BEFORE THE ILLINOIS POLLUTION CONTROL BOARD

PEOPLE OF THE STATE OF ILLINOIS,)	
Complainant,)	
v.)	PCB No. 13 - 12
NACME STEEL PROCESSING, LLC,)	(Enforcement – Air)
a Delaware limited liability corporation,	j	
Respondent.)	

EXHIBIT F

THOMAS J. REUTER AFFIDAVIT

BEFORE THE ILLINOIS POLLUTION CONTROL BOARD PEOPLE OF THE PEOPLE OF ILLINOIS,

Complainant,

v.

PCB No. 13 - 12 (Enforcement — Air)

NACME STEEL PROCESSING, LLC, a Delaware limited liability corporation,

Respondent.

AFFIDAVIT

- I, Thomas J. Reuter, being duly sworn on oath, depose and state that I am over 21 years of age, have personal knowledge of the facts stated herein, and, if called as a witness, could competently testify to the following:
- 1. I am employed by the Illinois Environmental Protection Agency (Illinois EPA), and serve as the Records Officer.
- 2. As part of my duties, I am responsible for the control, care, and safekeeping of the records of the Illinois EPA located in Springfield, Illinois.
- 3. When the Illinois EPA receives a document it is directed to the appropriate bureau for distribution and delivery to the designated program manager or staff member for review and action. Following program staff review and any needed action, documents are submitted to the Agency file and include a file heading consisting of an ID number specifying the site/facility/source location, the site name and a records category. All Agency records are maintained and segregated according to the file heading.
- 4. I certify the following documents attached to this affidavit are "public documents kept in the file at the Illinois EPA:

- February 8, 2001 Operating Permit No. 96020074 Revised ("Nacme's SOP")
- 2. April 11, 2002 Operating Permit Revision Application Revised ("2002 Construction Permit Application")
- 3. April 12, 2002 Construction Permit No. 01040081 Revised ("2002 Construction Permit")
- 4. April 16, 2002 Gaseous Emissions Test ("April 2002 Stack Test")
- 5. May 16, 2002 Permit Denial ("2002 Operating Permit Denial")
- 6. March 30, 2005 Application for Renewal of Federally Enforceable State Operating Permit submitted by Nacme ("April 2005 SOP Renewal Application")
- 7. April 13, 2005 Notice of Incompleteness ("April 2005 Notice of Incompleteness")
- 8. August 23, 2005 Air Emission Operating Permit Source Renewal Application ("September 2005 SOP Renewal Application")
- 9. September 20, 2005 Notice of Incompleteness ("September 2005 Notice of Incompleteness")
- 10. October 18, 2005 Renewal Application Federally Enforceable State Operating Permit ("2005 FESOP Application")
- 11. December 6, 2005, CAAPP Application Completeness Determination of Source Fee Determination for Nacme's 2005 FESOP Application ("2005 CAAPP Application Completion Determination")
- 12. December 21, 2006, Hydrogen Chloride Emissions Test Report ("December 2006 Stack Test Report")
- 13. March 23, 2007 Nacme's Change Request for FESOP Application ("2007 FESOP Application")
- 14. Construction Permit NSPS Source No. 12020035 ("2012 Construction Permit")

FURTHER, AFFIANT SAYETH NOT.

State of Illinois

County of Sangamon

SUBSCRIBED and SWORN to before me this 15 day

OFFICIAL SEAL DAWN A. HOLLIS

NOTARY PUBLIC, STATE OF ILLINOIS MY COMMISSION EXPIRES 8-19-2016

BEFORE THE ILLINOIS POLLUTION CONTROL BOARD

PEOPLE OF THE STATE OF ILLINOIS,)	
Complainant,)	
v.)	PCB No. 13 - 12 (Enforcement – Air)
NACME STEEL PROCESSING, LLC,)	(Emoreoment 7m)
a Delaware limited liability corporation,)	
D 1 .)	
Respondent.)	

EXHIBIT F

THOMAS J. REUTER AFFIDAVIT

TAB 1
FEBRUARY 8, 2001 OPERATION
PERMIT No. 96020074-Revised ("Nacme's SOP")

ILLINOIS ENVIRONMENTAL PROTECTION AGENCY

P.O. BOX 19506, SPRINGFIELD, ILLINOIS 62794-9506 THOMAS V. SKINNER, DIRECTOR

217/782-2113

OPERATING PERMIT -- REVISED

PERMITTEE

NACME Steel Processing Attn: Tom Beach 429 West 127th Street Chicago, Illinois 60628

Application No.: 96020074

Applicant's Designation: PICKLING

Subject: Steel Pickling Plant

Date Issued: February 8, 2001

I.D. No.: 031600FWL

Date Received: November 13, 2000

Expiration Date: October 25, 2005

Location: 429 West 127th Street, Chicago, 60628

Permit is hereby granted to the above-designated Permittee to OPERATE emission unit(s) and/or air pollution control equipment consisting of three hydrochloric acid storage tanks, one steel pickling line comprised of four process and four rinsing tanks, all of the above controlled by the scrubber, and one oil coater as described in the above-referenced application. This Permit is subject to standard conditions attached hereto and the following special condition(s):

- This revised permit becomes effective only upon withdrawal of applicant's appeal to the Illinois Pollution Control, docketed PCB 01-85.
- The operation and hydrogen chloride (HCl) emission from the pickling line shall not exceed the following limits:

	hroughput	Emission Factor (Lb/10 ³ Ton)		mission
	(Tons/Yr)	(HB/10 10H)		(Tons/Yr)
- 55,000	600,000	4.8	240	1.4

These limits are based on the maximum production rate and emission factor derived from the most recent stack test. Operational parameters shall not exceed those during the stack test at which the emission factor was derived. Those are: steel process rate no more than 69 Ton/Hr, the highest HCl concentration in the pickling tanks 12%, the highest pickling solution temperature 190° F, HCl makeup rate no more than 235.3 Gal/Hr, and scrubber makeup water flow rate no less than 1.5 Gal/min. Compliance with annual limits shall be determined from a running total of 12 months of data.

This permit is issued based on negligible emissions of hydrogen chloride from the hydrochloric acid storage tanks. For this purpose, emissions shall not exceed nominal emission rates of 0.1 lb/hour and 0.44 ton/year.

GEORGE H. RYAN, GOVERNOR

PRINTED ON RECYCLED PAPER

Page 2

- 4. This permit is issued based on negligible emissions of volatile organic material from the oil coater. For this purpose, emissions shall not exceed nominal emission rates of 0.1 lb/hour and 0.44 ton/year.
- 5. No person shall cause or allow any visible emissions of fugitive particulate matter from any process, including any material handling or storage activity beyond the property line of the emission source, pursuant to 35 Ill. Adm. Code 212.301.
- 6. The Permittee shall monitor the following operational parameters:
 - a. HCl concentration in the pickling tanks every 4 hours;
 - b. Pickling solution temperature in each tank continuously;
 - c. HCl makeup rate continuously;
 - d. Scrubber makeup water flow continuously.
- 7. The Permittee shall maintain monthly records of the following items:
 - a. Steel throughput (Ton/Mo, Ton/Yr)
 - Hydrochloric acid usage (Gal/Mo, Gal/Yr) and its concentration (Wt.%);
 - c. Pickling line operating hours (Hr/Mo, Hr/Yr);
 - Monitoring devices records;
 - e. HCl emission calculations (Lb/Mo, Ton/Yr).
- 8. All records and logs required by this permit shall be retained at a readily accessible location at the source for at least three years from the date of entry and shall be made available for inspection and copying by the Illinois EPA or USEPA upon request. Any records retained in an electronic format (e.g., computer) shall be capable of being retrieved and printed on paper during normal source office hours so as to be able to respond to the Illinois EPA request for records during the course of a source inspection.
- 9. If there is an exceedance of the requirements of this permit as determined by the records required by this permit, the Permittee shall submit a report to the Illinois EPA's Compliance Section in Springfield, Illinois within 30 days after the exceedance. The report shall include the emissions released in accordance with the recordkeeping requirements, a copy of the relevant records, and a description of the exceedance or violation and efforts to reduce emissions and future occurrences.

Page 3

10. Two (2) copies of required reports and notifications concerning equipment operation or repairs, performance testing or a continuous monitoring system shall be sent to:

Illinois Environmental Protection Illinois EPA
Division of Air Pollution Control
Compliance Section (#40)
P.O. Box 19276
Springfield, IL 62794-9276

<u>and</u> one (1) copy shall be sent to the Illinois EPA's regional office at the following address unless otherwise indicated:

Illinois Environmental Protection Illinois EPA Division of Air Pollution Control 9511 West Harrison Des Plaines, Illinois 60016

It should be noted that this permit has been revised to add Condition No. 1.

If you have any questions on this permit, please contact Valeriy Brodsky at 217/782-2113.

Donald E. Sutton, P.E.

Manager of Permit Section

Division of Air Pollution Control

DES: VJB:psj

cc: Region 1

STATE OF ILLINOIS **ENVIRONMENTAL PROTECTION AGENCY** DIVISION OF AIR POLLUTION CONTROL 2200 CHURCHILL ROAD SPRINGFIELD, ILLINOIS 62706

STANDARD CONDITIONS FOR OPERATING PERMITS

July 1, 1985

The Illinois Environmental Protection Act (Illinois Revised Statutes, Chapter 111-1/2, Section 1039) grants the Environmental Protection Agency authority to impose conditions on permits which it issues.

The following conditions are applicable unless superseded by special permit condition(s).

- 1. The issuance of this permit does not release the permittee from compliance with state and federal regulations which are part of the Illinois State Implementation Plan, as well as with other applicable statutes and regulations of the United States or the State of Illinois or with applicable local laws, ordinances and regulations.
- 2. The Agency has issued this permit based upon the information submitted by the permittee in the permit application. Any misinformation, false statement or mispresentation in the application shall be grounds for revocation under 35 Ill. Adm. Code 201.207.
- The permittee shall not authorize, cause, direct or allow any modification, as defined in 35 Ill. Adm. Code 201.102, of equipment, operations or practices which are reflected in the permit application as submitted unless a new application or request for revision of the existing permit is filed with the Agency and unless a new permit or revision of the existing permit(s) is issued for such modification.
 - b. This permit only covers emission sources and control equipment while physically present at the indicated plant location(s). Unless the permit specifically provides for equipment relocation, this permit is void for an item of equipment on the day it is removed from the permitted location(s) or if all equipment is removed, notwithstanding the expiration date specified on the permit.
- The permittee shall allow any duly authorized agent of the Agency, upon the presentation of credentials, at reasonable times:
 - to enter the permittee's property where actual or potential effluent, emission or noise sources are located or where any activity is to be conducted pursuant to this permit,
 - to have access to and to copy any records required to be kept under the terms and conditions of this permit,
 - to inspect, including during any hours of operation of equipment constructed or operated under this permit. such equipment and any equipment required to be kept, used, operated, calibrated and maintained under this permit,
 - d. to obtain and remove samples of any discharge or emission of pollutants, and
 - e. to enter and utilize any photographic, recording, testing, monitoring or other equipment for the purpose of preserving, testing, monitoring or recording any activity, discharge or emission authorized by this permit.
- 5. The issuance of this permit:
 - a. shall not be considered as in any manner affecting the title of the premises upon which the permitted
 - b. does not release the permittee from any liability for damage to person or property caused by or resulting from the construction, maintenance, or operation of the facilities,

IL 532-0224

Printed on Recycled Paper

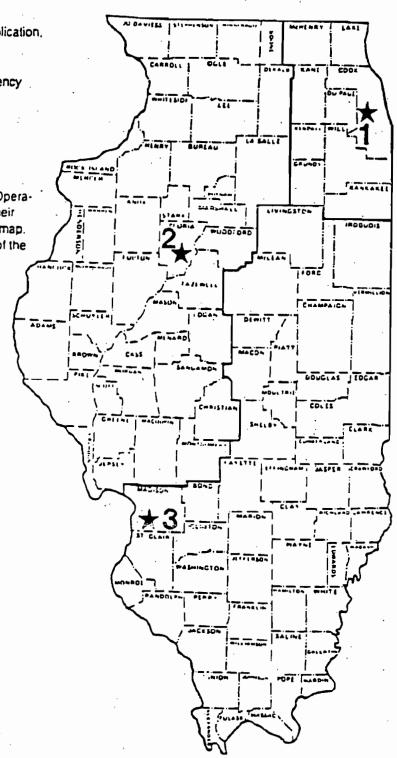
090-005

- c. does not take into consideration or attest to the structural stability of any unit or part of the project, and
- d. in no manner implies or suggests that the Agency (or its officers, agents or employees) assumes any liability, directly or indirectly, for any loss due to damage, installation, maintenance, or operation of the proposed equipment or facility.
- 6. The facilities covered by this permit shall be operated in such a manner that the disposal of air contaminants collected by the equipment shall not cause a violation of the Environmental Protection Act or regulations promulgated thereunder.
- 7. The permittee shall maintain all equipment covered under this permit in such a manner that the performance of such equipment shall not cause a violation of the Environmental Protection Act or regulations promulgated thereunder.
- 8. The permittee shall maintain a maintenance record on the premises for each item of air pollution control equipment. This record shall be made available to any agent of the Environmental Protection Agency at any time during normal working hours and/or operating hours. As a minimum, this record shall show the dates of performance and nature of preventative maintenance activities.
- 9. No person shall cause or allow continued operation during malfunction, breakdown or startup of any emission source or related air pollution control equipment if such operation would cause a violation of an applicable emission standard or permit limitation. Should a malfunction, breakdown or startup occur which results in emissions in excess of any applicable standard or permit limitation, the permittee shall:
 - a. immediately report the incident to the Agency's Regional Field Operations Section Office by telephone, telegraph, or other method as constitutes the fastest available alternative, and shall comply with all reasonable directives of the Agency with respect to the incident;
 - b. maintain the following records for a period of no less than two (2) years:
 - i. date and duration of malfunction, breakdown or startup,
 - ii. full and detailed explanation of the cause,
 - iii. contaminants emitted and an estimate of quantity of emissions,
 - iv. measures taken to minimize the amount of emissions during the malfunction, breakdown or startup, and
 - v. measures taken to reduce future occurrences and frequency of incidents.
- 10. If the permit application contains a compliance program and project completion schedule, the permittee shall submit a project completion status report within thirty (30) days of any date specified in the compliance program and project completion schedule or at six month intervals, whichever is more frequent.
- 11. The Permittee shall submit an Annual Emission Report as required by 35 Ill. Adm. Code. 201.302 and 35 Ill. Adm. code Part 254.

Environmental Protection Agency Bureau of Air

September 1, 1992

For assistance in preparing a permit application, contact the Permit Section:


Minois Environmental Protection Agency Division of Air Pollution Control Permit Section 2200 Churchill Road Springfield, Illinois 6270£ 217/782-2113

Or contact a regional office of the Field Operations Section. The regional offices and their areas of responsibility are shown on the map. The addresses and telephone numbers of the regional offices are as follows:

ILLINOIS EPA
REGION 1
BUREAU OF AIR, FOS
9511 WEST HARRISON
DES PLAINES, IL 60016
847-294-4000

Illinois EPA Region 2 5-115 North University Peoria, Illinois 61614 309/693-5461

Illinois EPA
Region 3
2009 Mall Street
Collinsville, Illinois 62234
618/346-5120

Printed on Recycled Paper

BEFORE THE ILLINOIS POLLUTION CONTROL BOARD

PEOPLE OF THE STATE OF ILLINOIS,)	
Complainant,)	,
v.)	PCB No. 13 - 12
NACME STEEL PROCESSING, LLC,)	(Enforcement – Air)
a Delaware limited liability corporation,)	
Respondent.)	

EXHIBIT F

THOMAS J. REUTER AFFIDAVIT

TAB 2
APRIL 11, 2002 OPERATING PERMIT
REVISION APPLICATION-REVISED
("2002 CONSTRUCTION PERMIT")

IBD 5/22/00-> HiDosai

N

April 11, 2002

Mr. Donald E. Sutton, P.E. Manager, Permit Section Division of Air Pollution Control Illinois Environmental Protection Agency Bureau of Air 1021 North Grand Avenue East Springfield, Illinois 62702

Dear Mr. Sutton:

Enclosed please find two (2) copies of an Air Emission Source Operating Permit revision and construction permit request for the NACME Steel Processing facility (NACME) location at 429 West 127th Street in Chicago, Illinois (the facility).

The purpose of the request is to address a modification to the facility's (ID No. 031600FWL) pickling process that involves the installation of TurboTunnel or second, additional cover above the existing acid bath covers. The purpose of the second enclosure is to reduce hydrochloric acid (HCl) consumption during steel pickling operations by drawing exhaust air from the head space between the existing granite acid bath covers and the second enclosure rather than directly of the HCl pickling bath as is currently being done. This will reduce the HCl concentration being exhausted to the emission scrubber. In addition, no increase in emissions from the HCl storage tanks is anticipated above the current permitted rate of 0.1 pounds per hour and 0.44 tons per year since overall acid consumption is anticipated to be reduced.

NACME is also requesting only a slight increase in the process throughputs from the current steel throughput process limits of 55,000 tons per month and 600,000 tons per year to 62,500 tons per month and 750,000 tons per year. Based upon manufacturer's information, HCl emissions from the pickling process with the use of the TurboTunnel should not require revision of the current permitted emission factor of 4.8 lbs HCl per 1000 tons of steel processed. Therefore, based upon the use of this emission factor and the requested increase in steel throughput, NACME also requests the HCl emission limits as outlined in the current permit are increased to 300 pounds per month and 1.8 tons per year. Manufacturer's supporting documentation detailing the expected HCl concentration in exhaust gases with the use of the TurboTunnel is included in Enclosure A.

MECEVED

APR 1 - 2002

TEPA - DAPC - SPILD

NACME STEEL PROCESSING L.L.C.

Illinois Environmental Protection Agency April 11, 2002 Project M016606 Page 2

documentation detailing the expected HCl concentration in exhaust gases with the use of the TurboTunnel is included in Enclosure A.

If you have any questions, please feel free to contact the undersigned or Mr. Britt E. Wenzel of Mostardi-Platt Associates, Inc. at (630) 993-2123.

Sincerely,

NACME STEEL PROCESSING

Thomas Beach

Vice President & General Manager

TB/

Enclosure

1520 Kensington Road, Suite 204
-Oak-Brook, Illinois-60523-2139 - Phone 630-993-2100
- Fax 630-993-9017
- www.mostardiplattenv.com

AIR EMISSION SOURCE OPERATING PERMIT REVISION APPLICATION

Prepared for
NACME STEEL PROCESSING, INC.
429 West 127th Street
Chicago, Illinois

April 11, 2002

© Copyright 2002 All rights reserved in Mostardi-Platt Associates, Inc.

MOSTARDI PLATT PROJECT M026002

TABLE OF CONTENTS

APC 200		
APC 210		·
APC 220		
APC 260	•	
Process Flow Diagram		
Emission Calculations		
Enclosure A (TurboTunnel documentation).		

			1222, 2223 1025 0				
	APPLICA	ATION FOR PERMIT			FOR A	AGENCY US	E ONLY
1	CONS.	TRUCT OPERATE			42	1600	Tull
- NA BAT	E OF EQUIPMENT TO BE	_		I.D. NO. PERMIT N	10 OS	02 0	074
	TRUCTED OR OPERATED (B)	HCL Steel Pickling	a Line. HCL-AST			1/12/02	
CONS	TROCTED ON OFERATED (B)		g.E, 1.02-1.01	DATE		1//2/02	
la N	AME OF OWNER:		2a. NA	ME OF OPERATO			
	National Ma	terials, LP	1	٨	IACME Stee	l Processi	ing, 止C
* ~	TREET ADDRESS OF OWNER:		2h STP	EET ADDRESS C	DE OPER ATOR		
10. 5	1965 Pratt	Roulevard	ZU. 31K	EEI ADDICESS C		nt 127th St	reet
<u></u>							
lc. Cl	ITY OF OWNER:		2c. CIT	Y OF OPERATOR			
	Elk Grove	Village			C	hicago	
1d. S	TATE OF OWNER:	le. ZIP CODE:	2d. STA	TE OF OPERATO	OR:	2e. ZIP COI	DE:
9.00	Illinois	60007	·	illino	ls		60628
<u> </u>						l	
<u> </u>			<u> </u>				
3a. N	AME OF CORPORATE DIVISION O		3b. STR	EET ADDRESS O		SOURCE: at 127 th Sti	mat
	NACME Steel P	ocessing			-428 W65	121-130	1 001
3c. C	ITY OF EMISSION SOURCE:	3d. LOCATED WITHIN C	TTY 3e. TOW	/NSHIP:	3f. COUNTY	' :	3g. ZIP CODE:
	Chicago	LIMITS: X YES	□ NO			Cook	60628
-			<u> </u>	L	<u> </u>		
				W 10 \ E \ H B 4B EB	FOR ACENIC	V 70 CALL.	Contract on construction of the state of the
4. AL	L CORRESPONDENCE TO: (TITLE Tom Bea		DUAL) 3. TELE	PHONE NUMBER	773-29		•
J <u></u>		<u></u>			113-28	1-1303	
6. AD	DRESS FOR CORRESPONDENCE:	(CHECK ONLY ONE)	7. YOUR	DESIGNATION	FOR THIS AP	PLICATION:	O
ı∥ [OWNER OPERATOR	EMISSION SOUR	RCE		P	ickling	
<u> </u>		· -	_				CALLED THE COLUMN THE STREET PROPERTY AND ADDRESS OF THE STREET, THE STREET PROPERTY AND ADDRESS OF THE STREET, THE STREET PROPERTY AND ADDRESS OF THE STREET, THE
					T 67 4 7 7 1 6 7 1	FTC 000 FT 4 I	
8.	THE UNDERSIGNED HEREBY MAND CORRECT, AND FURTHER	CEPTICE THAT ALL PRE	VIOUSI V SURMIT	TED INFORMATI	on beeeben	CED IN THI	S APPI ICATIONS
1							
	REMAINS TRUE, CORRECT AND EXECUTE THIS APPLICATION.	•		•	ا الله الا		
							2002
	AUTHORIZED SIGNATURE(S):	<u> </u>	11.1		AF	PR 1 - 2	שעעע
	BY Thomas Olive		///02 BY				
	SIGNATURE	DAT	E	SIGNATURE	wpa.	- DAPC	- SPATED
	Thomas Beach TYPED OR PRINTED NAME			TYPED OR PRIN	TED NAME OF	F SIGNER	
}	Vice President, and Gen						· .
'	TITLE OF SIGNER	<u> </u>		TTTLE OF SIGNE	R		
						00.10	
(A)	THIS FORM IS TO PROVIDE THE	E AGENCY WITH GENERAL	INFORMATION A	OUT THE EQUIP	MENT TO BE	CONSTRUC	TIED OR OPERATED.
li .	THIS FORM MAY BE USED TO						
(B)	ENTER THE GENERIC NAME OF	THE EQUIPMENT TO BE C	ONSTRUCTED OR	OPERATED. THE	S NAME WILI	L APPEAR O	N THE PERMIT, WHICH
ı (`	MAY BE ISSUED PURSUANT TO	THIS APPLICATION. THIS	FORM MUST BE A	CCOMPANIED B	Y OTHER APP	PLICABLE F	ORMS AND
À	INFORMATION.						
(C)	PROVIDE A DESIGNATION IN I	TEM 7 ABOVE WHICH YOU	WOULD LIKE THE	AGENCY TO US	E FOR IDENTI	FICATION C	OF YOUR EQUIPMENT.
	YOUR DESIGNATION WILL BE	REFERENCED IN CORRESPO	ONDENCE FROM T	HIS AGENCY RE	LATIVE TO T	HIS APPLICA	ATION. YOUR
1	DESIGNATION MUST NOT EXC	EED TEN (10) CHARACTERS	S.				
(D)	THIS APPLICATION MUST BE S	IGNED IN ACCORDANCE W	TTH 35 ILL. ADM. C	ODE 201.154 OR	201.159 WHIC	CH STATES:	*ALL APPLICATIONS
1, ,	AND SUPPLEMENTS THERETO	SHALL BE SIGNED BY THE	OWNER AND OPEI	RATOR OF THE E	OZ KOIZZIME	URCE OR AL	R POLLUTION
	CONTROL EQUIPMENT, OR TH	EIR AUTHORIZED AGENT, A	IND SHALL BE AC	COMPANIED BY	EVIDENCE O	F AUTHORI	TY TO SIGN THE
H	APPLICATION.°	,					
1	IF THE OWNER OR OPERATOR	IS A CORPORATION SUCH	CORPORATION MI	IST HAVE ON FI	LE WITH THE	AGENCY A	CERTIFIED COPY OF A
	RESOLUTION OF THE CORPOR	ATION'S BOARD OF DIRECT	ORS AUTHORIZIN	G THE PERSONS	SIGNING THE	S APPLICAT	TION TO CAUSE OR
}	ALLOW THE CONSTRUCTION O	OR OPERATION OF THE EQU	JIPMENT TO BE CO	VERED BY THE	PERMIT.		,
11				•			1

-			_	
9),	DOES THIS APPLICATION CONTAIN A PLOT PLAN/MAP: YES NO		
-		IF A PLOT PLAN/MAP HAS PREVIOUSLY BEEN SUBMITTED, SPECIFY AGENCY I.D. NUMBER 031600FWL APPLICATION NUMBER		20074
		IS THE APPROXIMATE SIZE OF APPLICANT'S PREMISES LESS THAN YES NO: SPECIFY ACRES 43	1 ACRE	E7
	0.	DOES THIS APPLICATION CONTAIN A PROCESS FLOW DIAGRAM(S)	THAT A	ACCURATELY AND CLEARLY REPRESENTS CURRENT PRACTICE.
1	la,	WAS ANY EQUIPMENT, COVERED BY THIS APPLICATION, OWNED OR CONTRACTED FOR, BY THE APPLICANT PRIOR TO APRIL 14, 1972: YES NO	PREV	ANY EQUIPMENT, COVERED BY THIS APPLICATION, NOT VIOUSLY RECEIVED AN OPERATING PERMIT: YES NO
		IF "YES," ATTACH AN ADDITIONAL SHEET, EXHIBIT A, THAT:	IF "Y	YES," ATTACH AN ADDITIONAL SHEET, EXHIBIT B, THAT:
1		(a) LISTS OR DESCRIBES THE EQUIPMENT	(a)	LISTS OR DESCRIBES THE EQUIPMENT
		(b) STATES WHETHER THE EQUIPMENT WAS IN COMPLIANCE WITH THE RULES AND REGULATIONS GOVERNING THE CONTROL OF AIR POLLUTION PRIOR TO APRIL 4, 1972	(b)	STATES WHETHER THE EQUIPMENT
		,		(i) IS ORIGINAL OR ADDITIONAL EQUIPMENT (ii) REPLACES EXISTING EQUIPMENT, OR (iii) MODIFIES EXISTING EQUIPMENT
			(c)	PROVIDES THE ANTICIPATED OR ACTUAL DATES OF THE COMMENCEMENT OF CONSTRUCTION AND THE START-UP OF THE EQUIPMENT
	12.	IF THIS APPLICATION INCORPORATES BY REFERENCE A PREVIOUSI INFORMATION—INCORPORATION BY REFERENCE® BEEN COMPLETE YES NO	LY GRA ED.	ANTED PERMIT(S), HAS FORM APC-210, "DATA AND
	13.	DOES THE STARTUP OF AN EMISSION SOURCE COVERED BY THIS A APPLICABLE STANDARDS: YES NO	PPLICA	ATION PRODUCE AIR CONTAMINANT EMISSION IN EXCESS OF
		IF "YES," HAS FORM APC-203, "OPERATION DURING STARTUP" BEEN YES NO	I COMP	PLETED FOR THIS SOURCE
	14.	DOES THIS APPLICATION REQUEST PERMISSION TO OPERATE AN EI	MISSIO	ON SOURCE DURING MALFUNCTION OR BREAKDOWNS:
		IF "YES," HAS FORM APC-204, "OPERATION DURING MALFUNCTION YES NO	AND BI	BREAKDOWN" BEEN COMPLETED FOR THIS SOURCE
	15.	IS AN EMISSION SOURCE COVERED BY THIS APPLICATION SUBJECT YES NO	TO A F	FUTURE COMPLIANCE DATE:
		IF "YES," HAS FORM APC-202, "COMPLIANCE PROGRAM & PROJECT (YES NO	COMPL	LETION SCHEDULE," BEEN COMPLETED FOR THIS SOURCE:
	16.	DOES THE FACILITY COVERED BY THIS APPLICATION REQUIRE AN PLANS): YES NO	EPISOD	DE ACTION PLAN (REFER TO GUIDELINES FOR EPISODE ACTION
	17.	LIST AND IDENTIFY ALL FORMS, EXHIBITS, AND OTHER INFORMAT NUMBERS OF EACH ITEM (ATTACH ADDITIONAL SHEETS IF NECESS	ION SU SARY):	UBMITTED AS PART OF THIS APPLICATION. INCLUDE THE PAGE
		See Table of Contents		
		TOTAL NUMBER OF PAGES		
ı.				,

STATE OF ILLINOIS ENVIRONMENTAL PROTECTION AGENCY DIVISION OF AIR POLLUTION CONTROL 2200 CHURCHILL ROAD SPRINGFIELD, ILLINOIS 62794-9276

DATA AND INFORMATION
INCORPORATION BY REFERENCE

THIS FORM IS TO BE USED TO INCORPORATE OR TRANSFER INFORMATION FROM ONE PERMIT APPLICATION TO ANOTHER, INCLUDING THE TRANSFER
OF INFORMATION FROM A CONSTRUCTION PERMIT APPLICATION INTO AN OPERATING PERMIT APPLICATION. THIS FORM SHOULD ACCOMPANY THE
APPLICATION INTO WHICH INFORMATION IS BEING TRANSFERRED.

1. NAME OF OWNER: National Materials L. P.		PORATE DIV. OR PLANT I FROM OWNER): NACME Steel Processing, LLC			
3. STREET ADDRESS OF EMISSION SOURCE: 4. CITY OF 429 West 127th Street	EMISSION SOURCE: Chicago	5. IDENTIFICATION NUMBER: 031600FWL			
6. APPLICATION NUMBER: 96020074 7. CONSTRUCTION OPERATION Steel Pickling Line					
8. SHOULD ALL INFORMATION IN THIS APPLICATION BE INCOR YES NO IF "NO", LIST ITEMS TO BE INCORPORATED:	RPORATED BY REFERENCE OR	TRANSFERRED?			
9a, ITEM TO BE INCORPORATED:	b. PAGE	c. FLOW DIAGRAM DESIGNATION (IF APPLICABLE):			
		· · · · · · · · · · · · · · · · · · ·			
10. DOES THE DATA & INFORMATION DESCRIBING THESE ITEM TYPES NO IF "NO", SUBMIT THE APPLICABLE FORMS AND CLEARLY S' CORRECT, CURRENT AND COMPLETE.					
11. APPLICATION NUMBER: 12. CONSTRU	OPERATION OPERATION				
13. SHOULD ALL INFORMATION IN THIS APPLICATION BE INCOME IN THE PROPERTY OF T	RPORATED BY REFERENCE OR	TRANSFERRED?			
14a. ITEM TO BE INCORPORATED:	b. PAGE	c. FLOW DIAGRAM DESIGNATION (IF APPLICABLE):			
15. DOES THE DATA & INFORMATION DESCRIBING THESE ITEM YES NO IF "NO", SUBMIT THE APPLICABLE FORMS AND CLEARLY ST CORRECT, CURRENT AND COMPLETE.	•				

STATE OF ILLINOIS ENVIRONMENTAL PROTECTION AGENCY DIVISION OF AIR POLLUTION CONTROL 2200 CHURCHILL ROAD SPRINGFIELD, ILLINOIS 62706

This Agency is authorized to require this information under illinois Ravised Statutes, 1979, Chapter 111 1/2, Section 1039, Disciosure of this information is required under that Section. Failure to do so may prevent this form from being processed and could result in your application being denied. This form has been approved by the Forms Management Center.

2. NAME OF CORPORATE DIVISION OR PLANT (IF DIFFERENT FROM

*DATA AND INFORMATION	ł
PROCESS EMISSION SOURCE	E

I. NAME OF PLANT OWNER:

*THIS INFORMATION FORM IS TO BE COMPLETED FOR AN EMISSION SOURCE OTHER THAN A FUEL COMBUSTION EMISSION SOURCE OR AN INCINERATOR. A FUEL COMBUSTION EMISSION SOURCE IS A FURNACE, BOILER, OR SIMILAR EQUIPMENT USED PRIMARILY FOR PRODUCING HEAT OR POWER BY INDIRECT HEAT TRANSFER. AN INCINERATOR IS AN APPARATUS IN WHICH REFUSE IS BURNED.

National Materials, LP	OWNER): RACHE	Steel Processing, LLC			
3. STREET ADDRESS OF EMISSION SOURCE:	4. CITY OF EMISSION SOURCE:				
428 West 127th Street		Chicago			
GENERAL INFORMATION					
<u> </u>		EOI IIIIMENT.			
5. NAME OF PROCESS: HCL Steel Pickling	6. NAME OF EMISSION'SOURCE EQUIPMENT: ** **Enclosed Steel Pickling Line**				
7. EMISSION SOURCE EQUIPMENT MANUFACTURER: PRO-ECO	8. MODEL NUMBER:	9. SERIAL NUMBER:			
10. FLOW DIAGRAM DESIGNATION(S) OF EMISSION SOURCE: SPL 1					
11. IDENTITY(S) OF ANY SIMILAR SOURCE(S) AT THE PLANT OR PREMI APPLICATION, IDENTIFY THE APPLICATION):	ISES NOT COVERED BY THE FORM (II	THE SOURCE IS COVERED BY ANOTHER			
277	RI/A				
12. AVERAGE OPERATING TIME OF EMISSION SOURCE:	13. MAXIMUM OPERATING TIM	E OF EMISSION SOURCE:			
24 HRS/DAY Z DAYS/WK <u>52</u> WKS/YR	24 HRS/DAY	ZDAYS/WK <u>62</u> WKS/YR			
14. PERCENT OF ANNUAL THROUGHPUT:	•				
DEC-FEB <u>25</u> % MAR-MAY <u>25</u> %	JUN-AUG <u>28</u> %	SEPT-NOV <u>28</u> %			

INSTRUCTIONS

- . COMPLETE THE ABOVE IDENTIFICATION AND GENERAL INFORMATION SECTION.
- COMPLETE THE RAW MATERIAL, PRODUCT, WASTE MATERIAL, AND FUEL USAGE SECTIONS FOR THE PARTICULAR SOURCE EQUIPMENT. COMPOSITIONS OF MATERIALS MUST BE SUFFICIENTLY DETAILED TO ALLOW DETERMINATION OF THE NATURE AND QUANTITY OF POTENTIAL EMISSIONS. IN PARTICULAR, THE COMPOSITION OF PAINTS, INKS, ETC., AND ANY SOLVENTS MUST BE FULLY DETAILED.
- EMISSION AND EXHAUST POINT INFORMATION MUST BE COMPLETED, UNLESS EMISSIONS ARE EXHAUSTED THROUGH AIR POLLLUTION CONTROL EQUIPMENT.
- 4. OPERATING TIME AND CERTAIN OTHER ITEMS REQUIRE BOTH AVERAGE AND MAXIMUM VALUES.
- 5. FOR GENERAL INFORMATION REFER TO "GENERAL INSTRUCTIONS FOR PERMIT APPLICATIONS," APC-201.

N					
AVERAGE-	THE VALUE THAT <u>SUMMARIZES</u> OR <u>REPRESENTS</u> THE <u>GENERAL CONDITION</u> OF THE <u>EMISSION SOURCE</u> , OR THE GENERAL STATE OF PRODUCTION OF THE EMISSION SOURCE, SPECIFICALLY:				
AVERAGE OPERATING TIME-	ACTUAL TOTAL HOURS OF OPERATION FOR THE PRECEDING TWELVE MONTH PERIOD.				
AVERAGE RATE-	ACTUAL TOTAL QUANTITY OF "MATERIAL" FOR THE PRECEDING TWELVE MONTH PERIOD, DIVIDED BY THE AVERAGE OPERATING TIME.				
AVERAGE OPERATION-	OPERATION TYPICAL OF THE PRECEDING TWELVE MONTH PERIOD, AS REPRESENTED BY AVERAGE OPERATING TIME AND AVERAGE RATES.				
MAXIMUM-	THE <u>GREATEST</u> VALUE <u>ATTAINABLE</u> OR <u>ATTAINED</u> FROM THE <u>EMISSION SOURCE</u> , OR THE PERIOD OF GREATEST OR UTMOST PRODUCTION OF THE EMISSION SOURCE, SPECIFICALLY:				
MAXIMUM OPERATING TIME- MAXIMUM RATE- MAXIMUM OPERATION-	GREATEST EXPECTED TOTAL HOURS OF OPERATIONS FOR ANY TWELVE MONTH PERIOD. GREATEST QUANTITY OF "MATERIAL" EXPECTED PER ANY ONE HOUR OF OPERATION. GREATEST EXPECTED OPERATION, AS REPRESENTED BY MAXIMUM OPERATING TIME AND MAXIMUM RATES.				

DEFINITIONS

090-008

T	RAW MATERIAL INFORMATION						
	AVERAGE RATE NAME OF RAW MATERIAL PER IDENTICAL SOURCE				MAXIMUM RATE PER IDENTICAL SOURCE		
	20a. Steel Calls	b.	171,233 LB/H	د د	171,233 LB/HR		
	21a. HCL Solution	b.	2,200 LB/HI	ء ت	2,200 LB/HR		
1	22a. Water	b.	34,000 LB/H	c.	34,000 LB/HR		
	23a.	b.	LB/HI	C.	LB/HR		
L	248.	b.	LB/HI	<u> </u>	LB/HR		

	PRODUCT IN	ORM	ATION		
	NAME OF PRODUCT		AVERAGE RATE PER IDENTICAL SOURCE		MAXIMUM RATE PER IDENTICAL SOURCE
30a	Unscaled Steel Colle	b.	171,233 LB/HR	c.	171,233 LB/HR
31a		b.	LB/HR	C.	LB/HR
32a		b.	LB/HR	c.	LB/HR
33a		b.	LB/HR	c.	LB/HR
34a	<u> </u>	b.	LB/HR	C.	LB/HR

	WASTE MATERIAL	INFOR	MATION				M. C. S. Street address of 1 times
	NAME OF WASTE MATERIAL		AVERAGE RATE PER IDENTICAL SOUR	CE		MAXIMUM RATE PER IDENTICAL SOURCE	Œ
40a.	Ferrous Chloride	ъ	5,800	LB/HR	C.	<i>5,800</i>	LB/HR
4la		b.		LB/HR	c.		LB/HR
428.		ъ.	•	LB/HR	C.		LB/HR
43a		b.		LB/HR	C.		LB/HR
44a.		b.		LB/HR	c.		LB/HR

			*FUEL USA	GE INFORM	ATION Not Applicable		
	FUEL USED			T	YPE	HEAT CONTENT	
50aL	NATURAL GAS		b.			с.	BTU/SCF
	OTHER GAS			-			BTU/SCF
	OIL .						BTU/GAL
	COAL				,		BTU/LB
	OTHER						BTU/LB
d. AVER	RAGE FIRING RATE PER	IDENTICAL SO		BTU/HIR	c. MAXIMUM FIRING RATE PE	ER IDENTICAL SOURCE:	BTU/HR

THIS SECTION IS TO BE COMPLETED FOR ANY FUEL USED DIRECTLY IN THE PROCESS EMISSION SOURCE, E.G. GAS IN A DRYER, OR COAL IN A MELT FURNACE,

	•	*EMISSION INFORMATION	
51. NUMBER OF IDE	ENTICAL SOURCES (DESCRIBE AS REQU	ЛRED):	
	;	AVERAGE OPERATION	· · · · · · · · · · · · · · · · · · ·
CONTAMINANT	CONCENTRATION OR EMISSION RAT	E PER IDENTICAL SOURCE	METHOD USED TO DETERMINE CONCENTRATION OR EMISSION RATE
PARTICULATE MATTER	52a. GR/SCF	16. 16. 16. 16. 16. 16. 16. 16. 16. 16.	VCC 1 15 15 15 15 15 15 15 15 15 15 15 15 1
CARBON MONOXIDE	53a. PPM (VOL)	b. LB/HR	c ,
NITROGEN OXIDES	54a. PPM (VOL)	bLB/HR	C.
ORGANIC MATERIAL	55a. PPM (VOL)	b.	C.
SULFUR DIOXIDE	56a. PPM (VOL)	b. LB/HR	G.
**OTHER (SPECIFY)	57a. PPM (VOL)	b. LB/HR	c. See APC 260
	-	MAXIMUM OPERATION	•
CONTAMINANT	CONCENTRATION OR EMISSION RAT	E PER IDENTICAL SOURCE	METHOD USED TO DETERMINE CONCENTRATION OR EMISSION RATE
PARTICULATE MATTER	58a. GR/SCF	b. LB/HR	c.
CARBON MONOXIDE	59a. PPM (VOL)	b. LB/HR	C.
NITROGEN OXIDES	60a. PPM (VOL)	b. LB/HR	c.
ORGANIC MATERIAL	61a. PPM (VOL)	b. LB/HR	c.
SULFUR DIOXIDE	62a. PPM (VOL)	b. LB/HR	c.
**OTHER (SPECIFY)	63a. PPM (VOL)	b. · · · · · · · · · · LB/HR.	C. See APC 250

- ITEMS 52 THROUGH 63 NEED NOT BE COMPLETED IF EMISSIONS ARE EXHAUSTED THROUGH AIR POLLUTION CONTROL EQUIPMENT.
 "OTHER" CONTAMINANT SHOULD BE USED FOR AN AIR CONTAMINANT NOT SPECIFICALLY NAMED ABOVE. POSSIBLE OTHER CONTAMINANTS ARE ASBESTOS, BERYLLIUM, MERCURY, VINYL CHLORIDE, LEAD, ETC.

•••	EXHAUST POINT	INFORMATION	•
64. FLOW DIAGRAM DESIGNATION(S) OF EXHAUST POINT:			
·	See A	PC 280	•
65. DESCRIPTION OF EXHAUST POINT (LOCATION IN RELA	TION TO BUILDI	NGS, DIRECTION, HOODING, ETC.):	• .
66. EXIT HEIGHT ABOVE GRADE:		67. EXIT DIAMETER:	
BO. EAT HEIGHT ABOVE GRADE.		or. Exil biaverer	. •
68. GREATEST HEIGHT OF NEARBY BUILDINGS:		69. EXIT DISTANCE FROM NEAREST PLANT BOUNDARY:	
<u>-</u>	FT	·	FT
AVERAGE OPERATION		MAXIMUM OPERATION	
70. EXIT GAS TEMPERATURE:		72. EXIT GAS TEMPERATURE:	
	° F		° F
71. GAS FLOW RATE THROUGH EACH EXIT:	4000	73. GAS FLOW RATE THROUGH EACH EXIT:	
<u></u>	ACFM	L	ACFM

^{•••} THIS SECTION SHOULD NOT BE COMPLETED IF EMISSIONS ARE EXHAUSTED THROUGH AIR POLLUTION CONTROL EQUIPMENT.

STATE OF ILLINOIS ENVIRONMENTAL PROTECTION AGENCY DIVISION OF AIR POLLUTION CONTROL 2200 CHURCHILL ROAD SPRINGFIELD, ILLINOIS 62706

This Agency is authorized to require this information under Hilmols Revised Statutes, 1979, Chapter 111 1/2, Section 1039, Disclosure of this information is required under that Section. Failure to do so may prevent this form from being processed and could result to your application being dealed. This form has been approved by the Forms Management Conter.

*DATA	AND	INFORMATION
-------	-----	-------------

AIR POLLUTION CONTROL EQUIPMENT

* THIS INFORMATION FORM IS FOR AN INDIVIDUAL UNIT OF AIR POLLUTION CONTROL EQUIPMENT OR AN AIR POLLUTION CONTROL SYSTEM.

I. NAME OF OWNER: NACME Steel Processing	NAME OF CORPORATE DIVISION OR PLANT (IF DIFFERENT FROM OWNER): NACME Steel Processing
3. STREET ADDRESS OF CONTROL EQUIPMENT; 429 West 127 th Street	4. CTTY OF CONTROL EQUIPMENT: Chicago
5. NAME OF CONTROL EQUIPMENT OR CONTROL SYSTEM: PRO-E	CO Wet Scrubber

INSTRUCTIONS

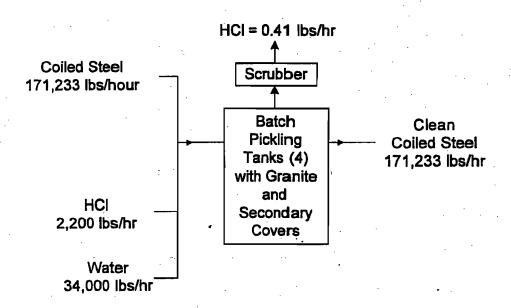
- COMPLETE THE ABOVE IDENTIFICATION.
- COMPLETE THE APPROPRIATE SECTION FOR THE UNIT OF CONTROL EQUIPMENT, OR THE APPROPRIATE SECTIONS FOR THE CONTROL
 SYSTEM. BE CERTAIN THAT THE ARRANGEMENT OF VARIOUS UNITS IN A CONTROL SYSTEM IS MADE CLEAR IN THE PROCESS FLOW
 DIAGRAM.
- 3. COMPLETE PAGE 6 OF THIS FORM, EMISSION INFORMATION AND EXHAUST POINT INFORMATION.
- 4. EFFICIENCY VALUES SHOULD BE SUPPORTED WITH A DETAILED EXPLANATION OF THE METHOD OF CALCULATION, THE MANNER OF ESTIMATION, OR THE SOURCE OF INFORMATION. REFERENCE TO THIS FORM ANY RELEVANT INFORMATION OR EXPLANATION INCLUDED IN THIS PERMIT APPLICATION.
- 5. EFFICIENCY VALUES AND CERTAIN OTHER ITEMS OF INFORMATION ARE TO BE GIVEN FOR AVERAGE AND MAXIMUM OPERATION OF THE SOURCE EQUIPMENT. FOR EXAMPLE, "MAXIMUM EFFICIENCY" IS THE EFFICIENCY OF THE CONTROL EQUIPMENT WHEN THE SOURCE IS AT MAXIMUM OPERATION, AND "AVERAGE FLOW RATE" IS THE FLOW RATE INTO THE CONTROL EQUIPMENT WHEN THE SOURCE IS AT AVERAGE OPERATION.
- FOR GENERAL INFORMATION REFER TO "GENERAL INSTRUCTIONS FOR PERMIT APPLICATIONS", APC-201.

a i		
3		DEFINITIONS
	AVERAGE- AVERAGE OPERATION-	THE VALUE THAT <u>SUMMARIZES</u> OR <u>REPRESENTS</u> THE <u>GENERAL CONDITION</u> OF THE <u>EMISSION SOURCE</u> OR THE GENERAL STATE OF PRODUCTION OF THE EMISSION SOURCE. SPECIFICALLY: OPERATION TYPICAL OF THE PRECEDING TWELVE MONTH PERIOD, AS REPRESENTED BY AVERAGE OPERATING TIME AND AVERAGE RATES.
The state of the s	MAXIMUM- MAXIMUM OPERATION-	THE <u>GREATEST</u> VALUE <u>ATTAINABLE</u> OR <u>ATTAINED</u> FROM THE <u>EMISSION SOURCE</u> , OR THE PERIOD OF GREATEST OR UTMOST PRODUCTION OF THE EMISSION SOURCE. SPECIFICALLY: THE GREATEST EXPECTED OPERATION, AS REPRESENTED BY MAXIMUM OPERATING TIME AND MAXIMUM RATES.

		- Not Applicable
	-1FLOW DIAGRAM DESIGNATION(S) OF ADSORPTION UNIT:	
	2. MANUFACTURER:	3. MODEL NAME AND NUMBER:
	4. ADSORBENT: □ ACTIVATED CHARCOAL:TYPE	OTHER: SPECIFY:
	5. ADSORBATE(S):	
	6. NUMBER OF BEDS PER UNIT:	7. WEIGHT OF ADSORBENT PER BED:
	8. DIMENSION OF BED: THICKNESS IN, SURFACE AREA SQUARE IN	
	9. INLET GAS TEMPERATURE	10. PRESSURE DROP ACROSS UNIT: INCH H ₂ O GAUGE
.	11. TYPE OF REGENERATION: REPLACEMENT STEAM OTHER:SPECIFY:	
	12. METHOD OF REGENERATION:	
	ALTERNATE USE OF ENTIRE UNITS SOURCE SHUT DOWN OTHER:DESCRIBE	ALTERNATE USE OF BEDS IN A SINGLE UNIT
	AVERAGE OPERATION OF SOURCE	MAXIMUM OPERATION OF SOURCE
	13. TIME ON LINE BEFORE REGENERATION: MIN/BED	15. TIME ON LINE BEFORE REGENERATION: MIN/BED
_	14. EFFICIENCY OF ABSORBER (SEE INSTRUCTION 4): %	16. EFFICIENCY OF ABSORBER (SEE INSTRUCTION 4): %
-	AFTERBURNER - N	ot Applicable
	1. FLOW DIAGRAM DESIGNATION(S) OF AFTERBURNER:	
	2. MANUFACTURER:	3. MODEL NAME AND NUMBER:
	4. COMBUSTION CHAMBER DIMENSIONS: LENGTH IN, CROSS-SECTIONAL AREA SQUARE IN	
	5. INLET GAS TEMPERATURE:	7. FUEL GAS OIL: SULFUR WT%
	6. OPERATING TEMPERATURE OF COMBUSTION CHAMBER: °F	8. BURNERS PER AFTERBURNER:@BTU/HR EACH
	9. CATALYST USED: NO YES: DESCRIBE CATALYST	
1,18	10. HEAT EXCHANGER USED: NO YES: DESCRIBE HEAT EXCHANGER	
	AVERAGE OPERATION OF SOURCE	MAXIMUM OPERATION OF SOURCE
	11. GAS FLOW RATE: SCFM	13. GAS FLOW RATE: SCFM
	12. EFFICIENCY OF AFTERBURNER (SEE INSTRUCTION 4): %	14. EFFICIENCY OF AFTERBURNER (SEE INSTRUCTION 4): %

CY	CLONE - N	Not Applicable
1. FLOW DIAGRAM DESIGNATION(S) OF CYCLONE:		
2. MANUFACTURER:		3. MODEL:
4. TYPE OF CYCLONE: SIMPLE MULTIPLE		5. NUMBER OF CYCLONES IN EACH MULTIPLE CYCLONE:
6. DIMENSION THE APPROPRIATE SKETCH (IN INCHES) OR PROV	VIDE A DRA	AWING WITH EQUIVALENT INFORMATION:
	•	
	•	
·		
•		
·		
·		•
		and the second s
·		
AVERAGE OPERATION OF SOURCE		MAXIMUM OPERATION OF SOURCE
7. GAS FLOW RATE:		9. GAS FLOW RATE:
	SCFM	SCFM
8. EFFICIENCY OF CYCLONE (SEE INSTRUCTION 4):	% ·	10. EFFICIENCY OF CYCLONE (SEE INSTRUCTION 4):

		- Not Applicable			
1. FLOW DIAGRAM DESIGNATION(S)	OF CONDENSER:				
2. MANUFACTURER:	3. MODEL NAME AN	ID NUMBER:	4. HEAT EX	CHANGE AREA:	F
AVERAGE OPERA	TION OF SOURCE	T i	AXIMUM OPER	RATION OF SOURCE	
5. COOLANT FLOW RATE PER CONDE	NSER:	10. COOLANT FLOW	RATE PER CON	DENSER:	
WATERGPMAIRS OTHER: TYPEFLOW RAT	CFM E	WATEROTHER: TYPE	GPMAIRFLOW RA	SCFM TE	
6. GAS FLOW RATE:	SCFM	11. GAS FLOW RATE			SCFM
INLET°F, OUTLET°F		1,00	LET°F	13. GAS TEMPERATURE: INLET°F, OUTLET	
9. EFFICIENCY OF CONDENSER (SEE I	NSTRUCTION 4):	14. EFFICIENCY OF C	ONDENSER (SE	E INSTRUCTION 4):	-:
	70				<u></u> %
	*ELECTRICAL PRECIT	PITATOR - Not Applical	ole	en communication (see a communication of the second of the communication	
I. FLOW DIAGRAM DESIGNATION OF		1000		• •	<u> </u>
				,	
2. MANUFACTURER:		3. MODEL NAME AN	D NUMBER:		
4. COLLECTING ELECTRODE AREA PE	P CONTROL DEVICE:			<u> </u>	
4. COLLECTING ELECTRODE AREA TE	R CONTROL DEVICE.		-		FT ²
AVERAGE OPERAT	TON OF SOURCE	N	AXIMUM OPER	ATION OF SOURCE	
5. GAS FLOW RATE:		7. GAS FLOW RATE:	_		
	SCFM	D 7777077 177107	<u> </u>		SCFM
6. EFFICIENCY OF ELECTRICAL PRECI	PITATOR (SEE INSTRUCTION 4):	8. EFFICIENCY OF EL	ECTRICAL PRE	CIPITATOR (SEE INSTRUCT	•
CUIDARIT TUE MANILIEACYTI IDEDIG	S SPECIFICATIONS FOR THE ELECT	PICAL PRECIPERATOR I	CEEPINGS TO THE	h mont de mar	%
SOMM THE MANORACIONERS	SI ECT ICATIONS FOR THE ELLECT	ROAD FRECHTIATOR F	CEPERCE THE	THE PRODUCTION TO THIS FI	ORM.
ELECTRICAL PRECIPITATORS VAI AMOUNT OF INFORMATION. THE INCLUDING ANY DRAWINGS, TECH INSUFFICIENT FOR FULL AND ACCU	APPLICANT MUST, HOWEVER, S INICAL DOCUMENTS, ETC. IF TH	SUBMIT WITH THIS APP IE INFORMATION PROVI	LICATION THE DED BY THE A	MANUFACTURER'S SPECIFICATION OF THE MANUFACTURER'S SPECIFIC	TETCATION
	FILTER UNIT -	Not Applicable		The second secon	ere en abrillet et et en land et
I. FLOW DIAGRAM DESIGNATION(S) O	F FILTER UNIT:				
2. MANUFACTURER:		3. MODEL NAME AN	NI IMPER		
2. WATTOTACT CHEEK		5. WODEL WANTER	J RONDER.		
4. FILTERING MATERIAL:	,	5. FILTERING AREA:	-		
6. CLEANING METHOD: SHAKER REVERSE A	AIR PULSE AIR PULSE JET	OTHER: SPECIFY		· · · · · · · · · · · · · · · · · · ·	
7. GAS COOLING METHOD: 0 DUCTWO BLEED-IN AIR WATER SPR		IN.			
AVERAGE OPERATI	ON OF SOURCE	M	AXIMUM OPERA	ATTON OF SOURCE	
B. GAS FLOW RATE (FROM SOURCE):	SCFM	12. GAS FLOW RATE	FROM SOURCE):	SCFM
9. GAS COOLING FLOW RATE:		13. GAS COOLING FLO		<u> </u>	
BLEED-IN AIRSCFM, W	ATER SPRAY GPM			WATER SPRAY GPI	M
O. INLET GAS CONDITION: TEMPERATURE	vt°F	14. INLET GAS CONDITEMPERATURE)INT°F	
1. EFFICIENCY OF FILTER UNIT (SEE I	NSTRUCTION 4) %	15. EFFICIENCY OF FI	LTER UNIT (SEE	INSTRUCTION 4):	,
					%


		SCRUBE	ER		
ş	1. FLOW DIAGRAM DESIGNATION(S) OF SCRUBBER:	•	<u> </u>	<u> </u>	
	Pickling	Line W	et Scrubber		
	2. MANUFACTURER: PRO-ECO		3. MODEL NAME AND N	NUMBER:	
	4. TYPE OF SCRUBBER: HIGH ENERGY: GAS STREAM PRESSURE DROPINC PACKED: PACKING TYPE, PACKING SIZE, P	CH H ₂ 0 PACKED I	EIGHTIN.		٠.
	☐ SPRAY: NUMBER OF NOZZLES, NOZZLE PRESSUR! ☐ OTHER: SPECIFY – 4 Sieve Tray - ATTACH DESCRIPTION			S	
	5. TYPE OF FLOW:	OSSFLOV			-
	6. SCRUBBER GEOMETRY: LENGTH IN DIRECTION OF GAS FLOW 192 IN., CROSS-SECTION	NAL ARE	A <u>13,824</u> Square in.		
	7. CHEMICAL COMPOSITION OF SCRUBBANT:	Heavy D	uty FRP		
	AVERAGE OPERATION OF SOURCE		MAX	IMUM OPERATION OF SOURCE	
	B. SCRUBBANT FLOW RATE:	GPM .	12. SCRUBBANT FLOW	RATE: 2	GPM
	9. GAS FLOW RATE: 4,975 SO	CFM	13. GAS FLOW RATE:	5,061	SCFM
	10. INLET GAS TEMPERATURE: 123	° F	14. INLET GAS TEMPERA	ATURE: 125	°F
5	11. EFFICIENCY OF SCRUBBER (SEE INSTRUCTION 4): 99.90 % PARTICULATE 99.90 % GASEOUS		15. EFFICIENCY OF SCRI 99.90 % PARTICUL	UBBER (SEE INSTRUCTION 4): .ATE <u>99.90 %</u> GASEOUS	
7					
			UIPMENT - Not Applica		1
- 11	1. FLOW DIAGRAM DESIGNATION(S) OF "OTHER TYPE" OF CONTR	UL EQUII	MENI:	•	
	,			•	
	2. GENERIC NAME OF "OTHER" EQUIPMENT: 3. MANUFACT	TURER:		4. MODEL NAME AND NUMBER:	
	GENERIC NAME OF "OTHER" EQUIPMENT: 3. MANUFACT 5. DESCRIPTION AND SKETCH, WITH DIMENSIONS AND FLOW RAT	******	-	4. MODEL NAME AND NUMBER:	
	The contraction of the contract of the contrac	******	-	4. MODEL NAME AND NUMBER:	
	The contraction of the contract of the contrac	******	-	4. MODEL NAME AND NUMBER:	
	The contraction of the contract of the contrac	******	-	4. MODEL NAME AND NUMBER:	
	The contraction of the contract of the contrac	******	-	4. MODEL NAME AND NUMBER:	
	The contraction of the contract of the contrac	******	-	4. MODEL NAME AND NUMBER:	
	The contraction of the contract of the contrac	******	-	4. MODEL NAME AND NUMBER:	
	The contraction of the contract of the contrac	******	-	4. MODEL NAME AND NUMBER:	
	The contraction of the contract of the contrac	******	-	4. MODEL NAME AND NUMBER:	
	The contraction of the contract of the contrac	******	-	4. MODEL NAME AND NUMBER:	
	The contraction of the contract of the contrac	******	-	4. MODEL NAME AND NUMBER:	
	The contraction of the contract of the contrac	******	-	4. MODEL NAME AND NUMBER:	
	The contraction of the contract of the contrac	******	-	4. MODEL NAME AND NUMBER:	
	The contraction of the contract of the contrac	******	-	4. MODEL NAME AND NUMBER:	
	5. DESCRIPTION AND SKETCH, WITH DIMENSIONS AND FLOW RAT	******	OTHER* EQUIPMENT:	•	
	5. DESCRIPTION AND SKETCH, WITH DIMENSIONS AND FLOW RAT	******	OTHER* EQUIPMENT:	4. MODEL NAME AND NUMBER:	
	5. DESCRIPTION AND SKETCH, WITH DIMENSIONS AND FLOW RAT	******	MAXI 8. FLOW RATES: GPM	•	

	•	EMISSION INFORMATION			
51. NUMBER OF IDE	ENTICAL CONTROL UNITS OR CONTROL	SYSTEMS (DESCRIBE AS REQU	UIRED):		
	A	VERAGE OPERATION OF SOUR	CE		
CONTAMINANT	CONCENTRATION OR EMISSION RAT UNIT OR CONTRO		METHOD USED TO DETERMINE CONCENTRATION OR EMISSION RATE		
PARTICULATE MATTER	2a. GR/SCF	b. LB/HR	C.		
CARBON MONOXIDE	3a. PPM (VOL)	b. LB/HR	С.		
NITROGEN OXIDES	4a. PPM (VOL)	b. LB/HR	c.		
ORGANIC MATERIAL	5a. PPM (VOL)	b. LB/HR	c.		
SULFUR DIOXIDE	6a. PPM (VOL)	b. LB/HR	c. .		
OTHER (SPECIFY) HCL	7a. PPM (VOL)	b. 0.41 LB/HR	c. Emission Factor/Flow Measurements		
_	M	AXIMUM OPERATION OF SOUR	ICE		
CONTAMINANT	CONCENTRATION OR EMISSION RATE PER IDENTICAL CONTROL UNIT OR CONTROL SYSTEM		METHOD USED TO DETERMINE CONCENTRATION OR EMISSION RATE		
PARTICULATE MATTER	8a. GR/SCF	b. LB/HR	c		
CARBON MONOXIDE	9a. PPM (VOL)	b. LB/HR	C.		
NITROGEN OXIDES	IOa. PPM (VOL)	b. LB/HR	C.		
ORGANIC MATERIAL	lla. PPM (VOL)	b. LB/HR	C.		
SULFUR DIOXIDE	12a. PPM (VOL)	b. LB/HR	C.		
OTHER (SPECIFY)	13a. PPM (VOL)	b	c. Emission Factor/Flow Measurements		

**"OTHER" CONTAMINANT SHOULD BE USED FOR AN AIR CONTAMINANT NOT SPECIFICALLY NAMED ABOVE. POSSIBLE OTHER CONTAMINANTS ARE ASBESTOS, BERYLLIUM, MERCURY, VINYL CHLORIDE, LEAD, ETC.

EXHAUST POINT INFORMATION				
I. FLOW DIAGRAM DESIGNATION(S) OF EXHAUST POINT: Pickle	Line S	crubber		
2. DESCRIPTION OF EXHAUST POINT (LOCATION IN RELATION TO BUILDINGS, DIRECTION, HOODING, ETC.): Vertical Stack				
3. EXIT HEIGHT ABOVE GRADE: 70 FT		4. EXIT DIAMETER: 1.25		
5. GREATEST HEIGHT OF NEARBY BUILDINGS: 42	FT	6. EXIT DISTANCE FROM NEAREST PLANT BOUNDARY: 250	FT	
AVERAGE OPERATION OF SOURCE		MAXIMUM OPERATION OF SOURCE		
7. EXIT GAS TEMPERATURE:	°F	9. EXIT GAS TEMPERATURE 125	°F	
8. GAS FLOW RATE THROUGH EACH EXTT: 6,446 ACI	FM	10. GAS FLOW RATE THROUGH EACH EXIT: 6,526 AC	CFM	

HCL PICKLING PROCESS AT MAXIMUM OPERATION FLOW DIAGRAM - SPL1

NACME STEEL PROCESSING 429 WEST 127TH STREET CHICAGO, ILLINOIS

HCL Pickling Line Emission Calculations NACME Steel Processing 429 West 127th Street Chicago, Illinolis

Maximum Operation Rate

Current Permitted Emission Factor (No Control)* = 4.8 lbs HCL/tons Steel Processed

Current Permitted Emission Factor (Scrubber Control)* = **0.0048 lbs HCL/1000 tons Steel Processed**Testing w/ Scrubber Control)
Proposed Annual Steel Throughput = **750,000 tons/year**

Emission Calculation

Project No.: M016006

4.8 lbs HCl/ton Steel Processed X 750,000 tons Steel/year = 3,600 lbs HCl Emitted/Year HCL tons/yr = 3,600 lbs HCl/Year X 1 ton/2,000 lbs = **1.8 tons HCl/year**

HCl lbs/hour = (3,600 lbs/year)/8,760 hours/year = 0.41 lbs HCl/hour

* Attached TurboTunnel Manufacturer's supporting documentation indicates HCl emissions to scrubber will be reduced with use of this second cover. Therefore, even with increased HCl concentration and throughput, this factor is a conservative value.

IEPA FOIA 0385

NACME Steel Processing

ENCLOSURE A – TURBOTUNNEL MANUFACTURER'S DOCUMENTATION

MAR-15-2001 14:21

NMLP ADMIN

8478057244 P.02/04

by facsimile

Nelson Stee

199 Arvin Avenue Stoney Creek, Ontario Canada L8E 2L9

March 15, 2001

Fax #: 847-806-4721

National Material L.P. 1965 Pratt Blvd. Elk Grove Village, IL U.S.A. 60007-5905

ATTENTION: MR. LANNY READ

Dear Lanny:

RE: FUME EXHAUST SYSTEM - NACME (Nelson Steel reference 2507-604)

The acid concentration of 16% hydrochloric acid in your #4 acid system is the required and normal operating concentration for the efficient pickling of the steel. The temperature of each pickling tank is important for pickling steel, for the efficient use of acid and for controlling the emissions of hydrochloric acid entering the scrubber system. The parameters that should be followed to achieve an efficient system are listed below:

TYPICAL OPERATING CONDITIONS

	% HCI	% Fe	Temp F
Pickling Tank No. 1	2 to 4	11 to 16	180 to 190
Pickling Tank No. 2	4 to 11	8 to 11	175 to 185
Pickling Tank No. 3	11 to 14	5 to 8	175 to 185
Pickling Tank No. 4	14 to 16	2 to 5	175 to 185

With the double cover system being installed, the concentration emissions of hydrochloric acid will improve drastically. Outlet concentrations of hydrochloric acid depend on inlet concentrations to the scrubber. As such, the operation of the pickling section will affect the outlet concentration from the scrubber; however, data from similar installations has shown concentrations less than 5 PPM when using the double cover system. The main reason for this improvement is the fact that fumes are presently extracted from the acid surface. Extraction of fumes will presently take place above the granite covers and not at the acid surface. See attached sketch to indicate the new design.

cont'd../2

IEPA FOIA 0387

MAR-15-2001 14:22

NMLP ADMIN

8478267244

P.03/04

Nelson Steel

Mr. Lanny Read March 15, 2001 Page 2

As a comparison, the following data is taken from two of Nelson Steel's own pickling lines. Each line has four pickling tanks but only one line has the double cover system.

Without double covers (5-tray scrubber)

With double covers (4-tray scrubber)

Scrubber inlet concentration (PPM)

2421

544

Scrubber outlet concentration (PPM)

18

3

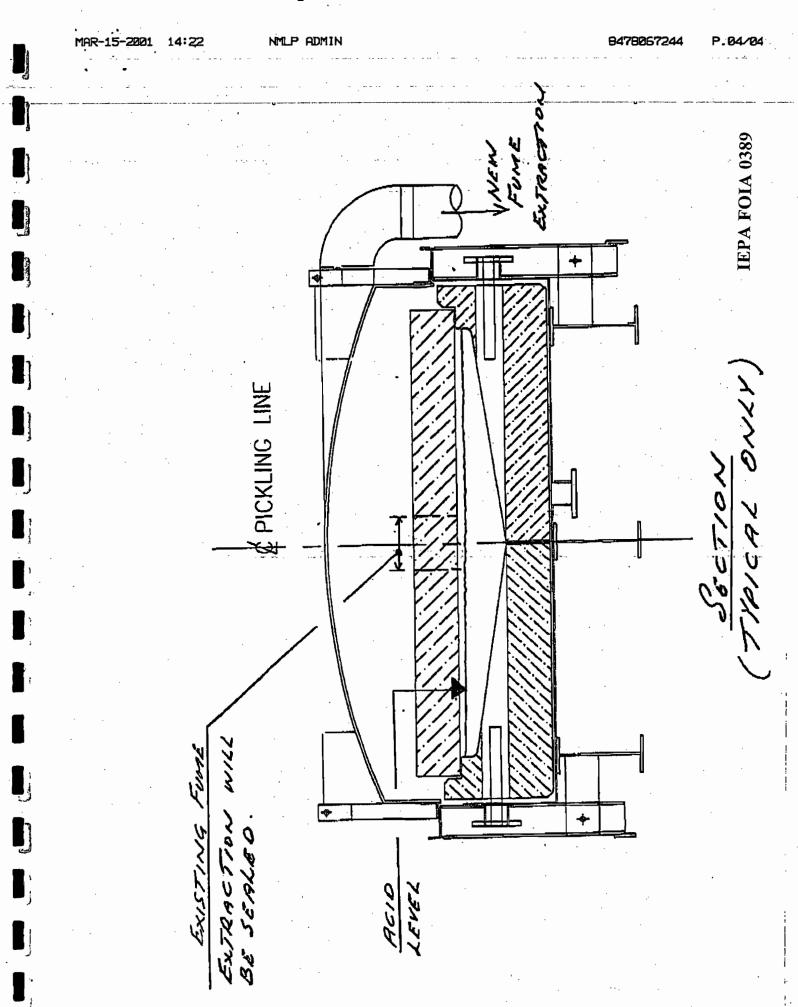
I hope that this letter explains sufficiently the necessity for operating the pickling tanks at a 16% hydrochloric acid level and explains the improvement that will occur with regard to emissions with the new double cover system.

Please do not hesitate to contact me at 905-662-1807, extension 325, if you require clarification on any items.

Best regards,

Graham Oakley

General Manager, Technology Group


:dnr

enc.

cc: John Mercer

ועש 1930 באלים ביו ביינים ביינ

Electronic Filing - Received, Clerk's Office : 05/16/2014

BEFORE THE ILLINOIS POLLUTION CONTROL BOARD

PEOPLE OF THE STATE OF ILLINOIS,)	·
Complainant,)	• •
v.)	PCB No. 13 - 12 (Enforcement – Air)
NACME STEEL PROCESSING, LLC,)	(Emoreement – An)
a Delaware limited liability corporation,)	•
Respondent.)	

EXHIBIT F

THOMAS J. REUTER AFFIDAVIT

TAB 3
APRIL 12, 2002 CONSTRUCTION
PERMIT NO. 01400891-REVISED ("2002
CONSTRUCTION PERMIT")

217/782-2113

CONSTRUCTION PERMIT -- REVISED

PERMITTEE

NACME Steel Processing, LLC Attn: Tom Beach 429 West 127th Street Chicago, Illinois 60628

Application No.: 01040081

I.D. No.: 031600FWL

Applicant's Designation: PICKLING

Date Received: April 11, 2002

Subject: Turbo-tunnel Enclosure

Date Issued: April 12, 2002

Location: 429 West 127th Street, Chicago, 60628

Permit is hereby granted to the above-designated Permittee to CONSTRUCT emission unit(s) and/or air pollution control equipment consisting of turbo-tunnel enclosure on the existing steel pickling line and increasing of steel processing rate as described in the above-referenced application. This Permit is subject to standard conditions attached hereto and the following special condition(s):

1. The operation and hydrogen chloride (HCl) emission from the pickling line shall not exceed the following limits:

Șteel T	hroughput	Emission Factor	HCl E	mission
(Tons/Mo)	(Tons/Yr)	(Lb/10 ³ Ton)	(Lb/Mo)	(Tons/Yr)
62,500	750,000	4.8	300	1.8

These limits are based on the maximum production rate and emission factor derived from the most recent stack test. Operational parameters shall not exceed the following values: steel process rate no more than 85.6 ton/hour, the maximum HCl concentration in the pickling tanks 16%, the maximum pickling solution temperature 190° F, HCl makeup rate no more than 236 gallon/hour. Compliance with annual limits shall be determined from a running total of 12 months of data.

- 2. This permit allows operation of the pickling line at the rates and operational parameters specified in the Condition 1 only for the purpose of stack testing required by Special Condition 3.
- 3a. Within 30 days of issuance of this permit the emission of Hydrogen Chloride (HCl) shall be measured by an approved testing service, during conditions representing the maximum HCl emission. This condition supersedes Standard Condition 6b.

b. The following methods and procedures shall be used for testing of emissions, unless another method is approved by the Illinois EPA. Refer to 40 CFR 60, Appendix A, and 40 CFR 61, Appendix B, for USEPA test methods.

Location of Sample Points USEPA Method 1
Gas Flow and Velocity USEPA Method 2
Flue Gas Weight USEPA Method 3
Moisture USEPA Method 4
Hydrogen Chloride (HCl) USEPA Method 26

- c. At least 30 days prior to the actual date of testing a written test plan shall be submitted to the Illinois EPA for review and approval. This plan shall describe the specific procedures for testing, including:
 - i. The person(s) who will be performing sampling and analysis and their experience with similar tests.
 - ii. The conditions under which testing will be performed, including a discussion of why these conditions will be representative of the maximum operating rate, the levels of operating parameters at or within which compliance is intended to be shown, if applicable, and the means by which the operating parameters for the process and any control equipment will be determined.
- d. The Illinois EPA shall be notified prior to this test to enable the Illinois EPA to observe these tests. Notification for the expected date of testing shall be submitted a minimum of thirty (30) days prior to the expected date. Notification of the actual date and expected time of testing shall be submitted a minimum of five (5) working days prior to the actual date of the tests. The Illinois EPA may, at its discretion, accept notification with shorter advance notice provided that the Illinois EPA will not accept such notifications if it interferes with the Illinois EPA's ability to observe the testing.
- 4. The Final Report(s) for all tests shall be submitted within 30 days after the date of the test. The Final Report shall include as a minimum:
 - a. General information describing the test, including the name and identification of the emission source which was tested, date of test, names of personnel performing the tests, and Illinois EPA observers, if any;
 - b. A summary of results;
 - c. Description of test procedures, including description of sampling points, test equipment, and test schedule;

Page 3

- d. Detailed description of test conditions, including:
 - i. Process information, i.e., process rate, raw materials type, fuel type, etc.
 - ii. Control equipment information, i.e., equipment condition and operating parameters during testing.
- e. Data and calculations, including copies of all raw data sheets and records of laboratory analyses, sample calculations, and data on equipment calibration.
- 5. Two (2) copies of required reports and notifications concerning equipment operation or repairs, performance testing or a continuous monitoring system shall be sent to:

Illinois Environmental Protection Illinois EPA Division of Air Pollution Control Compliance and Enforcement Section (#40) P.O. Box 19276 Springfield, IL 62794-9276

<u>and</u> one (1) copy shall be sent to the Illinois EPA's regional office at the following address unless otherwise indicated:

Illinois Environmental Protection Illinois EPA
Division of Air Pollution Control - Regional Office
9511 West Harrison
Des Plaines, Illinois 60016

It should be noted that this permit has been revised to extend time allowed for performance of stack test.

If you have any questions on this permit, please contact Valeriy Brodsky at 217/782-2113.

Donald E. Sutton, P.E.
Manager of Permit Section
Division of Air Pollution Control

DES:VJB:psj

cc: Region 1

BEFORE THE ILLINOIS POLLUTION CONTROL BOARD

PEOPLE OF THE STATE OF ILLINOIS,)	
Complainant,)	
v.)	PCB No. 13 - 12 (Enforcement – Air)
NACME STEEL PROCESSING, LLC,)	(Emoreement – An)
a Delaware limited liability corporation,)	
Respondent.)	

EXHIBIT F

THOMAS J. REUTER AFFIDAVIT

TAB 4
APRIL 16, 2002 GASEOUS EMISSIONS
TEST ("APRIL 2002 STACK TEST")

GE Energy Services

GASEOUS EMISSIONS TEST

Performed For NACME STEEL PROCESSING, L.L.C.

At The HCl Scrubber Exhaust Stack Chicago, Illinois

April 16, 2002

RECEIVED

SEP 1 2 2005

IEPA - DAPC - SPFLD

GE Energy Services
Air Quality Systems & Services

GE Mostardi Platt — A division of GE Energy & Industrial Services, Inc. 888 Industrial Drive, Elmhurst, IL 60126 630 993-9000, Fax: 630 530-6630

GASEOUS EMISSIONS TEST
Performed For
NACME STEEL PROCESSING, L.L.C.
At The
HCl Scrubber Exhaust Stack
Chicago, Illinois
April 16, 2002

© Copyright 2002 All rights reserved in GE Mostardi Platt

GE MOSTARDI PLATT PROJECT 20020303 DATE SUBMITTED: MAY 17, 2002

TABLE OF CONTENTS

CERTIFICATION SHEET	
1.0 INTRODUCTION	1
2.0 SUMMARY OF RESULTS	
3.0 DISCUSSION OF RESULTS	
4.0 TEST PROCEDURES	2
4.1 Volumetric Flowrate Determination	2
4.2 Oxygen (O ₂)/Carbon Dioxide (CO ₂) Determination	
4.3 Hydrogen Chloride (HCl) Determination (Isokinetic Sampling)	
5.0 QUALITY ASSURANCE PROCEDURES	4
5.0 TEST RESULTS SUMMARY	5
APPENDIX	
Plant Operating Data Test Section Diagram	7
Test Section Diagram	8
Sample Train Diagrams	9
Calculation Nomenclature and Formulas	11
Sample Analysis Data	15
Test Data and Results (Computerized)	
Calibration Data	
Field Data Sheets	37

CERTIFICATION SHEET

Having supervised and worked on the test program described in this report, and having written this report, I hereby certify the data, information, and results in this report to be accurate and true according to the methods and procedures used.

Data collected under the supervision of others is included in this report and is presumed to have been gathered in accordance with recognized standards.

GE MOSTARDI PLATT

James F. Robertson

Project Manager

Reviewed by:

Jeffred M. Crivlare

Senior Project Manager

while

GE Energy Services
Air Quality Systems & Services

GE Mostardi Platt

— A division of GE Energy & Industrial Services, Inc.
888 Industrial Drive, Elmhurst, IL 60126
630 993-9000, Fax: 630 530-6630

GASEOUS EMISSIONS TEST Performed For NACME STEEL PROCESSING, L.L.C. At The HCl Scrubber Exhaust Stack Chicago, Illinois April 16, 2002

1.0 INTRODUCTION

GE MOSTARDI PLATT, a division of GE Energy and Industrial Services, Inc. (GE Mostardi Platt) performed a gaseous emission test program on the HCl Scrubber Exhaust Stack of NACME Steel Processing, L.L.C. (NACME) in Chicago, Illinois on April 16, 2002. The tests were authorized by and performed for NACME.

The purpose of this test program was to determine hydrochloric acid (HCl) emission rates during normal operating conditions.

The tests were conducted by Messrs. A. Robinson, D. Siddall and J. Robertson of GE Mostardi Platt. Mr. Tom Beach of NACME Steel Processing, L.L.C. provided assistance and coordinated plant operating conditions during the test program.

2.0 SUMMARY OF RESULTS

During this test program, three (3) HCl emission tests were performed at the HCl Scrubber Exhaust Stack. Complete test results are given on page 6. The following table summarizes the results.

Parameter	HCl Scrubber Exhaust Stack
HCl Concentration, ppm	6.87
HCl Emission Rate, lbs/hr	0.217

1

© GE Mostardi Platt

3.0 DISCUSSION OF RESULTS

No problems were encountered with the testing equipment during the course of the test program. Source operation appeared normal during the entire test program. Operating data was recorded by plant personnel and is appended.

Calculations were performed for each test to determine if the gas stream was supersaturated. The results show that the gas stream was not supersaturated.

4.0 TEST PROCEDURES

All testing, sampling, analytical, and calibration procedures used for this test program were performed as described in the Title 40, Code of Federal Regulations, Part 60 (40CFR60), Appendix A, Methods 1-4 and 26A, and the latest revisions thereof. Where applicable, the Quality Assurance Handbook for Air Pollution Measurement Systems, Volume III, Stationary Source Specific Methods, United States Environmental Protection Agency (USEPA) 600/4-77-027b was used to determine the precise procedures.

4.1 Volumetric Flowrate Determination

In order to determine the emission rate on a lbs/hr basis, the stack gas velocity and volumetric flowrate were determined using Method 2, 40CFR60.

Velocity pressures were determined by traversing the test location with an S-type pitot tube. Temperatures were measured using a K-type thermocouple with a calibrated digital temperature indicator. The molecular weight and moisture content of the gases were determined to permit the calculation of the volumetric flowrate. Sampling points utilized were determined using Method 1, 40CFR60.

4.2 Oxygen (O2)/Carbon Dioxide (CO2) Determination

Oxygen (O₂) and carbon dioxide (CO₂) gas contents were determined in accordance with Method 3, 40CFR60. This method analyzed samples collected in a grab manner using a Hays Orsat gas analyzer. Several gas extractions were performed during each test run to ensure a stable reading. Mandatory leak checks were performed prior to and following each use. Chemicals are changed frequently and inspected for reactivity prior to each use.

The second secon

4.3 Hydrogen Chloride (HCl) Determination (Isokinetic Sampling)

Hydrogen chloride (HCl) concentrations were determined using Method 26A, 40CFR60. An integrated twenty four point sample was extracted from the gas stream and passed through dilute (0.1 N) sulfuric acid. In the dilute acid, the HCl dissolved and formed chloride (Cl) ions. The chloride ions were then analyzed by ion chromatography. The sample train consisted of a heated glass probe liner, a heated optional filter, and six impingers. The first impinger was short stemmed and empty to knock out heavy moisture. the second and third impingers contained the dilute sulfuric acid, the fourth and fifth impingers contained a 0.1 N sodium hydroxide (NaOH) scrubber solution to remove any remaining chlorine, and the sixth impinger contained silica gel to absorb any remaining moisture. The train was leak checked prior to and after each run. The sample was then extracted isokinetically. The samples were recovered by quantitatively transferring the contents of the first three impingers (the knock out and the two absorbing solution impingers) and deionized water rinses to a glass sample jar. The samples were mixed and labeled, and the level marked for transfer to the laboratory. The samples were then analyzed by ion chromatography. Copies of all sample analysis sheets are appended to this report.

Calculations were performed on computer and by hand. An explanation of the nomenclature and calculations along with the complete test results are appended. Also appended are the calibration data and copies of the raw field data sheets.

Raw data are kept on file at the GE Mostardi Platt office in Elmhurst, Illinois. All samples from this test program (not already used in analysis) will be retained for 60 days after the submittal of the report, after which they will be discarded unless GE Mostardi Platt is advised otherwise.

Total Charles (Carrent Carrent)

5.0 QUALITY ASSURANCE PROCEDURES

GE Mostardi Platt recognizes the previously described reference methods to be very technique oriented and attempts to minimize all factors which can increase error by implementing its Quality Assurance Program into every segment of its testing activities.

Shelf life of chemical reagents prepared at the GE Mostardi Platt laboratory or at the jobsite did not exceed those specified in the above mentioned methods; and, those reagents having a shelf life of one week were prepared daily at the jobsite. When on-site analyses were required, all reagent standardizations were performed daily by the same person performing the analysis.

Dry and wet test meters were calibrated according to methods described in the Quality Assurance Handbook, Sections 3.3.2, 3.4.2 and 3.5.2. Percent error for the wet test meter according to the methods was less than the allowable error of 1.0 percent. The dry test meters measured the test sample volumes to within 2 percent at the flowrate and conditions encountered during sampling.

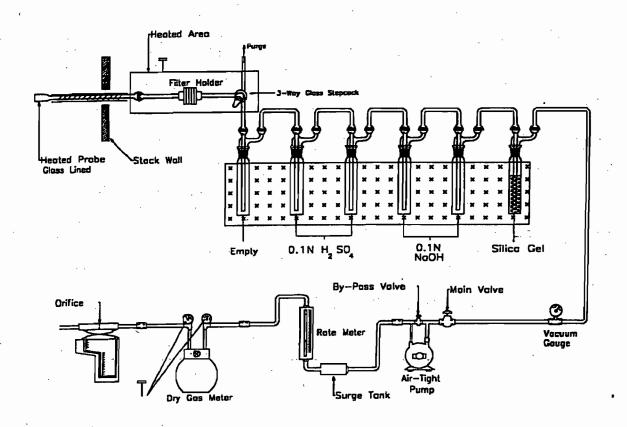
6.0 TEST RESULTS SUMMARY

HCPTEST RESULTS SUMMARY							
Plant: NACVIE Steel Processing Source HCL Scrubben Behaust							
Test Run Number	1	2	3	Average			
Test Location		Stack					
Source Condition		Normal	-	がある。			
Date		4/16/02	,				
Time	0845-0955	1040-1147	1225-1330	10年 · 11年 · 12年 ·			
HCl Concentration, ppm	7.05	7.37	6.20	6.87			
HCl Emission Rate, lbs/hr	0.229	0.229	0.192	0.217			
Average Gas Volumetric Flow Rate:							
@ Flue Conditions, acfm	7,202	6,968	7,022	7,064			
@ Standard Conditions, dscfm	5,704	5,466	5,450	5,540			
Average Gas Temperature, °F	126.17	125.58	125.50	125.75			
Average Gas Velocity, ft/sec	16.982	16.430	16.558	16.657			
Flue Gas Moisture, percent by volume	10.4	11.3	12.3	11.3			
Average Flue Pressure, in. Hg	29.35	29.35	29.35				
Barometric Pressure, in. Hg	29.31	29.31	29.31				
Average % CO ₂ by volume, dry basis	0.0	0,0	0.0	0.0			
Average % O ₂ by volume, dry basis	20.5	20.9	20.9	20.8			
Dry Molecular Wt. of Gas, lb/lb-mole	28.820	28.836	28.836	美国建筑			
Gas Sample Volume, dscf	37.633	36.645	36.653				

APPENDIX

OPERATING DATA DURIN EMPLSIONS TEST 4-16-02

	TENA 41-1950 42 185° 43 1950 44 1950	4. Ac. p	2.57 CPM	MSA MONITER 7 PPM
9Am	#1 195° #2 185° #3 195° #4 185°	11.6%	2.67 GPM	12 PPM
1047	# 1950 # 1950 # 1950 # 1950 # 1950	11.6%	2.69 CPM	8 frm
11 Am	4 1 195° 4 2 196° 4 9 196°	11.4%	2.58 G1M	9111
12:	02 #1 H5° 42 185° 45 Ch 44 195°	11.4	2.56 GPM	& ren
1:0.	41 195° 41 175° 43 175° 44 175°	11.4	2.57 Gpn	1 SPM


Pickled 200 Tons

4/16/02

GE Energy Services

Determination of HCI and HF Concentrations in Stack Gases

USEPA Method 26 Sample Train

ice Both
Temperature
Sensor

Dwg - R

LABORATORY REPORT

TEI Analytical, Inc. 71 77 N. Austin Niles, IL 60714-4617 847-647-1345

PREPARED FOR:

PAGE 1 of 1

Frank Jarke GE Mostardi Platt 888 Industrial Dr. Elmhurst, IL 60126 Report #: 56031 Report Date: 4/29/2002 Sample Received: 4/17/02 13:33

20020303-01

		HCI (M26A)	Date
TEI Number	Sample	mg	Performed
56031	001	11.4	4/26/2002
56032	002	11.6	4/26/2002
56033	003	9.76	4/26/2002
56034	004	<0.05	4/26/2002

Gayle E. O'Neill, Ph.D.

CALCULATIONS FOR HCI METHOD 26

$$M = \frac{(S-B)}{4.53592 \times 10^8}$$

Where: Total

M = Mass of HCl in sample, lbs

S = Concentration of sample, micrograms HCl

B = Blank concentration micrograms HCl

4.53592 × 108 = Micrograms per Pound

C = M/Vmstd

Where:

C = Concentration of HCl in flue gas

lbs/dscf

M = Mass of HCl in Sample, 11

Vmstd = Sample volume measured by dry

gas meter, corrected to standard conditions

 $E = C \times dscfm \times 60 min/hr$

Where:

E = Emission rate HCl in lbs/hr

C = Concentration of HCl in lbs/DSCF

dscfm = Volumetric flow rate of stack gas, dry standard cubic feet per minute.

13

@ GE Mostardi Platt

METHOD 26 TEST RESULTS 4/16/02 Condition: Normal Date: **Project**: Nacme Data Taken By: A. Robinson Location: HCI-Scrubber Source: Stack Test Number: Time: Pressure, Barometric(Hg"):..... 29.310 Carbon Dioxide Content(%):..... Pressure, Static(H₂O"):..... Oxygen Content(%):..... Pressure, Stack(Hg"):.... 29.347 Nitrogen Content(%):..... Initial Volume (cu.ft.)..... 25.082 Final Volume (cu.ft.).... 63.88 HCI (mg)...... 11.400 Meter Temperature (°F)..... 81.04 Cl₂ (ppm):......0.00 Meter Volume (dscf)..... 37.6324 Meter Calibration (Y)..... 1.011 initial Wt. (grms or mis)..... Final Wt. (grms or mis)...... 757.9 1.420 Average Delta H (AH)..... Dry Standard Flow Rate (dscfm):..... 5704.0 Test Number: 1040-1147 Pressure, Barometric(Hg"):..... 29.310 Pressure, Static(H₂O"):.... 0.50 Oxygen Content(%):..... 20.80 29,347 Pressure, Stack(Hg"):.... Cl₂ (mg)...... 0.000 Initial Volume (cu.ft.)..... 64.36 Final Volume (cu.ft.)..... 102.46 HCI (mg)..... Meter Temperature (°F)..... Cl₂ (ppm):......0.00 Meter Calibration (Y)..... 1.011 HCI (ppm):......7.37 Initial Wt. (grms or mis)...... 650.8 Final WL (grms or mls)...... 749.9 1.360 Average Delta H (AH)..... Dry Standard Flow Rate (dscfm):..... Test Number: 1225-1330 Pressure, Barometric(Hg*):..... 29.310 0.50 Oxygen Content(%):...... 20,90 Pressure, Static(H₂O"):..... Nitrogen Content(%):...... 79.10 Pressure, Stack(Hg"):..... 29.347 Initial Volume (cu.ft.).... 2.897 Cl₂ (mg)..... Final Volume (cu.ft.)..... 41.257 HCI (mg)... 89.17 Water Vapor in Flue Gas (Bws):................ 0.123 Meter Temperature (°F)..... Meter Volume (dscf)..... 36.6531 Cl₂ (ppm):... HCI (ppm):_____6.20 Meter Calibration (Y)..... initial Wt. (grms or mis)...... 653.5 1.380 Average Delta H (AH)..... Dry Standard Flow Rate (dscfm):..... 5450.0

PARTICULATE TRAVERSE DATA

Company: Nacme

Date:

4/16/02

Test Run.:

1 M26A

Location: HCI Scrubber Stack

W. C. C. W. C.		Sq. Root		Volume		Stack	Meter	Meter	Vacuum	
Point	Δp	Δр	Time	cubic feet	ΔH	Temp °F	Inlet*F	Outlet °F	in. Hg	
900 C. 7 <u>011 AND AND AND</u>	an require to									· · · · · · · · · · · · · · · · · · ·
1-1	0.09	0.300	B:45:00	25.08	1.60	125	77	77	4	
1-2	0.10	0.316	8:47:50	26.83	1.B0	124	77	77	. 4	
1-3	0.09	0.300	B:50:00	28.67	1.60	125	79	. 77.	4	
1-4	0.08	0.283	8:52:50	30.38	1.40	125	79	77	4	
1-5	0.08	0.283	8:55:00	32.01	1.40	125	80	78	· 4	
1-6	0.08	0.283	8:57:50	33.63	1.40	125	80	78	4	
1-7	0.07	0.265	9:00:00	35.25	1.30	127	81	78	. 4	
1-8	0.07	0.265	9:02:50	36.76	1.30	128	82	79	4.	1.55
1-9	0.07	0.265	9:05:00	38.31	1.30	127	82	79	4	1.520
1-10	0.07	0.265	9:07:50	39.83	1.30	125	82	79	4	1.540
1-11	0.06	0.245	9:10:00	41.37	1.10	125	82	79	4	1.420
1-12	0.06	0.245	9:12:50	42.79	1.10	125	82	79	4	1.437
_			9:15:00	44.23				·		0.000
2-1	0.10	0.316	9:25:00	44.42	1.80	126	82	80	4	1.832
2-2	0.09	0.300	9:27:50	46.25	1.60	127	82	81	. 4	1.740
2-3	0.10	0.316	9:30:00	47.99	1.80	128	83	82	4	1.830
2-4	0.09	0.300	9:32:50	49.82	1.60	124	84	83	. 4	1.720
2-5	0.08	0.283	9:35:00	51.54	1.40	125	84	83	4	1.640
2-6	0.08	0.283	9:37:50	53.18	1.40	125	84	83	4	1.620
2-7	0.08	0.283	9:40:00	54.80	1.40	126	83	83	4	1.610
2-8	0.07	0.265	9:42:50	56.41	1.30	128	84	82	4	1.530
2-9	0.08	0.283	9:45:00	57.94	1.40	128	84	82	4	1.620
2-10	0.07	0.265	9:47:50	59.56	1.30	128	84	83	4	1.570
2-11	0.07	0.265	9:50:00	61.13	1.30	128	84	83	4	1.530
2-12	0.06	0.245	9:52:50	62.66	1.10	129	84	83	4	1.412
			9:55:00	64.07						0.000
	•									0.000
										0.000
	•									0.000
					,					0.000
		1.								0.000
						_				0.000
										0.000
										0.000
										0.000
										0.000
										0.000
										0.000
		0.280		38.799	1.42	126	82	80		38.799
							81.04			

MÉTHOD 5 DATA ENTRY FORM

Field Data/Calculated Data

Company:	Nacme
Date:	4/16/02
Test Run:	1 M26A
Stack or Duct No.:	HCl Scrubber Stack
Start Time:	8:45

Stop Time: 9:55

Stop i ime:	9.00	
Pb:	29.31	Inches Hg
Static	0.50	Inches H2O
Ps:	29.35	inches Hg Abs.
VIc:	92	mi + grams
Mn:	0.0000	gm
Test Time:	60	minutes
% O2:	20.50	%
% CO2:	0.00	_ %
% N2:	79.50	%
Delta H:	1.42	inches H20
Cp:	0.836	Dimensionless - pitot
Tm:	81.04	°F
Sqrt P:	0.280	inches H20
Ts:	126.17	°F
Vm:	38.799	Cubic Feet
Dn:	0.372	Inches - nozzle
As:	7.07	Sq. Feet
Yd:	1.011	Mef
CF:	N/A	Process tons/hr
Heat Input:	**************************************	MM BTU/hr ···
Fd:	N/A	dscf/10 ⁶ Btu
Fc:	N/A	scf/10 ⁶ Btu

Vmstd:	37.633	cubic feet (dry)
Vwstd:	4.352	cubic feet (wet)
Bwo:	0.104	
Md:	28.820	lb/lb-mole (dry)
Ms:	27.698	lb/lb-mole (wet)
Excess Air (%)	4200.820	
Vs:	16.982	fps
ACFM:	7202.	
DSCFM:	5704.	
WSCFM:	6363	
%1:	103.0	isokinetic variance
GR/ACF:	0.0000	
GR/DSCF:	0.0000	
lbs/hr	0.000	
lbs/ton prod.:	N/A	
lbs/MM BTU:	N/A	Heat input
lbs/MM BTU:	N/A	O2 Basis
bs/MM BTU:	N/A	CO2 Basis

PARTICULATE TRAVERSE DATA

Company: Nacme Date: 4/16/02 Test Run.: 2 M26A

Location: HCI Scrubber Stack

		Sq. Root		Volume		Stack	Meter	Meter	Vacuum	
Point	Δр	Δρ	Time	cubic feet	ΔH	Temp °F	Inlet °F	Outlet °F	in. Hg	1000
1-1	0.09	0.300	10:40:00	64.36	1.60	123	85			
1-2	0.09	0.300	10:42:50	66.14	1.60	123				
1-3	0.10	0.316	10:45:00	67.86	1.80	122	85			
1-4	0.10	0.316	10:47:50	69.73	1.80	123	86			
1-5	0.09	0.300	10:50:00	71.56	1.60	124	87	,		
1-6	0.08	0.283	10:52:50	73.31	1.50	125	87	85	3	
1-7	0.08	0.283	10:55:00	75.00	1.50	125	87	85	3	
1-8	0.08	0.283	10:57:50	76.68	1.50	126	88		3	
· 1-9	0.07	0.265	11:00:00	78.33	1.30	127	88	86	3	
1-10	0.07	0.285	11:02:50	79.88	1.30	128	88	88	3	
1-11	0.06	0.245	11:05:00	81.41	1.10	129	88	86	3	
1-12	0.06	0.245	11:07:50	82.88	1.10	129	88	86	3	
			11:10:00	84.31						0.00
2-1	0.07	0.265	11:17:00	84.55	1.30	125	85	85	2	1.55
2-2	0.06	0.245	11:19:50	86.10	1.10	125	85	85	2	1.48
2-3	0.06	0.245	11:22:00	87.58	1.10	126	85	85	2	1.42
2-4	0.07	0.265	11:24:50	89.00	1.30	127	85	84	. 2	1.570
2-5	0.07	0.265	11:27:00	90.57	1.30	128	85	85	2	1.550
2-6	0.07	0.265	11:29:50	92.12	1.30	128	86	85		1.530
2-7	80.0	0.283	11:32:00	93.65	1.50	125	86	85	2	1.660
2-8	0.08	0.283	11:34:50	95.31	1.50	126	86	85	2	1.670
2-9	0.07	0.265	11:37:00	96.98	1.30	125	86	84	2	1.580
2-10	0.05	0.224	11:39:50	98.56	0.91	125	86	84	2	1.260
2-11	0.07	0.265	11:42:00	99.82	1.30	125	86	85	2	1.540
2-12	0.05	0.224	11:44:50	101.36	0.91	125	86	84	2	1.343
			11:47:00	102.70						0.000
										0.000
										0.000
								· _		0.000
										0.000
							· ·			0.000
		· ·								0.000
										0.000
										0.000
										0.000
										0.000
										0.000
										0.000
		0.270		38.105	1.36	126	86	85		38.105
							85.60			

METHOD 5 DATA ENTRY FORM

Field Data/Calculated Data

Company: Nacme

Date: 4/16/02

Test Run: 2 M26A

Stack or Duct No.: HCI Scrubber Stack

Start Time: 10:40

Stop Time: 11:47

Stop Time.	11.47	
Pb:	29.31	Inches Hg
Static	0.50	Inches H2O
Ps:	29.35	Inches Hg Abs.
VIc:	99	mi + grams
Mn:	0.0000	gm
Test Time:	60	minutes
% O2:	20.90	%
% CO2:	0.00	%
% N2:	79.10	%
Delta H:	1.36	Inches H20
Cp:	0.836	Dimensionless - pitot
Tm:	85.80	°F
Sqrt P:	0.270	inches H20
Ts:	125.58	°F
Vm:	38.105	Cubic Feet
Dn:	0.372	Inches - nozzie
As:	7.07	Sq. Feet
Yd: CF:	1.011	Mcf
CF:	N/A	Process tons/hr
Heat Input:	N/A	MM BTU/hr
Fd:	N/A	dscf/10 ⁶ Btu
Fc:	N/A	scf/10 ⁵ Btu

Vmstd:	36.645	cubic feet (dry) .
Vwstd:	4.668	cubic feet (wet)
Bwo:	0.113	
Md:	28.836	lb/lb-mole (dry)
Ms:	27.612	lb/lb-male (wet)
Excess Air (%)	-118760.000	
Vs:	16.430	fps
ACFM:	6988.	
DSCFM:	5466.	
WSCFM:	6163	
%1:	104.7	isokinetic variance
GR/ACF:	0.0000	
GR/DSCF:	0.0000	
lbs/hr	0.000	
lbs/ton prod.:	N/A	·
lbs/MM BTU:	N/A	Heat Input
lbs/MM BTU:	N/A	O2 Basis
lbs/MM BTU:	N/A	CO2 Basis

PARTICULATE TRAVERSE DATA

Company: Nacme

Date:

4/16/02

Test Run.:

3 M26A

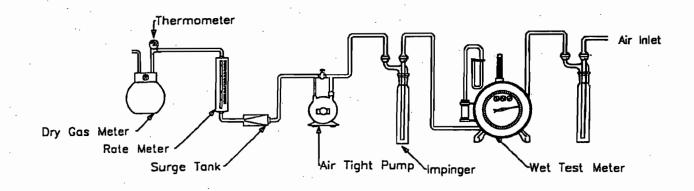
Location: HCI Scrubber Stack

Point Ap	E. Thereofficer directs	und reproductive state	Sq. Raat		Yolume	V///// PA	Stack	Meter	Meter	Vacuum	
1-1			A 6 C 1 C 1 C 1 C 1 C 1 C 1 C 1 C 1 C 1 C	900000 X 97 Y 1.15 T P. CO	18/19/2008/19/09	λH	25: 10:10:20:00:00:00:00:00:00:00:00:00:00:00:00	Inlet °F	Outlet °F	in Hg	
1-1	Solut	Δρ	**************************************	3.29 4 in the 5.30 o	0.0010.000	(C)		15 3000000 <u>000000000000000000000000000000</u>		1	
1-2	1.1	0.08	0.283	12:25:00	2.90	1.50	124	87	87	2	1.663
1-3							124	87	87	2	1.640
1-4 0.08 0.283 12:32:50 7.97 1.50 124 88 1-5 0.08 0.283 12:35:00 9.65 1.50 124 88 1-6 0.09 0.300 12:37:50 11.28 1.60 125 88 1-7 0.08 0.283 12:40:00 13.07 1.50 122 89 1-8 0.07 0.285 12:42:50 14.70 1.30 122 89 1-9 0.07 0.285 12:45:00 16.26 1.30 123 89 1-10 0.07 0.285 12:45:00 19.37 1.30 124 89 1-11 0.07 0.285 12:45:50 17.83 1.30 124 89 1-12 0.06 0.245 12:52:50 20.94 1.10 126 89 1-12 0.08 0.283 13:00:00 22.40 1.60 126 88 2-2 0.09 0.300 13:02:50 24.04 1.60 126 88 2-2 0.09 0.300 13:07:50 25.80 1.80 128 90 2-3 0.10 0.316 13:05:00 25.80 1.80 128 90 2-4 0.09 0.300 13:07:50 27.68 1.60 128 91 2-5 0.08 0.283 13:10:00 29.44 1.50 128 91 2-6 0.08 0.283 13:12:50 31:12 1.50 128 91 2-7 0.07 0.265 13:15:00 32.78 1.30 127 92 2-8 0.06 0.245 13:15:00 32.78 1.30 127 92 2-8 0.06 0.245 13:17:50 33.78 1.30 127 92 2-8 0.06 0.245 13:25:50 33.719 1.10 126 93 2-10 0.06 0.245 13:25:50 39.94 0.91 128 93 2-11 0.05 0.224 13:25:50 39.94 0.91 128 93 2-12 0.05 0.224 13:25:50 39.94 0.91 128 93 2-11 0.05 0.224 13:25:50 39.94 0.91 128 93 2-12 0.05 0.224 13:25:50 39.94 0.91 128 93							123	88	87	2	1.770
1-5							124	88	87	2	1.680
1-6							124	88	87	2	1.630
1-7 0.08 0.283 12:40:00 13.07 1.50 122 89 1-8 0.07 0.265 12:42:50 14.70 1.30 122 89 1-9 0.07 0.265 12:45:50 16.26 1.30 123 89 1-10 0.07 0.265 12:45:50 17.83 1.30 124 89 1-11 0.07 0.265 12:50:00 19.37 1.30 125 89 1-12 0.06 0.245 12:52:50 20.94 1.10 126 89 1-12 0.08 0.283 13:00:00 22.40 1.60 126 88 2-2 0.09 0.300 13:02:50 24.04 1.60 127 90 2-3 0.10 0.316 13:05:00 25.80 1.80 128 90 2-4 0.09 0.300 13:07:50 27.68 1.60 128 91 2-5 0.08 0.283 13:10:00 29.44 1.50 128 91 2-6 0.08 0.283 13:15:00 32.78 1.30 127 92 2-8 0.06 0.245 13:15:00 32.78 1.30 127 92 2-8 0.06 0.245 13:17:50 34.31 1.10 126 93 2-9 0.06 0.245 13:20:00 35.77 1.10 127 93 2-10 0.06 0.245 13:20:00 35.77 1.10 127 93 2-10 0.06 0.245 13:20:00 38.62 0.91 128 93 2-11 0.05 0.224 13:25:00 38.62 0.91 128 93 2-12 0.05 0.224 13:25:00 38.62 0.91 128 93 2-12 0.05 0.224 13:25:00 38.62 0.91 128 93 2-12 0.05 0.224 13:25:00 38.62 0.91 128 93 2-12 0.05 0.224 13:25:00 38.62 0.91 128 93 2-12 0.05 0.224 13:25:00 38.62 0.91 128 93							125	. 88	88	2	
1-8						1.50	122	89	88	- 2	1.630
1-9 0.07 0.265 12:45:00 16.26 1.30 123 89 1-10 0.07 0.265 12:47:50 17.83 1.30 124 89 1-11 0.07 0.265 12:50:00 19.37 1.30 125 89 1-12 0.08 0.245 12:50:00 22.40 1.10 126 89 12:55:00 22.40 1.60 127 90 12:55:00 22.40 1.60 127 90 12:3 0.10 0.316 13:05:00 25.80 1.80 128 90 12-4 0.09 0.300 13:07:50 27.68 1.60 128 91 12-5 0.08 0.283 13:10:00 29.44 1.50 128 91 12-6 0.08 0.283 13:10:00 29.44 1.50 128 91 12-7 0.07 0.265 13:15:00 32.78 1.30 127 92 12-8 0.06 0.245 13:20:00 35.77 1.10 126 93 12-10 0.06 0.245 13:20:00 35.77 1.10 127 93 12-11 0.05 0.224 13:25:00 38.62 0.91 128 93 12-12 0.05 0.224 13:25:00 38.62 0.91 128 93 13:30:00 41.26						1.30	122	. 89	88	2	1.560
1-10 0.07 0.265 12:47:50 17.83 1.30 124 89 1-11 0.07 0.285 12:50:00 19.37 1.30 125 89 1-12 0.08 0.245 12:52:50 20.94 1.10 126 89 2-1 0.08 0.283 13:00:00 22.40 1.60 126 88 2-2 0.09 0.300 13:02:50 24.04 1.60 127 90 2-3 0.10 0.316 13:05:00 25.80 1.80 128 90 2-4 0.09 0.300 13:07:50 27.68 1.60 128 91 2-5 0.08 0.283 13:10:00 29.44 1.50 128 91 2-6 0.08 0.283 13:12:50 31:12 1.50 128 91 2-7 0.07 0.265 13:15:00 32.78 1.30 127 92 2-8 0.06 0.245 13:17:50 34.31 1.10 126 93 2-9 0.08 0.245 13:20:00 35.77 1.10 127 93 2-10 0.06 0.245 13:25:00 38.62 0.91 128 93 2-11 0.05 0.224 13:25:00 38.62 0.91 128 93 2-12 0.05 0.224 13:27:50 38.82 0.91 125 93 2-12 0.05 0.224 13:27:50 38.94 0.91 125 93						1.30	123		88	2	
1-11 0.07 0.265 12:50:00 19.37 1.30 125 89 1-12 0.06 0.245 12:52:50 20.94 1.10 126 89 12:55:00 22.40					17.83	1.30	124	89	88	2	1.540
1-12					19.37	1.30	125	89	88	2	1.570
12:55:00 22:40					20.94	1.10	126	89	88	2	1.459
2-1 0.08 0.283 13:00:00 22.40 1.60 126 88 2-2 0.09 0.300 13:02:50 24.04 1.60 127 90 2-3 0.10 0.316 13:05:00 25.80 1.80 128 90 2-4 0.09 0.300 13:07:50 27.68 1.60 128 91 2-5 0.08 0.283 13:10:00 29.44 1.50 128 91 2-5 0.08 0.283 13:12:50 31:12 1.50 128 91 2-6 0.08 0.283 13:12:50 32.78 1.30 127 92 2-7 0.07 0.265 13:15:00 32.78 1.30 127 92 2-8 0.06 0.245 13:20:00 35.77 1.10 127 93 2-10 0.06 0.245 13:25:00 38.62 0.91 128 93 2-12 0.05 0.224 <td></td> <td></td> <td></td> <td></td> <td>22.40</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.000</td>					22.40						0.000
2-2 0.09 0.300 13:02:50 24.04 1.60 127 90 2-3 0.10 0.316 13:05:00 25.80 1.80 128 90 2-4 0.09 0.300 13:07:50 27.68 1.60 128 91 2-5 0.08 0.283 13:10:00 29.44 1.50 128 91 2-6 0.08 0.283 13:12:50 31:12 1.50 128 91 2-7 0.07 0.265 13:15:00 32.78 1.30 127 92 2-8 0.06 0.245 13:17:50 34.31 1.10 126 93 2-9 0.06 0.245 13:20:00 35.77 1.10 127 93 2-10 0.06 0.245 13:25:00 38.62 0.91 128 93 2-11 0.05 0.224 13:27:50 39.94 0.91 125 93 2-12 0.05 0.224 13:27:50 39.94 0.91 125 93	2-1	0.08	0.283		22.40	1.60	126	88	88	2	1.641
2-3						1.60	127		88	2	1.760
2-4 0.09 0.300 13:07:50 27.68 1.60 128 91 2-5 0.08 0.283 13:10:00 29.44 1.50 128 91 2-6 0.08 0.283 13:12:50 31:12 1.50 128 91 2-7 0.07 0.265 13:15:00 32.78 1.30 127 92 2-8 0.06 0.245 13:17:50 34.31 1.10 126 93 2-9 0.08 0.245 13:20:00 35.77 1.10 127 93 2-10 0.06 0.245 13:22:50 37.19 1.10 128 93 2-11 0.05 0.224 13:25:00 38.62 0.91 128 93 2-12 0.05 0.224 13:27:50 39.94 0.91 125 93 13:30:00 41.26 13:30:00 41.26 125 93 125 93 <td></td> <td></td> <td></td> <td></td> <td>25.80</td> <td>1.80</td> <td>128</td> <td>90</td> <td>88</td> <td>2</td> <td>1.880</td>					25.80	1.80	128	90	88	2	1.880
2-5 0.08 0.283 13:10:00 29.44 1.50 128 91 2-6 0.08 0.283 13:12:50 31:12 1.50 128 91 2-7 0.07 0.265 13:15:00 32.78 1.30 127 92 2-8 0.06 0.245 13:17:50 34.31 1.10 126 93 2-9 0.06 0.245 13:20:00 35.77 1.10 127 93 2-10 0.06 0.245 13:22:50 37.19 1.10 128 93 2-11 0.05 0.224 13:25:00 38.62 0.91 128 93 2-12 0.05 0.224 13:27:50 39.94 0.91 125 93 13:30:00 41.26 13:30:00 41.26 125 93						1.60	128	91	89	2	1.760
2-6 0.08 0.283 13:12:50 31:12 1.50 128 91 2-7 0.07 0.265 13:15:00 32.78 1.30 127 92 2-8 0.06 0.245 13:17:50 34.31 1.10 126 93 2-9 0.08 0.245 13:20:00 35.77 1.10 127 93 2-10 0.06 0.245 13:22:50 37.19 1.10 128 93 2-11 0.05 0.224 13:25:00 38.62 0.91 128 93 2-12 0.05 0.224 13:27:50 39.94 0.91 125 93 13:30:00 41.26 </td <td></td> <td></td> <td></td> <td></td> <td>29.44</td> <td>1.50</td> <td>128</td> <td>91</td> <td>89</td> <td>2</td> <td>1.680</td>					29.44	1.50	128	91	89	2	1.680
2-7 0.07 0.265 13:15:00 32.78 1.30 127 92 2-8 0.06 0.245 13:17:50 34.31 1.10 126 93 2-9 0.06 0.245 13:20:00 35.77 1.10 127 93 2-10 0.06 0.245 13:22:50 37.19 1.10 128 93 2-11 0.05 0.224 13:25:00 38.62 0.91 128 93 2-12 0.05 0.224 13:27:50 39.94 0.91 125 93 13:30:00 41.26					31:12	1.50			89	2	1:660
2-8 0.06 0.245 13:17:50 34.31 1.10 126 93 2-9 0.06 0.245 13:20:00 35.77 1.10 127 93 2-10 0.06 0.245 13:22:50 37.19 1.10 128 93 2-11 0.05 0.224 13:25:00 38.62 0.91 128 93 2-12 0.05 0.224 13:27:50 39.94 0.91 125 93 13:30:00 41.26 <			0.265		32.78	1.30	127		90	2	1.530
2-9 0.08 0.245 13:20:00 35.77 1.10 127 93 2-10 0.06 0.245 13:22:50 37.19 1.10 128 93 2-11 0.05 0.224 13:25:00 38.62 0.91 128 93 2-12 0.05 0.224 13:27:50 39.94 0.91 125 93 13:30:00 41.26				13:17:50	34.31	1.10			90	2	1.460
2-10 0.06 0.245 13:22:50 37.19 1.10 128 93 2-11 0.05 0.224 13:25:00 38.62 0.91 128 93 2-12 0.05 0.224 13:27:50 39.94 0.91 125 93 13:30:00 41.26				13:20:00	35.77	1.10	127		90	2	1.420
2-11 0.05 0.224 13:25:00 38.62 0.91 128 93 2-12 0.05 0.224 13:27:50 39.94 0.91 125 93 13:30:00 41.26				13:22:50	37.19	1.10	128	93	90	. 2	1.430
2-12 0.05 0.224 13:27:50 39.94 0.91 125 93 13:30:00 41.26 13:30:00				13:25:00	38.62	0.91	128	93	90	2	1.320
13:30:00 41.26					39.94	0.91	125	93	90	2	1.317
				13:30:00	41.26	_					0.000
											0.000
	-				·				·	·	0.000
		_						,			0.000
	_		_								0.000
										j	0.000
					-						0.000
							ĺ				0.000
								·			0.000
											0.000
			-								0.000
28 260 1 28 126 90										,	0.000
28 260 1 28 126 90		-			_					İ	0.000
0.2/2 36.360 1.36 120 90			0.272		38.360	1.38	126	90	88		38.360
89.17				-				89.17			

				2000
300 / 5 makes #4 65	37 A. S. D. 107 - 1	H to H . BH 150	 ~ 1.760 m	
	7 655 E 65 600-m 78	DATA	 a 483 4684 and	40 5 4 6 1 1 2

Field Data/Calculated Data

Company:	Nacme
Date:	4/16/02
Test Run:	3 M26A
Stack or Duct No.:	HCI Scrubber Stack
–	1


Stop Time: 13:30

Stop (ime:	13.30	
Pb:	29.31	Inches Hg
Static	0.50	Inches H2O
Ps:	29.35	Inches Hg Abs.
Vic:	109	mi + grams
Mn:	0.0000	gm
Test Time:	60	minutes
% O2:	20.90	%
% CO2:	0.00	%
% N2:	79.10	%
Delta H:	1.38	Inches H20
Cp:	0.836	Dimensionless - pitot
Tm:	89.17	°F
Sqrt P:	0.272	Inches H20
Ts:	125.50	°F
Vm:	38.360	Cubic Feet
Dn:	0.372	Inches - nozzle
As: Yd: CF:	7.07	Sq. Feet
Yd:	1.011	Mcf
	N/A_	Process tons/hr
Heat input:	NA	MM BTU/hr
Fd:	N/A_	dscf/10 ⁶ Btu
Fc:	N/A	scf/10 ⁶ Btu

Vmstd:	36.653	cubic feet (dry)
Vwstd:	5.120	cubic feet (wet)
Bwo:	0.123	
Md:	28.836	lb/lb-mole (dry)
Ms:	27.508	lb/lb-mole (wet)
Excess Air (%)	-118760.000	
Vs:	16.558	fps
ACFM:	7022.	
DSCFM:	5450.	
WSCFM:	6211	
%l:	105.0	Isokinetic variance
GR/ACF:	0.0000	
GR/DSCF:	0.0000	
lbe/hr	0.000	
lbs/ton prod.:	N/A	: .
bs/MM BTU:	N/A	Heat Input
bs/MM BTU:	N/A	O2 Basis
lbs/MM BTU:	N/A	CO2 Basis

B GE Energy Services

Gas Meter Calibration Train

Dwg - AF

STACK TEMPERATURE SENSOR CALIBRATION DATA FORM (FOR K-TYPE THERMOCOUPLES)

EPA Control Module Number:

E38

Name: TRJ

Ambient Temperature:

68 °F

Date: 04-10-02

Omega Engineering Calibrator Model No. CL23A Serial No. T-216363

Date Of Calibration Verification: 04-12-00

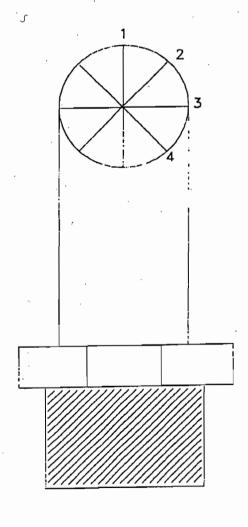
ary Standards Directly Traceable to

National Institute of Standards and Technology (NIST)

Reference' Source Temperature, (°F)	Test Thermometer Temperature, (°F)	Temperature Difference, ^b %
50	50	0.000
100	100	0.000
150	150	0.000
200	200	0.000
250	250	0.000
300	300	0.000
350	350	0.000
400	400	0.000
450	450	0.000
500	500	0.000
550	550	0.000
600	600	0.000
650	650	0.000
700	700	0.000
800	800	0.000
900	900	0.000
1000	1000	0.000
1100	1100	0.000
1200	1200	0.000

*Every

(50°F) for each reference point.


(Ref. Temp., °F + 460) - (Test Therm. Temp., °F + 460) * 100 <= 1.5 % Ref. Temp., °F + 460

Nozzle Calibration

Date: 4/16/02

Nozzle ID No.: N/A

Analyst: A. Robinson

Pre Test		Post Test
0.373	1	\checkmark
0.372	2	\checkmark
0.371	3	Ý
0.372	4	\checkmark
		•

ANALYTICAL BALANCE ACCURACY CHECK

Weight Set #100	Calibration	Torbal Balance	Sartorius Balance	Sartorius Balance
·	Weights*	EA-1	A210P	1702
100 g	100.0006	· –	100.0004	100.0001
50 g	50.0002	49,9997	49.9998	50.0001
30 g	30.0000	29.9999	30.0002	30.0000
20 g	20.0000	20.0000	20.0001	20.0000
10 g	10.0000	10.0000	9.9999	10.0000
. 5g	5.0000	5,0002	5.0001	5.0000
3 g	3.0000	3.0000	3.0000	3.0000
1 g	1.0000	1.0000	1.0000	1.0004
0.500 g	0.5000	0,5003	0,4998	0.4999
0.300 g	0.3000	0.3000	0.2999	0,2999
0.200 g	0.2000	0.2000	0.1998	0. 2000
0.100 g	0.1000	0.1000	0.1000	0.1000
0.050 g	0.0500	0.0497	0.0499 -	0,0500
0.030 g	0.0300	0.0297	0.0299	0.0299
0.020 g	0.0200	0.0202	0.0202	0.0200

Analyst: E. VOLOBARSKY Date: 04.15.02

Note: Each weight must be within 0.5 mg of the mass determined on the 10/10/01 calibration.

Torbal: Model EA-1, Serial No. 168491. Sartorius: Model A210P, Serial No. 3710004. Sartorius: Model 1702, Serial No. 3502267

G:\DATA\LAB\2000\BALOC.FRM

Revised: 12/17/01

^{*} Calibration by M and R Balance Service, Chicago, Illinois 10/10/01.

Circle to indicate "Yes" or add other value if not given.

.

TAREAU INCT

ฉั	TEST R	TEST RUN NO. / M26#	A
COMPANY: NACME	THIMBLE NO: ω/R TAR	TARE WT: N/#	
PLANT: Chicago I.C	FILTER NO:	TARE WT: No british	+
TEST LOCATION: 1766 SLIMMS SHUP	BAROMETRIC PRESSURE in. Hg: 29.3 /	÷	
CLIENT: NACM C	FLUE PRESSURE in. H ₂ O:		-
OPERATOR: A. Robinson	FLUE PRESSURE in. Hg ABS: 24, 347		
DATE: 4 - 6 - 0 >	Probe Length: 7.5	. خ	
CONTROL BOX: E38 POT. NO. E38	PROBE LINER MATERIAL: CLOS		
METER NO.: E38	NOZZLE IDENTIFICATION NO: ~//#		
METER CALIBRATION FACTOR: 1.01/	CALIBRATED NOZZLE DIAMETER: 0.37 >	<i>}</i> −1,	
PITOT ID NO.: 628 A	LEAK CHECK: PRE: 0,002 POST: 0.000	.000 @ 12"/5"	in. Hg
PITOT TUBE COEFFICIENT: 0,836	DUCT SHAPE: 21/20/6/ DIAMETER:	TER: 3.0	
PORTGENGTH: 5 in.	DUCT AREA: 7.066 sq. ft. L	A	
PORT SIZE:	1	DOWNSTREAM	
PORT TYPE: \windplus \int \nu	TEST LENGTH: 60		i iii
IMPINGER H ₂ O SILICA GEL:	MINUTES PER POINT: 3,5		
FINAL: 536 mVgm FINAL WT: 221,9 gm	TOTAL NUMBER OF TRAVERSE POINTS: λ^{4}		
INITIAL: 150 mlgm INITIAL WT: 215,5 gm	GAS ANALYSIS (ORSAT/FYRITE):	•	
GAIN: 66 ml/gm WT. GAIN: (a, y gm	CO ₁ : 0		
TOTAL H ₂ O COLLECTED: ²	0, 12/5		
DESCRIPTION OF IMPINGER H ₂ O:		t an g	
SILICA GEL EXHÁUSTED?:	PITOT LEAK CHECK: PRE /	POST	
IMPINGERS RECOVERED BY:	дн@		
SILICA GEL WEIGHED BY:	SAMPLES REMOVED FROM SITE BY:	, N:	
COMMENTS & NOTES	For computer data entry: Supervisor, piesse complete.		٠
			-
	What value do you want to use? F = 9,780 Fg = 1,800 Other	- h	

GE MOSTARDI PLATT TEST SUPPORT DATA

Test Location HCI Scubber Stack

PROCEDURE FOR DETERMINING PERCENT MOISTURE AT SATURATED CONDITIONS IN A SUPERSATURATED GAS STREAM

Determine the following parameters:

Barometric Pressure, Pbar	24.31 "Hg
Static Pressure, P _g ="H ₂ O/13.6 =	<u>0-5</u> "Hg
Absolute Flue Gas Pressure, P _s = P _{ber} + P _g =	<u>29.35</u> "Hg
Average Flue Gas Temperature, t,	126.17 °F
Saturated Vapor Pressure of Water at t,, V.P.	<u> 4.063</u> "Hg
Total Volume of Liquid Collected in impingers and silica gel by the condensation method, $V_{\mathbf{k}}$	92.48 mls
Moisture Content determined by condensation method, percent by volume = $B_{es} \times 100$	<u> 10.4</u> %
Dry Gas Sample Volume as measured by dry gas meter, corrected to standard conditions, $V_{m(nd)}$	37.633 ft

1. Theoretical maximum water vapor content, percent by volume, in a saturated gas stream

% Moisture (saturated) =
$$\frac{V.P.}{P_1} \times 100 = 13.8$$

2. Moisture content in the form of water droplets in the supersaturated gas stream, expressed here as percent by volume for the purpose of comparison

% Moisture (droplets) =
$$\left(B_{ws} \times 100\right)$$
 - % Moisture (saturated) = ____ %

3. Milliliters of actual collected condensate attributable to the theoretical saturation water vapor content of the gas stream

$$V_{lc} \text{ (saturated)} = \frac{\left(\frac{V_{m(ash)}}{1 - \frac{\% \text{ Moisture (saturated)}}{100}}\right) - V_{m(ash)}}{0.04707} = \frac{\text{mis } e^{-\frac{1}{2}}}{100}$$

*This number replaces V_{in} in all calculations involving supersaturated gas streams.

4. Water droplet concentration, using 1 milliliter H₂O = 1 gram

$$\frac{\left[V_{lc} - V_{lc} \text{ (saturated)}\right] \times 15.43}{\left[0.04707 \times V_{lc} \text{ (saturated)}\right] + V_{m(sat)}} = \text{grains/scf}$$

Rationale: When dealing with supersaturated gas streams as for example, after some scrubbers and certain water injection systems, the moisture that is not in the form of water vapor must be separated from that which is in the vapor state in order to correctly determine the volumetric gas flow rate at actual conditions. In these situations, the value for B_w to be used in all calculations will be equal to the % Moisture (saturated) divided by 100. These calculations include those for all volumetric flow rates, wet molecular weight of the gas, pollutant concentrations and emission rates on a wet basis, and the isokinetic sampling rates and the final isokinetic variances. All additional moisture condensed in the impingers and collected in the silica gel is considered to be excess moisture attributable to water droplets, not water vapor in the gas stream.

39

GE Mostardi Platt

GE MOSTARDI PLATT PROJECT N/A
TEST RUN NO. 2
TEST LOCATION

	,						-	- 1			 -T		1		-	<u> </u>	Γ-	Γ-	1	_		Γ	<u> </u>	1	Г	1	T	T	Ī	T		1
			Impinger	Temp. °F	79.	19	8.9	1,9	99	67	65	99	67	65	99	25		65	67.	65	99	189	5	93	29	75	65	4	27		-	ļ
· 6			Filter	Temp. °F	745	7.50	メンメ	154	4252	255	256	255	257	757	757	25.5		25%	25	256	190	227	25%	250	75.7	240	70,7	1.3	4			
_	-		Probe	emp.	7,7	87.2	250	255	255	27	857	75%	328	رکډ	157	25.7		259	25.7	//×	157	152	75.4	25%	727	2	7.7	╄	╂			
DAGE	- TAGE -			Notes		66.123	67.856	69.714	053.15	73.333	74.995	76.657	28.319	F1.873	271.18	82.866	84.705		84104	87543	4.85.88	90.536	97.090	93.644	26.306	29576	48.522	92876	062:101	102.704		
70				2	1.763	1.733	1.858	9587	1.763	1.662	7991	1.667	11.554	1.559	1.439	1.439		1,557	1.438	1. 439	1,553	1.554	1554	7,997	1.662	1.334	1.314	1,554	1,3/4		_	
70-91-4	500	603	Pump	vacuum in. Hg	۲	3	3	3	3	<u>ر</u>	^	3	3	ر ا	ر	2		7	٦	7	4	ہ	7	તે	ړ	٦	ہے	Ļ	Ľ			_
DATE	35 4	2.5/8	Meter	cfm	\$07.0	6630	ביירם	Chc.o	0.705	0665	0.665	0,665	26,0	6.622	D 576	D.776		523.0	25.0	26.50	4490	Cr9.0	719.0	0.665	0.665	9.0	0.527	8.627	27.20			_
		mp. (t _m)		Outlet "F	88	85	85	35	B	88	Z	ž	2.6	9,8	9.8	93		82	23/	58	84	88/	X	8	X	24	28	28	Z	01.50		85.604
		Meter Temp. (tm)		oF.	85	22	B	2%	D	25	\$7	Ž	22	88	88	88		88	84	8	85	82.	98	23	98	9,8	38	98	28	6905)	;
1	40,	26	Stack	(t,) °F	13.	123	71	123	7,41	12%	(12)	90)	127	/x 8	571	129	`	125	<u>४</u> न	71	127	178	128);X	116	/15	125	125	125			05,361
5 tul	1	17.87	Orifice.	In. H ₂ O	1.6	ر، ئو	1.8	1.8	94	(5)	\ <u></u>	\ <u></u>	1.3	3		-		<u>.</u>	11	-	2		5	<u> </u>	1.7	1.3	0.91	1.3	16.0	-		1,365
M X6H			Meter	(Vm) R ³	0%.49	66.14	99'29	69.73	9۶٬۱۲	13.31	75.00	76.68	78.33	4.88	81.1	87.8%	44.312	84550	84.10	87.50	84.00	90.57	41.6	43.65	45,31	84'16	98.56	28.87	75.101	(Or. 40)		33.313
2 %			Clock	hr.	1040		1045	3.170		1052.5	10.55	1057,5	1100	liaz	1105	1107.5	110	117	1119,5	र्या	11.24.5	IXI	1126.5	1137	11.34.1	1137	1.45	147	1144.5	7,47		
7 Z				ΔP	0.30D	0.300	0,3/6	0.316	0.300	0,283	0.783	6.787	0.765	0,265	0.245	0.24(5		8.465	6.245	9.24	0.265	0.265	0.265	6,283	3	0.265	9.44	6.46	9.27			270C
TEST RUN NO.			Velocity	in. H ₂ O	0,09	9.09	0.10	0.10	9.8y	80.0	0.00				-	F 60%	1	0.0	99.0	99.	100	L0'0	0.07	800	800	007	0.02	0,07	78.05			
EST RI	1		Port-			7	36	7	<u>~</u>	ود			5	3	=	7		<u>-</u> رخ	- 1	~	-	~	_ I			4	a	1	Y			

GE MOSTARDI PLATT
TEST SUPPORT DATA

TEST RUN NO. 3 MAG 17

COMPANY: NACME	THIMBLE NO:	- An Dave	
PLANT: Chicago IC	FILTER NO:	TARRENT.	-
TEST LOCATION: HLL SCIUPPUN STOCK	BAROMETRIC PRESSURE in. Hg:		
CLIENT: WACM C	FLUE PRESSURE in. H.O.	10.3	ļ
OPERATOR: 4. Rebinsur	FLUE PRESSURE in. Hg ABS:		
DATE: \(\(\(\) - \(\) - \(\) - \(\)	PROBE LENGTH: 3, 5	e	
CONTROL BOX: $\vec{E38}$ POT. NO.: $\vec{E38}$	ATERIAL		**
METER NO.: E38	Ś	di.	1
METER CALIBRATION FACTOR: 1.01/	CALIBRATED NOZZI E DIAMETER:	2527	. -
PITOT ID NO.: 6284	LEAK CHECK PRF: 0.000	" (") (") (") (") (") (") (") (") (") ("	5
PITOT TUBE COEFFICIENT: 0.8736			10
PORT LEDIGTH:		AME1EK: 3	
PORT SEE: 4	COCI AKEA:	8q. ft. L	-{
מסמד דינוסים	DISTORBANCE UPSTREAM:	DOWNSTREAM	
2000	TEST LENGTH: 60		Ë
IMPINGER H ₂ O SILICA GEL;	MINUTES PER POINT: 2.6		 I
FINAL: 553 ml/gm FINAL WT: 209, 2 gm	TOTAL NUMBER OF TRAVERSE POINTS:	NTS: 2%	
INITIAL: 450 ml/gm INITIAL WT: 203,5 gm	GAS ANALYSIS (OBSAT/EYB):	ı	.
5,7			
	200		
DESCRIPTION OF IMPINGER H ₂ O;			-
SILICA GEL EXHAUSTED?;			
IMPINGERS RECOVERED BY:	TIOI LEAK CHECK: PRE	POST	.
SILICA GEL WEIGHED BY:	AH@		•
	SAMPLES REMOVED FROM SITE BY:	K.	,
COMMENTS & NOTES	For computer data entry: Supervisor, ple		-
	Do you want to enter a fuel analysis? Y C		
	William Value up you want to use? F = 9,780	F. # 1,800 Other #	

Circle to indicate "Yes" or add other value if not given.

Customer/	Yacm &			
Test Location	HC1 Sari	ihher	Stack	

Test No._____

PROCEDURE FOR DETERMINING PERCENT MOISTURE AT SATURATED CONDITIONS IN A SUPERSATURATED GAS STREAM

Determine the following parameters:

Barometric Pressure, Particle of the complete and the second properties of the second properties	29.31 Hg
Static Pressure, Pg =	0.5 *Hg
Absolute Flue Gas Pressure, $P_s = P_{bar} + P_g =$	29.35 Hg
Average Flue Gas Temperature, t	_/25.50 T
Saturated Vapor Pressure of Water at t, V.P.	4.065 THE
Total Volume of Liquid Collected in impingers and silica gel by the condensation method, $V_{\rm in}$	108.76mis
Moisture Content determined by condensation method, percent by volume = $B_{ws} \times 100$	<u>/2.3</u> %
Dry Gas Sample Volume as measured by dry gas meter, corrected to standard conditions, $V_{m(nd)}$	<u>36.653</u> #

1. Theoretical maximum water vapor content, percent by volume, in a saturated gas stream

% Moisture (saturated) =
$$\frac{V.P.}{P_a} \times 100 = 13.8$$
 %

2. Moisture content in the form of water droplets in the supersaturated gas stream, expressed here as percent by volume for the purpose of comparison

% Moisture (droplets) =
$$\left(B_{ws} \times 100\right)$$
 - % Moisture (saturated) = _____ %

3. Milliliters of actual collected condensate attributable to the theoretical saturation water vapor content of the gas stream

$$V_{lc} \text{ (saturated)} = \frac{\left(\frac{V_{m(sat)}}{1 - \frac{\% \text{ Moisture (saturated)}}{100}\right) - V_{m(sat)}}{0.04707} = \frac{\text{mis}}{}$$

*This number replaces Vie in all calculations involving supersaturated gas streams.

4. Water droplet concentration, using 1 milliliter H₂O = 1 gram

$$\frac{\left[V_{k}-V_{k} \text{ (saturated)}\right] \times 15.43}{\left[0.04707 \times V_{k} \text{ (saturated)}\right] + V_{\text{model}}} = \text{grains/scf}$$

Rationale: When dealing with supersaturated gas streams as for example, after some scrubbers and certain water injection systems, the moisture that is not in the form of water vapor must be separated from that which is in the vapor state in order to correctly determine the volumetric gas flow rate at actual conditions. In these situations, the value for B_m to be used in all calculations will be equal to the % Moisture (saturated) divided by 100. These calculations include those for all volumetric flow rates, wet molecular weight of the gas, pollutant concentrations and emission rates on a wet basis, and the isokinetic sampling rates and the final isokinetic variances. All additional moisture condensed in the impingers and collected in the silica gel is considered to be excess moisture attributable to water droplets, not water vapor in the gas stream.

45

Form 1005-1

© GE Mostardi Platt

BEFORE THE ILLINOIS POLLUTION CONTROL BOARD

PEOPLE OF THE STATE OF ILLINOIS,)
Complainant,)
v.) PCB No. 13 - 12) (Enforcement – Air)
NACME STEEL PROCESSING, LLC,) (Emorcement – Air)
a Delaware limited liability corporation,)
Respondent.)

EXHIBIT F

THOMAS J. REUTER AFFIDAVIT

TAB 5 MAY 16, 2002 PERMIT DENIAL ("2002 OPERATIONAL PERMIT DENIAL") 217/782-2113

CERTIFIED MAIL

PERMIT DENIAL

May 16, 2002

NACME Steel Processing, LLC

Attn: Tom Beach

429 West 127th Street Chicago, Illinois 60628

Application No.:

96020074

I.D. No.:

031600FWL

Applicant's Designation:

PICKLING

Date Received:

April 12, 2002

Operation of:

Steel Pickling Line

Location:

429 West 127th Street, Chicago, 60628

The Illinois EPA has reviewed your Application for Operating Permit for the above referenced project. The permit application is DENIED because Sections 9 and 39.5 of the Illinois Environmental Protection Act and 35 Ill. Adm. Code, Section 201.160 might be violated.

The following are specific reasons why the Act and the Rules and Regulations may not be met:

1. This application covers equipment for which the Illinois EPA previously granted a construction permit 01040081. This permit included a condition that an emission test be performed by an approved testing service. This test has not been performed, therefore, an operating permit may not be granted pursuant to 35 Ill. Adm. Code 201.160(b)(2) and (3).

The Illinois EPA will be pleased to review a reapplication for this permit that includes the necessary information and documentation to correct the deficiencies noted above. In accordance with 35 Ill. Adm. Code 201.157, this reapplication may incorporate by reference the data and information submitted to the Illinois EPA in the original permit application, provided that you certify that the data and information previously submitted remains true, correct and current. The reapplication will be considered filed on the date it is received by the Illinois EPA and will constitute a new permit application for purposes of Section 39(a) of the Act. Two copies of this information must be submitted and should reference the application and I. D. numbers assigned above.

If you have any questions on this, please call Valeriy Brodsky at 217/782-2113.

Donald E. Sutton, P.E. Manager, Permit Section Division of Air Pollution Control

DES: VJB

cc: Region 1

Bob Sharpe, Enforcement

BEFORE THE ILLINOIS POLLUTION CONTROL BOARD

PEOPLE OF THE STATE OF ILLINOIS,)	
Complainant,)	
v.))	PCB No. 13 - 12 (Enforcement – Air)
NACME STEEL PROCESSING, LLC,)	(Emoreoment 1111)
a Delaware limited liability corporation,	.)	
Respondent.)	

EXHIBIT F

THOMAS J. REUTER AFFIDAVIT

TAB 6
MARCH 30, 2005 APPLICATION FOR
RENEWAL OF FEDERALLY
ENFORCEABLE STATE OPERATING
PERMIT SUBMITTED BY NACME
("APRIL 2005 SOP RENEWAL")

NATIONAL PROCESSING COMPANY

Division of National Material L.P.

429 W. 127th Street Chicago, Illinois 60628 Phone: 773-468-2800 • Fax: 773-468-2868

March 23, 2005

Mr. Donald E. Sutton, P.E.
Manager, Permit Section
Illinois Environmental Protection Agency
Bureau of Air
1021 North Grand Avenue East
Springfield, Illinois 62702

Dear Mr. Sutton:

Enclosed please find two copies of the completed Illinois Environmental Protection Agency APC Form 205A application for Operating Permit renewal, prepared for the NACME Steel Processing, LLC facility (ID No. 131600FWL) located at 429 West 127th Street in Chicago, Illinois.

Should you have any question concerning this submittal, please contact Ms. Karyn Schoch, MOSTARDI PLATT ENVIRONMENTAL, at 630-993-2680.

Sincerely,

NACME STEEL PROCESSING, LLC

John Dubrock

Director of Operations

Enclosures

RECEIVED

APR 0 4 2005

IEPA - DAPC - SPFLD

STATE OF ILLINOIS ENVIRONMENTAL PROTECTION AGENCY DIVISION OF AIR POLLUTION CONTROL PERMIT SECTION P. O. BOX 19508 SPRINGFIELD, ILLINOIS 62794-9506

This Agency is authorized to require and you must disclose this information under 415 ILCS 5/39. Failure to do so could result in the application being denied and—
penalties under 415 ILCS 5 et seq. It is not necessary to use this form in providing this information. This form has been approved by the forms management center.

OP	APPLICATION FOR RENEWAL STATE OPERATION ERATION OF:	OF A FEDERALLY ENFORCE NG PERMIT (FESOP) PICKLING	ABLE (A)	I.D. NO. PERMIT N	03160 10. 960	ency use only 00 FWL 20074 4-05
	,	,		-		
18.	NAME OF OWNER: National Materials L.P.	· .		Steel Process	ing, LLC	
1b.	STREET ADDRESS OF OWNER: 1985 Pratt Boulevard		2b. STREET 429 Wes	ADDRESS (OF OPERATOR:	
1¢.	CITY OF OWNER: Elk Grove Village		2c. CITY OF Chicago	OPERATOR	:	
1d.	STATE OF OWNER:	1e. ZIP CODE: 60007	2d. STATE (OF OPERATO	DR:	2e. ZIP CODE; 60628
За.	NAME OF CORPORATE DIVISION OR NACME Steel Processing, LLC.	PLANT:	3b. STREET 429 West 1	ADDRESS (27 th Street	OF EMISSION SOURCE)E:
3c.	CITY OF EMISSION SOURCE:	3d. LOCATED WITHIN CITY LIMITS: ☑ YES ☐ NO	3e. TOWNS	HP:	3f. COUNTY: Cook	3g. ZIP CODE: 60828
	·					
4.	ALL CORRESPONDENCE TO: (TITLE	AND/OR NAME OF INDIVIDUAL)	5. TELEPHO 219-391-6		R FOR AGENCY TO	CALL:
,6. ~ ·	ADDRESS FOR CORRESPONDENCE:	(CHECK ONLY ONE)	OWNER	OPERAT	OR EMISSION	SOURCE
7.	THE UNDERSIGNED HEREBY MAKES TRUE AND CORRECT, AND FURTHER APPLICATION REMAINS TRUE, CORR AUTHORIZED TO EXECUTE THIS APP	R CERTIFIES THAT ALL PREVIOUS SECT AND CURRENT, BY AFFIXIN	SLY SUBMITTI	ED INFORMA	ATION REFERENCED	IN THIS
	AUTHORIZED SIGNATURE(S):(B)	ع امماد ح	•			
	SGNATURE	3/30/65 DATE	SIGI	NATURE		DATE
	JOHN DUBLOCK TYPED OR PRINTED NAME OF SIG	GNER	TYP	ED OR PRINT	ED NAME OF SIGNER	
	Director of Operations TITLE OF SIGNER		TITL	E OF SIGNER		· · ·
(A)	THIS FORM IS TO PROVIDE THE ILLIN	IOIS EPA WITH GENERAL INFOR	RMATION ABOL	JT THE EQUI	IPMENT TO BE OPER	ATED.
	THIS APPLICATION MUST BE SIGNED AND SUPPLEMENTS THERETO SHALL CONTROL EQUIPMENT, OR THEIR AU APPLICATION."	_ BE SIGNED BY THE OWNER A	ND OPERATOR	OF THE EM	ISSION SOURCE OR	AIR POLLUTION
	IF THE OWNER OR OPERATOR IS A C COPY OF A RESOLUTION OF THE CO CAUSE OR ALLOW THE CONSTRUCT	RPORATION'S BOARD OF DIREC	CTORS AUTHO	RIZING THE	PERSONS SIGNING T	EPA A CERTIFIED THIS APPLICATION TO

		<u> </u>		
	SITE FEE I	BILLING INFORMATION	10.	CONTACT PERSON FOR APPLICATION: Karyn Schoch
9a.	COMPANY NAME: NACME Steel Proce		11.	*830-983-2880 TMM ARREST (1921) AMARIES (1921) AMAR
9b.	STREET ADDRESS 428 West 127th Street	: t .	12.	CONTACT PERSON'S FACSIMILE NUMBER: 630-993-9017
, 9c.	CITY Chicago		13.	FEDERAL EMPLOYER IDENTIFICATION NUMBER (FEIN): 38-4035553
9d.	STATE:	9f. BILLING CONTACT PERSON: BIII Reichie	14.	PRIMARY STANDARD INDUSTRIAL CLSSSIFICATION (SIC) CATEGORY Cold Rolled Steel Sheet, Strip, and Bare
9e.	ZIP CODE: 60828	9g. CONTACT TELEPHONE NO. 773-291-1301	15.	PRIMARY SIC NUMBER: 16. TAXPAYER IDENTIFICATION NUMBER (TIN): 3316

17a. I.D. NO. 0 3 1 6 0 0 F W L	
17b. HAS THE OPERATION AS DESCRIBED IN THE FESOP APPLICATION BEEN MODIFIED* AS ☐ YES ☒ NO IF "YES", SUBMIT THE APPLICABLE FORM(S) AND UPDATED FLOW DIAGRAM(S).	3 DEFINED IN 35 ILL. ADM. CODE 201.102?
17c. DATE THE OPERATION WAS MODIFIED:	

MODIFICATION: ANY PHYSICAL CHANGE IN, OR CHANGE IN THE METHOD OF OPERATIONS OF, AN EMISSION SOURCE OR OF AIR POLLUTION CONTROL EQUIPMENT WHICH INCREASES THE AMOUNT OF ANY SPECIFIED AIR CONTAMINANT EMITTED BY SUCH SOURCE OR EQUIPMENT OR WHICH RESULTS IN THE EMISSION OF ANY SPECIFIED AIR CONTAMINANT NOT PREVIOUSLY EMITTED. IT SHALL BE PRESUMED THAT AN INCREASE IN THE USE OF RAW MATERIALS, THE TIME OF OPERATION, OR THE RATE OF PRODUCTION WILL CHANGE THE AMOUNT OF ANY SPECIFIED AIR CONTAMINANT EMITTED. NOT WITHSTANDING ANY OTHER PROVISIONS OF THIS DEFINITION, FOR PURPOSES OF PERMITS ISSUED PURSUANT TO SUBPART D, THE ILLINOIS ENVIRONMENTAL PROTECTION AGENCY MAY SPECIFY CONDITIONS UNDER WHICH AN EMISSION SOURCE OR AIR POLLUTION CONTROL EQUIPMENT MAY BE OPERATED WITHOUT CAUSING A MODIFICATION AS HEREIN DEFINED, AND NORMAL CYCLICAL VARIATIONS, BEFORE THE DATE OPERATING PERMITS ARE REQUIRED, SHALL NOT BE CONSIDERED MODIFICATIONS 35 ILL. ADM. CODE 201.102.

IEPA FOIA 0397

BEFORE THE ILLINOIS POLLUTION CONTROL BOARD

PEOPLE OF THE STATE OF ILLINOIS,)	
Complainant,)	
v.)	PCB No. 13 - 12 (Enforcement – Air)
NACME STEEL PROCESSING, LLC, a Delaware limited liability corporation,)	(Emoreoment 7m)
Respondent.)	

EXHIBIT F

THOMAS J. REUTER AFFIDAVIT

TAB 7
APRIL 13, 2005 NOTICE OF
INCOMPLETENESS ("APRIL 2005
NOTICE OF INCOMPLETENESS")

217/782-2113

CERTIFIED MAIL

NOTICE OF INCOMPLETENESS

April 13, 2005

NACME Steel Processing, LLC

Attn: John Dubrock 429 West 127th Street Chicago, Illinois 60628

Application No.:

96020074

I.D. No.: 031600FWL

Applicant's Designation:

Date Received: April 4, 2005

Operation of: Steel Pickling Plant

Location: 429 West 127th Street, Chicago

Illinois EPA has determined the above referenced operating permit application(s) to be incomplete because information was not provided as required by the 35 Ill. Adm. Code 201 157.

Specifically, the following information must be supplied in order for the application to be considered complete:

- Updated information on production rate and emissions based on the most recent stack test (April 16, 2002) data.
- 2. Detailed calculations of the plant-wide actual emission and potential to emit (PTE) of hazardous air pollutant (HAP), hydrogen chloride. PTE shall be calculated based on the maximum rated production capacity and year round operations. The credits for the control device efficiency may be taken only to the extent required by applicable environmental regulations.

If emission calculations demonstrate that actual or potential emission of HAP exceeds major source threshold levels of 10 tons/year for a single HAP the Permittee shall apply for Clean Air Act Permit Program (CAAPP) permit. To avoid the CAAPP permitting requirements, you may want to consider applying for a Federally Enforceable State Operating Permit (FESOP). A FESOP is an operating permit that contains federally enforceable limits in the form of permit conditions which effectively restrict the potential emissions of a source to below major source threshold, thereby excluding the source from the Clean Air Act Permit Program (CAAPP).

The Illinois EPA will be pleased to review a reapplication for this permit that includes the information and documentation necessary to correct the deficiencies noted above. In accordance with 35 Ill. Adm. Code 201.157, this reapplication may incorporate by reference the data and information submitted to the Illinois EPA in the original permit application, provided that you certify that the data and information previously submitted remains true, correct, and current. The reapplication will be considered filed on the date it is received by the Illinois EPA and will constitute a new permit application for purposes of Section 39(a) of the Act. Two copies of this information must be submitted and should reference the application and I.D. numbers assigned above.

Page 2

If you have any questions on this, please call Valeriy Brodsky at 217/782-2113.

Donald E. Sutton, P.E. Manager, Permit Section Division of Air Pollution Control

DES:VJB:jar

cc: Region 1

BEFORE THE ILLINOIS POLLUTION CONTROL BOARD

PEOPLE OF THE STATE OF ILLINOIS,)	
Complainant,)	
v.)	PCB No. 13 - 12
NACME STEEL PROCESSING, LLC,)	(Enforcement – Air)
a Delaware limited liability corporation,)	
Respondent.)	

EXHIBIT F

THOMAS J. REUTER AFFIDAVIT

TAB 8
AUGUST 23, 2005AIR EMISSION
OPERATING PERMIT SOURCE
RENEWAL
APPLICATION("SEPTEMBER 2005 SOP
RENEWAL APPLICATION")

AIR EMISSION SOURCE OPERATING PERMIT RENEWAL APPLICATION

Prepared for NACME STEEL PROCESSING, INC. 429 West 127th Street Chicago, Illinois

August 23, 2005

© Copyright 2005 All rights reserved in Mostardi-Platt Associates, Inc.

MOSTARDI PLATT PROJECT M046005 (Renewal Application)

TABLE OF CONTENTS

APC 200			
APC 210			
APC 220APC 260			,
Process Flow Diagram			
Emission Calculations			
Enclosure A (Scrubber gaseous emissions test)			
Eliciosnie W (pernonei Rascons elilissions iest)	•••••	• • • • • • • • • • • • • • • • • • • •	

Electronic Filing - Received, Clerk's Office: 05/16/2014 STATE OF ILLINOIS ENVIRONMENTAL PROTECTION AGENCY DIVISION OF AIR POLLUTION CONTROL

2200 CHURCHILL ROAD SPRINGFIELD, ILLINOIS 62794-9276

		ATION FOR PERMIT _(A) TRUCT OPERAT	· E · · · ·			I.D. NO.	FOR	AGENCY U	SE ONLY
NAME OF EQUIPMENT TO CONSTRUCTED OR OPER		HCL Steel Pi	ckling Line, I	HCL-AS	Ts	PERMIT N	o		<u> </u>
	·								<u>.</u>
la. NAME OF OWNER:	National Ma	terials, LP		2a. NA	ME OF	OPERATOI N	R: ACME Stee	el Process	ing, LLC
1b. STREET ADDRESS OF	OWNER: 1965 Pratt l	Boulevard		2b. ST	REET A	DDRESS O	F OPERATOR	k: st 127 th St	reet
1c. CITY OF OWNER:	Elk Grove	e Village	_	2c. CI	Y OF O	PERATOR:		hicago	
ld. STATE OF OWNER:	·	le. ZIP CODE: 60007	,	2d. ST.	ATE OF	OPERATO:		2e. ZIP CO	DE: 60628
3a. NAME OF CORPORAT	E DIVISION O		· .	3b. STI	REET AI	DDRESS OF	EMISSION S	SOURCE:	reet
3c. CITY OF EMISSION SO Chica		3d. LOCATED WITH		3e. TO	WNSHIP	:	3f. COUNTY	Cook	3g. ZIP CODE: 60628
4. ALL CORRESPONDENC	E TO: (TITLE . John Dubro		DIVIDUAL)	5. TELE	PHONE	NUMBER	FOR AGENC 219-39		
6. ADDRESS FOR CORRES	PONDENCE: (OPERATOR	CHECK ONLY ONE)	SOURCE	7. YOUR DESIGNATION FOR THIS APPLICATION:(C) Steel Pickling					
AND CORRECT, AI REMAINS TRUE, C EXECUTE THIS AP	ND FURTHER ORRECT AND PLICATION.	CERTIFIES THAT ALL CURRENT, BY AFFIX	PREVIOUSLY S	SUBMIT	ED INF	ORMATIO	N REFERENC	ED IN THIS	NED HEREIN ARE TRUE APPLICATIONS IS AUTHORIZED TO
AUTHORIZED SIGN	IATURE(S):(D)						•		
BY SIGNATURE William Riech	le	·	DATE	BY	SIGNA	TURE			DATE
TYPED OR PRI	NTED NAME (OF SIGNER			TYPED	OR PRINT	ED NAME OF	SIGNER	
Plant Manage TITLE OF SIGN				-	TITLE	OF SIGNER			
		AGENCY WITH GENE							
(B) ENTER THE GENEI MAY BE ISSUED PI INFORMATION.	CIC NAME OF URSUANT TO	THE EQUIPMENT TO I THIS APPLICATION. T	BE CONSTRUCT THIS FORM MU	TED OR (ST BE A	OPERAT	TED. THIS ANIED BY	NAME WILL OTHER APPI	APPEAR OI LICABLE FO	N THE PERMIT, WHICH DRMS AND
YOUR DESIGNATION	ON WILL BE R	EM 7 ABOVE WHICH Y EFERENCED IN CORR EED TEN (10) CHARAC	ESPONDENCE I	KE THE . FROM T	AGENC HIS AGE	Y TO USE I ENCY RELA	FOR IDENTIF ATIVE TO TH	ICATION OI IS APPLICA	F YOUR EQUIPMENT. TION. YOUR
SUPPLEMENTS TH	ERETO SHALL	INED IN ACCORDANC BE SIGNED BY THE (SIZED AGENT, AND SE	OWNER AND O	PERATO	R OF TH	ie emissic	N SOURCE (OR AIR POL	ALL APPLICATIONS AND LUTION CONTROL THE APPLICATION."
RESOLUTION OF T	HE CORPORA	S A CORPORATION, SU TION'S BOARD OF DIR R OPERATION OF THE	ECTORS AUTH	ORIZINO	THE P	ERSONS SI	GNING THIS	AGENCY A (CERTIFIED COPY OF A ON TO CAUSE OR

9.	DOES THIS APPLICATION CONTAIN A PLOT PLAN/MAP: YES NO	
	IF A PLOT PLAN/MAP HAS PREVIOUSLY BEEN SUBMITTED, SPECIFY AGENCY I.D. NUMBER <i>031600FWL</i> APPLICATION NUMBER	
	IS THE APPROXIMATE SIZE OF APPLICANT'S PREMISES LESS THAN-	V-1-ACRE?
10.	DOES THIS APPLICATION CONTAIN A PROCESS FLOW DIAGRAM(S) TO YES NO) THAT ACCURATELY AND CLEARLY REPRESENTS CURRENT PRACTICE.
11a.	WAS ANY EQUIPMENT, COVERED BY THIS APPLICATION, 11b. OWNED OR CONTRACTED FOR, BY THE APPLICANT PRIOR TO APRIL 14, 1972: YES NO	HAS ANY EQUIPMENT, COVERED BY THIS APPLICATION, NOT PREVIOUSLY RECEIVED AN OPERATING PERMIT: YES NO
	IF "YES," ATTACH AN ADDITIONAL SHEET, EXHIBIT A, THAT:	IF "YES," ATTACH AN ADDITIONAL SHEET, EXHIBIT B, THAT:
	(a) LISTS OR DESCRIBES THE EQUIPMENT	(a) LISTS OR DESCRIBES THE EQUIPMENT
	(b) STATES WHETHER THE EQUIPMENT WAS IN COMPLIANCE WITH THE RULES AND REGULATIONS GOVERNING THE CONTROL OF AIR POLLUTION PRIOR TO APRIL 4, 1972	(b) STATES WHETHER THE EQUIPMENT
		(i) IS ORIGINAL OR ADDITIONAL EQUIPMENT (ii) REPLACES EXISTING EQUIPMENT, OR (iii) MODIFIES EXISTING EQUIPMENT
		(c) PROVIDES THE ANTICIPATED OR ACTUAL DATES OF THE COMMENCEMENT OF CONSTRUCTION AND THE START-UP OF THE EQUIPMENT
12.	IF THIS APPLICATION INCORPORATES BY REFERENCE A PREVIOUSL INFORMATION—INCORPORATION BY REFERENCE" BEEN COMPLETE YES NO	ГЕD.
13.	DOES THE STARTUP OF AN EMISSION SOURCE COVERED BY THIS AF APPLICABLE STANDARDS: YES NO	APPLICATION PRODUCE AIR CONTAMINANT EMISSION IN EXCESS OF
••	IF "YES," HAS FORM APC-203, "OPERATION DURING STARTUP" BEEN YES NO	N COMPLETED FOR THIS SOURCE
14.	DOES THIS APPLICATION REQUEST PERMISSION TO OPERATE AN EM	MISSION SOURCE DURING MALFUNCTION OR BREAKDOWNS:
	IF "YES," HAS FORM APC-204, "OPERATION DURING MALFUNCTION A YES NO	AND BREAKDOWN" BEEN COMPLETED FOR THIS SOURCE
15.	IS AN EMISSION SOURCE COVERED BY THIS APPLICATION SUBJECT TO YES NO	Γ TO A FUTURE COMPLIANCE DATE:
	IF "YES," HAS FORM APC-202, "COMPLIANCE PROGRAM & PROJECT C YES NO	COMPLETION SCHEDULE," BEEN COMPLETED FOR THIS SOURCE:
16.	DOES THE FACILITY COVERED BY THIS APPLICATION REQUIRE AN EIPLANS): YES NO	EPISODE ACTION PLAN (REFER TO GUIDELINES FOR EPISODE ACTION
17, .	LIST AND IDENTIFY ALL FORMS, EXHIBITS, AND OTHER INFORMATION NUMBERS OF EACH ITEM (ATTACH ADDITIONAL SHEETS IF NECESSA	ION SUBMITTED AS PART OF THIS APPLICATION. INCLUDE THE PAGE SARY):
	See Table of Contents	
	TOTAL NUMBER OF PAGES	

NMLP 0941

STATE OF ILLINOIS ENVIRONMENTAL PROTECTION AGENCY DIVISION OF AIR POLLUTION CONTROL 2200 CHURCHILL ROAD SPRINGFIELD, ILLINOIS 62794-9276

DATA AND INI INCORPORATION				FOI	R-AGENCY-USE ONLY			
	TION PERMI	T APPLICATION INTO AN O			TION TO ANOTHER, INCLUDING THE TRANSFEI TION. THIS FORM SHOULD ACCOMPANY THI			
1. NAME OF OWNER: 2. NAME OF CORPORATE DIV. OR PLANT (IF DIFFERENT FROM OWNER): NACME Steel Processing, LLC								
3. STREET ADDRESS OF EMISSION SOL 429 West 127 th Stre	4. CITY OF EMISSION SOI	JRCE:						
6. APPLICATION NUMBER: 96020074	7. OF	CONSTRUCTION	OPERATION S	teel Pick	ling Line			
8. SHOULD ALL INFORMATION IN THIS YES NO IF "NO", LIST ITEMS TO BE INCORP		ON BE INCORPORATED BY I	REFERENCE OR TR	ANSFERR	ED?			
9a. ITEM TO BE INCORPORATED:			b. PAGE		c. FLOW DIAGRAM DESIGNATION (IF APPLICABLE):			
All								
-, -		<u> </u>						
<u> </u>		·	-					
			·		·			
10. DOES THE DATA & INFORMATION I	DESCRIBBIG.	THESE ITEMS DEMAIN TO	E CORRECT CUR	DENT AND	COMPLETES			
YES NO IF "NO", SUBMIT THE APPLICABLE CORRECT, CURRENT AND COMPLE	FORMS AND				•			
11 APPLICATION N. B. APPLICATION OF THE PROPERTY OF THE PROPER								
11. APPLICATION NUMBER:	12. [OF	_ CONSTRUCTION(OPERATION					
13. SHOULD ALL INFORMATION IN THIS YES NO IF "NO", LIST ITEMS TO BE INCORPO		ON BE INCORPORATED BY	REFERENCE OR TR	RANSFERF	RED?			
14a. ITEM TO BE INCORPORATED:			b. PAGE		c. FLOW DIAGRAM DESIGNATION (IF APPLICABLE):			
<u></u>					· · ·			
					·			
<u> </u>								
15. DOES THE DATA & INFORMATION D YES NO IF "NO", SUBMIT THE APPLICABLE F CORRECT, CURRENT AND COMPLE	FORMS AND							

STATE OF ILLINOIS ENVIRONMENTAL PROTECTION AGENCY DIVISION OF AIR POLLUTION CONTROL 2200 CHURCHILL ROAD SPRINGFIELD, ILLINOIS 62706 This Agency is authorized to require this information under Illinois Revised Statutes, 1979, Chapter 111 1/2, Section 1039, Disclosure of this information is required under that Section. Failure to do so may prevent this form from being processed and could result in your application being denied. This form has been approved by the Forms Management Center.

*DATA AND INFORMATION PROCESS EMISSION SOURCE	The same was the same with the same section of		
<u> </u>	· .	<u> </u>	

*THIS INFORMATION FORM IS TO BE COMPLETED FOR AN EMISSION SOURCE OTHER THAN A FUEL COMBUSTION EMISSION SOURCE OR AN INCINERATOR. A FUEL COMBUSTION EMISSION SOURCE IS A FURNACE, BOILER, OR SIMILAR EQUIPMENT USED PRIMARILY FOR PRODUCING HEAT OR POWER BY INDIRECT HEAT TRANSFER. AN INCINERATOR IS AN APPARATUS IN WHICH REFUSE IS BURNED.

I. NAME OF PLANT OWNER: National Materials, LP	NAME OF CORPORATE DIVISION OR PLANT (IF DIFFERENT FROM OWNER): NACME Steel Processing, LLC
3. STREET ADDRESS OF EMISSION SOURCE: 429 West 127th Street	4. CITY OF EMISSION SOURCE: Chicago

GENE	RAL INFORMATION	
5. NAME OF PROCESS: HCL Steel Pickling	6. NAME OF EMISSION SOURCE Enclose	E EQUIPMENT: d Steel Pickling Line
7. EMISSION SOURCE EQUIPMENT MANUFACTURER: PRO-ECO	8. MODEL NUMBER:	9. SERIAL NUMBER:
10. FLOW DIAGRAM DESIGNATION(S) OF EMISSION SOURCE:	SPL1	
11: IDENTITY(S) OF ANY SIMILAR SOURCE(S) AT THE PLANT OR PRE APPLICATION, IDENTIFY THE APPLICATION):	•	IF THE SOURCE IS COVERED BY ANOTHER
	N/A	
12. AVERAGE OPERATING TIME OF EMISSION SOURCE: 24 HRS/DAY 7 DAYS/WK52 WKS/YR	13. MAXIMUM OPERATING TIN 24 HRS/DAY	ME OF EMISSION SOURCE: 7 DAYS/WK52 WKS/YR
14. PERCENT OF ANNUAL THROUGHPUT:	·	
DEC-FEB <u>25</u> % MAR-MAY <u>25</u> %	JUN-AUG <u>25</u> %	SEPT-NOV <u>25</u> %

... INSTRUCTIONS.

- 1. COMPLETE THE ABOVE IDENTIFICATION AND GENERAL INFORMATION SECTION.
- 2. COMPLETE THE RAW MATERIAL, PRODUCT, WASTE MATERIAL, AND FUEL USAGE SECTIONS FOR THE PARTICULAR SOURCE EQUIPMENT. COMPOSITIONS OF MATERIALS MUST BE SUFFICIENTLY DETAILED TO ALLOW DETERMINATION OF THE NATURE AND QUANTITY OF POTENTIAL EMISSIONS. IN PARTICULAR, THE COMPOSITION OF PAINTS, INKS, ETC., AND ANY SOLVENTS MUST BE FULLY DETAILED.
- 3. EMISSION AND EXHAUST POINT INFORMATION MUST BE COMPLETED, UNLESS EMISSIONS ARE EXHAUSTED THROUGH AIR POLLUTION CONTROL EQUIPMENT.
- 4. OPERATING TIME AND CERTAIN OTHER ITEMS REQUIRE BOTH AVERAGE AND MAXIMUM VALUES.
- 5. FOR GENERAL INFORMATION REFER TO "GENERAL INSTRUCTIONS FOR PERMIT APPLICATIONS," APC-201.

	DEFINITIONS
AVERAGE-	THE VALUE THAT SUMMARIZES OR REPRESENTS THE GENERAL CONDITION OF THE EMISSION SOURCE, OR
•	THE GENERAL STATE OF PRODUCTION OF THE EMISSION SOURCE, SPECIFICALLY:
AVERAGE OPERATING TIME-	ACTUAL TOTAL HOURS OF OPERATION FOR THE PRECEDING TWELVE MONTH PERIOD.
AVERAGE RATE-	ACTUAL TOTAL QUANTITY OF "MATERIAL" FOR THE PRECEDING TWELVE MONTH PERIOD, DIVIDED BY THE
	AVERAGE OPERATING TIME.
AVERAGE OPERATION-	OPERATION TYPICAL OF THE PRECEDING TWELVE MONTH PERIOD, AS REPRESENTED BY AVERAGE
	OPERATING TIME AND A VERAGE RATES.
MAXIMUM-	THE GREATEST VALUE ATTAINABLE OR ATTAINED FROM THE EMISSION SOURCE, OR THE PERIOD OF
	GREATEST OR UTMOST PRODUCTION OF THE EMISSION SOURCE, SPECIFICALLY:
MAXIMUM OPERATING TIME-	GREATEST EXPECTED TOTAL HOURS OF OPERATIONS FOR ANY TWELVE MONTH PERIOD.
MAXIMUM RATE-	GREATEST QUANTITY OF "MATERIAL" EXPECTED PER ANY ONE HOUR OF OPERATION.
MAXIMUM OPERATION-	GREATEST EXPECTED OPERATION, AS REPRESENTED BY MAXIMUM OPERATING TIME AND MAXIMUM RATES.

090-008

	RAWM	MATERIAL INFORM	MATION	•			
	NAME OF RAW MATERIAL	AVERAGE RATE PER IDENTICAL SOURCE			MAXIMUM RATE PER IDENTICAL SOURCE		
-20a.	Steel Coils	-b	17-1,233	LB/HR		17.1,233	-LB/HR
21a. ·	HCL Solution	b.	2,200	LB/HR	c.	2,200	ĿB/HR -
22a.	Water	b.	34,000	LB/HR	c.	34,000	ĻB/HR
23a.		b.		LB/HR	ċ.		LB/HR
24a		b.		LB/HR	c.		LB/HR

	PRODUCT INFORMATION								
	NAME OF PRODUCT	· /	AVERAGE RATE ER IDENTICAL SOL			MAXIMUM RAT PER IDENTICAL SOU			
30a.	Unscaled Steel Coils	b.	171,233	LB/HR	c.	171,233	LB/HR		
31a.		b		LB/HR	c.		LB/HR		
32a.		b.		LB/HR	c.		LB/HR		
33a.		b.		LB/HR	c.		LB/HR		
34a.,		b.		LB/HR	c.		: LB/HR		

WASTE MATERIAL INFORMATION							
,	NAME OF WASTE MATERIAL	. PI	AVERAGE RATE ER IDENTICAL SOUR	CE		MAXIMUM RATE PER IDENTICAL SOUR	
40a.	Ferrous Chloride	b.	5,800	LB/HR	c.	5,800	LB/HR
41a.		b		ĽB/HR	c.		LB/HR
42a.		b.		LB/HR	c.		LB/HR
43a.		b.		LB/HR	c.		LB/HR
44a.	ì.	b.		LB/HR	c.		LB/HR

*FUEL USAGE INFORMATION – Not Applicable							
FUEL USED				ГҮРЕ .		HEAT CO	NTENT
50a. NATURAL GAS	·	b.				c.	BTU/SCF
OTHER GAS							BTU/SCF
OIL							BTU/GAL
COAL							BTU/LB
OTHER							BTU/LB
d. AVERAGE FIRING RATE PER	d. AVERAGE FIRING RATE PER IDENTICAL SOURCE: BTU/HR					ER IDENTICAL SOURCE:	BTU/HR

^{*} THIS SECTION IS TO BE COMPLETED FOR ANY FUEL USED DIRECTLY IN THE PROCESS EMISSION SOURCE, E.G. GAS IN A DRYER, OR COAL IN A MELT FURNACE.

			*EMISSION	INFORMA	TION	· ·
51. NUMBER OF ID	ENTICAL SOURCE	S (DESCRIBE AS REQU	IRED):			
		-	AVER	AGE OPER	RATION	
CONTAMINANT	CONCENTRATION OR EMISSION RATE PER IDENTICAL SOURCE				JRCE	METHOD USED TO DETERMINE CONCENTRATION OR EMISSION RATE
PARTICULATE MATTER	52a.	GR/SCF	b.		LB/HR	C.
CARBON MONOXIDÉ	53a.	PPM (VOL)	b.		LB/HR	C.
NITROGEN OXIDES	54a.	PPM (VOL)	b.		LB/HR	c
ORGANIC MATERIAL	55a.	PPM (VOL)	b.		LB/HR	c.
SULFUR DIOXIDE	56a.	PPM (VOL)	Ъ.		LB/HR	C.
**OTHER (SPECIFY)	57a.	PPM (VOL)	b		LB/HR	See APC 260
	:		MAXIMUM	OPERATI	ON	
CONTAMINANT	CONCENTRATIO	ON <u>OR</u> EMISSION RATE	PER IDENT	ICAĻ SOU	RCE	METHOD USED TO DETERMINE CONCENTRATION OR EMISSION RATE
PARTICULATE MATTER	58a.	GR/SCF	b.		LB/HR	c
CARBON MONOXIDE	59a.	PPM (VOL)	b.		LB/HR	c
NITROGEN OXIDES	60a.	PPM (VOL)	b.		LB/HR	c.
ORGANIC MATERIAL	61a.	PPM (VOL)	b		LB/HR	c. ·
SULFUR DIOXIDE	62a.	PPM (VOL)	b.	•	LB/HR	c .
**OTHER (SPECIFY)	63a.	PPM (VOL)	b.		LB/HR	c. See APC 260

- ITEMS 52 THROUGH 63 NEED NOT BE COMPLETED IF EMISSIONS ARE EXHAUSTED THROUGH AIR POLLUTION CONTROL EQUIPMENT.
 "OTHER" CONTAMINANT SHOULD BE USED FOR AN AIR CONTAMINANT NOT SPECIFICALLY NAMED ABOVE. POSSIBLE OTHER CONTAMINANTS ARE ASBESTOS, BERYLLIUM, MERCURY, VINYL CHLORIDE, LEAD, ETC.

***EXHAUST POINT	INFORMATION
64. FLOW DIAGRAM DESIGNATION(S) OF EXHAUST POINT: See A	APC 260
65. DESCRIPTION OF EXHAUST POINT (LOCATION IN RELATION TO BUILDIN	NGS, DIRECTION, HOODING, ETC.):
66. EXIT HEIGHT ABOVE GRADE:	67. EXIT DIAMETER:
68. GREATEST HEIGHT OF NEARBY BUILDINGS:	69. EXIT DISTANCE FROM NEAREST PLANT BOUNDARY:
A VERAGE OPERATION	MAXIMUM OPERATION
70. EXIT GAS TEMPERATURE: °F	72. EXIT GAS TEMPERATURE:
71. GAS FLOW RATE THROUGH EACH EXIT: ACFM	73. GAS FLOW RATE THROUGH EACH EXIT: ACFM

^{***} THIS SECTION SHOULD NOT BE COMPLETED IF EMISSIONS ARE EXHAUSTED THROUGH AIR POLLUTION CONTROL EQUIPMENT.

STATE OF ILLINOIS
ENVIRONMENTAL PROTECTION AGENCY
DIVISION OF AIR POLLUTION CONTROL
2200 CHURCHILL ROAD
SPRINGFIELD, ILLINOIS 62706

This Agency is authorized to require this information under Illinois Revised Statutes, 1979, Chapter 111 1/2, Section 1039, Disclosure of this information is required under that Section. Failure to do so may prevent this form from being processed and could result in your application being denied. This form has been approved by the Forms Management Center.

*DATA AND INFORMATION	
AIR POLLUTION CONTROL EQUIPMENT	

* THIS INFORMATION FORM IS FOR AN INDIVIDUAL UNIT OF AIR POLLUTION CONTROL EQUIPMENT OR AN AIR POLLUTION CONTROL SYSTEM.

1. NAME OF OWNER: NACME Steel Processing	2. NAME OF CORPORATE DIVISION OR PLANT (IF DIFFERENT FROM OWNER): NACME Steel Processing
3. STREET ADDRESS OF CONTROL EQUIPMENT: 429 West 127 th Street	4. CITY OF CONTROL EQUIPMENT: Chicago
5. NAME OF CONTROL EQUIPMENT OR CONTROL SYSTEM: PRO-ECC	O Wet Scrubber

INSTRUCTIONS

- COMPLETE THE ABOVE IDENTIFICATION.
- COMPLETE THE APPROPRIATE SECTION FOR THE UNIT OF CONTROL EQUIPMENT, OR THE APPROPRIATE SECTIONS FOR THE CONTROL
 SYSTEM. BE CERTAIN THAT THE ARRANGEMENT OF VARIOUS UNITS IN A CONTROL SYSTEM IS MADE CLEAR IN THE PROCESS FLOW
 DIAGRAM.
- 3. COMPLETE PAGE 6 OF THIS FORM, EMISSION INFORMATION AND EXHAUST POINT INFORMATION.
- 4. EFFICIENCY VALUES SHOULD BE SUPPORTED WITH A DETAILED EXPLANATION OF THE METHOD OF CALCULATION, THE MANNER OF ESTIMATION, OR THE SOURCE OF INFORMATION. REFERENCE TO THIS FORM ANY RELEVANT INFORMATION OR EXPLANATION INCLUDED IN THIS PERMIT APPLICATION.
- 5. EFFICIENCY VALUES AND CERTAIN OTHER ITEMS OF INFORMATION ARE TO BE GIVEN FOR AVERAGE AND MAXIMUM OPERATION OF THE SOURCE EQUIPMENT. FOR EXAMPLE, "MAXIMUM EFFICIENCY" IS THE EFFICIENCY OF THE CONTROL EQUIPMENT WHEN THE SOURCE IS AT MAXIMUM OPERATION, AND "AVERAGE FLOW RATE" IS THE FLOW RATE INTO THE CONTROL EQUIPMENT WHEN THE SOURCE IS AT AVERAGE OPERATION.
- 6. FOR GENERAL INFORMATION REFER TO "GENERAL INSTRUCTIONS FOR PERMIT APPLICATIONS", APC-201.

	DEFINITIONS
AVERAGE- AVERAGE OPERATION-	THE VALUE THAT <u>SUMMARIZES</u> OR <u>REPRESENTS</u> THE <u>GENERAL CONDITION</u> OF THE <u>EMISSION SOURCE</u> OR THE GENERAL STATE OF PRODUCTION OF THE EMISSION SOURCE. SPECIFICALLY: OPERATION TYPICAL OF THE PRECEDING TWELVE MONTH PERIOD, AS REPRESENTED BY AVERAGE OPERATING TIME AND AVERAGE RATES.
MAXIMUM- MAXIMUM OPERATION-	THE <u>GREATEST</u> VALUE <u>ATTAINABLE</u> OR <u>ATTAINED</u> FROM THE <u>EMISSION SOURCE</u> , OR THE PERIOD OF GREATEST OR UTMOST PRODUCTION OF THE EMISSION SOURCE. SPECIFICALLY: THE GREATEST EXPECTED OPERATION, AS REPRESENTED BY MAXIMUM OPERATING TIME AND MAXIMUM RATES.

ADSORPTION L	JNIT - Not Applicable
I. FLOW DIAGRAM DESIGNATION(S) OF ADSORPTION UNIT:	
2. MANUFACTURER:	3. MODEL NAME AND NUMBER:
4. ADSORBENT: ☐ ACTIVATED CHARCOAL: TYPE	□ OTHER: SPECIFY:
5. ADSORBATE(S):	
6. NUMBER OF BEDS PER UNIT:	7. WEIGHT OF ADSORBENT PER BED:
8. DIMENSION OF BED: THICKNESSIN, SURFACE AREASQUARE IN	
9. INLET GAS TEMPERATURE °F	10. PRESSURE DROP ACROSS UNIT: INCH H ₂ O GAUGE
11. TYPE OF REGENERATION: REPLACEMENT STEAM OTHER: SPECIFY:	
12. METHOD OF REGENERATION:	•
☐ ALTERNATE USE OF ENTIRE UNITS ☐ SOURCE SHUT DOWN ☐ OTHER: DESCRIBE	ALTERNATE USE OF BEDS IN A SINGLE UNIT
AVERAGE OPERATION OF SOURCE	MAXIMUM OPERATION OF SOURCE
13. TIME ON LINE BEFORE REGENERATION: MIN/BED	15. TIME ON LINE BEFORE REGENERATION: MIN/BED
14. EFFICIENCY OF ABSORBER (SEE INSTRUCTION 4): %	16. EFFICIENCY OF ABSORBER (SEE INSTRUCTION 4): %
AFTERBURNER -	Not Applicable
1. FLOW DIAGRAM DESIGNATION(S) OF AFTERBÜRNER:	тос дряговие
1. FLOW DIAGRAM DESIGNATION(S) OF ALTERBORNER.	
2. MANUFACTURER:	3. MODEL NAME AND NUMBER:
4. COMBUSTION CHAMBER DIMENSIONS: LENGTH IN, CROSS-SECTIONAL AREA SQUARE IN	N
5. INLET GAS TEMPERATURE: °F	7. FUEL GAS OIL: SULFUR WT%
6. OPERATING TEMPERATURE OF COMBUSTION CHAMBER: °F	8. BURNERS PER AFTERBURNER: @ BTU/HR EACH
9. CATALYST USED: NO YES: DESCRIBE CATALYST	
10. HEAT EXCHANGER USED: NO YES: DESCRIBE HEAT EXCHANGER	
AVERAGE OPERATION OF SOURCE	MAXIMUM OPERATION OF SOURCE
11. GAS FLOW RATE: SCFM	13. GAS FLOW RATE: SCFM
12. EFFICIENCY OF AFTERBURNER (SEE INSTRUCTION 4): %	14. EFFICIENCY OF AFTERBURNER (SEE INSTRUCTION 4): %

·	YCLONE - /	Not Applicable	-	
1. FLOW DIAGRAM DESIGNATION(S) OF CYCLONE:				
2. MANUFACTURER:		3. MODEL:	· · · · · · · · · · · · · · · · · · ·	
4. TYPE OF CYCLONE: SIMPLE MULTIPLE	·	5. NUMBER OF CYCLONES IN EA	CH MULTIPLE CYCLONE:	
6. DIMENSION THE APPROPRIATE SKETCH (IN INCHES) OR PRO	VIDE A DRA	AWING WITH EQUIVALENT INFORM.	ATION:	_
· .				
			•	
		•		
•			•	
			• .	
•				
A VERAGE OPERATION OF SOURCE		·	RATION OF SOURCE	
7. GAS FLOW RATE:	SCFM	9. GAS FLOW RATE:	·	SCFM
B. EFFICIENCY OF CYCLONE (SEE INSTRUCTION 4):		10. EFFICIENCY OF CYCLONE (SEE	INSTRUCTION 4):	

	CONDENSER -	Not Applicable			
1. FLOW DIAGRAM DESIGNATION(S)	OF CONDENSER:				
2. MANUFACTURER:	3. MODEL NAME AND	NUMBER:	4. HEAT EXC	CHANGE AREA:	FT ²
AVERAGE OPERA	TION OF SOURCE	MAX	(IMUM OPER)	ATION OF SOURCE	· ·
5. COOLANT FLOW RATE PER CONDE	NSER:	10. COOLANT FLOW RA	TE PER COND	ENSER:	
WATER GPMAIR S OTHER: TYPE FLOW RATE		WATER GPM			
6. GAS FLOW RATE:	. SCFM ·	11. GAS FLOW RATE:			SCFM
7. COOLANT TEMPERATURE: INLET°F, OUTLET°F	8. GAS TEMPERATURE: INLET°F, OUTLET°F	12. COOLANT TEMPERA INLET°F, OUTLET		I3. GAS TEMPERAT	
9. EFFICIENCY OF CONDENSER (SEE II	NSTRUCTION 4): %	14. EFFICIENCY OF CON	DENSER (SEE	INSTRUCTION 4):	%
	*ELECTRICAL PRECIPI	TATOR - Not Applicable	· ·		-
1. FLOW DIAGRAM DESIGNATION OF	ELECTRICAL PRECIPITATOR:				<u> </u>
2. MANUFACTURER:		3. MODEL NAME AND N	UMBER:		·
4. COLLECTING ELECTRODE AREA PE	R CONTROL DEVICE:		-		FT ²
AVERAGE OPERAT	ΠΟΝ OF SOURCE	MAX	IMUM OPERA	ATION OF SOURCE	
5. GAS FLOW RATE:	SCFM	7. GAS FLOW RATE:	_		SCFM
6. EFFICIENCY OF ELECTRICAL PRECI	PITATOR (SEE INSTRUCTION 4):	8. EFFICIENCY OF ELEC	TRICAL PREC	IPITATOR (SEE INSTE	RUCTION 4):
SUBMIT THE MANUFACTURER	S SPECIFICATIONS FOR THE ELECTR	ICAL PRECIPITATOR. REFE	RENCE THE	INFORMATION TO TH	
* ELECTRICAL PRECIPITATORS VAI AMOUNT OF INFORMATION. THE INCLUDING ANY DRAWINGS, TECH INSUFFICIENT FOR FULL AND ACCU	INICAL DOCUMENTS, ETC. IF THE	JBMIT WITH THIS APPLICE INFORMATION PROVIDE	CATION THE D BY THE M	MANUFACTURER'S IANUFACTURER'S SI	SPECIFICATIONS
	FILTER UNIT - N	ot Applicable		• • •	
1. FLOW DIAGRAM DESIGNATION(S) O	F FILTER UNIT:				
2. MANUFACTURER:		3. MODEL NAME AND N	UMBER:		
4. FILTERING MATERIAL:		5. FILTERING AREA:			
6. CLEANING METHOD: SHAKER REVERSE	AIR PULSE AIR PULSE JET	OTHER: SPECIFY			
7. GAS COOLING METHOD: 0 DUCTWO BLEED-IN AIR WATER SPR	RK: LENGTHFT., DIAM AY OTHER: SPECIFY	_IN.			
AVERAGE OPERAT	ION OF SOURCE	MAX	MUM OPERA	TION OF SOURCE	
8. GAS FLOW RATE (FROM SOURCE):	SCFM	12. GAS FLOW RATE (FRO	OM SOURCE):		SCFM
9. GAS COOLING FLOW RATE: BLEED-IN AIRSCFM, W	'ATER SPRAY GPM	13. GAS COOLING FLOW BLEED-IN AIR		WATER SPRAY	_ GPM
IO. INLET GAS CONDITION: TEMPERATURE	NT°F	14. INLET GAS CONDITION TEMPERATURE		INT°F	
11. EFFICIENCY OF FILTER UNIT (SEE II	NSTRUCTION 4) %	15. EFFICIENCY OF FILTE	R UNIT (SEE	INSTRUCTION 4):	%

SCRUBBER				
FLOW DIAGRAM DESIGNATION(S) OF SCRUBBER: Pickling Line Wet Scrubber				
2. MANUFACTURER: PRO-ECO	3. MODEL NAME AND NUMBER:			
4. TYPE OF SCRUBBER: ☐ HIGH ENERGY: GAS STREAM PRESSURE DROP INCH H₂0 ☐ PACKED: PACKING TYPE, PACKING SIZE, PACKED ☐ SPRAY: NUMBER OF NOZZLES, NOZZLE PRESSURE ☐ OTHER: SPECIFY <u>— 4 Sieve Tray -</u> ATTACH DESCRIPTION AND	_PSIG			
5. TYPE OF FLOW: COUNTERCURRENT COUNTERCURRENT CROSSFLO)W			
6. SCRUBBER GEOMETRY: LENGTH IN DIRECTION OF GAS FLOW 192 IN., CROSS-SECTIONAL AF	REA <u>13,824</u> SQUARE IN.			
	Duty FRP			
AVERAGE OPERATION OF SOURCE	MAXIMUM OPERATION OF SOURCE			
8. SCRUBBANT FLOW RATE: 1.5 GPM	12. SCRUBBANT FLOW RATE: 2 GPM			
9. GAS FLOW RATE: 6,446 SCFM	13. GAS FLOW RATE: 6,526 SCFM			
10. INLET GAS TEMPERATURE: 123 °F	14. INLET GAS TEMPERATURE: 125 °F			
11. EFFICIENCY OF SCRUBBER (SEE INSTRUCTION 4): 99.90 % PARTICULATE 99.90 % GASEOUS	15. EFFICIENCY OF SCRUBBER (SEE INSTRUCTION 4): 99.90 % PARTICULATE 99.90 % GASEOUS			
OTHER TYPE OF CONTROL	EQUIPMENT - Not Applicable			
1. FLOW DIAGRAM DESIGNATION(S) OF "OTHER TYPE" OF CONTROL EQU	PMENT:			
2. GENERIC NAME OF "OTHER" EQUIPMENT: 3. MANUFACTURER:	4. MODEL NAME AND NUMBER:			
5. DESCRIPTION AND SKETCH, WITH DIMENSIONS AND FLOW RATES, OF	OTHER" EQUIPMENT:			
•				
· .				
	•			
AVERAGE OPERATION OF SOURCE	MAXIMUM OPERATION OF SOURCE			
6. FLOW RATES: GPM SCFM	8. FLOW RATES: GPM SCFM			
7. EFFICIENCY OF "OTHER" EQUIPMENT (SEE INSTRUCTION 4): %	9. EFFICIENCY OF "OTHER" EQUIPMENT (SEE INSTRUCTION 4): %			

		EMISSION INFORMATION	
51. NUMBER OF ID	ENTICAL CONTROL UNITS OR CONT		
• •		AVERAGE OPERATION OF S	
	CONCENTRATION OR EMISSION		
CONTAMINANT		TROUSYSTEM	EMISSION RATE
PARTICULATE MATTER	2a. GR/	b. LB/	HR c.
CARBON MONOXIDE	3a. PI		rc.
NITROGEN OXIDES	4a. PF		HR c.
ORGANIC MATERIAL	5a		c. HR
SULFUR DIOXIDE	6a. PF		c. HR
OTHER (SPECIFY) HCL	7a. PP		c. HR Stack Test Data
-		MAXIMUM OPERATION OF S	OURCE
CONTAMINANT	CONCENTRATION OR EMISSION UNIT OR CON		L METHOD USED TO DETERMINE CONCENTRATION OR EMISSION RATE
PARTICULATE MATTER	8a. GR/S	b. CF LB/I	dR c.
CARBON MONOXIDE	9a. PP		dR c.
NITROGEN OXIDES	10a. PP	-	dR c.
ORGANIC MATERIAL	IIa. PP		r c.
SULFUR DIOXIDE	12a. PP	-	c.
OTHER (SPECIFY) HCL	13a. PP		c. Emission Factor/Flow Measurements

^{**&}quot;OTHER" CONTAMINANT SHOULD BE USED FOR AN AIR CONTAMINANT NOT SPECIFICALLY NAMED ABOVE. POSSIBLE OTHER CONTAMINANTS ARE ASBESTOS, BERYLLIUM, MERCURY, VINYL CHLORIDE, LEAD, ETC.

EXHAUST POINT INFORMATION			
FLOW DIAGRAM DESIGNATION(S) OF EXHAUST POINT: Pickle Line Scrubber			
2. DESCRIPTION OF EXHAUST POINT (LOCATION IN RELATION)	N TO BUILDIN Vertical S		
3. EXIT HEIGHT ABOVE GRADE: 70 FT		4. EXIT DIAMETER:	
5. GREATEST HEIGHT OF NEARBY BUILDINGS: 42	FT	6. EXIT DISTANCE FROM NEAREST PLANT BOUNDARY: 250	FT
AVERAGE OPERATION OF SOURCE		MAXIMUM OPERATION OF SOURCE	
7. EXIT GAS TEMPERATURE: 123	· oF	9. EXIT GAS TEMPERATURE 125	°F
8. GAS FLOW RATE THROUGH EACH EXIT: 5,540	ACFM	10. GAS FLOW RATE THROUGH EACH EXIT: 5,710	АСҒМ

HCL Pickling Line Emission Calculations NACME-Steel Processing 429 West 127th Street Chicago, Illinois

Maximum Operation Rate

Current Permitted Emission Factor (Scrubber Control) = 4.8 lbs HCL/1000 tons Steel Processed Testing w/ Scrubber Control)
Proposed Annual Steel Throughput = 750,000 tons/year

Emission Calculation

4.8 lbs HCl/ton Steel Processed X 750,000 tons steel/year = 3,600 lbs HCl Emitted/Year HCL tons/yr = 3,600 lbs HCl/Year X 1 ton/2,000 lbs = 1.8 tons HCl/year

HCI lbs/hour = (3,600 lbs/year)/8,760 hours/year = 0.41 lbs HCI/hour

Actual Tested Operation Rate

HCL Emission Rate per 2002 Stack Test Data = 0.229 lbs/hour

Test Rate Production = 200 tons steel / 3 hours = 67 tons steel/hour

HCL Emitted per Ton Steel = (0.229 lbs/hr) / (67 tons steel/hr) = 0.0034 lbs HCl emitted/ton steel

Emission Calculation

Project No.: M046005

0.0034 lb.HCl/ton.steel * (750,000 tons steel/yr) = 2,550 lbs-HCl/yr or 1.275 tons/yr

* Average throughput based on 2003 and 2004 thruputs

NMLP 0952

Actual Emissions With Control

HCI Emission Rate per 2002 Stack Test Data = 0.229 lbs/hr
Test Rate Production = 200 tons steel / 3 hours = 67 tons steel/hr
0.229 lbs/hr / 67 tons steel = 0.0034 lbs HCI emitted/ton steel
0.0034 lb HCL/ton steel * 1000 lbs/steel = 3.4 lb/1000 lb steel
0.0034 lbs HCL/ton steel * 750,000 tons steel/yr / 2000 lbs/ton = 1.28 tons HCI/yr

Potential To Emit With Control

Permited Emission Factor = 4.8 lbs/1000 tons steel
Production = 750,000 tons
Potential to emit = (4.8 lb / 1000 tons) * 750,000 tons/yr * (1/2000 lbs/ton) = 1.8 tons/yr

BEFORE THE ILLINOIS POLLUTION CONTROL BOARD

PEOPLE OF THE STATE OF ILLINOIS,)	
Complainant,)	
)	
v.)	PCB No. 13 - 12
)	(Enforcement – Air)
NACME STEEL PROCESSING, LLC,)	
a Delaware limited liability corporation,)	
•)	
Respondent.)	•

EXHIBIT F

THOMAS J. REUTER AFFIDAVIT

TAB 9
SEPTEMBER 20, 2005 NOTICE OF
INCOMPLETENESS ('SEPTEMBER 2005
NOTICE OF INCOMPLETENESS")

217/782-2113 CERTIFIED MAIL

NOTICE OF INCOMPLETENESS

September 20, 2005

NACME Steel Processing, LLC

Attn: John Dubrock 429 West 127th Street Chicago, Illinois 60628

<u>Application No.</u>: 96020074 I.D. No.: 031600FWL

Applicant's Designation:

Date Received: September 12, 2005
Operation of: Steel Pickling Plant

Location: 429 West 127th Street, Chicago

Illinois EPA has determined the above referenced operating permit application(s) to be incomplete because information was not provided as required by the 35 Ill. Adm. Code 201.157.

Specifically, the following information must be supplied in order for the application to be considered complete:

- The requested change in the facility operations (increase in the material throughput) constitutes a modification pursuant to the definition in 35 Ill. Adm. Code 201.102. Pursuant to Section 201.142 construction permit is required to be obtained prior to this modification.
- Updated information on production rate and emissions based on the most recent stack test (April 16, 2002) data.

Information contained in the stack test report indicates steel throughput 200 tons during the six-hours testing period or average process rate of 33.3 tons/hr. The average hydrogen chloride (HCl) emission rate during the stack test was 0.217 lb/hr. The emission factor derived from this stack test is 6.51 lbs of HCl per 1,000 tons of steel throughput, higher than 4.8 lbs/1,000 tons used in the current permit.

It also should be noted that since the plant cannot operate at the process rate higher than that during the stack test the annual steel throughput shall not exceed 33.3 tons/hr x 8,760 hr/yr = 292,000 tons/yr.

Detailed calculations of the plant-wide actual emission and potential to emit (PTE) of hazardous air pollutant (HAP), hydrogen chloride. PTE shall be calculated based on the maximum rated production capacity and year round operations. The credits for the control device efficiency may be taken only to the extent required by applicable environmental regulations.

ILLINOIS ENVIRONMENTAL PROTECTION AGENCY

1021 NORTH GRAND AVENUE EAST, P.O. BOX 19276, SPRINGFIELD, ILLINOIS 62794-9276 – (217) 782-3397 JAMES R. THOMPSON CENTER, 100 WEST RANDOLPH, SUITE 11-300, CHICAGO, IL 60601 – (312) 814-6026

ROD R. BLAGOJEVICH, GOVERNOR DOUGLAS P. SCOTT, DIRECTOR

The Illinois EPA's estimate of HCl PTE based on the maximum hourly controlled emission rate and control device manufacturer guaranteed efficiency results in more than 10 tons/yr of HCl emission.

You shall apply for Clean Air Act Permit Program (CAAPP) permit. To avoid the CAAPP permitting requirements, you may want to consider applying for a Federally Enforceable State Operating Permit (FESOP). A FESOP is an operating permit that contains federally enforceable limits in the form of permit conditions which effectively restrict the potential emissions of a source to below major source threshold, thereby excluding the source from the Clean Air Act Permit Program (CAAPP).

The Illinois EPA will be pleased to review a reapplication for this permit that includes the information and documentation necessary to correct the deficiencies noted above. In accordance with 35 Ill. Adm. Code 201.157, this reapplication may incorporate by reference the data and information submitted to the Illinois EPA in the original permit application, provided that you certify that the data and information previously submitted remains true, correct, and current. The reapplication will be considered filed on the date it is received by the Illinois EPA and will constitute a new permit application for purposes of Section 39(a) of the Act. Two copies of this information must be submitted and should reference the application and I.D. numbers assigned above.

If you have any questions on this, please call Valeriy Brodsky at 217/782-2113.

Donald E. Sutton, P.E. Manager, Permit Section Division of Air Pollution Control

DES:VJB:jar

cc: Region 1

BEFORE THE ILLINOIS POLLUTION CONTROL BOARD

PEOPLE OF THE STATE OF ILLINOIS,	.)	
Complainant,)	
v.)	PCB No. 13 - 12
NACME STEEL PROCESSING, LLC,)	(Enforcement – Air)
a Delaware limited liability corporation,)	
Respondent.)	

EXHIBIT F

THOMAS J. REUTER AFFIDAVIT

TAB 10
OCTOBER 18, 2005 RENEWAL
APPLICATION-FEDERALLY
ENFORCEABLE STATE OPERATING
PERMIT ("2005 FESOP APPLICATION")

October 18, 2005

Mr. Donald Sutton, P.E.
Manager, Permit Section
Illinois Environmental Protection Agency
Division of Air Pollution Control
1021 North Grand Avenue East
Springfield, Illinois 62702

RE: FESOP Application
NACME Steel Processing
ID No. 031600FWL

Dear Mr. Sutton:

Per our discussion with Mr. Valeriy Brodsky, enclosed please find three copies of the Federally Enforceable State Operating Permit (FESOP) application prepared by MOSTARDI PLATT ENVIRONMENTAL (MPE) for the NACME Steel Processing facility located at 429 West 127th Street in Chicago, Illinois (the facility).

Please note that this application is being submitted as part of the facility's permit renewal process for Operating Permit No. 96020074. The raw material throughputs and associated emissions data in this application are based upon air emission testing completed at the facility in April 2002 at a time in which the facility was restarting after an approximate two-month shutdown. Therefore, the emission testing was completed at a time in which only a limited throughput of steel, which was the maximum steel throughput available at the time of the test, was processed during the emission testing program.

As discussed with Mr. Valeriy Brodsky on September 30, 2005, additional emission testing will be completed by the end of 2005 at the facility to address the facility's ability to increase maximum production levels at the facility since restarting operations in March 2002 and address the steel throughput limitations as requested in the Illinois EPA construction permit application issued to the facility in April 2002 (Application No. 01040081). Upon completion of the testing program, NACME will be requesting increased production limitations as listed in the construction permit.

We appreciate your assistance in the matter. If you have any questions or comments, please contact Karyn Andersen at (630) 993-2680.

Regards,

NACME STEEL PROCESSING

Willam Reichel Production Manager

pc: J. DuBrock, National Materials

RENEWAL APPLICATION – FEDERALLY ENFORCEABLE STATE OPERATING PERMIT

Prepared For NACME STEEL PROCESSING

On the Property Commonly Known As
429 West 127th Street
Chicago, Illinois

October 18, 2005

RENEWAL APPLICATION – FEDERALLY ENFORCEABLE STATE OPERATING PERMIT

Prepared For

NACME STEEL PROCESSING
On the Property Commonly Known As
429 West 127th Street
Chicago, Illinois
October 18, 2005

© Copyright 2005 All rights reserved in Mostardi Platt Environmental

MOSTARDI PLATT PROJECT M046005 (2005)

TABLE OF CONTENTS

200-CAAPP	1-
Exhibit 200-1 Process Description.	1-0
Exhibit 200-2 Site Location Map	1-
Exhibit 200-3 Facility Diagram	1-8
Exhibit 200-4 List of Insignificant Activities	1-9
•	
220-CAAPP	
Exhibit 220-1 Coating Oil MSDS	2-1
	_
240-CAAPP	
Exhibit 240-1 Boiler 1 Emissions Calculations	
Exhibit 240-2 Boiler 2 Emissions Calculations	3-13
260-CAAPP	
Exhibit 260-1 Pickling Process Flow Diagram	
Exhibit 260-2 Pickle Line Emission Calculations	4-12
232-CAAPP	
Exhibit 232-5 HCl AST Emission Calculations	3-11
215-CAAPP	6-1
ZIJ-OAAII	
391-CAAPP	7-1
	_
293-CAAPP	8-1
·	
296-CAAPP	9-1

ILLINOIS ENVIRONMENTAL PROTECTION AGENCY DIVISION OF AIR POLLUTION CONTROL – PERMIT SECTION P.O. BOX 19506 SPRINGFIELD, ILLINOIS 62794-9506

FOR APPLICANT'S USE				
Revision	on #:			
Date:	1 1			
Page	of			
Source	Designation:			

		100	FOR AGENCY USE ONLY	
APPLICATION FOR CA.		ID NUMBER:	9-361(9) (8) 120-1-200 (9) 130-	See annually of
INITIAL APPLICATION		PERMIT #:		
RENEWAL APPLICATION	ON			
SIGNIFICANT MODIFIC		DATE:		
	SOURCE IN	IFORMATION		
1) SOURCE NAME:		2) DATE FORM COMPLETED:		
NACME Steel Processing			September 30, 2005	
3) SOURCE STREET ADDRESS:				
429 West 127 th Street				
4) CITY:			5) ZIP:	
Chicago			60628	
6) IS THE SOURCE LOCATED WITHIN	CITY LIMITS?		YES	NO
7) TOWNSHIP NAME:	8) COUNTY:		9) TYPICAL NO. OF EMPLOYEE	S
	Cook		AT THE SOURCE: 50	
10) ILLINOIS AIR POLLUTION SOURCE (IF KNOWN):	EID NO.	11) FEDERAL EM (FEIN):	PLOYER IDENTIFICATION NO.	
031600FWL				
12) TYPE OF SOURCE AND PRODUCT	'S PRODUCED:			
Steel Pickling				
13) PRIMARY STANDARD INDUSTRIAL	. CLASSIFICATION (SI	C) CATEGORY:	14) PRIMARY SIC NO.:	
41.66				
15a) LATITUDE (DD:MM:SS):		b) LONGITUDE (DD:MM:SS):		
		87.63		
16a) UTM ZÓNE:	b) UTM VERTICAL (K	(M):	c) UTM HORIZONTAL (KM):	
17a) COORDINATE METHOD:	b) REFERENCE LOCATION:		c) COORDINATE ACCURACY:	
18) SOURCE ENVIRONMENTAL CONTA	ACT PERSON:	19) CONTACT PERSON'S TELEPHONE NO.:		
William Paighal		773-204-1303		

THIS AGENCY IS AUTHORIZED TO REQUIRE THIS INFORMATION UNDER ILLINOIS REVISED STATUTES, 1991, AS AMENDED 1992, CHAPTER 111 1/2, PAR. 1039.5. DISCLOSURE OF THIS INFORMATION IS REQUIRED UNDER THAT SECTION. FAILURE TO DO SO MAY PREVENT THIS FORM FROM BEING PROCESSED AND COULD RESULT IN THE APPLICATION BEING DENIED. THIS FORM HAS BEEN APPROVED BY THE FORMS MANAGEMENT CENTER.

APPLICATION PAGE 1-1

Printed on Recycled Paper 200-CAAPP

FOR APPLICANT'S USE

	_			
	OWN	ER INFO	RMATION	
20) NAME:				
National Material, L.P.				
21) ADDRESS:				
1965 Pratt Boulevard				
22) CITY:	23) STATE:			24) ZIP:
Elk Grove Village	Illinois			60007
25) OWNER'S AGENT (IF APPLICABLE):			
26) NAME:	OPERA	TOR INF	ORMATION _	
NACME Steel Processing				
27.) ADDRESS:				
429 West 127 th Street				
28) CITY:	29) STATE:			30) ZIP:
Chicago	Illinois	_		60628
31) NAME:	BILLII	VG INFOI	RMATION	
NACME Steel Processing			•	
32) ADDRESS:				
429 West 127 th Street				
33) CITY:	34) STA	TE:		35) ZIP:
Chicago	Illine			60628
36) CONTACT PERSON:		37) CONTACT PER	SON'S TELEPHONE NO.:
William Reichel			773-291-1303	
38) WHO IS THE PERMIT	APPLICA		ORMATION ORRESPONDEN	CE .
APPLICANT? (CHECK ONE): OWN	IER	,	CHECK ONE)	OWNER
OPERATOR OPERATOR				SOURCE OPERATOR
D) ATTENTION NAME AND/OR TITLE FOR WRITTEN CORRESPONDENCE:				
William Reichel, Production Man	ager			
1) TECHNICAL CONTACT PERSON FO	R APPLICATIO	IN:	42) CONTACT F	PERSON'S TELEPHONE NO.:
Karyn Andersen 630-993-2680			80	

APPLICATION PAGE 1-2

Printed on Recycled Paper 200-CAAPP

CHAMADY OF ARRIVATION CONTENTS		
SUMMARY OF APPLICATION CONTENTS NOTE: ITEMS 43 TO 61 WILL BE USED FOR APPLICATION COMPLETENESS DETERMINATION.		-
43) DOES THE APPLICATION INCLUDE A TABLE OF CONTENTS?		
43) DOES THE APPLICATION INCLUDE A TABLE OF CONTENTS?	YES	NO
44) DOES THE APPLICATION INCLUDE A LIST OF ALL ITEMS AND ACTIVITIES FOR WHICH A PERMIT IS BEING SOUGHT?	YES	NO
45) DOES THE APPLICATION INCLUDE A PLOT PLAN AND/OR MAP DEPICTING THE AREA WITHIN ONE-QUARTER MILE OF THE SOURCE?	YES	NO
46) DOES THE APPLICATION INCLUDE A PROCESS FLOW DIAGRAM(S) SHOWING ALL EMISSION UNITS AND CONTROL EQUIPMENT, AND THEIR RELATIONSHIP?	YES	NO
47) DOES THE APPLICATION INCLUDE A COMPLETE PROCESS DESCRIPTION FOR THE SOURCE?	YES	NO
48a) DOES THE APPLICATION INCLUDE THE APPROPRIATE, COMPLETED FORMS FOR ALL INDIVIDUAL EMISSION UNITS AND AIR POLLUTION CONTROL EQUIPMENT, LISTING ALL APPLICABLE REQUIREMENTS AND PROPOSED EXEMPTIONS FROM OTHERWISE APPLICABLE REQUIREMENTS?	YES	NO
b) DOES THE APPLICATION ADDRESS OTHER MODES OF OPERATION FOR WHICH A PERMIT IS BEING SOUGHT?	"NA YES TO THE NOTE: NOT APPLICABLE]NO
c) DOES THE APPLICATION INCLUDE ALL REASONABLY ANTICIPATED OPERATING SCENARIOS FOR WHICH A PERMIT IS BEING SOUGHT?	NA YES NOTE: NOT APPLICABLE]NO
49) DOES THE APPLICATION INCLUDE A COMPLETED "FUGITIVE EMISSION" FORM 391- CAAPP?	YES	NO
50) DOES THE APPLICATION INCLUDE A COMPLETED "FEE DETERMINATION FOR CAAPP PERMIT" FORM 292-CAAPP? (NOTE: .FEES WILL BE BASED UPON INFORMATION CONTAINED IN THIS FORM.)	YES	NO
51) DOES THE APPLICATION INCLUDE A COMPLETED "HAZARDOUS AIR POLLUTANT EMISSION SUMMARY" FORM 215-CAAPP?	YES	NO
52) DOES THE APPLICATION INCLUDE THE CALCULATIONS ON WHICH THE FOLLOWING, TO THE EXTENT THEY ARE RELATED TO AIR EMISSIONS, WERE BASED:	YES	NO
POLLUTANT EMISSION RATES, FUELS AND RAW MATERIALS USAGE, AND CONTROL EQUIPMENT EFFICIENCY?		
53) DOES THE APPLICATION INCLUDE A COMPLETED "COMPLIANCE PLAN/SCHEDULE OF COMPLIANCE FOR CAAPP PERMIT" FORM 293-CAAPP?	YES	NO
54) DOES THE APPLICATION INCLUDE A COMPLETED "COMPLIANCE CERTIFICATION" FORM 296-CAAPP?	YES	NO
55) DOES THE APPLICATION INCLUDE A COMPLETED "COMPLIANCE PLAN/SCHEDULE OF COMPLIANCE-ADDENDUM FOR NONCOMPLYING EMISSION UNITS" FORM 294-CAAPP FOR ONE OR MORE NONCOMPLIANT EMISSION UNITS FOR WHICH ISSUANCE OF A CAAPP PERMIT IS REQUESTED?	NOTE: NOT APPLICABLE	NO

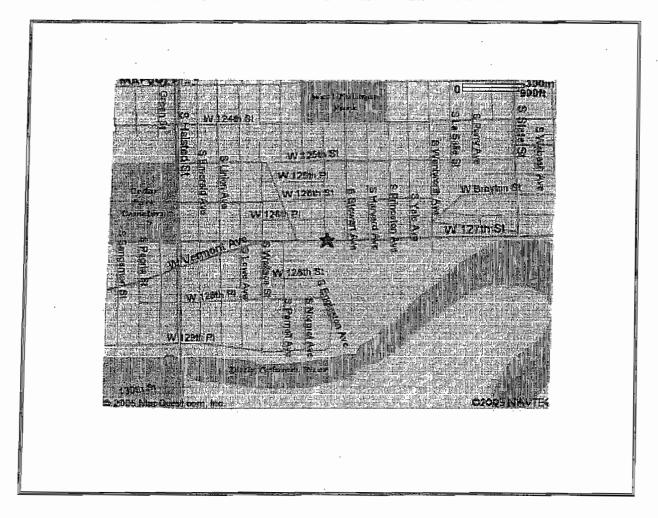
被

APPLICATION PAGE 1-3

Printed on Recycled Paper 200-CAAPP

56) HAS THE APPLICANT RETAINED A COPY OF THIS APPLICATION AT THE SO (NOTE: IF TRADE SECRET INFORMATION IS NOT BEING SUBMITTED, THEN THE ORIGINAL APPLICATION NEED BE INITIALLY SUBMITTED. HOWEVER, ILLINOIS EPA MAY REQUEST UP TO 4 COPIES OF THE FINAL APPLICATION TO PUBLIC NOTICE.)	ONLY THE
57a) DOES THE APPLICATION CONTAIN TRADE SECRET INFORMATION?	YES NO
b) IF YES, HAS SUCH INFORMATION BEEN PROPERLY MARKED AND CLAIMED TWO SEPARATE COPIES OF THE APPLICATION SUITABLE FOR PUBLIC INSI BEEN SUBMITTED, IN ACCORDANCE WITH APPLICABLE REGULATIONS?	
58) DOES THE APPLICATION INCLUDE AN EARLY REDUCTION DEMONSTRATION HAZARDOUS AIR POLLUTANTS (HAP) PURSUANT TO SECTION 112(i)(5) OF TOUR CLEAN AIR ACT AS AMENDED IN 1990?	
59) DOES THE APPLICATION INCLUDE A PROPOSED DETERMINATION OF MAXI ACHIEVABLE CONTROL TECHNOLOGY (MACT) FOR HAZARDOUS AIR POLLL PURSUANT TO SECTION 112 OF THE CLEAN AIR ACT AS AMENDED IN 1990?	JTANTS X NA YES NO
60) HAS THE APPLICANT REGISTERED A RISK MANAGEMENT PROGRAM FOR ACCIDENTAL RELEASES PURSUANT TO SECTION 112(r) OF THE CLEAN AIR AMENDED IN 1990 OR INTENDS TO COMPLY WITH THIS REQUIREMENT IN ACCORDANCE WITH ITS COMPLIANCE PLAN/SCHEDULE OF COMPLIANCE?	ACT AS THAT YES NO
61a) FOR CAAPP PERMIT RENEWALS, DOES THE APPLICATION INCLUDE A COMMASSURANCE MONITORING PLAN (FORM 464-CAAPP) PURSUANT TO 40 CFR 64?	
b) FOR SIGNIFICANT MODIFICATIONS AND INITIAL CAAPP APPLICATION SUBM AFTER APRIL 20, 1998, DOES THE APPLICATION INCLUDE A COMPLIANCE ASSURANCE MONITORING PLAN (FORM 464-CAAPP) PURSUANT TO 40 CFR FOR THE EMISSION UNITS WITH POST-CONTROL EMISSIONS GREATER THA EQUAL TO THE MAJOR SOURCE THRESHOLD?	ITTED PART 64 TNA YES NO
62) FOR SIGNIFICANT MODIFICATIONS, DOES THE APPLICATION INCLUDE A DESCRIPTION OF THE PROPOSED CHANGE(S), INCLUDING ALL PHYSICAL C IN EQUIPMENT, CHANGES IN THE METHOD OF OPERATION, CHANGES IN EMISSIONS, AND ANY NEW APPLICABLE REQUIREMENTS WHICH WILL APPLICABLE OF THE PROPOSED CHANGE?	
NOTE: ANSWERING "NO" TO ANY OF THE ABOVE (ITEMS 43-62, EXIN THE APPLICATION BEING DEEMED INCOMPLETE.	XCEPT ITEM 57a) MAY RESULT
63) DOES THE APPLICATION REQUEST TO UTILIZE THE OPERATIONAL FLEXIBIL PROVISIONS AND INCLUDE THE INFORMATION REQUIRED FOR SUCH USE?	YES NO
64a) DOES THE APPLICANT HEREBY REQUEST A PERMIT SHIELD FOR THE ENTIR SOURCE?	YES NO
b) IF NO, DOES THE APPLICATION CONTAIN A REQUEST FOR A PERMIT SHIELD SPECIFIC ITEMS ONLY, IN ACCORDANCE WITH THE INSTRUCTIONS FOR A C PERMIT?	
65) DOES THE APPLICATION INCLUDE A COMPLETED "LISTING OF INSIGNIFICAN ACTIVITIES" FORM 297-CAAPP?	YES NO
66) DOES THE APPLICATION INCLUDE A DRAWING PROVIDING THE SOURCE LAY	YOUT?
IF NO, PLEASE NOTE THAT THE AGENCY MAY REQUEST SUCH A DRAWING L DETAILED REVIEW OF THE APPLICATION.	JPON YES NO

67) WHY IS THE APPLICANT APPLYING FOR A CAAPP PERMIT (CHECK ALL THAT APPLY)?				
THE POTENTIAL TO EMIT ONE OR MORE AIR POLLUTANTS FOR THE SOURCE IS 100 TONS/YEAR OR GREATER.				
THE SOURCE IS AN AFFECTED SOURCE FOR ACID RAIN DEPOSITION.				
	THE POTENTIAL TO EMIT VOM OR NOX IS 25 TONS/YEAR OR MORE AND THE SOURCE IS LOCATED IN ONE OF THE FOLLOWING CHICAGO AREA COUNTIES OR TOWNSHIPS:			
	DUPAGE COUNTYKANE COUNTY	WILL COUNTY AUX SABLE TOWNSHIP, GRUNDY COL GOOSE LAKE TOWNSHIP, GRUNDY CO OSWEGO TOWNSHIP, KENDALL COU	YTNUC	
	NOTE: THE U.S. EPA HAS APPROVED AN EXEMPTION ON NITROGEN OXIDES (NOX) EMISSIONS AS AN OZONE PRECURSOR IN THE CHICAGO OZONE NON-ATTAINMENT AREA. THEREFORE THE MAJOR SOURCE THRESHOLD FOR NOX EMISSIONS IS 100 TONS/YEAR UNTIL THIS EXEMPTION IS NO LONGER EFFECTIVE. SHOULD THE CURRENT NOX EXEMPTION BE NO LONGER EFFECTIVE, THE MAJOR SOURCE THRESHOLD FOR NOX EMISSIONS WILL BE 25 TONS/YEAR IN THE ABOVE CHICAGO AREA COUNTIES AND TOWNSHIPS.			
\boxtimes		L HAZARDOUS AIR POLLUTANT IS 10 TO WIDE HAZARDOUS AIR POLLUTANTS IS RESHOLD.		
\boxtimes		OR OPERATIONS SUBJECT TO CERTAIN WHICH USEPA REQUIRES A CAAPP PE		
•	EACTUAL EMISSIONS OF THE SOURCE E AAPP PERMIT?	BELOW THE APPLICABILITY LEVELS FO	YES NO	
b) DOES THE APPLICATION CONTAIN PROPOSED PERMIT LIMITATIONS THAT WILL CONSTRAIN THE EMISSIONS AND PRODUCTION OR OPERATION OF THE SOURCE SUCH THAT POTENTIAL EMISSIONS OF THE SOURCE WILL FALL BELOW THE LEVELS FOR WHICH A CAAPP PERMIT IS REQUIRED?				
c) DOES THE APPLICANT HEREBY REQUEST A FEDERALLY ENFORCEABLE STATE OPERATING PERMIT (FESOP) CONSTRAINING THE EMISSIONS AND PRODUCTION OR OPERATION OF THE SOURCE SUCH THAT POTENTIAL EMISSIONS WOULD FALL BELOW APPLICABILITY LEVELS AND THEREBY EXCLUDE THE SOURCE FROM REQUIRING A CAAPP PERMIT?				
SIGNATURE BLOCK NOTE: THIS CERTIFICATION MUST BE SIGNED BY A RESPONSIBLE OFFICIAL. APPLICATIONS WITHOUT A SIGNED CERTIFICATION				
WILL BE RETURNED AS INCOMPLETE.				
69) I CERTIFY UNDER PENALTY OF LAW THAT, BASED ON INFORMATION AND BELIEF FORMED AFTER REASONABLE INQUIRY, THE STATEMENTS AND INFORMATION CONTAINED IN THIS APPLICATION ARE TRUE, ACCURATE AND COMPLETE.				
AUTHORIZED SIGNATURE:				
BY:				
AUTHORIZED SIGNATURE TITLE OF SIGNATORY				
	William Reichel		/	
	TYPED OR PRINTED NAME OF SIGNATO	JKY	DATE	


EXHIBIT 200-1 PROCESS DESCRIPTION

Operations at the NACME Steel Processing facility involve the steel pickling of steel coils to remove oxide scale. Steel coils are pickled in a hot hydrochloric acid (HCl) solution with an HCl concentration of 36%. Only one pickling line operates at the facility. Evaporative losses from the pickling tanks are ducted to a sieve tray scrubber before being emitted to the atmosphere. The coils are then rinsed, air dried, and sometime coated with by a non-VOM coating oil before being re-coiled and stored for distribution (Note: this rust preventative is not applied to all coils). A Copy of the MSDS for the coating oil is provided as Exhibit 220-1.

The pickling solution is heated by steam that is supplied by a natural gas-fired boiler. HCl solution is stored in two, 14,000-gallon above ground storage tanks (ASTs) and supply the HCl solution to the pickling line via hard piping. The HCl ASTs are closed vent tanks.

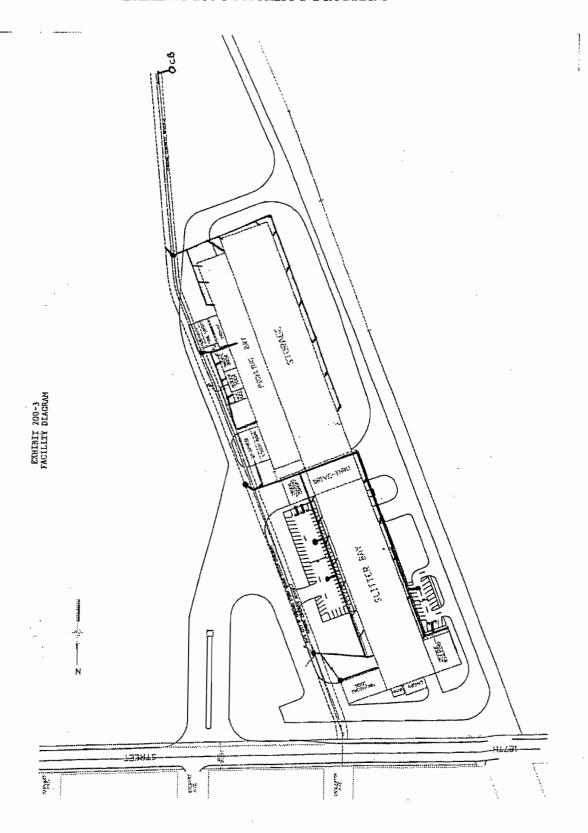

海

EXHIBIT 200-2 SITE LOCATION MAP – NACME STEEL PROCESSING

EXHIBIT 200-3 FACILITY DIAGRAM

影響

APPLICATION PAGE 1-8

EXHIBIT 200-4 LIST OF INSIGNIFICANT ACTIVITIES

- Various Space Heaters 35 IAC 201.210(a)(4)
- 1,000-gallon Caustic Storage Tank (Wastewater Treatment Process) 35 IAC 201.210(a)(17)
- Roll Coater 35 IAC 201.210(a)(2)

4		Ō	2
	I	_	_
•	₹		7

ILLINOIS ENVIRONMENTAL PROTECTION AGENCY DIVISION OF AIR POLLUTION CONTROL — PERMIT SECTION P.O. BOX 19506 SPRINGFIELD, ILLINOIS 62794-9506

FOR AP	PLI	CAN	r <u>'s u</u>	<u>SE</u>
Revision #:				
Date:	_ /		_ / _	
Page		_ of		
Source Design	gnat	ion:		

	FOR.	AGENCY USE ONLY					
	ID NUMBER:						
PROCESS EMISSION UNIT	EMISSION POINT #:						
DATA AND INFORMATION	Elvission City #.						
	DATE:						
SOURCE II	NFORMATION						
1) SOURCE NAME:							
NACME Steel Processing							
2) DATE FORM PREPARED:	3) SOURCE ID NO. (IF KNOWN):						
9/30/05	031600FWL						
4) NAME OF EMISSION UNIT:	NFORMATION						
4) NAME OF EMISSION ONT.							
Steel Pickling Line 5) NAME OF PROCESS:							
3) NAME OF PROCESS.							
Steel Pickling 6) DESCRIPTION OF PROCESS:							
b) DESCRIPTION OF PROCESS:							
Pickling of Steel Coils using a diluted HCl solution 7) DESCRIPTION OF ITEM OR MATERIAL PRODUCED OR A	OCTIVITY ACCOMPLISHED	<u> </u>					
7) DESCRIPTION OF TEM OR MATERIAL PRODUCED OR F	ACTIVITY ACCOMPLISHED	<i>J</i> .					
Pickled Steel with Non-VOM Rust Preventative Lu	bricant						
8) FLOW DIAGRAM DESIGNATION OF EMISSION UNIT:							
Stell Pickling Line							
9) MANUFACTURER OF EMISSION UNIT (IF KNOWN):							
10) MODEL NUMBER (IF KNOWN):	11) SERIAL NUMBER (I	F KNOWN):					
,	,						
12) DATES OF COMMENCING CONSTRUCTION,	a) CONSTRUCTION (MC	ONTH/YEAR):					
OPERATION AND/OR MOST RECENT MODIFICATION		·					
OF THIS EMISSION UNIT (ACTUAL OR PLANNED)	b) OPERATION (MONTH/YEAR):						
	,	,					
	c) LATEST MODIFICATI	ON (MONTH/YEAR):					
	· .	·					
3) DESCRIPTION OF MODIFICATION (IF APPLICABLE):							
,							

THIS AGENCY IS AUTHORIZED TO REQUIRE THIS INFORMATION UNDER ILLINOIS REVISED STATUTES, 1991, AS AMENDED 1992, CHAPTER 111 1/2, PAR. 1039.5. DISCLOSURE OF THIS INFORMATION IS REQUIRED UNDER THAT SECTION. FAILURE TO DO SO MAY PREVENT THIS FORM FROM BEING PROCESSED AND COULD RESULT IN THE APPLICATION BEING DENIED. THIS FORM HAS BEEN APPROVED BY THE FORMS MANAGEMENT CENTER.

APPLICATION PAGE 2-1

Printed on Recycled Paper 220-CAAPP

FOR APPLICANT'S USE

1

類

14) DOES THE EMISSION UNIT H	IAVE M	ORE THAN	ONE	MOL	E OF	OPERA	TION	1?		ES	XINO
IF YES, EXPLAIN AND IDENT A SEPARATE PROCESS EMIS FOR EACH MODE):									· ·		
15) PROVIDE THE NAME AND DE EMISSION UNIT, IF APPLICAE MUST BE COMPLETED FOR E	BLE (FC	DRM 260-CA	APP	AND	THE A	PPROP	RIA`	TE 260-CAAPP	ADDE	ROLLING NDUM FO	THIS RM
Emission Scrubber											
16) WILL EMISSIONS DURING ST RATE PURSUANT TO A SPEC ESTABLISHED BY AN EXISTIN	IFIC RI	JLE, OR THE	E AL	LOW	ABLE	EMISSIC			YE	ES	NO
IF YES, COMPLETE AND ATTA EXCESS EMISSIONS DURING						т то ор	ERA	TE WITH			
17) PROVIDE ANY LIMITATIONS (STANDARDS (E.G., ONLY ONE						ING EM	SSI	ONS OR ANY V	VORK F	PRACTIC	Ē
Line Speed					·						
Line Opeca											
		OPERA	_			_					
18) ATTACH THE CALCULATIONS, TO THE EXTENT THE FOLLOWING OPERATING INFORMATION, MATERIA BASED AND LABEL AS EXHIBIT 220-1. REFER TO					GE IN	FORMAT	TION	AND FUEL US	SAGE D		RE
19a) MAXIMUM OPERATING HOUR	₹S	HOURS/DAY: D.			DAYS/	S/WEEK: WE			KS/YEAR	:	
7,488					6			52			
b) TYPICAL OPERATING HOUR	S	HOURS/DAY:			DAYS/WEEK:			K:	WEEKS/YEAR:		
6,240		24		5_				T	52		
20) ANNUAL THROUGHPUT		DEC-FEB(%):	: MAR-MAY(%):			:	JUN-AUG(%	JUN-AUG(%): SEP-NOV(%)		
		25	25 25						25		
	M	ATERIAL	US	AGE	INF	ORMA	ΪO	N			
		MAXIM	ШM	RATE	S			T	YPICAL	RATES	
21a) RAW MATERIALS	L	BS/HR		TONS/YEAR		EAR		LBS/HR		TONS/YEAR	
Steel Coils		7,990			292,0	00		77,990		29	2,000
HCl Solution		1,150			4,30	3		1,150		4	,303
Water		1,303			4,88	1		1,303		4,	,881
Coating Oil		1.2			4.5			1.2			4.5

21b) PRODUCTS Unscaled Steel Coils	LBS/HR	TONS/YEAR	LBS/HR	TONS/YEAR
		TONS/TEAR	LBS/ITK	TONSTIEA
Unscaled Steel Coils	77 000			
	77,990	292,000	77,9 <u>90</u>	292,000
	MAXIMUI	M RATES	TYPICA	L RATES
1c) BY-PRODUCT MATERIALS	LBS/HR	TONS/YEAR	LBS/HR	TONS/YEAR
Scrap Steel	Various	Various	Various	Various
Spent Ferrous Chloride	Various	Various	Various	Various
Water	Various	Various	Various	Various
		-		
·				
FUEL (JSAGE DATA -	Not Applicable (St	eam Heat)	
a) MAXIMUM FIRING RATE (MILLION BTU/HR):	b) TYPICAL FII (MILLION B		c) DESIGN CAPACI RATE (MILLION	
	LOIL: GRADE NUM		COAL OTHE	R
IF MORE THAN ONE FUEL IS USE	ED, ATTACH AN EX	(PLANATION AND LABE	EL AS EXHIBIT 220-2.	
) TYPICAL HEAT CONTENT OF FUI BTU/GAL OR BTU/SCF):	EL (BTU/LB,	f) TYPICAL SULFU GAS):	JR CONTENT (WT %.,	NA FOR NATURA
TYPICAL ASH CONTENT (WT %.	NA EOD NATUDA	L h) ANNUAL FUEL	USAGE (SPECIFY UN	UTS E.C.
GAS):	, NATON NATONA		LYEAR, TON/YEAR):	4110, L.G.,
ARE COMBUSTION EMISSIONS D PROCESS UNIT EMISSIONS? IF NO, IDENTIFY THE EXHAUST F			ROL AS	YES NO

瓣

APPLICATION PAGE 2-3

Printed on Recycled Paper 220-CAAPP Statement

Ş

翻

	APPLICABLE RULES	
24) PROVIDE ANY SPECIFIC EMISSION STANDARD(S	S) AND LIMITATION(S) SET BY RULE(S) WHICH ARE A EMISSION STANDARD(S)	24) PROVIDE ANY SPECIFIC EMISSION STANDARD(S) AND LIMITATION(S) SET BY RULE(S) WHICH ARE APPLICABLE TO THIS EMISSION UNIT (E.G., VOM, IAC 218.204(j)(4), 3.5 LBS/GAL): REGULATED AIR POLLUTANT(S) REGULATED AIR POLLUTANT(S)
НСІ	40 CFR 63, Subpart CCC	No HCl in a concentration in excess of 18 ppmv or mass emission rate that corresponds to a collection efficiency of less than 97
25) PROVIDE ANY SPECIFIC RECORDKEEPING RULE	25) PROVIDE ANY SPECIFIC RECORDKEEPING RULE(S) WHICH ARE APPLICABLE TO THIS EMISSION UNIT:	
REGULATED AIR POLLUTANT(S)	RECORDKEEPING RULE(S)	REQUIREMENT(S)
HCI	35 IAC 201.301	Compliance Records
HCI .	40 CFR 63, 1160	Operations and Maintenance Plan/Inspection Records
HCI	40 CFR 63.10	Relevant Records
26) PROVIDE ANY SPECIFIC REPORTING RULE(S) WHICH ARE APPLICABLE TO THIS EMISSION UNIT:	WHICH ARE APPLICABLE TO THIS EMISSION UNIT:	
REGULATED AIR POLLUTANT(S)	REPORTING RULE(S)	REQUIREMENT(S)
нсі	35 IAC 201.302	Annual Reporting/Compliance Notification
НСІ	40 CFR 63.89(e)(3)	Testing Notification and Methods
27) PROVIDE ANY SPECIFIC MONITORING RULE(S)	27) PROVIDE ANY SPECIFIC MONITORING RULE(S) WHICH ARE APPLICABLE TO THIS EMISSION UNIT:	
REGULATED AIR POLLUTANT(S)	MONITORING RULE(S)	REQUIREMENT(S)
HCI	201,281	Emission Source/Device Monitoring
НСІ	40 CFR 63.1160	Pressure Drop Across Scrubber (Once Per Shift)
HCI	40 CFR 63.1162	Scrubber Water Flow
28) PROVIDE ANY SPECIFIC TESTING RULES ANDA	28) PROVIDE ANY SPECIFIC TESTING RULES AND/OR PROCEDURES WHICH ARE APPLICABLE TO THIS EMISSION UNIT:	EMISSION UNIT:
REGULATED AIR POLLUTANT(S)	TESTING RULE(S)	REQUIREMENT(S)
HCI	35 IAC 201.282/40 CFR 63.1161 and 1162	Emission Testing, As Required
нсі	40 CFR 63.7 and 63.8(e)(4)	Emission Testing to Establish Compilance with Relevant Limit

APPLICATION PAGE 2-4 Printed on Recycled Paper 220-CAAPP

29) DOES THE EMISSION OTHERWISE APPLICA	UNIT QUALIFY FOR AN EXEM BLE RULE?	PTION FROM AN	YES	NO				
EXEMPTION. PROVIDE SUPPORTING DATA AN	E A DETAILED EXPLANATION	IT IS EXEMPT AND THE RULE WHI JUSTIFYING THE EXEMPTION. IN AND LABEL AS EXHIBIT 220-3, CONTROL EXEMPTION.	NCLUDE DETAILE	D				
	COMPLIAN	ICE INFORMATION						
30) IS THE EMISSION UNIT REQUIREMENTS?	IN COMPLIANCE WITH ALL	APPLICABLE	YES	NO				
		N/SCHEDULE OF COMPLIANCE — ED AND SUBMITTED WITH THIS A		NON				
31) EXPLANATION OF HOW	/ INITIAL COMPLIANCE IS TO	BE, OR WAS PREVIOUSLY, DEM	ONSTRATED:					
· .								
Emission Testing – C	ontrol Device Exhaust per	r 63.1161 and maintenance of	Coating Oil MSI	os.				
				}				
				ì				
32) EXPLANATION OF HOW	ONGOING COMPLIANCE W	ILL BE DEMONSTRATED:						
32) EXPLANATION OF HOW ONGOING COMPLIANCE WILL BE DEMONSTRATED:								
Maintenance of scrubber water/air flow, acid bath temperature, steel throughput, emission								
source/control device	source/control device maintenance records, and coating oil MSDS.							
				l				
				I				
	•							
	•			1				
				!				
		CORDKEEPING AND REPO						
		SSIONS FOR WHICH RECORDS A						
		LIANCE. INCLUDE THE UNIT OF BY OF SUCH RECORDS (E.G., HO						
		22						
PARAMETER	UNIT OF MEASUREMENT	METHOD OF MEASUREMENT	FREQUE	NCY_				
Scrubber Water	Gallons	Flow meter	Monito					
Flow	Gallolis	Flow lifeter	Continu					
,			Recorded					
			Per Sh	ift				
Steel Throughput	Tons	Throughput Logs	Month	ily				
Acid Bath Temp	Degrees	Temperature Monitor	Continu	ous				

33b) BRIEFLY DESCRIBE THE METHOD BY WHICH RECORDS WILL BE CREATED AND MAINTAINED. FOR EACH RECORDED PARAMETER INCLUDE THE METHOD OF RECORDKEEPING, TITLE OF PERSON RESPONSIBLE FOR RECORDKEEPING, AND TITLE OF PERSON TO CONTACT FOR REVIEW OF RECORDS:												
PARAMETER	METHOD OF RECORDKEEPING	TITLE OF PERSON RESPONSIBLE	TITLE OF CONTACT PERSON									
Scrubber Water Flow	Flow Log	Shift Operator	Production Manager									
Steel Throughput	Throughput Log	Production Manager	Production Manager									
Acid Bath Temp	Acid Bath Temp Temperature Log Pickle Line Operator Production Manager											
c) IS COMPLIANCE OF THE THE RECORDS?												
IF NO, EXPLAIN:												
	, , , , , , , , , , , , , , , , , , , ,											
d) ARE ALL RECORDS REAL	DILY AVAILABLE FOR INSPE	ECTION, COPYING AND										
SUBMITTAL TO THE AGENCY UPON REQUEST?												
IF NO, EXPLAIN:												
(4a) DESCRIBE ANY MONITORS OR MONITORING ACTIVITIES USED TO DETERMINE FEES, RULE APPLICABILITY OR												
COMPLIANCE: Scrubber water flow												
COLUMN TELEF TOW												
) WHAT PARAMETER(S) IS(ARE) BEING MONITORED (E.G., VOM EMISSIONS TO ATMOSPHERE)?											
Flow of water to scrubber												
c) DESCRIBE THE LOCATION	NOF EACH MONITOR (E.G.	, IN STACK MONITOR 3 FEET FROM	(EXIT):									
Adjacent to scrubber	,											
·												

34d) IS EACH	MONITOR EQUIPPED	WITH A RECORDING DEVICE	?	YES	NO
IF NO, LIST	ALL MONITORS WITH	OUT A RECORDING DEVICE:			
Scrubber fl	ow meter				
l					
e) IS EACH MO BASIS?	NITOR REVIEWED FO	R ACCURACY ON AT LEAST	A QUARTERLY	YES	X NO
IF NO, EXPL	AIN:				
Calibrated i	n accordance with n	nanufacturer's specification	ons		
f) IS EACH MOI		ALL TIMES THE ASSOCIATE	DEMISSION UNIT IS	YES	NO
IF NO, EXPL	AIN:				
05, 55,000,005		CONTROL TECTO IS AL	CIN WILLIAM THE BY	TO ADELIGED E	00
PURPOSES (OF THE DETERMINATION	IOST RECENT TESTS, IF AN' ON OF FEES, RULE APPLICA	BILITY OR COMPLI	ANCE. INCLUDE THE	TEST
DATE, TEST I	METHOD USED, TESTI F RESULTS OF ADDIT	NG COMPANY, OPERATING IONAL SPACE IS NEEDED, A	CONDITIONS EXIST TTACH AND LABEL	TING DURING THE TE AS EXHIBIT 220-4:	ST AND A
	11200210. 11 713511		OPERATING		
TEST DATE	TEST METHOD	TESTING COMPANY	CONDITIONS	SUMMARY OF RE	SULTS
April	Methods	GE Mostardi Platt	Typical	0.217 lbs H	
2002	104 and 26A		Conditions	(6.87 ppn	(1)
					
C) DECORISE :	DEDODTING DECUM	TEMENTO AND PROVIDE TO	TITLE AND EDGO	HENOV OF PERSON	
	L REPORTING REQUIR TO THE AGENCY:	REMENTS AND PROVIDE TH	E TITLE AND FREQ	UENCY OF REPORT	
REPORTING	REQUIREMENTS	TITLE OF REPORT		FREQUENCY	
	ssion Reporting	Annual Emission Re	enort	Annually	
Testing	Notifications	Test Notification/Pro	otocol	As Required	

	·	<u> </u>	1 ACTUAL EMISSION RATE	IISSION RATE			ALLOWABLE BY RULE EMISSION RATE	Y RULE EMISSIC	ON RATE	PERMITTED EMISSION RATE	N RATE
		_	X 1UNCONTROLLED EMISSION RATE	LLED EMISSIO	N RATE						
REGULATED AIR POLLUTANT		LBS PER HOUR (LBS/HR)	TONS PER YEAR (TONS/YR)	³ OTHER TERMS	³ OTHER TERMS	4DM	⁵ RATE (UNITS)	APPLICABLE RULES	TONS PER YEAR (TONS/YR)	RATE (UNITS)	TONS PER YEAR (TONS/YR)
CARBON	MAXIMUM:						<u> </u>				
MONOXIDE (CO)	TYPICAL:						-				
LEAD	MAXIMUM:						~ 				
	TYPICAL:						-				
NITROGEN	MAXIMUM:										
OXIDES (NOx)	TYPICAL:						()				
PARTICULATE	MAXIMUM:						0				
MATTER (PART)	TYPICAL:						-				
PARTICULATE MATTER <= 10	MAXIMUM:						· ~				
MICROMETERS (PM10)	TYPICAL:										
SULFUR	MAXIMUM:						-				
DIOXIDE (SO2)	TYPICAL:						_				
VOLATILE ORGANIC	MAXIMUM:						_				
MATERIAL (VOM)	TYPICAL:						-				
OTHER, SPECIFY:	MAXIMUM:	4.34	19			ĸ	18 (ppm)	40 CFR 63.1157	10	0.0065 lbs HCI/Ton Steel	0.951 tpy
HCI	TYPICAL:	4.34	19			5	~				
EXAMPLE PARTICULATE	MAXIMUM	5:00	27.9	6R/DSCE			6.0 (LESTHR)	212,327	26.28	5.5 LBS/HR	22
4TTER	TYPICAL	4.00	14.4	0.24 GR/DSCF		4	5.5 (LBS/HR)	212,321	19.80		

IMPORTANT: ATTACH CALCULATIONS, TO THE EXTENT THEY ARE AIR EMISSIONS RELATED, ON WHICH EMISSIONS WERE DETERMINED AND LABEL AS EXHIBIT 220-5.

1CHECK UNCONTROLLED EMISSION RATE BOX IF CONTROL EQUIPMENT IS USED, OTHERWISE CHECK AND PROVIDE THE ACTUAL EMISSION RATE TO ATMOSPHERE, INCLUDING INDOORS. SEE INSTRUCTIONS
2PROVIDE THE EMISSION RATE THAT WILL BE USED AS A PERMIT SPECIAL CONDITION. THIS LIMIT WILL BE USED TO DETERMINE THE PERMIT FEE.
3PLEASE PROVIDE ANY OTHER EMISSION RATE WHICH IS COMMONLY USED, REQUIRED BY A SPECIFIC LIMITATION OR THAT WAS MEASURED (E.G. PPM, GROSCF, ETC.)
4DM - DETERMINATION METHOD: 1) STACK TEST, 2) MATERIAL BALANCE, 3) STANDARD EMISSION FACTOR (AP 42 OR AIRS), 4) ENGINEERING ESTIMATE, 5) SPECIAL EMISSION FACTOR (NOT AP 42 OR AIRS)
5RATE - ALLOWABLE EMISSION RATE SPECIFIED BY MOST STRINGENT APPLICABLE RULE.

APPLICATION PAGE 2-8

Printed on Recycled Paper 220-CAAPP

	9	APPLICABLE	40 CFR 63.1157										l						CFR 61: 61:302(b):(d)
	ALLOWABLE BY RULE	⁵ RATE OR STANDARD	18 ppmv																sin - 98% by Whicohtrol device leak tight trucks
-ORMATION		4DM	r.c																2
T EMISSION IN	TE SION RATE	³ OTHER TERMS				-													
VIR POLLUTAN	\Box ¹ ACTUAL EMISSION RATE $oxedsymbol{oxedge}$ ¹ UNCONTROLLED EMISSION RATE	TONS PER YEAR (TONS/YR)	19																11.2
(38) HAZARDOUS AIR POLLUTANT EMISSION INFORMATION		POUNDS PER HOUR (LBS/HR)	4.34												.•				70:07 8:0
(38)			MAXIMUM:	TYPICAL:	MAXIMUM:	TYPICAL:	MAXIMUM:	TYPICAL:	MAXIMUM:	TYPICAL:	MAXIMUM:	TYPICAL:	MAXIMUM:	TYPICAL:	MAXIMUM:	TYPICAL:	MAXIMUM:	TYPICAL:	MAXIMUM TO ITYPICAL
	TION	² CAS NUMBER	7467-01-0																71432
	HAP INFORMATION	NAME OF HAP EMITTED	НСІ											,					EXAMPLE Benzeine

動調

IMPORTANT: ATTACH CALCULATIONS, TO THE EXTENT THEY ARE AIR EMISSIONS RELATED, ON WHICH EMISSIONS WERE DETERMINED AND LABEL AS EXHIBIT 220-2.

¹PROVIDE UNCONTROLLED EMISSIONS IF CONTROL EQUIPMENT IS USED. OTHERWISE, PROVIDE ACTUAL EMISSIONS TO THE ATMOSPHERE, INCLUDING INDOORS. CHECK BOX TO SPECIFY.

²CAS - CHEMICAL ABSTRACT SERVICE NUMBER.

³PLEASE PROVIDE ANY OTHER EMISSION RATE WHICH IS COMMONLY USED, REQUIRED BY A SPECIFIC LIMITATION OR THAT WAS MEASURED (E.G., PPM, GROSCF, ETC.).

⁴DM - DETERMINATION METHOD: 1) STACK TEST, 2) MATERIAL BALANCE, 3) STANDARD EMISSION FACTOR (AP-42 OR AIRS, 4) ENGINEERING ESTIMATE, 5) SPECIAL EMISSION FACTOR (NOT AP-42 OR AIRS).

⁵RATE - ALLOWABLE EMISSION RATE OR STANDARD SPECIFIED BY MOST STRINGENT APPLICABLE RULE.

APPLICATION PAGE 2-9

Printed on Recycled Paper 220-CAAPP

EXHAUST POINT INFORMATION								
THIS SECTION SHOULD NOT BE COMPLETE	D IF EMISSIONS ARE EXHAUSTED THROUGH	AIR POLLUTION CONTROL EQUIPMENT.						
39) FLOW DIAGRAM DESIGNATION OF	EXHAUST POINT:							
N/A – Exhausts through a scrub								
	(STACK, VENT, ROOF MONITOR, INDO COMPLETE THE REMAINING ITEMS.	ORS, ETC.). IF THE EXHAUST POINT						
41) DISTANCE TO NEAREST PLANT BO	DUNDARY FROM EXHAUST POINT DISCI	HARGE (FT):						
42) DISCHARGE HEIGHT ABOVE GRAD	E (FT):	· .						
43) GOOD ENGINEERING PRACTICE (G	EP) HEIGHT, IF KNOWN (FT):							
44) DIAMETER OF EXHAUST POINT (FT 1.128 TIMES THE SQUARE ROOT O): NŌTE: FOR A NON CIRCULAR EXHA F THE AREA.	UST POINT, THE DIAMETER IS						
45) EXIT GAS FLOW:RATE	a) MAXIMUM (ACFM):	b) TYPICAL (ACFM):						
46) EXIT GAS TEMPERATURE a) MAXIMUM (°F): b) TYPICAL (°F):								
47) DIRECTION OF EXHAUST (VERTICAL, LATERAL, DOWNWARD):								
48) LIST ALL EMISSION UNITS AND CON	ITROL DEVICES SERVED BY THIS EXHA	AUST POINT:						
NAME	FLO	W DIAGRAM DESIGNATION						
a)								
b)								
c)								
d)								
e)								
THE FOLLOWING INFORMATION NEED ONLY	BE SUPPLIED IF READILY AVAILABLE							
49a) LATITUDE:	b) LONGITUDE:							
50) UTM ZONE:	b) UTM VERTICAL (КМ):	c) UTM HORIZONTAL (KM):						

EXHIBIT 220-1 COATING OIL MSDS

APPLICATION PAGE 2-11

782-40 CORFILM 333

CORAL CHEMICAL COMPANY

Corporate Headquarters 135 LeBaron Street Waukegan, IL 60085 (800) 228-4646 or (847) 336-8100 8 A.M. To 5 P.M., CST

Revision Date: November 20, 2000

MATERIAL SAFETY DATA SHEET

· -			0 = Insignificant
HMIS	HEALTH	1	1 = Slight
RATING	FLAMMABILITY	1	2 = Moderate
11,27,11,0	REACTIVITY	0	3 = High
	PERSONAL PROTECTION	С	4 = Extreme

INFOTRAC 24 HOUR EMERGENCY TELEPHONE (800) 535-5053 or-(352) 323-3500

SECTION I: PRODUCT INFORMATION

TRADE NAME:

CORFILM 333

CHEMICAL NAME:

SYNONYMS:

CHEMICAL FAMILY:

*Chemical reported under Sect.

313, SARA Title III

Rust preventive

SECTION II: HA	ARDOUS	INGREDIENTS
----------------	--------	-------------

HAZARD COMPONENTS:	CAS#	HAZARD DATA
Barium sulfonate* <1.3%	61790-48-5	10 mg (Ba)/M ³ ACGIH TLV 15 mg (Ba)/M ³ OSHA PEL (Total Dust) 10 mg (Ba)/M ³ OSHA PEL (Respirable Fraction)
Solvent refined light Paraffinic distillate	64741-89-5 and/or 64741-97-5	5 mg/M³ ACGIH LLV 5 mg/M³ OSHA PEL
Hydrotreated light Paraffinic or napthenic distillate	64742-55-9 and/or 64742-53-6	· .

000

Page 1 of 5

782-40 CORFILM 333

SECTION III: FIRST AID PRECAUTIONARY INFORMATION

ALWAYS HAVE PLENTY OF WATER AVAILABLE FOR FIRST AID

SKIN:

Immediately flush skin with plenty of water for at least 15 minutes.

Wash with soap and water.

EYES:

1

Immediately flush with plenty of water for at least 15 minutes;

ensure water flushing of entire surface of eye and lid. Obtain

medical attention at once.

INHALATION:

Remove to fresh air.

INGESTION:

If more than a half cup of material is swallowed, give several glasses of water to drink, then induce vomiting. *Obtain medical*

attention. Never give anything by mouth to an unconscious person. NOTE: IARC has not found severely hydro treated oils to be

carcinogenic.

Remove contaminated clothing promptly. Launder clothing before

re-use; discard shoes.

SECTION IV: OVEREXPOSURE EFFECTS

SKIN:

May cause irritation.

EYES:

8

May cause irritation.

INHALATION:

Vaporization is not expected at ambient temperature. Breathing

mist will cause coughing, irritation of nose and throat.

INGESTION:

May cause irritation.

SECTION V: PERSONAL PROTECTION

RESPIRATORY PROTECTION:

NIOSH-approved respirator for mists.

VENTILATION:

Mechanical (general or local exhaust)

PROTECTIVE GLOVES:

Impervious

· 50 .

Page 2 of 5

782-40 CORFILM 333

EYE PROTECTION:

Chemical goggles or face shield. Do not wear

contact lenses.

PROTECTIVE EQUIPMENT:

Apron or protective clothing.

adding the HANDLING AND STORAGE:

Keep container tightly closed. Store in cool, dry

location. Keep from freezing.

PHYSICAL DATA AND CHEMICAL PROPERTIES **SECTION VI:**

BOILING POINT (°F):

>459°F

FREEZING POINT (°F):

N/A

VOLATILITY/VOL (%):

Negligible

VAPOR PRESSURE (mm Hg):

0.1 at 70° F

Nealiaible

VAPOR DENSITY (Air =1):

>10

SOLUBILITY IN H2O:

APPEARANCE/ODOR:

Clear, amber liquid; mild petroleum odor

SPECIFIC GRAVITY (H20 =1):

0.902

EVAPORATION RATE:

Negligible

pH:

N/A

SECTION VII: FIRE AND EXPLOSION HAZARD DATA

FLASH POINT:

>300° F (C.O.C.)

LOWER FLAME LIMIT:

N/A

HIGHER FLAME LIMIT:

N/A

EXTINGUISHING MEDIA:

Dry chemical, carbon dioxide, foam, water fog; foam and

water spray are effective, but may cause frothing.

FOR FIRE:

Wear self-contained breathing apparatus with full face piece, operated in pressure demand or other positive pressure mode to protect against the hazardous effects of combustion products and oxygen deficiencies. Use water spray to cool fire-exposed containers to prevent rupture. Avoid spreading burning liquid with water used

for cooling.

782-40 CORFILM 333

UNUSUAL FIRE HAZARD:

Burning liquid will float on water. Notify appropriate

authorities if liquid enters sewers/waterways.

SECTION VIII:

REACTIVITY DATA

CHEMICAL STABILITY:

Stable

CONDITIONS TO AVOID:

Storage temperature above 200° F

INCOMPATIBLE MATERIALS:

Strong alkalis, strong oxidizing agents, strong

acids, sources of ignition.

DECOMPOSITION PRODUCTS:

Carbon dioxide, carbon monoxide, oxides of

sulfur and nitrogen and barium.

HAZARDOUS POLYMERIZATION:

Will not occur.

SECTION IX:

SPILL AND DISPOSAL PROCEDURE

SPILL:

Use appropriate protective equipment. Dike to contain spill, cover with inert absorbent material, sweep up and place in a suitable container. Flush area well with water. Keep spills and cleaning run-off out of municipal sewers and open bodies of water.

WASTE DISPOSAL:

Material collected on absorbent and the absorbent are assumed to be contaminated. As such, they must be disposed to a permitted hazardous waste management facility in accordance with the Clean Air and Clean Water Acts, Resources Conservation and Recovery Act, and all relevant laws or regulations regarding disposal.

RCRA: It is the responsibility of the user to determine at time of disposal whether a product or solution meets RCRA criteria for hazardous waste, as mixing, use, contamination or soils may render the resultant mixture hazardous.

. 50 5

Page 4 of 5

782-40 CORFILM 333

SECTION X: TRANSPORTATION INFORMATION

HAZARD CLASS:

Not regulated

DOT SHIPPING NAME:

N/A

REPORTABLE QUANTITY (RQ):

N/A

- UN NUMBER:

N/A

NA NUMBER:

N/A

SECTION XI: TSCA INFORMATION

The chemical ingredients in this product are on the 8(b) TSCA Inventory Lists (40 CFR 710).

To the best of our knowledge, this information is true and accurate as of the date of this Material Safety Data Sheet. However, since the use of this information and the conditions of the use of the product are not under the control of Coral Chemical Company, it is the user's obligation to determine the conditions of safe use of the product.

Prepared by: J. D. Pemberton

Quality Assurance Manager

Page 5 of 5

N/A

ILLINOIS ENVIRONMENTAL PROTECTION AGENCY DIVISION OF AIR POLLUTION CONTROL -- PERMIT SECTION P.O. BOX 19506 SPRINGFIELD, ILLINOIS 62794-9506

FOR APPLICANT'S USE
Revision #:
Date: / /
Page of
Source Designation:

FOR AGENCY USE ONLY ID NUMBER: FUEL COMBUSTION EMISSION UNIT EMISSION POINT #: DATA AND INFORMATION DATE: SOURCE INFORMATION 1) SOURCE NAME: 2) DATE FORM 3) SOURCE ID NO. PREPARED: (IF KNOWN): GENERAL INFORMATION 4) NAME OF EMISSION UNIT: Boilers 1 and 2 (Boiler 2 for Steam Heat) 5) NAME OF PROCESS: Boiler 6) DESCRIPTION OF PROCESS: For Comfort and steam heat 7) DESCRIPTION OF ITEM OR MATERIAL PRODUCED OR ACTIVITY ACCOMPLISHED: Heat and steam 8) FLOW DIAGRAM DESIGNATION OF EMISSION UNIT: Boilers 1 and 2 9) MANUFACTURER OF EMISSION UNIT (IF KNOWN): 10) MODEL NUMBER (IF KNOWN): 11) SERIAL NUMBER (IF KNOWN): 12) DATES OF COMMENCING CONSTRUCTION, a) CONSTRUCTION (MONTH/YEAR): OPERATION AND/OR MOST RECENT MODIFICATION OF THIS EMISSION UNIT (ACTUAL OR PLANNED) b) OPERATION (MONTH/YEAR): c) LATEST MODIFICATION (MONTH/YEAR): 13) DESCRIPTION OF MODIFICATION (IF APPLICABLE):

THIS AGENCY IS AUTHORIZED TO REQUIRE THIS INFORMATION UNDER ILLINOIS REVISED STATUTES, 1991, AS AMENDED 1992, CHAPTER 111 1/2, PAR. 1039.5. DISCLOSURE OF THIS INFORMATION IS REQUIRED UNDER THAT SECTION. FAILURE TO DO SO MAY PREVENT THIS FORM FROM BEING PROCESSED AND COULD RESULT IN THE APPLICATION BEING DENIED. THIS FORM HAS BEEN APPROVED BY THE FORMS MANAGEMENT CENTER.

APPLICATION PAGE 3-1

Printed on Recycled Paper 240-CAAPP FOR APPLICANT'S USE

14) DOES THE EMISSION UNIT HAVE N	MORE THAN ONE M	DDE OF OPERA	TION?	YE	ES	NO
IF YES, EXPLAIN AND IDENTIFY WI A SEPARATE PROCESS EMISSION						- ا
FOR EACH MODE):	0,4,7,1,0,4,1,1,240,0,7,	, a , a , a , a , a , a , a , a , a , a	- C.O			
15) PROVIDE THE NAME AND DESIGNA						
EMISSION UNIT, IF APPLICABLE (FO MUST BE COMPLETED FOR EACH I				ADDEN	IDUM FOR	:M
N/A						
1				•		
16) WILL EMISSIONS DURING STARTU	PEXCEED EITHER T	HE ALLOWABL	E EMISSION	YE	s	NO
RATE PURSUANT TO A SPECIFIC R ESTABLISHED BY AN EXISTING OR			ON LIMIT AS		J	
IF YES, COMPLETE AND ATTACH F	ORM 203-CAAPP, "R	EQUEST TO OP	ERATE WITH			
EXCESS EMISSIONS DURING STAR	TUP OF EQUIPMEN	Τ".				
17) PROVIDE ANY LIMITATIONS ON SO STANDARDS (E.G., ONLY ONE UNIT			SSIONS OR ANY	WORK P	RACTICE	
1	·	· · · · · · · · · · · · · · · · · · ·				
Firing Rate						
	OPERATING I	NFORMATIO	N			
18) ATTACH THE CALCULATIONS, TO T	HE EXTENT THEY A	RE AIR EMISSIO	N RELATED, FRO	M WHIC	H THE	_
FOLLOWING OPERATING INFORMA' BASED AND LABEL AS EXHIBIT 240-	TION, MATERIAL US 1. REFER TO SPEC	IAGE INFORMA	FORM 202-CAAPP	SAGE D	AIA WER	E
19a) MAXIMUM OPERATING HOURS	HOURS/DAY:	DAYS/	WEEK:	WEEK	S/YEAR:	
•		7		52		
8,760 b) TYPICAL OPERATING HOURS	HOURS/DAY:	DAYS/	WEEK.		S/YEAR:	_
			WEEK.		o, ilan.	
7,488	24	6	11111 4110/0	52	CED NO	(10/)
20) ANNUAL THROUGHPUT	DEC-FEB(%):	MAR-MAY(%)	: JUN-AUG(%	6):	SEP-NO\	/{%}:
• • • •	25	25	25		25	
21a) RATED OR DESIGN HEAT INPUT CA	FIRING RATE		<u> </u>			
	11 /10/11 (111221011 2					
6,7000,000 Btu/hr (Each Unit) b) IS MORE THAN ONE FUEL FIRED A	T A TIME?					- -
•				YES	\vee	7 NO
IF YES, EXPLAIN:						
·			·			

.

MATURAL GAS FUEL OIL COAL OTHER NATURAL GAS FUEL OIL COAL OTHER OSINGLE FUEL (MAXIMUM - MILLION BTUHOUR) e) SINGLE FUEL (TYPICAL - MILLION BTUHOUR) f) COMBINED FUEL (TYPICAL - MILLION BTUHOUR) (IF APPLICABLE) NATURAL GAS FIRING PIPELINE (INTERRUPTIBLE SUPPLY OTHER, - SPECIFY: CONTRACT) D) TYPICAL HEAT CONTENT (BTU/SCF): 1,000 9.8 mmscf 9) TYPICAL CONSUMPTION SCFAMONTH: SCFYEAR: CONSUMPTION 8.5 mmscf 100.3 mmscf OIL FIRING - N/A 23a) OIL TYPE (CHECK ONE): NO. 1 NO. 2 NO. 4 NO. 5 NO. 6 OTHER, SPECIFY (INCLUDE GENERATOR OR SUPPLIER): D) TYPICAL HEAT CONTENT: C) IS OIL USED ONLY AS A YES NO BTU/LB - OR - BTU/GAL C) TYPICAL SULFUR CONTENT AS FIRED (WT %): C) TYPICAL SULFUR CONTENT AS FIRED (WT %): C) MAXIMUM CONSUMPTION GAL/MONTH: GAL/MONTH: GAL/YEAR: C) TANGENTIAL D) TYPICAL SULFUR CONTENT AS FIRED (WT %): CONSUMPTION GAL/YEAR: CONSUMPTION GAL/YEAR: CONSUMPTION D) TYPICAL CONSUMPTION GAL/YEAR: CONSUMPTION D) TYPICAL CONSUMPTION GAL/YEAR: D) TANGENTIAL D TANGENTIAL D OTHER, SPECIFY:	THE BURNER IS LOCAT	ME IS DEFINED AS THAT IED, THE FURNACE SIDE IT ROW OF CONVECTION	VOLUME BOUND! WATERWALL, AN	ED BY THE FROI	NT FURNACE W	ALL WHERE				
MILLION BTUHOUR) e) SINGLE FUEL (TYPICAL-MILLION BTUHOUR) f) COMBINED FUEL (TYPICAL-MILLION BTUHOUR) (IF APPLICABLE) NATURAL GAS FIRING 22a) CURRENT ORIGIN OF NATURAL GAS: PIPELINE (IRTERUPTIBLE SUPPLY OTHER, - SPECIFY ORIGIN: OTHER, - SPECIFY: OTHER, - SPECIFY: OTHER, - SPECIFY: 1,000 c) MAXIMUM CONSUMPTION SCF/MONTH: CONSUMPTION 9.8 mmscf 1,114 mmscf SCF/YEAR: 200.3 mmscf OIL FIRING – N/A 23a) OIL TYPE (CHECK ONE): NO. 1 NO. 2 NO. 4 NO. 5 NO. 6 OTHER, SPECIFY (INCLUDE GENERATOR OR SUPPLIER): b) TYPICAL HEAT CONTENT: D) TYPICAL HEAT CONTENT: D) TYPICAL HEAT CONTENT: D) TYPICAL SULFUR CONTENT AS FIRED (WT %): e) TYPICAL ASH CONTENT AS FIRED (WT %): f) MAXIMUM GAL/MONTH: CONSUMPTION GAL/MONTH: CONSUMPTION GAL/MONTH: GAL/YEAR: 1) TYPICAL SULFUR CONTENT AS FIRED (WT %): GAL/YEAR: CONSUMPTION GAL/MONTH: GAL/YEAR: 1) TYPICAL GAL/YEAR: CONSUMPTION GAL/MONTH: GAL/YEAR: 1) TYPICAL GAL/YEAR: 1) TYPICAL GAL/YEAR: CONSUMPTION GAL/MONTH: GAL/YEAR: 1) FIRING DIRECTION:				FUEL OIL	COAL	OTHER				
MILLION BTU/HOUR) 1) COMBINED FUEL (TYPICAL- MILLION BTU/HOUR) (IF APPLICABLE) NATURAL GAS FIRING 22a) CURRENT ORIGIN OF NATURAL GAS: PIPELINE (INTERRUPTIBLE SUPPLY CONTRACT) D) TYPICAL HEAT CONTENT (BTU/SCF): 1,000 C) MAXIMUM CONSUMPTION SCF/MONTH: OIL FIRING – N/A 23a) OIL TYPE (CHECK ONE): NO. 1 NO. 2 NO. 4 NO. 5 NO. 6 OTHER, SPECIFY (INCLUDE GENERATOR OR SUPPLIER): D) TYPICAL HEAT CONTENT: D) TYPICAL HEAT CONTENT: SCF/MONTH: C) IS OIL USED ONLY AS A YES NO BTU/LB - OR - BTU/GAL d) TYPICAL SULFUR CONTENT AS FIRED (WT %): e) TYPICAL ASH CONTENT AS FIRED (WT %): 7) MAXIMUM CONSUMPTION GAL/MONTH: GAL/MONTH: GAL/YEAR: CONSUMPTION GAL/YEAR: CONSUMPTION GAL/YEAR: CONSUMPTION CONSUMPTION GAL/YEAR: CONSUMPTION GAL/YEAR: CONSUMPTION CONSUMPTION GAL/YEAR: CONSUMPTION CONSUMPTION CONSUMPTION GAL/YEAR: CONSUMPTION CONSUMP		M -								
MILLION BTUHOUR) (IF APPLICABLE) NATURAL GAS FIRING 22a) CURRENT ORIGIN OF NATURAL GAS: PIPELINE (FIRM CONTRACT) PIPELINE (INTERRUPTIBLE SUPPLY OTHER, - SPECIFY ORIGIN: D) TYPICAL HEAT CONTENT (BTU/SCF): 1,000 c) MAXIMUM SCF/MONTH: CONSUMPTION SCF/MONTH: S.5 mmscf 1,114 mmscf 3.5 mmscf 100.3 mmscf OIL FIRING – N/A 23a) OIL TYPE (CHECK ONE): NO. 1 NO. 2 NO. 4 NO. 5 NO. 6 OTHER, SPECIFY (INCLUDE GENERATOR OR SUPPLIER): D) TYPICAL HEAT CONTENT: BTU/LB - OR - BTU/GAL d) TYPICAL SULFUR CONTENT AS FIRED (WT %): e) TYPICAL ASH CONTENT AS FIRED (WT %): f) MAXIMUM CONSUMPTION GAL/MONTH: GAL/MONTH: GAL/MONTH: GAL/YEAR: CONSUMPTION GAL/MONTH: GAL/YEAR: GAL/YEAR: CONSUMPTION D) TYPICAL CONSUMPTION GAL/MONTH: GAL/YEAR: GAL/YEAR: CONSUMPTION D) FIRING DIRECTION:		· -								
22a) CURRENT ORIGIN OF NATURAL GAS: PIPELINE (INTERRUPTIBLE SUPPLY OTHER, - SPECIFY ORIGIN: PIPELINE (INTERRUPTIBLE SUPPLY OTHER, - SPECIFY: CONTRACT) D) TYPICAL HEAT CONTENT (BTU/SCF): 1,000 c) MAXIMUM SCF.MONTH: SCF.MONTH: 9.8 mmscf 1,114 mmscf SCF.YEAR: CONSUMPTION 8.5 mmscf 100.3 mmscf OIL FIRING - N/A 23a) OIL TYPE (CHECK ONE): NO. 1 NO. 2 NO. 4 NO. 5 NO. 6 OTHER, SPECIFY (INCLUDE GENERATOR OR SUPPLIER): D) TYPICAL HEAT CONTENT: BTU/LB - OR - BTU/GAL d) TYPICAL SULFUR CONTENT AS FIRED (WT %): e) TYPICAL ASH CONTENT AS FIRED (WT %): f) MAXIMUM CONSUMPTION GAL/MONTH: GAL/YEAR: CONSUMPTION GAL/MONTH: GAL/YEAR: h) FIRING DIRECTION:										
NATURAL GAS: PIPELINE (INTERRUPTIBLE SUPPLY OTHER, - SPECIFY ORIGIN: PIPELINE (INTERRUPTIBLE SUPPLY OTHER, - SPECIFY: CONTRACT) D) TYPICAL HEAT CONTENT (BTU/SCF): 1,000 C) MAXIMUM CONSUMPTION SCF/MONTH: 9.8 mmscf 1,114 mmscf SCF/MONTH: SCF/MEAR: 100.3 mmscf OIL FIRING - N/A 23a) OIL TYPE (CHECK ONE): NO. 1 NO. 2 NO. 4 NO. 5 NO. 6 OTHER, SPECIFY (INCLUDE GENERATOR OR SUPPLIER): D) TYPICAL HEAT CONTENT: C) IS OIL USED ONLY AS A RESERVE FUEL? NO. 1 PYPICAL ASH CONTENT AS FIRED (WT %): D) TYPICAL SULFUR CONTENT AS FIRED (WT %): PIPICAL SULFUR CONTENT AS FIRED (WT %): GAL/YEAR: CONSUMPTION GAL/MONTH: GAL/YEAR: GAL/YEAR: D) TYPICAL CONSUMPTION GAL/MONTH: GAL/YEAR: CONSUMPTION D) TYPICAL GAL/YEAR: GAL/YEAR: D) TYPICAL GAL/YEAR: CONSUMPTION GAL/YEAR: D) TYPICAL GAL/YEAR: CONSUMPTION GAL/YEAR: D) TYPICAL GAL/YEAR:		NATUR	AL GAS FIRIN	lG						
CONSUMPTION CONSUMPTION CONSUMPTION SCF/MONTH: 9.8 mmscf 1,114 mmscf SCF/YEAR: CONSUMPTION SCF/MONTH: 8.5 mmscf OIL FIRING – N/A 23a) OIL TYPE (CHECK ONE): NO. 1 NO. 2 NO. 4 NO. 5 NO. 6 OTHER, SPECIFY (INCLUDE GENERATOR OR SUPPLIER): D) TYPICAL HEAT CONTENT: BTU/LB - OR - BTU/GAL d) TYPICAL SULFUR CONTENT AS FIRED (WT %): e) TYPICAL ASH CONTENT AS FIRED (WT %): f) MAXIMUM CONSUMPTION GAL/MONTH: GAL/YEAR: CONSUMPTION GAL/YEAR: h) FIRING DIRECTION:		PIPELINE (INTERR			·	FY ORIGIN:				
C) MAXIMUM CONSUMPTION 9.8 mmscf 1,114 mmscf SCF/YEAR: 1,00.3 mmscf 100.3 mmscf OIL FIRING – N/A 23a) OIL TYPE (CHECK ONE): NO. 1 NO. 2 NO. 4 NO. 5 NO. 6 OTHER, SPECIFY (INCLUDE GENERATOR OR SUPPLIER): b) TYPICAL HEAT CONTENT: BTU/LB - OR - BTU/GAL d) TYPICAL SULFUR CONTENT AS FIRED (WT %): e) TYPICAL ASH CONTENT AS FIRED (WT %): f) MAXIMUM CONSUMPTION GAL/YEAR: GAL/YEAR: GAL/YEAR: h) FIRING DIRECTION:	b) TYPICAL HEAT CONTEN	T (BTU/SCF):								
CONSUMPTION 9.8 mmscf 1,114 mmscf										
d) TYPICAL CONSUMPTION SCF/MONTH: 8.5 mmscf OIL FIRING - N/A 23a) OIL TYPE (CHECK ONE): NO. 1 NO. 2 NO. 4 NO. 5 NO. 6 OTHER, SPECIFY (INCLUDE GENERATOR OR SUPPLIER): b) TYPICAL HEAT CONTENT: BTU/LB - OR - BTU/GAL d) TYPICAL SULFUR CONTENT AS FIRED (WT %): e) TYPICAL ASH CONTENT AS FIRED (WT %): f) MAXIMUM CONSUMPTION GAL/MONTH: GAL/YEAR: h) FIRING DIRECTION:		_			_					
CONSUMPTION 8.5 mmscf OIL FIRING - N/A 23a) OIL TYPE (CHECK ONE): NO. 1 NO. 2 NO. 4 NO. 5 NO. 6 OTHER, SPECIFY (INCLUDE GENERATOR OR SUPPLIER): b) TYPICAL HEAT CONTENT: C) IS OIL USED ONLY AS A RESERVE FUEL? NO. 1 NO. 5 NO. 6 OTHER, SPECIFY (INCLUDE GENERATOR OR SUPPLIER): c) IS OIL USED ONLY AS A RESERVE FUEL? PYES NO I TYPICAL SULFUR CONTENT AS FIRED (WT %): e) TYPICAL ASH CONTENT AS FIRED (WT %): f) MAXIMUM CONSUMPTION GAL/YEAR: GAL/YEAR: h) FIRING DIRECTION:	d) TVDICAL				mscf					
OIL FIRING - N/A 23a) OIL TYPE (CHECK ONE): NO. 1 NO. 2 NO. 4 NO. 5 NO. 6 OTHER, SPECIFY (INCLUDE GENERATOR OR SUPPLIER): D) TYPICAL HEAT CONTENT: BTU/LB - OR - BTU/GAL d) TYPICAL SULFUR CONTENT AS FIRED (WT %): e) TYPICAL ASH CONTENT AS FIRED (WT %): f) MAXIMUM CONSUMPTION GAL/MONTH: GAL/YEAR: h) FIRING DIRECTION:		_								
23a) OIL TYPE (CHECK ONE): NO. 1 NO. 2 NO. 4 NO. 5 NO. 6 OTHER, SPECIFY (INCLUDE GENERATOR OR SUPPLIER): b) TYPICAL HEAT CONTENT: BTU/LB - OR - BTU/GAL d) TYPICAL SULFUR CONTENT AS FIRED (WT %): e) TYPICAL ASH CONTENT AS FIRED (WT %): f) MAXIMUM CONSUMPTION GAL/MONTH: GAL/YEAR: h) FIRING DIRECTION:			EIDING AVA							
NO. 1 NO. 2 NO. 4 NO. 5 NO. 6 OTHER, SPECIFY (INCLUDE GENERATOR OR SUPPLIER): b) TYPICAL HEAT CONTENT: BTU/LB - OR - BTU/GAL d) TYPICAL SULFUR CONTENT AS FIRED (WT %): e) TYPICAL ASH CONTENT AS FIRED (WT %): f) MAXIMUM CONSUMPTION GAL/MONTH: GAL/YEAR: h) FIRING DIRECTION:	232) OIL TYPE (CHECK ONE)		FIRING - N/A							
BTU/LB - OR - BTU/GAL d) TYPICAL SULFUR CONTENT AS FIRED (WT %): e) TYPICAL ASH CONTENT AS FIRED (WT %): f) MAXIMUM	zoa, oie i ii e (oilean ane,	. No. 1								
BTU/LB - OR - BTU/GAL d) TYPICAL SULFUR CONTENT AS FIRED (WT %): e) TYPICAL ASH CONTENT AS FIRED (WT %): f) MAXIMUM	b) TYPICAL HEAT CONTEN	r:	c) IS OIL US	SED ONLY AS A						
f) MAXIMUM CONSUMPTION GAL/MONTH: GAL/YEAR: GAL/YEAR: GAL/YEAR: GAL/YEAR: CONSUMPTION h) FIRING DIRECTION:			RESERV	E FUEL?	YES	L NO				
g) TYPICAL GAL/MONTH: GAL/YEAR: CONSUMPTION h) FIRING DIRECTION:	d) TYPICAL SULFUR CONTE	NT AS FIRED (WT %):	e) TYPICAL	ASH CONTENT	AS FIRED (WT %	6):				
h) FIRING DIRECTION:		GAL/MONTH:		GALYEA	R:	-				
		GAL/MONTH:		GAL/YEA	R:					
	h) FIRING DIRECTION:	HORIZONTAL	TANGENTI	AL OT	HER, SPECIFY:					

	SOLID FUE	L FIRING- N/A							
*24a) SOLID FUEL TYPE									
(CHECK ALL THAT APPLY):		AL LIGNIT	TE COAL	BITUMINOUS COAL					
L	ANTHRACITE COAL	OTHER	R, SPECIFY:						
b) TYPICAL HEAT CONTENT A	S FIRED (BTU/LB):	c) TYPICAL MOISTURE CONTENT AS FIRED (WT %):							
d) TYPICAL SULFUR CONTEN	T AS FIRED (WT %):	e) TYPICAL ASH	CONTENT AS FIR	ED (WT %):					
f) TYPICAL FINES CONTENT (% LESS THAN 1/8 INCH):	g) IS THE COAL CLEANED?		YES NO					
h) HOW MUCH COAL REFUSE	IS IN THE FUEL? (WT %):								
i) MAXIMUM CONSUMPTION	TON/MONTH:		TON/YEAR:						
i) TYPICAL CONSUMPTION	TON/MONTH:		TON/YEAR:						
k) FIRING TYPE (CHECK ONE):									
.,,	TRAVELING GRA		PREADER STOKER	R					
		·	% REINJECTION:						
	CYCLONE		PULVERIZED, TYPE (CIRCLE ONE): WET BOTTOM DRY BOTTOM						
			OTHER, SPECIFY:						
	HORIZONTALLY OPPOSED		THER, SPECIFY:						
*NOTE: IF REQUIRED, SUBMIT C	OPIES OF THOSE PORTIO	NS OF COAL SUP	PLY CONTRACTS V	WHICH SET FORTH THE					
SPECIFICATIONS OF THE FUEL A	AND THE DURATION OF TH	HE CONTRACT. IF	THE ACTUAL FUEL	L FIRED IS A BLEND OF					
ARE BLENDED AND ACTUALLY F				BY WHICH THE FUELS					
	OTHER FUEL	EIDING N/A							
25a) OTHER	OTHER FUEL	FIRING - N/A							
FUEL FIRING	TYPE		SUPPLIE	R					
a)									
b)									
b) TYPICAL HEAT CONTENT (SP	PECIFY UNITS):	c) TYPICAL NITR	OGEN CONTENT A	S FIRED (WT %):					
-,		,							
d) TYPICAL SULFUR CONTENT	AS FIRED (WT %):	e) TYPICAL ASH	CONTENT AS FIRE	D (WT %):					
f) MAXIMUM	(SPECIFY UNITS/MON	TH):	(SPECIFY UNITS/	YEAR):					
CONSUMPTION									
a) TVBICAL	(SPECIFY UNITS/MON	THI.	(SPECIFY UNITS/	VEAD):					
g) TYPICAL CONSUMPTION	(SEECIET GIVET SAVION		(SELOIPT OWNS)	i Colly.					

高等 医多二氏管

经验

初兴

類類

26) PROVIDE ANY SPECIFIC EMISSION STANDARD(S) AND LIMITATION(S) SET BY RULE(S) WHICH ARE APPLICABLE TO THIS EMISSION UNIT (E.G., PARTICULATE MATTER, Maintain Records to demonstrate compliance Emissions so as to not violate provisions. Festing, as requested by EPA Annual Reporting REQUIREMENT(S) REQUIREMENT(S) REQUIREMENT(S) REQUIREMENT(S) REQUIREMENT(S) 30) PROVIDE ANY SPECIFIC TESTING RULES AND/OR PROCEDURES WHICH ARE APPLICABLE TO THIS EMISSION UNIT: 27) PROVIDE ANY SPECIFIC RECORDKEEPING RULE(S) WHICH ARE APPLICABLE TO THIS EMISSION UNIT: APPLICATION PAGE
Printed on Recycled Paper
240-CAAPP APPLICABLE RULES 29) PROVIDE ANY SPECIFIC MONITORING RULE(S) WHICH ARE APPLICABLE TO THIS EMISSION UNIT. 28) PROVIDE ANY SPECIFIC REPORTING RULE(S) WHICH ARE APPLICABLE TO THIS EMISSION UNIT: RECORDKEEPING RULE(S) EMISSION STANDARD(S) MONITORING RULE(S) REPORTING RULE(S) 35 IAC 201.282 35 IAC 201.302 TESTING RULE(S) 35 IAC 201.141 35 IAC 201.301 REGULATED AIR POLLUTANT(S) Regulated Pollutants Regulated Pollutants Regulated Pollutants Regulated Pollutants IAC 212.206, <= 0.10 LBS/MMBTU):

NMLP 0304

3-5

31) DOES THE EMISSION OTHERWISE APPLICA	UNIT QUALIFY FOR AN EXEM BLE RULE?	PTION FROM AN	YES	NO
EXEMPTION, PROVID SUPPORTING DATA A	OTH THE RULE FROM WHICH I E A DETAILED EXPLANATION ND CALCULATIONS. ATTACH CH ADDRESS AND JUSTIFY TI	JUSTIFYING THE EXEMPTION AND LABEL AS EXHIBIT 240-	N. INCLUDE DETAILED	ŧ .
	COMPLIAN	CE INFORMATION		
32) IS THE EMISSION UNI	TIN COMPLIANCE WITH ALL A	APPLICABLE	$\overline{\square}$	
REQUIREMENTS?			YES	NO
1				
IF NO, THEN FORM 29 COMPLYING EMISSION	4-CAAPP "COMPLIANCE PLAN NUNITS" MUST BE COMPLETE	SCHEDULE OF COMPLIANCE ED AND SUBMITTED WITH TH	E ADDENDUM FOR NO IIS APPLICATION.	'N
33) EXPLANATION OF HO	W INITIAL COMPLIANCE IS TO	BE, OR WAS PREVIOUSLY, D	DEMONSTRATED:	
Maintenance of natu	ıral gas usage records.	•		
				1
			•	
24) EVEL ANATION OF HOL	NONCOING COMPLIANCE MIL	L DE DEMONSTRATED		
34) EXPLANATION OF HOV	VONGOING COMPLIANCE WI	LL BE DEMONSTRATED:		ļ
Maintenance of natu	ral gas usage records.		•	
				1
TEC	TING, MONITORING, RE	CORDKEEPING AND RE	PORTING	
	S THAT RELATE TO AIR EMIS			IED TO
DETERMINE FEES, RU	LE APPLICABILITY OR COMPI	LIANCE. INCLUDE THE UNIT	OF MEASUREMENT, TH	E
METHOD OF MEASURE	EMENT, AND THE FREQUENC	Y OF SUCH RECORDS (E.G.,	HOURLY, DAILY, WEEK	_Y):
PARAMETER	UNIT OF MEASUREMENT	METHOD OF MEASUREMENT	FREQUENCY	,
, , , , , , , , , , , , , , , , , , , ,				
Gas usage	Therms	Gas Bi <u>ll</u>	Monthly	
	•			

APPLICATION PAGE 3-6

Printed on Recycled Paper 240-CAAPP

RECORDED PARAME	ETER INCLUDE THE METHOD	ORDS WILL BE CREATED AND N OF RECORDKEEPING, TITLE OF N NTACT FOR REVIEW OF RECORI	PERSON RESPONSIBLE FOR
PARAMETER	METHOD OF RECORDKEEPING	TITLE OF PERSON RESPONSIBLE	TITLE OF CONTACT PERSON
Gas Usage	Gas Bills	Facility Manager	Facility Manager
C) IS COMPLIANCE OF THE	E EMISSION UNIT READILY DE	MONSTRATED BY REVIEW OF	
THE RECORDS?	EEMISSION ONLY READILY DE	EMONSTRATED BY REVIEW OF	YESNO
IF NO, EXPLAIN:			
		•	
d) ARE ALL RECORDS REA	ADILY AVAILABLE FOR INSPEC	CTION, COPYING AND	YES NO
SUBMITTAL TO THE AG	ENCY UPON REQUEST?		[] 1E3 [] NO
36a) DESCRIBE ANY MONITO	ORS OR MONITORING ACTIVI	TIES USED TO DETERMINE FEES	S, RULE APPLICABILITY OR
N/A			
ENAME DADAMETERO	GARE) BEING MONITORED (E	C ODACITAIS	
b) WHAT PARAMETER(S) IS	S(ARE) BEING MONITORED (E	G., OPACH TJ?	
c) DESCRIBE THE LOCATIO	N OF EACH MONITOR (E.G., I	N STACK MONITOR):	

Printed on Recycled Paper 240-CAAPP

36d) IS EACH MONITOR EQUIPPED	WITH A RECORDING DEVICE?	
		YES NO
IF NO, LIST ALL MONITORS WITH	OUT A RECORDING DEVICE:	
		•
	•	
e) IS EACH MONITOR REVIEWED FO	R ACCURACY ON AT LEAST A QUARTERLY	YES NO
BASIS!		
IF NO, EXPLAIN:	•	•
,		
ļ		
	<u> </u>	
	ALL TIMES THE ASSOCIATED EMISSION UNI	
IN OPERATION?		YES NO
IF NO, EXPLAIN:		
	•	
37) PROVIDE INFORMATION ON THE N	OST RECENT TESTS, IF ANY, IN WHICH THE	RESULTS ARE USED FOR
	ON OF FEES, RULE APPLICABILITY OR COM	
	ING COMPANY, OPERATING CONDITIONS EXTONAL SPACE IS NEEDED, ATTACH AND LAB	
COMMART OF RESCETS. IF ADDIT	,	
TEST DATE TEST METHOD	OPERATING TESTING COMPANY CONDITIONS	
TEST DATE TEST METHOD	TESTING COMPANY CONDITIONS	SUMMART OF RESULTS
N/A		
38) DESCRIBE ALL REPORTING PEOLIS	REMENTS AND PROVIDE THE TITLE AND FR	FOLIENCY OF REPORT
SUBMITTALS TO THE AGENCY:	TEMENTO AND I NOTICE THE THE AND FR	ESCENCE OF THE ONE
	TEL E 05 0	
REPORTING REQUIREMENTS	TITLE OF REPORT	FREQUENCY
Annual Emission Reporting	Annual Emission Report	Annually
. Januar Elmosion Reporting	, which Emission Report	

	PERMITTED EMISSION RATE		RATE (UNITS) TONS PER YEAR (CIONSAYR)	1 12 the thr				1.34		0.1				0.00		0.08				SSLBSHR 222
	ON RATE		TONS PER YEAR (TONS/YR)																	¥26.28
	RULE EMISSIC		APPLICABLE																	212.321 212.321
39)EMISSION INFORMATION	ALLOWABLE BY RULE EMISSION RATE		⁵ RATE (UNITS)							-			()	()	-	_				6.9(LBS/HR)- 5.5(LBS/HR)
IISSION IN			4cm	6 7	· ~			~	· · ·	<u>س</u>	60			m	т	₆₀	m			1
(39)EW		I RATE	³ OTHER TERMS							,										
	ISSION RATE	1UNCONTROLLED EMISSION RA	³ OTHER TERMS																	0.3 GR/DSGE 0.24 GR/DSGE
	X 1ACTUAL EMISSION RATE	1UNCONTRO	TONS PER YEAR (TONS/YR)	5.0	4.22			5.86	5.02	0.44	0.38			0.04	0.04	0.32	0.28			21.9
			LBS PER HOUR (LBS/HR)	1.12	1.12			1.34	1.34	0.1	0.1			0.00	0.00	0.08	0.08			5:00
				MAXIMUM:	TYPICAL:	MAXIMUM:	TYPICAL:	MAXIMUM:	TYPICAL:	MAXIMUM:	TYPICAL:	MAXIMUM:	TYPICAL:	MAXIMUM:	TYPICAL:	MAXIMUM:	TYPICAL:	MAXIMUM:	TYPICAL:	MAXIMUM
			REGULATED AIR POLLUTANT	CARBON	MONOXIDE (CO)	LEAD		NITROGEN	OXIDES (NOx)	PARTICULATE	MATTER (PART)	PARTICULATE MATTER <= 10	MICROMETERS (PM10)	SULFUR	DIOXIDE (SO2)	VOLATILE ORGANIC	MATERIAL (VOM)	OTHER, SPECIEY:		EXAMPLE PARTICULATE MATTER

調問

您是

)...... . 13 . r

IMPORTANT: ATTACH CALCULATIONS, TO THE EXTENT THEY ARE AIR EMISSIONS RELATED, ON WHICH EMISSIONS WERE DETERMINED AND LABEL AS EXHIBIT 240-5,

1CHECK UNCONTROLLED EMISSION RATE BOX IF CONTROL EQUIPMENT IS USED, OTHERWISE CHECK AND PROVIDE THE ACTUAL EMISSION RATE TO ATMOSPHERE; INCLUDING INDOORS. SEE INSTRUCTIONS.
PROVIDE THE EMISSION RATE THAT WILL BE USED AS A PERMIT SPECIAL CONDITION. THIS LIMIT WILL BE USED TO DETERMINE THE PERMIT FEE.
PROVIDE ANY OTHER EMISSION RATE WHICH IS COMMONLY USED, REQUIRED BY A SPECIFIC LIMITATION OR THAT WAS MEASURED (E.G. PPM, GROSCF, ETC.)

40M - DETERMINATION METHOD: 1) STACK TEST, 2) MATERIAL BALANCE, 3) STANDARD EMISSION FACTOR (AP 42 OR AIRS), 4) ENGINEERING ESTIMATE, 5) SPECIAL EMISSION FACTOR (NOT AP 42 OR AIRS)

5RATE - ALLOWABLE EMISSION RATE SPECIFIED BY MOST STRINGENT APPLICABLE RULE.

3-9

APPLICATION PAGE
Printed on Recycled Paper 240-CAAPP

	ALLOWABLE BY RULE	⁵ RATE OR STANDARD APPLICABLE RULE										_							98% by wt control gevice CFR 61 leak-tight trucks 61.302(b);(d)
NC		5RATE										_							1
FORMATI	1 ACTUAL EMISSION RATE	4DM																	2
T EMISSION IN		3 TERMS												,					
NR POLLUTAN		TONS PER YEAR (TONS/YR)																	172
(40) HAZARDOUS AIR POLLUTANT EMISSION INFORMATION	TACTU/	POUNDS PER HOUR (LBS/HR)																	10.0
(40)			MAXIMUM:	TYPICAL:	MAXIMUM: TYPICAL														
	NOIL	2cas NUMBER																	7/1432
	HAP INFORMATION	NAME OF HAP EMITTED	N/A		i	,													EXAMPLE: Benzene

140 74 12

IMPORTANT: ATTACH CALCULATIONS, TO THE EXTENT THEY ARE AIR EMISSIONS RELATED, ON WHICH EMISSIONS WERE DETERMINED AND LABEL AS EXHIBIT 240-6.

¹PROVIDE UNCONTROLLED EMISSIONS IF CONTROL EQUIPMENT IS USED. OTHERWISE, PROVIDE ACTUAL EMISSIONS TO THE ATMOSPHERE, INCLUDING INDOORS. CHECK BOX TO SPECIFY.

²CAS.-CHEMICAL ABSTRACT SERVICE NUMBER.

³PIEASE PROVIDE ANY OTHER EMISSION RATE WHICH IS COMMONLY USED, REQUIRED BY A SPECIFIC LIMITATION OR THAT WAS MEASURED (E.G., PPM, GRUDSCF, ETC.).

⁴DM.-DETERMINATION METHOD: 1) STACK TEST, 2) MATERIAL BALANCE, 3) STANDARD EMISSION FACTOR (AP-42 OR AIRS, 4) ENGINEERING ESTIMATE, 5) SPECIAL EMISSION FACTOR (NOT AP-42 OR AIRS).

⁵FRATE. - ALLOWABLE EMISSION RATE OR STANDARD SPECIFIED BY MOST STRINGENT APPLICABLE RULE.

APPLICATION PAGE 3-10

Printed on Recycled Paper 240-CAAPP

	EXHAUST POIN	T INFORMATIO	N							
THIS SECTION SHOULD NOT BE COMPLETE	D IF EMISSIONS ARE EX	CHAUSTED THROUGH	AIR POLLUTION CONTROL EQUIPMENT.							
41) FLOW DIAGRAM DESIGNATION OF EXHAUST POINT:										
Boilers 1 and 2										
42) DESCRIPTION OF EXHAUST POINT DISCHARGES INDOORS, DO NOT C			ORS, ETC.). IF THE EXHAUST POINT							
Stacks for each unit										
43) DISTANCE TO NEAREST PLANT BC	DUNDARY FROM EXH	AUST POINT DISCH	HARGE (FT):							
100										
44) DISCHARGE HEIGHT ABOVE GRAD	E (FT):									
50										
45) GOOD ENGINEERING PRACTICE (G	EP) HEIGHT, IF KNO	WN (FT):								
46) DIAMETER OF EXHAUST POINT (FT) NOTE: FOR A NO	N CIRCUI AR EXHAI	IST POINT THE DIAMETER IS							
1.128 TIMES THE SQUARE ROOT O		TO TO TO THE ENTIRE	oor, one, the brane, etco							
47) EXIT GAS FLOW RATE	a) MAXIMUM (ACFI	M):	b) TYPICAL (ACFM):							
	~2500		~2500							
48) EXIT GAS TEMPERATURE	a) MAXIMUM (°F):		b) TYPICAL (°F):							
	~500		~500							
49) DIRECTION OF EXHAUST (VERTICA	L, LATERAL, DOWN	VARD):								
Vertical										
50) LIST ALL EMISSION UNITS AND COM	TROL DEVICES SEF	RVED BY THIS EXH	AUST POINT:							
NAME		FLO	W DIAGRAM DESIGNATION							
a) Boiler 1 and 2		Boilers 1 and 2	?							
b)	_									
c)										
d)										
e) .										
THE FOLLOWING INFORMATION NEED ONLY E	BE SUPPLIED IF READIL	Y AVAILABLE. b) LONGITUDE:	•							
Jia) LATTI OUE.		D) LONGITUDE:								
52) UTM ZONE:	b) UTM VERTICAL (CAL (KM): c) UTM HORIZONTAL (KM):								

Exhibit 240-1 AP-42 EMISSIONS CALCULATIONS 200 BHP Boiler 1

Operating Hours
Firing Rate

Typical N 7,488 6.70

Maximum 8,760

6.70

Units hours million Btu/hr

Heating Value

Example Calculation

$$\left(\frac{7.0 \times 10^6 \text{ Btu}}{\text{hr}}\right) \times \left(\text{AP} - 42 \text{ Emission Factor}\right) \times \left(\frac{1 \text{ scf}}{1,000 \text{ Btu}}\right) = \left(\frac{\text{x lbs pollutant}}{\text{hr}}\right)$$

$$\left(\frac{\text{x lbs pollutant}}{\text{hr}}\right) \times \left(\frac{Operating \text{ hrs}}{\text{yr}}\right) \times \left(\frac{1 \text{ ton}}{2,000 \text{ lbs}}\right) = \left(\frac{\text{y tons pollutant}}{\text{yr}}\right)$$

TYPICAL SEASON EMISSIONS

3

				AP-42 Emission	Heating Value	Emissions		
P	ollutant	Rate	Units	Factor (lb/10^6 scf)	(Btu/scf)	(lb/hr)	Operating Hours	Emissions (tons/year)
τF	rom Natural Gas Firing							
, P	articulate Matter (PM)	6.70	10^6 Btu/hr					
	Filterable							
77)	Condensable							
	Condensable Total arbon Monoxide (CO)			7.60	1000 .	0.05	7488	0.19
	rbon Monoxide (CO)	6.70	10^6 Btu/hr	84.00	1000	0.56	7488	2.11
	trogen Oxides (NOx)	6.70	10^6 Btu/hr	100.00	1000	0.67	7488	2.51
V	Diatile Organic Compounds (VOC) Ifur Dioxide (SO2)	6.70	10^6 Btu/hr	5.50	1000	0.04	7488	0.14
ู้ วัน	Ifur Dioxide (SO2)	6.70	10^6 Btu/hr	0.60	1000	0.00	7488	0.02
Ar	nmonia (NH3)	96.00	10^6 Btu/hr	0.49	1000	0.05	1840	0.19

MAXIMUM EMISSIONS

्र ्रे Pollutant	Rate	Units	AP-42 Emission Factor (lb/10^6 scf)	Heating Value (Btu/scf)	Emissions (lb/hr)	Operating Hours Emissions (tons/year)
From Natural Gas Firing						
articulate Matter (PM)	6.70	10^6 Btu/hr				
Particulate Matter (PM) Filterable						
Condensable			•	•		
Total			7.60	1000	0.05	8760 0.22
Carbon Monoxide (CO)	6.70	10^6 Btu/hr	84.00	1000	0.56	8760 2.47
Nitrogen Oxides (NOx)	6.70	10^6 Btu/hr	100.00	1000	0.67	8760 2.93
Volatile Organic Compounds (VOC)	6.70	10^6 Btu/hr	5.50	1000	0.04	8760 0.16
Julfur Dioxide (SO2)	6.70	10^6 Btu/hr	0.60	1000	0.00	8760 0.02
Ammonia (NH3)	96.00	10^6 Btu/hr	0.49	1000	0.05	5320 0.22

Annual Natural Gas Fuel Use

50.17 million scf/yr. (typ.)

58.69 million scf/yr. (max.)

0.0067 million scf/hr

Exhibit 240-2 AP-42 EMISSIONS CALCULATIONS 200 BHP Boiler 2 (Steam)

Operating Hours Firing Rate

Typical 7,488 6.70

Maximum 8,760 6.70

Units hours million Btu/hr

Heating Value 1000 Btu/scf

- Example Calculation

$$\left(\frac{7.0 \times 10^{6} \text{ Btu}}{\text{hr}}\right) \times \left(\text{AP - 42 Emission Factor}\right) \times \left(\frac{1 \text{ scf}}{1,000 \text{ Btu}}\right) = \left(\frac{x \text{ lbs pollutant}}{hr}\right)$$

$$\left(\frac{x \text{ lbs pollutant}}{hr}\right) \times \left(\frac{Operating \text{ hrs}}{yr}\right) \times \left(\frac{1 \text{ ton}}{2,000 \text{ lbs}}\right) = \left(\frac{y \text{ tons pollutant}}{yr}\right)$$

TYPICAL SEASON EMISSIONS

			AP-42 Emission	Heating Value	Emissions		
Pollutant	Rate	Units	Factor (lb/10^6 scf)	(Btu/scf)	(lb/hr)	Operating Hours Emissions (tons/ye	ear)
From Natural Gas Firing							
articulate Matter (PM)	6.70	10^6 Btu/hr					
Filterable							
Condensable							
Total			7.60	1000	0.05	7488 0.19	
Carbon Monoxide (CO)	6.70	10^6 Btu/hr	84.00	1000	0.56	7488 . 2.11	
Nitrogen Oxides (NOx)	6.70	10^6 Btu/hr	100.00	1000	0.67	7488 2.51	
Volatile Organic Compounds (VOC)	6.70	10^6 Btu/hr	5.50	1000	0.04	7488 0.14	
Sulfur Dioxide (SO2)	6.70	10^6 Btu/hr	0.60	1000	0.00	7488 0.02	
Ammonia (NH3)	96.00	10^6 Btu/hr	0.49	1000	0.05	1840 0.19	

MAXIMUM EMISSIONS

- X		*114	AP-42 Emission	Heating Value	Emissions	O	Posteriore (to a form)		
wa?oliutant	Rate Units		Factor (lb/10^6 scf)	(Btu/scf)	(lb/hr)	Operating Hours Emissions (tons/year)			
From Natural Gas Firing									
्राष्ट्रि articulate Matter (PM)	6.70	10^6 Btu/hr							
Filterable									
Condensable									
Total			7.60	1000	0.05	8760	0.22		
Carbon Monoxide (CO)	6.70	10^6 Btu/hr	84.00	1000	0.56	8760	2.47		
Vitrogen Oxides (NOx)	6.70	10^6 Btu/hr	100.00	1000	0.67	8760	2.93		
Volatile Organic Compounds (VOC)	6.70	10^6 Btu/hr	5.50	1000	0.04	8760	0.16		
ulfur Dioxide (SO2)	6.70	10^6 Btu/hr	0.60	1000	0.00	8760	0.02		
Ammonia (NH3)	96.00	10^6 Btu/hr	0.49	1000	. 0.05	5320	. 0.22		
Annual Natural Gas Fuel Use	typ.) nnax.)	0.0067 m	nillion scf/hr						

ILLINOIS ENVIRONMENTAL PROTECTION AGENCY DIVISION OF AIR POLLUTION CONTROL — PERMIT SECTION P.O. BOX 19506 SPRINGFIELD, ILLINOIS 62794-9506

FOR APPLICANT'S USE										
Revision #:										
Date:	_ / _		/							
Page		of								
Source Designation:										

AIR POLLUTION CONTROL EQUIPMENT DATA AND INFORMATION

FOR AGENCY	USE ONLY
ID NUMBER:	
CONTROL EQUIPMENT #:	
DATE:	

THIS FORM MUST BE COMPLETED FOR EACH AIR POLLUTION CONTROL EQUIPMENT. COMPLETE AND PROVIDE THIS FORM IN ADDITION TO THE APPLICABLE ADDENDUM FORM 260-A THROUGH 260-K. A SEPARATE FORM MUST BE COMPLETED FOR EACH MODE OF OPERATION OF AIR POLLUTION CONTROL EQUIPMENT FOR WHICH A PERMIT IS BEING SOUGHT.

SOURCE INFORMATION								
1) SOURCE NAME:								
NACME Steel Processing								
2) DATE FORM PREPARED: 9/30/05	3) SOURCE ID NO. (IF KNOWN): 031600FWL							
	ENERAL INFORMATION							
4) NAME OF AIR POLLUTION CONTROL EQUIP	MENT AND/OR CONTROL SYSTEM:							

GENERAL I	GENERAL INFORMATION										
4) NAME OF AIR POLLUTION CONTROL EQUIPMENT AND/OR CONTROL SYSTEM:											
Pickle Line Scrubber											
5) FLOW DIAGRAM DESIGNATION OF CONTROL EQUIPMENT AND/OR CONTROL SYSTEM:											
Scrubber											
6) MANUFACTURER OF CONTROL EQUIPMENT (IF KNOW)	N):										
PRO-ECO	<u> </u>										
7) MODEL NUMBER (IF KNOWN):	8) SERIAL NUMBER (IF KNOWN):										
DATES OF COMMENCING CONSTRUCTION, OPERATION AND/OR MOST RECENT MODIFICATION	a) CONSTRUCTION (MONTH/YEAR):										
OF THIS EQUIPMENT (ACTUAL OR PLANNED)											
	b) OPERATION (MONTH/YEAR):										
	c) LATEST MODIFICATION (MONTH/YEAR):										
40) PRIEST V PERSONNE MORISION VIE APPLICABILITY											
10) BRIEFLY DESCRIBE MODIFICATION (IF APPLICABLE):											
Operates at all time Steel Pickle Line is in operation	on.										

THIS AGENCY IS AUTHORIZED TO REQUIRE THIS INFORMATION UNDER ILLINOIS REVISED STATUTES, 1991, AS AMENDED 1992, CHAPTER 111 1/2, PAR. 1039.5. DISCLOSURE OF THIS INFORMATION IS REQUIRED UNDER THAT SECTION. FAILURE TO DO SO MAY PREVENT THIS FORM FROM BEING PROCESSED AND COULD RESULT IN THE APPLICATION BEING DENIED. THIS FORM HAS BEEN APPROVED BY THE FORMS MANAGEMENT CENTER.

APPLICATION PAGE 4-1

Printed on Recycled Paper 260-CAAPP FOR APPLICANT'S USE

11) LIST ALL EMISSION UNITS AND OTHER CONTROL EQUI	PMENT DUCTING EMISSIONS TO THIS CONTROL									
EQUIPMENT:	MENT BOOTING LIMBORONG TO THIS CONTINGE									
NAME	DESIGNATION OR CODE NUMBER									
Steel Pickling Line	Steel Pickling Line									
3, HCl Storage Tank Vents	HCL Storage Tanks 1-3									
5, Tot Starge Talk Vents	TIOL Storage Talks 1-3									
12) DOES THE CONTROL EQUIPMENT HAVE MORE THAN ON	E MODE OF OPERATION?									
, and the south of each man in the mone in the south	YES NO									
IF YES, EXPLAIN AND IDENTIFY WHICH MODE IS COVERE										
A SEPARATE AIR POLLUTION CONTROL EQUIPMENT FOR	M 260-CAAPP MUST BE									
COMPLETED FOR EACH MODE):										
12) IDENTIFY ALL ATTACHMENTS TO THIS FORM BELLATED T	O THIS AIR POLITICAL CONTROL TO HEAT S									
13) IDENTIFY ALL ATTACHMENTS TO THIS FORM RELATED TO TECHNICAL DRAWINGS):	O THIS AIR POLLUTION CONTROL EQUIPMENT (E.G.,									
120) INIONE BINAVIINOO).										
None										
OPERATING	CHEDULE									
OPERATING S										
14) IDENTIFY ANY PERIOD WHEN THE CONTROL EQUIPMENT	WILL NOT BE OPERATING DUE TO SCHEDULED									
	WILL NOT BE OPERATING DUE TO SCHEDULED									
14) IDENTIFY ANY PERIOD WHEN THE CONTROL EQUIPMENT MAINTENANCE AND/OR REPAIRS WHEN THE FEEDING EN	WILL NOT BE OPERATING DUE TO SCHEDULED									
14) IDENTIFY ANY PERIOD WHEN THE CONTROL EQUIPMENT MAINTENANCE AND/OR REPAIRS WHEN THE FEEDING EN	WILL NOT BE OPERATING DUE TO SCHEDULED MISSION UNIT(S) TO THIS CONTROL EQUIPMENT IS/ARE									
14) IDENTIFY ANY PERIOD WHEN THE CONTROL EQUIPMENT MAINTENANCE AND/OR REPAIRS WHEN THE FEEDING EN IN OPERATION:	WILL NOT BE OPERATING DUE TO SCHEDULED MISSION UNIT(S) TO THIS CONTROL EQUIPMENT IS/ARE									
14) IDENTIFY ANY PERIOD WHEN THE CONTROL EQUIPMENT MAINTENANCE AND/OR REPAIRS WHEN THE FEEDING EN IN OPERATION:	WILL NOT BE OPERATING DUE TO SCHEDULED MISSION UNIT(S) TO THIS CONTROL EQUIPMENT IS/ARE									
14) IDENTIFY ANY PERIOD WHEN THE CONTROL EQUIPMENT MAINTENANCE AND/OR REPAIRS WHEN THE FEEDING EN IN OPERATION:	WILL NOT BE OPERATING DUE TO SCHEDULED MISSION UNIT(S) TO THIS CONTROL EQUIPMENT IS/ARE									
14) IDENTIFY ANY PERIOD WHEN THE CONTROL EQUIPMENT MAINTENANCE AND/OR REPAIRS WHEN THE FEEDING EN IN OPERATION:	WILL NOT BE OPERATING DUE TO SCHEDULED MISSION UNIT(S) TO THIS CONTROL EQUIPMENT IS/ARE									
14) IDENTIFY ANY PERIOD WHEN THE CONTROL EQUIPMENT MAINTENANCE AND/OR REPAIRS WHEN THE FEEDING EN IN OPERATION: Not Applicable – Will be operated at all times Steel Pi 15a) IDENTIFY ANY PERIODS DURING OPERATION OF THE FE	WILL NOT BE OPERATING DUE TO SCHEDULED MISSION UNIT(S) TO THIS CONTROL EQUIPMENT IS/ARE Cockle Line is in operation.									
14) IDENTIFY ANY PERIOD WHEN THE CONTROL EQUIPMENT MAINTENANCE AND/OR REPAIRS WHEN THE FEEDING EN IN OPERATION: Not Applicable – Will be operated at all times Steel Pi	WILL NOT BE OPERATING DUE TO SCHEDULED MISSION UNIT(S) TO THIS CONTROL EQUIPMENT IS/ARE Ckle Line is in operation.									
14) IDENTIFY ANY PERIOD WHEN THE CONTROL EQUIPMENT MAINTENANCE AND/OR REPAIRS WHEN THE FEEDING EN IN OPERATION: Not Applicable – Will be operated at all times Steel Pi 15a) IDENTIFY ANY PERIODS DURING OPERATION OF THE FE	WILL NOT BE OPERATING DUE TO SCHEDULED MISSION UNIT(S) TO THIS CONTROL EQUIPMENT IS/ARE Ckle Line is in operation.									
14) IDENTIFY ANY PERIOD WHEN THE CONTROL EQUIPMENT MAINTENANCE AND/OR REPAIRS WHEN THE FEEDING EN IN OPERATION: Not Applicable – Will be operated at all times Steel Pi 15a) IDENTIFY ANY PERIODS DURING OPERATION OF THE FEEQUIPMENT IS/ARE NOT USED:	WILL NOT BE OPERATING DUE TO SCHEDULED MISSION UNIT(S) TO THIS CONTROL EQUIPMENT IS/ARE Ckle Line is in operation.									
14) IDENTIFY ANY PERIOD WHEN THE CONTROL EQUIPMENT MAINTENANCE AND/OR REPAIRS WHEN THE FEEDING EN IN OPERATION: Not Applicable – Will be operated at all times Steel Pi 15a) IDENTIFY ANY PERIODS DURING OPERATION OF THE FE	WILL NOT BE OPERATING DUE TO SCHEDULED MISSION UNIT(S) TO THIS CONTROL EQUIPMENT IS/ARE Ckle Line is in operation.									
14) IDENTIFY ANY PERIOD WHEN THE CONTROL EQUIPMENT MAINTENANCE AND/OR REPAIRS WHEN THE FEEDING EN IN OPERATION: Not Applicable – Will be operated at all times Steel Pi 15a) IDENTIFY ANY PERIODS DURING OPERATION OF THE FEEQUIPMENT IS/ARE NOT USED:	WILL NOT BE OPERATING DUE TO SCHEDULED MISSION UNIT(S) TO THIS CONTROL EQUIPMENT IS/ARE Ckle Line is in operation.									
14) IDENTIFY ANY PERIOD WHEN THE CONTROL EQUIPMENT MAINTENANCE AND/OR REPAIRS WHEN THE FEEDING EN IN OPERATION: Not Applicable – Will be operated at all times Steel Pi 15a) IDENTIFY ANY PERIODS DURING OPERATION OF THE FEEQUIPMENT IS/ARE NOT USED:	WILL NOT BE OPERATING DUE TO SCHEDULED MISSION UNIT(S) TO THIS CONTROL EQUIPMENT IS/ARE Cockle Line is in operation.									
 14) IDENTIFY ANY PERIOD WHEN THE CONTROL EQUIPMENT MAINTENANCE AND/OR REPAIRS WHEN THE FEEDING EN IN OPERATION: Not Applicable – Will be operated at all times Steel Pi 15a) IDENTIFY ANY PERIODS DURING OPERATION OF THE FEEQUIPMENT IS/ARE NOT USED: Not Applicable – See #14 	WILL NOT BE OPERATING DUE TO SCHEDULED MISSION UNIT(S) TO THIS CONTROL EQUIPMENT IS/ARE Sckle Line is in operation. EDING EMISSION UNIT(S) WHEN THE CONTROL									
 14) IDENTIFY ANY PERIOD WHEN THE CONTROL EQUIPMENT MAINTENANCE AND/OR REPAIRS WHEN THE FEEDING EN IN OPERATION: Not Applicable - Will be operated at all times Steel Pi 15a) IDENTIFY ANY PERIODS DURING OPERATION OF THE FEEQUIPMENT IS/ARE NOT USED: Not Applicable - See #14 b) IS THIS CONTROL EQUIPMENT IN OPERATION AT ALL OT 	WILL NOT BE OPERATING DUE TO SCHEDULED MISSION UNIT(S) TO THIS CONTROL EQUIPMENT IS/ARE Cockle Line is in operation. EDING EMISSION UNIT(S) WHEN THE CONTROL									
 14) IDENTIFY ANY PERIOD WHEN THE CONTROL EQUIPMENT MAINTENANCE AND/OR REPAIRS WHEN THE FEEDING EN IN OPERATION: Not Applicable – Will be operated at all times Steel Pi 15a) IDENTIFY ANY PERIODS DURING OPERATION OF THE FEEQUIPMENT IS/ARE NOT USED: Not Applicable – See #14 	WILL NOT BE OPERATING DUE TO SCHEDULED MISSION UNIT(S) TO THIS CONTROL EQUIPMENT IS/ARE Sckle Line is in operation. EDING EMISSION UNIT(S) WHEN THE CONTROL									
 14) IDENTIFY ANY PERIOD WHEN THE CONTROL EQUIPMENT MAINTENANCE AND/OR REPAIRS WHEN THE FEEDING EN IN OPERATION: Not Applicable - Will be operated at all times Steel Pi 15a) IDENTIFY ANY PERIODS DURING OPERATION OF THE FEEQUIPMENT IS/ARE NOT USED: Not Applicable - See #14 b) IS THIS CONTROL EQUIPMENT IN OPERATION AT ALL OT 	WILL NOT BE OPERATING DUE TO SCHEDULED MISSION UNIT(S) TO THIS CONTROL EQUIPMENT IS/ARE Sckle Line is in operation. EEDING EMISSION UNIT(S) WHEN THE CONTROL HER TIMES THAT THE YES NO									
 14) IDENTIFY ANY PERIOD WHEN THE CONTROL EQUIPMENT MAINTENANCE AND/OR REPAIRS WHEN THE FEEDING EN IN OPERATION: Not Applicable - Will be operated at all times Steel Pi 15a) IDENTIFY ANY PERIODS DURING OPERATION OF THE FEEQUIPMENT IS/ARE NOT USED: Not Applicable - See #14 b) IS THIS CONTROL EQUIPMENT IN OPERATION AT ALL OT FEEDING EMISSION UNIT(S) IS/ARE IN OPERATION? 	WILL NOT BE OPERATING DUE TO SCHEDULED MISSION UNIT(S) TO THIS CONTROL EQUIPMENT IS/ARE Sckle Line is in operation. EEDING EMISSION UNIT(S) WHEN THE CONTROL HER TIMES THAT THE YES NO									
14) IDENTIFY ANY PERIOD WHEN THE CONTROL EQUIPMENT MAINTENANCE AND/OR REPAIRS WHEN THE FEEDING EN IN OPERATION: Not Applicable – Will be operated at all times Steel Pi 15a) IDENTIFY ANY PERIODS DURING OPERATION OF THE FE EQUIPMENT IS/ARE NOT USED: Not Applicable – See #14 b) IS THIS CONTROL EQUIPMENT IN OPERATION AT ALL OT FEEDING EMISSION UNIT(S) IS/ARE IN OPERATION? IF NO, EXPLAIN AND PROVIDE THE DURATION OF THE CO	WILL NOT BE OPERATING DUE TO SCHEDULED MISSION UNIT(S) TO THIS CONTROL EQUIPMENT IS/ARE Sckle Line is in operation. EEDING EMISSION UNIT(S) WHEN THE CONTROL HER TIMES THAT THE YES NO									
14) IDENTIFY ANY PERIOD WHEN THE CONTROL EQUIPMENT MAINTENANCE AND/OR REPAIRS WHEN THE FEEDING EN IN OPERATION: Not Applicable – Will be operated at all times Steel Pi 15a) IDENTIFY ANY PERIODS DURING OPERATION OF THE FE EQUIPMENT IS/ARE NOT USED: Not Applicable – See #14 b) IS THIS CONTROL EQUIPMENT IN OPERATION AT ALL OT FEEDING EMISSION UNIT(S) IS/ARE IN OPERATION? IF NO, EXPLAIN AND PROVIDE THE DURATION OF THE CO	WILL NOT BE OPERATING DUE TO SCHEDULED MISSION UNIT(S) TO THIS CONTROL EQUIPMENT IS/ARE CALLED IS IN OPERATION. EDING EMISSION UNIT(S) WHEN THE CONTROL HER TIMES THAT THE									
14) IDENTIFY ANY PERIOD WHEN THE CONTROL EQUIPMENT MAINTENANCE AND/OR REPAIRS WHEN THE FEEDING EN IN OPERATION: Not Applicable – Will be operated at all times Steel Pi 15a) IDENTIFY ANY PERIODS DURING OPERATION OF THE FE EQUIPMENT IS/ARE NOT USED: Not Applicable – See #14 b) IS THIS CONTROL EQUIPMENT IN OPERATION AT ALL OT FEEDING EMISSION UNIT(S) IS/ARE IN OPERATION? IF NO, EXPLAIN AND PROVIDE THE DURATION OF THE CO	WILL NOT BE OPERATING DUE TO SCHEDULED MISSION UNIT(S) TO THIS CONTROL EQUIPMENT IS/ARE Sckle Line is in operation. EEDING EMISSION UNIT(S) WHEN THE CONTROL HER TIMES THAT THE YES NO									

接線

Printed on Recycled Paper 260-CAAPP

54, 13,

Г	1																-			-
	24) PROVIDE ANY SPECIFIC EMISSION STANDARD(S) AND LIMITATION(S) SET BY RULE(S) WHICH ARE APPLICABLE TO THIS EMISSION UNIT (E.G., VOM, IAC 218.204(j)(4), 3.5 LBS/GAL): REGULATED AIR POLLUTANT(S) REGULATED AIR POLLUTANT(S)	No HCI in a concentration in excess of 18 ppmy or mass emission rate that corresponds to a collection efficiency of less than 97%	IT: REQUIREMENT(S)	Compliance Records	Operations and Maintenance Plan/Inspection Records	Relevant Records		REQUIREMENT(S)	Annual Reporting/Compliance Notification	Testing Notification and Methods	DEOLINGMENT OF O	REGUINEMENT (5)	Emission Source/Device Monitoring	Pressure Drop Across Scrubber (Once Per Shift)	Scrubber Water Flow	EMISSION UNIT:	REQUIREMENT(S)	Emission Testing, As Required	Emission Testing to Establish Compliance with Relevant Limit	
APPLICABLE RULES	S) AND LIMITATION(S) SET BY RULE(S) WHICH ARE A EMISSION STANDARD(S)	40 CFR 63, Subpart CCC	25) PROVIDE ANY SPECIFIC RECORDKEEPING RULE(S) WHICH ARE APPLICABLE TO THIS EMISSION UNIT: REGULATED AIR POLLUTANT(S)	35 IAC 201.301	40 CFR 63. 1160	40 CFR 63.10	WHICH ARE APPLICABLE TO THIS EMISSION UNIT:	REPORTING RULE(S)	35 IAC 201.302	40 CFR 63.89(e)(3)	APPL	MONITORING RUCE(S)	201.281	40 CFR 63.1160	40 CFR 63.1162	OR PROCEDURES WHICH ARE APPLICABLE TO THIS EMISSION UNIT:	TESTING RULE(S)	35 IAC 201.282/40 CFR 63.1161 and 1162	40 CFR 63.7 and 63.8(e)(4)	
	24) PROVIDE ANY SPECIFIC EMISSION STANDARD(S REGULATED AIR POLLUTANT(S)	нсі	25) PROVIDE ANY SPECIFIC RECORDKEEPING RULE REGULATED AIR POLLUTANT(S)	НСІ	HCI	нсі	26) PROVIDE ANY SPECIFIC REPORTING RULE(S) WHICH ARE APPLICABLE TO THIS EMISSION UNIT:	REGULATED AIR POLLUTANT(S)	HCI	HCI	27) PROVIDE ANY SPECIFIC MONITORING RULE(S) WHICH ARE	REGULATED AIR POLLUTANT(S)	HCI	HCI	НСІ	28) PROVIDE ANY SPECIFIC TESTING RULES AND/OR PROCEDI	REGULATED AIR POLLUTANT(S)	HCI	HCI	

APPLICATION PAGE 4-3
Printed on Recycled Paper
260-CAAPP

	COMPLIA	NCE INFORMATION		
21) IS THE CONTROL SYS REQUIREMENTS?	STEM IN COMPLIANCE WITH	ALL APPLICABLE	YES	NO
	94-CAAPP "COMPLIANCE PLA N UNITS" MUST BE COMPLE			NON
22) EXPLANATION OF HO	W INITIAL COMPLIANCE IS T	TO BE, OR WAS PREVIOUS	SLY, DEMONSTRATED:	
Maintenance of wate	r flow to scrubber and en	nission testing.		
,	OW ONGOING COMPLIANC		±υ:	
Maintenance of water	flow and maintenance re	ecords.		
	•			
			•	
				
	TING, MONITORING, RE			
	LE APPLICABILITY OR COM EMENT, AND THE FREQUEN	PLIANCE. INCLUDE THE U	JNIT OF MEASUREMENT,	THE
PARAMETER	UNIT OF MEASUREMENT	METHOD OF MEASURE	MENT_ FREQUE	NCY
Scrubber Water Flow	Gallons	Flow meter	Monito. Continu	
			Recorded Per Sh	í I
. • 4.		v.		
	·			

APPLICATION PAGE 4-4

RECORDED PARAMET	ER INCLUDE THE METHOD	CORDS WILL BE CREATED AND M OF RECORDKEEPING, TITLE OF F ONTACT FOR REVIEW OF RECORD	PERSON RESPONSIBLE FOR
PARAMETER	METHOD OF RECORDKEEPING	TITLE OF PERSON RESPONSIBLE	TITLE OF CONTACT PERSON
Scrubber Water Flow	Flow Log	Shift Operator	Production Manager
c) IS COMPLIANCE OF THE REVIEW OF THE RECOR	CONTROL EQUIPMENT READS?	ADILY DEMONSTRATED BY	YES NO
IF NO, EXPLAIN:			
d) ARE ALL RECORDS READ	DILY AVAILABLE FOR INSPE	CTION COPYING AND/OR	
SUBMITTAL TO THE AGE		STION, SOFTING ANDION	YES NO
IF NO, EXPLAIN:		Contract Con	
25a) DESCRIBE ANY MONITO COMPLIANCE:	RS OR MONITORING ACTIV	ITIES USED TO DETERMINE FEES	S, RULE APPLICABILITY OR
Continuous flow monit	or		
b) WHAT OPERATING PARAM	METER(S) IS(ARE) BEING M	ONITORED (E.G., COMBUSTION C	HAMBER TEMPERATURE)?
Gallons per minute			
AND DESCRIPE THE LOCATION	N OF FACH MONITOR /F.C.	EXIT OF COMBUSTION CHAMBER	
Adjacent to Scrubber	VO EACH MONITOR (E.G.,	, EAST OF CONNECTION CHANGE	N.
		,	

25d) IS EACH MONITOR EQUIPPED WIT	TH A RECORDING DEVICE?	-	YES	NO
IF NO, LIST ALL MONITORS WITHOU	UT A RECORDING DEVICE:			
Scrubber Flow Meter - Recorded	i by hand once per shift as	required.		
·				
e) IS EACH MONITOR REVIEWED FOR	ACCURACY ON AT LEAST A	·		
BASIS?	ACCURACY ON AT LEAST AT	JUARTERLY	YES	NO
IF NO, EXPLAIN:				
Reviewed for accuracy per manu	facturer's specifications.			
	THE CONTROL FOR			
f) IS EACH MONITOR OPERATED AT A OPERATION?	LL TIMES THE CONTROL EQU	JIPMENT IS IN	YES	NO
IF NO, EXPLAIN:				
26) PROVIDE INFORMATION ON THE MO	OCT DECENIT TECTS IF ANY	N WHICH THE DECL	ILTO ADELICED EC	NB.
PURPOSES OF THE DETERMINATION DATE, TEST METHOD USED, TESTIN	N OF FEES, RULE APPLICABI	LITY OR COMPLIAN	CE. INCLUDE THE	TEST
SUMMARY OF RESULTS. IF ADDITION	DNAL SPACE IS NEEDED, ATT	ACH AND LABEL AS	EXHIBIT 260-1:	STANDA
TEST DATE TEST METHOD	TESTING COMPANY	OPERATING CONDITIONS	SUMMARY OF RE	SULTS
April Method 1-4,	GE Mostardi Platt	Typical	0.217 lbs/hr	
2002 26A			ppmv)	
	CALENTO AND DOOUGE THE	TITLE AND EDGO 'S	IOV OF DEDOCT	
27) DESCRIBE ALL REPORTING REQUIRE SUBMITTALS TO THE AGENCY:	FINIEW 12 AND PROVIDE THE	ITTLE AND FREQUE	NOT OF KEPOKI	
REPORTING REQUIREMENTS	TITLE OF REPORT		FREQUENCY	
Testing notification	Tst Notification		Prior to testing	
Annual Emission Reporting	Annual Emission Rep	ort	Annually	

CAPTURE AND CONTROL 28) DESCRIBE THE CAPTURE SYSTEM USED TO CONTAIN, COLLECT AND TRANSPORT EMISSIONS TO THE													
28	B) DESCRIBE THE CAPTI CONTROL EQUIPMEN USED AT EACH EMISS	T. INCLUDE ALL HO	ODS, DUCTS, F	ANS, ETC. AL	SO INCLUDE	THE METHOD	OF CAPTURE						
	Covered Pickling Tai	nks (two cover sys	stem)										
29) ARE FEATURES OF TH DIAGRAM CONTAINED			Y DEPICTED II	N THE FLOW	YES	NO						
	IF NO, A SKETCH SHO ATTACHED AND LABE			TURE SYSTE	M SHOULD BE								
30	PROVIDE THE ACTUAL DESTRUCTION/REMOV COMBINATION OF THE TO BE CONTROLLED. WHICH THESE EFFICIE	VÀL EFFICIENCY, AN E CAPTURE SYSTEM ATTACH THE CALCI	ID THE OVERAI AND CONTRO ULATIONS, TO	LL REDUCTION L EQUIPMENT THE EXTENT 1	NEFFICIENCY FOR EACH RE THEY ARE AIR	PROVIDED BY	THE POLLUTANT						
a) CONTROL PERFORMANCE:													
	REGULATED CAPTURE SYSTEM CONTROL EQUIPMENT OVERALL REDUCTION AIR EFFICIENCY (%) EFFICIENCY (%) EFFICIENCY (%)												
	POLLUTANT	(MIN)	(TYP)	(MIN)	(TYP)	(MIN)	(TYP)						
i	нсі	100	100	97-99	97-99	97-99	97-99						
ii iii		<u> </u>		-									
,,,	<u> </u>						<u>;</u>						
	EXPLAIN ANY OTHER REQU COOLANT TEMPERATURE, I		ROL EQUIPMENT	PERFORMANC	E SUCH AS OUTI	LET CONCENTRA	ATION,						
1	18 ppmv or mass emi	ssion rate that cor	responds to a	collection e	efficiency of I	ess than 97%	9						
b)	METHOD USED TO DE MANUFACTURER'S GI						BALANCE,						
_		EFFICIENCY DETER	MINATION METH	OD .	<u> </u>		ELAST						
4	CAPTURE:												
(CONTROL:												
(OVERALL:			·		Apr	il 2002						
c)_l	REQUIRED PERFORMA	NCE:											
	REGULATED AIR POLLUTANT	CAPTURE SYSTEM EFFICIENCY (%)	CONTRO EQUIPME EFFICIENCY	NT REI	VERALL DUCTION FICIENCY (%)	APPLICABL	E RULE						
	НСІ					40 CFR63	3.1161						
	(PLAIN ANY OTHER REQUI		ROL EQUIPMENT !	PERFORMANCE	SUCH AS OUTLE	ET CONCENTRA	TION,						
CO	OLANT TEMPERATURE, E	IC.:	-										

APPLICATION PAGE 4-7

					(31)E	EMISSION	(31) EMISSION INFORMATION				
			¹ ACTUAL	1ACTUAL EMISSION RATE			ALLOWABLE BY RULE EMISSION RATE	Y RULE EMISSI	ION RATE	PERMITTED EMISSION RATE	ON RATE
LBS PER HOUR (LBS/HR)	S PER OUR S/HR)		TONS PER YEAR (TONS/YR)	3other Terms	30THER	4DM	SRATE (UNITS)	APPLICABLE	TONS PER YEAR	RATE (UNITS)	TONS PER
MAXIMUM:								RULES	(TONS/YR)		(TONS/YR)
TYPICAL:											
MAXIMUM:											
TYPICAL:											
MAXIMUM:									,		
TYPICAL:											
MAXIMUM:			l								
TYPICAL:											
MAXIMUM:											
TYPICAL:							-				
MAXIMUM:							-				
TYPICAL:							-				
MAXIMUM:							-				
TYPICAL:	ı										
MAXIMUM: 0.217	C.	17	0.951				18 (ppmv)	63.1161	10	0.0065 lbs HCl/ton	0.951 tpy
TYPICAL: 0.217	Ν.	17	0.951				18 (ppmv)				
Market Co.	0					1.7	6.0 (LBS/HR)	212.321	26.28	5.5.UBS/HR	22
TYPICAL	3		14.4	0.24 GRØSCF;		16.2	5.5 (LBS/HR)	× 212/32/	19.80		

0 74 5253

IMPORTANT: ATTACH CALCULATIONS, TO THE EXTENT THEY ARE AIR EMISSIONS RELATED, ON WHICH EMISSIONS WERE DETERMINED AND LABEL AS EXHIBIT 260-5.

1PROVIDE CONTROLLED EMISSIONS (E.G., THE EMISSIONS THAT WOULD RESULT AFTER ALL CONTROL AND CAPTURE EFFICIENCIES ARE ACCOUNTED FOR).
2PROVIDE THE EMISSION RATE THAT WILL BE USED AS A PERMIT SPECIAL CONDITION. THIS LIMIT WILL BE USED TO DETERMINE THE PERMIT FEE.
3PLEASE PROVIDE ANY OTHER EMISSION RATE WHICH IS COMMONLY USED. REQUIRED BY A SPECIFIC LIMITATION OR THAT WAS MEASURED (E.G. PPM, GRUDSCF, ETC.)
4DM - DETERMINATION METHOD: 1) STACK TEST, 2) MATERIAL BALANCE, 3) STANDARD EMISSION FACTOR (AP-42 OR AIRS), 4) ENGINEERING ESTIMATE, 5) SPECIAL EMISSION FACTOR (NOT AP-42 OR AIRS)
5RATE - ALLOWABLE EMISSION RATE SPECIFIED BY MOST STRINGENT APPLICABLE RULE.

APPLICATION PAGE 4-8 Printed on Recycled Paper 260-CAAPP

	ALLOWABLE BY RULE	ARD APPLICABLE RULE	63.1161																device CFR 61	
Ν	ALLOWAB	⁵ RATE OR STANDARD	18ppm																98% by wt control device	
FORMATIO		4 _{DM}	+																2	THE STREET STREET
(32) HAZARDOUS AIR POLLUTANT EMISSION INFORMATION	¹ ACTUAL EMISSION RATE	3 TERMS																		高等意即 地名 書景 物
		TONS PER YEAR (TONS/YR)	0.951																1.2	· · · · · · · · · · · · · · · · · · ·
		POUNDS PER HOUR (LBS/HR)	0.217																10.0	高速の変をおりて かんと
			MAXIMUM:	TYPICAL:	MAXIMUM:	TYPICAL:	MAXIMUM:	TYPICAL:	MAXIMUM:	TYPICAL:	MAXIMUM:	TYPICAL:	MAXIMUM:	TYPICAL:	MAXIMUM:	TYPICAL:	MAXIMUM:	TYPICAL:	MAXIMUM	
	TION	² CAS NUMBER	7647-01-0																が できる	
	HAP INFORMATION	NAME OF HAP EMITTED	HCI																EXAMPLE	

5

经

IMPORTANT: ATTACH CALCULATIONS, TO THE EXTENT THEY ARE AIR EMISSIONS RELATED, ON WHICH EMISSIONS WERE DETERMINED AND LABEL AS EXHIBIT 280-6.

¹PROVIDE CONTROLLED EMISSIONS (E.G., THE EMISSIONS THAT WOULD RESULT AFTER ALL CONTROL AND CAPTURE EFFICIENCIES ARE ACCOUNTED FOR).

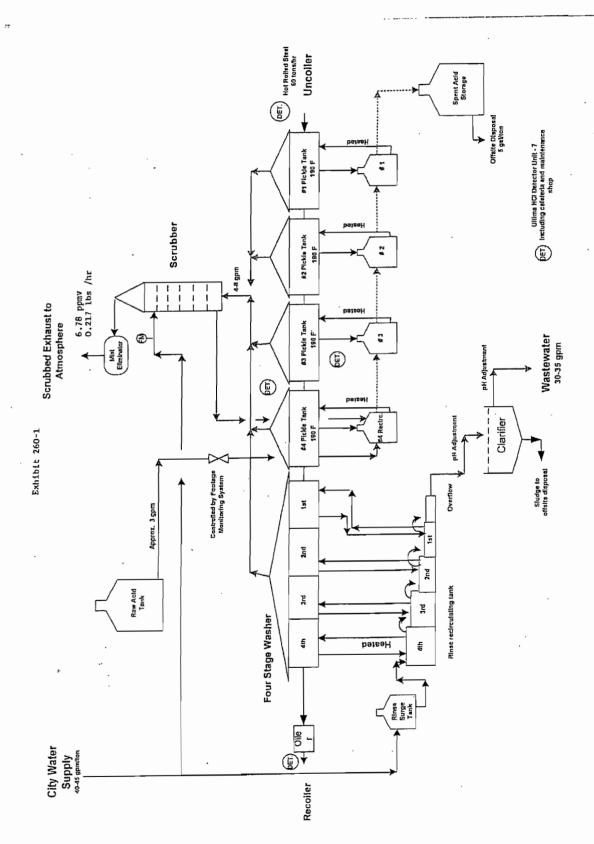
²CAS - CHEMICAL ABSTRACT SERVICE, NUMBER.

³PLEASE PROVIDE ANY OTHER EMISSION RATE WHICH IS COMMONLY USED, REQUIRED BY A SPECIFIC LIMITATION OR THAT WAS MEASURED (E.G., PPM, GRIDSCF, ETC.).

⁴DM - DETERMINATION METHOD: 1) STACK TEST, 2) MATERIAL BALANCE, 3) STANDARD EMISSION FACTOR (AP-42 OR AIRS, 4) ENGINEERING ESTIMATE, 5) SPECIAL EMISSION FACTOR (NOT AP-42 OR AIRS).

⁵RATE - ALLOWABLE EMISSION RATE OR STANDARD SPECIFIED BY MOST STRINGENT APPLICABLE RULE.

APPLICATION PAGE 4-9 Printed on Recycled Paper 260-CAAPP


	EXHAUST POIN								
33) DESCRIPTION OF EXHAUST POINT DISCHARGES INDOORS, DO NOT (COMPLETE THE REM	OF MONITOR, INDO AINING ITEMS.	OORS, ETC.). IF THE EXHAUST POINT						
Stack 34) DISTANCE TO NEAREST PLANT BO	DUNDARY FROM EXH	AUST POINT DISC	HARGE (FT):						
100									
35) DISCHARGE HEIGHT ABOVE GRAD	E (FT):	_							
50									
36) GOOD ENGINEERING PRACTICE (G	SEP) HEIGHT, IF KNO	WN (FT):							
	•								
37) DIAMETER OF EXHAUST POINT (FT 1.128 TIMES THE SQUARE ROOT O		N CIRCULAR EXHA	UST POINT, THE DIAMETER IS						
38) EXIT GAS FLOW RATE	a) MAXIMUM (ACFI	M):	b) TYPICAL (ACFM):						
7,200 7,065									
7,200 7,065 39) EXIT GAS TEMPERATURE a) MAXIMUM (°F): b) TYPICAL (°F):									
	126.2		125.6						
40) DIRECTION OF EXHAUST (VERTICA		VARD):	12010						
Vertical	•	•							
	NTROL DEVICES SEE	EVED BY THIS EXH	IAUST POINT:						
41) LIST ALL EMISSION UNITS AND CONTROL DEVICES SERVED BY THIS EXHAUST POINT:									
NAME FLOW DIAGRAM DESIGNATION									
a) Steel Pickling Line		Steel Pickling	Line						
b)									
c)									
d)									
e)	_								
Ŋ									
g) 									
42) WHAT PERCENTAGE OF THE CONT	POL FOLIPMENT EM	ISSIONS ARE BEIN	NG DUCTED TO THIS						
EXHAUST POINT (%)?	NOE EGO! MENT EM	NOOPONG AND BEN	46 BOS/EB 10 11115						
100									
43) IF THE PERCENTAGE OF THE CONT NOT 100%, THEN EXPLAIN WHERE	ROL EQUIPMENT EN	IISSIONS BEING D	UCTED TO THE EXHAUST POINT IS						
HOT TOOM, THEN EXILED IN THE EXE									
-									
THE FOLLOWING INFORMATION NEED ONLY I									
44a) LATITUDE:		b) LONGITUDE:							
45) UTM ZONE:	b) UTM VERTICAL (KM):	c) UTM HORIZONTAL (KM):						

APPLICATION PAGE 4-10

EXHIBIT 260-1

遊遊

64.6 (1.6)

NACME Pickling Process Flow Diagram

APPLICATION PAGE 4-11

EXHIBIT 260-2 PICKLE LINE EMISSION CALCULATIONS

HCL Pickling Line Emission Calculations NACME Steel Processing 429 West 127th Street Chicago, Illinois

Operating Conditions

Annual HCl Solution Usage/AST Throughput = 1,103,250 gallons X 9.91 lbs/gal = 8,606,400 lbs Solution Usage/yr (4303.2 tpy)

Scrubber Water Flow = 2.6 gallons per minute (Average)

Emission Test Process Rate = 200 tons/six hours = 33.3333 tons per hour

Emission Testing Hourly Emissions Rate* = 0.217 lbs HCL/hr

Emission Factor = 0.217 lbs HCl per hour/33.3333 tons steel = 0.0065 lbs HCl/Ton Steel

Currrent Maximum Operating Hours = 3 shifts/day X 8 hrs/shift X 6 days/wk X 52 wks/yr = 7,488 hours/hr

Current Typical Operating Hours = 3 shfits/day X 8 hrs/shift X 5 days/wk X 52 wks/yr = 6,240 hrs/yr

Current Permitted Emission Factor (Scrubber Control)* = 0.0048 lbs HCL/1000 tons Steel Processed

Emission Scrubber Control Efficiency = 97-99% (Estimated)

Annual Steel Throughput = 292,000 tons/year (Based only on 2002 testing throughput rate)

Actual and Potential Emission Calculations (With Federally Enforceable Limitations)

Steel:Pickling Emissions = 0.00652 lbs HCl/ton steel X 292,000 tons Steel/year = 1,903 lbs HCl Emitted/Year Estimated HCl AST Emissions = 0.44 tons HCl per yr**

Hourly Emission Rates

Pickling Line Emissions HCI lbs/hour = (1,902 lbs/year)/7,488 hours/year = 0.254 lbs HCI/hour

Potential to Emit (Without Control/No Enforceable Limitations)

Uncontrolled Pickling Line Emission Rate = 0.217 lbs HCl/hr/(1-0.95) = 4.34 lbs HCl/hr 4.34 lbs HCl per hour/33.333 tons steel per hour = 0.13 lbs HCl/ton steel throughput 0.13 lbs HCl/tons steel X 292,000 tons steel/yr = 38,018 lbs HCl/yr or 19.0 tpy HCl

Hourly HCI Solution/Water Usage

HCL Solution = 8,606,400 lbs HCl Solution per year/7,488 hours per year = 1150 lbs HCl Solution/hr or 4,303.2 tpy

Water = $2.6 \text{ gpm } \times 60 \text{ min/hr} = 156.4 \text{ gal/hr} = 1,303 \text{ lbs/hr or } 9,760,140 \text{ lbs/yr } (4880.1 \text{ tpy})$

NESHAP Emission Limitations

Test Result HCl emission concentration = 6.87 ppmv 40 CFR 63, Subpart CCC HCl Emission Limit = 18 ppmv

* April 2002 Emission Test of scrubber stack exhaust (after Control). No Control Efficiency testing completed.

ILLINOIS ENVIRONMENTAL PROTECTION AGENCY DIVISION OF AIR POLLUTION CONTROL -- PERMIT SECTION P.O. BOX 19506 SPRINGFIELD, ILLINOIS 62794-9506

FOR APPLICANT	'S USE
Revision #:	
Date: /	_ /
Page of	
Source Designation:	

STORAGE TANK DATA AND INFORMATION

FURAGENCY USE UNEX
ID NUMBER:
The same of the sa
EMISSION POINT #:
DATE:
DATE.

NOTE: THIS INFORMATION FORM MUST BE COMPLETED FOR ANY TANK USED IN THE STORAGE OF AN ORGANIC LIQUID OR ANY MATERIALS CONTAINING HAZARDOUS AIR POLLUTANTS. FOR TANKS USED FOR PURPOSES OTHER THAN STORAGE, SUCH AS MIXING TANKS, DAY TANKS, PROCESS TANKS, ETC., PLEASE COMPLETE FORM 220-CAAPP.

SOURCE II	NFORMATION
1) SOURCE NAME:	
NACME Steel Processing	
2) DATE FORM	3) SOURCE ID NO.
PREPARED:	(IF KNOWN):
9/30/05	031600FWL
CENERAL	NFORMATION
4) TANK DESIGNATION:	VI-ORIMATION
HCL Storage Tanks 1, 2, and 3 5) FLOW DIAGRAM DESIGNATION OF TANK:	
3) FLOW DIAGRAM DESIGNATION OF TANK.	
HCI Storage Tanks 1, 2, and 3	
6) MANUFACTURER OF TANK (IF KNOWN):	
7) SERIAL NUMBER (IF KNOWN):	
8) DATES OF COMMENCING CONSTRUCTION.	a) CONSTRUCTION (MONTH/YEAR):
OPERATION AND/OR MOST RECENT MODIFICATION	a) CONSTRUCTION (WONTH/TEAR):
OF THIS TANK (ACTUAL OR PLANNED)	
	b) OPERATION (MONTH/YEAR):
	c) LATEST MODIFICATION (MONTH/YEAR):
	(
ON DECORPORTION OF MODIFICATION (IF A DRI IOAR) EX	
9) DESCRIPTION OF MODIFICATION (IF APPLICABLE):	
N/A	
10) DOES THE TANK HAVE MORE THAN ONE MODE OF OP	ERATION2
(E.G., IS THERE MORE THAN ONE PRODUCT STORED	
IF YES, EXPLAIN AND IDENTIFY WHICH MODE IS COVER	RED BY THIS APPLICATION (NOTE: A SEPARATE FORM
232-CAAPP MUST BE COMPLETED FOR EACH MODE):	
	· ·

THIS AGENCY IS AUTHORIZED TO REQUIRE THIS INFORMATION UNDER ILLINOIS REVISED STATUTES, 1991, AS AMENDED 1992, CHAPTER 111 1/2, PAR. 1039.5. DISCLOSURE OF THIS INFORMATION IS REQUIRED UNDER THAT SECTION. FAILURE TO DO SO MAY PREVENT THIS FORM FROM BEING PROCESSED AND COULD RESULT IN THE APPLICATION BEING DENIED. THIS FORM HAS BEEN APPROVED BY THE FORMS MANAGEMENT CENTER.

APPLICATION PAGE 5-1

Printed on Recycled Paper 232-CAAPP FOR APPLICANT'S USE

11) PROVIDE THE NAME AND DESIGNATION OF ALL AIR POLLUTION CONTROL EQUIPMENT CONTROLLING THIS TANK, IF APPLICABLE (FORM 260-CAAPP AND THE APPROPRIATE 260-CAAPP ADDENDUM FORM MUST BE COMPLETED FOR EACH ITEM OF AIR POLLUTION CONTROL EQUIPMENT):
Scrubber
12) PROVIDE ANY LIMITATIONS ON SOURCE OPERATION AFFECTING EMISSIONS OR ANY WORK PRACTICE STANDARDS (E.G., PRODUCTION VARIATION, ETC.):
Scrubber Working and Standing Loss Emission Control and Enclosed Lines

		TAI	NK INFORMA	ATION		
13) TANK CAPACITY (SPE	CIFY BARR	ELS OR GALL	ONS):			
14,000 gallons each						
14) TANK DIAMETER OR \	WIDTH (FT):	15) TANK I 18.5	HEIGHT (FT):		16) TANK LENGTH (FT):	
12	_	10.5				
17) TANK SHAPE (CHECK ONE):	XICYL	INDRICAL		HORIZONT	ΓΔΙ	
,]. 1011.2011	,	
		ER; SPECIFY	•			
				_		
18) OUTSIDE COLOR OF TANK	∏ w⊢	ITE	\boxtimes	SILVER		•
(CHECK ONE):			<u> </u>			
	OTH	IER; SPECIFY:				
						_
19) TANK CONDITION (CHECK ONE):	X go	JD.		FAIR	POOR	
20) TANK LOCATION				FAIR	FOOR	
(CHECK ONE):	UNI	DERGROUND	<u> </u>	ABOVEGE	ROUND	
21) TANK TYPE (CHECK ONE):	FIXE	ED ROOF		PRESSUR	RE	
	EXT	ERNAL FLOAT	TING	INTERNAL	_ FLOATING ROOF	
	ROO					
	VAF	IABLE VAPOR	R SPACE;			
	SPEC	IFY VOLUME	EXPANSION C	APACITY (bl	bl):	-
	ОТН	ER; SPECIFY:				•
		-			<u>. </u>	-
22) VENT VALVE INFORMA	TION: - Duc	ted to Scrub	ber			_
		NUMBER	PRESSUR	E	DISCHARGE VENTED TO (ATMOSPHE	RE.
TYPE OF VENT		OF VENTS	SETTING (P	SIG)	FLARE, VAPOR CONTROL, ETC.)	
COMBINATION	_					[
PRESSURE						
VACUUM						
OPEN		1	0		Ducted to Scrubber	
					_	
<u>[HE_INFORMATION IN ITEM</u> 23a) LATITUDE:	S 23 AND 2	4 BELOW NEE		OVIDED IF	READILY AVAILABLE	
Sa, E THODE.			3,201	OITODE.		
4a) UTM ZONE:		b) UTM VER	TICAL (KM):		c) UTM HORIZONTAL (KM):	
		,	, ,			

APPLICATION PAGE 5-2

MATERIAL STORED AND T	HROUGHPUT INFORMATION
	HROUGHPUT INFORMATION
25) CHEMICAL NAME OF MATERIAL STORED: Hydrochloric Acid (36% Solution)	
26) CAS NO. (IF KNOWN):	27) DENSITY
25/5/15/15: (1//1/5////):	(LB/CU.FT.):
7647-01-0	(22.00)
	(LB/GALLON): 9.91
28) VAPOR PRESSURE AT 70 DEGREES	29) MOLECULAR WEIGHT
FAHRENHEIT (PSIA):	(LB/LB-MOLE):
26 mmHg	36.46
30) VAPOR PRESSURE AT MAXIMUM STORAGE TEMPERAT	TURE (PSIA):
Ambient-Same	
31) METHOD USED TO	<u> </u>
DETERMINE VAPOR ASTM D2879-86	PUBLISHED LITERATURE, LIST:
PRESSURE PURSUANT	
TO 35 ILL. ADM. CODE	MSDS
215.108, 218.109-111, OR 219.109-111:	
219.109-111:	
OTHER; SPECIFY:	
32) STORAGE TEMPERATURE	
MINIMUM (DEGREES	MAXIMUM (DEGREES
FAHRENHEIT):	FAHRENHEIT):
Ambient	Ambient
33) THROUGHPUT	
GAL/DAY:	GAL/YR:
200178	
	1,303,250
BBLS/DAY:	BBLS/YR:
•	
2/ MANUAL FULL DATE (OAL # ID)	
34) MAXIMUM FILL RATE (GAL/HR):	
35) IS A PERMANENT SUBMERGED LOADING PIPE USED?	
	X YES NO
36) IS A VAPOR BALANCE LINE USED?	
	YES X NO
37) IS ANY OTHER VAPOR LOSS CONTROL DEVICE USED (C	THER THAN VAPOR
BALANCE)?	YES NO
BALANCE):	
IF YES, COMPLETE "AIR POLLUTION CONTROL EQUIPME	
INFORMATION, " (FORM 260-CAAPP), AS PART OF THIS A	
8) ATTACH THE CALCULATIONS, TO THE EXTENT THEY AR	E AIR EMISSION RELATED, FROM WHICH THE
PRECEDIBLE INTERPORTURE MATERIAL STORAGE INFOR	MATION AND TUDOLICUPLE DATA WEDE
BASED AND LABEL AS EXHIBIT 232-1.	MATION AND THROUGHPUT DATA WERE

.\\ 4.\\\ 2.\\\

an Browing ANY Specific Street	APPLICABLE RULES	T DV DUI E(O) MUUOLLADE ADDILICADI E									
TO THIS TANK (E.G., VOM, IAC 218	N STANDARD(S) AND LIMITATIONS(S) SE 1.121(a), PRESSURE TANK):	T BY RULE(S) WHICH ARE APPLICABLE									
REGULATED AIR POLLUTANT(S)	EMISSION STANDARD(S)	REQUIREMENT(S)									
нсі	40 CFR 63.1159 (Subpart CCC)	Closed-vent system for each vessel									
40) PROVIDE ANY SPECIFIC RECORDS	KEEPING RULE(S) WHICH ARE APPLICA	RIETO THIS TANK									
REGULATED AIR POLLUTANT(S)	RECORDKEEPING RULE(S)	REQUIREMENT(S)									
нсі	35 IAC 201.301	Compliance Records									
	,										
A4) DROVIDE ANY CRECIES REPORTIN	AC DITIE (C) WITHOUT ADE ADDITION E TO	THIS TANK.									
41) PROVIDE ANY SPECIFIC REPORTING	NG RULE(S) WHICH ARE APPLICABLE TO	THIS TANK:									
REGULATED AIR POLLUTANT(S)	REPORTING RULE(S)	REQUIREMENT(S)									
HCI 35 IAC 201.302 Annual Reporting/Compliance Notification											
42) PROVIDE ANY SPECIFIC MONITORI	NG RULE(S) WHICH ARE APPLICABLE TO	O THIS TANK:									
42) PROVIDE ANY SPECIFIC MONITORING RULE(S) WHICH ARE APPLICABLE TO THIS TANK: REGULATED AIR POLLUTANT(S) MONITORING RULE(S) REQUIREMENT(S)											
HCI 40 CFR 63.1163 Semi-Annual Inspection											
		-									
43) PROVIDE ANY SPECIEIC TESTING	RULES AND/OR PROCEDURES WHICH A	RE APPLICABLE TO THIS TANK									
REGULATED AIR POLLUTANT(S)	TESTING RULE(S)	REQUIREMENT(S)									
44) DOES THE TANK QUALIFY FOR AN E	YEMPTION FROM AN OTHERWISE										
APPLICABLE RULE?	EXEMIF HOW FROM AN OTHERWISE	YES NO									
EXEMPTION. PROVIDE A DETAILED	FROM WHICH IT IS EXEMPT AND THE R EXPLANATION JUSTIFYING THE EXEMP TONS. ATTACH AND LABEL AS EXHIBIT AND JUSTIFY THIS EXEMPTION.	PTION. INCLUDE DETAILED									
	COMPLIANCE INFORMATION										
15) IS THE TANK IN COMPLIANCE WITH											
	IPLIANCE PLAN/SCHEDULE OF COMPLIA F BE COMPLETED AND SUBMITTED WITH										
6) EXPLANATION OF HOW INITIAL COM	PLIANCE IS TO BE, OR WAS PREVIOUS	LY, DEMONSTRATED:									
Maintenance of records - Material	throughput, tank dimensions/Vent s	ystems, etc.									

APPLICATION PAGE 5-4

47) EXPLANATION OF HOW	ONGOING COMPLIANCE W	ILL BE DEMONSTRATED:	
Maintenance of record	ds - Material throughput, t	ank dimensions/Vent systems	, etc.
]			
TEST	ING, MONITORING, RE	CORDKEEPING AND REPO	RTING
		SSIONS FOR WHICH RECORDS A PLIANCE. INCLUDE THE UNIT OF I	
		CY OF SUCH RECORDS (E.G., HOL	
•			
PARAMETER	UNIT OF MEASUREMENT	METHOD OF MEASUREMENT	FREQUENCY
HCl Solution Usage	Tank Throughput	Maintenance of Usage Records	Monthly
Tank Dimensions	Volume/Height/	Maintenance of Records	Ongoing
	Diameter		
b) BRIEFLY DESCRIBE THE	METHOD BY WHICH RECO	RDS WILL BE CREATED AND MAIN	STAINED, FOR EACH
		RECORDKEEPING, TITLE OF PER ACT FOR REVIEW OF RECORDS:	
PARAMETER	METHOD OF RECORDKEEPING	TITLE OF PERSON RESPONSIBLE	TITLE OF CONTACT PERSON
HCl Solution Usage	Delivery Logs	Maintenance Manager	Production Manager
c) IS COMPLIANCE OF THE THE RECORDS?	EMISSION UNIT READILY DE	EMONSTRATED BY REVIEW OF	YES NO
IF NO, EXPLAIN:			
770, 270 2 070			•
•			·
			<u> </u>
d) ARE ALL RECORDS READ SUBMITTAL TO THE AGE		CTION, COPYING AND/OR	YES NO
GODINITY AL TO THE AGE	NOT OF ON REGUEST:		NO
IF NO, EXPLAIN:			
		•	
9a) DESCRIBE ANY EMISSIO	N MONITORS USED TO DET	ERMINE FEES, RULE APPLICABIL	ITY OR COMPLIANCE:
Not Applicable			
b) WHAT PARAMETER(S) IS(ARE) BEING MONITORED (E	.G., TEMPERATURE)?	
Not Applicable			

17-8°.

APPLICATION PAGE 5-5
Printed on Recycled Paper 232-CAAPP

49c) DESCRIBE THE LOCATION OF EACH MONITOR:		
Not Applicable		
d) IS EACH MONITOR EQUIPPED WITH A RECORDING DEVICE?		
IF NO, LIST ALL MONITORS WITHOUT A RECORDING DEVICE:	YES	NO
·		
e) IS EACH MONITOR REVIEWED FOR ACCURACY ON AT LEAST A QUARTERLY		
BASIS?	YES	NO
IF NO, EXPLAIN:		
f) IS EACH MONITOR OPERATED AT ALL TIMES THE ASSOCIATED TANK IS IN		
OPERATION?	YES	NO
IF NO, EXPLAIN:		
,		
50) PROVIDE INFORMATION ON THE MOST RECENT TESTS, IF ANY, IN WHICH THE RESUL	TO ARE LICED FOR	
PURPOSES OF THE DETERMINATION OF FEES, RULE APPLICABILITY OR COMPLIANCE	. INCLUDE THE TE	ST
DATE, TEST METHOD USED, TESTING COMPANY, OPERATING CONDITIONS EXISTING SUMMARY OF RESULTS. IF ADDITIONAL SPACE IS NEEDED, ATTACH AND LABEL AS E		AND A
OPERATING OPERATING	8184145V 65 5501	
TEST DATE TEST METHOD TESTING COMPANY CONDITIONS	SUMMARY OF RESU	LIS
51) DESCRIBE ALL REPORTING REQUIREMENTS AND PROVIDE THE TITLE AND FREQUENC SUBMITTALS TO THE AGENCY:	CY OF REPORT	
REPORTING REQUIREMENTS TITLE OF REPORT	FREQUENCY	

ſ	<u> </u>			\top			3		<u>.</u>		<u> </u>		<u> </u>		<u>s</u>		S		<u> </u>		§ 15	- N	<i>[[]</i>
	11 40 40	SION KALE	TONS PER	(TONS/YR)															0.44				
	2PERMITTED EMISSION BATE		RATE (UNITS)																0.1 lbs/hr			All/Sep C.C.	
	ON RATE		TONS PER YEAR	(TONS/YR)															0.44		06.36	0.20	19:00
	RULE EMISSI	.:	APPLICABLE	KULES															40CFR63.115		510,301	210.201	2,702,
(52) EMISSION INFORMATION	ALLOWABLE BY RULE EMISSION RATE		⁵ RATE (UNITS)	,	-	^)	<u> </u>												0.1 (lbs/hr)		A.O.(IAS/HB)	5.571 RS/HR)	
II NOISSIN			4 _{DM}																			7	
(52)EI		IN RATE	3OTHER																				
	1 ACTUAL EMISSION RATE	VUNCONTROLLED EMISSION	³ OTHER TERMS																		0.3	0.24 PP/0.50E	らいいついて
	TACTUAL E	1 UNCONTR	TONS PER YEAR (TONS/YR)																0.44	0.44	21.9	14.4	· 通知的表情情况
			LBS PER HOUR (LBS/HR)																0.1	0.1	5:00	4:00	A CONTRACTOR OF THE PROPERTY OF THE PARTY OF
				MAXIMUM:	TYPICAL		MAXIMUM:	TYPICAL:	MAXIMUM;	TYPICAL:	MAXIMUM:	TYPICAL:	MAXIMUM:	TYPICAL:	MAXIMUM:	TYPICAL:	MAXIMUM;	TYPICAL:	MAXIMUM:	TYPICAL:	MAXIMUM:	TYPICAL	24 12 12 12 12 12 12 12 12 12 12 12 12 12
		or of the state of	POLLUTANT	CARBON	MONOXIDE (CO)		LEAD		NITROGEN	OXIDES (NOx)	PARTICULATE	MATTER (PART)	PARTICULATE MATTER <= 10	MICROMETERS (PM10)	SULFUR	DIOXIDE (SO2)	VOLATILE ORGANIC	MATERIAL (VOM)	OTHER, SPECIFY:	НСІ	EXAMPLE: PARTICULATE	MATTER	And the second of the second o

., !

の問題

....

CHECK UNCONTROLLED EMISSION RATE BOX IF CONTROL EQUIPMENT IS USED, OTHERWISE CHECK AND PROVIDE THE ACTUAL EMISSION RATE TO ATMOSPHERE, INCLUDING INDOORS. SEE INSTRUCTIONS. IMPORTANT: ATTACH CALCULATIONS, TO THE EXTENT THEY ARE AIR EMISSIONS RELATED, ON WHICH EMISSIONS WERE DETERMINED AND LABEL AS EXHIBIT 232-4.

²PROVIDE THE EMISSION RATE THAT WILL BE USED AS A PERMIT SPECIAL CONDITION. THIS LIMIT WILL BE USED TO DETERMINE THE PERMIT FEE.
³PLEASE PROVIDE ANY OTHER EMISSION RATE WHICH IS COMMONLY USED, REQUIRED BY A SPECIFIC LIMITATION OR THAT WAS MEASURED (E.G. PPM, GRIDSCF, ETC.)
⁴DM - DETERMINATION METHOD: 1) STACK TEST, 2) MATERAL BALANCE, 3) STANDARD EMISSION FACTOR (AP-42 OR AIRS), 4) ENGINEERING ESTIMATE, 5) SPECIAL EMISSION FACTOR (NOT AP-42 OR AIRS)
⁵RATE - ALLOWABLE EMISSION RATE SPECIFIED BY MOST STRINGENT APPLICABLE RULE.

APPLICATION PAGE 5-7 Printed on Recycled Paper 232-CAAPP

		6)	(33) HAZARDOUS AIR POLLUIANT EMISSION INFORMATION	AIR PULLUIAN	I EMISSION IN	-ORIMATIC	N	
HAP INFORMATION	VTION		TACTU	ACTUAL EMISSION RATE 1UNCONTROLLED EMISSION RATE	ATE SSION RATE		ALLOWABLE BY RULE	ULE
NAME OF HAP EMITTED	² CAS NUMBER		POUNDS PER HOUR (LBS/HR)	TONS PER YEAR (TONS/YR)	3OTHER TERMS	4DM	⁵ RATE OR STANDARD	APPLICABLE RULE
НСІ	7647-01-0	MAXIMUM:	0.1	77'0		4	Rate Emissions to Scrubber	40CFR63.1151
		TYPICAL:						
		MAXIMUM:						
		TYPICAL:						
		MAXIMUM:						
		TYPICAL:						
		MAXIMUM:				_		
		TYPICAL:						
		MAXIMUM:						
		TYPICAL:					-	
		MAXIMUM:						
		TYPICAL:						
		MAXIMUM:						
		TYPICAL:						
		MAXIMUM:						
		TYPICAL:						
EXAMPLE:		MAXIMUM		12		2	99% by wi control device	CFR 61
Benzene	71432	TYPICAL	8.0	80		2	eak-tight trucks	61.302(b),(d)

点: (1)

2250 2250

観点

IMPORTANT: ATTACH CALCULATIONS, TO THE EXTENT THEY ARE AIR EMISSIONS RELATED, ON WHICH EMISSIONS WERE DETERMINED AND LABEL AS EXHIBIT 232-5,

PROVIDE UNCONTROLLED EMISSIONS IF CONTROL EQUIPMENT IS USED. OTHERWISE, PROVIDE ACTUAL EMISSIONS TO THE ATMOSPHERE, INCLUDING INDOORS. CHECK BOX TO SPECIFY.

²CAS - CHEMICAL ABSTRACT SERVICE NUMBER. ³PLEASE PROVIDE ANY OTHER EMISSION RATE WHICH IS COMMONLY USED, REQUIRED BY A SPECIFIC LIMITATION OR THAT WAS MEASURED (E.G., PPM, GR/DSCF, ETC.). ⁴DM - DETERMINATION METHOD: 1) STACK TEST, 2) MATERIAL BALANCE, 3) STANDARD EMISSION FACTOR (AP 42 OR AIRS, 4) ENGINEERING ESTIMATE, 5) SPECIAL EMISSION FACTOR (NOT AP 42 OR AIRS). ⁵RATE - ALLOWABLE EMISSION RATE OR STANDARD SPECIFIED BY MOST STRINGENT APPLICABLE RULE.

APPLICATION PAGE 5-8 Printed on Recycled Paper 232-CAAPP

FLOATING ROOF TANK EQUIP	MENT INFORMATION (IF APPLICABLE)
54) FLOATING ROOF TYPE (CHECK ONE): INTERNAL	EXTERNAL
N/A OTHER; SPECIFY:	-
55) PRIMARY SEAL TYPE (CHECK ONE): METALLIC SHOE	LIQUID MOUNTED VAPOR MOUNTED
SEAL	RESILIENT SEAL RESILIENT SEAL
OTHER; SPECIFY:	
·	
56) IS THE FLOATING ROOF EQUIPPED WITH A SECON	
IF YES, HOW IS THE	YES NO
SECONDARY SEAL SHOE MOUNTED? (CHECK	L RIM
ONE): OTHER; SPECIFY:	
57) IS THE FLOATING ROOF EQUIPPED WITH A WEATH	ER SHIELD?
58) WHAT IS THE AVERAGE WIND SPEED AT THE TANK	
59) WHAT IS THE CONDITION OF THE LIGHT RUST	DENSE RUST GUNITE LINED
TANK SHELL INTERIOR? (CHECK ONE): OTHER; EXPLAIN:	
ONE): OTHER; EXPLAIN:	
_	·
60) FOR COLUMN SUPPORTED TANKS, COMPLETE THE	FOLLOWING:
NUMBER OF COLUMNS	DIAMETER OF EACH COLUMN (FT)
61) FOR INTERNAL FLOATING ROOF TANKS, COMPLETE	THE FOLLOWING:
a) WHAT IS THE BOLTING	WELDING
BONDING FOR THE DECK? OTHER; SPECIFY:	
·	
NAME OF THE TOTAL LENGTH OF ALL DECK CEARS	(ETV2
b) WHAT IS THE TOTAL LENGTH OF ALL DECK SEAMS	(i 1):
c) WHAT IS THE DIAMETER OF THE DECK (FT)?	
\	

APPLICATION PAGE 5-9
Printed on Recycled Paper 232-CAAPP

DOLT COVER	ACCESS HATCH	LINIDOLTED COUED				
BOLT COVER, GASKETED:	UNBOLTED COVER, GASKETED:	UNBOLTED COVER, UNGASKETED:				
	AUTOMATIC GAUGE FLOAT	rwell				
BOLTED COVER,	UNBOLTED COVER,	UNBOLTED COVER,				
GASKETED:	GASKETED:	UNGASKETED:				
	COLUMN WELL					
BUILT-UP COLUMN-SLIDING COVER, GASKETED:	BUILT-UP COLUMN-SLIDING COVER, UNGASKETED:	PIPE COLUMN-FLEXIBLE FABRIC SLEEVE SEAL:				
PIPE COLUMN-SLIDING	PIPE CO	LUMN-SLIDING				
COVER, GASKETED:	COVER,	UNGASKETED:				
	LADDER WELL					
SLIDING COVER, SASKETED:	SLIDING UNGASK	COVER, ETED:				
	SAMPLE PIPE OR WEL	L				
SLOTTED PIPE-SLIDING COVER, GASKETED: SLOTTED PIPE-SLIDING COVER, UNGASKETED: SEAL (10% O						
	ROOF LEG OR HANGER W	75) 1				
DJUSTABLE:	FIXED:	ELL				
EIGHTED MECHANICAL	VACUUM BREAKER	ED MECHANICAL				
CTUATION, GASKETED:		ON, UNGASKETED:				
	STUB DRAIN					
NCH DIAMETER:						
	OTHER (EXPLAIN)	·				

APPLICATION PAGE 5-10

Exhibit 232-5 HCL AST Emission Calculations NACME Steel Processing 429 West 127th Street Chicago, Illinois

HCL Emissions - Storage Tanks

A concentrated solution (36% HCI) is kept in storage tanks prior to dilution with additional water in the Pickling Line.

Total HCl Solution Usage = 1,103,250 gallons/yr

AST Working/Standing Losss Emissions routed to scrubber for control.

Current Permitted Rate 0.44 tons HCI/yr and 0.1 lbs HCI/hr

Estimated AST HCI Emissions (after Control)

0.1 lbs HCl/hr 0.44 tons HCl/yr*

增加

ILLINOIS ENVIRONMENTAL PROTECTION AGENCY DIVISION OF AIR POLLUTION CONTROL - PERMIT SECTION P.O. BOX 19506 SPRINGFIELD, ILLINOIS 62794-9506

FO	R API	PLI(CANT	'S USE	
Revisio	n #: _				
Date:		_ /		_ /	_
Page _			_ of		_
Source	Desig	nat	ion:		
					_

		L			
HAZARDOUS AIR POLLUTANT (HAP EMISSION SUMMARY	?)	ID NUMBER: PERMIT #:	GENCY.	USE ONLY	
		DATE:			
SOURCE	INF	ORMATION			
1) SOURCE NAME:					
NACME Steel Processing 2) DATE FORM PREPARED: 9/30/05	(OURCE ID NO. IF KNOWN): 031600FWL			
	_	LUTANT EMISSION			
4) DOES ANY EMISSION UNIT AT THE SOURCE EMIT A F (IF NO, THEN THE REMAINDER OF THIS FORM NEED			T?	YES	NO
5a) DOES THE SOURCE HAVE THE POTENTIAL TO EMIT	, IN	THE AGGREGATE,:			
i) 10 TONS PER YEAR OR MORE OF ANY INDIVIDUAL ii) 25 TONS PER YEAR OR MORE OF ANY COMBINAT			NT;	X YES	NO
POLLUTANTS; iii) SUCH LESSER QUANTITY AS ESTABLISHED BY RI				YES	NO
SOURCE AS MAJOR FOR HAZARDOUS AIR POLLUTANTS WE	-	YES	NO		
POLLUTANT SPECIFIC CAAPP APPLICABILITY LEV RULE SUCH THAT THE SOURCE IS REQUIRED TO SOLELY FOR THIS REASON (i.e., HAP EMISSIONS I APPLICABILITY THRESHOLDS SPECIFIED IN ITEMS REQUIRED TO OBTAIN A CAAPP PERMIT PURSUAI REQUIREMENT, e.g., NESHAP)?	/EL A OBT BEL S (i),	AS ESTABLISHED BY USI FAIN A CAAPP PERMIT OW THE CAAPP (ii) &(iii) ABOVE, BUT STI		YES	NO
b) IF ANSWERED YES TO ANY OF THE ABOVE, IDENTIFY SOURCE IS CONSIDERED MAJOR OR REQUIRED TO (HE		
Hydrochloric Acid (HCl) Emissions					

HAZARDOUS AIR POLLUTANT EMISSIONS TABLE

6) COMPLETE THE FOLLOWING TABLE FOR ALL HAPS WHICH ARE REGULATED AIR POLLUTANTS. THIS TABLE MUST INCLUDE EMISSIONS OF HAPS AT ACTIVITIES PROPOSED TO BE INSIGNIFICANT PURSUANT TO 35 IL. ADM. CODE 201,211, NOTE THAT AN APPLICANT MAY PRESUME THAT AN EMISSION UNIT DOES NOT EMIT A HAP IF IT MEETS THE REQUIREMENTS OF 35 IL. ADM. CODE 201,209.

THIS AGENCY IS AUTHORIZED TO REQUIRE THIS INFORMATION UNDER ILLINOIS REVISED STATUTES, 1991, AS AMENDED 1992, CHAPTER 111 1/2, PAR. 1039.5. DISCLOSURE OF THIS INFORMATION IS REQUIRED UNDER THAT SECTION. FAILURE TO DO SO MAY PREVENT THIS FORM FROM BEING PROCESSED AND COULD RESULT IN THE APPLICATION BEING DENIED. THIS FORM HAS BEEN APPROVED BY THE FORMS MANAGEMENT CENTER.

APPLICATION PAGE 6-1

Printed on Recycled Paper: 215-CAAPP FOR APPLICANT'S USE

						,	 	-	_		 	_		
	S PROPOSED TO BE TS THE	APPLICABILITY LEVEL (UNITS)	18 (ppmv)											
	F HAPS AT ACTIVITIE EMIT A HAP IF IT MEE	APPLICABLE RULE	40 CFR 63, Subpart CCC	40 CFR 63 Subpart CCC										
	EMISSIONS OF TO THE POSITION OF THE POSITION O	OTHER TERMS ²												
SNOIS	AUST INCLUDE EMISSIÓN UÑ	POTENTIAL EMISSIONS (TONS/YR)	0.951	0.44										
UTANT EMIS	. THIS TABLE N SUME THAT AN	TYPICAL EMISSIONS (TONS//YR)	0.951	0.44										
HAZAKDOUS AIR POLLUTANT EMISSIONS	AIR POLLUTANTS, PLICANT MAY PRE	MAXIMUM EMISSIONS (TONS/YR)	0.951	0.44								·		
(b) HAZAKU	'S WHICH ARE REGULATED 201.211. NOTE THAT AN API	EMISSION UNIT DESIGNATION.	Pickle Line	ASTs										•
T 10 4 F	TO 35 IL. ADM. CODE 2 NDM. CODE 201,209.	1CAS NUMBER	7647-01-0	7647-01-0										
COMPLETE THE COLL DIVIN	DOWN THE FOLLOWING LABLE FOR ALL HAPS WHICH ARE REGULATED AIR POLLUTANTS. THIS TABLE MUST INCLUDE EMISSIONS OF HAPS AT ACTIVITIES PROPOSED TO BE INSIGNIFICANT PURSUANT TO 35 IL. ADM. CODE 201.211. NOTE THAT AN APPLICANT MAY PRESUME THAT AN EMISSION UNIT DOES NOT EMIT A HAP IF IT MEETS THE REQUIREMENTS OF 35 IL. ADM. CODE 201.209.	NAME OF HAP EMITTED:	HCI	HCI										

9 7 1

CAS - CHEMICAL ABSTRACT SERVICE

APPLICATION PAGE 6-2 Printed on Recycled Paper 215-CAAPP

²PROVIDE OTHER TERMS AS NECESSARY TO ESTABLISH APPLICABILITY OR COMPLIANCE WITH REQUIREMENTS.

ILLINOIS ENVIRONMENTAL PROTECTION AGENCY DIVISION OF AIR POLLUTION CONTROL – PERMIT SECTION P.O. BOX 19506 SPRINGFIELD, ILLINOIS 62794-9506

FOR AP	PLI	CANŢ	'S USE						
Revision #:		_							
Date:	_ /		_ /						
Page		_ of							
Source Designation:									

FUGITIVE EMISSIONS	
DATA AND INFORMATION	ı

FOR AGENCY USE ONLY
TORAGENCY USE UNEX
ID NUMBER:
EMISSION POINT #:
DATE:

THIS FORM MAY BE COMPLETED FOR FUGITIVE EMISSION ACTIVITIES RATHER THAN COMPLETING AN EMISSION UNIT OR STAND ALONE FORM. FUGITIVE EMISSIONS ARE DEFINED AS THOSE EMISSIONS WHICH COULD NOT REASONABLY PASS THROUGH A STACK, CHIMNEY, VENT OR OTHER FUNCTIONALLY EQUIVALENT OPENING. NOTE THAT UNCAPTURED PROCESS EMISSION UNIT EMISSIONS ARE TYPICALLY NOT CONSIDERED FUGITIVE AND MUST BE ACCOUNTED FOR ON THE APPROPRIATE EMISSION UNIT OR STAND ALONE FORM. ANY EMISSIONS AT THE SOURCE NOT PREVIOUSLY ACCOUNTED FOR ON AN EMISSION UNIT OR STAND ALONE FORM MUST BE ACCOUNTED FOR ON THIS FORM.

SOME EXAMPLES OF EMISSIONS WHICH ARE TYPICALLY CONSIDERED FUGITIVE ARE;

- ROAD DUST EMISSIONS (PAVED ROADS, UNPAVED ROADS, AND LOTS)
- STORAGE PILE EMISSIONS (WIND EROSION, VEHICLE DUMP AND LOAD)
- LOADING/UNLOADING OPERATION EMISSION
- EMISSIONS FROM MATERIAL BEING TRANSPORTED IN A VEHICLE
- EMISSIONS OCCURRING FROM THE UNLOADING AND TRANSPORTING OF MATERIALS COLLECTED BY POLLUTION CONTROL EQUIPMENT
- EQUIPMENT LEAKS (E.G., LEAKS FROM PUMPS, COMPRESSORS, IN-LINE PROCESS VALVES, PRESSURE RELIEF DEVICES, OPEN-ENDED VALVES, SAMPLING CONNECTIONS, FLANGES, AGITATORS, COOLING TOWERS, ETC.)
- GENERAL CLEAN-UP VOM EMISSIONS

NOTE THAT TOTAL EMISSIONS FROM THE SOURCE (TS) ARE EQUAL TO SOURCE-WIDE TOTAL EMISSION UNIT EMISSIONS (PT) PLUS TOTAL FUGITIVE EMISSIONS (FT), E.G., TS = PT + FT.

SOURCE INFORMATION						
1) SOURCE NAME:						
NACME Steel Processing						
2) DATE FORM	3) SOURCE ID NO.					
PREPARED:	(IF KNOWN):					
October 3, 2005	031600FWL					

THIS AGENCY IS AUTHORIZED TO REQUIRE THIS INFORMATION UNDER ILLINOIS REVISED STATUTES, 1991, AS AMENDED 1992, CHAPTER 111 1/2, PAR. 1039.5. DISCLOSURE OF THIS INFORMATION IS REQUIRED UNDER THAT SECTION. FAILURE TO DO SO MAY PREVENT THIS FORM FROM BEING PROCESSED AND COULD RESULT IN THE APPLICATION BEING DENIED. THIS FORM HAS BEEN APPROVED BY THE FORMS MANAGEMENT CENTER.

APPLICATION PAGE 7-1

Printed on Recycled Paper 391-CAAPP FOR APPLICANT'S USE

GENERAL INFORMATION

4) PROVIDE THE FOLLOWING INFORMATION FOR THE FUGITIVE EMISSION POINTS AT THE SOURCE INCLUDED IN THIS APPLICATION. SIMILAR POINTS MAY BE GROUPED TOGETHER.

NOTE: ATTACH THE CALCULATIONS, TO THE EXTENT THEY ARE AIR EMISSIONS RELATED, FROM WHICH THE ABOVE EMISSIONS, WERE BASED AND LABEL AS EXHIBIT 391-1. IF THE ABOVE SPACE WAS NOT ADEQUATE, LIST ALL OTHER FUGITIVE POINTS AND INCLUDE THE REQUIRED INFORMATION ON THIS ATTACHMENT.

FOR PAVED AND UNPAVED ROADS, INCLUDE ROAD MILES (E.G., 6 MILES OF UNPAVED ROADS); FOR STORAGE PILES, INDICATE THE MATERIAL BEING STORED (E.G., 20 LIMESTONE STORAGE PILES); FOR EQUIPMENT LEAK POINTS, GROUP SIMILAR POINTS TOGETHER (E.G., 15 ORGANIC LIQUID PUMPS); FOR TRANSFER POINTS, IDENTIFY THE ORIGIN AND DESTINATION OF TRANSFER AND THE MATERIAL BEING TRANSFERRED (E.G., 5 BELT TO BIN TRANSFERS OF CORN).

UNCONTROLLED ANNUAL EMISSIONS (TONS/YR)

FUGITIVE POINT(S)	REGULATED AIR POLLUTANT(S)	MAXIMUM:	TYPICAL
1 0011102 7 0111(9)	r occonatio)	- Wirodingini	- TITIOAL
Paved Road (1 miles)	PM	0.1	0.02
		- <u>-</u> -	
	•		
:			
1			
		-	
1			
	-		
			,
	•		
-	_		
		1	
<u> </u>		_	

5) ATTACH A DIAGRAM OF THE SOURCE THAT INDICATES THE LOCATION OF ALL FUGITIVE EMISSION POINTS. A SKETCH DRAWING WITH THE PROPER NOTATIONS IS SUFFICIENT. ALTERNATIVELY, THE REQUIRED INFORMATION MAY BE PLACED ON A COPY OF AN EXISTING PLAN OR MAP SUBMITTED WITH THIS APPLICATION (E.G., PLOT PLAN/MAP). ALSO INDICATE ON THIS DIAGRAM THE LOCATION OF ANY AMBIENT AIR MONITORING STATIONS. LABEL THIS DIAGRAM 391-2. NOTE: EQUIPMENT LEAK FUGITIVE EMISSION POINTS NEED NOT BE SHOWN ON THIS DIAGRAM.

) PROVIDE ANY SPECIFIC EMISSION STAND 212.316(d), OPACITY < OR = 10% AT 4 FT):	APPL DARD(S) AND LIMITATIONS(S) WHICH ARE	APPLICABLE RULES HARE APPLICABLE TO FUGITIVE EMISSIONS A	6) PROVIDE ANY SPECIFIC EMISSION STANDARD(S) AND LIMITATIONS(S) WHICH ARE APPLICABLE TO FUGITIVE EMISSIONS AT THE SOURCE (E.G., ROAD SEGMENT F, PM-10, IAC 212.316(d), OPACITY < OR = 10% AT 4 FT):
FUGITIVE POINTS(S)	REGULATED AIR POLLUTANT(S)	EMISSION STANDARD(S)	REQUIREMENT(S)
Road Segment	PIM	IAC 212.316(d)	< 10% Opacity limit
7) PROVIDE ANY SPECIFIC RECORDKEEPING RULE(S) WHICH ARE APPLICABLE: FUGITIVE POINTS(S)	VG RULE(S) WHICH ARE APPLICABLE: REGULATED AIR POLLUTANT(S)	EMISSION STANDARD(S)	REQUIREMENT(S)
Paved Road	M4	IAC 212.316(g)	Control Measure Application, as applicable

5.2 5.2

M.S.

APPLICATION PAGE 7-3
Printed on Recycled Paper
391-CAAPP

NMLP 0346

司 公

經過

福野八

Ž.

Г	Ι -							
	REQUIREMENT(S)	Report Submittal upon request		REQUIREMENT(S)		REQUIREMENT(S)		
APPLICABLE RULES (CONT)	EMISSION STANDARD(S)	IAC 212.316(g)		EMISSION STANDARD(S)		PLICABLE: EMISSION STANDARD(S)		
APPLICAL	LE(S) WHICH ARE APPLICABLE: REGULATED AIR POLLUTANT(S)	PM		ULE(S) WHICH ARE APPLICABLE: REGULATED AIR POLLUTANT(S)		10) PROVIDE ANY SPECIFIC TESTING RULES AND/OR PROCEDURES WHICH ARE APPLICABLE: FUGITIVE POINTS(S) REGULATED AR POLLUTANT(S)		
	PROVIDE ANY SPECIFIC REPORTING RULE(S) WHICH ARE APPLICABLE: FUGITIVE POINTS(S) REGULATED AIR POLLUTAN	Paved Road) PROVIDE ANY SPECIFIC MONITORING RULE(S) WHICH ARE APPLICABLE: FUGITIVE POINTS(S)		0) PRÓVIDE ANY SPECIFIC TESTING RULE FUGITIVE POINTS(S)		

IF ADDITIONAL SPACE IS NEEDED, ATTACH AND LABEL AS 391-3.

APPLICATION PAGE 7-4 Printed on Recycled Paper 391-CAAPP

	COMPLIAN	ICE INFORMATION	
11) IS EACH FUGITIVE PO	DINT IN COMPLIANCE WITH A	ALL APPLICABLE REQUIREMENTS?	YES NO
		N/SCHEDULE OF COMPLIANCE — A ED AND SUBMITTED WITH THIS AF	
}			
12) EXPLANATION OF HOW	VINITIAL COMPLIANCE IS TO	BE, OR WAS PREVIOUSLY, DEMO	NSTRATED:
Access roads and par			
13) EXPLANATION OF HOW	ONGOING COMPLIANCE WI	LL BE DEMONSTRATED:	
Maintain paved areas	and periodically clean.		
T.03	THE MONUTORING SE	CORRECTING AND REDGE	TING
14a) LIST THE PARAMETER	STHAT RELATE TO AIR EMIS	CORDKEEPING AND REPOF SSIONS FOR WHICH RECORDS AR	E BEING MAINTAINED TO
DETERMINE FEES, RUI	E APPLICABILITY OR COMP	LIANCE. INCLUDE THE UNIT OF M Y OF SUCH RECORDS (E.G., HOU!	EASUREMENT, THE
PARAMETER	FUGITIVE POINT	METHOD OF MEASUREMENT	FREQUENCY
PM	Paved Road	Visual	Routinely

APPLICATION PAGE 7-5

b) BRIEFLY DESCRIBE THE METHOD BY WHICH RECORDS WILL BE CREATED AND MAINTAINED. FOR EACH RECORDED PARAMETER INCLUDE THE METHOD OF RECORD REPING. TITLE OF PERSON RESPONSIBLE FOR									
		ACT FOR REVIEW OF RECORDS							
PARAMETER	METHOD OF RECORDKEEPING	TITLE OF PERSON RESPONSIBLE	TITLE OF CONTACT PERSON						
Paved area cleanup	Maintain records of cleaned	Maintenance Manager	Vice President - Supplies						
		-							
c) IS COMPLIANCE OF THE EMISSION UNIT READILY DEMONSTRATED BY REVIEW OF THE RECORDS?									
IF NO, EXPLAIN:									
d) ARE ALL RECORDS READILY AVAILABLE FOR INSPECTION, COPYING AND/OR SUBMITTAL TO THE AGENCY UPON REQUEST? YES NO									
IF NO, EXPLAIN:									
15a) DESCRIBE ANY MONIT COMPLIANCE:	TORS OR MONITORING ACTIVIT	TIES USED TO DETERMINE FEES	S, RULE APPLICABILITY OR						
Emission are insignifi size.	cant from paved access roa	d and parking area. Parking a	area and road is small in						
b) WHAT PARAMETER(S)	IS(ARE) BEING MONITORED?		_						
Condition of pavement.									
DESCRIPTION OF TAXABLE AND ADDRESS OF TAXABLE									
c) DESCRIBE THE LOCATION OF EACH MONITOR AND/OR MONITORING PROCEDURES:									
Visual inspection only.									
d) IS EACH MONITOR EQUIPPED WITH A RECORDING DEVICE?									
	RS WITHOUT A RECORDING D		YES NO						
Visual inspection									
Violati Hispertion									

e) IS EACH MONITO BASIS?	R REVIEWED FO	R ACCURACY O	N AT LEAS	T A QUAR	RTERLY	YES	NO		
IF NO, EXPLAIN:									
N/A									
				_					
f) IS EACH MONITO OCCUR?	R OPERATED AT	ALL TIMES THA	T FUGITIV	E EMISSIC	ONS MAY	YES	NO		
IF NO, EXPLAIN:									
N/A									
16) PROVIDE INFORM	AATION ON THE A	AOST RECENT T	ESTS IF A	NY IN W	IICH THE RESULT	IS ARE LISED F	OR		
PURPOSES OF TH DATE, TEST METI SUMMARY OF RE	HE DETERMINAT HOD USED, TEST	ION OF FEES, RUING COMPANY,	JLE APPLI OPERATIN	CABILITY (IG CONDI	OR COMPLIANCE FIONS EXISTING I	. INCLUDE TH DURING THE T	E TEST		
FUGITIVE POINT(S)	TEST DATE	TEST METHOD	TESTIN	G FIRM	OPERATING CONDITIONS	SUMMAF RESUI			
3									
17) DESCRIBE ALL RE SUBMITTALS TO T		REMENTS AND	PROVIDE	THE TITLE	AND FREQUENC	Y OF REPORT			
FUĢITIVE POINT(S)	REPORTING	REQUIREMENTS		TITL	E OF REPORT	. FREQ	UENCY		
Paved Road	Excessive fu	ıgitive emissio	ns		N/A		/A		
		<u></u>							
FUGITIVE DUST (complete if applicable)									
18a) ARE OPACITY REA				е п аррі	icabie)		<u> </u>		
IF YES, SPECIFY	THE RELEVANT F	FUGITIVE POINT	(S):			YES	NO NO		
i)									
iii)									
b) SPECIFY THE FRE	QUENCY OF OPA	CITY READINGS	}:						
-, -:: - : : : : : : : : : : : : : :	,	,							

APPLICATION PAGE 7-7

26, 23,

c) IS USEPA METHOD 9 USED TO READ ALL VISIBLE EMISSIONS?	YES	NO
IF NO, EXPLAIN AND SPECIFY THE METHOD USED:		<u></u>
Paved Road – Insignificant fugitive PM emissions		
19) IS AN OPERATING PROGRAM FOR FUGITIVE PARTICULATE MATTER AND/OR PM10 CONTROL REQUIRED PURSUANT TO 35 ILL. ADM. CODE 212,309?		
SOMMOE NEGOTIAL PONCONT TO SO TEEL VISIN SOSE ETELOS.	X YES	NO
IF YES, HAS SUCH A PROGRAM PREVIOUSLY BEEN SUBMITTED TO THE AGENCY?		$\sum_{i=1}^{n}$
	YES	NO
IF SUCH A PROGRAM HAS NOT BEEN SUBMITTED, IT SHOULD BE ATTACHED TO THIS	FORM UPON SU	BMITTAL
AND LABELED AS 391-5.		
20) IS THE SOURCE IN COMPLIANCE WITH 35 ILL. ADM. CODE 212.301 WHICH STATES THAT NO EMISSIONS SHALL BE VISIBLE BEYOND THE PROPERTY LINE OF THE		
SOURCE?	YES	NO
IF NO, EXPLAIN:		
·		
FUGITIVE VOM FROM EQUIPMENT LEAKS (complete if applicable) – N/		
21) INDICATE WHICH OF THE FOLLOWING METHODS WAS USED TO ESTIMATE FUGITIVE		
EQUIPMENT LEAKS:	EMISSIONS OF V	OM FROM
EQUIPMENT LEAKS:	EMISSIONS OF V	OM FROM
AVERAGE LEAK/NO LEAK STRATIFIED LEAK F	RATE/SCREENING	
AVERAGE LEAK/NO LEAK STRATIFIED LEAK F		
AVERAGE LEAK/NO LEAK STRATIFIED LEAK F EMISSION EMISSION EMISSION CO FACTOR FACTOR FACTOR	RATE/SCREENING	
AVERAGE LEAK/NO LEAK STRATIFIED LEAK FEMISSION EMISSION EMISSION CO	RATE/SCREENING	
AVERAGE LEAK/NO LEAK STRATIFIED LEAK F EMISSION EMISSION EMISSION CO FACTOR FACTOR FACTOR	RATE/SCREENING	
AVERAGE LEAK/NO LEAK STRATIFIED LEAK F EMISSION EMISSION EMISSION CO FACTOR FACTOR FACTOR	RATE/SCREENING PRRELATION	S VALUE
AVERAGE EMISSION FACTOR LEAK/NO LEAK STRATIFIED LEAK F EMISSION FACTOR OTHER; (SPECIFY):	RATE/SCREENING RRELATION	S VALUE
AVERAGE EMISSION FACTOR EMISSION FACTOR EMISSION FACTOR OTHER; (SPECIFY): ATTACH A COPY OF THE FINAL REPORT FOR ANY OF THE ABOVE TESTS THAT HAVE BE	RATE/SCREENING RRELATION	S VALUE
AVERAGE EMISSION FACTOR EMISSION FACTOR EMISSION FACTOR OTHER; (SPECIFY): ATTACH A COPY OF THE FINAL REPORT FOR ANY OF THE ABOVE TESTS THAT HAVE BEEPORT SHOULD SUMMARIZE THE TEST PROCEDURES AND RESULTS. LABEL AS 391	RATE/SCREENING RRELATION	S VALUE
AVERAGE EMISSION FACTOR EMISSION FACTOR EMISSION EMISSION FACTOR OTHER; (SPECIFY): ATTACH A COPY OF THE FINAL REPORT FOR ANY OF THE ABOVE TESTS THAT HAVE E REPORT SHOULD SUMMARIZE THE TEST PROCEDURES AND RESULTS. LABEL AS 391 22) IS THERE AN ACTIVE INSPECTION AND MONITORING PROGRAM OF EQUIPMENT	RATE/SCREENING RRELATION BEEN PERFORME -6.	S VALUE
AVERAGE EMISSION EMISSION FACTOR OTHER; (SPECIFY): ATTACH A COPY OF THE FINAL REPORT FOR ANY OF THE ABOVE TESTS THAT HAVE E REPORT SHOULD SUMMARIZE THE TEST PROCEDURES AND RESULTS. LABEL AS 391 22) IS THERE AN ACTIVE INSPECTION AND MONITORING PROGRAM OF EQUIPMENT LEAKS? IF YES, PROVIDE A DESCRIPTION OF SUCH PROGRAM OR ATTACH THE INSPECTION PROGRAM OR ATT	RATE/SCREENING RRELATION BEEN PERFORME -6. YES NO	ED. THIS
AVERAGE EMISSION FACTOR EMISSION FACTOR OTHER; (SPECIFY): ATTACH A COPY OF THE FINAL REPORT FOR ANY OF THE ABOVE TESTS THAT HAVE E REPORT SHOULD SUMMARIZE THE TEST PROCEDURES AND RESULTS. LABEL AS 391 22) IS THERE AN ACTIVE INSPECTION AND MONITORING PROGRAM OF EQUIPMENT LEAKS?	RATE/SCREENING RRELATION BEEN PERFORME -6. YES NO	ED. THIS
AVERAGE EMISSION EMISSION FACTOR OTHER; (SPECIFY): ATTACH A COPY OF THE FINAL REPORT FOR ANY OF THE ABOVE TESTS THAT HAVE E REPORT SHOULD SUMMARIZE THE TEST PROCEDURES AND RESULTS. LABEL AS 391 22) IS THERE AN ACTIVE INSPECTION AND MONITORING PROGRAM OF EQUIPMENT LEAKS? IF YES, PROVIDE A DESCRIPTION OF SUCH PROGRAM OR ATTACH THE INSPECTION PROGRAM OR ATT	RATE/SCREENING RRELATION BEEN PERFORME -6. YES NO	ED. THIS
AVERAGE EMISSION EMISSION FACTOR OTHER; (SPECIFY): ATTACH A COPY OF THE FINAL REPORT FOR ANY OF THE ABOVE TESTS THAT HAVE E REPORT SHOULD SUMMARIZE THE TEST PROCEDURES AND RESULTS. LABEL AS 391 22) IS THERE AN ACTIVE INSPECTION AND MONITORING PROGRAM OF EQUIPMENT LEAKS? IF YES, PROVIDE A DESCRIPTION OF SUCH PROGRAM OR ATTACH THE INSPECTION PROGRAM OR ATT	RATE/SCREENING RRELATION BEEN PERFORME -6. YES NO	ED. THIS
AVERAGE EMISSION EMISSION FACTOR OTHER; (SPECIFY): ATTACH A COPY OF THE FINAL REPORT FOR ANY OF THE ABOVE TESTS THAT HAVE E REPORT SHOULD SUMMARIZE THE TEST PROCEDURES AND RESULTS. LABEL AS 391 22) IS THERE AN ACTIVE INSPECTION AND MONITORING PROGRAM OF EQUIPMENT LEAKS? IF YES, PROVIDE A DESCRIPTION OF SUCH PROGRAM OR ATTACH THE INSPECTION PROGRAM OR ATT	RATE/SCREENING RRELATION BEEN PERFORME -6. YES NO	ED. THIS
AVERAGE EMISSION EMISSION FACTOR OTHER; (SPECIFY): ATTACH A COPY OF THE FINAL REPORT FOR ANY OF THE ABOVE TESTS THAT HAVE E REPORT SHOULD SUMMARIZE THE TEST PROCEDURES AND RESULTS. LABEL AS 391 22) IS THERE AN ACTIVE INSPECTION AND MONITORING PROGRAM OF EQUIPMENT LEAKS? IF YES, PROVIDE A DESCRIPTION OF SUCH PROGRAM OR ATTACH THE INSPECTION PROGRAM OR ATT	RATE/SCREENING RRELATION BEEN PERFORME -6. YES NO	ED. THIS

	FUGITIVE VOM FRO	M CLEANUP OF	PERATIONS (compl	ete if applicable	e) N/A
	COMPLETE THE FOLLOWING FO	R EACH VOM CONT	AINING MATERIAL USE	D FOR CLEANUP F	OR WHICH THE
1	EMISSIONS ARE FUGITIVE AND I	HAVE NOT BEEN AC	COUNTED FOR ELSEW	VHERE IN THIS APP ANNUAL	
l				(GALY	
1	GENERIC NAME OF CLEANUP MATERIAL	DENSITY (LB/GAL)	VOM CONTENT (WEIGHT %)	MAX '	TYPICAL
Ιr	WATERIAL	(LB/GAL)	(VVEIGHT 78)		THOAL
a)					1
 					
b)					
1 -					<u> </u>
(c)	·	1	j]. [
]]	
_					
	XPLAIN THE MEANS BY WHICH	THESE MATERIALS	ARE USED AND WHAT	EQUIPMENT OR IT	EMS ARE BEING
(CLEANED:				
25a)	ARE ALL VOM USED IN CLEANUE	OPERATIONS COM	NSIDERED TO BE EMIT	TED?	
					YES NO
	IF NO, EXPLAIN:				
b) I	F APPLICABLE, COMPLETE ITEM	S i. ii. AND iii BELOV	v:		
i	PROVIDE THE MAXIMUM AND THENCE, NOT EMITTED:	TYPICAL AMOUNT (OF VOM RECLAIMED AN	ND/OR SHIPPED OF	F-SITE AND
	TIENCE, NOT ENTITIES.				
	(GALSYR)		(TONS/YR)	
MA	x				
					1 1
TY	p				
• 1					1 1
ii)	EXPLAIN THE MEANS BY WHICH	VOM IS COLLECTE	D FOR RECLAMATION	AND/OR DISPOSAL	<u>:</u>
	•				

X

APPLICATION PAGE 7-9

	iii) EXPLAIN THE MEANS BY	WHICH THE AMOUN	IT C	F VOM COLLECTED) IS	MEASURED OR DE	TERMINED:
1							
1							
1							
1							
1							
i							
ı							
<u></u>		· .					
				VE CONTROL			
26)	COMPLETE THE FOLLOWIN CONTROL MEASURE UTILIZ	G, INCLUDING THE M	IINII	MUM AND TYPICAL	RE	DUCTION EFFICIENC	CY FOR EACH
i	· ·						EDECHENCY
							FREQUENCY OF
l		REGULATED AIR		FUGITIVE POINT(S)		REDUCTION EFF.(%)	CONTROL
ľ	CONTROL MEASURES	POLLUTANT		CONTROLLED		MIN TYP	APPLICATION
a)			Ī		l		
	Clean Paved Roads	PM					Routine
b)							
C)						<u></u>	
,							
d)							
e)							
,							
NOT				1 ABEL AC 204 B			
	E: IF ADDITIONAL SPACE IS	-					
27) F	PROVIDE A DESCRIPTION O	FEACH OF THE CON	TR	OL MEASURES INDI	CA	TED IN ITEM 32. IF A	ADDITIONAL SPACE
ı	S NEEDED, ATTACH AND LA	ABEL AS 391-9.					
	CONTROL MEASI		_		_	DESCRIPTION	
а)	Visual Inspection of Ros Condition	ad/Parking Area		Inspect paved	d a	reas for condition, required.	repair, as
	Condition	'				required.	
- 1			Γ				
ļ							
ł							
L			L				
_			_				
b)							
-			L				
- 1							
-	_		\vdash				

APPLICATION PAGE 7-10

4				
t.	_	_	Ī	į
1	₹		7	

ILLINOIS ENVIRONMENTAL PROTECTION AGENCY DIVISION OF AIR POLLUTION CONTROL -- PERMIT SECTION P.O. BOX 19506 SPRINGFIELD, ILLINOIS 62794-9506

Revision #: / / Page of	FOR APPLICANT'S USE				
	Revision #:				
Page of	Date:	_ /		_ /	
Source Designation:					

COMPLIANCE PLAN/
SCHEDULE OF COMPLIANCE
FOR CAAPP PERMIT

FOR AGENCY USE ONLY	
ID NUMBER:	
PERMIT #:	
DATE:	
DATE.	

THE CLEAN AIR ACT PERMIT PROGRAM (CAAPP) REQUIRES THAT THE APPLICANT SUBMIT A COMPLIANCE PLAN/SCHEDULE OF COMPLIANCE FOR ALL EMISSION UNITS AT THE CAAPP SOURCE, REGARDLESS OF THE COMPLIANCE STATUS OF EACH INDIVIDUAL EMISSION UNIT. THIS FORM REQUIRES THAT THE COMPLIANCE STATUS BE STATED FOR EACH EMISSION UNIT. APPLICATION FORM 294-CAAPP, "COMPLIANCE PLAN/SCHEDULE OF COMPLIANCE - ADDENDUM FOR NON COMPLYING EMISSION UNITS," MUST BE SUBMITTED FOR EACH EMISSION UNIT NOT IN COMPLIANCE WITH ALL APPLICABLE REQUIREMENTS AT THE TIME OF SUBMITTAL.

SOURCE INFORMATION				
1) SOURCE NAME:				
NACME Steel Processing				
2) DATE FORM	3) SOURCE ID NO.			
PREPARED:	(IF KNOWN):			
10/03/05	031600FWL			

10/03/05	031600FWL
	·
	SOURCE COMPLIANCE INFORMATION
4) DESCRIBE THE COMPLIANCE ST IS IN COMPLIANCE WITH ALL AP	ATUS OF THE SOURCE WITH ALL APPLICABLE REQUIREMENTS (E.G., "SOURCE PLICABLE REQUIREMENTS"):
Source is in compliance with ap	plicable requirements.
5) IF IN COMPLIANCE, WILL THE SO	DURCE CONTINUE TO COMPLY WITH ALL APPLICABLE REQUIREMENTS?
	YES NO
IF NO, EXPLAIN:	
6) WILL THE SOURCE MEET, ON A T DURING THE PERMIT TERM?	IMELY BASIS, APPLICABLE REQUIREMENTS WHICH BECOME EFFECTIVE
DOMING THE FERMIT TERMS	YES NO
IF NO, EXPLAIN	Mark the second of the second

THIS AGENCY IS AUTHORIZED TO REQUIRE THIS INFORMATION UNDER ILLINOIS REVISED STATUTES, 1991, AS AMENDED 1992, CHAPTER 111 1/2, PAR. 1039.5. DISCLOSURE OF THIS INFORMATION IS REQUIRED UNDER THAT SECTION. FAILURE TO DO SO MAY PREVENT THIS FORM FROM BEING PROCESSED AND COULD RESULT IN THE APPLICATION BEING DENIED. THIS FORM HAS BEEN APPROVED BY THE FORMS MANAGEMENT CENTER.

APPLICATION PAGE 8-1

Printed on Recycled Paper 293-CAAPP FOR APPLICANT'S USE

EMISSION UNITS COMPLIANCE INFORMATION					
7) <u>EMISSION UNITS IN COMPLIANCE</u> THE FOLLOWING EMISSION UNITS ARE IN COMPLIANCE WITH ALL APPLICABLE REQUIREMENTS AND WILL CONTINUE TO COMPLY WITH SUCH REQUIREMENTS DURING THE PERMIT TERM. IF ADDITIONAL SPACE IS NEEDED, ATTACH AND LABEL AS EXHIBIT 293-1:					
	DESIGNATION ID NUMBER	EMISSION UNIT			
	Steel Pickling Line 1	Steel Pickling Lin	e		
	HCL ASTs 1 and 2	HCI ASTs			
91	EMISSION LINUTS SUBJECT TO FUTURE	COMPLIANCE DATES			
	8) EMISSION UNITS SUBJECT TO FUTURE COMPLIANCE DATES THE FOLLOWING EMISSION UNITS, WHICH ARE CURRENTLY IN COMPLIANCE WITH ALL APPLICABLE REQUIREMENTS, WILL ACHIEVE ON A TIMELY BASIS, AND MAINTAIN COMPLIANCE WITH, FUTURE COMPLIANCE DATES AS THEY BECOME APPLICABLE DURING THE PERMIT TERM. IF ADDITIONAL SPACE IS NEEDED, ATTACH AND LABEL AS EXHIBIT 293-2: FUTURE				
	DESIGNATION ID NUMBER	· EMISSION UNIT	COMPLIANCE DATE (MONTH/DAY/YEAR)		
	N/A				
Ì					
921	EMISSION UNITS NOT IN COMPLIANCE	- COMPLIANCE TO BE ACHIEVED PRIOR TO PE	EDMIT ISSUANCE		
THE FOLLOWING EMISSION UNITS ARE NOT IN COMPLIANCE WITH ALL APPLICABLE REQUIREMENTS AT THE TIME OF PERMIT APPLICATION. HOWEVER, THESE EMISSION UNITS WILL ACHIEVE COMPLIANCE WITH ALL APPLICABLE REQUIREMENTS PRIOR TO PERMIT ISSUANCE AND WILL CONTINUE TO COMPLY WITH SUCH REQUIREMENTS DURING THE PERMIT TERM. IF ADDITIONAL SPACE IS NEEDED, ATTACH AND LABEL AS EXHIBIT 293-3: FUTURE					
	DESIGNATION ID NUMBER	EMISSION UNIT	COMPLIANCE DATE (MONTH/DAY/YEAR)		
	N/A				
f					
L					
b) THE FOLLOWING IS A NARRATIVE DESCRIPTION OF THE MEANS BY WHICH COMPLIANCE WILL BE ACHIEVED FOR EACH OF THE EMISSION UNITS LISTED IN 9a) ABOVE. IF ADDITIONAL SPACE IS NEEDED, ATTACH AND LABEL AS EXHIBIT 293-4:					
Not Applicable					
IO) EMISSION UNITS NOT IN COMPLIANCE - COMPLIANCE WILL NOT BE ACHIEVED PRIOR TO PERMIT ISSUANCE THE FOLLOWING EMISSION UNITS WILL NOT BE IN COMPLIANCE WITH ALL APPLICABLE REQUIREMENTS AT THE TIME OF PERMIT ISSUANCE. A FORM 294-CAAPP, "COMPLIANCE PLAN/SCHEDULE OF COMPLIANCE - ADDENDUM FOR NON COMPLYING EMISSION UNITS," MUST BE SUBMITTED FOR EMISSION UNITS NOT IN COMPLIANCE WITH ALL APPLICABLE REQUIREMENTS AT THE TIME OF PERMIT ISSUANCE. A FORM 294-CAAPP IS SUBMITTED FOR THE FOLLOWING EMISSION UNITS. IF ADDITIONAL SPACE IS NEEDED, ATTACH AND LABEL AS EXHIBIT 293-5:					
	DESIGNATION ID NUMBER	EMISSION UNIT	DATE COMPLIANCE SCHEDULED TO BE ACHIEVED (MONTH/DAY/YEAR)		
	N/A				

APPLICATION PAGE 8-2

4		9		١
£	ij		7	•

ILLINOIS ENVIRONMENTAL PROTECTION AGENCY DIVISION OF AIR POLLUTION CONTROL -- PERMIT SECTION P.O. BOX 19506 SPRINGFIELD, ILLINOIS 62794-9506

FOR APPLICANT'S USE				
Revision #:				
Date:	_ /	_ /		
Page of				
Source Designation:				

SPRINGFIELD, ILLINOIS 6279	94-9506	Source Designation:
		and the second s
·		GENCY USE ONLY
1	ID NUMBER:	
COMPLIANCE CERTIFICATION	PERMIT #:	
COMPLIANCE CENTILICATION		
	DATE:	•
AN APPLICATION FOR A CAAPP PERMIT MUST CONTAIN A CERTIFIC		
FORM MUST BE SUBMITTED WITH THE ORIGINAL CAAPP PERMIT AF	PLICATION AND UPDATED (ON AN ANNUAL BASIS.
SOURCE INF	ORMATION	
1) SOURCE NAME:		
NACME Steel Processing		
	OURCE ID NO.	
	IF KNOWN): 2 31600FWL	
4) CAAPP PERMIT NUMBER (IF KNOWN):	310001 112	
4) OPON TO ENVIRONMENT (III TAROWAY).		
N/A - No CAAPP Permit		
5) IS THIS THE FIRST SUBMITTAL OF THIS FORM?		YES NO
. IF NO. WHAT IS THE REPORTING PERIOD		YES NO
	/ TO: /	/
	. 10	·
<u> </u>		
SOURCE COMPLIAN		
6) DOES THE SIGNATORY OF THIS FORM HEREBY CERTIFY	THAT THE SOURCE IS I	N COMPLIANCE WITH ALL
APPLICABLE REQUIREMENTS?		
		YES NO
IF NO, EXPLAIN:		
7) PROVIDE THE SCHEDULE FOR SUBMISSION OF COMPLIA		
ONCE ANNUALLY IN JANUARY (NOTE THAT SUCH CERTIF	ICATION MUST BE SUBN	MITTED NO LESS FREQUENTLY
THAN ANNUALLY):		
N/A		
IV/O		
B) INDICATE THE COMPLIANCE STATUS OF THE SOURCE W	ITH ANY APPLICABLE EN	HANCED MONITORING AND
COMPLIANCE CERTIFICATION REQUIREMENTS OF THE C		
REQUIRED AND IN COMPLIANCE WITH COMPLIANCE CER	TIFICATION REQUIREME	ENTS:
No Enhanced Monitoring required and in compliance	e with compliance cert	tification requirements.

THIS AGENCY IS AUTHORIZED TO REQUIRE THIS INFORMATION UNDER ILLINOIS REVISED STATUTES, 1991, AS AMENDED 1992, CHAPTER 111 1/2, PAR. 1039.5. DISCLOSURE OF THIS INFORMATION IS REQUIRED UNDER THAT SECTION. FAILURE TO DO SO MAY PREVENT THIS FORM FROM BEING PROCESSED AND COULD RESULT IN THE APPLICATION BEING DENIED. THIS FORM HAS BEEN APPROVED BY THE FORMS MANAGEMENT CENTER.

APPLICATION PAGE 9-1

Printed on Recycled Paper 296-CAAPP

FOR APPLICANT'S USE

EMISSION UNITS COMPLIANCE INFORMATION				
9a) THE FOLLOWING EMISSION UNITS ARE IN COMPLIANCE WITH APPLICABLE REQUIREMENTS SUCH AS EMISSION STANDARDS, EMISSION CONTROL REQUIREMENTS, EMISSION TESTING, COURT REQUIREMENTS, WORK PRACTICES, OR ENHANCED MONITORING, BASED ON THE COMPLIANCE METHODS SPECIFIED BELOW (IF ADDITIONAL SPACE IS NEEDED, ATTACH AND LABEL AS EXHIBIT 296-1):				
EMISSION UNIT	APPLICABLE RULE	COMPLIANCE DETERMINATION METHOD		
Steel Pickling Line	40 CFR 63, Subpart CCC	Emission Testing		
HCI AST	40 CFR 63, Subpart CCC	Records maintenance		
		· .		
	· .			
	-			
	-			
	-			

3.0

APPLICATION PAGE 9-2
Printed on Recycled Paper
296-CAAPP

COMPLIANCE INFORMATION O) SUMMARY OF METHODS USED TO DETERMINE COMPLIANCE: D) DESCRIPTION OF TESTING METHODS USED TO DEMONSTRATE COMPLIANCE (IF ADDITIONAL SPACE IS NEEDED, ATTACH AND LABEL AS EXHIBIT 286-3.): EPA Emission Testing Methods 1-4, and 26A completed in April 2002. DOB) DESCRIPTION OF MONITORING PROCEDURES USED TO DEMONSTRATE COMPLIANCE, INCLUDING ANY ENHANCED MONITORING PROCEDURES USED TO DEMONSTRATE COMPLIANCE, INCLUDING ANY ENHANCED MONITORING PROCEDURES USED TO DEMONSTRATE COMPLIANCE, INCLUDING ANY ENHANCED MONITORING PROCEDURES USED TO DEMONSTRATE COMPLIANCE (IF ADDITIONAL SPACE IS NEEDED, ATTACH AND LABEL AS EXHIBIT 286-5.): Emission Test Report, sieel throughput, scrubber water flow, and tank records. MI) DESCRIPTION OF REPORTING USED TO DEMONSTRATE COMPLIANCE (IF ADDITIONAL SPACE IS NEEDED, ATTACH AND LABEL AS EXHIBIT 286-5.): Emission Test Report, sieel throughput, scrubber water flow, and tank records. MI) DESCRIPTION OF REPORTING USED TO DEMONSTRATE COMPLIANCE (IF ADDITIONAL SPACE IS NEEDED, ATTACH AND LABEL AS EXHIBIT 286-6.): SIGNATURE BLOCK TE: THIS CERTIFICATION MUST BE SIGNED BY A RESPONSIBLE OFFICIAL APPLICATIONS WITHOUT A SIGNED CERTIFICATION WILL BE RETURNED AS INCOMPLETE. SIGNATURE BLOCK TITLE STATEMENTS AND INFORMATION CONTAINED IN THIS APPLICATION ARE TRUE, ACCURATE AND COMPLETE. AUTHORIZED SIGNATURE: BY: Production Manager TITLE OF SIGNATORY		EMISSION UNIT		REASON(S) FOR NONC	OMPLIANCE
COMPLIANCE INFORMATION D) SUMMARY OF METHODS USED TO DETERMINE COMPLIANCE: DESCRIPTION OF TESTING METHODS USED TO DEMONSTRATE COMPLIANCE (IF ADDITIONAL SPACE IS NEEDED, ATTACH AND LABEL AS EXHIBIT 296-3.): EPA Emission Testing Methods 1-4, and 26A completed in April 2002. B) DESCRIPTION OF MONITORING PROCEDURES USED TO DEMONSTRATE COMPLIANCE, INCLUDING ANY ENHANCED MONITORING REQUIREMENTS OF THE ACT (IF ADDITIONAL SPACE IS NEEDED, ATTACH AND LABEL AS EXHIBIT 296-4.): N/A D) DESCRIPTION OF RECORDKEEPING USED TO DEMONSTRATE COMPLIANCE (IF ADDITIONAL SPACE IS NEEDED, ATTACH AND LABEL AS EXHIBIT 296-5.): Emission Test Report, steel throughput, scrubber water flow, and tank records. D) DESCRIPTION OF REPORTING USED TO DEMONSTRATE COMPLIANCE (IF ADDITIONAL SPACE IS NEEDED, ATTACH AND LABEL AS EXHIBIT 296-6.): ARTICH AND LABEL AS EXHIBIT 296-6.): SIGNATURE BLOCK TE: THIS CERTIFICATION MUST BE SIGNED BY A RESPONSIBLE OFFICIAL. APPLICATIONS WITHOUT A SIGNED CERTIFICATION INQUIRY, THE STATEMENTS AND INFORMATION CONTAINED IN THIS APPLICATION ARE TRUE, ACCURATE AND COMPLETE. AUTHORIZED SIGNATURE: BY: Production Manager TITLE OF SIGNATORY		2.3300.014.01411			
DESCRIPTION OF TESTING METHODS USED TO DETERMINE COMPLIANCE: DESCRIPTION OF TESTING METHODS USED TO DEMONSTRATE COMPLIANCE (IF ADDITIONAL SPACE IS NEEDED, ATTACH AND LABEL AS EXHIBIT 296-3.): EPA Emission Testing Methods 1-4, and 26A completed in April 2002. b) DESCRIPTION OF MONITORING PROCEDURES USED TO DEMONSTRATE COMPLIANCE, INCLUDING ANY ENHANCED MONITORING REQUIREMENTS OF THE ACT (IF ADDITIONAL SPACE IS NEEDED, ATTACH AND LABEL AS EXHIBIT 296-4.): N/A I) DESCRIPTION OF RECORDKEEPING USED TO DEMONSTRATE COMPLIANCE (IF ADDITIONAL SPACE IS NEEDED ATTACH AND LABEL AS EXHIBIT 296-5.): Emission Test Report, steel throughput, scrubber water flow, and tank records. I) DESCRIPTION OF REPORTING USED TO DEMONSTRATE COMPLIANCE (IF ADDITIONAL SPACE IS NEEDED, ATTACH AND LABEL AS EXHIBIT 296-6.): ATTACH AND LABEL AS EXHIBIT 296-6.): SIGNATURE BLOCK TE: THIS CERTIFICATION MUST BE SIGNED BY A RESPONSIBLE OFFICIAL. APPLICATIONS WITHOUT A SIGNED CERTIFICATION WILL BE RETURNED AS INCOMPLETE. I) CERTIFY UNDER PENALTY OF LAW THAT, BASED ON INFORMATION AND BELIEF FORMED AFTER REASONABLINQUIRY, THE STATEMENTS AND INFORMATION CONTAINED IN THIS APPLICATION ARE TRUE, ACCURATE AND COMPLETE. BY: Production Manager TITLE OF SIGNATORY		N/A	01-	•	
DESCRIPTION OF TESTING METHODS USED TO DETERMINE COMPLIANCE: DESCRIPTION OF TESTING METHODS USED TO DEMONSTRATE COMPLIANCE (IF ADDITIONAL SPACE IS NEEDED, ATTACH AND LABEL AS EXHIBIT 296-3.): EPA Emission Testing Methods 1-4, and 26A completed in April 2002. D) DESCRIPTION OF MONITORING PROCEDURES USED TO DEMONSTRATE COMPLIANCE, INCLUDING ANY ENHANCED MONITORING REQUIREMENTS OF THE ACT (IF ADDITIONAL SPACE IS NEEDED, ATTACH AND LABEL AS EXHIBIT 296-4.): N/A IDESCRIPTION OF RECORDKEEPING USED TO DEMONSTRATE COMPLIANCE (IF ADDITIONAL SPACE IS NEEDED ATTACH AND LABEL AS EXHIBIT 296-5.): Emission Test Report, steel throughput, scrubber water flow, and tank records. IDESCRIPTION OF REPORTING USED TO DEMONSTRATE COMPLIANCE (IF ADDITIONAL SPACE IS NEEDED, ATTACH AND LABEL AS EXHIBIT 296-6.): **Emission Test Report, steel throughput, scrubber water flow, and tank records. IDESCRIPTION OF REPORTING USED TO DEMONSTRATE COMPLIANCE (IF ADDITIONAL SPACE IS NEEDED, ATTACH AND LABEL AS EXHIBIT 296-6.): **Emission Reporting/Emission Test Report Submittal.** **SIGNATURE BLOCK** E: THIS CERTIFICATION MUST BE SIGNED BY A RESPONSIBLE OFFICIAL. APPLICATIONS WITHOUT A SIGNED CERTIFICATION WILL BE RETURNED AS INCOMPLETE. I CERTIFY UNDER PENALTY OF LAW THAT, BASED ON INFORMATION AND BELIEF FORMED AFTER REASONABLINGUIRY, THE STATEMENTS AND INFORMATION CONTAINED IN THIS APPLICATION ARE TRUE, ACCURATE AND COMPLETE. AUTHORIZED SIGNATURE: BY: **Production Manager** TITLE OF SIGNATORY**					
DESCRIPTION OF TESTING METHODS USED TO DETERMINE COMPLIANCE: DESCRIPTION OF TESTING METHODS USED TO DEMONSTRATE COMPLIANCE (IF ADDITIONAL SPACE IS NEEDED, ATTACH AND LABEL AS EXHIBIT 296-3.): EPA Emission Testing Methods 1-4, and 26A completed in April 2002. D) DESCRIPTION OF MONITORING PROCEDURES USED TO DEMONSTRATE COMPLIANCE, INCLUDING ANY ENHANCED MONITORING REQUIREMENTS OF THE ACT (IF ADDITIONAL SPACE IS NEEDED, ATTACH AND LABEL AS EXHIBIT 296-4.): N/A DESCRIPTION OF RECORDKEEPING USED TO DEMONSTRATE COMPLIANCE (IF ADDITIONAL SPACE IS NEEDED ATTACH AND LABEL AS EXHIBIT 296-5.): Emission Test Report, steel throughput, scrubber water flow, and tank records. D) DESCRIPTION OF REPORTING USED TO DEMONSTRATE COMPLIANCE (IF ADDITIONAL SPACE IS NEEDED, ATTACH AND LABEL AS EXHIBIT 296-6.): SIGNATURE BLOCK E: THIS CERTIFICATION MUST BE SIGNED BY A RESPONSIBLE OFFICIAL. APPLICATIONS WITHOUT A SIGNED CERTIFICATION WILL BE RETURNED AS INCOMPLETE. I CERTIFY UNDER PENALTY OF LAW THAT, BASED ON INFORMATION AND BELIEF FORMED AFTER REASONABL INQUIRY, THE STATEMENTS AND INFORMATION CONTAINED IN THIS APPLICATION ARE TRUE, ACCURATE AND COMPLETE. AUTHORIZED SIGNATURE: BY: Production Manager TITLE OF SIGNATORY					
DESCRIPTION OF TESTING METHODS USED TO DETERMINE COMPLIANCE: DESCRIPTION OF TESTING METHODS USED TO DEMONSTRATE COMPLIANCE (IF ADDITIONAL SPACE IS NEEDED, ATTACH AND LABEL AS EXHIBIT 296-3.): EPA Emission Testing Methods 1-4, and 26A completed in April 2002. b) DESCRIPTION OF MONITORING PROCEDURES USED TO DEMONSTRATE COMPLIANCE, INCLUDING ANY ENHANCED MONITORING REQUIREMENTS OF THE ACT (IF ADDITIONAL SPACE IS NEEDED, ATTACH AND LABEL AS EXHIBIT 296-4.): N/A I) DESCRIPTION OF RECORDKEEPING USED TO DEMONSTRATE COMPLIANCE (IF ADDITIONAL SPACE IS NEEDED ATTACH AND LABEL AS EXHIBIT 296-5.): Emission Test Report, steel throughput, scrubber water flow, and tank records. I) DESCRIPTION OF REPORTING USED TO DEMONSTRATE COMPLIANCE (IF ADDITIONAL SPACE IS NEEDED, ATTACH AND LABEL AS EXHIBIT 296-6.): ATTACH AND LABEL AS EXHIBIT 296-6.): SIGNATURE BLOCK TE: THIS CERTIFICATION MUST BE SIGNED BY A RESPONSIBLE OFFICIAL. APPLICATIONS WITHOUT A SIGNED CERTIFICATION WILL BE RETURNED AS INCOMPLETE. I) CERTIFY UNDER PENALTY OF LAW THAT, BASED ON INFORMATION AND BELIEF FORMED AFTER REASONABLINQUIRY, THE STATEMENTS AND INFORMATION CONTAINED IN THIS APPLICATION ARE TRUE, ACCURATE AND COMPLETE. BY: Production Manager TITLE OF SIGNATORY	ŀ				
DESCRIPTION OF TESTING METHODS USED TO DETERMINE COMPLIANCE: DESCRIPTION OF TESTING METHODS USED TO DEMONSTRATE COMPLIANCE (IF ADDITIONAL SPACE IS NEEDED, ATTACH AND LABEL AS EXHIBIT 296-3.): EPA Emission Testing Methods 1-4, and 26A completed in April 2002. D) DESCRIPTION OF MONITORING PROCEDURES USED TO DEMONSTRATE COMPLIANCE, INCLUDING ANY ENHANCED MONITORING REQUIREMENTS OF THE ACT (IF ADDITIONAL SPACE IS NEEDED, ATTACH AND LABEL AS EXHIBIT 296-4.): N/A IDESCRIPTION OF RECORDKEEPING USED TO DEMONSTRATE COMPLIANCE (IF ADDITIONAL SPACE IS NEEDED ATTACH AND LABEL AS EXHIBIT 296-5.): Emission Test Report, steel throughput, scrubber water flow, and tank records. IDESCRIPTION OF REPORTING USED TO DEMONSTRATE COMPLIANCE (IF ADDITIONAL SPACE IS NEEDED, ATTACH AND LABEL AS EXHIBIT 296-6.): **Emission Test Report, steel throughput, scrubber water flow, and tank records. IDESCRIPTION OF REPORTING USED TO DEMONSTRATE COMPLIANCE (IF ADDITIONAL SPACE IS NEEDED, ATTACH AND LABEL AS EXHIBIT 296-6.): **Emission Reporting/Emission Test Report Submittal.** **SIGNATURE BLOCK** E: THIS CERTIFICATION MUST BE SIGNED BY A RESPONSIBLE OFFICIAL. APPLICATIONS WITHOUT A SIGNED CERTIFICATION WILL BE RETURNED AS INCOMPLETE. I CERTIFY UNDER PENALTY OF LAW THAT, BASED ON INFORMATION AND BELIEF FORMED AFTER REASONABLINGUIRY, THE STATEMENTS AND INFORMATION CONTAINED IN THIS APPLICATION ARE TRUE, ACCURATE AND COMPLETE. AUTHORIZED SIGNATURE: BY: **Production Manager** TITLE OF SIGNATORY**			-	_	
DESCRIPTION OF TESTING METHODS USED TO DETERMINE COMPLIANCE: DESCRIPTION OF TESTING METHODS USED TO DEMONSTRATE COMPLIANCE (IF ADDITIONAL SPACE IS NEEDED, ATTACH AND LABEL AS EXHIBIT 296-3.): EPA Emission Testing Methods 1-4, and 26A completed in April 2002. D) DESCRIPTION OF MONITORING PROCEDURES USED TO DEMONSTRATE COMPLIANCE, INCLUDING ANY ENHANCED MONITORING REQUIREMENTS OF THE ACT (IF ADDITIONAL SPACE IS NEEDED, ATTACH AND LABEL AS EXHIBIT 296-4.): N/A IDESCRIPTION OF RECORDKEEPING USED TO DEMONSTRATE COMPLIANCE (IF ADDITIONAL SPACE IS NEEDED ATTACH AND LABEL AS EXHIBIT 296-5.): Emission Test Report, steel throughput, scrubber water flow, and tank records. IDESCRIPTION OF REPORTING USED TO DEMONSTRATE COMPLIANCE (IF ADDITIONAL SPACE IS NEEDED, ATTACH AND LABEL AS EXHIBIT 296-6.): **Emission Test Report, steel throughput, scrubber water flow, and tank records. IDESCRIPTION OF REPORTING USED TO DEMONSTRATE COMPLIANCE (IF ADDITIONAL SPACE IS NEEDED, ATTACH AND LABEL AS EXHIBIT 296-6.): **Emission Reporting/Emission Test Report Submittal.** **SIGNATURE BLOCK** E: THIS CERTIFICATION MUST BE SIGNED BY A RESPONSIBLE OFFICIAL. APPLICATIONS WITHOUT A SIGNED CERTIFICATION WILL BE RETURNED AS INCOMPLETE. I CERTIFY UNDER PENALTY OF LAW THAT, BASED ON INFORMATION AND BELIEF FORMED AFTER REASONABLINGUIRY, THE STATEMENTS AND INFORMATION CONTAINED IN THIS APPLICATION ARE TRUE, ACCURATE AND COMPLETE. AUTHORIZED SIGNATURE: BY: **Production Manager** TITLE OF SIGNATORY**				•	
DESCRIPTION OF TESTING METHODS USED TO DETERMINE COMPLIANCE: DESCRIPTION OF TESTING METHODS USED TO DEMONSTRATE COMPLIANCE (IF ADDITIONAL SPACE IS NEEDED, ATTACH AND LABEL AS EXHIBIT 296-3.): EPA Emission Testing Methods 1-4, and 26A completed in April 2002. b) DESCRIPTION OF MONITORING PROCEDURES USED TO DEMONSTRATE COMPLIANCE, INCLUDING ANY ENHANCED MONITORING REQUIREMENTS OF THE ACT (IF ADDITIONAL SPACE IS NEEDED, ATTACH AND LABEL AS EXHIBIT 296-4.): N/A I) DESCRIPTION OF RECORDKEEPING USED TO DEMONSTRATE COMPLIANCE (IF ADDITIONAL SPACE IS NEEDED ATTACH AND LABEL AS EXHIBIT 296-5.): Emission Test Report, steel throughput, scrubber water flow, and tank records. I) DESCRIPTION OF REPORTING USED TO DEMONSTRATE COMPLIANCE (IF ADDITIONAL SPACE IS NEEDED, ATTACH AND LABEL AS EXHIBIT 296-6.): ATTACH AND LABEL AS EXHIBIT 296-6.): SIGNATURE BLOCK TE: THIS CERTIFICATION MUST BE SIGNED BY A RESPONSIBLE OFFICIAL. APPLICATIONS WITHOUT A SIGNED CERTIFICATION WILL BE RETURNED AS INCOMPLETE. I) CERTIFY UNDER PENALTY OF LAW THAT, BASED ON INFORMATION AND BELIEF FORMED AFTER REASONABLINQUIRY, THE STATEMENTS AND INFORMATION CONTAINED IN THIS APPLICATION ARE TRUE, ACCURATE AND COMPLETE. BY: Production Manager TITLE OF SIGNATORY			1	_	
DESCRIPTION OF TESTING METHODS USED TO DETERMINE COMPLIANCE: DESCRIPTION OF TESTING METHODS USED TO DEMONSTRATE COMPLIANCE (IF ADDITIONAL SPACE IS NEEDED, ATTACH AND LABEL AS EXHIBIT 296-3.): EPA Emission Testing Methods 1-4, and 26A completed in April 2002. b) DESCRIPTION OF MONITORING PROCEDURES USED TO DEMONSTRATE COMPLIANCE, INCLUDING ANY ENHANCED MONITORING REQUIREMENTS OF THE ACT (IF ADDITIONAL SPACE IS NEEDED, ATTACH AND LABEL AS EXHIBIT 296-4.): N/A D) DESCRIPTION OF RECORDKEEPING USED TO DEMONSTRATE COMPLIANCE (IF ADDITIONAL SPACE IS NEEDED ATTACH AND LABEL AS EXHIBIT 296-5.): Emission Test Report, steel throughput, scrubber water flow, and tank records. D) DESCRIPTION OF REPORTING USED TO DEMONSTRATE COMPLIANCE (IF ADDITIONAL SPACE IS NEEDED, ATTACH AND LABEL AS EXHIBIT 296-6.): Annual Emission Reporting/Emission Test Report Submittal. SIGNATURE BLOCK TE: THIS CERTIFICATION MUST BE SIGNED BY A RESPONSIBLE OFFICIAL. APPLICATIONS WITHOUT A SIGNED CERTIFICATION WILL BE RETURNED AS INCOMPLETE. I CERTIFY UNDER PENALTY OF LAW THAT, BASED ON INFORMATION AND BELIEF FORMED AFTER REASONABL INQUIRY, THE STATEMENTS AND INFORMATION CONTAINED IN THIS APPLICATION ARE TRUE, ACCURATE AND COMPLETE. BY: Production Manager TITLE OF SIGNATORY					
DESCRIPTION OF TESTING METHODS USED TO DETERMINE COMPLIANCE: DESCRIPTION OF TESTING METHODS USED TO DEMONSTRATE COMPLIANCE (IF ADDITIONAL SPACE IS NEEDED, ATTACH AND LABEL AS EXHIBIT 296-3.): EPA Emission Testing Methods 1-4, and 26A completed in April 2002. b) DESCRIPTION OF MONITORING PROCEDURES USED TO DEMONSTRATE COMPLIANCE, INCLUDING ANY ENHANCED MONITORING REQUIREMENTS OF THE ACT (IF ADDITIONAL SPACE IS NEEDED, ATTACH AND LABEL AS EXHIBIT 296-4.): N/A D) DESCRIPTION OF RECORDICEPING USED TO DEMONSTRATE COMPLIANCE (IF ADDITIONAL SPACE IS NEEDED ATTACH AND LABEL AS EXHIBIT 296-5.): Emission Test Report, steel throughput, scrubber water flow, and tank records. D) DESCRIPTION OF REPORTING USED TO DEMONSTRATE COMPLIANCE (IF ADDITIONAL SPACE IS NEEDED, ATTACH AND LABEL AS EXHIBIT 296-6.): AND LABEL AS EXHIBIT 296-6.): SIGNATURE BLOCK TIE: THIS CERTIFICATION MUST BE SIGNED BY A RESPONSIBLE OFFICIAL. APPLICATIONS WITHOUT A SIGNED CERTIFICATION WILL BE RETURNED AS INCOMPLETE. I CERTIFY UNDER PENALTY OF LAW THAT, BASED ON INFORMATION AND BELIEF FORMED AFTER REASONABLINGUIRY, THE STATEMENTS AND INFORMATION CONTAINED IN THIS APPLICATION ARE TRUE, ACCURATE AND COMPLETE. BY: Production Manager TITLE OF SIGNATORY]				
DESCRIPTION OF TESTING METHODS USED TO DETERMINE COMPLIANCE: DESCRIPTION OF TESTING METHODS USED TO DEMONSTRATE COMPLIANCE (IF ADDITIONAL SPACE IS NEEDED, ATTACH AND LABEL AS EXHIBIT 296-3.): EPA Emission Testing Methods 1-4, and 26A completed in April 2002. b) DESCRIPTION OF MONITORING PROCEDURES USED TO DEMONSTRATE COMPLIANCE, INCLUDING ANY ENHANCED MONITORING REQUIREMENTS OF THE ACT (IF ADDITIONAL SPACE IS NEEDED, ATTACH AND LABEL AS EXHIBIT 296-4.): N/A D) DESCRIPTION OF RECORDICEPING USED TO DEMONSTRATE COMPLIANCE (IF ADDITIONAL SPACE IS NEEDED ATTACH AND LABEL AS EXHIBIT 296-5.): Emission Test Report, steel throughput, scrubber water flow, and tank records. D) DESCRIPTION OF REPORTING USED TO DEMONSTRATE COMPLIANCE (IF ADDITIONAL SPACE IS NEEDED, ATTACH AND LABEL AS EXHIBIT 296-6.): AND LABEL AS EXHIBIT 296-6.): SIGNATURE BLOCK TIE: THIS CERTIFICATION MUST BE SIGNED BY A RESPONSIBLE OFFICIAL. APPLICATIONS WITHOUT A SIGNED CERTIFICATION WILL BE RETURNED AS INCOMPLETE. I CERTIFY UNDER PENALTY OF LAW THAT, BASED ON INFORMATION AND BELIEF FORMED AFTER REASONABLINGUIRY, THE STATEMENTS AND INFORMATION CONTAINED IN THIS APPLICATION ARE TRUE, ACCURATE AND COMPLETE. BY: Production Manager TITLE OF SIGNATORY	<u> </u>		i		<u>-</u>
DESCRIPTION OF TESTING METHODS USED TO DETERMINE COMPLIANCE: DESCRIPTION OF TESTING METHODS USED TO DEMONSTRATE COMPLIANCE (IF ADDITIONAL SPACE IS NEEDED, ATTACH AND LABEL AS EXHIBIT 296-3.): EPA Emission Testing Methods 1-4, and 26A completed in April 2002. b) DESCRIPTION OF MONITORING PROCEDURES USED TO DEMONSTRATE COMPLIANCE, INCLUDING ANY ENHANCED MONITORING REQUIREMENTS OF THE ACT (IF ADDITIONAL SPACE IS NEEDED, ATTACH AND LABEL AS EXHIBIT 296-4.): N/A D) DESCRIPTION OF RECORDKEEPING USED TO DEMONSTRATE COMPLIANCE (IF ADDITIONAL SPACE IS NEEDED ATTACH AND LABEL AS EXHIBIT 296-5.): Emission Test Report, steel throughput, scrubber water flow, and tank records. D) DESCRIPTION OF REPORTING USED TO DEMONSTRATE COMPLIANCE (IF ADDITIONAL SPACE IS NEEDED, ATTACH AND LABEL AS EXHIBIT 296-6.): Annual Emission Reporting/Emission Test Report Submittal. SIGNATURE BLOCK TE: THIS CERTIFICATION MUST BE SIGNED BY A RESPONSIBLE OFFICIAL. APPLICATIONS WITHOUT A SIGNED CERTIFICATION WILL BE RETURNED AS INCOMPLETE. I CERTIFY UNDER PENALTY OF LAW THAT, BASED ON INFORMATION AND BELIEF FORMED AFTER REASONABL INQUIRY, THE STATEMENTS AND INFORMATION CONTAINED IN THIS APPLICATION ARE TRUE, ACCURATE AND COMPLETE. BY: Production Manager TITLE OF SIGNATORY		•			
DISCRIPTION OF TESTING METHODS USED TO DETERMINE COMPLIANCE: DESCRIPTION OF TESTING METHODS USED TO DEMONSTRATE COMPLIANCE (IF ADDITIONAL SPACE IS NEEDED, ATTACH AND LABEL AS EXHIBIT 296-3.): EPA Emission Testing Methods 1-4, and 26A completed in April 2002. B) DESCRIPTION OF MONITORING PROCEDURES USED TO DEMONSTRATE COMPLIANCE, INCLUDING ANY ENHANCED MONITORING REQUIREMENTS OF THE ACT (IF ADDITIONAL SPACE IS NEEDED, ATTACH AND LABEL AS EXHIBIT 296-4.): N/A D) DESCRIPTION OF RECORDING USED TO DEMONSTRATE COMPLIANCE (IF ADDITIONAL SPACE IS NEEDED ATTACH AND LABEL AS EXHIBIT 296-5.): Emission Test Report, steel throughput, scrubber water flow, and tank records. D) DESCRIPTION OF REPORTING USED TO DEMONSTRATE COMPLIANCE (IF ADDITIONAL SPACE IS NEEDED, ATTACH AND LABEL AS EXHIBIT 296-6.): ATTACH AND LABEL AS EXHIBIT 296-6.): SIGNATURE BLOCK TE: THIS CERTIFICATION MUST BE SIGNED BY A RESPONSIBLE OFFICIAL. APPLICATIONS WITHOUT A SIGNED CERTIFICATION WILL BE RETURNED AS INCOMPLETE. I CERTIFY UNDER PENALTY OF LAW THAT, BASED ON INFORMATION AND BELIEF FORMED AFTER REASONABLINQUIRY, THE STATEMENTS AND INFORMATION CONTAINED IN THIS APPLICATION ARE TRUE, ACCURATE AND COMPLETE. BY: Production Manager TITLE OF SIGNATORY					
DESCRIPTION OF TESTING METHODS USED TO DETERMINE COMPLIANCE: DESCRIPTION OF TESTING METHODS USED TO DEMONSTRATE COMPLIANCE (IF ADDITIONAL SPACE IS NEEDED, ATTACH AND LABEL AS EXHIBIT 296-3.): EPA Emission Testing Methods 1-4, and 26A completed in April 2002. b) DESCRIPTION OF MONITORING PROCEDURES USED TO DEMONSTRATE COMPLIANCE, INCLUDING ANY ENHANCED MONITORING REQUIREMENTS OF THE ACT (IF ADDITIONAL SPACE IS NEEDED, ATTACH AND LABEL AS EXHIBIT 296-4.): N/A D) DESCRIPTION OF RECORDICEPING USED TO DEMONSTRATE COMPLIANCE (IF ADDITIONAL SPACE IS NEEDED ATTACH AND LABEL AS EXHIBIT 296-5.): Emission Test Report, steel throughput, scrubber water flow, and tank records. D) DESCRIPTION OF REPORTING USED TO DEMONSTRATE COMPLIANCE (IF ADDITIONAL SPACE IS NEEDED, ATTACH AND LABEL AS EXHIBIT 296-6.): AND LABEL AS EXHIBIT 296-6.): SIGNATURE BLOCK TIE: THIS CERTIFICATION MUST BE SIGNED BY A RESPONSIBLE OFFICIAL. APPLICATIONS WITHOUT A SIGNED CERTIFICATION WILL BE RETURNED AS INCOMPLETE. I CERTIFY UNDER PENALTY OF LAW THAT, BASED ON INFORMATION AND BELIEF FORMED AFTER REASONABLINGUIRY, THE STATEMENTS AND INFORMATION CONTAINED IN THIS APPLICATION ARE TRUE, ACCURATE AND COMPLETE. BY: Production Manager TITLE OF SIGNATORY					
DESCRIPTION OF TESTING METHODS USED TO DETERMINE COMPLIANCE: DESCRIPTION OF TESTING METHODS USED TO DEMONSTRATE COMPLIANCE (IF ADDITIONAL SPACE IS NEEDED, ATTACH AND LABEL AS EXHIBIT 296-3.): EPA Emission Testing Methods 1-4, and 26A completed in April 2002. b) DESCRIPTION OF MONITORING PROCEDURES USED TO DEMONSTRATE COMPLIANCE, INCLUDING ANY ENHANCED MONITORING REQUIREMENTS OF THE ACT (IF ADDITIONAL SPACE IS NEEDED, ATTACH AND LABEL AS EXHIBIT 296-4.): N/A D) DESCRIPTION OF RECORDKEEPING USED TO DEMONSTRATE COMPLIANCE (IF ADDITIONAL SPACE IS NEEDED ATTACH AND LABEL AS EXHIBIT 296-5.): Emission Test Report, steel throughput, scrubber water flow, and tank records. D) DESCRIPTION OF REPORTING USED TO DEMONSTRATE COMPLIANCE (IF ADDITIONAL SPACE IS NEEDED, ATTACH AND LABEL AS EXHIBIT 296-6.): Annual Emission Reporting/Emission Test Report Submittal. SIGNATURE BLOCK TE: THIS CERTIFICATION MUST BE SIGNED BY A RESPONSIBLE OFFICIAL. APPLICATIONS WITHOUT A SIGNED CERTIFICATION WILL BE RETURNED AS INCOMPLETE. I CERTIFY UNDER PENALTY OF LAW THAT, BASED ON INFORMATION AND BELIEF FORMED AFTER REASONABL INQUIRY, THE STATEMENTS AND INFORMATION CONTAINED IN THIS APPLICATION ARE TRUE, ACCURATE AND COMPLETE. BY: Production Manager TITLE OF SIGNATORY			<u> </u>		
DESCRIPTION OF TESTING METHODS USED TO DETERMINE COMPLIANCE: DESCRIPTION OF TESTING METHODS USED TO DEMONSTRATE COMPLIANCE (IF ADDITIONAL SPACE IS NEEDED, ATTACH AND LABEL AS EXHIBIT 296-3.): EPA Emission Testing Methods 1-4, and 26A completed in April 2002. b) DESCRIPTION OF MONITORING PROCEDURES USED TO DEMONSTRATE COMPLIANCE, INCLUDING ANY ENHANCED MONITORING REQUIREMENTS OF THE ACT (IF ADDITIONAL SPACE IS NEEDED, ATTACH AND LABEL AS EXHIBIT 296-4.): N/A D) DESCRIPTION OF RECORDICEPING USED TO DEMONSTRATE COMPLIANCE (IF ADDITIONAL SPACE IS NEEDED ATTACH AND LABEL AS EXHIBIT 296-5.): Emission Test Report, steel throughput, scrubber water flow, and tank records. D) DESCRIPTION OF REPORTING USED TO DEMONSTRATE COMPLIANCE (IF ADDITIONAL SPACE IS NEEDED, ATTACH AND LABEL AS EXHIBIT 296-6.): AND LABEL AS EXHIBIT 296-6.): SIGNATURE BLOCK TIE: THIS CERTIFICATION MUST BE SIGNED BY A RESPONSIBLE OFFICIAL. APPLICATIONS WITHOUT A SIGNED CERTIFICATION WILL BE RETURNED AS INCOMPLETE. I CERTIFY UNDER PENALTY OF LAW THAT, BASED ON INFORMATION AND BELIEF FORMED AFTER REASONABLINGUIRY, THE STATEMENTS AND INFORMATION CONTAINED IN THIS APPLICATION ARE TRUE, ACCURATE AND COMPLETE. BY: Production Manager TITLE OF SIGNATORY			COMPLIANCE IN	FORMATION	
DESCRIPTION OF TESTING METHODS USED TO DEMONSTRATE COMPLIANCE (IF ADDITIONAL SPACE IS NEEDED, ATTACH AND LABEL AS EXHIBIT 296-3.): EPA Emission Testing Methods 1-4, and 26A completed in April 2002. b) DESCRIPTION OF MONITORING PROCEDURES USED TO DEMONSTRATE COMPLIANCE, INCLUDING ANY ENHANCED MONITORING REQUIREMENTS OF THE ACT (IF ADDITIONAL SPACE IS NEEDED, ATTACH AND LABEL AS EXHIBIT 296-4.): N/A IDESCRIPTION OF RECORDKEEPING USED TO DEMONSTRATE COMPLIANCE (IF ADDITIONAL SPACE IS NEEDED ATTACH AND LABEL AS EXHIBIT 296-5.): Emission Test Report, steel throughput, scrubber water flow, and tank records. IDESCRIPTION OF REPORTING USED TO DEMONSTRATE COMPLIANCE (IF ADDITIONAL SPACE IS NEEDED, ATTACH AND LABEL AS EXHIBIT 296-6.): Annual Emission Reporting/Emission Test Report Submittal. SIGNATURE BLOCK TE: THIS CERTIFICATION MUST BE SIGNED BY A RESPONSIBLE OFFICIAL. APPLICATIONS WITHOUT A SIGNED CERTIFICATION WILL BE RETURNED AS INCOMPLETE. I CERTIFY UNDER PENALTY OF LAW THAT, BASED ON INFORMATION AND BELIEF FORMED AFTER REASONABLINGUIRLY, THE STATEMENTS AND INFORMATION CONTAINED IN THIS APPLICATION ARE TRUE, ACCURATE AND COMPLETE. AUTHORIZED SIGNATURE: BY: Production Manager TITLE OF SIGNATORY	SUMMAI	RY OF METHODS USED TO D			
AS EXHIBIT 296-4.): N/A DESCRIPTION OF RECORDKEEPING USED TO DEMONSTRATE COMPLIANCE (IF ADDITIONAL SPACE IS NEEDED ATTACH AND LABEL AS EXHIBIT 296-5.): Emission Test Report, steel throughput, scrubber water flow, and tank records. DESCRIPTION OF REPORTING USED TO DEMONSTRATE COMPLIANCE (IF ADDITIONAL SPACE IS NEEDED, ATTACH AND LABEL AS EXHIBIT 296-6.): Annual Emission Reporting/Emission Test Report Submittal. SIGNATURE BLOCK Te: This Certification Must be signed by a responsible official. Applications without a signed certification will be returned as incomplete. I CERTIFY UNDER PENALTY OF LAW THAT, BASED ON INFORMATION AND BELIEF FORMED AFTER REASONABLINGUIRY, THE STATEMENTS AND INFORMATION CONTAINED IN THIS APPLICATION ARE TRUE, ACCURATE AND COMPLETE. AUTHORIZED SIGNATURE: BY: Production Manager AUTHORIZED SIGNATURE TITLE OF SIGNATORY	b) DESCR	IPTION OF MONITORING PR	OCEDURES USED TO	DEMONSTRATE COMPLI	ANCE, INCLUDING ANY
DESCRIPTION OF RECORDKEEPING USED TO DEMONSTRATE COMPLIANCE (IF ADDITIONAL SPACE IS NEEDED ATTACH AND LABEL AS EXHIBIT 296-5.): Emission Test Report, steel throughput, scrubber water flow, and tank records. d) DESCRIPTION OF REPORTING USED TO DEMONSTRATE COMPLIANCE (IF ADDITIONAL SPACE IS NEEDED, ATTACH AND LABEL AS EXHIBIT 296-6.): Annual Emission Reporting/Emission Test Report Submittal. SIGNATURE BLOCK TE: THIS CERTIFICATION MUST BE SIGNED BY A RESPONSIBLE OFFICIAL. APPLICATIONS WITHOUT A SIGNED CERTIFICATION WILL BE RETURNED AS INCOMPLETE. I CERTIFY UNDER PENALTY OF LAW THAT, BASED ON INFORMATION AND BELIEF FORMED AFTER REASONABL INQUIRY, THE STATEMENTS AND INFORMATION CONTAINED IN THIS APPLICATION ARE TRUE, ACCURATE AND COMPLETE. AUTHORIZED SIGNATURE: BY: Production Manager AUTHORIZED SIGNATURE			ENTS OF THE ACT (IF	ADDITIONAL SPACE IS N	EEDED, ATTACH AND LABEL
ATTACH AND LABEL AS EXHIBIT 296-5.): Emission Test Report, steel throughput, scrubber water flow, and tank records. d) DESCRIPTION OF REPORTING USED TO DEMONSTRATE COMPLIANCE (IF ADDITIONAL SPACE IS NEEDED, ATTACH AND LABEL AS EXHIBIT 296-6.): Annual Emission Reporting/Emission Test Report Submittal. SIGNATURE BLOCK TE: THIS CERTIFICATION MUST BE SIGNED BY A RESPONSIBLE OFFICIAL. APPLICATIONS WITHOUT A SIGNED CERTIFICATION WILL BE RETURNED AS INCOMPLETE. I CERTIFY UNDER PENALTY OF LAW THAT, BASED ON INFORMATION AND BELIEF FORMED AFTER REASONABL INQUIRY, THE STATEMENTS AND INFORMATION CONTAINED IN THIS APPLICATION ARE TRUE, ACCURATE AND COMPLETE. AUTHORIZED SIGNATURE: BY: Production Manager AUTHORIZED SIGNATURE TITLE OF SIGNATORY	N/A				
d) DESCRIPTION OF REPORTING USED TO DEMONSTRATE COMPLIANCE (IF ADDITIONAL SPACE IS NEEDED, ATTACH AND LABEL AS EXHIBIT 296-6.): ### Annual Emission Reporting/Emission Test Report Submittal. SIGNATURE BLOCK				ATE COMPLIANCE (IF AD	DDITIONAL SPACE IS NEEDED
ATTACH AND LABEL AS EXHIBIT 296-6.): Annual Emission Reporting/Emission Test Report Submittal. SIGNATURE BLOCK TE: THIS CERTIFICATION MUST BE SIGNED BY A RESPONSIBLE OFFICIAL. APPLICATIONS WITHOUT A SIGNED CERTIFICATION WILL BE RETURNED AS INCOMPLETE. I CERTIFY UNDER PENALTY OF LAW THAT, BASED ON INFORMATION AND BELIEF FORMED AFTER REASONABL INQUIRY, THE STATEMENTS AND INFORMATION CONTAINED IN THIS APPLICATION ARE TRUE, ACCURATE AND COMPLETE. AUTHORIZED SIGNATURE: BY: Production Manager AUTHORIZED SIGNATURE TITLE OF SIGNATORY	Emissio	n Test Report, steel throu	ghput, scrubber wat	er flow, and tank reco	rds.
SIGNATURE BLOCK TE: THIS CERTIFICATION MUST BE SIGNED BY A RESPONSIBLE OFFICIAL. APPLICATIONS WITHOUT A SIGNED CERTIFICATION WILL BE RETURNED AS INCOMPLETE. I CERTIFY UNDER PENALTY OF LAW THAT, BASED ON INFORMATION AND BELIEF FORMED AFTER REASONABL INQUIRY, THE STATEMENTS AND INFORMATION CONTAINED IN THIS APPLICATION ARE TRUE, ACCURATE AND COMPLETE. AUTHORIZED SIGNATURE: BY: Production Manager AUTHORIZED SIGNATURE TITLE OF SIGNATORY			• .	COMPLIANCE (IF ADDITI	ONAL SPACE IS NEEDED,
TE: THIS CERTIFICATION MUST BE SIGNED BY A RESPONSIBLE OFFICIAL. APPLICATIONS WITHOUT A SIGNED CERTIFICATION WILL BE RETURNED AS INCOMPLETE. 1 CERTIFY UNDER PENALTY OF LAW THAT, BASED ON INFORMATION AND BELIEF FORMED AFTER REASONABL INQUIRY, THE STATEMENTS AND INFORMATION CONTAINED IN THIS APPLICATION ARE TRUE, ACCURATE AND COMPLETE. AUTHORIZED SIGNATURE: BY: Production Manager AUTHORIZED SIGNATURE AUTHORIZED SIGNATURE TITLE OF SIGNATORY	Annual E	mission Reporting/Emiss	sion Test Report Sul	omittal.	
WILL BE RETURNED AS INCOMPLETE. I CERTIFY UNDER PENALTY OF LAW THAT, BASED ON INFORMATION AND BELIEF FORMED AFTER REASONABL INQUIRY, THE STATEMENTS AND INFORMATION CONTAINED IN THIS APPLICATION ARE TRUE, ACCURATE AND COMPLETE. AUTHORIZED SIGNATURE: BY: Production Manager AUTHORIZED SIGNATURE TITLE OF SIGNATORY					
I CERTIFY UNDER PENALTY OF LAW THAT, BASED ON INFORMATION AND BELIEF FORMED AFTER REASONABL INQUIRY, THE STATEMENTS AND INFORMATION CONTAINED IN THIS APPLICATION ARE TRUE, ACCURATE AND COMPLETE. AUTHORIZED SIGNATURE: BY: AUTHORIZED SIGNATURE AUTHORIZED SIGNATURE TITLE OF SIGNATORY			BY A RESPONSIBLE OFF	ICIAL. APPLICATIONS WITH	OUT A SIGNED CERTIFICATION
BY: Production Manager AUTHORIZED SIGNATURE TITLE OF SIGNATORY	I CERTIFY	Y UNDER PENALTY OF LAW , THE STATEMENTS AND INF			
AUTHORIZED SIGNATURE TITLE OF SIGNATORY	AUTHORI	IZED SIGNATI IRE:			
AUTHORIZED SIGNATURE TITLE OF SIGNATORY		ZED GIGIATIONE.			
		ZED GIGHATORE.		Produc	ction Manager
Willam Reichel			NATURE		
TYPED OR PRINTED NAME OF SIGNATORY DATE		AUTHORIZED SIG William Reid	chel	TITLE	OF SIGNATORY

7. 33

Printed on Recycled Paper 296-CAAPP

BEFORE THE ILLINOIS POLLUTION CONTROL BOARD

PEOPLE OF THE STATE OF ILLINOIS,		
Complainant,)	
v.)	PCB No. 13 - 12 (Enforcement – Air)
NACME STEEL PROCESSING, LLC,)	(Emoreoment 7th)
a Delaware limited liability corporation,) .	
Respondent.)	

EXHIBIT F

THOMAS J. REUTER AFFIDAVIT

TAB 11
DECEMBER 6, 2005, CAAPP
APPLICATION COMPLETENESS
DETERMINATION OF SOURCE FEE
DETERMINATION FOR NACME'S 2005
FESOP APPLICATION ("2005 CAAPP
APPLICATION COMPLETION
DETERMINATION")

ILLINOIS ENVIRONMENTAL PROTECTION AGENCY

1021 NORTH GRAND AVENUE EAST, P.O. BOX 19276, SPRINGFIELD, ILLINOIS 62794-9276 – (217) 782-3397 JAMES R. THOMPSON CENTER, 100 WEST RANDOLPH, SUITE 11-300, CHICAGO, IL 60601 – (312) 814-6026

217/785-5151

ROD R. BLAGOJEVICH, GOVERNOR DOUGLAS P. SCOTT, DIRECTOR
CAAPP APPLICATION COMPLETENESS DETERMINATION
AND SOURCE FEE DETERMINATION

APPLICANT

NACME Steel Processing, LLC Attn: William Reichel 429 West 127th Street Chicago, Illinois 60628

Date of Determination: December 6, 2005

Application/Permit No.: 05100052

I.D. Number: 031600FWL

Date Received: October 25, 2005

Source Name: NACME Steel Processing, LLC

Location of Source: 429 West 127th Street, Chicago, 60628

Dear Mr. Reichel:

This letter provides notification that your Clean Air Act Permit Program (CAAPP) application received on the date indicated above, has been determined by the Agency to be complete pursuant to Section 39.5(5) of the Illinois Environmental Protection Act (Act).

As provided in Section 39.5(18) of the Act, a CAAPP source shall pay a fee. Attached is the annual fee bill for this CAAPP source as determined from information included in your application, on form 292-CAAPP - FEE DETERMINATION FOR CAAPP PERMIT. Payment of the fee is due within 45 days of the billing date indicated on the billing statement.

Notwithstanding the completeness determination, the Agency may request additional information necessary to evaluate or take final action on the CAAPP application. If such additional information affects your allowable emission limits, a revised form 292-CAAPP-FEE DETERMINATION FOR CAAPP PERMIT must be submitted with the requested information. The failure to submit to the Agency the requested information within the time frame specified by the Agency, may force the Agency to deny your CAAPP application pursuant to Section 39.5 of the Act.

If you have any questions regarding this matter, please contact the Division of Air Pollution Control Permit Section at 217/785-5151.

Sincerely,

Donald E. Sutton, P.E. Manager, Permit Section Division of Air Pollution Control

DES:YMC:psj

Enclosure(s)

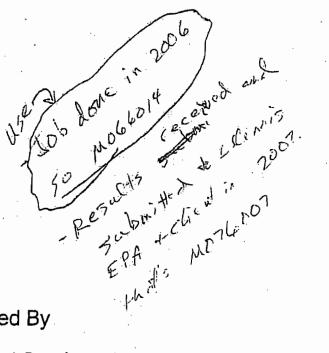
BEFORE THE ILLINOIS POLLUTION CONTROL BOARD

PEOPLE OF THE STATE OF ILLINOIS,		
Complainant,)	
v.)	PCB No. 13 - 12
NACME STEEL PROCESSING, LLC,)	(Enforcement – Air)
a Delaware limited liability corporation,		
Respondent.)	

EXHIBIT F

THOMAS J. REUTER AFFIDAVIT

TAB 12
DECEMBER 21, 2006, HYDROGEN
CHLORIDE EMISSIONS TEST REPORT
("DECEMBER 2006 STACK TEST
REPORT")



Platt Environmental Services, Inc.

371 Balm Court Wood Dale, IL 60191 630-521-9400 630-521-9494 fax

Hydrogen Chloride Emissions Test Report

Nacme Steel Processing, LLC
Steel Pickling Line HCl Scrubber Exhaust Stack
Chicago, Illinois
December 21, 2006

Prepared By

Platt Environmental Services, Inc.

Report No. PE2006234

TABLE OF CONTENTS

INTRODUCTION	
EXECUTIVE SUMMARY	2
TEST METHODOLOGY Method 1 (40 CFR, Part 60, Appendix A) Method 2 (40 CFR, Part 60, Appendix A) Method 3 (40 CFR, Part 60, Appendix A) Method 26A (40 CFR, Part 60, Appendix A)	3
PROCESS DATA	
CONCLUSION AND CERTIFICATION	7
APPENDIX Plant Operating Dala Test Section Diagram	9 15
Sample Train Diagrams Calculation Nomenciature and Formulas	16 19 23
Reference Method Test Data (Computerized Sheets)	25 31

HCI Emissions Test Report Nacme Steel Processing, LLC PESI Project No.: PE2006234

December 21, 2006

Introduction

PLATT ENVIRONMENTAL SERVICES, INC. (PESI) conducted a hydrogen chloride (HCI) emissions test program for Nacme Steel Processing, LLC on December 21, 2006. This report summarizes the results of the test program and test methods used.

The test location, test date and test parameters are summarized below.

Test Overview

Test Location	Test Date	Test Parameters
Steel Pickling Line HCl	December 21, 2006	USEPA Methods 1, 2, 3, 26A,
Scrubber Exhaust Stack		40CFR60, Appendix A

The test program was conducted by PESI personnel. The identification of individuals associated with the test program, are summarized below.

Location	Address	Contact
Test Facility	Nacme Steel Processing, LLC	Bill Riechel
	429 W. 127 th Street	773-291-1301 (phone)
	Chicago, IL 60628	
Testing	Platt Environmental Services, Inc.	Chrls Jensen
Company	371 Balm Court	630-521-9400 (phone)
Representative	Wood Dale, IL 60191	cjensen@plattenv.com

The test crew consisted of Messrs. Larry Sorce, Dan Tuider, and Chris Jensen of PESI. The purpose of the test program was to demonstrate compliance with applicable emissions limits listed in Table 1.

Mr. Marcus Hatch from the Illinois Environmental Protection Agency observed the testing.

HCI Emissions Test Report Nacme Steel Processing, LLC PESI Project No.: PE2006234

December 21, 2006

Executive Summary

Selected results of the test program are summarized below, in Table 1. A complete summary of emission test results, for each location, follows the narrative portion of this report, in the tables following.

Table 1
Test Results

Test	Test	Emission Rate	Emission Limit
Location	Parameter	ppmvd	ppmvd
Steel Pickling Line HCl Scrubber	HCI	0.01	18.0
Exhaust Stack		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	

Test No. 1 failed the post-test leak check. A fourth test was performed and all emissions are based on Tests Nos. 2, 3, and 4.

Emissions are based on the HCl laboratory analysis of less then 0.02 milligrams for each of the three samples.

HCI Emissions Test Report Nacme Steel Processing, LLC PESI Project No.: PE2006234 December 21, 2006

Test Methodology

Emissions testing was conducted following the methods specified in 40 CFR, Part 60, Appendix A. Schematics of the sampling trains used are included in the appendix. Copies of field data sheets and/or analyzer print-outs for each test run are included in appendix.

The following methodologies were used during the test program:

Method 1 (40 CFR, Part 60, Appendix A)

Test measurement points were selected in accordance with Method 1. The characteristics of each measurement location are summarized below, in Table 4.

Table 2
Sample Point Selection

Location	Upstream Diameters	Downstream Diameters	Test Parameter	Number of Sampling Points
HCI Scrubber Stack	3	3	Method 26A	24

Method 2 (40 CFR, Part 60, Appendix A)

Gas velocity was measured following Method 2, for purposes of calculating stack gas volumetric flow rate. An S-type pitot tube, differential pressure gauge, thermocouple and temperature readout were used to determine gas velocity at each sample point. All of the equipment used was calibrated in accordance with the specifications of the Method. Calibration data is presented in the appendix.

Method 3 (40 CFR, Part 60, Appendix A)

Stack gas molecular weight was determined in accordance with Method 3. An Orsat analyzer was used to determine stack gas oxygen and carbon dioxide content and, by difference, nitrogen content. All of the equipment used was calibrated in accordance with the specifications of the Method. Calibration data is presented in the appendix.

HCl Emissions Test Report Nacme Steel Processing, LLC PESI Project No.: PE2006234 December 21, 2006

Method 26A (40 CFR, Part 60, Appendix A)

Stack gas hydrogen chloride (HCI) concentrations and emission rates were determined in accordance with Method 26A.

An Environmental Supply Company sampling train was used to sample stack gas, in the manner specified in the Method. TEI Analytical of Niles, Illinois conducted analyses of the samples collected. All of the equipment used was calibrated in accordance with the specifications of the Method. Calibration data is presented in the appendix.

HCI Emissions Test Report Nacme Steel Processing, LLC PESI Project No.: PE2006234

December 21, 2006

Test Result Summaries

Company: Nacme Steel Processing, LLC

Plant: Chicago Facility
Unit: HCl Scrubber Exhaust Stack

Source Conditio	n Maximun	n Maximur	n Maximun	1 .
Dat	e 12/21/06	12/21/06	12/21/06	
Start Time	e 13:11	15:01	16:49	
End Time	9 14:17	16:06	17:55	
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	Run 2	Run 3	Run 4	Average
	ck Condition	ns. · • • • • • • • • • • • • • • • • • •	5 M 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Average Gas Temperature 11	99.9	97.6	97(6)	9814
Flue Gas Moisture, percent by volume	5.9%	5.6%	5.6%	5.7%
A NAVerage Flue Pressure in Hg	c/j29487/	29,43	2948	29,43
Gas Sample Volume, dscf	36.793	37.586	38.904	37.761
Average Gas Velocity: ft/sec	到5812司	::::::::::::::::::::::::::::::::::::::	July 16 6641	Ww161163
Gas Volumetric Flow Rate, acfm	6,706	6,791	7,068	6,855
San Pigha Volumen ICFF AV Rate Adag in	6 5 10 5 17	(油高)973年	10/21/2	
Average %CO ₂ by volume, dry basis	0.0	0.0	0.0	0.0
Average %0; by volume; dry basis	20.9	20.9%	34.620199 流	而 2019 [4]
Isokinetic Variance	97.1	97.2	96.8	97.0
Total tons of Steel per Hour	114.750	113.305	131,940	119.998
•	HCI			
ppm	0.01	0.01	0.01	0.01
μg/dscm	19.20	18.79	18,15	18.71
lb/hr	D.0004	0.0004	0.0004	0.0004
lbs.HCl/ton Steel	3.6693E-06	3.7106E-06	3.2018E-06	3.5272E-06

HCI Emissioms Test Report Nacme Steel Processing, LLC PESI Project No.: PE2006234

December 21, 2006

Process Data

Production data was recorded by Nacme Steel Processing, LLC personnel during each test run in order to correlate emission rates to production in accordance with permit conditions and applicable regulations. Production data is summarized below:

Pro	cess	Data
	-7	

Test Run	Test Duration	Production Rate	Units
2	66 minutes	114,750 /	Tons/hr
3	65 minutes	113.305	Tons/hr
4	66 minutes	131.940	Tons/hr

HCI Emissions Test Report Nacme Steel Processing, LLC PESI Project No.: PE2006234 December 21, 2006

Conclusion and Certification

PLATT ENVIRONMENTAL SERVICES, INC. is pleased to have been of service to Nacme Steel Processing, LLC. If you have any questions regarding this test report, please to not hesitate to contact us at 630-521-9400{phone number}.

CERTIFICATION

As project manager, I hereby certify that this test report represents and true and accurate summary of emissions test results and the methodologies employed to obtain those results, and the test program was performed in accordance with that methods specified in this test report.

PLATT ENVIRONMENTAL SERVICES

Chris Jew	
Chris E. Jensen	Program Manager
Jeffey M. Contine	
Jeffrey M. Crivlare	Quality Assurance

HCI Emissions Test Report Nacme Steel Processing, LLC PESI Project No.: PE2006234 December 21, 2006

APPENDIX

NPC - 1 Stack test 12/21/06

	1ST TEST	1st TEST	2nd TEST	
Start Time	11:07 AM			
End Time	12:10 AM	2:10 PM	4:15 PM	
Lbs of colls ran	Failed due to testing apparatus	39000	37840	37710
CDS CF COMP (CF)	Glass probe broke	38000	37770	37900
		38160	37930	37750
		38050	37570	51840
		38100	37710	45980
		38190	37790	52700
		5 4 7 6	·	.,
Total Tons per hour		114.75	113.305	131.94
, otal Tone por moun	•			٠.

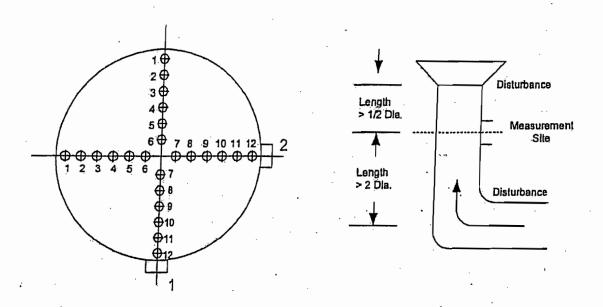
			El	ectro	onic I	Filing	- R	ecei	ved,	Cler	'k's	Office	: 05	/ 16,	/20	14		
			APROX	F 2	3	38	349	3734	Ä	103	104	103	EIGHT TOTAL	•	•		Maria pr	
		(3	VISUAL		\ \ \	133	3/	3/3 2	33,	7, or STRES	4,331	1354	FRODUCED WEIGHT TOTAL				•	· .
		E.		C	15 VS		905 13	1 Nhbs	1 100/	1 337	11/10 199	SE SE11 00						:
-		PAGE. SHIFT:	SHETAGE OFF		产30年3年6月	\$ 29500 Pd	W 3920	3 MY 12 14	आप्रवाद्य किया	W 37990 EM	th 38CHOPO	and Sel abou	354130					:
PANY		EPORT	SHIPTAGE	-			See 23/14	100 Z 30	\mathcal{O}		49 23 ph	4 2 30 W		<u>.</u>			.5	į
NG COM	NE NE	ECTION B	**************************************	B 300	61 6000	128 Just		1009 /20P		14 25 H	149,125	120		IN OUT	20 20	78E :0	r - Chicago Divisi	
ROCESSI	PICKLE LINE	DUCTION/ENSPECTION REPORT	zecoisi	150 HB	CO7/Ed)]	1 1	>	asi'sh	osi gir	48.75°			COILS:	PRODUCED:	National Processing Company - Chicago Division	
NATIONAL PROCESSING COMPANY	H	PRODUC	TAINE T		17 149	120 NO	671873	710819	2401677	122. Hz	COC 027	KE OZZ	HET TOTAL		8	397	National Proc	
NAT		DAILY PRO	TOP EDGE	7 / / 7	0 %	Tto[7] 11	1 0 0	zz0 (0 1	1 ρ Ρ/2	30 1 0	0 1 0195	28610 1 0	■ CEARGED WEIGHT TOTAL	-	HOURS:	CHARGED:		•
			TAG®	וויומחן אלחטון	(2) 3711 (4) 960	LIBIOLI IST	1422/5 HIC	1638541820	VESTE LIKE	164985 38	Victinal 38	V4990 3		SHIFT TOTALS:				
		9/1	SALES ONDERJ	logan			- 1 -	1		110 712 VEPPES 38310	Nori	MIOZIA-VULIEGO	369014	Įs.				:
		62	l e	Onland.	J. Pral	=	//	=	_	136B	h	Œ		51				
		DATE:	LINE OFERALOR:	2 Jos IIA	Gibra!	=	3.11			15.6	1	נו	ODE EDGECCOE	OLDRY LIVE LON 1008 ST.	:		Form IP2-1 1/29	
. ч	.E	297 572. 2	₹		4	9	7	1	15t	C E	IC/NP	44	_	ES: 9	T 2	.902	.E -20-1	MAT.

	VISUAL - APROX DISPECTION COMMENTS LINEAR	4多名为生产,236	1		س. ۳	737 1192	337	12 5 A81	337 1131	J37 WS							
PORT PAGE: 2 SHIFT: 7-3 SKIT OPERATOR: John C.	F COOT	100 mg	il .	170 SIZIOZE 1017	Son 30 Jahre	26.1 To 1000 200 200	=390738160 W 3	0 8	3000 38100 1155	23000 Symptom SS	343 660						
PICKLE LINE PRODUCTION/INSPECTION REPORT	IAL URED TOD	C.	" (46 m /49) "	/ / /	7.7	4 44 PH 25/	100年	K.B.	44.35 lig 30 23 Day	1 (M. 1254 P.Z.			וא סנד	COILS:	PRODUCED:		•
PIC DAILY PRODUCTI	TOP EDUCE CANTER OF THE COURT	10 pg 32	10 DO 33	0 1	C82880 1 1 W	100 Peo 0 1 182	10 321 Par	1650 1 0 120 DN	1 0 pos (2)	THE 1 0 322 22	CHARGED WZIGHT TOTAL			HOURS	CHARGED:		
	DER F TAG PRETUNG	116212 V64784	1498 B96	16-PK13823	KU99D SAYON	V6 1996 13 83 50	1/4/98/39/20	76'8EL	1. VE 1465 359615	1. V6 (1993) STO	348 190	25~/	SHIFT TOTALS:	,			
DEC 24 ST ATOR: DJ.	SALES ORDER A	IS6B N162	. i	2 -	ני	1	11	ď	3	y			§ 1				
DATE: $\frac{\int_{\mathbb{R}} t}{\text{Line operator:}}$	HO. BILLTO	10 1368	"	. 21	5	- hi	51	1	× L1	<u>S</u>	TOP CODE: EDGE CODE		N. PRE-LIBS		l Go-	· ·	, NHC
0272 79E 6	ST	. ,				1100	ביב	C Et	(C\ND	MM		2	2:53	1 4	2002	-ED-	NOT.

NATIONAL PROCESSING COMPANY

Electronic Filing - Received, Clerk's Office : 05/16/2014

Electronic Filing - Received, Clerk's Office : 05/16/2014	
A T T T T T T T T T T T T T T T T T T T	
NSECTION CONCENTS LIPERAL LIPERAL STATES AND LIPERAL LIPERAL LIPERAL LIPERAL LIPERAL STATES AND LIPERA STATES AND LIPERA STATES AND LIPERA STATES	1
NE EXIT OPE ACTION REPORT EXIT OPE ACTION REPORT EXIT OPE ACTION REPORT EXIT OPE (2025 47 EXT) (19.05 (4.12) 2.302/2.	
G COMPRE CTION RECTION	go Ohriskon
ING CON NACTURAL BY SECTION OF SE	ny - Chicag
NATIONAL PROCESSING COMPANY PICKLE LINE DAILY PRODUCTION/ENSPECTION REPORT EXT (The company of the company	intal Processing Company - Chicago Diviston
RODUC GAUGE ON TOTAL	National Pr
NATIONAL DAILY PROD DAILY PROD STO 1 0 321 2. GO 1 0 0 0 321 2. GO 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
TAGS BHOODSO TAGS COLL WILL SHIFT TOTALS:	
SALES ORDER!	
SRATOR: D-10 C SEEPTO SEEPTO C	1
	Fern #PJ-1 1999
× = 2 0 00 00 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	79-NAT .‡


NATIONAL PROCESSING COMPANY PICKLE LINE

(의 14	DATE: 17.31.C LINE OPERATOR: 1) T.SCA: 10. 11. 11. 11. 11. 11. 11. 11. 11. 11.	DAILY PRODUCTION/INSPECTION REPORT	EXIT OPERATO:	SALES ORDER # TAG# CODE, WT. CODE CODE TO OD REC DIM TO STEE OD STEE O	117211 1/64966138250 1 0 23200 48.750 Mas 48 E321337840 2001.50 337	1,61965138360 1 0 22,221	1 0 (221, 220 11 (4) 14) 13215 37420 220 315	1 6 223 220 " (4 23 24 BETO 25 40 999-851. St. 9 1/2/10.5.)	23217 3771	1 0 221.220 " 49 40 F3218 37797 post 337	49 230219 3780020 415 337	1 MHATILIZBIAD 1 0 211.221 " HATILIDAD 45 337 FINES 1038	, VBATCHBITCH O 122 220 " 49 F3002187400 455 337 1083
	12.21. 2.21. 2.21. 2.2. 2.2. 2.2. 2.3. 2.3			TAGA				C30H8V 1.	VAM 73		ACHEN !	1 14/407	, 10847

PRODUCED: 491 CO11.5: 23 HOURS: OF CHARGED: SHIFT TOTALS:

EPORT PAGE: SHIFT: 3/1/	SHIPTAGS COL VICTAL LOCAL P RUSY ECTION COMMENTS LOFEAR VIEWER IN THANK	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	1277757810105 G99-9,1414' [13]	25 999	04 Cod0/17	E3026 187 (2005) 999-Birtol	137327144130200 OSCHAIND-19715	233 39463 Son Co	30 139 139 139 139 139 139 139 139 139 139		4/8 500 PRODUCED WESCHT TOTAL				
NATIONAL PROCESSING COMPANY PICKLE LINE ALLY PROBUCTION/INSPECTION REPORT	GALYZE ALCY DIM MEASURED ON STEE GO	的到 [648] 李 [6] [6]	$ d_{JU} /Q^{\infty} Q^{0} Q^{0} $	245 " 118 ⁰⁵ 4	1, 242 ', 246.	240 241 " 448 48	32 236 (48 ⁷⁵⁰ 44 ⁸⁷ 14"	(135 " 325.	379 " (ya 148 87)	1311 " 4g29 (4	PQTAE	TIN OUT	COUS:	PRODUCED:	
NATIO DAILY PI	באספ בסטב באבט אטעב אטעב במספ במסב באספ שטעבן	1 0 1 1 00 1 1 00 1 1 1 1 1 1 1 1 1 1 1	12 O 1	V64211 (46357) 1 0 241	VA1912 52720 1 0 241	MARZION/62501 0 120	10193 124942 1494 1 0 2	1 0 1 5 PARAMENTO 12	10196 WH482 47584 1 0 3	W4884768 1 0 3	695. CHAGED WEIGHT TOTAL	SHIFT TOTALS:	HOURS:	CHARGED	
12/21/06	SHIELD SALES ONDER S	19 1 HP2 1/102	2 BAR Llier	-	4	4	IM SteelWIN	, l	4 1/1019	13 B	area eros	HOREXU			
DATE:	NO. BILTO	DESOG	108	: <u>c</u>	10		ET TO OPE	91	17 h	4 81	TOR CODE S-DRY 1-OIL	S Partition S	<u>ا</u>	-20E	-194-03

EQUAL AREA TRAVERSE FOR ROUND DUCTS

Job: Nacme Steel Processing, LLC

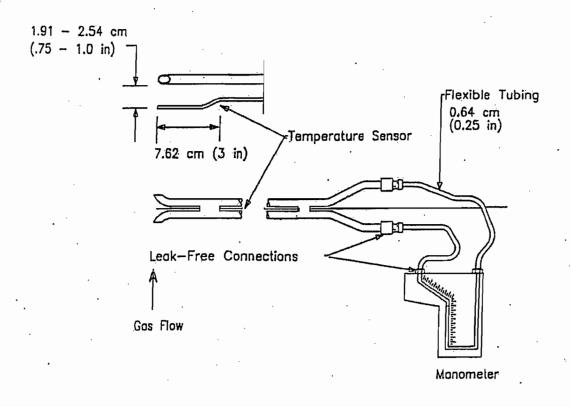
Chicago, Illinois

Date: December 21, 2006

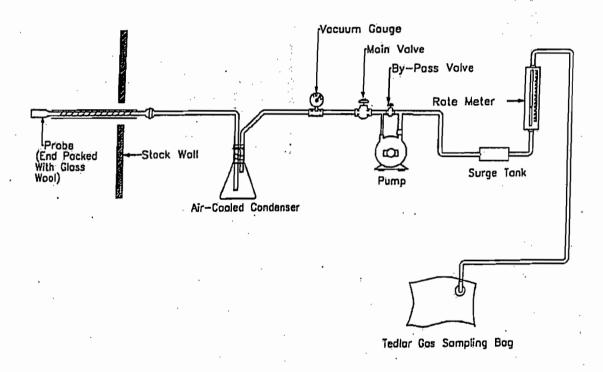
Unit: Steel Pickling Line

Test Location: Scrubber Stack

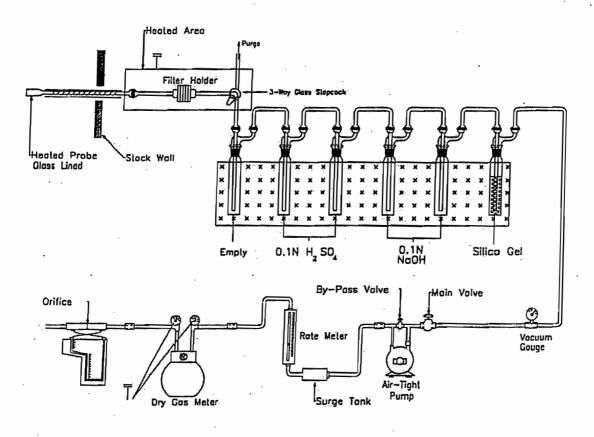
Stack Diameter: 36 Inches


Stack Area: 7.069 Square Feet

No. of Points per Port: 12


No. of Ports: 2

Port Length: 5 Inches


USEPA Method 2 - S-Type Pitot Tube Diagram

USEPA Method 3 - Integrated Oxygen/Carbon Dioxide Sample Train Diagram

USEPA Method 26A - Halogen Sample Train Diagram

Ice Bath
Temperature
Sensor

PLATT ENVIRONMENTAL SERVICES, INC.

Calculations For Hydrogen Chloride By Method 26 or 26A

Concentration

$$\frac{\text{lbs HCl}}{\text{dscf}} = \frac{\mu \text{g HCl in sample}}{4.536 \times 10^8 \times \text{dscf}}$$

where:

$$4.536 \times 10^8 = \mu g/lb$$

dscf = Volume of gas sampled

$$\mu$$
g/lb HCl = μ g Cl × $\frac{36.453}{35.453}$

Parts Per Million

$$ppm HCl = \frac{lbs HCl}{dscf} \div \frac{36.453}{385 \times 10^6}$$

where:

385 = Volume of 1 lb mole of gas at 68°F and 29.92 in. Hg
$$10^6$$
 = Conversion of ppm v/v

Emission Rate

Ibs $HCI/dscf \times dscfm \times 60 min/hr = Ibs/hr HCI$

PLATT ENVIRONMENTAL SERVICES, INC.

Particulates Calculation Formulas

1.
$$V_{w(std)} = V_{lc} \left(\frac{\rho_w}{M_w} \right) \left(\frac{RT_{std}}{P_{std}} \right) = K_2 V_{lc}$$

$$2. \ \ V_{m(std)} = V_{m} Y \left(\frac{T_{std}}{T_{m}} \right) \left(\frac{(P_{bur} + (\frac{\Delta H}{13.6}))}{P_{std}} \right) = K_{1} V_{m} \ Y \frac{(P_{bar} + (\frac{\Delta H}{13.6}))}{T_{m}}$$

3.
$$B_{ws} = \frac{V_{w(std)}}{(V_{m(std)} + V_{w(std)})}$$

4.
$$M_d = 0.44(\%CO_2) + 0.32(\%O_2) + 0.28(\%N_2)$$

5.
$$M_s = M_d (1 - B_{ws}) + 18.0 (B_{ws})$$

6.
$$C_a = \frac{m_a}{V_a \rho_a}$$

7.
$$W_a = C_a V_{aw} \rho_a$$

8.
$$C_{acf} = 15.43 K_i \left(\frac{m_n P_s}{V_{w(sld)} + V_{ru(std)} T_s} \right)$$

9.
$$C_s = (15.43 \text{ grains/gram}) (m_n/V_{m(std)})$$

10.
$$v_s = K_p C_p \sqrt{\frac{\Delta P T_s}{P_p M_s}}$$

11.
$$Q_{acfm} = v_s A(60_{sec/min})$$

12.
$$Q_{sd} = (3600_{sec/hr})(1 - B_{ws}) v_s \left(\frac{T_{std}P_s}{T_sP_{std}}\right) A$$

13. E (emission rate, lbs/hr) =
$$Q_{std}(C_s/7000 \text{ grains/lb})$$

14. IKV =
$$\frac{T_s V_{m(std)} P_{std}}{T_{std} V_s \theta A_n P_s 60(1 - B_{ws})} = K_4 \frac{T_s V_{m(std)}}{P_s V_s A_n \theta (1 - B_{ws})}$$

15. %EA =
$$\left(\frac{\%O_2 - (0.5 \%CO)}{0.264 \%N_2 - (\%O_2 - 0.5 \%CO)}\right) \times 100$$

PLATT ENVIRONMENTAL SERVICES, INC.

Volumetric Flow Nomenclature

- A = Cross-sectional area of stack or duct, ft²
- Bw = Water vapor in gas stream, proportion by volume
- Cp = Pitot tube coefficient, dimensionless
- M_d = Dry molecular weight of gas, lb/lb-mole
- M_s = Molecular weight of gas, wet basis, 1b/lb-mole
- Mw = Molecular weight of water, 18.0 lb/lb-mole
- Pbar = Barometric pressure at testing site, in. Hg
- P_n = Static pressure of gas, in. Hg (in. H₂O/13.6)
- $P_i = Absolute pressure of gas, in. Hg = P_{bar} + P_g$
- P_{std} = Standard absolute pressure, 29.92 in. Hg
- Q_{actin} = Actual volumetric gas flow rate, acfm
- Q_{sd} = Dry volumetric gas flow rate corrected to standard conditions, dscl/hr
- R = Ideal gas constant, 21.85 in. Hg-ft³/°R-lb-mole
- T_s = Absolute gas temperature, °R
- T_{std} = Standard absolute temperature, 528°R
- v. = Gas velocity, ft/sec
- Vw(std) = Volume of water vapor in gas sample, corrected to standard conditions, sef
 - Y = Dry gas meter calibration factor
 - Δp = Velocity head of gas, in. H₂O
 - $K_1 = 17.647$ °R/in. Hg
- %EA = Percent excess air
- %CO₂ = Percent carbon dioxide by volume, dry basis
- %O₂ = Percent oxygen by volume, dry basis
- %N₂ = Percent nitrogen by volume, dry basis.
- $0.264 = Ratio of O_2 to N_2 in air, v/v$
- 0.28 = Molecular weight of N2 or CO, divided by 100
- 0.32 = Molecular weight of O₂ divided by 100
- 0.44 = Molecular weight of CO₂ divided by 100
- 13.6 = Specific gravity of mercury (Hg)

PLATT ENVIRONMENTAL SERVICES, INC.

Volumetric Air Flow Calculations

Vm (std) = 17.647 × Vm ×
$$\left[\frac{(P_{bar} + (\frac{DH}{13.6}))}{(460 + Tm)} \right] \times Y$$

 $Vw (std) = 0.0471 \times Vlc$

$$Bws = \left[\frac{Vw (std)}{Vw (std) + Vm (std)} \right]$$

$$Md = (0.44 \times \%CO_2) + (0.32 \times \%O_2) + [0.28 \times (100 - \%CO_2 - \%O_2)]$$

$$Ms = Md \times (1 - Bws) + (18 \times Bws)$$

$$V_{S} = \sqrt{\frac{(T_{S} + 460)}{M_{S} \times P_{S}}} \times \sqrt{DP} \times C_{P} \times 85.49$$

 $Acfm = Vs \times Area (of stack or duct) \times 60$

$$Scfm = Acfm \times 17.647 \times \left[\frac{Ps}{(460 + Ts)} \right]$$

$$Scfh = Scfm \times 60 \frac{min}{hr}$$

acfm = actual cubic feet per minute scfm = standard cubic feet per minute

scfh = standard cubic feet per hour

Сp = pitot tube correction factor

Ps = absolute flue gas pressure

= molecular weight of gas (lb/lb

mole)

= dry molecular weight of gas Md

(lb/lb mole)

Bws = water vapor in gas stream

proportion by volume

LABURATURY REPURT

TEI Analytical, Inc. 7177 N. Austin Niles, IL 60714-4617 847-647-1345

PREPARED FOR:

PAGE 1 of 1

Jim Platt

Platt Environmental Services Inc.

371 Balm Court

Wood Dale, IL 60191

Report #: 73870

Report Date:

1/8/2007

Sample Received:

12/28/06 13:37

PE2006234

TEI Number	Sample	Chlorine (M26A) mg	Date Performed
73870	001 NaOH	<0.02	1/4/2007
73871 [*]	002 NaOH	<0.02	1/4/2007
73872	003 NaOH	<0.02	1/4/2007
73873	005 NaOH Blank	<0.02	1/4/2007

TEI Number	Sample	HCI (M26A) mg	Date Performed
73866	001 H2SO4	<0.02	1/4/2007
73867	002 H2SO4	<0.02	1/4/2007
73868	003 H2SO4	<0.02	1/4/2007
73869	004 H2SO4 Blank	<0.02	1/4/2007

Gayle E. O'Neill, Ph.D.

Platt Environmental Services, Inc

Chain-of-Custody Form Project Number: PE2006234 Date Results Regulred:													
Project Number: PE	2006234	Date Results	Required	!:									
Client: Nacme Steel		TAT Require	d:										
Plant/Test Location:	Chicago Plant / HCl Scrubber Stack	Project Super	visor: C.	Jensen									
Sample Sample Number Date	Sample Point Identification	# of Conts	Sub Lab	Analysis Required	Volume, mls								
0.01 12/12/06	Test #2	2		Method 26A									
002 12/21/06	Test #3	2		Method 26A									
003 12/21/06	Test #4	2		Method 26A									
004					·								
005	·												
006													
007													
800													
009	· · · · · · · · · · · · · · · · · · ·			<u> </u>									
010													
011													
012													
013													
014													
015													
016													
017													
018													
019													
020					·								
livered to Lab by:	Date/Time: Received by: Date/Time	lime:	Processe	d by: Date/Time:									

Laboratory Notes:

Customer: Nacme Steel Processing, LLC Plant: Chicago Facility

Location: HCl Scrubber Exhaust Stack

Date:

12/21/06

Start Time:

11:08

End Time:

12:14

		DRY GAS	METER COND	ITIONS				STAC	K CONDITIO	วหร	
-			ΔH: 0.97	in. H ₂ O			Barometri	c Pressure (i			
	Meler	Temperature,		' F				Static Press		•	
	Stock	Sort Temperature,		in. H₂O ⁴F				e Pressure (I Carbon Dlox		In.Hg∴abs %%	•
		eter Volume, 1						Охуд		%	
		r Volume, Vm						Nitrog		%	
		r Volume, Vw		wscf				Weight dry, I	Md: 28.836		
		kinelic Verian		%			Ges	Weight wat, I			
		re D	Frain Leak Che ft3		in Hg.	. [Excess	Alr: —, 15.181		
	Po		113 (6		in Hg.	1	V	olumetric Fic		actm	
			Loak Checks		. •			olumetric Flo		dscím	
		re yes	Parlonned	Leak Check @	3 in, H2O?	'	V	olumetric Fic	w: 5,995	scfm	
	Po	st yes		M	DISTURE E	DETERMINATI	ON				
	Initial In	pinger Conte	int: 3693.6	ml		Ş	lica initial W	il, o	grams		
	Final In	npinger Conte		ml		S	ilica Final W		. grams		
		Diljerend					Dillerenc	e; 0			
	, To	ital Weter Gal	ln; 51.2	•		Molsture, Bw	s: 0.084		Supersature	ilon Value, Bw	i: 0.061°
	~	Velocity		Actual		Stack		er Temp	Pump	Collected	Point
Port- Point No	Clock Time	Head Δp In. H2O	ΔH In, H2O	Meter Vol. fi ³	Sqrt.	Temp	Inlet *F	Outlet *F	Vacuum In. Hg	ı Vol. ft ³	Vel fÿsec
					Δp	99		55	3.0	1,488	15.583
1-1	11:08:00			71.072	0.265		_ 55				· · · · · · · · · · · · · · · · · · ·
2	11:10:30		0.99	72.560	0.285	98	<u>-57</u>	55	.3.0	1.490	15.583
	11:13:00		0.98	74,050	0.285	97	59	56	3.0	1.490	15,583
4	11:15:30		0.99	75.540	0.285	97	81	56	3.0	1.490	15,583
5	11:18:00		0.99	77.030	0.285	97	62	56	3.0	1.480	15.583
- 6	11:20:30	0,08	0.89	78,510	0.245	97	63	58	3.0	1.420	14.427
7	11:23:00	0.08	0.89	79.930	0.245	97	84	57	3.0	1.420	14,427
- 8	11:25:30	0.06	0,89	81,350	0.245	98		57	3.0	1.430	14.427
9	11:28:00	0.06	0.89	82,780	0.245	98	85	57	3.0	1.420	14.427
10	11:30:30	0.07	0.99	84.200	0,285	89	65	57	3.0	1,480.	15.583
11	11:39:00	0.08	1.19	85.68	0,283	90	86:	58	3.0	1.640	16.659
12	11:35:30	0.09	1.34	87,32	-0.300	100	66	58	3.0	1.779	17,689
ļ	11:38:00			89,099						· · · · ·	
2-1	11:44:00	0.07	0,99	89.099	0.285	98	B2	_58	3.0	1.491	15,583
2	11:48:30	0.07	0,99	90.590	0.265	98	63	58	3.0	1.490	15,583
3	11:49:00	0.08	1.19	92.080	0.283	. 96	:65	58	3.0	1,640	16.659
44	11:51:30	0.07	0.99	93.720	0.265	96	05	59	3.0	1,490	15,583
5	11:54:00	0.08	0.89	95,210	0.245	98	85	59	3.0	1.420	14.427
.8	11:56:30	0.08	0.89	95.630	0.245	97	85	59	3,0	1.420	14.427
7	11:59:00	0:08	0.89	98.050	0.245	98	85	59	3.0	1.420	14.427
8	12:01:30	0.08	0.89	99,470	0.245	99	86	59	3,0	1.420	14.427
9	12:04:00	0.08	0.89	100.89	0.245	. 88	68	59	3	1,420	14.427
10	12:06:30	0.08	0,89	102.31	0.245	99	66	59	3	1.420	14,427
11	12:09:00	0.08	0.89	103.73	0.245	88.	86	59	3	1.420	14:427
12	12:11:30	0.08	0.89	105.15	0.245	99	88	- 59	3	1.422	14.427

Customer: Nacme Steel Processing, LLC

Plant: Chicago Facility

14:02:00

14:04:30

14:07:00

14:08:30

14:12:00

14:14:30

14:17:00

10

11 12 0.07

0.07

0.07

0.07

.0.<u>07</u>

0.07

1.04

1.04

1.04

1.04

1.04

1.04

Location: HCI Scrubber Exhaust Stack

Date:

12/21/06

Start Time:

13:11

End Time:

14:17

DRY GAS MET	ER CONDITI	ONS		STACK CONDITIONS						
ΔH:	0.97	In. H ₂ O		Barometric Pressure (Pb):	29.40	in. Hg.				
Meter Temperature, Tm:	63.4	•F		Stallc Pressure:	0.40	in. H₂O				
Sqri AP:	0.268	In. H₂O		Flue Pressure (Ps):	29.43	ln. Hg. øbs.				
Stack Temperature, Ts:	89.9	•F _		Carbon Dioxida:	0.0	%				
Møler Volume, Vm:	37.399	cf		Oxygen:	20.9	% ·				
Meler Volume, Vmstd:	36.793	dscf		Nlirogen:	79.1	%				
Meter Volume, Vwstd:	2.289	wsci		Gas Weight dry, Md:	28.838	lb/lb male				
Isokinglic Variance:	97.1	%l		Gas Weight wet, Ms:	28,201	ib/ib mole				
Sample Train	Leak Checks	3		Excess Air.	-	%				
Pre 0	na @	10	in Hg.	Gas Velocity, Vs:	15.812	fps				
Post 0	(13 <u>@</u>	5	in Hg.	Volumetric Flow:	6,706	acfm				
Pliot Leaf			•	Volumetric Flow:	5,858	dscfm				
Pre yes	Performed Lo	eak Check (n 3 in. H2O?	Volumetric Flow:	6,220	salm				
Post yes										
			MOISTURE DET	ERMINATION						
Initial Impinger Content:	2850.4	ml		Silica Initial Wt. 830.8 g	rems					

Initial Impinger Content:	2850.4	m	 	Silica Initial WL	830.8	gra
Final Impinger Content:	2890.8	ml	• '	Silica Final Wt.	839.2	gra

	Tot	al Water Gain	: 48.6			Moisture, Bws:	0.059		Supersaturation Value, Bws: 0.005*				
Port- Point No.	Clock Time	Valocity Head ∆p In. H2O	Orlfice AH In. H2O	Actual Meter Vol. ft	Sqrt.	Stack Temp 'F	Met Inlet •F	or Temp Outlet *F	Pump Vacuum In. Hg	Collected Vol. ft*	Point Vel filsec		
1-1	13:11:00	0.07	1.04	7.438	0.285	98	58	58	3.0	1.542	15,608		
2	13:13:30	0.07	1.04	8.980	0.265	99	60	59	3.0	1.530	15.608		
.3	19:16:00	0.07	1.04	10.510	0.285	100	82	59	3.0	1.540	15.606		
. 4	13:18:30	0.07	. 1.04	12.050	0.285	. 101	63	59	3.0	1,530	15,808		
5	13:21:00	0.07	1.04	13,580	0.265	. <u>101</u>	64	59	3.0	1.540	15.606		
в	13:23:30	.0.07	1.04	15,120	0.265	101	65	59	:3.0	1.530	15.808		
7	13:28:00	0.07	1.04	16.650	0.265	102	66	59	3.0	1.540	15,606		
В	13:28:30	0.08	1.19	18.190	0.283	103	67	. 59	3.0	1.640	16.683.		
. 8	13:31:00	0.08	1.18	19.830	0.283	103	58	60	3.0.	1.840	16,683		
10	13:33:30	0.09	1.34	21.470	0.300	103	69	60	3.0	1.780	17.695		
11	13:38:00	0:09	1.34	23,230	0.300	103	69	60	3.0	1.720	17.695		
12	13:38:30	0.09	1.34	24.950	0.300	103	69	60	3.0	1.781	17.695		
	13:41:00			26.731									
2-1	13:47:00	0.08	0.08	28,731	0,245	98	65	60	3.0	1.429	14.448		
2	13:49:30	0.08	0.08	28.160	0.245	97	66	80	3.0	1.420	14.448		
3	13:52:00	0.06	0.06	29.580	0,245	97	86	61	3.0	1.430	14.448		
4	13:54:30	0:07	1.04	31.010	0,265	97	67	61	3.0	1.530	15.606		
5	13:57:00	0.07	1.04	32.540	0.285	97	68	61	3.0	1.530	15.606		
6	13:59:30	0,07	1.04	34.070	0.265	97	68	61	3.0	1.530	15.608		

35.600

37.140

38.670

40.21

41.74

43.28

44.837

0.265

0.265

0.265

0.285

0.285

0.265

98

.99

100

101

101

.69

69

70

70

70

61

61

61

61

62

62

3.0

3.0

3.0

3

3

1.540

1.530

1.540

1.530

1.540

1,557

15,608

15.606

15.606 15.608

15.608

15.606

Customer: Nacme Steel Processing, LLC Plant: Chicago Facility Location: HCl Scrubber Exhaust Stack

Date: Start Time:

12/21/06

End Time:

15:01 16:06

	DRY GAS METE	R CONDITI	ONS		STACK CONDITIONS					
	ΔН:	1.11	In. H ₂ O		Ba	rometric Pressure (Pb):	29.40	in. Hg.		
	Meter Temperature, Tm:	64.8	"F			Static Pressure:	0.40	In. H ₂ O		
	Sqrt ΔP:	0.272	in. H₂O			Flue Pressure (Ps):	29,43	in. Hg. abs.		
	Stack Temperature, Ts:	97.6	* F			Carbon Dloxide:	0.0	%		
	Meter Volume, Vm:	38.297	cí			Oxygen:	20.9	%		
	Meter Volume, Vmstd:	37.586	dscf			Nitrogen:	79.1	%		
	Mater Valume, Vwstd:	2214	wscf			Gas Weighl dry, Md:	28.838	lb/lb mole		
	Isokinelic Verience;	97.2	%1		_	Gas Weighl wel, Ms:	28.233	lb/lb mole		
Γ	Sample Train L	eak Checks	S .,		1	Excess Air.	18.013	%		
П		нз @	10	in Hg.	l	Gas Velocity, Vs:	18.013	føs		
1		n3 @	5	in Hg.		Volumetric Flow:	6,791	acim		
ĺ	Pitot Leak			_		Volumetric Flow:	5,973	dscfm		
1	_	erformed Lo	zak Check @	3 ln. H2O?	,	Volumetric Flow:	8,325	scim		
L	Post yes			Make High House	EDMINATION					

		npinger Conten npinger Conten Difference	t: 2930.8	u) .			ilica Initial W Illica Final W Difference	L 833,6	grams		
	To	ial Waler Gain				Molsture, Bw	1. 1		Supersaturati	on Value, Bws	: 0.081*
Port- Point No.	Clock Time	Velocity Head Δp In. H2O	Orlfice AH In. H2O	Actual Meter Vol. ft*	Sart. Ap	Stack Temp *F		er Temp Outlet *F	Pump Vacuum In. Hg	Collected Vol. ft	Point Vel ft/zec
1-1	15:01:00	0.07	1.05	45,583	0.285	_96	61	_61	3.0	1.557	15.565
22	15:03:30	0.07	1.05	47,120	0.265	98	62	61	3.0	1.550	15.585
3 .	15:06:00	0,07	1.05	48.870	0,285	98	64	. 61	3.0	1.550	15.585
.4	15:08:30	0.07	1.05	50,220	0.265	97	66	61	3.0	1.540	15.565
5	15:11:00	0.07	1,05	5 <u>1,76</u> 0	0.265	98	66	61	3.0	1.550	15,585
8	15:13:30	0.07	1.05	53,310	0.265	. 98	87	61	3.0	1,580	15,585
7	15:16:00	0.07	1.05	54. <u>870</u>	0.265	_98	60	81	3.0	1.540	15.585
8	15:18:30	0.07	1.05	58:410	0.265	98	68	61	3.0	1.560	15.565
9	16:21:00	80.0	1.2	57.970	0.283	. 99	69	61	3.0	1.850	18.639
10	15:23:30	0,08	1.2	59.620	0,283	99	69	61	3.0	1.650	18.639
11	15:26:00	80.0	1.2	61,270	0.283	99	89	61	3.0	1.670	10.839
12	15:28:30	0.08	1.2	62,940	0.283	. 99	70	62	3.0	1.884	18.639
	15:31:00			6 <u>4.604</u>							
2-1	15:38:00	80.0	1.2	64,604	0.283	95	87	62	3.0	1:876	16.639
2	15:38:30	0.08	1.2	68.280	0.283	.95	<u>68</u>	62	3.0	1.640	10.639
3	15:41:00	80.0	1.2	67.920	0.283	.97	68.	62	3.0	1.680	16.639
4	15:43:30	80.0	1.2	69.580	0.283	97	69	62	3.0	1.650	16,639
5	15:48:00	0.07	1.05	71.230	0,265	98	70	62	3.0	1.550	16.565
6	15:48:30	0.07	1.05	72.780	0.265	98	70	62	3.0	1.550	15.585
7	15:51:00	0.07	1.05	74.330	0.285	98	70	62	3.0	1.550	15.565
В	15:53:30	0.07	1:05	75.880	0.285	.98	70	62	3.0	1.550	15.585
9	15:56:00	0.07	1.05	77.430	0.265	99	70	62	3.0	1.650	15,585
10	15:58:3D	0.07	1.05	78.08	0.265	98	70	63	3.0	1.550	15.585
11	18:01:00	0.08	1.2	80.53	0.283	90	70.	63	3.0	1.850	18.639
12	16:03:30	0.08	1.2	82.18	0.283	98	70	63	3.0	1.680	16.639
	18:08:00			83.86							

Customer: Nacme Steel Processing, LLC

Plant: Chicago Facility

Location: HCI Scrubber Exhaust Stack

Date:

12/21/06

Start Time:

16:49

End Time:

17:55

DRY GAS METE	R CONDITI	ONS .		STACK CONDITIONS
ΔH:	1.20	In. H ₂ O		Barometric Pressure (Pb): 29.40 in, Hg.
Meter Temperature, Tm:	63.8	°F `		Stalic Pressure: 0.40 In. H ₂ O
Sgrt AP:	0.283	In. H ₂ O		Flue Pressure (Ps): 29,43 In. Hg. abs.
Stack Temperature, Ts;	97.6	•F -		Carbon Dioxida: 0 %
Meter Volume, Vm:	39.558	ci		Oxygen: 20.9 %
Meter Volume, Vmstd:	38,904	dscf		Nitrogen: 79.1 %
Mater Volume, Vwatd:	2.317	wscf		Ges Weight dry, Md; 28.838 lb/lb mole
Isokinelic Variance:	98.8	%		Gas Weight wel, Ms: 28.227 lb/lb mole
Sample Train L	Leak Checks	3		Excess Air. — %
Pre 0	fi3 @	10	in Ho	Gas Velocity, Vs: 18.884 fps
Post 0.005	11.3. <u>@</u>	5	In Hg.	Volumetric Flow: 7,068 acfm
Pitot Leak				Volumetric Flow: 8,212 dsc/m
Pre yes F	erformed L	eak Check @	3 In. H2O7	Volumetric Flow: 0,582 sc/m
Post yes				G PANNATION

2867.2 Silica Inilial WL

Initial Impinger Content: Final Impinger Content: Difference: 2908 40.8

Silica Final WL Difference:

847.8 grame

8.4

		Difference	40.8				Dinerence	B.4			
	Tot	ai Watar Galn:	49.2	•		Moisture, Bws:	0.058		Supersaturatio	n Value, Bws:	0,081*
Port- Paint No.	Clock Time	Velocity Head Δp In. H2O	Orifice AH In. H2O	Actual Meter Vol. ft	Sqrţ.	Stack Temp *F	Mote Inlet *F	or Temp Outlet *F	Pump Vacuum In. Hg	Collected Vol. ft*	Point Vel ft/sac
1-1	16:49:00	0.07	1.04	84.07	0.265	95	60	60	3.0	1.543	15.567
2	16:51:30	0.07	1.04	85.81	0.265	95	62	60	3.0	1.530	15.567
_3	18:54:00	0.07	1.04	87.14.	0.285	95	64	60	3.0	1.540	15.567
4	16:56:30	0.07	1.04	88,88	0.265	98	85	ëó	3.0	1.640	15.587
5	18:59:00	0.07	1.04	90.22	0.265	97	88	80	3.0	1.530	15.567
6	17:01:30	0.07	1.04	91.75	0.285	98	66:	ØÓ	3.0	1.540	15.587
7	17:04:00	0.07	1.04	93,29	0.265	. 98	67·	80	3	1.530	15.587
. 8	17:08:30	. 0.08	1.19	94.82	0,283	99	67	80	.3	1.850	18.641
9	17:09:00	0.08	1.19	98.47	0.283	89	87	60	3	1.640	16:641
10	17:11:30	0.09	1.34	98.11	0.300	100	. 68.	. 61	3	1.740	17.651
11	17:14:00	0.09	1.34	99.85	0.300	100	68	61	3	1.740	17,651
12	17:18:30	0,09	1.34	101.59	0.300	100	.68	61	3	1.760	17.651
	17:19:00		.•	103.35	•						
2-1	17:25:00	0.08	1.19	103.35	0.283	95	85	81	3.	1,680	16,041
2	17:27:30	0.08	1.19	105,01	0.283	97	66	61	3	1.880	18,641
3	17:30:00	0.09	1.34	108,84	0.300	97	67	61	3	1.740	17.051
4	17:32:30	0.09	1.34	108:38	0.300	96	. 68	81.	3	1.740	17.651
5	17:35:00	0.00	1.94	110,12	0.300	-97	68	61	3	1.750	17.651
6	17:37:30	0.08	1,19	111,87	0.263	97	68	81	3	1.640	16.641
7	17:40:00	0.08	1.19	113.51	0.283	98	69	Bi	.3	1.640	16.641
8	17:42:30	0.08	1.19	115.15	0,283	98	-89	61	3	1.640	16.641
8_	17:45:00	0.08	1.19	116.79	0.283	99	7.0	61	3 .	1.840	16.641
10	17:47:30	0.08	1.19	118.43	0.283	99	70.	61	3	1.660	16.841
11	17:50:00	0.09	1.34	120.09	0.300.	99	70	81	3	1.730	17.851
12	17:52:30	0.09	1.34	121.82	0.300	99	70	62	3	1.805	17.651
	17:55:00			123.625							
	-										

Customer: Nacme Steel Processing, LLC

Plant: Chicago Facility Location: HCl Scrubber Exhaust Stack

Number of Analytes:

		Run 1	Run 2	Run 3	Run 4
Identify Analyte:	HCI				
Molecular Weight: mg (net) collected:	36.461		0.02	0.02	0.02
tild (stor) concerne	The state of the s				

Customer: Nacme Steel Processing, LLC

Plant: Chicago Facility

Test Location: HCI Scrubber Exhaust Stack

Test Engineer: DT Temp ID: 5 **CM13** Meter ID: **CM13** Pitot ID: **A8E0** 0.840 **Pitot Tube Coefficient:** Probe Length: 4.0 ft **Probe Liner Material:** Glass 0.374 Nozzle Diameter: in. **Meter Calibration Factor:** 0.990 Sample Plane: Horizontal Port Length: 5.00 in.

Port Type: Flange
Duct Shape: Circular
Diameter 3 ft

Duct Area: 7.069 Sq. Ft.

4.00

In.

Number of Ports Sampled: 2
Number of Points per Port: 12
Minutes per Point: 2.5
otal Number of Traverse Points: 24

Port Size (diameter):

Test Length: 60 min.

Train Type: Anderson Box Source Condition: Maximum

of Runs 4

PLATT ENVIRONMENTAL SERVICES, INC.

Procedures for Calibration

Nozzles

The nozzles are measured according to Method 5, Section 5.1.

Dry Gas Meters

The test meters are calibrated according to Method 5, Section 5.3 and "Procedures for Calibrating and Using Dry Gas Volume Meters as Calibration Standards" by P.R. Westlin and R.T. Shigehara, March 10, 1978.

Analytical Balance

The accuracy of the analytical balance is checked with Class S, Stainless Steel Type 303 weights manufactured by F. Hopken and Son, Jersey City, New Jersey.

Temperature Sensing Devices

The potentiometer and thermocouples are calibrated utilizing a NBS traceable millivolt source.

Pitot Tubes

The pitot tubes utilized during this test program are manufactured according to specifications described and illustrated in the Code of Federal Regulations, Title 40, Part 60, Appendix A, Methods 1 and 2. The pitot tubes comply with the alignment specifications in Method 2, Section 4; and the pitot tube assemblies are in compliance with specifications in the same section.

1.594

0.990

Average

7
중
O
F
~
₴
m
=
_
◂
ö
×
\mathbf{C}
8
~
m
~
回
-

4 d	Dry Gas Meter No. Standard Moter No. Standard Meter (Yr)		CM13 9605804 1.0054			Date: Calibrated By: Barometric Pressure :	·		ği I I	J. Robertson 29 65	81 1 1	
						ı					.	Í
	•	•		•	-		_	•				a decimina de Rei
Orifice Setting in H20	20	Standard Meter Gas Volume	Dry Meter Gas Volume	Standard Meter Temp. F	Dry Gas Meter Inlet Temp. F	Dry Gas Meter Outlet Temp. F	Dry Gas Meter Dry Gas Meter Outlet Temp. F Avg. Temp. F	Time	Time	r		10 mag-mg (12/12
Chg (H)		Vr	ρΛ	.	tdi	ıdo	īģ.	Min	Sec.	> -	Chg (H@)	<u>@</u>
		2,00										
		960.756	794.053	89	74	72						
		955.375	788,566	68.	75	72			•			
Ó	0,20	5,381	5.487	68	7\$	7.7	73	19	32	0.990	0	1.472
		. 966.622	800.020	29	16	73						
		960:963	794.236	89	7.4	72			•			
	0.50	5.659	5.784	89	75	73	3 74	13	30.	0.989	39)	1.585
		971.911	805.432		78	73	·					
		966.848	800.241	89	75.	73	<u> </u>	_	-		-	
	0.70	5.063	5.191	89	77		73 75	10	10	0.986	98	1.572
		977.315	810.933	89	97	74	<u></u>			ı		
		972,226	805.728	89	77	73	<u></u>	_	_		-	
	0.30	5,089	5.205	89	87 78	`	74 76	6	14	0.5	0.990	1.647
		983.741	817.473	89	81	74	-					
		977.493	811,102	89	177	74	4	_	_		-	
	1.20	6.248	6.371		62. 89		74 77		9 42	0	0.994	1.606
		955.241	1 788.414	19'	. 81		72					
		949,459	9 782,508	67	81		71		-	_	-	
	2.00	5.782	2 5.906		.67	81	72 7	. 92	. 8	0	0.991	1.684

STACK TEMPERATURE SENSOR CALIBRATION DATA FORM (FOR K-TYPE THERMOCOUPLES)

BPA Control Module Number:

CM13

Name: J. Robertson

Ambient Temperature:

67.6 °F

Date: December 8, 2006

Omega Engineering Calibrator Model No. CL23A Scrial #

T-249465

Date Of Calibration Verification:

September 22, 2006

Primary Standards Directly Traceable to National Institute of Standards and Technology (NIST)

Reference ^s Source Temperature, (°F)	Test Thermometer Temperature, (°F)	Temperature Difference, %
. 0	5	1.1
250	255	0.7
600	604	0.4
1200	1206	0.4

(Ref. Temp., °F + 460) - (Test Them. Temp., °F + 460) * 100 <= 1.5 %
Ref. Temp., °F + 460

METER BOX CALIBRATION

December 28, 2006 S. Dyra 29.41 Calibrated By: Barometric Pressure : CM13 9605804 1.0054 Standard Meter (Yr) Standard Meter No. Dry Gas Meter No.

	Orifice Setting in H20	Standard Meter Gas Volume	Dry Meter Gas Volume	Standard Meter Temp. F	Dry Gas Meter Inlet Temp. F	Dry Gas Meter Outlet Temp. F	Dry Gas Meter Avg. Temp. F	Time	Time			
Run Number	Chg (H)	۲'n	ρΛ	H	rgi.	opj	33	Min	Sec.	>	Chg (H@)	
inal		252.256	246.210	.89	74	72						
nital		247.170	241.100	89	72	70			•	•		
lifference	0.20	5.086	5:110	68	73	7.1	72	18	38	1.002	1.515	
inal in		257.854	251.825	89	11	73.						
nital	;	252.559.	246.491		74	72						
Difference	2 0.50	5.295	5.334	89	76	73	74	12	.32	1.003	1.575	
inal .		263,319	257.339	. 89	79	74						
inital		258.209	252.181	89	76	73						
Difference	3 0.70	5.110	5.158	89	78	74	192	10	23	1.003	1.621	
Final		268.850	262:922		80	75						
Inital		263.714		89	77	74						
Difference	4 0.90	5.136	5,196	. 68	3 . 79	75	77	Ċν	3	1.002	1.564	
Final		274.516	268.665	89	82	76						
Inital		269.475	263.555	89.	67	75			-			
Difference	5 1.20	5.041	5,110	68	8 81	76	5 78	7	48	1.002	1.604	
							_					_

Average

69 69

76 74

29 29

235.573 240.739

200

Inital

246.829 241.638 1.585

1.004

STACK TEMPERATURE SENSOR CALIBRATION DATA FORM (FOR K-TYPE THERMOCOUPLES)

EPA Control Module Number:

CM13

Name: S. Dyra

Ambient Temperature:

66.3 °F

Date: December 28, 2006

Omega Engineering Calibrator Model No. CL23A Serial #

T-249465

Date Of Calibration Verification:

September 22, 2006

Primary Standards Directly Traceable to National Institute of Standards and Technology (NIST)

Reference* Source Temperature, (°F)	Test Thermometer Temperature, (°F')	Temperature Difference, %
0	4	. 0,9
250	254	0.6
.600	603	0.3
1200	1205	.0.3

(Ref. Temp., °F + 460) - (Test Therm. Temp., °F + 460) * 100 <= 1.5 %
Ref. Temp., °F + 460

Platt Environmental Services, Inc.

371 Balm Court Wood Dale, IL 60191 630-521-9400 630-521-9494 fax

Nozzle Calibration Sheet Set No. 2 Glass

Nominal Diameter	0.120	0.175	0.200	0.250	0.275	0.300	0.310	0.375	0.425	0.500	Other
Nozzle Diameter			0.198	0.251	0.269		0.312	0.374	0.431	0.500	
Nozzle Identification Number											

TYPE S PITOT TUBE INSPECTION DATA FORM

Pitot tube assembly level? Y yes no

Pitot tube openings damaged? yes (explain below) N no

$$\alpha_1 = 3 \circ (<10^{\circ}), \quad \alpha_2 = 0 \circ (<10^{\circ})$$

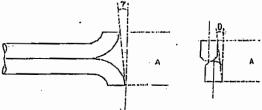
$$z = A \sin \gamma = 0.000$$
 (in.); (<0.125 in.)

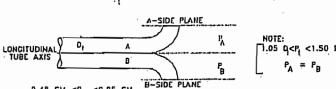
$$\beta_1 = 1_{\circ} (<5^{\circ}), \quad \beta_2 = 1_{\circ} (<5^{\circ})$$

$$w = A \sin \theta = 0.019$$
 (in.); (<0.03125 in.)

$$\gamma = 0$$
°, $\theta = 1$ °, $A = 1.077$ (in.) $P_A = 0.54$ (in.), $P_B = 0.54$ (in.), $D_t = 0.54$

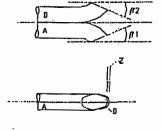
$$P_A = 0.54$$
 (in.), $P_B = 0.54$ (in.), $D_c = (in.)$

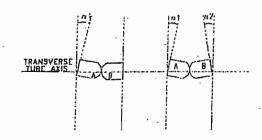

Comments:


Calibration required? yes N no

Pitot Tube No.: 38

Date: 12/18/2006


Name:



0.48 CM ≤0, ≤0.95 CM (3/16 IN.) (3/8 IN.)

TYPE S PITOT TUBE INSPECTION DATA FORM

Pitot tube assembly level? Y yes

Pitot tube openings damaged? yes (explain below)

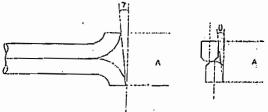
$$\alpha_1 = 3$$
 ° (<10°), $\alpha_2 = 0$ ° (<10°)

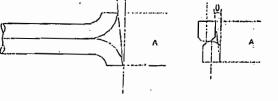
$$z = A \sin \gamma = 0.000$$
 (in.); (<0.125 in.)

$$\beta_1 = 1^{\circ} (<5^{\circ}), \quad \beta_2 = 1^{\circ} (<5^{\circ}) \quad w = A \sin \theta = 0.019 \text{ (in.); (<0.03125 in.)}$$

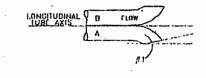
$$w = A \sin \theta = 0.019$$
 (in.); (<0.03125 in.)

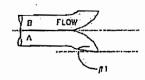
$$\gamma = 0^{\circ}, \theta = 1^{\circ}, A = 1.077$$
 (in.)

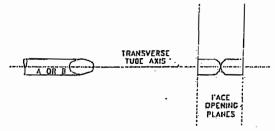

$$0^{\circ}$$
, $\theta = 1^{\circ}$, $A = 1.077$ (in.) $P_A = 0.54$ (in.), $P_B = 0.54$ (in.), $D_t =$ (in.)

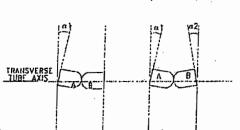

Comments:

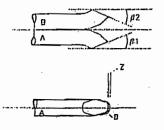

Calibration required? yes

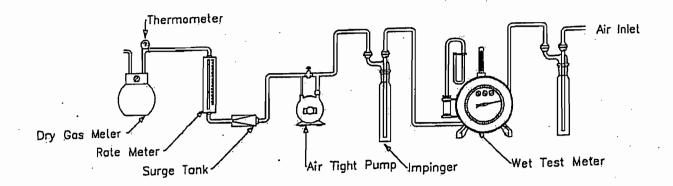

Pitot Tube No.:


Date: 12/28/2006 Name:









Dry Gas Meter Calibration Sample Train Diagram

Isokinetic Sampling Cover Sheet

.	 	
Project Number: やんこのんびられ Plant Name: こそりによらら Diameter: 36″ Flue Area: 7. e6 1 Port Size: 4″	nd Probe Data Meter Y Value: 1990 18 40 Probe Length: 41 Aアト Thimble Number/Weight: 100st-Test Nozzle Leak Check: 100 5・7 Post-Test Pitot Leak Check: 100 5・7 Verse Data	Min /Point: 2 . S Sample Plane (Horizontal or Vertical
Plant Information Plant Information Plant Information	Meter ID: C-A1/3 Meter ID: C-A1/3 Pitot Coefficient: , 8 y c Probe Len Nozzle Diameter: (3714 Train Type Thimble Number/Weight: □ ○ (0 / ○ "Hq Post-Test Nozzle Leak Check Co.1 "H₂O Post-Test Pitot Leak Check: Thaverse Data	Points/Port: / 2. Total Test Time: 6.0
Run Number: / Test Location: HCL SCRIBGER EXHAUST J Duct Shape: 《CirculaDor Rectangular Source Condition: Port Type: // Pole	Operator: りゅん ブレノのとん Pitot ID: ごろまう Probe Liner: らをすら Filter Number/Weight: Pre-Test Nozzle Leak Check: のマロロ	Ports Sampled: 2 Total Points: 2 7

Stack Parameters

3744.8 Imp. Volume or Weight Gain: 50. Static Pressure: 0.4 O₂%: 7.5 Final Imp. Volume or Weight. Final Silica Weight: Initial Imp. Volume or Weight: Barometric Pressure:

Comments:

Isokinetic Sampling Field Data Sheet

Project Number:

Date:

1 1	1	Impinger Outlet	Well Temp %	200	46	6/1	11	7,6	47	47	47	47	ኤ ፦	85		47	12	3	2 3	3,7	47	47	イン	47	86	05					
70,0KZ		-	Temp. %F	Ι.	254	255	9 0 0	25.5	255	2 27	957	200	4	255	2,7	255	250	255	255	255	256	256	255	256	256	255					
15 NA 10 1		, c	占	242	276	2 7 2	297	87.2	245	250	227	200	ノバル	7.50	7117	147	249	152	250	152	248	667	2.50	248	248	251					
~ 0		Pump	\rightarrow	M	W	nM	(A)	~	ń	Ni	7 ~	7	, li	'n	4	7 (1)	8	3	3	3	W	M	7	N	M	3					
nber. r. ımber:		Meter Temp Outlet		5,2	850	30	56	>6	57	70	57	N N	0	0	٥ V	200	28	59	59	.59	26	5.5	2,4	27	200	5,4					
Test Number:			ш,	200	100	19	29	9	200	יט 20	65	90	77		62	63	65	62	00	رر ق	00	رو	0,	9,	0	99					
Exthust		Stack Temp,	ĥ و	2 0	60	97	97	97	700	0 0	66	49	00/		96	36	96	96	96		× 0		4	200	4	77					
21/06 Scrubaer 64		Theoretical Meter Volume, (V _m) ft³,	total	72 659	0	75,533		78,507	17,763	82.770	161'68	85.678	87,318	83018	•	385'06	92.073	13,713	15,200	76.621	90 010	100.994	100 :00/	(22/20)	02/50/	∼ ı	395'901				
12/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/		etical		L&4./	183.7	C8h:/	1821	1,461	1241	1247	1.487	040	1,740		1.487	2841	07011	/48/	1241	1,421	1241	727	1.421			///					
Test Location: Test Method:		Meter Rate, Cubic Feet/	Min.	, 575	1575	1595	2/2	376,	8951	895'	.595	. 656	969,	,	1,595	.595	000	5.12	1300	200	395'	,568	368	156 K	273	5					
,		uare ot,	AP 7.C	120	126	126	100	24	.24	.24	126	. 28	- 20		92'	92'	100	2 7 7 7	7.7.	174	. 24	1521	721	72,	124					1	
57 <i>EE</i> (ت <u>.</u> رو	77.072	72.56	74,05	75,09	78.61	7993	81,35	82,78	84,20	35.68	25118	87.099	27,077	47.00	02.70	16 30	10	98.05	17.66	ير ا	15,201	(03, 73	105,15	106,517	1	26.57	(2.2)		
WACME STEEL		41 FD:	(NO)	36.	199	66.	58	. 89	189	200	وار	1.25		Ģ	7 0	50,	66	68	68	183	68'	189	.88	189	189						
		. ay	.07	.02	0	00	901	90/	90	3 6	× 0	000		100	, (5 6 8	0	00.	00,	1.06	<u>ه</u>	00	901	0	6		j 				
Client: Plant:		Ē	11.056	11/0,36	7/1/5	///8	1/20, 30	1/23	1125:30	87/1	1,221	1,35.30	70.00	7/7/1	7.7/1	2/8//	1/5/.>6	1154	1156,70	1159	1201:30	1204	05:307)	5071	1511.30	1214		-			
		Port-		- 2	7.5	1	7-	1,1	00,	107	1	2/-		7-1	2.	150	۲,		9-	ر٢	١٥٥	5.	5).	= 1	21-						

Isokinetic Sampling Cover Sheet

Project Number: Plant Name: CHICAGO / C Diameter: 36" Flue Area: 7.069 Port Size: 4"	Meter Y Value: テラロ Meter Y Value: テラロ BY G Probe Length: マースター Train Type: イルロの S Hyp Post-Test Nozzle Leak Check: 〇・〇〇〇 「Hyp Post-Test Pitot Leak Check: 〇・〇〇〇 「Hyo Post-Test Pitot Leak Check: レバン S・ラ Hyo averse Data	Min./Point 2.5 ⁻ Sample Plane:任orizon固lar Vertical	Determined by: Method 3 or Method 3A Imp. Volume or Weight Gain:Silica Weight Gain:
Plant Information Date: 12/21/26 Client Name: 14/26 Length: Width: or Test Method: 1264 Port Length: 5'1	Meter ID: 2>13 Meter Probe Data Meter ID: 2>13 Meter Protocology Nozzle Diameter: 374 Train Thimble Number/Weight: Ho Post-Test Nozzle Leak Che Post-Test Pitot Leak Che Traverse Data	Points/Port: /2 Total Test Time: 60	Stack Parameters Static Pressure: ' + O2 %: Final Imp. Volume or Weight: Final Silica Weight: htts (Model and S/N):
Run Number: 2 Test Location: <i>Hระ.เริงแลดธ์ก ธรษคุนรัว ราชเระ</i> Duct Shape: <u>(Alfcilla</u> Dor Rectangular Source Condition:	Operator: DANTVIDER Pitot ID: 038A Probe Liner: 6CASS Filter Number/Weight: Pre-Test Nozzle Leak Check: 0,000 Pre-Test Pitot Leak Check: 0,000	Ports Sampled: 2 Total Points: 2 4	Barometric Pressure: 29.7 Static Pressure: CO ₂ %: Nitial Imp. Volume or Weight: 400 Final Imp. Volume Initial Silica Weight: Final Silica Weight: Balance used for impingers and/or silica weights (Model and S/N):

Isokinetic Sampling Field Data Sheet

														_			_	_		_					Τ_	_	Г	_	. T	\neg	
	1:1-1	Impinger Outlet Well	emp r	20,7	7,7	42	83	43	Z Z	45	45	202	47	47		47	9 3	ンガ	2 2	47	47	86	48	84	48	8 3					
	7210ER	Filter		25.7	255	255	254	25 Y	25.2	25.5	2.55	255	255	256		255	220	25.5	255	2.55	255	952	552	256	952	952				-	
, c		Probe		┿╌	-	249	0 2 2	2 4 9	248	249	250	249	247	220	,	240	200	247	248	249	250	250	249	260	2249	250					
,	260	Pump Vacuum, P		 	M	3	m	_	+	m r	ر مرار	7/1	7	M	(W C	m	M	8	٨	8	Μ	Ŋ	W	60	8					
ber:	nber:	Meter Temp Pr Outlet, Vi		5 %	5 9	20	200	29	200	28	0	09	00	00	,	0 0	200	/9	19	/9	19	<u>ر</u>	<u>`</u>	19	62	79-					
Test Number:	Øperator: Page Number:	Meter 1 Temp C	58	60	62	63	3	s 9	9	20,) X	69	9	69	,	900	99	62	89	89	69	69	20	70	20	70					-
	2 5 L3 00	Stack Temp,		99	00/	/0/	/0/) o)	-	5.07	_	7	٥ >	20%	٠.	86	6.	97	⊢		-	_	_	1 100		101 1) (_		_
12/21/06	BAGG EXW	Theoretical Meter Volume, (V _m) ft ³ ,	į	8.973	8 05 '0'	12.043	13.578	15.11.3	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	18/2	7.8.7.	76.76.5	7,00	24.743	20,00	79157	29,573	30994	32,529	34,064	35,579	37.134	38.669	40,204	41.739	43.274	60846				
121	ž.	Theoretical Theoretical Neter Nolume, (Vm) ft³, per (-I	15335	7	3.5	575	1535	_		1	140	1 , ,	03/17	1 677 .	1.72/	1241	4535	1.535	1.535	1.535	1.535	1.535	1.535	1.535	1.535					
Date:	Test Location Test Method:	Meter Th Rate, Me Cubic Vo Feet (V,	7			779)))	, , ,	, ,	7050	0000	0/0/	٠,	0.76		X95,	-		-	,6,×	7	7/9	3/9'	2/9	419	۶/6۰					
<u>ت</u> ا	ے ہے ا	Square C Root, F	S	┝╌╫	-		_ -	9,	+	╌┼╌	+	24		0	2,	72.	124		\Box	921	126	.26	126	126	,26						
	5766L	Meter Volume (Vm.) ft³, F Actual	8	868	/0,5/	17.07	5,58	7/2 6.5	6.00	100	75.0	22.22	1000	26.73/	156 76	28,16	21,58	31.01	32.54	34.07	55,60	31,14	58.61	40,21	41.74	43.28	44.837				
	WACME STEL	Orifice V Setting ((╁╾┥	ų i		7		7 7 7	57.7	6/1/	1,	1.	10	\cdot	60		Γ-1			7		1.07	(, 07)	1.07	1.07	1:07					
nber:	य प	(4 ∇)	70,	70	70,	5 1	0,0	7,4	0 6	000	000	60	000)	0	0 0	06	101	10'	.07	,07	0,		4	0	.07					
Project Number.	Client: Plant:	Tige	1311	3/3,30	2/0/2/2	30,000	1322.84	1306	1200.00	133/	1222.20	1336	1220.96	1341	1347	1347;30	1352	1354:36	1357	1359:30	7051	1404.30	1001	1404130	1412	1414:30	1417				
		Port-	1-1	72-	157			┿	┥╌	╌	10,1	-	١.	+	,	2-	-3	4-	-5	16	7	4	5-	9-10	- (7)-					

Isokinetic Sampling Cover Sheet

Project Number: Plant Name: Curca Go, 72 Diameter: 36.7 Flue Area: 7.0 C.9 Port Size:	Meter Y Value:3Meter Y Value:9 9 08 4 uProbe Length:Y'. 37 yTrain Type:A O C O OThimble Number/Weight:O O O O OPost-Test Nozzle Leak Check:O O O O OPost-Test Pitot Leak Check:I O O O O O O O O O O O O O O O O O O O	Min./Point: 2 , 5Sample Plane: Horizontal or Vertical	Determined by: Method 3 or Method 3A Imp. Volume or Weight Gain: Silica Weight Gain:
Run Number: 3 Date: 12/21/0 L Test Location: 4ct Scausger, Exhaust 3 Bate: 12/21/0 L Duct Shape: Cliculation Rectangular Length: Width: or Source Condition: Test Method: 1264 Port Type: 1264	Meter ID: CMI Pitot Coefficient Nozzle Diameter:	Points/Port: 72 Total Test Time: 6.0	Stack Parameters Barometric Pressure: 29.7 CO2.%: 20.6 Initial Imp. Volume or Weight: 20.6 Final Imp. Volume or Weight: 20.6 Final Silica Weight: 20.6
Run Number: 3 Test Location: คะเรรณงออลล์ Exหลงรา Duct Shape: cliculation Source Condition: more.com	Operator: DAN TOLOER Pitot ID: 038 A Probe Liner: Filter Number/Weight: Pre-Test Nozzle Leak Check: 000	Ports Sampled: 2 Total Points: 2 7	Barometric Pressure: 29.4 CO ₂ %: Initial Imp. Volume or Welght 400 Irritial Silica Weight Balance used for Impingers and/or sili

ata Sheet
Field
6
므
Sampli
Isokinetic

																						_	· T		_	-7		-	7	Т	丁	
		Impinger Outlet Well Temp °F	8	%%	8%	7 7	49	48	48	49	43	48	49		20	50.	20	50	66	43	δ	N :	5.	49	43	63				_	_	
	7010FR	Filter V Temp. °F	255	256	25.7	750	256	.255	256	2s6	254	255	256		256	255	255	255	255	256	255	255	250	257	256	2.56						
	10 / of	Probe F Temp. ºF	248			100	+	249	250	757	250	250	25/		249	250	250	152	253	252	250		248	250	25%	252		_				
M	0	Pump Vacuum, P			5	16	(V)	m	3	8	~	3	Μ		Μ	М	Μ	5.7	'n	~	Μ	2	77	Λ,	M	Ņ			-		_	
ber:	nber:	Meter Femp Suffet,	1.9	6/	19	100	0	19	9	19	0	19	62		62	29	62	62	9	62	ø	_	4	63	63	63						_
Test Number:	Operator. Page Number:	Meter Temp Iniet, °F	9	62	19	000	67	68	68	69	63	69	70		67	8	89	60		70	70	_	70	70	70	02					_	_
	74Cr	Stack Temp,	96	96	96	80		6	٠.	66	.66	66	66		95	1 95		197	86	_	98	-		3 98	_	861	4				-	+
90/1	10 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Theoretical Meter Volume, (V _m) ft ³ , total		47.112	199.8%	87 75	53.308	54,857	56, 406	57,955	119.65	192119	62,923	64.579		66,260	916129	69.572	71.228	72.777	74,320	75.875	424/7	78,973	25'08	82,178	83.834					-
_	K M	etical le,	249		675		+	645	6551	959	1,656	9591	1,656		1.656	656	656	1,656	6451	4549	1,549	1.549	1,549	1,549	1.656	11656						
	Test Location: Test Method:		-		Η.	``	٦	-							1 299'	662 1	1 299.	799	029	70,	650	029	.620	,620	7991	7991						-
Date:	Test Test	Meter Rate, Square Cubic Root, Feet/ AP Min.			36 16						\neg	-	28 ,		1.28	-	28		. 92.	,26	, 26	-		126								
	576£L 1L	Meter Volume Squar (Vm) ft³, Root, Actual	8		200			, 87	56.41 13		7	-	62,94	4	604		1 26169	1 85.69	\vdash	72,78	74,33	ıω	7.79	18.98	53	_	83,860					
	WACME ST	Orifice VC Setting (V		10	501	1.	1	 	50.7	,	1,20		20		1,20		1.20	1,20	1,05	1,05	1,05	1,05	1.05	1105	1,20	110						
iber.	য শ্ৰ	(4v)	10	70.	70	1,0	100	60.	100	803	80	30,	ľ		80'	80'	Ĺ	80.			.07	٦	۲٥,	101		80.		_				
Project Number.	Client: Plant:	TI	1051	1503.30	905/	2000	15/3/30	1516	1518,30	1521	1523:30	1526	1528:8u	1531	1536	08;8851	1451	1543,30	9251	1548:30	1551	1553.30	1556	1558:30	1991	1603.30	1606					
ш.	J =	Port-		/ 2-	2,3	٧.	Jo	50	8-	6-	o)-	11:-	-17		7.2	2-	-]	<i>^</i> -	-5	7-	-7	٥٥	-3	2	11-	71-						

Isokinetic Sampling Cover Sheet

	미	•	
Project Number: Plant Name: CHICAGO, IC Diameter: 366 " Flue Area: 7.067 Port Size: 4"	Meter Y Value: Probe Length: ザ・ Train Type: ユンロスペラシン Weight: Leak Check: ここの 5 "Hg	Min./Point 2 & Sample Plane: Horizontal or Vertical	Determined by: Method 3 or Method 3A Imp. Volume or Weight Gain:Silica Weight Gain:
Plant Information Date: (2/2//0.6 Client Name: MACME STEEC Length: Width: or Test Method: 7/26/A Port Length: 5"	Meter ID: C/1 3 Meter Y Va Pitot Coefficient: 8 4 0 Nozzle Diameter: 374 Thimble Number/Weight: C C : Hg Post-Test Nozzle Leak Check: 1 Post-Test Pitot Leak Check: 1 Traverse Data	Points/Port: 12 Total Test Time: 60	Stack Parameters Static Pressure: '-/- O ₂ %: 20.4 Final imp. Volume or Weight: Final Silica Weight:
Run Number.	Operator: DAV TOLOGR Pitot ID: 0.38A Probe Liner: 6.455 Filter Number/Weight: Pre-Test Nozzle Leak Check: 0.000 Pre-Test Pitot Leak Check: 0.000	Ports Sampled: 2.4 Total Points: 2.4	Barometric Pressure: 29.4 CO ₂ %: Static Pressure: 20.2 Initial Silica Weight 40.0 Einal Imp. Volume or Weight 40.0 Einal Silica Weight Einal

Sheet
Data
Field
pling
Sam
netic
Isokii

			,							_		_		_					_						-					\neg		- .
	Impinger Outlet Well Temp °F	46	5/5	45	45	46	975			5		7.00			48	47	47	28	60	64	47	49	50	50	50					•		4
730	Filter V Temp. °F T	257	256	250	al V			~ 1	255	256	250	255		250	255	255	255	255	526	S	255	255	256	255	257							
1 of	Probe Fi	۵		277	2007	249	OS	コ		25/	250	289		256	S	Ы	248	249	250	25/	249	250	152	2.50	249							
4 DASS	Pump Vacuum, Pr " Hg	M	2	- - ~	100			-	\ \ \	~	2	M	7		7	~	<i>ω</i>	33	3	3	~	5	~	3	٤							
oer: iber:	Meter Temp Pu Outlet, Va	09	0	0	00	00		0		اق	9	0	- 1	0	ر ق	0		_	18		6	19	/ 0	2/9	29			_				
Test Number. Operator. Page Number.	Meter T Temp C Inlet, °F	09	27,	200		99	0	67	6	-	_	_		8	و	67	<i>∞</i>	9			69		20	20	70				÷			-
TSACK		6	\sim	75		0	~	7	-	٦)		00/ 2	_	ö	7 97	- 1	96 3	697	6 97	6	<u>.</u>	66 38	28 99	70 99	56 2	54					-	-
12/21/06 His standagen KxHAUST STACK M 26A	Theoretical Meter Volume, (Vm) ft³, total		0	87.157	90.211	91.747	93.28	64,819	96,46	18110	54.845	101,587	(03,332		764,992	106.63	1081376	110.11	11118	113,502	1,5,14	116.78	8261811	120,070	218 121	123,554						4
'''	 	1,536	1530	1,536	1,536	1.536	1.536	1.64.5	0	1.746	1,742	1,742	- 1	1.6 42	1,642	11742	1,742	2467	1,642	7697	11642	1.647	2597	2441	1,742							
Date: Test Location: Test Method:	Meter Th Rate, Mc Cubic Vc Feet/ (V		, 6/7	7/0/	1/5/9	5/0)	100	1657	1,657	169	1647	7,677		165	1657	1691	697	1687	1,657	657	1657	1,657	1657	1697	,657							
	Square C Root, F	97				12C	12.6	,28	128	130	130	.30	_ \	7	123	130	1.30		821	12 R	,28			9.30	1 30	5	_	_				_
376EL 30,11		84.067	85,61	27.72	22,0%	91,75	93,29	7876	46,47	1811	\ ` !	101,59	103.350	103,350	10,501	106.6	108.38	21.011	L8'///	113,51	115,15	110,79	56811	120,0	121.82	123.625						
WCME 376		3 7 0.1		רנסת על	3	\sim	7	6/1/	,	7 7 7	1,3,4	1, 5 4	4	7,17	6/1/	134	1,34	1,34	611	11.19	119	6117	6111	1.34	1134							
1. 7	(AP)	107	107	10,	10	207	~ O.	80,	80:	70	- 1	107		80'	,080°			503	80'					60	90							
Project Number: Client: Plant:	Time	6491	1651:30	502 t 202 t 202 t	689	1201:20	HOL	1706,70	1707		17/4		17/9	175	1127,30	1730	1722:30	1735	1737.30	1740	1742,30	_	6 1747.30	0561	08.256) 7	1755						
	Port- Point#.	┝╌┦		, ,	-	3	4.7	200	2	0/1	₋Ĭ	21-		2~	-2	-13	h-	5,	9-	~7	ν	9	7	7	2,							

BEFORE THE ILLINOIS POLLUTION CONTROL BOARD

PEOPLE OF THE STATE OF ILLINOIS,)	
Complainant,)	
v.)	PCB No. 13 - 12
NACME STEEL PROCESSING, LLC, a Delaware limited liability corporation,)	(Enforcement – Air)
Respondent.)	

EXHIBIT F

THOMAS J. REUTER AFFIDAVIT

TAB 13 MARCH 23, 2007 NACME'S CHANGE REQUEST FOR FESOP APPLICATION ("2007 FESOP APPLICATION") March 23, 2007

Mr. Valeriy Brodsky Division of Air Pollution Control Permit Section Illinois Environmental Protection Agency 1021 North Grand Avenue East Springfield, Illinois 62702

Re: Change Request for FESOP Application NACME Steel Processing, LLC I.D. No.: 031600FWL

Dear Mr. Brodsky:

Per our discussion, the purpose of this correspondence is to request a revision to the proposed raw material usage limitation for the Federally Enforceable State Operating Permit application (FESOP) for the NACME Steel Processing, LLC facility located at 429 West 127th Street in Chicago, Illinois (the facility).

Currently, the construction permit-revised, issued April 11, 2002, allows the facility a throughput process rate of 85.6 tons of steel per hour. The stack test conducted in 2002 was conducted at a throughput process rate of 33.3 tons of steel per hour. If nothing else was done at this point, the facility has been informed that the pending FESOP will be written for a throughput process rate of 33.3 tons of steel per hour based upon the 2002 stack testing program results.

Therefore, on December 21, 2006, another stack test, was performed at the facility for the purpose of demonstrating compliance with applicable emission at high process rates to obtain a proposed increase in the allowable steel process rate on the current FESOP from proposed 33.3 tons per hour to meet or exceed that of the Construction Permit—Revised, rate of 85.6 tons per hour.

United States Environmental Protection Agency test Method 26A was used to determine stack gas HCl concentrations on the ports after the stack scrubber. The results of this stack test were submitted to the Illinois Environmental Protection Agency (IEPA), Compliance and Enforcement Section in duplicate on January 25, 2007. This stack test was not done at the request of the IEPA for compliance issues.

The results of the December 2006 stack test demonstrated that the facility could process an average throughput rate of 119.9983 tons of steel per hour (see enclosed summary of NACME Stack Test Results) while maintaining compliance with the National Emission

Standards for Hazardous Air Pollutants (NESHAPS) for steel pickling operations outlined in 40 Code of Federal Regulations part 63, subpart CCC, § 63.1157 (40 CFR 63) and all other operating parameters including:

- Maximum HCl concentration in the pickling tanks of 16%
- Maximum pickling solution temperature of 190° F
- HCl makeup rate of no more than 236 gallons/hour

The gaseous emissions of the stack exhaust were measured to be below 0.01 parts per million by volume (ppmv) of HCl at the outlet of the stack scrubber; well below the permissible level of 18 ppmv, pursuant to 40 CFR 63.

Based on the December 2006 stack test results included in the submitted documents to the IEPA, the facility would like to request that the pending FESOP application be amended to allow the facility to process steel on the pickling line at a process throughput rate of 119 tons of steel per hour.

Enclosed please find the completed 197 CAAPP and 292 CAAPP forms and a check in the amount of \$2,000.00 made payable to the Illinois Environmental Protection Agency as part of the 197 CAAPP application fee determination.

If you have any questions, or need additional information, please contact our environmental consultant, Mr. David Osadjan at 630-993-2145.

Sincerely,

NACME STEEL PROCESSING, LLC

John DuBrock Director of Operations

Enclosures: 197 CAAPP 292 CAAPP Fee Remittance for 197 CAAPP NACME Stack Test Results

ENVIRONMENTAL PROTECTION AGENCY DIVISION OF AIR POLLUTION CONTROL – PERMIT SECTION P.O. BOX 19506

SPRINGFIELD, ILLINOIS 62794-9506

FEE DETERMINATION FOR
CONSTRUCTION PERMIT
APPLICATION

	FO	AGENCY USE ONLY
ID NUMBER		•
PERMIT#		
		,
COMPLETE INCOMPLETE		DATE COMPLETE:
CHECK#		ACCOUNT NAME:

THIS FORM IS TO BE USED BY ALL SOURCES TO SUPPLY FEE INFORMATION THAT MUST ACCOMPANY ALL.
CONSTRUCTION PERMIT APPLICATIONS. THIS APPLICATION MUST INCLUDE PAYMENT IN FULL TO BE DEEMED
COMPLETE. MAKE CHECK OR MONEY ORDER PAYABLE TO THE ILLINOIS ENVIRONMENTAL PROTECTION AGENCY.
SEND TO THE ADDRESS ABOVE, DO NOT SEND CASH, REFER TO INSTRUCTIONS (1971) STIFFOR ASSISTANCE.

SEND TO THE ADDRESS ABOVE. DO NOT SEND CASH, REFER T	
等等型化学类型:不是一个主义的 Sources	IFORMATION SELECTION SELECTION OF THE SE
1) SOURCE NAME: NACME Steel Processing, LLC	
	La compagnitation of the same same same same same same same sam
PROJECT NAME: Change request for construction permit- revised and FESOP based on stack test results.	3) SOURCE ID NO. (IF APPLICABLE) 031600FWL
revised and resor based on stack test results.	1

調腦			and the state of t			
4) Fi	LL IN THE FOLLOWING THREE I	BOXES AS DI	ETERMINED IN SECTIONS 1 THR	OUGH 4 BEL	OW:	
	\$ 0		\$ 2,000.00	1 .	\$ 2,000.00	l
	4.5	+	4	=	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1
	0505011101050511		OF OTION A A OF A QUIPTOTAL	J	ODANID TOTAL	J
	SECTION 1 SUBTOTAL		SECTION 2, 3 OR 4 SUBTOTAL		GRAND TOTAL	

SECTION A STATUS OF SOURCE PURPOSE OF SUBMITTAL 5) YOUR APPLICATION WILL FALL UNDER ONLY ONE OF THE FOLLOWING SIX CATEGORIES DESCRIBED BELOW. CHECK THE BOX THAT APPLIES, ENTER THE CORRESPONDING FEE IN THE BOX TO THE RIGHT AND COPY THIS FEE INTO THE SECTION 1 SUBTOTAL BOX ABOVE. PROCEED TO APPLICABLE SECTIONS. FOR THE PURPOSES OF THIS FORM: MAJOR SOURCE IS A SOURCE THAT IS REQUIRED TO OBTAIN A CAAPP PERMIT SYNTHETIC MINOR SOURCE IS A SOURCE THAT HAS TAKEN LIMITS ON POTENTIAL TO EMIT IN A PERMIT TO AVOID CAAPP PERMIT REQUIREMENTS (E.G., FESOP) NON-MAJOR SOURCE IS A SOURCE THAT IS NOT A MAJOR OR SYNTHETIC MINOR SOURCE EXISTING SOURCE WITHOUT STATUS CHANGE OR WITH STATUS CHANGE FROM SYNTHETIC MINOR TO MAJOR SOURCE OR VICE VERSA. ENTER \$0 AND PROCEED TO SECTION 2. EXISTING NON-MAJOR SOURCE THAT WILL BECOME SYNTHETIC MINOR OR MAJOR SOURCE. ENTER \$5,000 AND PROCEED TO SECTION 4. EXISTING MAJOR OR MINOR SOURCE THAT WILL BECOME NON-MAJOR SOURCE. ENTER \$4,000 AND PROCEED TO SECTION 3. \$0 NEW MAJOR OR SYNTHETIC MINOR SOURCE. ENTER \$5,000 AND PROCEED TO SECTION 4. SECTION 1 SUBTOTAL NEW NON-MAJOR SOURCE. ENTER \$500 AND PROCEED TO SECTION 3. AGENCY ERROR, IF THIS IS A TIMELY REQUEST TO CORRECT AN ISSUED PERMIT THAT INVOLVES ONLY AN AGENCY ERROR AND IF THE REQUEST IS RECEIVED WITHIN THE DEADLINE FOR A PERMIT APPEAL TO THE POLLUTION CONTROL BOARD, THEN ENTER \$0. SKIP SECTIONS 2, 3 AND 4. PROCEED DIRECTLY TO SECTION 5

SECTION 2 SPECIAL CASE FILING FEET
6) FILING FEE. IF THE APPLICATION ONLY ADDRESSES ONE OR MORE OR THE FOLLOWING, CHECK THE
APPROPRIATE BOXES, ENTER \$500 IN THE SECOND BOX UNDER FEE DETERMINATION ABOVE, SKIP SECTIONS 3
AND 4 AND PROCEED DIRECTLY TO SECTION 5. OTHERWISE, PROCEED TO SECTION 3, OR 4, AS APPROPRIATE.
☐ ADDITION OR REPLACEMENT OF CONTROL DEVICES ON PERMITTED UNITS
☐ PILOT PROJECTS/TRIAL BURNS BY A PERMITTED UNIT
APPLICATIONS ONLY INVOLVING INSIGNIFICANT ACTIVITIES UNDER 35 IAC 201.210 (MAJOR SOURCES ONLY)
☐ LAND REMEDIATION PROJECTS
☐ REVISIONS RELATED TO METHODOLOGY OR TIMING FOR EMISSION TESTING
☐ MINOR ADMINISTRATIVE-TYPE CHANGE TO A PERMIT

THIS AGENCY IS AUTHORIZED TO REQUIRE AND YOU MUST DISCLOSE THIS INFORMATION UNDER 415 ILCS 5739. FAILURE TO DO SO COULD RESULT IN THE APPLICATION BEING DENIED AND PENALTIES UNDER 415 ILCS ET SEQ. IT IS NOT NECESSARY TO USE THIS FORM IN PROVIDING THIS INFORMATION. THIS FORM HAS BEEN APPROVED BY THE FORMS MANAGEMENT CENTER.

APPLICATION PAGE _____-1

197-FEE

SECTION 3: FEES FOR CURRENT OR PROJECTED NON-MAYOR SOURCES	William Har
7) IF THIS APPLICATION CONSISTS OF A SINGLE NEW EMISSION UNIT OR MORE THAN TWO MODIFIED	
EMISSION UNITS, ENTER \$500.	7) 0.00
8) IF THIS APPLICATION CONSISTS OF MORE THAN ONE NEW EMISSION UNIT <u>OR MORE THAN TWO MODIFIED</u> UNITS, ENTER \$1,000.	8) 0.00
9) IF THIS APPLICATION CONSISTS OF A NEW SOURCE OR EMISSION UNIT SUBJECT TO SECTION 39.2 OF THE	
ACT (I.E., LOCAL SITING REVIEW); A COMMERCIAL INCINERATOR OR A MUNICIPAL WASTE, HAZARDOUS WASTE, OR WASTE TIRE INCINERATOR: A COMMERCIAL POWER GENERATOR: OR AN EMISSION UNIT DESIGNATED AS	1
A COMPLEX SOURCE BY AGENCY RULEMAKING; ENTER \$15,000.	
	9) 0.00
10) IF A PUBLIC HEARING IS HELD (SEE INSTRUCTIONS), ENTER \$10,000.	10) 0.00
11) SECTION 3 SUBTOTAL (ADD LINES 7 THROUGH 10) TO BE ENTERED ON PAGE 1.	11) 0.00

	SECTION MATEES FOR CURRENT CORPROJECTED MAJOR FOR SYNTHETIC	MINOR SOURC	ES
Application	12) FOR THE FIRST MODIFIED EMISSION UNIT, ENTER \$2,000.	12) 2,000.00	建建筑
Contains	13) NUMBER OF ADDITIONAL MODIFIED EMISSION UNITS =		TANK TO A SAN
Modified Emission Units	X \$1,000.	13)	Residence of the second
Only	14) LINE 12 PLUS LINE 13, OR \$5,000, WHICHEVER IS LESS.	海州公司	14) 2,000.00
Application	15) FOR THE FIRST NEW EMISSION UNIT, ENTER \$4,000.	15)	3. 数据数据的 14%的
Contains New	16) NUMBER OF ADDITIONAL NEW AND/OR MODIFIED		
And/Or Modified Emission Units	EMISSION UNITS = X \$1,000.	16)	受到的时代一个 1888
Entission Crats	17) LINE 15 PLUS LINE 16, OR \$10,000, WHICHEVER IS LESS.		17) 0.00
Application	18) NUMBER OF INDIVIDUAL POLLUTANTS THAT RELY ON A		
Contains Netting	NETTING EXERCISE OR CONTEMPORANEOUS EMISSIONS		
Exercise	DECREASE TO AVOID APPLICATION OF PSD OR NONATTAINMENT NSR = X \$3,000.	新 校 12 2 17 3 18	18) 0.00
	19) IF THE NEW SOURCE OR EMISSION UNIT IS SUBJECT TO		10/0.00
	SECTION 39.2 OF THE ACT (I.E., SITING); A COMMERCIAL INCINERATOR OR		
	OTHER MUNICIPAL WASTE,		
	HAZARDOUS WASTE OR WASTE TIRE INCINERATOR; A	THE REAL PROPERTY.	
	COMMERCIAL POWER GENERATOR; OR ONE OR MORE		
	OTHER EMISSION UNITS DESIGNATED AS A COMPLEX	THE THREE PARTIES	
•	SOURCE BY AGENCY RULEMAKING, ENTER \$25,000.		19) 0.00
	20) IF THE SOURCE IS A NEW MAJOR SOURCE SUBJECT TO	A TOWN	-
	PSD, ENTER \$12,000		20) 0.00
	21) IF THE PROJECT IS A MAJOR MODIFICATION SUBJECT TO		
	PSD, ENTER \$6,000.		21) 0.00
	22) IF THIS IS A NEW MAJOR SOURCE SUBJECT TO		
Additional	NONATTAINMENT (NAA) NSR, ENTER \$20,000.		22) 0.00
Supplemental	23) IF THIS IS A MAJOR MODIFICATION SUBJECT TO NAA		
Fees	NSR, ENTER \$12,000.		23) 0.00
	24) IF APPLICATION INVOLVES A DETERMINATION OF CLEAN		
	UNIT STATUS AND THEREFORE IS NOT SUBJECT TO BACT		
	OR LAER, ENTER \$5,000 PER UNIT FOR WHICH A DETERMINATION IS REQUESTED OR OTHERWISE		
	REQUIRED. X \$5,000.		24) 0.00
	25) IF APPLICATION INVOLVES A DETERMINATION OF MACT		24) 0.00
	FOR A POLLUTANT AND THE PRODUCT IS NOT SUBJECT TO		
	BACT OR LAER FOR THE RELATED POLLUTANT	En en lige set un die	
	UNDER PSD OR NSR (E.G., VOM FOR ORGANIC HAP),		
	ENTER \$5,000 PER UNIT FOR WHICH A DETERMINATION IS	建筑等等	
	REQUESTED OR OTHERWISE REQUIRED. X \$5,000.		25) 0.00
	26) IF A PUBLIC HEARING IS HELD (SEE INSTRUCTIONS),		
	ENTER \$10,000.	数 19.00 19.00	26) 0.00
27) SECTION 4 S	SUBTOTAL (ADD LINES 14 AND LINES 17 THROUGH 26) TO BE ENTERED ON PAGE	1.	27) 2,000.00
		··	

SECTION 5.60	ERVIECATION
NOTE: APPLICATIONS WITHOUT A SIGNED CERTIFICATION WILL	
28) I CERTIFY UNDER PENALTY OF LAW THAT, BASED ON INFOR	
INQUIRY, THE INFORMATION CONTAINED IN THIS FEE APPLIC	CATION IS TRUE, ACCURATE AND COMPLETE.
BY:	Director of Operations
SIGNATURE	TITLE OF SIGNATORY
John DuBrock	1
TYPED OR PRINTED OF SIGNATORY	DATE

appli	CATIOI	N PAGE	-2
•	10	7-FFF	

ILLINOIS ENVIRONMENTAL PROTECTION AGENCY DIVISION OF AIR POLLUTION CONTROL -- PERMIT SECTION P.O. BOX 19506 SPRINGFIELD, ILLINOIS 62794-9506

FOR AP	PLICANT	'S USE		
Revision #:				
Date:	_ /			
Page	of			
Source Designation:				

FEE	DETERMINATIO	N FOR
	CAAPP PERMI	T

	FORAGE	NGY USE	DNEY	
ID NUMBER:				_
PERMIT #:				 _
				 _
DATE:				

THE DATA PROVIDED ON THIS FORM WILL BE USED TO DETERMINE THE PERMIT FEE. THE EMISSION LEVELS STATED ON THIS FORM CAN ONLY BE USED FOR THE PURPOSE OF PERMIT FEE DETERMINATION IF THE APPLICANT IS WILLING TO ACCEPT THESE LEVELS AS PERMIT SPECIAL CONDITIONS. EMISSIONS DATA PROVIDED ON THIS FORM MUST BE IDENTICAL TO DATA IN THE "PERMITTED EMISSION RATE" COLUMNS PROVIDED ON THE DATA AND INFORMATION FORM FOR INDIVIDUAL EMISSION UNITS OR CONTROL EQUIPMENT. IF ADDITIONAL SPACE IS NEEDED, ATTACH AND LABEL AS 282-1.

SOURCE INFORMATION					
1) SOURCE NAME: NACME Steel Processing, LLC					
·					
2) DATE FORM PREPARED: March 16, 2007	3) SOURCE ID NO. (IF KNOWN): 031600FWL	-			

		FEE DAT	A		
4) WILL THE SOURCE PAY	THE MAXIMUM F	EE OF \$250,000.00 F	PER YEAR?		s X NO
IF YES, THE REMAINDER	R OF THIS FORM	DOES NOT NEED TO	D BE COMPLETED		
5) EMISSION UNIT*	NITROGEN OXIDES (NO _X) (TONS/YR)	PARTICULATE MATTER (PART) (TONS/YR)	SULFUR DIOXIDE (SO ₂) (TONS/YR)	VOLATILE ORGANIC MATERIAL (VOM) (TONS/YR)	OTHER** SPECIFY HAP Hydrogen Chloride (TONS/YR)
01-Steel Pickling Line					1.8
Boiler 1	2.93	0.22	0.02	0.16	
Boiler 2	2.93	0.22	0.02	0.16	
HCL ASTs					0.44
					·

THIS AGENCY IS AUTHORIZED TO REQUIRE THIS INFORMATION UNDER ILLINOIS REVISED STATUTES, 1991, AS AMENDED 1992, CHAPTER 111 1/2, PAR. 1039.5. DISCLOSURE OF THIS INFORMATION IS REQUIRED UNDER THAT SECTION. FAILURE TO DO SO MAY PREVENT THIS FORM FROM BEING PROCESSED AND COULD RESULT IN THE APPLICATION BEING DENIED. THIS FORM HAS BEEN APPROVED BY THE FORMS MANAGEMENT CENTER.

APPLICATION PAGE 1

Rev. 6/6/2003

Printed on Recycled Paper 292-CAAPP

NMLP 0418

FOR APPLICANT'S USE

^{*}EMISSION UNIT - PROVIDE THE NAME AND FLOW DIAGRAM DESIGNATION OF THE EMISSION UNIT AS IT APPEARS ON THE DATA AND

INFORMATION FORM.

**OTHER - ANY HAZARDOUS AIR POLLUTANT (HAP) NOT INCLUDED ELSEWHE	RE, E.G., CHLORINE, HCI, ETC.
· · · · · · · · · · · · · · · · · · ·		

5) (CONTINUED)	NITROGEN OXIDES (NO _X)	PARTICULATE MATTER (PART)	SULFUR DIOXIDE (SO ₂)	VOLATILE ORGANIC MATERIAL (VOM)	OTHER** SPECIFY
EMISSION UNIT*	(TONS/YR)	(TONS/YR)	(TONS/YR)	(TONS/YR)	(TONS/YR)

^{*}EMISSION UNIT - PROVIDE THE NAME AND FLOW DIAGRAM DESIGNATION OF THE EMISSION UNIT AS IT APPEARS ON THE DATA AND INFORMATION FORM.

11) MINIMUM PERMIT FEE IS \$1,800.00 PER YEAR - MAXIMUM PERMIT FEE IS \$250,000.00 PER YEAR. IF THE CALCULATED PERMIT FEE IN ITEM 10 ABOVE IS BETWEEN THESE TWO FEE AMOUNTS THEN ENTER HERE, OTHERWISE ENTER THE MINIMUM OR MAXIMUM PERMIT FEE.

WHICHEVER IS APPLICABLE. THIS IS THE ACTUAL ANNUAL PERMIT FEE:

SUB	TOTAL	5.86	0.44	0.04_	0.32	2.24
FUG	ITIVE	0	0	0	0	0
то	TAL	5.86	0.44	0.04	0.32	2.24
RAND TO	OTAL - ADD BO	OXES A THROUGH	E (TONS/YR):			8.9

APPLICATION PAGE 2

Rev. 6/6/2003

Printed on Recycled Paper 292-CAAPP \$1,800

^{**}OTHER - ANY HAZARDOUS AIR POLLUTANT (HAP) NOT INCLUDED ELSEWHERE, E.G., CHLORINE, HCI, ETC.

NACME Steel Processing, LLC ID #: 031600FWL

Hydrogen Chloride Emissions Stack Test Results NPC - 1 Stack test 12/21/06

	1ST TEST	1st TEST	2nd TEST	3rd TEST	
Start Time	11:07 AM	1:00 PM	3:05 PM	4:45 PM	
End Time	12:10 AM	2:10 PM	4:15 PM	5:50 PM	Average
Lbs of coils ran	Failed due to testing apparatus	39000	37840		
•	Glass probe broke	38000	37770	37900	
		38160	37930	37750	
		38050	37570	51840	
		38100			
	•	38190	37790	52700	
Total Tons per hour		114.75	113.305	131.94	119.9983333

BEFORE THE ILLINOIS POLLUTION CONTROL BOARD

PEOPLE OF THE STATE OF ILLINOIS,)	
Complainant,)	•
v.)	PCB No. 13 - 12
•)	(Enforcement – Air)
NACME STEEL PROCESSING, LLC, a Delaware limited liability corporation,)	
Respondent.)	

EXHIBIT F

THOMAS J. REUTER AFFIDAVIT

TAB 14
CONSTRUCTION PERMIT-NSPS
SOURCE NO. 12020035 ("2012
CONSTRUCTION PERMIT")

ILLINOIS ENVIRONMENTAL PROTECTION AGENCY

1021 NORTH GRAND AVENUE EAST, P.O. BOX 19506, SPRINGFIELD, ILLINOIS 62794-9506 - (217) 782-2113

PAT QUINN, GOVERNOR

JOHN J. KIM, INTERIM DIRECTOR

217/785-1705

CONSTRUCTION PERMIT -- NSPS SOURCE

PERMITTEE

NACME Steel Processing, LLC Attn: John DuBrock 429 West 127th Street Chicago, Illinois 60628

Application No.: 12020035 Applicant's Designation: Subject: Steel Pickling 1 Date Issued: April 26, 2012

I.D. No.: 031600FWL

Date Received: February 23, 2012

Location: 429 West 127th Street, Chicago, Cook County 60628

Permit is hereby granted to the above-designated Permittee to CONSTRUCT emission unit(s) and/or air pollution control equipment consisting of modification of the existing steel coil pickling line comprised of four (4) pickling tanks and coil washer exhausted to turbo-tunnel enclosure and three (3) 14,000 gallon hydrochloric acid storage tanks all controlled by a scrubber and one (1) coil oil coater to allow increase of steel processing rate as described in the above-referenced application. This Permit is subject to standard conditions attached hereto and the following special condition(s):

- 1a. This permit is issued based on the emission of Hazardous Air Pollutants (HAP) as listed in Section 112(b) of the Clean Air Act from the abovelisted equipment being less than 10 tons/year of any single HAP and 25 tons/year of any combination of such HAPs. As a result, this permit is issued based on the emissions of all HAPs from the above-listed equipment not triggering the requirements of Section 112(g) of the Clean Air Act.
- b. This permit is issued based on the modification of existing steel coil pickling line not constituting a new major source or major modification pursuant to Title I of the Clean Air Act, specifically the 40 CFR 52.21 Prevention o Significant Deterioration of Air Quality. The source has requested that the Illinois EPA establish emission limitations and other appropriate terms and conditions in this permit that limit the emissions of Particulate Matter (PM) and Particulate Matter less than 10 microns (PM₁₀) from above-listed equipment below the levels that would trigger the applicability of these rules.
- c. Operation of the equipment listed above is allowed under this construction permit until final action is taken on the Federally Enforceable State Operating Permit (FESOP) application for this source.

- 2a. The coil coater associated with the existing steel coil pickling line is subject to the New Source Performance Standards (NSPS) for Metal Coil Surface Coating, 40 CFR 60 Subparts A and TT. The Illinois EPA is administering the NSPS in Illinois on behalf of the United States EPA under a delegation agreement. Pursuant to 40 CFR 60.460(a) and (b), the provisions of 40 CFR 60 Subpart TT apply to the following affected facilities in a metal coil surface coating operation: each prime coat operation, each finish coat operation, and each prime and finish coat operation combined when the finish coat is applied wet on wet over the prime coat and both coatings are cured simultaneously that commences construction, modification, or reconstruction after January 5, 1981.
 - b. Pursuant to 40 CFR 60.462(a)(1), on and after the date on which 40 CFR 60.8 requires a performance test to be completed, each owner or operator subject to 40 CFR 60 Subpart TT shall not cause to be discharged into the atmosphere more than 0.28 kilogram VOC per liter (kg VOC/l) of coating solids applied for each calendar month for each affected facility that does not use an emission control device(s).
- 3a. Pursuant to 35 Ill. Adm. Code 212.123(a), no person shall cause or allow the emission of smoke or other particulate matter, with an opacity greater than 30 percent, into the atmosphere from any emission unit other than those emission units subject to 35 Ill. Adm. Code 212.122.
- b. Pursuant to 35 Ill. Adm. Code 212.123(b), the emission of smoke or other particulate matter from any such emission unit may have an opacity greater than 30 percent but not greater than 60 percent for a period or periods aggregating 8 minutes in any 60 minute period provided that such opaque emissions permitted during any 60 minute period shall occur from only one such emission unit located within a 305 m (1000 ft) radius from the center point of any other such emission unit owned or operated by such person, and provided further that such opaque emissions permitted from each such emission unit shall be limited to 3 times in any 24 hour period.
- c. Pursuant to 35 Ill. Adm. Code 212.301, no person shall cause or allow the emission of fugitive particulate matter from any process, including any material handling or storage activity, that is visible by an observer looking generally toward the zenith at a point beyond the property line of the source.
- d. Pursuant to 35 Ill. Adm. Code 212.316(f), unless an emission unit has been assigned a particulate matter, PM₁₀, or fugitive particulate matter emissions limitation elsewhere in this 35 Ill. Adm. Code 212.316 or in 35 Ill. Adm. Code 212 Subparts R or S, no person shall cause or allow fugitive particulate matter emissions from any emission unit to exceed an opacity of 20 percent.
- e. Pursuant to 35 Ill. Adm. Code 212.321(a), except as further provided in 35 Ill. Adm. Code Part 212, no person shall cause or allow the emission of particulate matter into the atmosphere in any one hour period from

any new process emission unit which, either alone or in combination with the emission of particulate matter from all other similar process emission units for which construction or modification commenced on or after April 14, 1972, at a source or premises, exceeds the allowable emission rates specified in 35 Ill. Adm. Code 212.321(c).

- f. Pursuant to 35 Ill. Adm. Code 212.324(b), except as otherwise provided in 35 Ill. Adm. Code 212.324, no person shall cause or allow the emission into the atmosphere, of PM_{10} , from any process emission unit to exceed 68.7 mg/scm (0.03 gr/scf) during any one hour period.
- Pursuant to 35 Ill. Adm. Code 218.204(d), except as provided in 35 Ill. 4a. Adm. Code 218.205, 218.207, 218.208, 218.212, 218.215 and 218.216, no owner or operator of a coating line shall apply at any time any coating in which the VOM content exceeds the following emission limitations for Coil Coating. Except as otherwise provided in 35 Ill. Adm. Code 218.204(a), (c), (g), (h), (j), (l), (n), (p), and (q), compliance with the emission limitations is required on and after March 15, 1996. following emission limitations are expressed in units of VOM per volume of coating (minus water and any compounds which are specifically exempted from the definition of VOM) as applied at each coating applicator, except where noted. Compounds which are specifically exempted from the definition of VOM should be treated as water for the purpose of calculating the "less water" part of the coating composition. Compliance with 35 Ill. Adm. Code 218 Subpart F must be demonstrated through the applicable coating analysis test methods and procedures specified in 35 Ill. Adm. Code 218.105(a) and the recordkeeping and reporting requirements specified in 35 Ill. Adm. Code 218.211(c) except where noted. The emission limitations are as follows:

Coil Coating kg/l lb/gal 0.20 (1.7)

- b. Pursuant to 35 Ill. Adm. Code 218.301, no person shall cause or allow the discharge of more than 3.6 kg/hr (8 lbs/hr) of organic material into the atmosphere from any emission unit, except as provided in 35 Ill. Adm. Code 218.302, 218.303, or 218.304 and the following exception: If no odor nuisance exists the limitation of 35 Ill. Adm. Code 218 Subpart G shall only apply to photochemically reactive material.
- 5a. This permit is issued based on the steel coil pickling line at this source not being subject to the National Emission Standards for Hazardous Air Pollutants (NESHAP) for Steel Pickling HCl Process Facilities and Hydrochloric Acid Regeneration Plants, 40 CFR 63 Subpart CCC. This is a result of the federally enforceable production and operating limitations, which restrict the potential to emit to less than 10 tons/year for any individual Hazardous Air Pollutant (HAP), and 25 tons/year of any combination of such HAPs.

- b. This permit is issued based on coil coater associated with the existing steel coil pickling line at this source not being subject to the National Emission Standards for Hazardous Air Pollutants (NESHAP) for Surface Coating of Metal Coil, 40 CFR Part 63, Subpart SSSS. This is a result of the federally enforceable production and operating limitations, which restrict the potential to emit to less than 10 tons/year for any individual Hazardous Air Pollutant (HAP), and 25 tons/year of any combination of such HAPs.
- Pursuant to 35 Ill. Adm. Code 212.314, 35 Ill. Adm. Code 212.301 shall not apply and spraying pursuant to 35 Ill. Adm. Code 212.304 through 212.310 and 35 Ill. Adm. Code 212.312 shall not be required when the wind speed is greater than 40.2 km/hr (25 mph). Determination of wind speed for the purposes of this rule shall be by a one-hour average or hourly recorded value at the nearest official station of the U.S. Weather Bureau or by wind speed instruments operated on the site. In cases where the duration of operations subject to this rule is less than one hour, wind speed may be averaged over the duration of the operations on the basis of on-site wind speed instrument measurements.
- b. Pursuant to 35 Ill. Adm. Code 212.324(d), the mass emission limits contained in 35 Ill. Adm. Code 212.324(b) and (c) shall not apply to those emission units with no visible emissions other than fugitive particulate matter; however, if a stack test is performed, 35 Ill. Adm. Code 212.324(d) is not a defense finding of a violation of the mass emission limits contained in 35 Ill. Adm. Code 212.324(b) and (c).
- This permit is issued based on the solvent cleaning operations at this source not being subject to the requirements of 35 Ill. Adm. Code 218.187(b). Pursuant to 35 Ill. Adm. Code 218.187(a)(1), on and after January 1, 2012: Except as provided in 35 Ill. Adm. Code 218.187(a)(2), the requirements of 35 Ill. Adm. Code 218.187 shall apply to all cleaning operations that use organic materials at sources that emit a total of 226.8 kg per calendar month (500 lbs per calendar month) or more of VOM, in the absence of air pollution control equipment, from cleaning operations at the source other than cleaning operations identified in 35 Ill. Adm. Code 218.187(a)(2). For purposes of 35 Ill. Adm. Code 218.187, "cleaning operation" means the process of cleaning products, product components, tools, equipment, or general work areas during production, repair, maintenance, or servicing, including but not limited to spray gun cleaning, spray booth cleaning, large and small manufactured components cleaning, parts cleaning, equipment cleaning, line cleaning, floor cleaning, and tank cleaning, at sources with emission units;
- b. Pursuant to 35 Ill. Adm. Code 218.209, no owner or operator of a coating line subject to the limitations of 35 Ill. Adm. Code 218.204 is required to meet the limitations of 35 Ill. Adm. Code 218 Subpart G (35 Ill. Adm. Code 218.301 or 218.302), after the date by which the coating line is required to meet 35 Ill. Adm. Code 218.204.

- 8. Pursuant to 40 CFR 60.11(d), at all times, including periods of startup, shutdown, and malfunction, owners and operators shall, to the extent practicable, maintain and operate any affected facility including associated air pollution control equipment in a manner consistent with good air pollution control practice for minimizing emissions. Determination of whether acceptable operating and maintenance procedures are being used will be based on information available to the Illinois EPA or USEPA which may include, but is not limited to, monitoring results, opacity observations, review of operating and maintenance procedures, and inspection of the source.
- 9. Pursuant to 35 Ill. Adm. Code 212.324(f), for any process emission unit subject to 35 Ill. Adm. Code 212.324(a), the owner or operator shall maintain and repair all air pollution control equipment in a manner that assures that the emission limits and standards in 35 Ill. Adm. Code 212.324 shall be met at all times. 35 Ill. Adm. Code 212.324 shall not affect the applicability of 35 Ill. Adm. Code 201.149. Proper maintenance shall include the following minimum requirements:
 - i. Visual inspections of air pollution control equipment;
 - ii. Maintenance of an adequate inventory of spare parts; and
 - iii. Expeditious repairs, unless the emission unit is shutdown.
- 10a. In the event that the operation of this source results in an odor nuisance, the Permittee shall take appropriate and necessary actions to minimize odors, including but not limited to, changes in raw material or installation of controls, in order to eliminate the odor nuisance.
 - b. The Permittee shall, in accordance with the manufacturer(s) and/or vendor(s) recommendations, perform periodic maintenance on the scrubber and turbo-tunnel enclosure such that scrubber and turbo-tunnel enclosure are kept in proper working condition and not cause a violation the Environmental Protection Act or regulations promulgated therein.
 - c. The scrubber and turbo-tunnel enclosure shall be in operation at all times when the associated emission units are in operation and emitting air contaminants.
 - d. The scrubber shall be equipped with a monitoring device that continuously indicates and records the make-up water flow and pressure drop across the scrubber. The Permittee shall calibrate, maintain, and operate the scrubber monitoring device according to the manufacturer's specifications.
- 11a. This permit is issued based on negligible emissions of hydrogen chloride (HCl) from the steel coil pickling line and three hydrochloric acid storage tanks. For this purpose, HCl emission shall not exceed nominal emission rates of 0.1 lb/hour and 0.44 ton/year. These limits

are based on the maximum production rate, the most recent stack test data and the following operational limits:

- i. Steel Coil Throughput: 120 tons/hr, 89,000 tons/mo, 1,050,000 tons/yr;
- ii. Hydrochloric Acid Usage: 2,510 lbs/hr, 930 tons/mo, 11,000 tons/yr;
- iii. Maximum HCl concentration in pickling tanks: 16%;
- iv. Maximum pickling tanks temperature: 190°F;
- v. Scrubber make-up water flow no less than 1.88 gal/min; and
- vi. Pressure drop across the scrubber no more than 9.15" w.c.
- b. The VOM usage and VOM emission from the oil coater shall not exceed the following limits:

VOM Usage		VOM Emissions	
Tons/Month	Tons/Year	Tons/Month	<u>Tons/Year</u>
1.27	12.70	1.27	12.70

These limits are based on the maximum material usage, the maximum VOM and HAP content of the materials, and the maximum emissions determined by a material balance. The VOM and HAP emissions shall be determined from the following equation:

$$E = \sum (V_i \times C_i)$$

Where:

E = VOM or HAP emissions (ton);

 $V_i = individual coating usage (ton); and$

- $C_1 = VOM \text{ or HAP content of the each individual coating (wt. fraction)}.$
- The emissions of Hazardous Air Pollutants (HAPs) as listed in Section 112(b) of the Clean Air Act from pickling line shall not exceed 0.79 tons/month and 7.9 tons/year of any single HAP and 1.31 tons/month and 13.14 tons/year of any combination of such HAPs. As a result of this condition, this permit is issued based on the emissions of any HAP from this source not triggering the requirements of Section 112(g) of the Clean Air Act, the NESHAP for Steel Pickling HCl Process Facilities and Hydrochloric Acid Regeneration Plants, 40 CFR 63 Subpart CCC, and the NESHAP for Surface Coating of Metal Coil, 40 CFR Part 63, Subpart SSSS.
- d. Compliance with the annual limits of this permit shall be determined on a monthly basis from the sum of the data for the current month plus the preceding 11 months (running 12 month total).

- 12a. Pursuant to 40 CFR 60.8(a), within 60 days after achieving the maximum production rate at which the affected facility will be operated, but not later than 180 days after initial startup of such facility and at such other times as may be required by the Illinois EPA or USEPA under section 114 of the Clean Air Act, the owner or operator of such facility shall conduct performance test(s) and furnish the Illinois EPA or USEPA a written report of the results of such performance test(s).
 - b. Pursuant to 40 CFR 60.8(b), performance tests shall be conducted and data reduced in accordance with the test methods and procedures contained in each applicable subpart of 40 CFR Part 60 unless the Illinois EPA or USEPA:
 - Specifies or approves, in specific cases, the use of a reference method with minor changes in methodology;
 - ii. Approves the use of an equivalent method;
 - iii. Approves the use of an alternative method the results of which he has determined to be adequate for indicating whether a specific source is in compliance;
 - iv. Waives the requirement for performance tests because the owner or operator of a source has demonstrated by other means to the Illinois EPA's or USEPA's satisfaction that the affected facility is in compliance with the standard; or
 - v. Approves shorter sampling times and smaller sample volumes when necessitated by process variables or other factors. Nothing in this paragraph shall be construed to abrogate the Illinois EPA's or USEPA's authority to require testing under section 114 of the Clean Air Act.
 - c. Pursuant to 40 CFR 60.8(c), performance tests shall be conducted under such conditions as the Illinois EPA or USEPA shall specify to the plant operator based on representative performance of the affected facility. The owner or operator shall make available to the Illinois EPA or USEPA such records as may be necessary to determine the conditions of the performance tests. Operations during periods of startup, shutdown, and malfunction shall not constitute representative conditions for the purpose of a performance test nor shall emissions in excess of the level of the applicable emission limit during periods of startup, shutdown, and malfunction be considered a violation of the applicable emission limit unless otherwise specified in the applicable standard.
 - d. Pursuant to 40 CFR 60.8(e), the owner or operator of an affected facility shall provide, or cause to be provided, performance testing facilities as follows:
 - i. Sampling ports adequate for test methods applicable to such facility. This includes:

- A. Constructing the air pollution control system such that volumetric flow rates and pollutant emission rates can be accurately determined by applicable test 1 methods and procedures; and
- B. Providing a stack or duct free of cyclonic flow during performance tests, as demonstrated by applicable test methods and procedures.
- ii. Safe sampling platform(s).
- iii. Safe access to sampling platform(s).
- iv. Utilities for sampling and testing equipment.
- 13a. Pursuant to 40 CFR 60.463(b), the owner or operator of an affected facility shall conduct an initial performance test as required under 40 CFR 60.8(a) and thereafter a performance test for each calendar month for each affected facility according to the procedures in 40 CFR 60.463.
 - Pursuant to 40 CFR 60.463(c)(1), the owner or operator shall use the following procedures for determining monthly volume-weighted average emissions of VOC's in kg/l of coating solids applied. An owner or operator shall use the following procedures for each affected facility that does not use a capture system and control device to comply with the emission limit specified under 40 CFR 60.462(a)(1). The owner or operator shall determine the composition of the coatings by formulation data supplied by the manufacturer of the coating or by an analysis of each coating, as received, using Method 24. The Illinois EPA or USEPA may require the owner or operator who uses formulation data supplied by the manufacturer of the coatings to determine the VOC content of coatings using Method 24 or an equivalent or alternative method. The owner or operator shall determine the volume of coating and the mass of VOC-solvent added to coatings from company records on a monthly basis. If a common coating distribution system serves more than one affected facility or serves both affected and existing facilities, the owner or operator shall estimate the volume of coating used at each affected facility by using the average dry weight of coating and the surface area coated by each affected and existing facility or by other procedures acceptable to the Illinois EPA or USEPA.
 - i. Calculate the volume-weighted average of the total mass of VOC's consumed per unit volume of coating solids applied during each calendar month for each affected facility, except as provided under 40 CFR 60.463(c)(l)(iv). The weighted average of the total mass of VOC's used per unit volume of coating solids applied each calendar month is determined by the following procedures.

A. Calculate the mass of VOC's used (Mo + Md) during each calendar month for each affected facility by using Equation 1 in 40 CFR 60.463(c)(1)(i)(A).

$$M_o + M_d = \sum_{i=1}^{n} L_{ci} D_{ci} W_{oi} + \sum_{i=1}^{m} L_{di} D_{dj}$$
 Equation 1

 $(SL_{dj}D_{dj} \ will$ be 0 if no VOC solvent is added to the coatings, as received) Where:

n is the number of different coatings used during the calendar month, and

m is the number of different VOC solvents added to coatings used during the calendar month.

B. Calculate the total volume of coating solids used (L_s) in each calendar month for each affected facility by the following equation:

$$I_{s} = \sum_{i=1}^{n} V_{si} I_{ci}$$
 Equation 2

Where:

 $\ensuremath{\mathbf{n}}$ is the number of different coatings used during the calendar month.

C. Calculate the volume-weighted average mass of VOC's used per unit volume of coating solids applied (G) during the calendar month for each affected facility by the following equation:

$$G = \frac{M_o + M_d}{I_{co}}$$
 Equation 3

ii. Calculate the volume-weighted average of VOC emissions to the atmosphere (N) during the calendar month for each affected facility by the following equation:

$$N = G$$
 Equation 4

- iii. Where the volume-weighted average mass of VOC's discharged to the atmosphere per unit volume of coating solids applied (N) is equal to or less than $0.28\ kg/l$, the affected facility is in compliance.
- iv. If each individual coating used by an affected facility has a VOC content, as received, that is equal to or less than 0.28 kg/l of coating solids, the affected facility is in compliance provided

no VOC's are added to the coatings during distribution or application.

- 14a. Pursuant to 40 CFR 60.466(a)(1), the reference methods in appendix A to 40 CFR Part 60, except as provided under 40 CFR 60.8(b), shall be used to determine compliance with 40 CFR 60.462 as follows: Method 24, or data provided by the formulator of the coating, shall be used for determining the VOC content of each coating as applied to the surface of the metal coil. In the event of a dispute, Method 24 shall be the reference method. When VOC content of waterborne coatings, determined by Method 24, is used to determine compliance of affected facilities, the results of the Method 24 analysis shall be adjusted as described in Section 12.6 of Method 24;
 - b. Pursuant to 40 CFR 60.466(b), for Method 24, the coating sample must be at least a 1-liter sample taken at a point where the sample will be representative of the coating as applied to the surface of the metal coil.
- 15a. Pursuant to 35 Ill. Adm. Code 201.282, every emission source or air pollution control equipment shall be subject to the following testing requirements for the purpose of determining the nature and quantities of specified air contaminant emissions and for the purpose of determining ground level and ambient air concentrations of such air contaminants:
 - i. Testing by Owner or Operator. The Illinois EPA may require the owner or operator of the emission source or air pollution control equipment to conduct such tests in accordance with procedures adopted by the Illinois EPA, at such reasonable times as may be specified by the Illinois EPA and at the expense of the owner or operator of the emission source or air pollution control equipment. The Illinois EPA may adopt procedures detailing methods of testing and formats for reporting results of testing. Such procedures and revisions thereto, shall not become effective until filed with the Secretary of State, as required by the APA Act. All such tests shall be made by or under the direction of a person qualified by training and/or experience in the field of air pollution testing. The Illinois EPA shall have the right to observe all aspects of such tests.
 - ii. Testing by the Illinois EPA. The Illinois EPA shall have the right to conduct such tests at any time at its own expense. Upon request of the Illinois EPA, the owner or operator of the emission source or air pollution control equipment shall provide, without charge to the Illinois EPA, necessary holes in stacks or ducts and other safe and proper testing facilities, including scaffolding, but excluding instruments and sensing devices, as may be necessary.

- b. Testing required by Conditions 16 and 17 shall be performed upon a written request from the Illinois EPA by a qualified independent testing service.
- 16. Pursuant to 35 Ill. Adm. Code 212.110(c), upon a written notification by the Illinois EPA, the owner or operator of a particulate matter emission unit subject to 35 Ill. Adm. Code Part 212 shall conduct the applicable testing for particulate matter emissions, opacity, or visible emissions at such person's own expense, to demonstrate compliance. Such test results shall be submitted to the Illinois EPA within thirty (30) days after conducting the test unless an alternative time for submittal is agreed to by the Illinois EPA.
- 17. Pursuant to 35 Ill. Adm. Code 218.211(a), the VOM content of each coating shall be determined by the applicable test methods and procedures specified in 35 Ill. Adm. Code 218.105 to establish the records required under 35 Ill. Adm. Code 218.211.
- 18. Pursuant to 40 CFR 60.464(a), where compliance with the numerical limit specified in 40 CFR 60.462(a)(1) or (2) is achieved through the use of low VOC-content coatings without the use of emission control devices or through the use of higher VOC-content coatings in conjunction with emission control devices, the owner or operator shall compute and record the average VOC content of coatings applied during each calendar month for each affected facility, according to the equations provided in 40 CFR 60.463.
- 19a. Pursuant to 40 CFR 60.7(b), any owner or operator subject to the provisions of 40 CFR-Part-60 shall maintain records of the occurrence and duration of any startup, shutdown, or malfunction in the operation of an affected facility; any malfunction of the air pollution control equipment; or any periods during which a continuous monitoring system or monitoring device is inoperative.
 - b. Pursuant to 40 CFR 60.7(f), any owner or operator subject to the provisions of 40 CFR Part 60 shall maintain a file of all measurements, including continuous monitoring system, monitoring device, and performance testing measurements; all continuous monitoring system performance evaluations; all continuous monitoring system or monitoring device calibration checks; adjustments and maintenance performed on these systems or devices; and all other information required by 40 CFR Part 60 recorded in a permanent form suitable for inspection. The file shall be retained for at least two years following the date of such measurements, maintenance, reports, and records.
- 20. Pursuant to 40 CFR 60.465(e), each owner or operator subject to the provisions of 40 CFR 60 Subpart TT shall maintain at the source, for a period of at least 2 years, records of all data and calculations used to determine monthly VOC emissions from each affected facility and to determine the monthly emission limit, where applicable. Where compliance is achieved through the use of thermal incineration, each owner or operator shall maintain, at the source, daily records of the

-Page 1-2----

incinerator combustion temperature. If catalytic incineration is used, the owner or operator shall maintain at the source daily records of the gas temperature, both upstream and downstream of the incinerator catalyst bed.

- 21. Pursuant to 40 CFR 63.10(b)(3), if an owner or operator determines that his or her stationary source that emits (or has the potential to emit, without considering controls) one or more hazardous air pollutants regulated by any standard established pursuant to Section 112(d) or (f) of the Clean Air Act, and that stationary source is in the source category regulated by the relevant standard, but that source is not subject to the relevant standard (or other requirement established under 40 CFR Part 63) because of limitations on the source's potential to emit or an exclusion, the owner or operator must keep a record of the applicability determination on site at the source for a period of 5 years after the determination, or until the source changes its operations to become an affected source, whichever comes first. The record of the applicability determination must be signed by the person making the determination and include an analysis (or other information) that demonstrates why the owner or operator believes the source is unaffected (e.g., because the source is an area source). (or other information) must be sufficiently detailed to allow the USEPA and/or Illinois EPA to make a finding about the source's applicability status with regard to the relevant standard or other requirement. If relevant, the analysis must be performed in accordance with requirements established in relevant subparts of 40 CFR Part 63 for this purpose for particular categories of stationary sources. relevant, the analysis should be performed in accordance with USEPA quidance materials published to assist sources in making applicability determinations under Section 112 of the Clean Air Act, if any. The requirements to determine applicability of a standard under 40 CFR 63.1(b)(3) and to record the results of that determination under 40 CFR 63.10(b)(3) shall not by themselves create an obligation for the owner or operator to obtain a Title V permit.
- 22a. Pursuant to 35 Ill. Adm. Code 212.110(e), the owner or operator of an emission unit subject to 35 Ill. Adm. Code Part 212 shall retain records of all tests which are performed. These records shall be retained for at least three (3) years after the date a test is performed.
 - b. Pursuant to 35 Ill. Adm. Code 212.324(g)(l), written records of inventory and documentation of inspections, maintenance, and repairs of all air pollution control equipment shall be kept in accordance with 35 Ill. Adm. Code 212.324(f).
 - c. Pursuant to 35 Ill. Adm. Code 212.324(g)(2), the owner or operator shall document any period during which any process emission unit was in operation when the air pollution control equipment was not in operation or was malfunctioning so as to cause an emissions level in excess of the emissions limitation. These records shall include documentation of causes for pollution control equipment not operating or such

Page-13

malfunction and shall state what corrective actions were taken and what repairs were made.

- d. Pursuant to 35 Ill. Adm. Code 212.324(g)(3), a written record of the inventory of all spare parts not readily available from local suppliers shall be kept and updated.
- e. Pursuant to 35 Ill. Adm. Code 212.324(g)(5), the records required under 35 Ill. Adm. Code 212.324 shall be kept and maintained for at least three (3) years and shall be available for inspection and copying by Illinois EPA representatives during working hours.
- 23a. Pursuant to 35 Ill. Adm. Code 218.187(e)(1)(B), the owner or operator of a source exempt from the limitations of 35 Ill. Adm. Code 218.187 because of the criteria in 35 Ill. Adm. Code 218.187(a)(1) shall on and after January 1, 2012, collect and record the following information each month for each cleaning operation, other than cleaning operations identified in 35 Ill. Adm. Code 218.187 (a)(2):
 - i. The name and identification of each VOM-containing cleaning solution as applied in each cleaning operation;
 - ii. The VOM content of each cleaning solution as applied in each cleaning operation;
 - iii. The weight of VOM per volume and the volume of each as-used cleaning solution;
 - iv. The total monthly VOM emissions from cleaning operations at the source;
 - b. Pursuant to 35 Ill. Adm. Code 218.187(e)(10), all records required by this 35 Ill. Adm. Code 218.187(e) shall be retained by the source for at least three years and shall be made available to the Illinois EPA upon request.
 - c. Pursuant to 35 Ill. Adm. Code 218.211(c)(2), any owner or operator of a coating line subject to the limitations of 35 Ill. Adm. Code 218.204 other than 35 Ill. Adm. Code 218.204(a)(l)(B), (a)(l)(C), (a)(2)(B), (a)(2)(C), or (a)(2)(D) and complying by means of 35 Ill. Adm. Code 218.204 shall comply with the following: On and after a date consistent with 35 Ill. Adm. Code 218.106, or on and after the initial start-up date, the owner or operator of a subject coating line shall collect and record all of the following information each day, unless otherwise specified, for each coating line and maintain the information at the source for a period of three years:
 - i. The name and identification number of each coating as applied on each coating line;

- ii. The weight of VOM per volume of each coating (minus water and any compounds which are specifically exempted from the definition of VOM) as applied each day on each coating line;
- 24a. The Permittee shall maintain records of the following items so as to demonstrate compliance with the conditions of this permit:
 - i. Records addressing use of good operating practices for the scrubber and turbo-tunnel enclosure:
 - A. Records for periodic inspection of the scrubber and turbotunnel enclosure with date, individual performing the inspection, and nature of inspection; and
 - B. Records for prompt repair of defects, with identification and description of defect, effect on emissions, date identified, date repaired, and nature of repair.
 - ii. Daily HCl concentration in pickling tanks (wt.%);
 - ii. Daily pickling tank temperature (°F);
 - iii. Daily scrubber make-up water flow (gal/min);
 - iv. Daily pressure drop across the scrubber (in of w.c.);
 - v. Steel process rate (tons/mo, tons/yr);
 - vi. Hydrochloric acid usage (gal/mo, gal/yr);
 - vii. Coating and cleanup solvent usage (tons/month and tons/year);
 - viii. The VOM and HAP content of each coating and cleanup solvent (% by weight);
 - ix. Monthly and annual emissions of PM, VOM and HAP from the steel coil pickling line with supporting calculations (tons/month, tons/year).
 - b. All records and logs required by this permit shall be retained at a readily accessible location at the source for at least five (5) years from the date of entry and shall be made available for inspection and copying by the Illinois EPA or USEPA upon request. Any records retained in an electronic format (e.g., computer storage device) shall be capable of being retrieved and printed on paper during normal source office hours so as to be able to respond to the Illinois EPA or USEPA request for records during the course of a source inspection.
- 25a. Pursuant to 40 CFR 60.7(a), any owner or operator subject to the provisions of 40 CFR Part 60 shall furnish the Illinois EPA or USEPA written notification or, if acceptable to both the Illinois EPA and

Page--15-

USEPA and the owner or operator of a source, electronic notification, as follows:

- i. A notification of the date construction (or reconstruction as defined under 40 CFR 60.15) of an affected facility is commenced postmarked no later than 30 days after such date. This requirement shall not apply in the case of mass-produced facilities which are purchased in completed form.
- ii. A notification of the actual date of initial startup of an affected facility postmarked within 15 days after such date.
- iii. A notification of any physical or operational change to an existing facility which may increase the emission rate of any air pollutant to which a standard applies, unless that change is specifically exempted under an applicable subpart or in 40 CFR 60.14(e). This notice shall be postmarked 60 days or as soon as practicable before the change is commenced and shall include information describing the precise nature of the change, present and proposed emission control systems, productive capacity of the facility before and after the change, and the expected completion date of the change. The Illinois EPA or USEPA may request additional relevant information subsequent to this notice.
- b. Pursuant to 40 CFR 60.465(a), where compliance with the numerical limit specified in 40 CFR 60.462(a) (1), (2), or (4) is achieved through the use of low VOC-content coatings without emission control devices or through the use of higher VOC-content coatings in conjunction with emission control devices, each owner or operator subject to the provisions of 40 CFR 60 Subpart TT shall include in the initial compliance report required by 40 CFR 60.8 the weighted average of the VOC content of coatings used during a period of one calendar month for each affected facility. Where compliance with 40 CFR 60.462(a)(4) is achieved through the intermittent use of a control device, reports shall include separate values of the weighted average VOC content of coatings used with and without the control device in operation.
- c. Pursuant to 40 CFR 60.465(c), following the initial performance test, the owner or operator of an affected facility shall identify, record, and submit a written report to the Illinois EPA or USEPA every calendar quarter of each instance in which the volume-weighted average of the local mass of VOC's emitted to the atmosphere per volume of applied coating solids (N) is greater than the limit specified under 40 CFR 60.462. If no such instances have occurred during a particular quarter, a report stating this shall be submitted to the Illinois EPA or USEPA semiannually.
- 26a. Pursuant to 35 Ill. Adm. Code 212.110(d), a person planning to conduct testing for particulate matter emissions to demonstrate compliance shall give written notice to the Illinois EPA of that intent. Such notification shall be given at least thirty (30) days prior to the initiation of the test unless a shorter period is agreed to by the

Illinois EPA. Such notification shall state the specific test methods from 35 Ill. Adm. Code 212.110 that will be used.

- b. Pursuant to 35 Ill. Adm. Code 212.324(g)(4), copies of all records required by 35 Ill. Adm. Code 212.324 shall be submitted to the Illinois EPA within ten (10) working days after a written request by the Illinois EPA.
- 27a. Pursuant to 35 Ill. Adm. Code 218.187(e)(1)(C), the owner or operator of a source exempt from the limitations of 35 Ill. Adm. Code 218.187 because of the criteria in 35 Ill. Adm. Code 218.187(a)(1) shall comply with the following: Notify the Illinois EPA of any record that shows that the combined emissions of VOM from cleaning operations at the source, other than cleaning operations identified in 35 Ill. Adm. Code 218.187(a)(2), ever equal or exceed 226.8 kg/month (500 lbs/month), in the absence of air pollution control equipment, within 30 days after the event occurs.
 - b. Pursuant to 35 Ill. Adm. Code 218.211(c), any owner or operator of a coating line subject to the limitations of 35 Ill. Adm. Code 218.204 other than 35 Ill. Adm. Code 218.204(a)(1)(B), (a)(1)(C), (a)(2)(B), (a)(2)(C), or (a)(2)(D) and complying by means of 35 Ill. Adm. Code 218.204 shall comply with the following:
 - i. By a date consistent with 35 Ill. Adm. Code 218.106, or upon initial start-up of a new coating line, or upon changing the method of compliance from an existing subject coating line from 35 Ill. Adm. Code 218.205, 35 Ill. Adm. Code 218.207, 35 Ill. Adm. Code 218.215, or 35 Ill. Adm. Code 218.216 to 35 Ill. Adm. Code 218.204; the owner or operator of a subject coating line shall certify to the Illinois EPA that the coating line will be in compliance with 35 Ill. Adm. Code 218.204 on and after a date consistent with 35 Ill. Adm. Code 218.204, or on and after the initial start-up date. The certification shall include:
 - A. The name and identification number of each coating as applied on each coating line;
 - B. The weight of VOM per volume of each coating (minus water and any compounds which are specifically exempted from the definition of VOM) as applied each day on each coating line;
 - ii. On and after a date consistent with 35 Ill. Adm. Code 218.106, the owner or operator of a subject coating line shall notify the Illinois EPA in the following instances:
 - A. Any record showing violation of 35 Ill. Adm. Code 218.204 shall be reported by sending a copy of such record to the Illinois EPA within 30 days following the occurance of the violation.

- At least 30 calendar days before changing the method of . compliance from 35 Ill. Adm. Code 218.204 to 35 Ill. Adm. Code 218.205 or 35 Ill. Adm. Code 218.207, the owner or operator shall comply with all requirements of 35 Ill. Adm. Code 218.211(d)(1) or (e)(1), as applicable. Upon changing the method of compliance from 35 Ill. Adm. Code 218.204 to 35 Ill. Adm. Code 218.205 or 35 Ill. Adm. Code 218.207, the owner or operator shall comply with all requirements of 35 Ill. Adm. Code 218.211(d) or (e), as applicable.
- If there is an exceedance of or a deviation from the requirements of this permit as determined by the records required by this permit, the Permittee shall submit a report to the Illinois EPA's Compliance Section in Springfield, Illinois within 30 days after the exceedance or deviation. The report shall include the emissions released in accordance with the recordkeeping requirements, a copy of the relevant records, and a description of the exceedances or deviation and efforts to reduce emissions and future occurrences.
 - Two (2) copies of required reports and notifications shall be sent to:

Illinois Environmental Protection Illinois EPA Division of Air Pollution Control Compliance and Enforcement Section (#40) P.O. Box 19276 Springfield, IL 62794-9276

and one (1) copy shall be sent to the Illinois EPA's regional office at the following address unless otherwise indicated:

Illinois Environmental Protection Illinois EPA Division of Air Pollution Control - Regional Office 9511 West Harrison Des Plaines, Illinois 60016

If you have any questions on this permit, please contact Valeriy Brodsky at 1/785-1/05.

Idin C. Salrondi

Ens

Date Signed: 4/26/2017 217/785-1705.

Edwin C. Bakowski, P.E.

Manager, Permit Section

Division of Air Pollution Control

ECB: VJB: jws

Region 1 cc:

ENVIRONMENTAL PROTECTION AGENCY DIVISION OF AIR POLLUTION CONTROL P. O. BOX 19506 SPRINGFIELD, ILLINOIS 62794-9506

STANDARD CONDITIONS FOR CONSTRUCTION/DEVELOPMENT PERMITS ISSUED BY THE ILLINOIS ENVIRONMENTAL PROTECTION AGENCY

July 1, 1985

The Illinois Environmental Protection Act (Illinois Revised Statutes, Chapter 111-1/2, Section 1039) authorizes the Environmental Protection Agency to impose conditions on permits which it issues.

The following conditions are applicable unless suspenseded by special condition(s).

- 1. Unless this permit has been extended or it has been voided by a newly issued permit, this permit will expire one year from the date of issuance, unless a continuous program of construction or development on this project has started by such time.
- 2. The construction or development covered by this permit shall be done in compliance with applicable provisions of the Illinois Environmental Protection Act and Regulations adopted by the Illinois Pollution Control Board.
- 3. There shall be no deviations from the approved plans and specifications unless a written request for modification, along with plans and specifications as required, shall have been submitted to the Agency and a supplemental written permit issued.
- 4. The permittee shall allow any duly authorized agent of the Agency upon the presentation of credentials, at reasonable times:
 - a. to enter the permittee's property where actual or potential effluent, emission or noise sources are located or where any activity is to be conducted pursuant to this permit,
 - to have access to and to copy any records required to be kept under the terms and conditions of this permit,
 - c. to inspect, including during any hours of operation of equipment constructed or operated under this permit, such equipment and any equipment required to be kept, used, operated, calibrated and maintained under this permit,
 - d. to obtain and remove samples of any discharge or emissions of pollutants, and
 - e. to enter and utilize any photographic, recording, testing, monitoring or other equipment for the purpose of preserving, testing, monitoring, or recording any activity, discharge, or emission authorized by this permit.

The issuance of this permit:

- a. shall not be considered as in any manner affecting the title of the premises upon which the permitted facilities are to be located,
- b. does not release the permittee from any liability for damage to person or property caused by or resulting from the construction, maintenance, or operation of the proposed facilities,
- c. does not release the permittee from compliance with other applicable statutes and regulations of the United States, of the State of Illinois, or with applicable local laws, ordinances and regulations,
- d. does not take into consideration or attest to the structural stability of any units or parts of the project, and

O ACC DOW F/DD

Printed on Recycled Paper

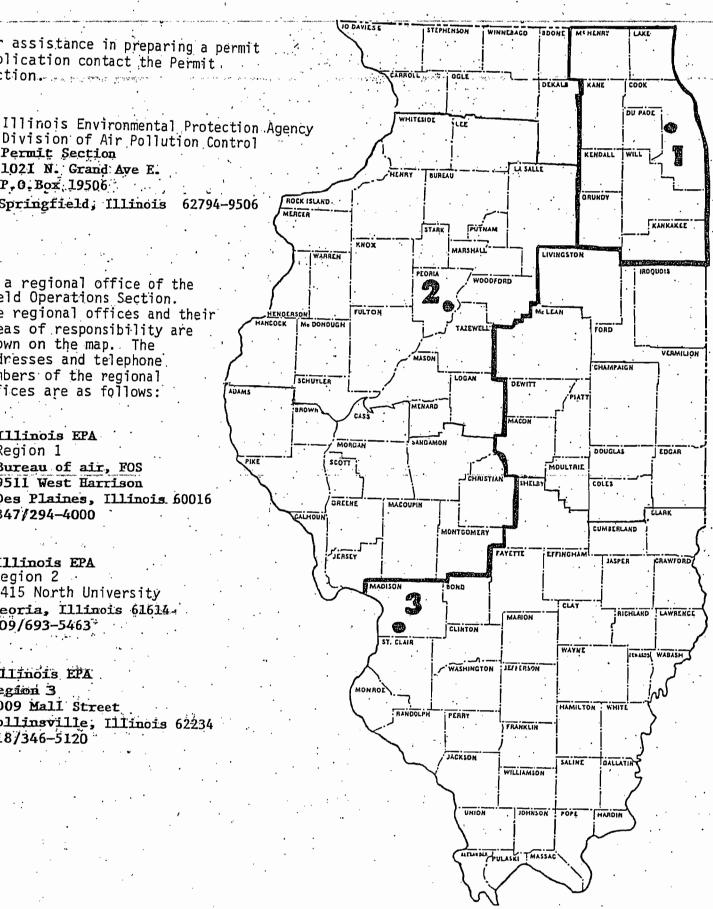
090-005

- e. in no manner implies or suggests that the Agency (or its officers, agents or employees) assumes any liability, directly or indirectly, for any loss due to damage, installation, maintenance, or operation of the proposed equipment or facility.
- 6. a. Unless a joint construction/operation permit has been issued, a permit for operation shall be obtained from the Agency before the equipment covered by this permit is placed into operation.
 - b. For purposes of shakedown and testing, unless otherwise specified by a special permit condition, the equipment covered under this permit may be operated for a period not to exceed thirty (30) days.
- 7. The Agency may file a complaint with the Board for modification, suspension or revocation of a permit:
 - a. upon discovery that the permit application contained misrepresentations, misinformation or false statements or that all relevant facts were not disclosed, or
 - b. upon finding that any standard or special conditions have been violated, or
 - c. upon any violations of the Environmental Protection Act or any regulation effective thereunder as a result of the construction or development authorized by this permit.

DIRECTORY ENVIRONMENTAL PROTECTION AGENCY BUREAU OF AIR

For assistance in preparing a permit application contact the Permit Section - A programme grammer .

Division of Air Pollution Control Permit Section 1021 N. Grand Ave E. P.O. Box 19506


Springfield; Illinois 62794-9506

or a regional office of the Field Operations Section. The regional offices and their areas of responsibility are shown on the map. The addresses and telephone numbers of the regional offices are as follows:

Illinois EPA Region 1 Bureau of air, FOS 9511 West Harrison Des Plaines, Illinois 60016 847/294-4000

Illinois EPA Region 2 5415 North University Peoria, Illinois 61614 309/69**3**-5463

Illinois EPA Region 3 2009 Mall Street Collinsville, Illinois 62234 618/346-5120

