de Surveillance)

FREEMAN COAL SALES, INC. 1999 WABASH AVENUE

SUITE 200-C

SPRINGFIELD IL 62704

ATTN: CHUCK SMITH

Kind of sample Coal

reported to us

Sample taken at Crown III Kine

Sample taken by Freeman Coal Sales

Date sampled ----

Date received July 31, 1995

PLEASE ADDRESS ALL CORRESPONDENCE P.O. BOX 782, HENDERSON, KY 42 TELEPHONE: (502) 827-1 FAX: (502) 828-0

Sample identification by Preeman Coal Sales

Crown III Hine Stoker Semi-Annual 5 Day Composite 1st Half 1995 P. O. #F 910346 Release #83-05184

7671	Date 9/0/95 # of pages 3
	From isabuffey
	co. Freeman Coal Suls
*******	Phone #
	Fex #
	7671

Analysis Report

		-Inen welver			
PROXIMATE ANALYSIS	As Received	Dry Basis	ULTIMATE ANALYSIS	<u>As Received</u>	Dry Basis
* Moisture	/ 13.86	XXXXX	1 Hoisture	13.86	XXXXX
t a sh	8.42	9.77	* Carbon	60.63	70.38
∜ Volatile	36.82	42.75	* Hydrogen	4.42	5.13
Fixed Carbon	40.90	47-48	* Witrogen	0.99	1.15
	100.00	100.00	% Sulfur	3.43	3.98
			* Ash	8.42	9.77
Beu/1b	11074	12856	* Oxygen(diff)	8.25	9.59
* Sulfur	3.43	3.98	1 4525 -10 (0000)	100.00	100.00
HAF Btu	0.120	14248			700.00
Alk. as Sodium Oxide	0.27	0.31	* Chlorine	0.09	0.10
FORMS OF SULFUR	-		PUSION TEMPERATURE O	NF 150 (09)	}
4 Pyritic	0.96	1.11	TANK TOTAL TOTAL TOTAL		cing Oxidizing
& Sulfate	0.01	0.01		Redu	CING OFIGIRING
* Organic (diff)	2.46	2.86	Initial Deformation	(IT) 19	90 2330
V	2720	2100	Softening		
WATER SOLUBLE ALK.			→ Hemispherical		
* Sodium ozide	0.093	0-108	Fluid		
* Potassium oxide	0.003	0.004	. 235-		\
* EQUILIBRIUM MOISTURE	= 13.8				
PREE SWELLING TWORK			Respectfully	Submitted	

Mariager, Handerson Laboratory

MERCIAL TESTING & ENGINEERING CO.KD

OVER 40 BRANCH LABORATORIES STRATEGICALLY LOCATED IN PRINCIPAL COAL MINING AREAS.

Page 1 of 2

COMMERCIAL TESTING & ENGINEERING CO.

GENERAL OFFICES: 1919 SOLTH MIGHLAND AVE., SUITE 210-9. LOMBARD. ILLINOIS 60148 • (312) 953-9300

Member of the SGS Group (Sociale Garaire de Surveillance)

August 16, 1995

FREEMAN COAL SALES, INC. 1999 WABASH AVENUE SUITE 200-C SPRINGFIELD IL 62704 ATTN: CHUCK SMITH

Kind of sample Coal

reported to us

Sample taken at Crown III Kine

Sample taken by Freeman Coal Sales

Date sampled -----

Date received July 31, 1995

PLEASE ADDRESS ALL CORRESPONDENCE TO P.O. BOX 752, HENDERSON, KY 424, TELEPHONE: (502) 827-111 FAX: (502) 826-07

Sample identification by Freeman Coal Sales /

Crown III Mine Stoker Semi-Annual 5 Day Composite 1st Half 1995 P. O. #F 910346 Release #83-05184

Analysis Report No. 63-88548

ANALYSIS OF ASH	WEIGHT &, IGNITED BASIS
Silicon dioxide	52.80
Aluminum oxide	18.02
Titanium dioxide	0-88
Iron oxide	17.00
Calcium oxide	2.76
Magnesium oxide	0.78
Potassium oxide	3.27
Sodium oxide	1.72
Sulfur trioxide	3.01
Phosphorus pentoxide	0.16
Strontium oxide	0.03
Barium oxide	0.08
Hanganese oxide	0.05
Undetermined	0.44
,	100.00

Silica Value = 71.99

Base:Acid Ratio = 0.34

Tiso Temperature = 2489 °F

Type of Ash = BITUMINOUS Fouling Index = 0.58 Slagging Index = 1.35

Asspectfully submitted.

CONMERCIAL TESTING A ENGINEERING CO. MALLY

Manager, Handarzon Laboratory

OVER 40 BRANCH LABORATORIES STORTERIES