REMEDIAL INVESTIGATION REPORT - PHASE I FOR THE FORMER GRIESS-PFLEGER TANNERY SITE WAUKEGAN, ILLINOIS

VOLUME 1 OF 3

RECEIVED /

APR 04 1994 IEPA/DLPC

PREPARED FOR COMMONWEALTH EDISON COMPANY

PREPARED BY

METCALF & EDDY, INC ONE PIERCE PLACE, SUITE 1500 W ITASCA, ILLINOIS

MARCH 1994

TVNIELEO

MWG13-15_47077

TABLE OF CONTENTS

			Page
XECUTI	VE SUMMARY		ES-1
ECTION	1.0 INTRODUCTION		. 1-1
1.1	1 PURPOSE AND SCOPE OF REMEDIAL INVESTIGATION		. 1-1
	2 REPORT ORGANIZATION		
ECTION	A A CITE PACKEDOLING		2.1
	2.0 SITE BACKGROUND		
	1 SITE DESCRIPTION		
2.2	2 SITE HISTORY	• •	. 2-1
ECTION	3.0 ENVIRONMENTAL SETTING		. 3-1
3.1	LAND USE AND SURROUNDING POPULATION		. 3-1
	2 CLIMATOLOGY		
	3 SURFACE WATERS		
	4 SOILS		
	5 TOPOGRAPHY AND DRAINAGE		
	6 REGIONAL GEOLOGY		
	7 REGIONAL HYDROGEOLOGY		
	B GROUNDWATER USE IN THE AREA		
3.0	O SHOUNDITATER USE IN THE AREA	• •	
ECTION	4.0 ENVIRONMENTAL INVESTIGATIONS		. 4-1
4.1	1 GEOLOGIC/HYDROGEOLOGIC INVESTIGATIONS		. 4-1
4.2	2 MAGNETOMETER SURVEY		. 4-1
	4.2.1 Purpose		. 4-1
	4.2.2 Location		
	4.2.3 Survey Methodology		
4.5	3 ENVIRONMENTAL SAMPLING PROCEDURE		
	4.3.1 Sediment and Production Waste Sampling		
	4.3.1.1 Purpose		
	4.3.1.3 Sampling Methods and Equipment		
	A D A A Coult - A coult Good contain Marks Coulter	• •	
	Control Samples		. 4-4
	4.3.2 Surface and Subsurface Soil Sampling		. 4-4
	4.3.2.1 Purpose		
	4.3.2.2 Locations and Rationale		
	4.3.2.3 Surface and Subsurface Soil Sampling Method		
	and Equipment		. 4-5
	4.3.2.4 Surface and Subsurface Soil Quality Control		. + •
	Samples		4.8
	1	• •	
	i		
		. 31	308
		15	4
. 1 10		99	11
• _ •		稅飲	Z
*,	ないはAPP、10. スキリン、7名が20.80では、4121、7. なら時間では1.211と、25度が3度が497であるは30倍級機能を受ける場合	1.00	Contract Library

TABLE OF CONTENTS (Continued)

A	MONITORING WELL INSTALLATION/CLOSURE
~	4.4.1 Purpose
	4.4.1.1 Locations and Rationale
	4.4.2 Drilling Method
	4.4.2.1 Monitoring Well Installation
	4.4.2.2 Monitoring Well Closure
	4.4.3 Monitoring Well Borehole Soil Sampling 4-1
	4.4.4 Monitoring Well Borehole Soil Quality Control Samples 4-t
	4.4.5 Geotechnical Analysis
	4.4.6 Monitoring Well Installation/Construction Details 4-9
	4.4.7 Well Development Procedures 4-1
	4.4.8 In-Situ Hydraulic Testing
	4.4.9 Static Water Level Measurements
	4.4.10 Groundwater and Cistern (Surface Water) Sampling 4-12
	4.4.10.1 Purpose
	4.4.10.2 Locations
	4.4.10.3 Sampling Methods and Equipment 4-1;
	4.4.10.4 Groundwater and Cistern (Surface Water)
	Quality Control Samples
	4.4.11 Decontamination Procedures 4-1;
	4.4.12 Fate of Drummed Material
4.9	SURVEYING METHODOLOGY
4.0	5 SAMPLE PACKAGING AND SHIPMENT 4-1
SECTION	5.0 RESULTS AND DISCUSSION OF ENVIRONMENTAL
	INVESTIGATION 5-1
5.1	• • • • • • • • • • • • • • • • • • • •
5.3	2 SITE HYDROGEOLOGY 5-1
	6.0 NATURE AND EXTENT OF ENVIRONMENTAL IMPACT 6-1
6.	
	6.1.1 Monitoring Well and Cistern Sampling Results 6-
	6.1.1.1 Volatile Organic Compounds 6-2
	6.1.1.2 Base Neutral and Acid Extractable Organics 6-2
	6.1.1.3 Pesticides/PCBs 6-2
	6.1.1.4 Inorganics
B.2	2 AREA
	6.2.1 Volatile Organic Compounds
	6.2.2 Base-Neutral/Acid Extractables
	6.2.3 Pesticides/PCBs
	6.2.4 Inorganics
	No. of the second secon
-4	

	TABLE OF	CONTENTS (Continued)	
					Page
6.3 6.3	A II	ic Compounds Acid Extractable			6-6 6-7
6.3 6.4 ARE	3.3 Pesticides/PCE 3.4 Inorganics A III				6-8
6.4 6.4 6.4	I.1 Volatile OrganiI.2 Base-Neutral/AI.3 Pesticides/PCEI.4 Inorganics	cid Extractables	8 s		6-10 6-11
6.5 PRO	DUCTION WASTE	TCLP SAMPLE	S		6-12
7.1 SUN 7.2 REC	SUMMARY, CONC IMARY AND CONC OMMENDATIONS	CLUSIONS			7-1
SECTION 8.0 F	REFERENCES		• • • • • •		8-1
<u></u>					
-				1	
· ·					
`	*				
_					
		444			

LIST OF APPENDICES

VOLUME 1 APPENDICES

APPENDIX A Well Log Inventory

APPENDIX B Lake County Health Department Monitoring Well

Abandonment Forms

APPENDIX C Monitoring Well Construction/Geologic Logs

APPENDIX D Geotechnical Analytical Data

APPENDIX E Field Parameter Data

APPENDIX F Bouwer and Rice Hydraulic Conductivity Test Data

APPENDIX G Monitoring Well Static Water Level Measurements

APPENDIX H Analytical Data - Potable Water Supply Source, City of

Waukegan

APPENDIX I Laboratory Analytical Data (Tables 6-1, 6-2, 6-3, 6-4, and 6-5)

- Groundwater, Cistern (Surface Water), Sediment, Surface Soil,

Subsurface Soil Samples, and Monitoring Well Boring Soil

Samples

VOLUME 2 APPENDICES - Laboratory Analytical Data

VOLUME 3 APPENDICES - Laboratory Analytical Data

TABLE	PAGE
4-2 Soil Borings	Analysis per Media
4-3 Geotechnica	el Analysis Data 4-10
·	
•	
;	
-	
•	

LIST OF FIGURES **FIGURE** 2-1 Site Location Map 2-2 Aerial Photograph, 1939 2-3 Aerial Photograph, 1959 2-4 Aerial Photograph, 1964 2-5 Aerial Photograph, 1970 3-1 Site Location Map 3-2 Lake County Wetland Map 3-3 **Lake County Wetland Map** 3-4 General Soil Map 3-5 Soil Type Map 3-6 Soil Type Map 3-7 **Well Location Map** 4-1 Magnetometry Survey Grid Location, Area IV 4-2 **Magnetometry Survey Findings** Sediment Sample Locations 4-3 **Production Waste Sample Locations** 4-5 Soil Boring Location Map Monitoring Well, Cistern, and Abandoned Monitoring Well Location Map 4-6 5-1 North - South Geologic Cross Section 5-2 West - East Geologic Cross Section 5-3 Groundwater Contour Map, May 24, 1993 5-4 Groundwater Contour Map, June 4, 1993 6-1 Former Site Divisions (Before Investigation) 6-2 New Site Divisions (After Investigation) 6-3 **Surficial Total PNA Concentrations** 6-4 Subsurficial Total PNA Concentrations Surficial Pesticides (Total) Concentrations 6-5 Subsurficial Pesticides (Total) Concentrations 6-7 Surficial Total PCB Concentrations 6-8 Subsurficial Total PCB Concentrations Surficial Lead (Pb) Concentrations 6-10 Surficial Chromium (Cr) Concentrations 6-11 Subsurficial Chromium (Cr) Concentrations

EXECUTIVE SUMMARY

The former Griess-Pfleger Tannery is located on the northeast corner of Sand (Pershing) and Dahringer Road. The property is approximately 38 acres and is bordered by Dahringer Road to the south, Elgin Joliet and Eastern Railroad on the east, a spur of the Chicago Northwestern railroad which conjoins with the Elgin Joliet and Eastern Railroad to the north, and Sand (Pershing) Road to the west. The property is currently owned by Commonwealth Edison Company.

The former Griess-Pfleger Tannery was established in 1917 and operated as a leather tanning facility until 1973. As evidenced from past analytical data, chrome tanning processes are believed to have been utilized. Chrome tanning, as generally practiced, consisted of nine basic steps and utilized a number of chemicals in the tanning process. The tanning process produced waste by-products in the form of gaseous reaction products, wastewater, wastewater sludge, and solid waste.

In January 1989, the U.S. Environmental Protection Agency's Field Investigation Team (FIT) performed a preliminary site investigation. Laboratory analyses indicated elevated levels of chromium and lead in the soil.

In June 1992, Commonwealth Edison contracted Metcalf & Eddy, Inc. to conduct a Remedial Investigation. The Remedial Investigation conducted at the former tannery was performed voluntarily in cooperation with the Illinois Environmental Protection Agency.

The primary objective of the Remedial Investigation was to characterize the potential environmental and health concerns at the site. The specific objectives included:

- Characterize the nature and extent of the environmental impact at the site with various media: surface water (clatern), groundwater, surface soil, subsurface soil, sediment, and production waste.
- Determine the serial and vertical extent of the impacted areas.
- Supply data that will support a preliminary risk assessment and feasibility study.

Geologic, Hydrogeologic, and Geotechnical Characterization

To accomplish the above mentioned objectives, Metcalf & Eddy, Inc. performed various field activities in May and June 1993. These activities included collecting: eleven sediment samples, sixty-eight soil samples (forty-three subsurficial, fifteen surficial, and ten monitoring well soil boring samples), two geotechnical samples, nine

- Based on the results of the site investigation, geology at the site consists of very dark grey-brown to black silty sand to sand. The sand particles ranged in size from very fine to coarse. Trace materials such as animal hair, peat, roots, and wood were also present in the subsurface soil.
- The geotechnical data indicated that the material was non-plastic and consisted predominantly of sand (58% 81%).
- Groundwater at the former tannery is assumed to be under unconfined conditions. Saturated soil was typically found approximately four to seven feet below grade. Under static water conditions the groundwater flow direction is east to southeast. Hydraulic conductivity tests conducted at the site ranged from 2.55 x 10⁻³ cm/sec to 8.459 x 10⁻³ cm/sec. The hydraulic gradient at this site was calculated as 1.4 x 10⁻³ feet per foot, a relatively flat gradient.
- The regional geology of the area in northern Illinois is underlain by glacial drift deposits. The glacial drift is made up of glacial till, sands and gravels, and fine sediments. Beneath the glacial till are bedrock formations consisting of sandstones, shales, and dolomites.
- Groundwater is available from four main aquifer systems in the Chicago area:
 (1) the sand and gravel deposits of the glacial drift;
 (2) the shallow Silurian dolomites;
 (3) the Cambrian-Ordovician sandstones;
 and (4) the Cambrian Mt. Simon Sandstones and Eau Clair Formation.

Analytical Characterization

0

0

The soli and sediment samples were collected and analyzed for Target Compound List (TCL) volatile and semi-volatile organic compounds, TCL pesticides/PCBs, and Target Analyte List (TAL) inorganic compounds. The production waste samples were analyzed for TCL volatile and semi-volatile organic compounds, TCL pesticides/PCBs, Target Analyte List (TAL), and Toxicity Characteristic Leaching Procedure (TCLP) Compounds. The groundwater and cistern water samples were collected for the TCL volatile and semi-volatile organic compounds, TCL pesticides/PCBs, and TAL inorganic analytes in addition to Total Dissolved Solids (TDS). Results of sampling and analysis are summarized as follows:

 The recent Remediai Investigation performed by Metcalf & Eddy, Inc. has confirmed the January 1989 FIT investigation where elevated levels of chromium and lead were detected in the soil. Base Neutral/Acid Extractable (BNA) compounds, consisting mostly of polynuclear aromatic hydrocarbons (PNAs), were detected sporadically throughout the site. These compounds were also present in background soil samples.

è

- In general, the trend of detected laboratory constituents tended to decrease with increasing depth throughout the soil strate; with the exception of PNAs, which either increased slightly or remained the same.
- Production Waste samples were collected to determine if any of the analytes exceeded the TCLP Regulatory Limits found in 40 CFR 261.24. Three of the samples exceeded the TCLP Regulatory Limits, two for chromium and one for lead.
- Groundwater samples were collected from all seven groundwater monitoring wells. The laboratory analyses indicated that the BNAs, pesticides/PCBs, and volatile organic compounds were not detected in any of the groundwater samples collected.
- Inorganic analytes, arsenic and lead, were detected in one monitoring well above the Illinois Class I Standards (IAC Title 35, Subpart D, Section 620.410(a) of 50 micrograms per liter (ug/I) and 7.5 ug/I, respectively.
- Other inorganic compounds, iron and manganese, were detected above the Illinois Class I Standards, 5,000 ug/l and 150 ug/l, respectively. Analytical results for the background sample indicated levels which exceeded the Illinois Class I Standard. Both iron and manganese are naturally occurring.
- Total Dissolved Solids were detected above the Illinois Class I Standard, 1,200 mg/l, in all seven monitoring wells. These levels are naturally occurring.

SECTION 1.0 INTRODUCTION

1.1 PURPOSE AND SCOPE OF REMEDIAL INVESTIGATION

The Field Sampling Plan (FSP) provided the rationals, location, and methods for data collection during the Remedial Investigation (RI) at the Former Griess-Pfleger Tannery Site (Former Tannery Site). The scope and contents of this plan are in accordance with the Illinois Hazardous Substances Poliution Contingency Plan, 35 Illinois Administrative Code 750, as amended, and the National Contingency Plan, 40 CFR, Part 300.

The objective of the FSP was to have a document which contained site-specific detail on the number, location, methods of collection, and processing of samples collected during the RI. The FSP was sufficient enough in detail to be taken to the field and followed for all aspects of data collection during the investigation. A Site Health and Safety Plan was prepared as part of the FSP.

Specific tasks that were conducted during the RI Site Investigation have been divided into subtasks. If additional data needs were identified during the first phase of the RI, appropriate changes were made in accordance with discussions between Commonwealth Edison, the Illinois Environmental Protection Agency (IEPA), and Metcalf & Eddy, Inc. (M&E) (e.g. monitoring well abandonment, additional production waste sampling, inability to obtain a cistern sediment sample). A summary of these subtasks is provided below.

Subtask 3.1:

Magnetometry Survey - A magnetometry survey was conducted prior to initiating other intrusive sampling activities in an effort to locate burled drums. The survey was focused on Area IV, the Production Waste Disposal Area. The goal of the survey was to determine the location and the depth of drum deposition. The result of this investigation was used to identify subsequent soil sampling locations (i.e. to avoid puncturing of drums).

Subtask 3.2:

Monitoring Well Installation/Closing - Seven ground-water monitoring wells were installed to assess the on-site and off-site water quality. Six shallow monitoring wells were installed on site and one monitoring well was installed off-site, north of the site, to assess upgradient groundwater quality. Each monitoring well was acreened to intersect the top of the groundwater table. Insitu hydraulic conductivity testing was conducted on each well. Static water level measurements were also collected.

One monitoring well located in Area V was found abandoned in place. This well had not been installed by M&E. The well was removed because its integrity and construction were unknown.

Subtask 3.3:

6

5

Sampling and Analysis - One round of surface soil, subsurface soil, groundwater, cistern (surface water), sediment, and production waste samples were collected and analyzed. Media samples collected during the RI were analyzed for the following parameters: Soil and sediment samples were analyzed for Target Compound List (TCL) volatile organic compounds (VOCs), semivolatile organic compounds (SVOCs), and pesticides/PCBs in addition to Target Analyte List (TAL) Inorganic compounds; production waste samples were analyzed for TCL VOCs, SVOCs, and pesticides/PCBs, TAL Inorganic Compounds, and Toxicity Characteristic Leaching Procedure (TCLP) parameters; cistern and groundwater samples were analyzed for TCL VOCs, SVOCs, and pesticides/PCBs; TAL Inorganic Compounds; and total dissolved soilds (TDS).

1.2 REPORT ORGANIZATION

The RI report is divided into seven sections. The suggested RI Report format, as presented in the U.S. EPA RI/FS guidance document (U.S. EPA, 1988), was used in outlining the report as follows:

Section 1.0, Introduction: Provides a brief overview describing the site activities and work objectives.

Section 2.0, Site Background: Provides a detailed site history and background. Site background includes site description, site history, and a summary of previous investigations.

Section 3.0, Environmental Setting: Provides information regarding land use and surrounding population, climatology, surface waters, soils, topography, regional geology and stratigraphy, regional hydrogeology, and regional groundwater use.

Section 4.0, Environmental Investigations: Details the methods and techniques of the environmental investigation. Monitoring well and soil boring advancement techniques, groundwater, soil, sediment, and cistern sampling methods, and decontamination procedures are explained.

Section 5.0, Results and Discussion of Environmental Investigations: Site specific geology and hydrogeology are detailed.

Section 6.0, Nature and Extent of Environmental Impact: Describes the nature, extent, and magnitude, of environmental impact to the soil and groundwater.

Section 7.0, Summary, Conclusions, and Recommendations: Summarizes the findings and presents recommendations.

Section 8.0, References

SECTION 2.0 SITE BACKGROUND

2.1 SITE DESCRIPTION

On October 15, 1973, Commonwealth Edison Company (CECo) purchased the 38-acre site from Beggs & Cobbs, Inc. of Boston, Massachusetts. This property is located adjacent to CECo's 240-acre Power Generation facility. The former tannery is located at the northeast corner of Sand (Pershing) and Dahringer Road in Lake County, Waukegan, Illinois. More specifically, the site is located in the northwest quarter of the southwest quarter of Section 15, Township 45 North, Range 12 East of the Third Principal Meridian in Lake County. Refer to Figure 2-1 for the site location.

2.2 SITE HISTORY

9

The Griess-Pfleger Tannery was built in 1917 and operated as a leather tanning facility from 1918 through 1973. Aerial photographs, Figures 2-2, 2-3, 2-4, and 2-5, illustrate the progression of the former tanning facility during the years 1939, 1959, 1964, and 1970, respectively. Shortly after the facility closed, a lacquer dust fire, which occurred on November 16, 1973, gutted several of the main structures. This fire was the last of several which had occurred throughout the tanning facility's operational history.

According to the Tannery Council of America, two tanning methods exist: chrome tanning and vegetable tanning. Past analytical data suggest that chromium tanning processes were utilized by the Griess-Pfleger Tannery. Chrome tanning consists of nine steps. Chemicals involved in the tannery process include: sodium sulfate, lime, diethylamine, sulfhydrate, cyanide salts, enzymes, ammonium sulfate or ammonium hydrate, sulfuric acid, sodium chloride, chrome liquor, sodium thiosulfate, and borax. The tanning process produced wastes from these chemicals in the form of gaseous reaction products, wastewater, sludge, and solid wastes.

In addition to impacts attributed to the tannery process, it is believed that a portion of the site may have been used as a dump site by third parties.

On December 2, 1988, Commonwealth Edison received notification from Ecology and Environment, a Field Investigation Team (FIT) contractor for the U.S. EPA, that the former tannery site was being considered as a candidate for placement on the National Priorities List (NPL). Subsequently, a preliminary site investigation was conducted on January 5, 1989 by FIT. Analytical data from the FIT investigation indicated elevated levels of chromium and lead in soil.

SECTION 3.0 ENVIRONMENTAL SETTING

3.1 LAND USE AND SURROUNDING POPULATION

Waukegan has a population of 69,392 (1990 U.S. Census) and is located along the densely populated Lake Michigan shoreline. The City of Waukegan has a large industrial base, predominantly situated along Lake Michigan. Residential and commercial areas are principally located in areas away from the lake. The former tannery's eastern boundary is immediately bordered by the Elgin Jollet and Eastern Railroad (EJ&E R.R.). The North Shore Sanitary Plant, Waukegan District, is located just east of the EJ&E R.R., and Lake Michigan is located approximately 0.75 miles east of the site. The CECo Power Generation Station is located to the northeast. To the north are several industrial buildings. The Illinois Beach State Park is located approximately one mile north of the former tennery. Dead Lake and Dead River are located within the Illinois State Beach Park. To the west are Sand Road (Pershing), Chicago and Northwestern Railroad (CNW R.R.), Amstuz Expressway, and various residential and commercial properties, respectively. The property's southern boundary is immediately bordered by Dahringer Road and various vacant and occupied industrial/commercial properties. Figure 3-1 illustrates the site location in relation to some of its boundaries.

3.2 CLIMATOLOGY

Ĺ

ľ

The site area is located in the temperate zone of the United States and has a great seasonal fluctuation in temperature. July and August are the warmest months of the year with mean daily temperatures of approximately 71°F. January is the coldest month with a mean daily temperature of approximately 20°F. Precipitation in the area averages 34.2 inches per year with snow prevalent from November to March. Annual evapotranspiration is approximately 25 inches (Sheaffer and Zeizel, 1966).

3.3 SURFACE WATERS

The major surface water bodies in the area of the site are Lake Michigan, Dead Lake, and Dead River. Several wetlands are also located in the vicinity of the former tanning facility.

Lake Michigan, located approximately 0.75 miles east of the site, is the potable water source for the City of Waukegan. The depth of Lake Michigan varies from approximately 12 to 25 feet within 1.5 miles of the shore. Lake Michigan's depth greatly increases farther from shore. The city's four water intakes are located in Lake Michigan approximately one mile south of the site and one mile into Lake Michigan. The intakes connect to an aqueduct which extend to a municipal pumping station located approximately one mile south of the former tannery site. Recreationally, Lake

Michigan is used for a wide variety of purposes and by a great number of people. The lake also provides habitat for numerous fish and animals.

Dead Lake and Dead River are both located north of the site. Dead River is situated within the boundaries of Illinois Beach State Park. Much of the park area is comprised of watlands which are indigenous to the area. Dead Lake is located just west of the park border and is within a wetland area. The lake and river are used recreationally and provide habitat for a wide variety of flora and fauna. Also located in the state park are smaller lakes that are part of the wetland area.

According to the Lake County "Swampbuster Wetland Inventory (1990)", wetlands (including artificial wetlands - AW) are prevalent within and adjacent to the property boundaries. A wetland is an area with a high potential for exhibiting hydric soil with hydrophyllic vegetation. Figures 3-2 and 3-3 illustrate the noted Lake County wetlands.

3.4 SOILS

C:

0

The general area where the site is located was constructed through lakefill deposition. The lakefill deposition sediments are categorized into two general soil associations: the Marsh-Fox-Boyer and the Zurich-Grays-Wauconda. According to the general soil map of Lake County, illinois, the site is located in the Marsh-Fox-Boyer association. This soil can be described as having wet, marshy areas with level to roiling, well drained to moderately well drained soils that are moderately deep over sand and gravel and have rapid to moderate permeability. The area located west of the former tannery is known as the Zurich-Grays-Wauconda association. This association is known to have nearly level to moderately steep, well-drained to somewhat poorly drained deep soils that have moderate permeability (U.S.D.A, 1969). Figure 3-4 illustrates the general soil map for the former tanning facility and surrounding areas.

More specifically, the site and immediate surrounding areas are comprised of madeland (ML) soils. Figures 3-5 and 3-6 illustrate the soil type of the site and surrounding areas. Made-land soils have been removed or extensively reworked and are not classified as native soils. Since made-land soils can be formed in any location or under any condition, there are no typical properties of the made-land "soils". The soil material found at the site is generally silty sand to sand consisting predominantly of fine sands. A very thin layer of organic matter overlying peat and tannery wastes has been discovered in some on-site areas. Along the on-site former wastewater ponds, the sands of the unsaturated zone are overlain by a layer of clayey silt.

The areas adjacent to the site are comprised of made-lands and sands. The soils in Illinois Beach State Park have been classified as beach sands and Plainfield sands. As sands, these soils are extremely well-drained and do not retain much moisture. The Plainfield sands typically show an increase in calcium carbonate at depths of 2 to 3

feet. In the upland areas west of the site, the soil is dominated by sandy and silty calcareous loams.

3.5 TOPOGRAPHY AND DRAINAGE

The regional topography is relatively flat with glacial moraines and man-made features providing the only relief in the area. Elevation in the site area ranges from Lake Michigan level (approximately 580 feet above mean sea level (MSL)) to approximately 660 feet above MSL in the City of Waukegan (the neighborhoods are built on moraines). Site elevation varies only slightly and is approximately 590 feet above MSL.

The regional topography of the site area was formed by Wisconsin Age glaciation. During the Woodford stage of Wisconsin glaciation, Glacial Lake Chicago was formed. Lake Chicago covered most of the area of present-day Waukegan and several adjacent communities. Shallow and deep water deposits from Lake Chicago formed the unconsolidated materials in the areas directly north and west of the site. Glacial lake bed deposits (the lake plain) and remnants of a moraine constitute other definable Quaternary deposit features in the area of the site.

The site was not created through glacial deposition, but constructed as lakefill. The site and some areas south of the site were formed by engineered lakefill and were developed as industrial land immediately after the deposition of the fill materials. Typically, these lakefill areas are relatively flat.

The site and the surrounding areas are within the drainage basin of Lake Michigan. Surface waters exiting the site would eventually enter the lake. However, since the site is a lakefill without a cap and is essentially flat and grass covered, rain water would likely infiltrate into the sandy soils at the site and would not leave the site as runoff.

Dead River, Dead Lake, and the wetlands including the areas of Illinois Beach State Park act as a drainage area for areas north of the site. Man-made barriers (buildings, roads, etc.) prevent site surface water runoff from being carried to these areas.

3.6 REGIONAL GEOLOGY

The site area is composed of Wisconsin glaciation features. Glacial Lake Chicago covered the immediate area of the site. Surficial glacial materials in the site area were deposited by still-water deposition and by glacial movement.

The shore and shallower areas of Lake Chicago were originally located near the present-day Chicago & North Western railroad (CNW R.R.) located west of the site. After a period of glacial recession, these shallower areas were relocated eastward near

the present-day beach areas of the Lake Michigan shoreline. Large-grained materials settled out of the lake waters and formed the lake bed. These deposits are dominated by sands with some slit and gravels. The sand deposits form the Dolton Member of the Equality Formation (Willman 1971). Dolton Member deposits are typically less than 18 feet thick in the site area (Berg and Kempton 1988).

Deep water was located east of the shore areas and moved eastward as the glaciers retreated. Prior to glacial retreat, smaller-grained materials settled out of this deep water area and the deposits formed the lake bed. In the area of the site the only evidence of the deeper water lake bed is the silt-dominated (predominantly sandy silt) deposits found in the region between the two Dolton Member deposits. These deposits are classified as the Carmi Member of the Equality Formation. Thin lenses of clay are sometimes present in the Carmi Member deposit. Presently, Carmi Member deposits are found directly north of the site (Willman 1971). Typically, the Carmi Member deposits are less than 18 feet thick (Berg and Kempton, 1988).

Other Quaternary surficial units mapped in the area of the site are the relatively flat lake plain deposits and the remnants of the Zion City Moraine. The lake plain unit was the bed of glacial Lake Chicago and is dominated by silts and clays. Lake plain deposits are found in the area west of the site and extend in a north-south direction. The Zion City Moraine remnants are three separate areas comprised of clayey and silty clayey till deposits with localized lenses of silt. The moraine deposits are classified as the Wadsworth Member of the Wedron Formation. In the area of the site, the Wadsworth Member is the surficial till of the Wedron Formation. There are relatively few pebbles and boulders in the Wadsworth Member (Willman, 1971).

The Wedron Formation underlies all surficial materials in the region, including the Carmi and Dolton Members. The Wedron Formation is found in sheet-like deposits that are typically separated by beds of gravel, sand, or silt that were deposited through movement of glacial waters (Willman, 1971). In the area of the site, the Wedron Formation is approximately 50 to 175 feet thick (Berg, Kempton, and Cartwright, 1984).

Underlying the unconsolidated till deposits is a series of Silurian dolomite units. The dolomite units are approximately 175 feet thick and are underlain by the Maquoketa Shale, which is approximately 150 feet thick in the area of the site. A series of Ordovician and Cambrian sandstone and dolomite (with few limestone) units underlies the shale and extends down to a Precambrian granite (Visocky, Sherrill, and Cartwright, 1985).

3.7 REGIONAL HYDROGEOLOGY

0

Four aquifers can be designated in the area of the site. The uppermost is the glacial drift aquifer, which is comprised of the Dolton sands, Carmi silts, and the underlying

Wedron Formation till. These unconsolidated deposits overlie the Silurian dolomites, which are considered the second aquifer in the area. Although no confining layer has been identified between the glacial deposits and the dolomite, the units have typically been considered separate aquifers (possibly due to the proximity of Lake Michigan as a discharge area and the effect of the till on the vertical migration of groundwater). The third aquifer of the area is the Midwest Bedrock Aquigroup (designated by Visocky, et al. [1985]) which consists of sandstone and dolomite units that underlie the Maquoketa Shale confining layer. The fourth aquifer is the Basal Bedrock Aquigroup. It consists of upper unit Eau Claire Formation shales and sandstones and the underlying Mount Simon sandstone (Visocky, et al. 1985).

The glacial drift deposits in the site area can be expected to produce wells with yields of approximately 100 gallons per minute (gpm). Singh and Adams (1980) estimated the range of potential yield for the aquifer located in Township 45 North, Range 12 East (the location of the site). This estimate included use of the Silurian dolomite as a groundwater source and was dependent upon the use of the unconsolidated materials or the dolomite as the primary groundwater source. The yield estimate ranged from 0.4 million gallons per day (mgd) to 0.9 mgd (Singh and Adams, 1980). Estimated hydraulic conductivity for the silty sands and sands present in the unconsolidated deposits range from 1 $_{\rm x}$ 10 $^{\rm s}$ centimeters per second (cm/s) to $1_{\rm x}$ 10 $^{\rm s}$ Cm/s. The relatively high hydraulic conductivity of the surficial silty sands and sands increases the potential for contamination of the aquifer since contaminants can migrate through the deposit quickly (Berg, Kempton, and Cartwright, 1984).

 \Box

~

Silurian dolomites in the area can be expected to produce yields of approximately 100 gpm (Singh and Adams, 1980). The Singh and Adams (1980) study also estimated potential yield of the dolomite aquifer as ranging from 0.5 to 0.7 mgd. Groundwater is typically found in joints, fissures, and solutional cavities in the dolomite. Localized regions of the dolomite may have greater areas of fissures and cavities and, thus, may have higher yields than estimated due to increased storage capacity. Since there are localized regions of greater capacity, the transmissivity and storage coefficient values for the dolomite are highly variable. Transmissivity may vary from approximately 10,000 to 85,000 gpd/ft. The value for storage coefficient may vary from approximately 9×10^{-5} to 3.5×10^{-4} (Visocky, et al. 1985).

The Midwest Bedrock Aquigroup has been greatly used as a groundwater source in the northern Illinois area. In the area of the site, the piezometric surface of the aquifer is at approximately 350 feet above MSL (Visocky, et al. 1985). Yields from this aquifer are much greater than from the other aquifers in the area. Yields can be expected to be greater than 500 gpm and may exceed 1,000 gpm in some areas (Singh and Adams, 1980). Transmissivity values in the aquigroup range from 10,000 to 20,000 gpd/ft. The average storage coefficient for the aquifer is approximately 3.9 = 10° (Visocky, et al. 1985). However, the aquigroup has been greatly dewatered in some areas of the northeastern Illinois region. This is due to the fact that the

LINE STEEL WEST LOCALITY OF THE STEEL STEEL

Maquoketa Shale (a confining layer - aquitard) prevents groundwater from migrating downward and recharging the aquigroup. The recharge of the aquigroup is through horizontal migration from areas of northwestern Illinois where the shale is not present (Visocky, et al. 1985).

The Basal Bedrock Aquigroup has been used as a groundwater resource in northern Illinois, although most wells drilled into this formation are located far west and southwest of Waukegan. Transmissivity values for the aquifer range from approximately 1,000 to 10,500 gpd/ft. Storage coefficients range from 1.3×10^4 to 5.2×10^4 (Visocky, et al. 1985).

3.8 GROUNDWATER USE IN THE AREA

Groundwater in the area of the site is typically used for industrial production purposes. Potable water for residences and businesses is primarily supplied by the City of Waukegan water system, which treats water from Lake Michigan. However, according to the 1990 U.S. Census, there are approximately 1.4% of the residences within Waukegan using private wells to obtain potable water. Thus, an estimated 970 persons in Waukegan use private wells.

Information obtained from the Illinois State Water Survey (ISWS) listed eight private wells within one mile of the site, including two wells used for lawn watering at a country club. The nearest residential well (listed on a well log) is located approximately 0.6 miles west of the site and was installed in 1980. Two of the wells tap gravel beds within the Wedron formation (depths of 88 and 97 feet). The remaining logs list the dolomite as the groundwater source for the wells. Figure 3-7 illustrates the location of wells within a one-mile radius of the site.

ISWS information also included the log for a 1929 production well located on the former tannery site. This well, 1,670 feet deep, was open to the sandstones and other units of the Midwest Bedrock Aquigroup and the Basal Bedrock Aquigroup. The well was closed in 1991 by Layne-Western, Inc. The well log inventory is included as Appendix A.

SECTION 4.0 ENVIRONMENTAL INVESTIGATIONS

4.1 GEOLOGIC/HYDROGEOLOGIC INVESTIGATIONS

The environmental investigation conducted at the former tennery served as a means for assessing the vertical and lateral extent and magnitude of environmental impact. The advancement of soil borings and installation of monitoring wells; the closing of one monitoring well; the collection of production waste samples, soil and groundwater samples, and surface water and sediment samples; a magnetometer survey; slug tests; and a site-wide survey were used to characterize conditions at the former facility.

4.2 MAGNETOMETER SURVEY

4.2.1 Purpose

A magnetometry survey was conducted in Area IV, Production Waste Disposal Site Area, to locate areas of buried drums and other metal debris. The purpose of the survey was to define the aerial extent of drum deposition. The survey was performed prior to initiating intrusive soil boring sampling activities.

4.2.2 Location

0

^

Area IV, the Production Waste Disposal Site Area, was the primary focus of the magnetometry survey. The survey was initiated in this area because file information indicated the presence of buried drums and site reconnaissance observations confirmed the presence of drum remnants. Refer to Figure 4-1 for survey grid location.

4.2.3 Survey Methodology

A 325-foot x 300-foot magnetometry survey grid was established over the eastern portion of Area IV using a surveying transit. The south baseline of the grid was parallel to and 80 feet north of the fence at the south end of Area IV. The east baseline of the grid was perpendicular to the southeast corner of the fence. A theodolite was set up on the east baseline to accurately lay out the grid based on 25 foot centers for the magnetometer survey. Based on initial survey results and physical constraints, the grid point (station) spacing was expanded to further define areas of concern. The results indicated anomalles outside of or on the edge of the grid boundary, influencing the grid's final configuration.

A gradient proton procession magnetometer (gradiometer) was used to survey the area. The gradiometer measured the magnetic gradient at a specific location (survey station). The gradiometer was used because it was more capable of minimizing cultural noise (e.g. fences, buried building debris, powerlines). However, cultural noise was still significant at the site. The base station (neutral zone) was located in an on site area to obtain data that was as free from interference noise (fences, power lines) as possible. Magnetometer readings were collected at the base station before beginning the north-south traverse and after completing the same traverse. The base station reading was used to determine whether fluctuations in the earth's magnetic field had occurred. One total field and one gradiometer reading was obtained per grid location (survey station). The total gradient was determined by subtracting the gradiometer reading from the total field reading.

The final regional readings were plotted and a contour map was generated. Figure 4-2 illustrates these magnetometry survey findings. Based on this figure, the serial extent of drum deposition and/or other debris was estimated.

4.3 ENVIRONMENTAL SAMPLING PROCEDURE

During the RI, soil (surface and subsurface), groundwater, cistern, sediment, and production waste samples were collected and analyzed. Table 4-1 lists the types of laboratory analyses performed on each media by an IEPA CLP-approved laboratory, Environmental Science and Engineering (ESE) of Peoria, Illinois. The rationale and procedures for the collection and analysis of these samples are discussed below.

	Table	4-1		
Laboratory	Analy	yals	per	Media

Groundwater/Cistern	TCL Volatile Organic Compounds TCL Semi-volatile C:ganic Compounds TCL Pesticides/PCBs Total Dissolved Solids TAL Inorganics					
Production Waste	TCL Volatile Organic Compounds TCL Semi-volatile Organic Compounds TCL Pesticides/PCBs TAL Inorganics TCLP List Compounds					
Soli	TCL Volatile Organic Compounds TCL Semi-volatile Organic Compounds TCL Pesticides/PCBs TAL Inorganics					

Laboratory Analysis per Media (Continued)

Sediment

TCL Volatile Organic Compounds
TCL Semi-volatile Organic Compounds

TCL Pesticides/PCBs
TAL Inorganics

A Quality Assurance Project Plan (QAPP) was submitted and approved by the Illinois Environmental Protection Agency on January 25, 1993. All sampling and analytical procedures discussed hereafter were completed in accordance with this document.

4.3.1 Sediment and Production Waste Sampling

4.3.1.1 Purpose

Sediment samples were collected and analyzed to assess whether the on-site sediments have been impacted by previous tennery activities and to determine the degree and extent of migration of substances of concern (A sediment sample was proposed to be collected from the cistern but one could not be obtained). In an effort to characterize the production waste as hazardous or non-hazardous, production waste samples were collected from both contained (deteriorating drums) and non-contained sources. The samples were collected from various locations in Areas IV and V.

4.3.1.2 Locations

A total of eleven of twelve proposed sediment samples (SS-01 through SS-12) were collected during the RI. The sediment and production waste sample locations are shown in Figures 4-3 and 4-4 respectively. Six sediment samples (SS-01 through SS-03 and SS-06 through SS-08) were collected from the two former wastewater process ponds. Two sediment samples were collected from the area below the former sluice (SS-09 and SS-10). Two sediment samples, SS-04 and SS-05, were collected from in and around low lying areas. The remaining sediment sample was collected from the open sewer (SS-12). A sediment sample was to be collected from the bottom of the cistern (SS-11) but no sediment could be obtained. Nine (instead of the originally proposed seven) production waste samples (PW-01 through PW-09) were collected during the RI.

4.3.1.3 Sampling Methods and Equipment

The following information presents the sampling method for collecting sediment samples from the ponds, sluice, open sewer, and the lowland bermed areas.

Disposable plastic trowels (one per sample location) were used to collect sediment from the ponds, sluice, open sewer, and lowland areas.

The sediment samples collected for VOC analysis were placed immediately into their respective containers. VOC samples were packed in order to minimize headspace.

Samples collected for non-volatile organic compound analysis were transferred from the sampling device to a compositing tray then to their respective sample containers. All samples were capped as quickly as feasible. The samples were placed into iced coolers to preserve them at 4°C.

The production waste samples were collected using disposable plastic trowels, one per sample location. Any liquids present were decanted. The samples were transferred directly to their respective sample containers. All samples were capped as quickly as feasible. The samples were placed into iced coolers to preserve them at 4°C.

4.3.1.4 Sediment and Production Waste Quality Control Samples

During each sampling event, quality control (QC) samples were collected and submitted for laboratory analysis. Equipment blank and field duplicate samples were collected as part of the QC protocol.

The need for a trowel equipment blank was negated because new disposable plastic towels were used at each sample location. However, an equipment blank was collected from the compositing tray in which the sediment samples were mixed for non-volatile compounds.

Field duplicate samples were collected to provide statistical information relating to the samples variability and serve as a check on the precision of the sample collection method.

4.3.2 Surface and Subsurface Soil Sampling

4.3.2.1 Purpose

~

<u>_</u>

Fifty-eight soil samples were collected and analyzed from 43 sample locations (SB-01 through SB-43) to characterize the surface and subsurface soils and to determine the presence, extent, and magnitude of environmental impacts.

4.3.2.2 Locations and Rationale

Forty-three subsurface samples were obtained from the unsaturated zone immediately above the Static Water Level (SWL) (located approximately 4 feet below grade) and

15 surface soil samples were obtained from the 43 soil boring locations. These surface and subsurface samples were collected in an effort to assess the presence and magnitude of impact to the surface and subsurface from former tannery operations. The surface samples were collected from the surface to a depth of approximately one foot below grade.

Four soil samples were collected off site in an effort to characterize background levels. Two of the background soil samples were collected at the surface (SB-41 and SB-42). Subsurface soil samples were collected above the SWL from soil borings SB-41, SB-42, and SB-43. All soil sampling locations are shown in Figure 4-5.

Table 4-2 illustrates those soil borings designated for subsurface and surface soil sample collection.

Table 4-2
Soil Borings Designated for Subsurface and Surface Sample Collection

Off-Site Samples	SB-41, SB-42, SB-43
Subsurface Soil Samples	SB-01 through SB-43
Surface Soil Samples	SB-02, SB-05, SB-08, SB-10, SB-11, SB-15, SB-19, SB-21, SB-24, SB-27, SB-30, SB-33, SB-36, SB-39, SB-41 and SB-42

0

4.3.2.3 Surface and Subsurface Soil Sampling Methods and Equipment

Soil sampling field activities were conducted simultaneously with monitoring well installation wherever possible. Monitoring well data was used to verify the SWL and depth of the sampling zone.

Split spoon soil samples were collected while drilling in accessible areas. Soil samples were collected by using a split-spoon sampler (ASTM D1586) driven by a 140-pound hammer free-falling 30 inches. Once retrieved, the split spoon was opened and screened using a PID. A stainless steel knife was used during the screening process to part the sample in order to survey portions of the sample which were not disturbed by the split spoon sampler. The stainless steel knife was cleaned between sample intervals. Soil collected from the split-spoon sampler was transferred directly to the sample containers.

Due to the shallow nature of the groundwater table at the site and restricted access for the drilling rig to some areas of the site, stainless steel hand augers were used to collect several soil samples in areas inaccessible for the drill rig. Soil samples

collected with a hand auger. A stainless steel spoon was used to transfer the soil into the sample container. Soil collected for VOC samples was packed into the sample container and headspace was minimized. All samples were capped as quickly as feasible.

4.3.2.4 Surface and Subsurface Soil Quality Control Samples

During this sampling event, quality control (QC) samples were collected and submitted for laboratory analysis. Equipment blank and field duplicate samples were collected as part of the QC protocol.

Equipment blanks were collected for each piece of sampling equipment used in the collection of samples. For soil sampling, the samples were collected form a stainless steel hand auger and split spoon to verify the adequacy of the decontamination procedures.

Duplicate samples were collected in accordance with the QAPP to provide statistical information relating to the sample variability and serve as a check on the precision of the sample collection method.

4.4 MONITORING WELL INSTALLATION/CLOSURE

4.4.1 Purpose

Seven monitoring wells (MW-1 through MW-7) were installed during field activities as a means of assessing groundwater quality, horizontal groundwater flow direction, groundwater flow rate, and site stratigraphy. One 14-foot deep stainless steel monitoring well (installed by others) was abandoned to remove this potential conduit from the subsurface.

4.4.1.1 Locations and Rationale

Seven water-table monitoring wells (screens intersecting the water table) were installed as part of the field activities. The monitoring well locations (installed and abandoned) are shown on Figure 4-6. Two monitoring wells (MW-1 and MW-2) were installed adjacent to the former tannery process ponds. These monitoring wells were located in areas believed to be downgradient from the former tannery process ponds, and were used to determine if groundwater had been impacted by the process ponds.

Four monitoring wells were installed around the periphery of the site. These four wells are used to evaluate the horizontal extent of the impact on the groundwater by the tannery activities. Monitoring wells MW-3, MW-5, and MW-6 were located along the eastern edge of the property boundary, in the assumed downgradient direction, to determine the horizontal extent of environmental impact and to determine whether

off-site migration had occurred. Monitoring well MW-4 was located along the western edge of the property boundary, in the assumed upgradient direction, to determine if off-site sources were contributing to groundwater impact.

One monitoring well was installed off-site to the north (upgradient of the former tannery). The upgradient monitoring well, MW-7, served to define background levels of chemicals in the groundwater and to aid in determining if off-site sources were contributing to groundwater impact.

The exact monitoring well locations were determined in the field based on physical accessibility to the proposed locations. There were no major deviations from the original work plan.

Well screens in water-table wells were positioned such that a minimum of two feet of screen was above the static water level (SWL) at the time of installation. Groundwater levels were measured in each monitoring well to determine the lateral flow direction.

4.4.2 Drilling Method

0

0

4.4.2.1 Monitoring Well Installation

Prior to drilling, the drill rig and related equipment were decontaminated. All drilling was initiated using 4.25-inch I.D. hollow-stem augers (HSA). Limited amounts of potable water were used during drilling in an effort to eliminate heaving sands. Monitoring well boreholes were advanced, on average, to a depth approximately twelve feet below grade. Total depth of the monitoring wells varied based on the depth of the SWL.

All drill cuttings were containerized in 55-gallon drums and staged at a central location at the site. Each drum was labelled with well number, date, and drum contents.

4.4.2.2 Monitoring Well Closure

Prior to closing the monitoring well, installed by others, appropriate permits/water well sealing forms were obtained from the Lake County Health Department and all fees paid. Appendix B contains the completed forms for well closure.

Before the monitoring well was closed, the drillers straightened the bent riser as much as possible. The well depth was then measured with a decontaminated weighted tape. The drillers wrapped the cable around the monitoring well riser and pulled the well out in one piece. After the well was removed, neat cement grout was tremmied into the borehole from bottom to top.

Figure 4-6 shows the location of the abandoned monitoring well.

4.4.3 Monitoring Well Borehole Soil Sampling

Soil samples were collected continuously during drilling using a split-spoon sampler (ASTM D1586) driven by a 140-pound hammer free-falling 30 inches. Upon retrieval, the split spoon was opened and screened using a photoionization detector (PID). A stainless steel knife or similar tool was used during the screening process to part the sample in order to survey portions of the sample which had not been disturbed by the split-spoon sampler. The stainless steel knife or similar tool was cleaned between sample intervals. Two soil samples were collected from each of the five monitoring wells; MW-2, MW-3, MW-4, MW-6, and MW-7. One soil sample was collected from the split-spoon interval directly above the SWL and the second sample was collected from directly below the SWL.

All soil samples were described in the field using ASTM Method D2488 (Description of Soils) and classified in the field using the Unified Soil Classification System (USCS). Descriptions and classifications were recorded on field geologic logs. Geologic Logs are included as Appendix C. Four additional soil samples were collected from two monitoring wells (MW-1 and MW-5) for geotechnical analysis.

4.4.4 Monitoring Well Borehole Soil Quality Control Samples

During this sampling event, quality control (QC) samples were collected and submitted for laboratory analysis. Equipment blanks and field duplicate samples were collected as part of the QC protocol.

Equipment blanks were collected for each piece of sampling equipment used in the collection of the borehole soil samples. For borehole soil sampling, the samples were collected from a split spoon sampler to verify the adequacy of the decontamination procedures.

Duplicate samples were collected to provide statistical information relating to the sample variability and serve as a check on the precision of the sampling collection method.

4.4.5 Geotechnical Analysis

C.

10

In order to classify the soils, geotechnical samples were collected to determine grain size, Atterberg Limits, and moisture content. A total of four soil samples were collected from two soil borings/monitoring wells: two from above and two from below the SWL. These samples were collected from MW-1 (6'-8'), MW-1 (8'-10'), MW-5 (2'-4'), and MW-5 (4'-6'). An aliquot of soil from each split spoon was collected and stored in labelled, sealed plastic bag for future use, if necessary.

Labelling of geotechnical samples included date and time of collection, monitoring well number, the depth at which the sample was collected, and the name of the sampler. Soil samples were stored on site in the field trailer until completion of the project. Geotechnical analytical test data is summarized in Table 4-3 and provided in Appendix D.

4.4.6 Monitoring Well Installation/Construction Details

Prior to installation of the well, all well materials were decontaminated.

All monitoring wells were constructed using the HSA method. All monitoring wells were constructed of 2-inch I.D. Type 304 stainless steel with flush joints. Well screens consisted of Type 304 stainless steel continuous wire wrap with 0.010 inch openings. Well screens were ten feet in length. Prior to placing the well string in the borehole, 0.5 feet of clean 85/95 size (or equivalent) silica sand was placed in the bottom of the borehole to minimize intrusion of fine-grained sediment from below into the well. Personnel responsible for well installation wore new surgical gloves while handling the well materials. A filter pack consisting of 85/95 size (or equivalent) silica sand was added to the annulus to a level approximately one foot above the well screen. While slowly adding the filter pack, the HSAs were incrementally withdrawn so as to allow the filter material to drop out of the bottom of the HSA, but prevent the formation from collapsing around the well screen. A 0.5 foot to one foot thick bentonite pellet seal was placed above the filter pack and hydrated with approximately five gallons of potable water. Bentonite seals in all the monitoring wells were allowed to hydrate a minimum of one hour prior to placing the concrete cap. Due to the shallowness of both the well and the SWL, grout was not required to complete the monitoring wells. The top one foot of the annular space was sealed with concrete. A 4-inch x 4-inch x 5-foot long steel protective stick-up protective cover was placed over the stainless steel riser. A concrete apron was installed around each protective cover. Each well was equipped with an expandable locking cap and the protective cover was subsequently locked. The exact dimensions of the filter pack and bentonite seal were adjusted in the field on a well by well basis. Geologic/monitoring well construction diagrams are included in Appendix C. The following information was recorded on the geologic/monitoring well construction diagrams:

- General information including the drilling contractor, well number, well site, time and date the well construction was initiated and finished, and the name of the driller and supervising geologist or engineer.
- Specific information including the drilling method, borehole diameter, type and diameter of the protective casing, riser pipe and well screen,

TABLE 4-3 COMMONWEALTH EDISON - FORMER GRIESS-PFLEGER TANNERY GEOTECHNICAL ANALYSIS DATA

سيناه والمار المساد المساد المعاد المامية المناهد المساد المساد المساد الماميد المام المساد المام الما

	•									
8	STATE OF	E. Depth	Gravel 9	Mechani Sand %	cal Araby: PBM SA	in Fixi分 Clay.を	U.O.C.B.A	4	Allerberg	Comparts
	MW-1	8-8	1.6	53	68.9	6.5	OM	235.2	NP	Black organic PEAT.
~	MW-1	8 10	0.3	81.6	15.3	4.6	€P	40.9		Black fine SAND, little sitt, trace clay
1	NW-S	2-4	39.1	58.2	1.6	1.1	Gb-25	13.7		Brown fine to coarse BAND, some fine to course
1 :										GRAVEL, trace SILT and CLAY
1	MW-5	4-6	16.4	77.3	5.5	6.0	SP	21.7		Brown fine to coarse SAND, little fine GRAVEL, trace
										SILT and CLAY.

Province Non-Plastic

SP Poorly graded sands and gravely sands with little or no fines.

GP — Poorly graded gravels and gravel/send mixtures, little or no fines.

OM — Organic Material

type of annular backfill, annular seal and filter pack, and depths to the top of the annular seal and filter pack and total well and boring depth.

Typical well construction details of the above depth measurements were made in the field using a weighted tape. Measurements are accurate to within 0.01 ft.

4.4.7 Well Development Procedures

Well development allows for the free flow of water through the disturbed formation into the filter pack and well screen. Prior to well development and purging, all equipment was decontaminated in accordance with procedures outlined in Section 4.4.11. Well development and purging was accomplished by manually bailing using a dedicated disposable Teflon baller. Development was not conducted until the bentonite pellet seal in each well was allowed to set for a minimum of 24 hours. Immediately before sampling, the wells were purged so that a minimum of three well volumes were removed from the monitoring well. Purging the monitoring well allows for a representative sample to be collected from the aquifer. The well volume was determined by measuring the static water level in the well with an electronic interface probe (IP) to the nearest 0.01 foot. The static water level from the top of the well casing was subtracted from the total depth of the well from the top of the well casing to determine the height of the water column in the well. The height of the column multiplied by the area of the well equalled one well volume. Monitoring wells were considered developed after development water was relatively sediment free, and field parameters (pH, temperature, and specific conductance) stabilized to within 10 percent. Calibration, operation, and maintenance procedures for the pH, specific conductivity, and temperature meter is detailed in the approved QAPP. Field parameter readings were collected after each well volume was removed. The parameters were considered stabilized when three successive readings were within 10 percent. Typically, five well volumes were removed from each monitoring well during development. Well development and well purging field parameter data table are illustrated in Appendix E.

All development water was containerized in 55-gallon drums. Each drum was labelled and staged in a centralized staging area.

4.4.8 in-Situ Hydraulic Testing

0

in-situ hydraulic conductivity testing, using the slug test method, was conducted in each monitoring well installed during the RI. Testing was conducted by measuring the SWL in the well and then lowering a stainless steel slug into the monitoring well. Water levels in the well were automatically recorded at timed intervals using an electronic data recorder and pressure transducer as the water level falls back to the initial water level before the slug was introduced. Once the initial level was reached,

the slug was removed and water levels were again recorded as the level rose back to the initial water level.

The Bouwer and Rice Method was used for determining the hydraulic conductivity from the test date. The results from the slug test are recorded in Appendix F.

4.4.9 Static Water Level Measurements

The static water levels were measured in all of the monitoring wells installed at the site. Water levels were measured with an electronic interface probe (iP). Measurements were collected by lowering the probe into the well until the instrument emitted an audible tone. Depth to water from the top of the stainless steel well riser was measured to the nearest 0.01 ft. Total depth of each monitoring well was determined by lowering the iP to the bottom of the well and sounding for total depth. All water level measurements, date and time, instrument used, and field personnel were recorded in a bound field logbook. The electronic interface probe was decontaminated prior to and after a reading was collected. Static water level measurements are included in Appendix G.

4.4.10 Groundwater and Cistern (Surface Water) Sampling

4.4.10.1 Purpose

One round of groundwater samples was collected to assess whether groundwater had been impacted by former tannery activities and as a means of delineating the extent of migration. The on-site cistern water was sampled to determine if it had been impacted by previous site activities. The location of the monitoring well and cistern sampling location are illustrated in Figure 4-6.

4.4.10.2 Locations

Groundwater samples were collected from the seven monitoring wells installed during the RI. Groundwater samples were collected first from the wells which were expected to be the least impacted (typically those hydraulically upgradient of the site) and then working toward the potentially most impacted (down gradient) to prevent cross contamination.

A surface water sample was collected from the cistern which is located on the west side of the property near the gate access.

4.4.10.3 Sampling Methods and Equipment

The cistern water sample was collected by using a disposable Teflon™ bailer. A Kemmerer sampler was proposed to collect the cistern sample, however, it

malfunctioned in the field. New nylon rope was used to lower the Teflon™ bailer into the cistern. Sample containers were filled in order of decreasing volatility: volatile organic compounds, pesticides/PCBs, then inorganic (metals and cyanide) compounds.

After unlocking the protective casing, the headspace in the monitoring well and the ambient air near the well head was monitored with a PID. The PID measurements were recorded in the field log.

The wells were purged by manual bailing using a disposable Teflon[™] bailer. During purging, the pH, specific conductivity, and temperature of the groundwater were recorded. Measurements were made after each well volume was purged. Triplicate measurements were made after the third well volume. All measurements were recorded in the field log book. During purging, color, odor, and relative turbidity were recorded in the field log book. Groundwater samples were collected with dedicated disposable Teflon[™] bailers.

Sample containers were filled directly from the bailer. Sample containers for VOAs were filled first, followed by containers for semi-volatile organic compounds, pesticides and PCBs, cyanide, and metals analyses. VOA sample containers were filled completely and checked for air bubbles. The aliquot for metals analysis was filtered at the well site using a disposable 0.45 micron positive pressure filter. Subsequent to filtering, the sample was preserved with nitric acid (HNO₃) to a pH < 2. The aliquot for cyanide analysis was preserved with sodium hydroxide (NaOH) to a pH > 12. After collection, all samples were placed directly into a sample cooler where a temperature of 4°C was maintained. Chain of custody procedures for the samples are discussed in Section 4.6.

4.4.10.4 Groundwater and Cistern Quality Control Samples

During the groundwater sampling event, quality control (QC) samples were collected and submitted for analysis. Field duplicate samples were collected in accordance with the QAPP to provide statistical information relating to the samples variability and to serve as a check on the precision of the sampling collection method.

An equipment blank was not collected for the surface water sample. The QC for this matrix was utilized from the groundwater samples.

4.4.11 Decontamination Procedures

C

Potable water samples were collected from Commonwealth Edison's Power Generation facility because it was anticipated that this water was going to be used for drilling and decontamination. This facility obtains its water from the City of Waukegan. However, in lieu of this, the water for decontamination was obtained

from the driller's potable water supply source, the city of Cherry Valley, Illinois. Analytical data for the City of Waukegan potable water supply source is located in Appendix H.

All drill rigs, drilling equipment, split spoons, sampling trowels and spoons, hand augers, well casings and screens, well development equipment, in-situ hydraulic testing equipment, and water level measurement equipment were decontaminated upon arrival at the site, between each monitoring well or soil boring location and prior to departure in two steel trough-like structures with dimensions of 6-feet x 3-feet. The steel trough was placed on bermed high density polyethylene sheeting (HDPE).

The troughs were large enough to allow the back of the drill rig to be positioned over them. A steel grate was placed on top of the troughs where the HSAs, drill rods, well materials, and other equipment were decontaminated. All equipment, after decontamination, was placed on saw horses and allowed to air dry. All rinsate resulting from decontamination was collected and temporarily stored in 55-gallon drums. The drums were labelled as to the previous monitoring well or boring installed, contents and date. The drums were staged at a central location site.

Decontamination of drill rig, downhole tools, well screen and casing, and well development equipment consisted of high pressure steam washing. Any visible residue after steam cleaning was scrubbed with a brush and a solution of phosphate-free laboratory grade detergent (Alconox) and potable water followed by a final steam cleaning. All decontaminated equipment was allowed to air dry prior to use. Well materials were wrapped in new plastic for transport to the well location.

Split spoons were decontaminated between each new well location following the procedure described above. However, during drilling, the split spoons were decontaminated between each sampling interval with a brush and a solution of phosphate-free laboratory grade detergent (Alconox) and potable water followed by a final rinse with distilled water.

New disposable Tefion™ bailers were used to develop and collect groundwater samples from all of the monitoring wells. Therefore, decontamination of this equipment was not needed.

The electronic water level indicator, pH, specific conductivity and temperature probes were decontaminated at the well site between measurements. Decontamination of the equipment consisted of a series of rinses with potable water, dilute nitric acid (10%) solution, and a final double rinse with distilled water. The equipment was allowed to air dry prior to being wrapped in new plastic bags for transport to the next well location.

4.4.12 Fate of Drummed Material

The fate of drummed material will be based upon the proper characterization of materials (decontamination/purge/well development water and soil cuttings) currently stored in drums on site.

4.5 SURVEYING METHODOLOGY

1.5

 \subset

O

M&E conducted surveying at the former Griess-Pfleger Tannery to establish horizontal and vertical control, and set up a survey grid for the magnetometer survey. The horizontal survey located monitoring wells, soil borings, sediment samples, potential waste locations, fence corners, ponds, and railroad tracks. The vertical survey established top of riser (TOR) elevations of the monitoring wells and ground surface elevations.

The horizontal survey was conducted using a Global Positioning System (GPS) with an accuracy of \pm 5 - 10 millimeters. It was determined that due to the many obstructions at the site blocking the path between points, a GPS survey would be more efficient. The type of GPS survey method used was Rapid Static. For the Rapid Static survey, a temporary reference station was set up inside the entrance gate. Then, M&E personnel used roving receivers to record the locations of the sampling points. Computer software was used to process the data collected from the receivers and assigned North - East coordinates to the unknown points. The coordinates were used to create a map showing monitoring wells, soil borings, sediment samples, potential waste locations, and existing features of the site.

The vertical survey of the monitoring well riser locations was established with an automatic level. A reference benchmark elevation of 100.00 feet was set on a fire hydrant located on the west side of Sand Road. The riser elevations were taken on the north side of the risers. M&E can accommodate the reporting of the vertical elevations in reference to any other reference datum provided should this prove helpful in evaluation of the data.

4.6 SAMPLE PACKAGING AND SHIPMENT

After collection, all samples were labelled, sealed, packaged, and delivered by either next day air or by M&E personnel to the CLP Laboratory. Life Laboratory located in Peoria, Illinois.

Sample container lids were sealed to the container using strapping tape to prevent loosening. Clear tape was placed over the sample labe; to ensure that writing on the label remained legible. Each sample container was sealed in individual plastic bags. The sealed bags containing the samples were placed in sample coolers, and insulated with a packing material such as vermiculite. Temperature in the coolers was

とうなる 湯の 最近 をからかる ある

maintained at 4°C through the use of ice sealed in plastic bags. The sample coolers were sealed with strapping tape for delivery to ESE.

A chain of custody record was completed and accompanied samples during shipment to the laboratory. The chain of custody record was sealed in plastic for protection and taped inside the cooler to the lid. A copy of the chain of custody record was retained by the sampling team. All records included: (1) sample numbers; (2) date and time of collection; (3) locations where samples were collected; (4) type of sample: grab or composite; (5) analytical parameters requested; (6) names and signatures of samplers; and (7) names of persons involved in the chain of possession from time of collection to receipt at the laboratory.

Each sample cooler shipped was sealed to verify that the samples have not been disturbed during shipment. The custody seals were pre-printed tape strips which were signed and dated by a member of the sampling team and affixed to the lid of the cooler in a manner that would cause it to be broken if the cooler were opened. A minimum of two custody seals were required for each cooler. These seals were checked by the laboratory and their condition recorded in a laboratory inventory log.

AGENT SAFETY AND THE RESIDENCE OF THE PROPERTY OF THE PARTY OF THE PAR

SECTION 5.0 RESULTS AND DISCUSSION OF ENVIRONMENTAL INVESTIGATION

5.1 SITE GEOLOGY

The site geology is characterized as consisting of surficial unconsolidated material, made-land soils. The subsurface soils, typically described, ranged from pale yellow to black, moist to wet, loose to dense, poorly graded silty sand to sand. The silty sands are found as surficial deposits but grade to sands at depth. Trace amounts of fine subrounded graveis are present throughout the strata. The sand grain particles range from fine to coarse. Some boring/monitoring wells (MW-6 and MW-4) have spongy organic matter (peat) ranging from four feet to six feet below grade, respectively. Admixed with the sands are coal fines, tannery waste material (animal hair), organic material (roots, vegetation), gravel and asphalt. Tannery wastes can be found up to a depth of 10 feet but, the asphalt and gravel only extend to a depth of two feet below grade. The sand extends to the base of all the borings (approximately 12 feet deep). The geologic logs of the soil boring/monitoring wells are included in Appendix C. Figures 5-1 and 5-2 illustrate the north-south and west-east cross sections of the site.

The geotechnical analysis completed on soil boring/monitoring well MW-1 and MW-5 described the subsurface strata as consisting of black organic peat to black to brown, fine to coarse sand with some fine to coarse grained gravel, and containing a trace of silt and clay. Refer to Table 4-3 and Appendix D for the geotechnical analytical summary and data.

5.2 SITE HYDROGEOLOGY

Groundwater at this site is considered a Class I Potable Resource Groundwater by definition of Title 35 of the Illinois Administrative Code (IAC), Subtitle C, Part 620, Subpart B, Groundwater Classification (e.g. groundwater which is presently being used or has the potential for being put to conventional use).

At this time, the aquifer cannot be classified as confined or unconfined. Further subsurface investigation (installation of deeper monitoring wells) would need to be conducted to make this assessment. Using the most recent groundwater elevation data (June 4, 1993 data), the static water level (SWL) ranged from approximately 4.5 feet to 8.5 feet below grade. The tabulated water elevation data is illustrated in Appendix G. The SWL measurements were collected from the seven on-site monitoring wells which are screened in the unconsolidated sediments. The saturated thickness is determined to be approximately five to 11 feet (the entire length of the well screen). It is anticipated that the saturated thickness of the aquifer is greater. However, this cannot be determined unless a fully penetrating well (a well constructed to the confining layer) has been instined.

e december of management between the contract of the contract

The hydraulic gradient at this site was calculated as 1.4 x 10 feet/foot. The hydraulic gradient was calculated by determining the difference in the SWL height between MW-5 (5.50 feet) and MW-7 (8.53 feet) and dividing this difference by the horizontal distance between these two monitoring wells; 2,160 feet.

The hydraulic conductivity (K) for each monitoring well was determined by performing a rising head (Kr) and a falling head (Kf) test in each monitoring well. The Bouwer-Rice Method was used to determine the analytical output of this data. The Kr ranged from 2.55×10^{-3} centimeters per second (cm/sec) to 8.459×10^{-3} cm/sec. The Kf ranged from 1.011×10^{-3} cm/sec to 9.628×10^{-3} cm/sec. This value for hydraulic conductivity is typical of that found in slity sand (Freeze and Cherry, 1979).

The groundwater at this site flows east-southeast toward Lake Michigan. The groundwater flow direction may vary slightly depending upon seasonal variances in precipitation and evapotranspiration.

Figures 5-3 and 5-4 are groundwater contour maps illustrating the flow direction from water levels collected on May 24, 1993 and June 4, 1993.

1

 \overline{z}

C

۲.

At the site, groundwater is estimated to recharge at a rate of 9.2 inches/year based upon annual rainfall and evapotranspiration. The exact rate of infiltration cannot be determined because it is temporal, e.g. infiltration is dependent upon the number of storms, duration, intensity, interval between storms, and available capacity of the soil. Made-land soil, typical of soil that exists at the facility, does not have a permeability estimate however, the permeability of the soils at Illinois State Beach Park ranges from 6.3 to 20.0 inches/hour for sands.

SECTION 6.0 NATURE AND EXTENT OF ENVIRONMENTAL IMPACT

After the Remedial Investigation (RI) was completed, the site was divided into three areas: Area I consists of the former production facility, Area II consists of the wastewater area, and Area III consists of the production waste area. These divisions are based upon the current analytical data, site observations, historical information (i.e. aerial photographs), and discussion with Commonwealth Edison. Division of the site will be referred to as Areas I, II, and III from hereon. Figures 6-1 and 6-2 illustrate the site investigation divisions before and after all available data were compiled.

During the RI activities, the following media were sampled to determine the presence or absence of environmental impact: groundwater, surface soil, subsurface soil, sediment and production wastes. One round of sampling was conducted for each matrix. Samples were collected during the Spring and Summer of 1993.

All samples collected were analyzed for the following parameters: Target Analyte List (TAL) Inorganics, Target Compound List (TCL) Volatile Organic Compounds (VOCs), TCL Base/Neutral/Acid Extractables (BNAs) and TCL Pesticides/PCBs (P/PCBs). Additionally, the production waste (PW) samples were analyzed for all Toxicity Characteristic Leaching Procedure (TCLP) parameters. All samples collected were analyzed by the ESE Laboratory located in Peoria, Illinois in accordance with Illinois Contract Laboratory Program Protocol.

For purposes of data summary, data for all soil, sediment, and production waste samples were evaluated. From this evaluation, comparisons were made and generalized trends were identified between and within the three areas regarding constituent levels therein.

The constituents identified, the concentrations found, and generalized trends for the samples collected during field activities are discussed in the following subsections. Analytical data for all media is presented in Appendix I.

6.1 GROUNDWATER

A total of seven monitoring wells were installed in and around the former tannery. All seven wells were sampled in May 1993. In addition to the seven groundwater samples collected, a water sample was collected from the cistern, located on the west side of the property. For comparative purposes, the cistern sample was treated as a groundwater sample.

The analytical results from groundwater samples were compared with the constituent concentration limits found for Class I Groundwater in IAC Title 35, Subpart D, Section 620.410.

6.1.1 Monitoring Well And Cistern Sample Results

6.1.1.1 Volatile Organic Compounds

Only one VOC, acetone, was detected in any of the samples collected. Acetone was detected in five of the eight samples collected, ranging in concentration from an estimated value of 5 ug/l in MW-6 to 16 ug/l in the cistern. Acetone was not detected in MW-4, MW-5, and MW-7. There is no Class I Standard for this compound. Acetone is a commonly found laboratory contaminant which was detected in every field blank and laboratory blank with the exception of the blanks associated with these samples. Additionally, historical records indicate no use of this compound at this site. The presence of this compound in these samples is questionable.

5.1.1.2 Base-Neutral/Acid Extractable Compounds

Base-neutral/acid extractable compounds were not detected in any of the environmental samples collected.

6.1.1.3 Pesticides/PCBs

Pesticides and PCBs were not detected in any of the environmental samples collected.

6.1.1.4 Inorganics

() ()

0

0

The Class I Groundwater Quality Standard for chromium, as found in IAC Title 35, Subpart D, Section 620.410(a), is 100 ug/l. All of the groundwater samples collected during this investigation showed chromium concentrations at less than 25 percent of the Class I Standard.

As expected, inorganic analytes were detected in all samples collected. Many of these analytes are considered naturally occurring in groundwater at varying levels. Analytes that exceeded Class I water quality standards are summarized below.

All monitoring well samples collected exceeded the 150 ug/i Class I Standard for manganese. The concentrations ranged from 264 ug/l at MW-2 to 4,140 ug/l at MW-3. The upgradient well, MW-7, showed the second highest manganese concentration of 3,140 ug/l.

The Class I Standard of 5,000 ug/l for iron was exceeded in MW-3, MW-4, MW-5, and upgradient well MW-7. Concentrations ranged from 5,080 ug/l in MW-7 to 34,500 ug/l in MW-4.

Lead was identified in MW-1 at a concentration of 40.7 ug/l, above the Class I Standard of 7.5 ug/l. The presence of lead is questionable at this location because the concentration of lead in the duplicate sample was reported as less than 2.4 ug/l.

Arsenic was also detected in MW-1 above the Class I Standard of 50 ug/l. The arsenic concentration in MW-1 was reported to be 6470 ug/l while the duplicate sample reported 6,490 ug/l. The source of the arsenic is unknown, however, arsenic trioxide may have been used as a rat poison.

All monitoring wells exceeded the Class I Standard of 1,200 mg/l for total dissolved solids.

Overall, it appears that the constituents present in the surficial and subsurficial soil have not significantly impacted the groundwater in and around the site. Additionally, many of the constituents detected above the Class I Water Quality Standards may be naturally occurring in the groundwater as is evidenced by their presence in the upgradient monitoring well.

Analytical results for all groundwater, cistern, field blank, and trip blank samples are found in Table 6-1.

6.2 AREA !

This section summarizes the data collected from surficial and sub-surficial soil samples collected within the boundaries of this area as well as the sediment sample collected from the open sewer located near the cistern. Initially, a sediment sample was scheduled to be collected from the cistern. However, this sample was not collected because the bottom and sides of the cistern were solid and contained no sediment.

A total of 23 soil samples were collected within Area I; 6 surficial, 16 subsurficial, and one sediment.

6.2.1 Volatile Organic Compounds

A total of three samples were found to contain one VOC each; SB-33B, SB-35B, and SB-37B. Both SB-35B and SB-37B contained methylens chloride at an estimated concentration of 12 ug/kg and 18 ug/kg respectively. Methylene chloride is a commonly used laboratory solvent and, as such, is often found as a laboratory contaminant. This, coupled with the historic non-use of this solvent during the tanning process, raises question as to the presence of this compound in the environmental samples collected.

Trichloroethene (TCE) was the only other VOC detected in this area. Trichloroethene was found in SB-33B at an estimated concentration of 7 ug/kg. The source of the

TCE is unknown and may be related to degreasing activities conducted during the tenning process. Trichloroethene was not positively identified in any other samples collected during the field investigation and should be considered an isolated occurrence.

Other VOCs were not detected in the other environmental samples collected in Area I. Analytical results and sample quantitation limits for all samples are presented in Table 6-2.

6.2.2 Base-Neutral/Acid Extractables

At least one BNA was detected in 17 of the 23 samples collected within this area. The majority of the BNAs identified were polynuclear aromatic hydrocarbons (PNAs). In addition to the PNAs, di-n-butylphthalate, a common laboratory contaminant, was identified in one sample, SB-33B, at an estimated concentration of 190 ug/kg. Carbazole was identified in 6 of the samples collected. Carbazole concentrations ranged from an estimated 240 ug/kg in SB-39B to 1,900 ug/kg in SB-39A. Seven of the samples collected were found to contain dibenzofuran, ranging in estimated concentrations of 140 ug/kg in SB-36B to 1,900 ug/kg in SB-30A. The source of the carbazole and dibenzofuran are unknown.

Polynuclear aromatic hydrocarbons were found in almost every sample, including the background soil samples, that contained BNAs. Generally, five to ten PNA compounds were identified in the samples which contained PNAs. Due to the similarity in structure and the likelihood that all of the PNAs are from the same or a similar unknown source, PNAs are addressed as a group and not individually.

The concentrations of the PNAs tended to remain constant or increase slightly with increasing depths. Total PNA concentrations ranged from non-detected to 60,100 ug/kg in sample SB-33B.

Analytical results for the samples collected in this area can be found in Table 6-2. Surficial and subsurficial total PNA distribution maps can be found as Figures 6-3 and 6-4.

6.2.3 Pesticides/PCBs

Ch.

A variety of pesticides were identified in 16 of the 23 samples collected in this area. A total of seven different pesticides were identified, they include: beta-BHC, heptachior, heptachior epoxide, dieldrin, DDT, DDE, and DDD. It is possible that the pesticides were used by the tannery for rodent control during operations.

The pesticides were identified in both the surficial and subsurficial soils. Pesticides were not identified in the open sewer sediment sample. A pattern or trend could not

be distinguished with regard to the distribution of the pesticides in this area. This area did contain the highest site wide surficial pesticide concentrations. Soil boring SB-39A was found to contain slightly less than 48,000 ug/kg of DDT and its' associated breakdown products, DDE and DDD. The source of these levels is unknown, but is likely the result of a small surficial spill. The determination of a small surficial spill occurring is supported by the lack of significant downward migration of the pesticides as is evidenced by the large reduction of pesticide concentrations in the sample collected at a depth of 2-4 feet at the same location. The sample collected 2-4 feet below grade in SB-39B, contained <100 ug/kg total pesticides.

Polychlorinated biphenyls were identified at only one location in this area, SB-33B. This sample contained 4,100 ug/kg of a mixture of Aroclor 1248 and 1254. Since PCBs were not historically used in the tanning process, the source of the PCBs is unknown.

Throughout this area, the pesticide and PCB concentrations tended to decrease rapidly with increasing depth.

Analytical results for the samples collected in this area can be found in Table 6-2. Surficial and subsurficial total pesticide distribution maps can be found as Figures 6-5 and 6-6. Surficial and subsurficial total PCB distribution maps can be found as Figures 6-7 and 6-8.

6.2.4 Inorganics

C.

Numerous inorganic analytes were identified in the soil and sediment samples collected during the field investigation. Historical information, coupled with the analytical data derived from the field investigation, indicate that the analytes of concern are arsenic, chromium, mercury, and lead. For purposes of data summary, the inorganic data for all soil and sediment were evaluated.

Arsenic concentrations in Area I ranged from 0.4 mg/kg at SB-34B to 65.8 mg/kg at SB-40B. Twelve of the 23 samples collected contained <10 mg/kg arsenic.

Seven of the 23 samples collected contained no detectable mercury. The highest reported concentration was found in SB-40B at a concentration of 25.6 mg/kg.

Concentrations of lead ranged from 1.7 mg/kg at SB-34B to 399 mg/kg in SB-43A. Sample SB-43A, a background sample collected across the street and hydraulically upgradient from the site, indicates elevated background concentrations of this analyte. Figure 6-9 provides a surficial distribution of lead levels.

Chromium concentrations in this area ranged from 3.2 mg/kg at SB-34B to 2,600 mg/kg at SS-12. All other samples collected within this area contained less than

1,000 mg/kg chromium. Sample SS-12 was collected from the open sewer located near the cistern. This open sewer likely acts as a sedimentation basin, collecting and concentrating the chromium. This possibly explains the elevated value with respect to the other samples collected within this area. The average chromium concentration within this area is 280 mg/kg. By removing the contribution of the sediment sample collected from the open sewer, the average chromium concentration decreases to 180 mg/kg. Figures 6-10 and 6-11 provide a surficial and subsurficial distribution of chromium levels.

In general, the highest concentrations of analytes identified within this area are, at a minimum, 10 times less than the averages found in other areas. The analyte concentrations highlighted above tend to decrease with increasing depth. This trend is similar to the pesticides and PCB trend.

Analytical results for the TAL analytes identified in this area can be found in Table 6-2.

6.3 AREA II

This section summarizes the data collected from surficial and sub-surficial soil sample collected within the boundaries of this area as well as the sediment samples collected therein.

A total of 28 soil samples were collected within Area II; 7 surficial, 11 subsurficial, and 10 sediment.

6.3.1 Volatile Organic Compounds

Six of the 28 samples collected contained one of three VOCs identified; methylene chloride, 2-butanone, and carbon disulfide.

Methylene chloride was identified in three of the samples; SB-02A, SB-02B, and SB-08A at concentrations of 21 ug/kg, 25 ug/kg, and 46 ug/kg, respectively. Methylene chloride is a commonly used laboratory solvent and, as such, is often found as a laboratory contaminant. This, coupled with the historic non-use of this solvent during the tanning process, raises question as to the presence of this compound in the environmental samples collected.

Carbon disulfide was identified at an estimated concentration of 22 ug/kg in sample SB-09B, while 2-butanone was identified in both SB-04B and SS-07 at an estimated concentration of 20 ug/kg and 47 ug/kg, respectively. The source of these constituents is unknown.

No other VOCs were detected in any of the other environmental samples collected in Area II. Analytical results and sample quantitation limits for all samples are presented in Table 6-3.

6.3.2 Base-Neutral/Acid Extractables

At least one BNA was detected in 15 of the 28 samples collected within this area. The majority of the BNAs identified were polynuclear aromatic hydrocarbons (PNAs). In addition to the PNAs, bis(2-ethylhexyl)phthalate, a common laboratory contaminant, was identified in eight samples ranging from an estimated concentration of 220 ug/kg in SB-08A to 11,000 ug/kg in sample SS-10. The level of bis(2-ethylhexly)phthalate in sample SS-10 suggests that it is not a laboratory artifact and therefore is present in the sample. The source of bis(2-ethylhexyl)phthalate is unknown. However, this compound is commonly used as a plasticizer and found in numerous plastic based materials. Carbazole was identified in two of the samples collected. Carbazole concentrations were an estimated 94 ug/kg in sample SB-29B and 1,900 ug/kg in sample SS-10. Sample SB-29B was found to contain dibenzofuran at an estimated concentration of 330 ug/kg. Pentachlorophenol was found at an estimated concentration of 1,200 ug/kg in sample SB-05B. The source of the carbazole, dibenzofuran, and pentachlorophenol are unknown.

The concentrations of the PNAs tended to remain constant or increase slightly with increasing depths, unlike the pesticides/PCBs and metals, with the exception of the samples collected from the split spoons samples from MW-2. Total PNA concentrations ranged from non-detected in 19 of the samples to 36,700 ug/kg in sample SS-10.

Analytical results for the samples collected in this area can be found in Table 6-2. Surficial and subsurficial total PNA distribution maps can be found as Figures 6-3 and 6-4.

6.3.3 Posticides/PCBs

9

A variety of pesticides were identified in 23 of the 28 samples collected in this area. A total of 12 different pesticides were identified, they include: beta-BHC, heptachlor, heptachlor epoxide, aldrin, dieldrin, DDT, DDE, DDD, endrin, endrin aldehyde, and both alpha and gamma chlordane. It is possible that the pesticides were used by the tannery for rodent control during operations.

The pesticides were identified in both the surficial and subsurficial soils. As evidenced in Area I, the pesticide concentrations tended to decrease with increasing depth, showing that the majority of the pesticides are either at or near the ground surface. The concentrations of pesticides found in this Area II were at least 25 times less than

the second of the second secon

those found in sample SB-39A (Area I), with the highest reported concentration of 1,400 ug/kg at SB-29BD.

Polychlorinated biphenyls were not positively identified in any of the samples collected in this area with one exception, MW-3B, which contained 180 ug/kg of Arcclor 1248. Additionally, the duplicate of sample M\v-3C contained low levels of pesticides and PCBs, while the original sample contained none. This variance may be due to sample matrix inhomogeneity. As a result, the presence of these compounds in the environmental sample is questionable.

Analytical results for the samples collected in this area can be found in Table 6-3. Surficial and subsurficial total pesticide distribution maps can be found as Figures 6-5 and 6-6.

6.3.4 Inorganics

~

Arsenic values ranged from <10 mg/kg in 15 of the 28 samples to 5,500 mg/kg in SB-06B. In addition to SB-06, only one other sample contained arsenic above 1,000 mg/kg, MW-2B at 1,200 mg/kg. The corresponding chromlum values for these two samples are more than 6 times greater than the arsenic values at 37,400 mg/kg and 20,000 mg/kg, respectively. All other samples in this area showed arsenic concentrations below 100 mg/kg with the exception of MW-2C, 604 mg/kg.

Mercury was detected in all 28 samples collected in this area. The maximum concentration was 111 mg/kg in MW-2C.

Lead was detected at a maximum concentration of 2,250 mg/kg in SB-04B. The chromium result in this same sample was 45,100 mg/kg. Lead concentrations tended to decrease with increased sampling depth. Figure 6-9 provides a surficial distribution of lead concentrations in excess of 1,000 mg/kg. A subsurficial map was not prepared for lead because only three locations were found to contain lead above the 1,000 mg/kg limit: SB-01B - 1,520 mg/kg; SB-09B - 1,260 mg/kg; and SB-15B - 1,610 mg/kg.

Chromium was detected at a maximum concentration of 81,900 mg/kg in SB-09B. Three of the samples collected in this Area II contained <10,000 mg/kg chromium. The remaining samples all contained between 10,000 and 80,000 mg/kg chromium. Chromium concentrations tended to decrease an average of 30% as sampling depth increased from the surface to the water table. The average chromium concentration within this area was 38,500 mg/kg. Figures 6-10 and 6-11 provide a surficial and subsurficial distribution of chromium levels.

It should be noted that the chromium appears to be strongly adsorbed to the soil beneath the water table. This is supported by the analytical data that shows in

excess of 20,000 mg/kg chromium in the soil beneath the water table (MW-2B and MW-2C) and only 23.2 ug/l chromium in the groundwater sampled from MW-2, well below the 100 ug/l Class I Standard.

Analytical results for the TAL analytes identified in this area can be found in Table 6-3.

6.4 AREA III

: ٦

~

This section summarizes the data collected from surficial and sub-surficial soil sample collected within the boundaries of this area.

A total of 35 soil samples were collected within Area III: 7 surficial, 19 subsurficial, and 9 production waste. This section covers only the "totals" analysis for the production waste samples. The results for the TCLP analyses are summarized in Section 6.5. Additionally, the production waste samples were not included in any of the distribution figures. These samples were not included because the samples were collected from either a distinctive waste pile or a container that was not representative of the majority of the area.

6.4.1 Volatile Organic Compounds

Eight of the 38 samples collected contained one of five VOCs identified; methylene chloride, acetone, 2-butanone, toluene, and trichloroethene.

Methylene chloride was identified in four of the samples; SB-13B, PW-4, PW-7, and PW-8 at concentrations of 23 ug/kg, 180 ug/kg (estimated), 18 ug/kg, and 6 ug/kg (estimated), respectively. Methylene chloride is a commonly used laboratory solvent and as such is often found as a laboratory contaminant. This, coupled with the historic non-use of this solvent during the tanning process, raises question as to the presence of this compound in the environmental samples collected.

The compound 2-butanone was detected in sample SB-14B at an estimated concentration of 12 ug/kg, while toluene was found at an estimated concentration of 8 ug/kg in SB-27B. The source of these two compounds is unknown.

Acetone, another common laboratory artifact, was identified in SB-19A and PW-4 at concentrations of 310 ug/kg and 2,000 ug/kg respectively. This compound was also identified in the trip blank associated with these samples. Typically, when a contaminant is found in the trip blank, all associated sample values less than ten times the amount found in the blank are considered non-detected at the reported concentration. In this instance, the reported sample concentrations were above the threshold value for reporting non-detect in the associated samples. While the values

are reported, there is some question as to the presence of these compounds in the samples collected.

Sample SB-28BD (which is the duplicate sample of SB-28B) showed an estimated concentration of 8 ug/kg of TCE. The original sample, SB-28, reported that TCE was not present. With the sample not reporting the presence of TCE and the associated duplicate reporting the presence of TCE, the presence of this compound is questionable.

Analytical results and sample quantitation limits for all samples are presented in Table 6-4. Other VOCs were not detected in any of the other environmental samples collected in Area III.

6.4.2 Base-Neutral/Acid Extractables

At least one BNA was detected in 24 of the 35 samples collected within this area. The majority of the BNAs identified were polynuclear aromatic hydrocarbons (PNAs). In addition to the PNAs; bis{2-ethylhexyl)phthalate, a common laboratory contaminant, was identified in seven samples ranging from an estimated concentration of 100 ug/kg in SB-21A to 24,000 ug/kg in sample SB-24B. The level of bis(2-ethylhexyl)phthaiate in sample SB-24 suggests that it is not a laboratory artifact and therefore is present in the sample. The source of bis(2-ethylhexyl)phthalate is unknown. However, this compound is commonly used as a plasticizer and found in numerous plastic based materials. Carbazole was identified in four of the samples collected. Carbazole concentrations ranged from an estimated concentrations of 180 ug/kg in SB-13B to 2.000 in SB-26B. Five samples were found to contain dibenzofuran at concentrations ranging from an estimated 81 ug/kg in sample SB-13B to an estimated 1,500 ug/kg in sample SB-26B. Pentachlorophenol and 2,4,5-trichlorophenol were found in sample PW-9 at concentrations of 240,000 ug/kg and 270,000 ug/kg respectively. The source of the carbazole, dibenzofuran, pentachlorophenol and 2,4,5-trichlorophenol are unknown.

The highest concentrations of the PNAs were observed in the north end of the production waste area. Polynuclear aromatic hydrocarbons concentrations in this area ranged from non-detected in several of the samples to 172,000 ug/kg in sample SB-15A. Elevated PNA concentrations coincide with the same sampling locations where elevated PCB readings were observed, indicating a relationship between elevated PNAs and PCBs within this portion of this area. Further support of this relationship is that the PNA concentrations tend to decrease with increasing sample depth, mirroring the PCB concentrations. In the remainder of Area III, as with the Areas I and II, PNA concentrations tended to increase or remain constant with deeper sampling intervals. Analytical results for the samples collected in Area III can be found in Table 6-4. Surficial and subsurficial total PNA distribution maps can be found as Figures 6-2 and 6-4.

6.4.3 Pesticides/PCBs

A variety of pesticides were identified in 31 of the 35 samples collected in this area. A total of 13 different pesticides were identified, they are as follows: beta-BHC, heptachlor, heptachlor epoxide, aldrin, dieldrin, DDT, DDE, DDD, endrin, andrin aldehyde, endrin ketone, and both alpha and gamma chlordane. It is possible that the pesticides were used by the tannery for rodent control during operations.

The pesticides were identified in both the surficial and subsurficial soils. In general, the pesticide concentrations tended to decrease with increasing depth, showing that the majority of the pesticides are either at or near the ground surface. The concentrations of pesticides found in this area were all at least 20 times less than those found in sample SB-39A, an Area I sample. The highest reported pesticide concentration was in SB-11BD at 2,400 ug/kg.

Polychlorinated biphenyls were found in 16 of the 38 samples collected within this area. Concentrations ranged from 240 ug/kg at SB-21B to 56,000 ug/kg at SB-10A. The PCBs, like the pesticides, tended to decrease in concentration with increasing sample depth, with the exception of SB-24. The highest concentrations found are located in an area within the north end of the production waste area. The predominant Aroclor reported was 1248 coupled with lesser quantities of Aroclor 1254. The source of the PCBs at this location as well as the other sampling locations is unknown.

Analytical results for the samples collected in this area can be found in Table 6-4. Surficial and subsurficial total pesticide distribution maps can be found as Figures 6-5 and 6-6. Surficial and subsurficial total PCB distribution maps can be found as Figures 6-7 and 6-8.

6.4.4 Inorganics

Arsenic values ranged from <10 mg/kg in 25 of the 35 samples to 164 mg/kg in SB-24B.

Mercury was not found in 4 of the 35 samples collected in this area. The maximum mercury concentration was 28.8 mg/kg in SB-14B.

This area was found to contain the three highest total lead values. Production Waste sample PW-4 contained 75,800 mg/kg, SB-12A contained 4,250 mg/kg and SB-15A contained 4,120 mg/kg total lead. For purposes of comparative analysis and Figure preparation, PW samples were considered isolated occurrences and not included as part of any generalized trends. Soil samples collected from SB-12 and SB-15 were the only two locations in this area found to contain over 700 mg/kg lead. As with the other areas, lead values tended to decrease with increased sampling depth. Figure 6-9

provides a surficial distribution of lead concentrations in excess of 1,000 mg/kg. A subsurficial map was not prepared for lead because there were three locations found to contain lead above the 1,000 mg/kg limit: SB-01B - 1,520 mg/kg; SB-09B - 1,260 mg/kg; and SB-15B - 1,610 mg/kg.

Chromium was detected at a maximum concentration of 25,500 mg/kg in SB-23B. Chromium concentrations within this area tended to drop significantly with increasing sampling depth. The average chromium concentration throughout this area is 3,700 mg/kg and is concentrated mainly in the area of, and adjacent to, the production waste samples. Overall, the highest chromium value was found in PW-4 at 63,100 mg/kg. Figures 6-10 and 6-11 provide a surficial and subsurficial distribution of chromium.

Analytical results for the TAL analytes identified in this area can be found in Table 6-

6.5 PRODUCTION WASTE TCLP SAMPLES

In an effort to characterize the production wastes (PW), nine samples were collected from both partially contained (deteriorating drums) and non-contained sources. The samples were collected from various location in Areas IV and V. The following depicts the physical descriptions of the production waste samples when collected in the field.

- PW-1: Red beads approximately the size of medium sand. This material was located under a pile of fiberglass.
- PW-2: White, clay-like material.
- PW-3: Red sandy-like material collected from a corroded 55-gallon drum in a pile of other drums.
- PW-4: Orange colored solid material collected from a 5-gallon rusted pail.
- PW-5: Tan fibrous material (remnants of hide material) located just north of the southern fence-line of Area V.
- PW-6: Black material located inside of a 1.5 foot long by 7 inches wide steel canister.
- PW-7: Grey-black cinder like material in appearance.
- PW-8: A very corroded 55-gallon drum with incinerated waste materials.

 PW-9 - Grey, white, and pink hide material with a slight odor from an almost completely corroded drum.

The nine production waste samples were collected within the boundaries of Area III. These samples were analyzed to determine if any of the constituent concentrations exceeded the Toxicity Characteristic Leaching Procedure (TCLP) regulatory limits found in 40 CFR 261.24.

Of the nine samples collected, three of the samples exceeded the regulatory limits. The extract for PW-4 was found to contain 66.9 mg/l lead, in excess of the 5.0 mg/l limit. The regulatory limit for chromium, 5.0 mg/l, was exceeded in samples PW-5 and PW-9 with concentrations of 8.06 mg/l and 24.2 mg/l, respectively. There were no other concentrations reported above the regulatory limits.

The exceedance of TCLP regulatory limits does not imply that all production waste material is hazardous. An additional study of chromium's valance states (Cr.', Cr.') will determine the pursuance of the chromium waste exclusion, as stated in 35 IAC 721.104 (b)(6), as it pertains to tannery waste streams.

Analytical results for all TCLP parameters are presented in Table 6-5.

CHAPTER 7.0 SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

7.1 SUMMARY AND CONCLUSIONS

The magnetometry survey indicated elevated magnetic gradients located within the entire survey grid. Two elevated gradients were noted in the northeast corner and southeast corner of the survey grid indicating a higher concentration of buried ferromagnetic material.

The geotechnical survey indicated that all samples collected were non-plastic and consisted mainly of sand. Sand percentages ranged from 33% (MW-1, $6 \cdot 8'$) to 81.8% (MW-1, $8 \cdot 10'$). Only one sample (MW-1, $6 \cdot 8'$) indicated a higher percentage of silt, 58.9%, in its matrix.

The extent of impact on the subsurface soil varies throughout the three designated areas; Areas I, II, and III. Within these areas, volatile organic compounds were of little consequence. Base-Neutral/Acid Extractable compounds (BNAs), pesticides/PCBs, and metals had a greater environmental impact across the site. Base-Neutral/Acid Extractable compounds, mostly polynuclear aromatic hydrocarbons (PNAs), were detected sporadically across the site and in the background (upgradient) soil samples. Total PNA concentrations ranged from non-detected to 60,100 ug/kg in SB-33B. Base-Neutral/Acid Extractable concentrations ranged from non-detected to 270,000 ug/kg, PW-9. The origin of the BNA compounds could not be discerned.

A variety of pesticides were identified in the soil samples collected in all three areas. It is possible that the pesticides were used for rodent control. Most of the pesticides were located in areas where tannery waste materials (water, hides) were disposed or were part of the wastewater stream, specifically Areas II and III. An isolated location in areas impacted by pesticides could be due to a historic surficial spill. Pesticide concentrations ranged from non-detected to 48,000 ug/kg, SB-39A, Area I.

Polychlorinated biphenyls were detected in Area III in concentrations ranging from 240 ug/kg (SB-21B) to 56,000 ug/kg (SB-10A). The highest concentration of PCBs are confined to an area located in the north end of the production waste disposal area. PCBs were not historically used in the tannery process.

Numerous inorganic analytes were identified in the soil samples collected from Areas II and III. The principal analytes of concern were chromium and lead. Lead levels were generally found in concentrations at least 10 - 100 times less than the total chromium levels. Generally, the serial extent of lead corresponded with the serial extent of chromium.

Inorganic analysis indicated that chromium was prevalent in both surficial and subsurficial soil samples. Chromium, used in the tennery process as a chrome liquor, was distributed throughout Areas II and III via the wastewater discharge areas (settling ponds, sluice areas, ditch, bermed lowland ares) and by the disposal of scrap hides throughout these two areas. Chromium was detected at a maximum concentration of 81,900 mg/kg. Approximately 16 acres (712,000 square feet) of the site is impacted by chromium. Using a vertical depth of 4-feet (depth to the approximate static water level) of impacted soil and multiplying it with the approximate square footage of impacted area (712,800 square feet), equates to 105,600 cubic yards of potentially chromium impacted material.

Groundwater analytical results indicated that the levels established for Class I Groundwater in Illinois Administrative Code (IAC) Title 35, Subpart D, Section 620.410, were not exceeded for VOCs, Pesticides/PCBs, or BNAs. Additionally, chromium did not exceed the regulatory value for Class I Groundwater Regulatory Limits. Arsenic was detected over the Class I Groundwater Standard, 50 ug/l, in one monitoring well. Lead was also identified in one monitoring well at a concentration of 40.7 ug/l, above the Class I Standard of 7.5 ug/l. However, the presence of lead in the groundwater is questionable because the duplicate sample collected was reported at less than 2.4 ug/l. Manganese, iron, and Total Dissolved Solids (TDS) exceeded the Class I Groundwater Regulatory Limits. However, these levels are considered naturally occurring because the background (upgradient) levels also exceeded the Class I Standards.

Generally, the constituents present in the surface and subsurface soil have not impacted the groundwater.

Of the nine Production Waste samples collected and analyzed for TCLP parameters, three were deemed hazardous because they exceeded the regulatory limits. For disposal purposes, two production waste samples maintain the Hazardous Waste Number D007 (Chromium) and one Production Waste sample maintains the Hazardous Waste Number D008 (Lead).

7.2 RECOMMENDATIONS

c.

•

Base on the current site characterization data, M&E recommends the following:

Phase II investigation

Conduct additional field work as part of a Phase II investigation before
performing a baseline Risk Assessment. The purpose of the Phase II activities
will be to better delineate or define the boundaries of surface and subsurface
impact. This further delineation will aid in the determination of volume of
impacted area so the remedial alternatives can be refined. Additionally, Phase

If activities are recommended to determine if off-site areas have been impacted by former tannery operations.

- Install several deeper monitoring wells to determine if deeper stratigraphic units or groundwater bearing zones have been impacted from past tannery operations.
- Collect a second round of groundwater samples from all seven monitoring wells. This additional groundwater data will help to confirm the presence or absence of constituents of concern in the groundwater.
- Reduce the investigation analyte list for both soil and groundwater in Phase II
 (e.g. only sample those parameters which were detected in elevated levels
 during the first phase of the RI).
- Collect soil samples and analyze for select inorganic TCLP parameters, specifically chromium, lead, mercury, and arsenic. These analyses will aid in the determination of whether the material should be treated as a hazardous waste. This will also help in the selection of remedial alternatives.
- Analyze for hexavalent chromium to differentiate the speciation of the valence states during Phase II activities of the RI. Chromium, can be present in the surface and subsurface in two valence states with different toxicities; trivalent chromium (Cr⁺³) and hexavalent chromium (Cr⁺³).
- As determined during the Remedial Investigation, three production waste samples exceeded TCLP regulatory levels; two samples exceeded the limit for chromium and one sample exceeded the limit for lead.

The samples which exceeded the TCLP chromium level, PW-5, and PW-9, represent partially decomposed hide material, much of which is buried. Prior to addressing removal, these materials should be characterized in terms of the valence state of the chromium, and the extent to which the buried hide wastes exist on site.

Speciation of the valence states during the Phase II study parameters will assist in the pursuance of the chromium waste exclusion, as stated in 35 IAC • 721.104 (b)(6), as it pertains to tannery waste streams.

The sample which exceeded the TCLP for lead, PW-4, represents a small quantity of a solid orange material which appears to have once been containerized in now deteriorated five gallon cans. This waste, which appears to be localized to a small surface location, should be removed from the site in an appropriate manner.

Baseline Risk Assessment

Conduct a Baseline Risk Assessment. By definition, a baseline Risk Assessment is an analysis of the potential adverse effects (current or future use) caused by hazardous substance releases from the site in absence of any actions to control or mitigate these releases (reference). The result of the risk assessment for the former tannery will be used to document the magnitude of risk at the site, determine what actions are necessary, and aid in developing remediation goals. The scope of the risk assessment will be directed at potential risks to human health and the environment posed by exposure to impacted soil and groundwater. Chemicals of potential concern will consist of a detailed evaluation of the analytical data, analysis of sources of environmental impacts and site characteristics, and a review of potential migration pathways. The Risk Assessment should be conducted in accordance with applicable Risk Assessment guidelines. An ecological Risk Assessment should also be conducted as part of the Baseline Risk Assessment because the site is located within sensitive areas (wetlands). An Ecologic Risk Assessment is a process which evaluates the likelihood of adverse ecological effects that may occur as a result of exposure. The Ecological Risk Assessment is designed to detect existing risks or forecast the risk of stress.

SECTION 8.0 REFERENCES

- Berg, Richard C., and John P. Kempton, 1988, <u>Stack-Unit Mapping of Geologic Materials in Illinois to a Depth of 15 Meters</u>, Circular 542, Illinois State Geological Survey, Illinois Department of Energy and Natural Resources, Champaign, Illinois.
- Berg, Richard C., John P. Kempton, and Keros Cartwright, 1984, <u>Potential for Contamination of Shallow Aquifers in Illinois</u>, Circular 532, State Geological Survey Division, Illinois Department of Energy and Natural Resources, Champaign, Illinois.
- Sheaffer, John R., and Arthur J. Zeizel, 1966. <u>The Water Resource in Northeastern Illinois: Planning Its Use</u>, Technical Report No. 4, Northeastern Illinois Planning Commission, Chicago, Illinois.

C

- Singh, Krishan P., Ph.D., P.E., and J. Rodger Adams, Ph.D., 1980 Adequacy and Economics of Water Supply in Northeastern Illinois: Proposed Groundwater and Regional Surface Water Systems, 1985-2010, Illinois State Water Survey, Illinois Institute of Natural Resources, Urbana, Illinois.
- Visocky, Adrian P., Marvin G. Sherrill, and Keros Cartwright, 1985, Geology.
 Hydrology, and Water Quality of the Cambrian and Ordovician Systems in Northern Illinois, Cooperative Groundwater Report 10, Illinois State
 Geological Survey and Illinois State Water Survey, Illinois Department of Energy and Natural Resources, Champaign, Illinois.
 - Willman, H.B., 1971, <u>Summary of the Geology of the Chicago Area</u>, Circular 460, Illinois State Geological Survey, Illinois Department of Registration and Education, Urbana, Illinois.

0

LAKE COUNTY T45N, R12E, SEC 15

SOURCE: U.S.G.S. WAUKEGAN, ILLINOIS

FIGURE 2-1 SITE LOCATION MAP

COMMONWEALTH EDISON COMPANY
FORMER ORIESS-PFLEGER TANNERY
WALKEGAN, ILLINOIS

LAKE COUNTY T45N, R12E, SEC. 15

SOURCE: U.S.G.S. WAUKEGAN, ILLINOIS

SCALE 1:24000

FIGURE 2-1 SITE LOCATION MAP

COMMONWEALTH EDISON COMPANY FORMER GRIESS-PFLEGER TANNERY WAUKEGAN, ILLINOIS

MWG13-15_47137

MWG13-15_47141

MWG13-15_47143

MWG13-15_47144

0

LAKE COUNTY T45N, R12E, SEC. 15

SOURCE: U.S.G.S. WAUKEGAN, ILLINOIS 1980 AND ILLINOIS STATE WATER SURVEY

0 1/2 1 MILE 0 1000 2000 3000 4000 FEET

SCALE 1: 24000

= PRIVATE WELL LOCATION

FIGURE 3-7 WELL LOCATION MAP

COMMONWEALTH EDISON COMPANY FORMER GRIESS-PFLEGER TANNERY WAUKEGAN, ILLINOIS

METUVIE IN EUDA

MWG13-15_47149

MWG13-15_47150

MWG13-15_47151

MWG13-15_47152

MWG13-15_47153

MWG13-15_47154

MWG13-15_47155

MWG13-15_47156

MWG13-15_47157

MWG13-15_47158

MWG13-15_47160

MWG13-15_47162

ILLINOIS DEPARTMENT OF PUBLIC HEALTH WELL CONSTRUCTION REPORT 1. Type of Well C. a. Dag, Bored, Hole Diem,in, Depthit. Cuth material, Burled Sigh: Yes No b. Driven, Drive Pipe Diem,in, Depthit. c. Drilled, Finished in Drift, In Rock, Tubular, Gravel Packed, d. Grout: (KIND)	at depth 75 to 76 it. Sec. 14. Screen: Diam. 19. Two.	Well No	1974 21 3MOV
2. Distance to Nearnet: Building A Ft. Seepage Tile Field 7. Cess Pool Sewer (non Cast Iron) Privy Septic Tank Barnyard Leoching Pit Hamme Pile 3. Is water from this well to be used for human consumption? Yes No No 7.	16. Stre Hole below coming: 4 in. 17. Static level	المالية المالية	ft.
5. Permanent Pump Installed? Yes No Manufacturer NED THEKET Type Sun	Blue CLAY	74	19
Capacity O gpm. Depth of setting 90 ft. 6. Well Top Sealed? Yes No	GRAUPL.	6	
9. Water Sample Submitted? YesNoNoNoNoNo	(CONTINUE ON REPARATE SHEET IF RECESSARY)		

White Copy — III, Dup L of Public Heal th Yellow Copy — Wall Court schol Shup Copy — Wall Dustes

c.

HETHUCTIC TO SMILLERS

PILL IN ALL PERTINDIT INFORMATION REQUESTED AND MAIL ORIGINAL TO STATE DEPARTMENT OF PUBLIC HEALTH, CONSUMER HEALTH PROTECTION, 533 WEST JEFFERSON, SPRINGFIELD, ILLINOIS, 63761. DO NOT DETACH GEOLOGICAL/WATER SURVEYS SECTION. BE SURE TO PROVIDE PROPER WELL LOCATION.

15. Casing and Liner Pipe	[
Dies. (is.) Stad and Weight From (FL) T	
5 PVC 2'abv.grd.	88 38CT ON TLAT
	NWWWINE
16. Sive Hele below coning: 5 in.	
17. Static level 55 ft, below coming top which	l# 2 ft.
shows around level. Pumping level [1, 1	ches pumoing et 8-10_
gom forhours.	,
	Inches Daniel of
10. FORMATIONS PARKED THROUGH	THECK HESS DEPTH OF
Brown Clay	10 10
Rhua Clav	75 85
Sand-Gravel	3 88
	
	.
	l 1
	
	
	1 1
	5 PVC 2'abv.grd. 16. Size Hale below coning: 5 in. 17. Static level 55 ft. below coning top which above ground level. Pumping level 11. v gpm for bours. 18. FORMATIONS PARKED THROUGH

1. Type of Well
a. Dug_____ Bor
Curb material_

2. Distance to Negrest; Bullding_

b. Driven, c. Drilled Tubular

d. Grout:

Cess Pool.

Septic Tenk

Leaching Pit

4. Date well completed 5. Personent Pump Installed? Manufacturer

Capacity 10 gpm.

6. Well Top Sealed? Yes_ 7. Pilless Adaptor Installed? 8. Well Disinfected? - Yes_ 9. Water Sample Submitted? Yes,

Privy.

Yes_

ILLINOIS DEPARTMENT OF PUBLIC HEALTH

WELL CONSTRUCTION REPORT

. Gravel Pecked,

3. Is water from this well to be used for human consumption?
Yes No No

No.

.. Hole Diam. 5 in. Depth 244 ft. Burled Slebt Yes No No Drive Pipe Diam. 5 in. Depth 245 ft. Flaished in Drift In Rock

7ROW (FL)

Ft. Seepage Tile Field

Barayard_

Depth of setting.

Marrie Pile

Sewet (son Cost ifen).

Sewer (Cant Iron)

1

INSTRUCTIONS TO PROCEEUS

FILL IN ALL PERTINENT INFORMATION STATE OFFICE BUILDING, STATE DE-PARTMENT OF PUBLIC HEALTH, NOON STATE OFFICE BUILDING, SPRINGFIELD, ILLINOIS, 52705. DO NOT DETACH GEOLOGICAL/BATER SURVEYS SECTION. BE SURE TO PROVIDE PROPER WELL, LOCATION.

CEOLOGICAL IND WAS

Deller WE 1509. 1. Permit No. NE 1509. 2. Water from Grane	4	Li Dete . 13. Co	6/9/	50 22:0		
at depth 2470 247th. Screen: Diamin. Length:ft. Slot		Sec Tw		Ź		Ē
. Casing and Lines Pipe	•	Ele		E	a	Н
Non. (in.) Eind and Volght		From (Pt.)	To (21.)	١	BIOT	
5 90Pm ++	0	0	245	ME	CATION TION	PLAT
1 1481 10	7			30	4 12	/50%
	-		-		دسع	
Size Hole below contag: Static levelft. below above ground level. Pumpin apper forbours. PORMATIONS PASSED 77	ocalag ig level	too whi	ch is when pu			
Static level 20 ft. below above ground level. Pumpin gpm for hours. PORMATIONS PASSED TO	ocalag ig level	too whi	THICH	HESS	DEPT	
Static level 20 ft. below above ground level. Pumpin gpm for bours. PORMATIONS PASSED TO BLACK CLUL	ocalag ig level	too whi	THICH	# t ss		
Static level 20 ft. below above ground level. Pumpin gpm for bours. PORMATIONS PASSED TO Black click Ufficel life	ocalag ig level	too whi	THICH	HESS	DEPT	
Static level 20 ft. below above ground level. Pumpin gpm for bours. PORMATIONS PASSED TO BLACK CLUL	ocalag ig level	too whi	THICH	3 9	DEPT	
Static level 20 ft. below above ground level. Pumpin gpm for bours. PORMATIONS PASSED TO Black click Ufficel life	ocalag ig level	too whi	THICH	3 9	DEPT	
Static level AC ft. below above ground level. Pumpin gpm for bours. PORMATIONS PASSED TO BLACK Click Lyfird Life Llice Clay Landy Alacy	ocalag ig level	too whi	THICH	3 9	DEPT	
Static level 20 ft. below above ground level. Planpin gpm for bours. POEMATIONS PASSED TO Black click Whise Clay Landy Clay Landy Clay Landy Clay Landy Clay	ocalag ig level	too whi	THICH	3 9	DEPT	
Static level AC ft. below above ground level. Pumpin gpm for bours. PORMATIONS PASSED TO BLACK Click Lyfird Life Llice Clay Landy Alacy	ocalag ig level	too whi	THICH	3 9	DEPT	
Static level 20 ft. below above ground level. Planpin gpm for bours. POEMATIONS PASSED TO Black click Whise Clay Landy Clay Landy Clay Landy Clay Landy Clay	ocalag ig level	too whi	THICH	3 9	DEPT	
Static level 20 ft. below above ground level. Planpin gpm for bours. POEMATIONS PASSED TO Black click Whise Clay Landy Clay Landy Clay Landy Clay Landy Clay	ocalag ig level	too whi	THICH	3 9	DEPT	

IDPH 4.044

10/68

REMARKS:

MWG13-15_47165

Thile Public Health
Filles — Velt Contractor
Blue Copp - Well Owner

INSTRUCTIO DAULLERS

FILL IN ALL PERTINENT INFORMATION DESTED AND MAIL ORIGINAL TO STATE DEPARTMENT OF PUBLIC HEALTM, CONTOUR HEALTH PROTECTION, 335 WEST JEFFERSON, 3PRINGFIELD, ILLINOIS, 62761. DO NOT DETACH GEOLOGICAL/WATER SURVEYS SECTION. 'BE SURE TO PROVIDE PROPER WELL LOCATION.

ILLINGIS DEPARTMENT OF PUBLIC HEALTH WELL CONSTRUCTION REPORT

	K(ME)	PROM (PL)	
	100		
Ot as an a Manager			
Distance to Neutost: Building	E1 E4	epage Tile Fi	ald
Cess Pool		wer (non Cast	
		wer (Cost Iron	
Privy			
Sebne 1 cmr		DEYELS THE	
Leaching Pit Wall furnishes water (449		too Y No
Hott tourrepes Added	6/20/	1.300 p.100 r 1 77	110.
Date well completed. Permanent Pump Last	11-12 4	77-4-	N-
Petmanent Pump Last	Hiedr 1632 Dackotm	Subm	110,
Manufacturer Red	Deve of Abo	Local 15	U
Capacity10 gpm.	Thebra or se	arrind ——The	<u>v</u>
Well Top Sealed? Ye Pitiese Adopter Insta	11-42 No.		
LITIESS VOODIEL TEETS	liogr Igs	A No.	- Ann
44 (UST	Tellis	Though turn	1007
Menufecturer H11	-3 6	100	
Hanniacturer Will How attached to casi	ng?fpn	amo	
Handscturer W11 How attached to casi Well Disinfected?	ng?CL YesY	No	
Hanniacturer Will How attached to casi	ng? <u> </u>	No	No

GEOLOGICAL AND WATER SURVEYS WELL RECORD

Driller 1. Permit 2. Water f at dept 4. Screen	MENRY ROYSEN CO. No. 58959 Limestone 209 to 218 A. Dien. in	Licens Date	• 1301[4/\4/7]	ke		
	and Liner Pipe				SHOT -	
5 5	PVC Galv.	qrade 197	197	1006 1038 1038 1038	ATION IN TON TON PLAT	μ
7. Static	ole below casing: 5 level 121 it. below ca ground level. Pumping l	mind too Apr	ph le when po	1 uzplac	ft. et <u>8-10</u>	
7. Statte above gpm to	lavel <u>121</u> ft, below ca	evelft	ph la when po			
7. Statte above gpm to	level 121 ft. below or ground level. Pumping I rbours. GRMATIONS PASSED THE	evelft	THICH		et 8-10	
7. Static above gpm to	leveliCl ft. below co ground level. Pumping l rbours. GRMATIONS PARSO THE lay	evelft	when pu	111111	et 8-10	
7. Static above gpm to 18. ** Brown C	leveliCl ft. below co ground level. Pumping l rbours. GRMATIONS PARSO THE lay	evelft	THE 1	2	et 8-10	
17. Static above gpm fo 18. 3 Brown C	level icl fit below or ground level. Pumping 1 r bours. TORMATIONS PASSED THE LAY BY	evelft	THE S	2 7	et <u>8-10</u> 말등자동합 12 99	
17. Static above gran to 18. 1 Brown C Blue Cl Gravel Blue Cl	level icl fit below or ground level. Pumping 1 r bours. TORMATIONS PASSED THE LAY BY	evelft	THE S	2 7 2	12 99 101	
17. Static above gran to 18. 1 Brown C Blue Cl Gravel Blue Cl	leveliCl ft. below conground level. Pumping level. Pumping level. Bouta. **CREMATIONS PARSED THREE By By By By By By By By By	evelft	1 8 5	2 7 2 :	12 99 101 158	
17. Static above gym to 18. Brown C Blue C1 Gravel Blue C1 Blue C1	leveliCl ft. below conground level. Pumping level. Pumping level. Bouta. **CREMATIONS PARSED THREE By By By By By By By By By	evelft	1 8 5	2 7 2 ·	12 99 101 158 209	

IDPH 4.045 1/74 - KHM-1

MWG13-15_47166

White Manual Company of the Manual Company o

INSTRUCTION DRILLERS

FILL IN ALL PERTINENT INFORMATION UESTED AND MAIL-ORIGINAL TO.STATE
DEPARTMENT OF PUBLIC HEALTH, CONSUMER HEALTH PROTECTION, 535 WEST
JEFFERSON, SPRINGFIELD, ILLENOIS, 62761. DO NOT DETACH GEOLOGICAL/WATER
SURVEYS SECTION. BE SURE TO PROVIDE PROPER WELL LOCATION.

2	O

illinois de	PARTMENT	0F	PUBLIC	HEALTH
AELL	CONSTRUC	TIO?	REPOR	T

Address Day	tom Limestone 13. Com	Well No. \$5 1 IL. 10 No. 102- 10 9/9/77 10 Lake	11 Linden -6
2 Distance to Necrest: Building Ft. Seepage Tile Field 5 Cess Pool Sewer (non Cast tran) Privy Sewer (Cest Iron) 18. Size H Septic Tank Bornyard 17. Static I Leaching Pit Manure Pile 2009 18. Static I A Date well completed 9/30/77 5. Permanent Punp Installed? Yes X Date 10/12/77 No 18. Ft. Manufacturer Red Jacket Type Sibba Location Brown Copacity 10. gpm. Depth of Setting 100 Ft. 6. Well Top Sealed? Yes X No Type 8 Blue C1 7. Pitleas Adapter Installed? Yes Y No Grave 100 Ft. Brown Copacity 10. gpm. Depth of Setting 100 Ft. Brown Copacity 10. gpm. Depth of Setting 100 Ft. Brown Copacity 10. gpm. Depth of Setting 100 Ft. Brown Copacity 10. gpm. Depth of Setting 100 Ft. Brown Copacity 10. gpm. Depth of Setting 100 Ft. Blue C1 Pitleas Adapter Installed? Yes Y No Grave 100 Ft. Brown Copacity 10. Gpm. Depth of Setting 100	Dicais. Twp	9.8e 45N 12E	
Building Fi. Seepage Tile Field 5 Cess Pool Sewer (non Cost tran) Privy Sewer (Cast tran) 18. Size H Septic Tank Bornyard 17. Static I Leaching Pit Manure Pile 2. Well furnishes water for human consumption? Yes Y No gpm for 4. Date well completed 9/30/77 5. Permanent Pump Installed? Yes X Date 10/12/77 No 18. F Manufacturer Red Jacket Type Subbn Location Brown C Copacity 10. gpm. Depth of Setting 100 Ft 8. Well Top Sealed? Yes X No Type 81 Blue C1 7. Pitless Adapter Installed? Yes Y No Grave 10 Grave 10 Blue C1 Manufacturer Will 1 18815 Model Number 10 Grave 10 Brown C	Kind and Weight From (FL)	70 (2)3	MOT
Cess Pool Sewer (non Cest fron) Privy Sewer (Cast fron) 18. Size He Sever (Cast fron) 19. Statle in the Sever (Cast fron	free or	120 886	CATION IN
Ceas Pool Sewer (non Cast iron) Privy Sewer (Cast iron) Sewer (Cast iron) 18. Size He Septic Tank Barnyard Leaching Pit Manure Pile chove a gpm for delivery and the properties of the prope		350 7	1515, 1251
Servicy Servicy Gast Iron) Servicy Gast Iron) 18. Size H 17. Static I above a A Date well completed 9/30/77 Servicy Gast Date 10/12/77 No Manuscriver Red Jacket Type Subm Location Copacity 10 gas Depth of Setting 100 Ft Well Top Sealed? Yes X No Type Blue C1 Pitless Adapter Installed? Yes X No Type Monufacturer Will 1885 Model Number Monufacturer Will 1885 Model Number Server Service Red Jacket Brown C Gravel How attached to create 2 C 18800		w	عزد , حدث ع
6. Well Top Seeded? Yes_Y No	pound level. Pumping level ftbours. DEMATIONS PASSED THEOUGH		BEPTH OF
d. Well Top Socied? Yes_Y_No	lay	5	5
Monufacturer Williams Model Humber Gravel How stochad to contend 2 C 2000	ay	23	28
How etteched to cosine? Clamp Rlue Cl		6	
	ly - Gravel		34
well trainfecteds. Ass V No		58	92
mil and referiberate Districted . Idn. V No		2	94
Location	ly - Gravel	55	149
1. Woter Smaple Submitted? Yes X No Limeston		4	153
SHELD	ie		
Limestor (CONTINUE		2	155

h sut of Public Health Yellow Copy — Well Contractor Sive Copy — Well Contractor

C

INSTRUCTION TO DRILLERS

FILL IN ALL PERTINENT INFORMATIL. REQUESTED AND MAIL OSIGINAL TO STATE DEPARTMENT OF PUBLIC HEALTH, CONSUMER, HEALTH PROTECTION, SIS WEST JEFFERSON, SPRINGPIELD, ILLINOIS, 62761. DO NOT DETACH GEOLOGICAL/WATER SURVEYS SECTION, BE SURE TO PROVIDE PROPER WELL LOCATION.

ILLINOIS DEPARTMENT OF PUBLIC HEALTH WELL CONSTRUCTION REPORT

•	Type of Well G. Dog Bared Hole Diam. 5 in. Depth 97 Curb material Buried Sight Yes No b Driven Drive Pipe Diam in. Depth c. Drilled Flaished in Drift in Rock Tuhular Gravel Packed	ft.
	d. Grout: (EIND) FROM (FL) TO (FL)	
		٦.
		٦.
		٦.
L	Distance to Negrest:	
	Building Ft. Seepage Tile Field	-
	Cess Pool Sewer (non Cost iron)	
	Privy Sewer (Cast Iron)	_
	Septia Tank Barnyard	_
	Leoching Pit Henute Pile	_
1	Leaching Pit Memure Pile X_No	_
L	S. J 11 americand 21/E////	
5.	Determent Pump Installed? Yes X Date 9/29/77 No.	
	Menufacturer Ked Jacket Type Subm. Location	_
	Capacity 10 gam. Depth of Setting 60	FL
6.	S. Well Top Socied? Yes X NoType	
7.	7. Pitlana Adenter Installad? Yan X No	
	Honolocturer Baker Snappy Model Number	_
	How ettocked to costag? Clamp	
8.	B. Well Disinfected? Yes_XNo	
9.	9. Pump and Equipment Disinfected? Yes X No.	
0.). Pressure Tank Size_42_gal. Type_Well-X-Tral	
	Location	
	1. Weter Emple Schmitted? Yes Y No No	

11. Permit 12. Water 5 ot dept 14. Screen:	9 000 BUSCH & 1 1015 Shiloh 1015 Shiloh 1	Dr., Zion, I Licens Dete	No. 9/	9/77 ake
	and Liner Pipe	Fran (FL)		LOCATION IN
	PVC	grade	95	175W 1504,56%
16. Size H	ole below cusing: levei 48 (t. below ground level. Pumplo	coaled top whi	ch lv	

18. FORMATIONS PASSED THROUGH	THICKNESS	PERTIL OF
Brown	12	12
Blue Clay	4	16
Grave)	2	18
Blue Clay	31	49
Grave)	2	51
Blue Clay	29	80
Blue Clay - Gravel	. 6	86
Sand - Gravel	11	97
()		l

(CONTINUE ON ASPARKTE SHEET IF NECESSARY)

1/19/78

IDPH 4.885 1/74 - KNB-1

MWG13-15_47168

		- 1
	CofPublic Health	l
Yeller	y - Well Contractes	8
	- 5010000	

c. Dellied

Bulldton

Tubular

 \mathbf{c}

MATHURATIONS TO PROFESSION

FILL M ALL PERTIMENT IMPORTATE REQUESTED AND MAIL ORIGINAL TO STATE DEPARTMENT OF PUBLIC MEALTH, "O" "MER HEALTH PROTECTION, 515 WEST JEFFERSON, SPRINGFIELD, ILLANOIS, 52... DO NOT DETACH GEOLOGICAL/WATER SURVEYS SECTION. BE SURE TO PROVIDE PROPER WELL LOCATION.

ILLINOIS DEPARTMENT OF PUBLIC HEALTH GEOLOGICAL AND WATER SURVEYS WELL RECORD **WELL CONSTRUCTION REPORT** 10. Property owner BUSCH & LARSON Well Address 1015 Shiloh Blyd, Zion II. Dellier GEORGE E. GAFFKE Licease No 11. Permit No. 85336 Date 5/8 12. Water from Gravel 13. County red ____. Stele Diam. 5 _____ tn. Depth 95 _ft. ___. Beried Sleb: Yes _____ tfo ______ to. __. Drive Pipe Diam. ______ in. Depth _____ ft. __. Finished in Drift X _____ in Rock _______ . 1. Type of Well e. Dog_____, Bore Cub meterial_ __Licease No.__1 __Date __5/8/79 __13. Comity Lake b. Driven_

d. Grout:	- Glassi L			14. Screen: Diam. 5 in.		Twp. 45H	
e. Grout.	(KIND)	PRUM (PL)	TO (FL)		:_3_n. Siel_10		. 12F
	22						v
				15. Castag	and Liner Pipe		
	10			Olem. (to.)	Eine sad Volgbi	free (FL)	To (Fa.)
2. Distance to I	leggest:			5	PVC .	arada	93
B.d.b.							

et depth 92 to 95 tt.

(CONTINUE ON SEPARATE SHEET IF RECESSARY)

Cess Pool Sewer (non Cest iron) Privy Sewer (Cest iron) Septic Tenk Bornyard Leochieg Pit House Pile 1 Well furnishes water for human consumption? Yes X No	16. Size Hole below cusing: 5 tn. 17. Stolic level 43 ft, below cusing top w	rhich is	ft ug at 6-10
4. Date well completed <u>5/8/79</u> 5. Personent Pump fastelled? Yes X Date <u>6/15/79</u> No	18. PORMATIONS PARES THROUGH	THICKNESS	SESTING P
Manufacturer Red Jacket Type Subm. Location Capacity 10 gpm. Depth of Setting 80 F		10	10
6. Well Top Souled? Yes X No Type	Blue Clay	35	45
7. Pitless Adopter Installed? Yes I No Model Number Model Number	Sand	6	51
How ettoched to coulie? Classo	Blue Clay	41	92
6. Well Disinfected? Yes Y No 9. Pump and Equipment Disinfected? Yes X No	Srave)	3	95
10. Pressure Tank Size 42 gal. Type Well-X-Trol Location			
11. Water Scaple Submitted? Yes X No			

11

10014 4.461 1/74 - KNB-1 (10076-12)34 8rs-

MWG13-15_47169

DATE_11/16/79

Well N48644 N.1 1nden

Sec. 9 8

DEPARTMENT OF ILLINOIS

DEPARTMENT OF EACHOR

JOAN O. ANDERSON

DIRECTOR, SPRINGFIELD

BOARD OF NATURAL RESOURCES

AND CONSERVATION

AN G. ANDERSON

CHAIRMAN

SIGLODY

THOMAS FARK

CHEMISTRY

H. S. GUITOWSKY

ENGINEERING

ROBERT M. ANDERSON

FORESTRY

STANLEY X. SHAPIRO

GEOLOGY

LAURENCE L. SILOR

GEOLOGY

LAURENCE L. SILOR

GEOLOGY

LAURENCE L. SILOR

SOUTHERN ILLINOIS UNIVERSITY JOHN C. GUYON

UNIVERSITY OF ICLINCIS WILLIAM C EVENIT

10 10

Illinois State Water Survey

WATER RESOURCES BUILDING

MAJE: BOX 237, URBAHA, IELINOIS \$100)

PHONE SILLER

WILLIAM C. ACKEUMANN, Chief

Northern Regional Office
P. O. Box 409
Warrenville, IL 60555
August 15, 1978

Mr. William:G.S Roeing.
Roeing-and Carlson; Mrtd. of Water
33 North County Street, Suite 400
Waukegam; TL/60085
Earrouvilla. Illinois 40075

Dear Mr. Rosing:

Re: Glan Flora Country Clu-I am writing in response to your request for suggestions on developing a well:supply for sprinkling purposes at the Glan Flora Country Club.

After I received your letter I talked with John Huesann re-125 garding the test wells drilled for the Club. Based on that correspond and the copy of the records you sent me, I would suggest you drill a 10- or 12-inch well at Site No. 5. Drilling should penetrate the entire thickness of the dolosite rock in order to take advantage of all the potential water-yielding crevices. It would be reasonable to consider the possibility of treating the well with 1000 to 2000 gallons of dilute hydrochloric acid after construction is completed. Such treatment is for the purposes of removing fine material from existing crevices so that what water is present can move into the well have more readily.

Very truly yours, STATE WATER SURVEY DIVISION

Robert T. Sasman Hydrologist

NZ2

ROSING AND CARLSON, LTD.

A PROFESSIONAL CORPORATION

ATTORNEYS AT LAW

33 HORTH COUNTY STREET, SUITE 400

WAUKEGAN, ILLINOIS 60085

Telephone 312-662-4321

387 GEDAR LARE ROAD POUND LARE, ILLINOIS 60073 TELEPHORE 312-546-4322

August 10, 1978

Mr. Robert Sassmon Illinois Department of Water Survey P.O. Box 409 Warrenville, Illinois 60555

Re: Glen Flora Country Club

Dear Mr. Sassmon:

MOEJRAD, M. CAPLEON

STEPHEN O. APPLEHANS

JAHER T. MADEE

As you may recall, we talked prior to you going on your vacation in June, concerning a water problem of at Glen Flora Country Club in Waukegan, Illinois. The Club currently has two 25 foot wells serving the course plus a supply of city water. We had Mr. Hiemon of Johnsburg drill two test wells with the idea of placing a new well on the course. One test well was near our fifth hole and the other near the eleventh. Enclosed are the results of the two test wells. The Club would appreciate any assistance that you could give to us in our endeavor to place a well on our property with some minimum assurance of a reasonable water source.

Thanking you for your assistance.

Very truly yours,

William G. Rosing

WGR/nab

Enclosure

6.P.M. ELECTAICAL SOURCE

WELL STATIC.

<u>15</u>	#10
Section 15:3E Twp. No.	County Lake Range 12 E
Date drilled /929 Depth /670	Address Hev. above sea level top of well 585
1540' my. Sime	ne 990' to St. Peter 1150 Dres
- Were drill cuttings saved NO	Where filed
Sixe hole If reduced, when Casing record 550' of 15" 1	
Distance to water when not pumping	79 Distance to water is 172'
Reference point for above measurement	G. P. M. for hours
Type of pump B. J. Turber	
Length of cylinder Length stroke None	SpeedSpeed
C Hours used per day	Type of power Cle the Miles
Rating of motor 125 HP	Rating of pump in G. P. M.
Can following be measured: (1) Stati	c water level No
(2) Pumping level No	(8) Discharge 185 117, 278, 000 gr 1957
(4) Influence on other wells 10 o	
Temperature of water.	Was water sample collected No
Date Q.	c 24, 1958 Effect of water on meters, hot water
coils, etc	
Date of Analysis	Analysis No.
	Recorder Robert Badman
	Date March 9, 1759

SEA	NŢ BY:ENVIRONM	ENTAL HEALTH WATER WELL APPLI	; 9- 8-03 ; 4:5 Cation/Permit	IDI THAKE CONNIT	HEALTH -	17087751158:# 1
		Lake County Heel	th Department		190 🚛	3-16-0591
Veukega	end Avenue in, IL 60083 i60-6740	121 E. Grand Lake Viile, (708) 336-62	Avenue t	18 &. Haln Street Neuconde, IL 60084 (708) 526-1125	Fee Pal	
	4.				Defu	111814
S-E304)	APPLICATION	rtruct er Dospos FOR PERMIT TO COM	\$100.00 FOR A	ABANDON A WATER WELL		
1.	Vall Over-Cur	rent Matiling Addr	2000	Contractor Lic. #_	102 - 002 -00	
	Commonwealt Peter B. Mc	h Edison				Econoloubur Gaste
<u> </u>	One First W	scional Plaza,	10 S. Dearbox	Town Buters L	40	Consect Consect Consection
	Address Chicago	п	60190	Address		
Te	City Sephone No. (3	21sts 12- 394-4470	Zip Teler	MADITALE CITY Phone No. 408 1-25	State	21,
	Location-Count	y. Taka		City Vaukegan		More
~ ~	Lot #	Sibdivision Kana		gar Township None	Waukegan	Location in Section Plat
			S (N) Range Quarter of the		H-4 -	
	WHENT INDEX NO.	CP130 08 -	15 - 100 - 005			
7	A. () Privat	w Water Hell (Ser	repair or ebandor ves a owner eccup! Lierves less than	led real decora	es, Asselment, etc.	ar will see
e Fo	A. () Privat B. () Seal-P C. () Non-Co D. EX Hon-Pe	e Vater Hall (Ber rivate Vater Hell resulty Public Va Isbie Vater Hell.	ves a owner accupi (Serves less than ter Vell (Serves a Please Specify	n) led realdenom) n 25 people) — Sumlar more than 25 non-real Environmental Gr	dest people) oundwater Moni	coring Well
5.	A. { 3 Privat B. (3 Sent-P C. (3 Non-Co D. EX) Non-Pe Is there snoth If there is an	e Vater Hell (Servivete Vater Hell remaity Public Va table Vater Hell er well on proper excisting well on	tes a sumar accuping the very less than the less specify. Ty? Potential e alto, will it be	led realdence) 1 23 people) - Sunface 1 25 people) - Sunface 1 surroumental Gr 1 surr	dent people) oundwater Hond	
5.	A. () Privat B. () Sent-P C. () Non-Co D. EX Hon-Fe IS there snoth If there is an hrought up to is public vate	e Vater Hell (Servivete Helt Hell Hell (Serville Vater Hell on proper existing well on mode () and by responsively available	tes a surer ecoup (Gervee less that for Well (Servee I Please Specify ty? Potential e alto, will it be what detet	led residence) 1 23 people) - Susing 1 23 people) - Susing 1	dent people) oundwater Honi er groundwater at (X); or units on-	coring Well conitoring Well of cown construction is
-	A. () Privat B. () Sent-P C. () Non-Co D. EX Hon-Fe IS there snoth If there is an hrought up to is public vate	e Vater Hell (Servivete Hele Hell (Servivete Hell (Servi) Water Hell (Servi) er well on proper existing well on mode () and by r supply available o supply sore that	ter we less that the Well (Serves to Please Specify ty? Potential e alte, will 14 ba what detet at No 17 a one residence or	led residence) 1 23 people) - Susing 1 23 people) - Susing 1	dest peeple) oundwater Honi: er groundwater et (X); or unic on-	coring Well conitoring Well of construction is
-	A. () Privat B. () Sent-P C. () Hon-Co D. EXD Hon-Pe is there snoth if there is an Arought up to in public wate is this well ? Water Well inf	e Vater Hell (Servivate Hater Hell mently Public Vater Hell or proper existing well or code () and by a supply available or supply acre that oraction	ter we less that ter Well (Serves a Please Specify_ Ty? Potential e alte, will it be what detel at Mo	led residence) 1 23 people) - Susing 1 25 people - Susing 2 people - Susing 3 people - Susing 3 people - Susing 4 people - Susing 5 people - Susing 6 people - Susing 6 people - Susing 6 people - Susing 6 people - Susing 7 people - Susing 6 people - Susing 7 people - Susing 8 people - Susing 9 people - S	cont people) coundwater Hond: er groundwater et (X); or units on- lic supply	coring Well construction is site.
- -	A. () Privat B. () Sent-P C. () Non-Co D. (3) Non-Pe is there snoth if there is an arought up to in public wate in this woil ? Vater Well inf Anticipated De	e Vater Hell (Servivate Natur Hell on Hello Vater Hallo Vater Hall	ter we less that ter Well (Serves a Please Specify_ ty? Potential e alte, will it be whet detet at me residence or 7.	led residence) 1 23 people) - Sunine 1 25 people) - Sunine 1 25 people) - Sunine 1 25 non-resi Environmental Gr 1 25 that anoth 1 293 1 200 distance to pub 1 293 1 290 distance to pub 2 buildings 3 cond 4 (Cescribe)	dest peepla) oundwater Honis er groundwater et (X); or unit on- lic supply	soring Well sonitoring Well of hown construction is eite.
~ . ~ .	A. () Privat B. () Sent-P C. () Non-Co D. (3) Non-Pe is there snoth if there is an arought up to in public wate in this woil ? Vater Well inf Anticipated De	e Vater Hell (Servivate Natur Hell (Servivate Natur Hell (Servivate Hall (Servivate Hell (Servivate Hall (Serv	ter we less that ter Well (Serves a Please Specify_ ty? Potential e alte, will it be whet detet at me residence or 7.	led residence) 1 23 people) - Sunine 1 25 people) - Sunine 1 25 people) - Sunine 1 25 non-resi Environmental Gr 1 25 that anoth 1 293 1 200 distance to pub 1 293 1 290 distance to pub 2 buildings 3 cond 4 (Cescribe)	dest peepla) oundwater Honis er groundwater et (X); or unit on- lic supply	soring Well somitoring Well of hown construction is eite. 3 04 1993
COL	A. () Privat B. () Sent-P C. () Hon-Co D. EXD Hon-Pe is there enoth if there is an hrought up to in put its write in this woil ? Vater Well inf Disseter 2 ¹⁰ Anticipated De	e Vater Hell (Servive tester Hell mently Public Vater Hell on proper existing well on code () and by a supply available oraction Pt-/in- pts (Pt-) Unknown Gerved ——	ter we less that ter Well (Serves a Please Specify_ ty? Potential e alte, will it ha whet detet at one residence or 7.	led residence) 1 23 people) - Sunine 1 25 people) - Sunine 1 25 people) - Sunine 1 25 non-resi Environmental Gr 1 25 that anoth 1 293 1 200 distance to pub 1 293 1 290 distance to pub 2 buildings 3 cond 4 (Cescribe)	oundwater Honds er groundwater et (X); or units on- lic supply led (X); or units on- led (X); or units on- on- led (X); or units on- on- led (X); or units on- on- on- on- on- on- on- on	soring Well soultoring Well of hown construction is eite. 3 04 1993 NMENTAL HEALTH
CONTRACTOR OF THE CONTRACTOR O	A. () Privat B. () Seal-P C. () Hon-Co D. EX) Hon-Fe is there exect if there is an Arought up to in public wate is this well ? Water Well inf Anticipated De PLEIK if ITEM & when of Persons pe of Facility 8 Permit approve	e Vater Hell (Service Vater Hell mently Public Vater Hell on proper extisting well on code () and by r supply available o supply sore that oraction Pt./in. ptb (Pt.) Unknown Served	ter we less that the Well (Serves I Please Specify_ 197 Potential e alte, will it be what detel et No If a one residence of To-	led residence) (23 people) - Suning (24 people) - Suning (25 people) - Suning (Environmental Gr (Exists that anoth used (); shendone Angust 1993 yes, distance to pub building! Type of Well (Circ Driven Driven Bored (Describe)	er groundwater Hond: er groundwater Hond: er groundwater Hond: on- lic supply les Gne) les	soring Well somitoring Well of hown construction is eite. 3 04 1993 MMENTAL HEALTH
CONTRACTOR OF THE CONTRACTOR O	A. () Privat B. () Seal-P C. () Hon-Co D. EX) Hon-Fe is there exect if there is an Arought up to in public wate is this well ? Water Well inf Anticipated De PLEIK if ITEM & when of Persons pe of Facility 8 Permit approve	e Vater Hell (Served et vall on proper existing well on proper existing well on proper existing well on supply some that or seply some that or seply some that or set is the content of th	res a surer acception record to the Hell (Serves a Piesse Specify Piesse Specify ty? Potential e alte, will le be whet detet at No. If a one residence of 7. Con Information provat by this office	led residence) 1 23 people) - Suning 1 23 people) - Suning 1 25 non-resi Environmental Gr Exists that anoth used (); shandons Angust 1993 yes, distance to pub building) Type of Well (Circ Driven Bored (Describe) 100 Pump C	er groundwater Hond: er groundwater er groundwater ex (X); or unic on- lic supply le One) loc other epacity (cond) for other in well location t revocation	sonitoring well of hown construction is site. 3 04 1993 MMENTAL HEALTH
OCT	A. () Privat B. () Sent-P C. () Hon-Co D. EXD Hon-Pe Lis there exects if there is an Arought up to Lis public voite is this well ? Water Well inf Disnoter 2th Anticipated De MALKIK IF 1989 d wher of Permosa pe of Pecility S Permit approve provided witho	w Water Well (Service Water Well on well on proper existing well on proper existing well on code () and by reapply available on supply sore that oraction Pt./in. pts (Pt.) Unknown or see a	cas a surer accept the ter Well (Serves the Person Specify Please Specify Ty? Potential entry, will it be what detel entry to the control of	led residences 23 people) - Susine core than 25 nos-real Environmental Gr Exists that anoth used (); shandons August 1993 yes, distance to pub building? Type of Well (Circ Driven Dril Bored (Describe) Type of Well (Circ Pump C (I.o. restsurant, f revided. Any changes o may result in permit 7 770 C priver of Owner or Con	er groundwater Hond: er groundwater et (X); or unic condition on- lic supply le One) los opacity (condition actory, school story, school story tractor provide the follow [1]	soring Well somitoring Well of hown construction is eite. 3 04 1993 MMENTAL HEALTH 12 1993
COS ON Number of the Cos of the Cos of the Cos of C	A. () Privat B. () Seni-P C. () Hon-Co D. ED Hon-Fe Is there snoth If there is an arought up to in public varie in this woll ? Water Well inf Dissetur 2th Anticipated Da PLATE IF ITEM d mber of Persons pe of Fecility S Permit approve provided witho 2-G- Date Lot times and d Lot times and d	w Water Hell (Serivate Nature Hell (Series)) and by respity available of supply Screetian Pt./In. Pt./	cas a surer accept the ter Well (Serves the Person Specify Please Specify Ty? Potential entry, will it be what detel entry to the control of	led residences 2 25 people) - Suning 225 people) - Suning 225 char anoth 225 char anoth 225 char anoth 23 people) - Suning 225 char anoth 23 people - Suning 23 people - Suning 245 char anoth 25 char anoth 26 char anoth 27 people - Suning 25 char anoth 26 char anoth 27 char anoth 28 char anoth 29 char anoth 20 char anoth 2	er groundwater er groundwater et (X); or units on- lic supply le One) led opecity (condition actory, school sto fractor provide the follow E. William	Scoring Well Scoring Well of Lown construction is eite. 3 04 1093 NMENTAL HEALTH 12 1993
Other Tyren a	A. () Privat B. () Seni-P C. () Hon-Co D. ED Hon-Fe Is there snoth If there is an Arought up to In public varie in this well ? Water Well inf Disneter 2th Anticipated De Mark if Itsel d mor of Persons po of Fecility S Permit approve provided witho Date Is no secompas the form or a is Lot time and a House or buildi	w Water Hell (Serivate Nature Hell (Series)) and by reapply available of supply sore that oraction Pt./In- pts (Pt.) Unknown (Mor sec 18 CHC) Served ————————————————————————————————————	cas a super acception to the least the least specify. Ty? Potential entry will le be whet detet of Ro If a construction of Rose If a constr	led realdences 23 people) - Suning 24 people) - Suning 25 people) - Suning Environmental Gr Exists that anoth used (); shandons August 1993 yes, distance to pub building! Type of Well (Circ Driven Drii Bored (Describe) Tovided. Any changes may result in permit Type of Survey's (4) Location of existing ye	dent peepla) oundwater Hond: er groundwater el (X); or unic on- lic supply le One) los opacity (crestility actory, school sto t revocatide provide the follow provide the follow proposed and lile	soring Well somitoring Well of hown construction is eite. 3 04 1993 MMENTAL HEALTH 12 1993
Other Tyren a	A. () Privat B. () Seni-P C. () Hon-Co D. ED Hon-Fo La there enoth if there is an arought up to in public wate in this woil ? Water Well inf Dissetur 2 th Anticipated De MATICIPATED DE Permit approve provided witho Date Lot lines and d House or build! Location of all	w Water Well (Service Water Well on Manify Public Water Well on proper exciting well on mode () and by r supply available o supply sore that creation Pt./in. Pt./in. Pt./in. Pt./in. Pt./in. ptb Urto) Unknown i/deated to beed oryed available opported specific opported specific speci	cas a super acception to the least the least specify. Ty? Potential entry will le be whet detet of Ro If a construction of Rose If a constr	led residences 23 people) - Sunine core than 25 non-resi Environmental Gr Exists that anoth used (); shandons August 1993 yes, distance to pub building! Type of Well (Circ Driven Dril Bored (Describe) Type of Well (non- provided. Any changes o may result in permit for the property, please list of Survey): (4) Location of entisting ye (5) Distances (er groundwater Hond: er groundwater Hond: er groundwater units of (X); or units on- lic supply epacity (capet): proposed and	soring Well somitoring Well of hown construction is eite. 3 04 1993 MMENTAL HEALTH 12 1993

WATER WELL SEALING FORM

Lake County Health Department Division of Environmental Health

3010 Grand Avenue Waukegan, IL 60085 (708) 360-6740 121 E. Grand Avenue Lake Villa, IL 60046 (708) 356-6222 118 S. Main Street Wauconda, IL 60084 (708) 526-1125

This form shall be submitted to the Lake County Health Department at the time of the sealing potable wells, boring or monitoring wells. Such wells are to be sealed not more than 30 days after they are abandoned in accordance with the sealing requirements in the Water Well Construction Code. One First National Plaza 10 S. Dearborn, Chicago, IL 60690 1. Owner of Property Commonwealth Edison Zip Address Name Lake Waukegan 2. Well Location: Northeast corner of Sand & Dahringer Rd. County City Street General Description: Section 15 , Township 45N , Range 12E P.I.NF:08 _100_005 4. Drilling Permit No. (and date, if known) Unknown **Other** 5. Type of Well: Drilled X Driven Dug_ Static Level MA Diameter (inches) 2.0" 6. Total Depth 14 Ho_____ Depth to Obstruction 7. Formation clear of obstruction? Yes V 8. DETAILS OF PLUGGING: From /4 To __O__ feet Kind of Plug NAT CEMENT CANT DANCWIGE From _____To ____ Kind of plug __ To From Kind of plug From Location on site feet TO. CASING RECORD ENTRE WELLER REMOVED Upper 3 feet of casing removed? Yes Ho If well casing consists of brick, stone, concrete blocks, porous tile, or other porous material, casing was removed to a depth of 10 feet below the surface. Yes No 10. Date well was Sealed: 11. Licensed water well driller or other person approved by the Department performing well sealing: Exploration Technology
Name (PRINT) ST CHUMBLE Madison WI 53715 2642Rimrock Road City ZIP Address 102-003-001 License Number SEALING OF WELL OBSERVED BY Lake County Health Department Division of Environmental Health signature

FIELD PARAMETER DATA (WELL DEVELOPMENT) COMMONWEALTH EDISON FORMER GRIESS-PFLEGER TANNERY WAUKEGAN, ILLINOIS

Monitoring	mu e		Total Gals.	Fic	Field Parameter Data				
Well Number	Date	Time	Removed	рН	Temperature	Spec. Cond.			
MW-1	5/24/93	1105		7.20	53.40	2400			
	100	1110		7.17	52.20	2380			
		1115	4 1	7.20	53.60	2480			
MW-2	5/24/93	1048		7.26	53.70	1600			
	-1	1051	t	7.14	52.30	1570			
	1	1053	4.5	7.10	52.10	1620			
MW-3 [5/24/93	1135		7.18	52.20	1850			
		1140		7.02	50.70	1820			
		1145	5.5 i	7.00	51.00	1820			
MW-4	5/24/93	910		6.26	57.70	1850			
		•		6.58	56.50	1820			
		*	j	6.73	56.30	1830			
2		*		6.81	56.20	1820			
1000				6.77	55.80	1810			
		•	7.5	6.80	55.70	1820			
MW-5	5/24/93	1200		6.89	53.00				
ŧ .		1207		6.85	52.10	1780			
		1220	5	6.94	51.90	1800			
MW-6	5/24/93	1228	i	7.10	55.80	1800			
		1231		7.03	52,50				
		1235	5.5	7.02	53.10	1820			
MW-7	5/24/93	1014	I	7.00	50.70	. 1780			
]	}	1016	į	6.96	49.40	1760			
l les	}	1020		7.02	49.70	1800			
£.7		*		6.99	48.70	1430			
~.	'	*	j	6.99	50.30				
1	1	•	!	6.98	48.30				
1		*	j l	6.99	49.50				
		•	1 }	7.00					
[•	4	7.00	48,60				

Specific Conductivity – umhos Temperature – Fahrenheit * – Time not recorded.

FIELD PARAMETER DATA (WELL PURGING*) COMMONWEALTH EDISON FORMER GRIESS-PFLEGER TANNERY WAUKEGAN, ILLINOIS

Monitoring			Gals.	Fi	eld Parameter	Data
Well Number	Date	Time	Removed	рН	Temperature	Spec. Cond
MW-1	5/25/93	1002	1.30	7.31	53.50	2290
		1005	2.60	7.26	52.90	2320
		1009	3.90	7.17	53.40	2340
MW-2	5/25/93	840	1.10	7.31	54,50	1710
		843	2.20	7.15	52.70	1660
		846	3.30	7.12	53.20	1680
MW-3 (5/24/93	1448	1.60	6.97	54.40	1910
		1455	3.60	6.97	53.20	1850
200		1458		6.98	52.60	1860
MW-4	5/24/93	1403	1.60	6.97	56.90	1950
	3,2 1,00	1405	3.20	6.70	54.20	1820
7		1408		6.67	54.80	1840
MW-5	5/24/93	1522	1,701	7.01	54.00	1890
	-,-,,	1528	1	6.90	51.50	1800
		1534	5.10	6.87	51.00	1760
MW-6	5/24/93	1613	1,80	7.20	55.50	1850
		1618	3.60	7.12	53.40	1770
		1622		7.18	53.50	1800
MW-7	5/24/93	1248	1.20	7.10	56.40	1248
	3,2 1,00	1250	2.40	7.09	54.50	1250
		1253		7.23	51.50	1250

Specific Conductivity – umhos
Temperature – Fahrenheit
* – Water removed immediately before sample collection.

TABLE COMMONWEATH EDISON FORMER GRIESS-PFLEGER TANNERY WELL MONITORING FORM

Project#:

010487-3000-100

Geologist: S.I.

Date:

May 24, 1993

WELL #	WELL ID	VELL ID TOC T ELEV. D (FEET) (GROUND ELEVATION (FEET)	DTW (FEET)	CORR. WAT ELEV (FEET)	
1	MW-1	99.48	13.64	97.66	5,68	91.98	
2 .	MW-2	101.60	14.05	98.92	7.67	91.25	
3	MW-3	97.89	15.40	95.64	4.63	91.01	
4	MW-4	99.71	15.22	97.61	5.60	92.01	
5	MW-5	98.56	15.45	96.71	5.39	91.32	
6	MW-6	98.44	15.38	96.10	4.87	91,23	
7_	MW-7	104.03	15.50	101.96	B.43	93.53	

Project#:

010487-3000-100

~

Geologist: S.I.

Date:

June 4, 1993

WELL	WELL ID	TOC ELEV. (FEET)	TOTAL DEPTH (FEET)	GROUND ELEVATION (FEET)	DTW (FEET)	CORR. WAT ELEV (FEET)
1	MW-1	99.48	13.64	97.65	5.82	91.84
2	MW-2	101.60	14.05	98.92	7.91	91.01
3	MW-3	97.89	15.40	95,64	4.78	90,66
4	MW-4	99.71	15.22	97.61	5.79	91.82
5	MW-5	98.56	15.45	96.71	5.50	91.21
6	MW-6	96.44	15.38	96.10	5.03	91.07
7	MW-7	104,03	15.50	101.96	8.53	93.43

8931 Numb Industrial M Thone (309) 692-4422

Pinera, III. 61615-1509 Lab Fax (200) 612-5232

An IEPA Conti.... Laboratory

TO: METCALF & EDDY
1 PIERCE PLACE, SUITE 1400 W.
1TASCA, 1L 60143
ATTM: MS. DENISE STORY

PAGE NUMBER: 1
REPORT DATE: 05-04-93
DATE RECEIVED: 04-16-93
PROJECT NUMBER: 592-5841
P.O. NUMBER: 010487-2000-100

*VOLATILE ORGANIC COMPOUNDS CHLOROMETHANE UG/L < 2 < 2 8240 04-27-93 NEB BROMOMETHANE UG/L < 2 < 2 8240 04-27-93 NEB VINYL CHLORIDE UG/L < 0.5 < 0.5 8240 04-27-93 NEB	~	CLIENT PROJECT NAME: CO	MMONWEALTH						100
**************************************	2								
CHLOROMETHANE UG/L < 2 < 2 8240 04-27-93 NEB BROMOMETHANE UG/L < 2 < 2 8240 04-27-93 NEB VINYL CHLORIDE UG/L < 0.5 < 0.5 8240 04-27-93 NEB CHLOROETHANE UG/L < 2 < 2 8240 04-27-93 NEB WETHYLENE CHLORIDE UG/L < 1		DESCRIPTION	UHITS					ANALYST	
BROMOMETHANE	`.	*VOLATILE ORGANIC COMPOUNDS					********		
BROMOMETHANE	_	CHLOROMETHANE	UG/I	< 2	. 2	8240	04-27-02	NED	
VINYL CHLORIDE UG/L < 0.5 < 0.5 8240 04-27-93 NEB CHLOROETHANE UG/L < 2 < 2 8240 04-27-93 NEB 9240 04-	•								
CHLOROETHANE METHYLENE CHLORIDE METHYLENE METHYL									
METHYLENE CHLORIDE UG/L 1B 2B 8240 04-27-93 NEB CARBON DISULFIDE UG/L < 2 < 2 8240 04-27-93 NEB 1,1-DICHLOROETHENE UG/L < 2 < 2 8240 04-27-93 NEB 1,1-DICHLOROETHENE UG/L < 1 8240 04-27-93 NEB 1,1-DICHLOROETHENE UG/L < 1 8240 04-27-93 NEB 1,1-DICHLOROETHENE UG/L < 1 8240 04-27-93 NEB TRANS-1,2-DICHLOROETHENE UG/L < 1 8240 04-27-93 NEB CHLOROFORM UG/L 11 < 1 8240 04-27-93 NEB 1,2-DICHLOROETHANE UG/L < 0.5 < 0.5 8240 04-27-93 NEB 1,2-DICHLOROETHANE UG/L < 0.5 < 0.5 8240 04-27-93 NEB 2-BUTANONE UG/L < 2 < 2 8240 04-27-93 NEB 1,1-TRICHLOROETHANE UG/L < 0.5 < 0.5 8240 04-27-93 NEB 1,1-TRICHLOROETHANE UG/L < 2 < 2 8240 04-27-93 NEB CARBON TETRACHLORIDE UG/L < 0.5 < 0.5 8240 04-27-93 NEB CARBON TETRACHLORIDE UG/L < 2 < 2 8240 04-27-93 NEB	-								
CARBON DISULFIDE UG/L < 2 < 2 8240 04-27-93 NEB 1,1-DICHLOROETHENE UG/L < 0.5 < 0.5 824G 04-27-93 NEB 1,1-DICHLOROETHANE UG/L < 1 8240 04-27-93 NEB TRANS-1,2-DICHLOROETHENE UG/L < 1 < 1 8240 04-27-93 NEB CHLOROFORM UG/L 11 < 1 8240 04-27-93 NEB CHLOROFORM UG/L 11 < 1 8240 04-27-93 NEB 1,2-DICHLOROETHANE UG/L < 0.5 < 0.5 8240 04-27-93 NEB 2-BUTANONE UG/L < 2 < 2 8240 04-27-93 NEB 1,1-TRICHLOROETHANE UG/L < 2 < 2 8240 04-27-93 NEB 1,1-TRICHLOROETHANE UG/L < 0.5 < 0.5 8240 04-27-93 NEB 1,1,1-TRICHLOROETHANE UG/L < 0.5 < 0.5 8240 04-27-93 NEB 1,1,1-TRICHLOROETHANE UG/L < 0.5 < 0.5 8240 04-27-93 NEB 1,1,1-TRICHLOROETHANE UG/L < 0.5 < 0.5 8240 04-27-93 NEB 1,1,1-TRICHLOROETHANE UG/L < 0.5 < 0.5 8240 04-27-93 NEB 1,1,1-TRICHLOROETHANE UG/L < 0.5 < 0.5 8240 04-27-93 NEB 1,1,1-TRICHLOROETHANE UG/L < 0.5 < 0.5 8240 04-27-93 NEB 1,1,1-TRICHLOROETHANE UG/L < 0.5 < 0.5 8240 04-27-93 NEB 1,1,1-TRICHLOROETHANE UG/L < 0.5 < 0.5 8240 04-27-93 NEB 1,1,1-TRICHLOROETHANE UG/L < 0.5 < 0.5 8240 04-27-93 NEB 1,1,1-TRICHLOROETHANE UG/L < 0.5 < 0.5 8240 04-27-93 NEB 1,1,1-TRICHLOROETHANE UG/L < 0.5 < 0.5 8240 04-27-93 NEB 1,1,1-TRICHLOROETHANE UG/L < 0.5 < 0.5 8240 04-27-93 NEB 1,1,1-TRICHLOROETHANE UG/L < 0.5 < 0.5 8240 04-27-93 NEB 1,1,1-TRICHLOROETHANE UG/L < 0.5 < 0.5 8240 04-27-93 NEB 1,1,1-TRICHLOROETHANE UG/L < 0.5 < 0.5 8240 04-27-93 NEB 1,1,1-TRICHLOROETHANE UG/L < 0.5 < 0.5 8240 04-27-93 NEB 1,1,1-TRICHLOROETHANE UG/L < 0.5 < 0.5 8240 04-27-93 NEB 1,1,1-TRICHLOROETHANE UG/L < 0.5 < 0.5 8240 04-27-93 NEB 1,1,1-TRICHLOROETHANE UG/L < 0.5 < 0.5 8240 04-27-93 NEB 1,1,1-TRICHLOROETHANE UG/L < 0.5 < 0.5 8240 04-27-93 NEB 1,1,1-TRICHLOROETHANE UG/L < 0.5 < 0.5 8240 04-27-93 NEB 1,1,1-TRICHLOROETHANE UG/L < 0.5 < 0.5 8240 04-27-93 NEB 1,1,1-TRICHLOROETHANE UG/L < 0.5 < 0.5 8240 04-27-93 NEB 1,1,1-TRICHLOROETHANE UG/L < 0.5 < 0.5 8240 04-27-93 NEB 1,1,1-TRICHLOROETHANE UG/L < 0.5 < 0.5 8240 04-27-93 NEB 1,1,1-TRICHLOROETHANE UG/L < 0.5 < 0.5 8240 04-27-93 NEB 1,1,1,1-TRICHLOROETHANE UG/L < 0.5 < 0.5 8240 04-27-93 NEB 1,1,1,1-TRICHLORO									
1,1-DICHLOROETHENE UG/L < 0.5 < 0.5 8240 04-27-93 NEB 1,1-DICHLOROETHANE UG/L < 1 < 1 8240 04-27-93 NEB TRANS-1,2-DICHLOROETHENE UG/L < 1 < 1 8240 04-27-93 NEB CHLOROFORM UG/L 11 < 1 8240 04-27-93 NEB 1,2-DICHLOROETHANE UG/L < 0.5 < 0.5 8240 04-27-93 NEB 2-BUTANONE UG/L < 2 < 2 8240 04-27-93 NEB 1,1,1-TRICHLOROETHANE UG/L < 0.5 < 0.5 8240 04-27-93 NEB CARBON TETRACHLORIDE UG/L < 0.5 < 0.5 8240 04-27-93 NEB CARBON TETRACHLORIDE UG/L < 0.5 < 0.5 8240 04-27-93 NEB VINYL ACETATE UG/L < 2 < 2 8240 04-27-93 NEB						8240	04-27-93		
1,1-DICHLOROETHANE UG/L < 1 < 1 8240 04-27-93 NEB TRANS-1,2-DICHLOROETHENE UG/L < 1 < 1 8240 04-27-93 NEB CHLOROFORM UG/L 11 < 1 8240 04-27-93 NEB 1,2-DICHLOROFTHANE UG/L < 0.5 < 0.5 8240 04-27-93 NEB 2-BUTANONE UG/L < 0.5 < 2 8240 04-27-93 NEB 1,1,1-TRICHLOROETHANE UG/L < 0.5 < 0.5 8240 04-27-93 NEB CARBON TETRACHLORIDE UG/L < 0.5 < 0.5 8240 04-27-93 NEB VINYL ACETATE UG/L < 2 < 2 8240 04-27-93 NEB VINYL ACETATE UG/L < 2 < 2 8240 04-27-93 NEB						8240	04-27-93	NEB	
TRANS-1,2-DICHLOROETHENE UG/L < 1 < 1 8240 04-27-93 HEB CHLOROFORM UG/L 11 < 1 8240 04-27-93 HEB 1,2-DICHLOROFTHANE UG/L < 0.5 < 0.5 8240 04-27-93 HEB 2-BUTANONE UG/L < 0.5 < 0.5 8240 04-27-93 HEB 1,1,1-TRICHLOROETHANE UG/L < 0.5 < 0.5 8240 04-27-93 HEB 1,1,1-TRICHLOROETHANE UG/L < 0.5 < 0.5 8240 04-27-93 HEB CARBON TETRACHLORIDE UG/L < 0.5 < 0.5 8240 04-27-93 HEB VINYL ACETATE UG/L < 2 < 2 8240 04-27-93 HEB					< 0.5			NEB	
CHLOROFORM UG/L 11 < 1 8240 04-27-93 NEB 1,2-DICHLOROFTHANE UG/L < 0.5 < 0.5 8240 04-27-93 NEB 2-BUTANONE UG/L < 2 < 2 8240 04-27-93 NEB 1,1,1-TRICHLOROFTHANE UG/L < 0.5 < 0.5 8240 04-27-93 NEB CARBON TETRACHLORIDE UG/L < 0.5 < 0.5 8240 04-27-93 NEB VINYL ACETATE UG/L < 2 < 2 8240 04-27-93 NEB VINYL ACETATE UG/L < 2 < 2 8240 04-27-93 NEB								NEB	
1,2-DICHLOROFTHANE UG/L < 0.5 < 0.5 8240 04-27-93 ME8 2-BUTANONE UG/L < 2 < 2 8240 04-27-93 NEB 1,1,1-TRICHLOROFTHANE UG/L < 0.5 < 0.5 8240 04-27-93 NEB CARBON TETRACHLORIDE UG/L < 0.5 < 0.5 8240 04-27-93 NEB VINYL ACETATE UG/L < 2 < 2 8240 04-27-93 NEB								HEB	
2-BUTANONE UG/L < 2 < 2 8240 04-27-93 NEB 1,1,1-TRICHLOROETHANE UG/L < 0.5 < 0.5 8240 04-27-93 NEB CARBON TETRACHLORIDE UG/L < 0.5 < 0.5 8240 04-27-93 NEB VINYL ACETATE UG/L < 2 < 2 8240 04-27-93 NEB									
1,1,1-TRICHLOROETHANE UG/L < 0.5 < 0.5 B240 04-27-93 NEB CARBON TETRACHLORIDE UG/L < 0.5 < 0.5 B240 04-27-93 NEB VINYL ACETATE UG/L < 2 < 2 B240 04-27-93 NEB									
CARBON TETRACHLORIDE UG/L < 0.5 < 0.5 8240 04-27-93 NEB VINYL ACETATE UG/L < 2 < 2 8240 04-27-93 NEB									
VINYL ACETATE UG/L < 2 < 2 8240 04-27-93 NEB									
BEAUGUSTAN ARABETAN A									

B = Compound found in blank. *Samples run using 25 ml aliquot.

Report Approved by:

Jim 1. McQuelfon Project Manager

9901 North Industrial Resid Those (309) 692-6422

Pictura, IL 61615-1589 Ealt Fax (209) 692-5232

An IEPA Contract Laboratory

TQ: METCALF & EDDY
1 PIERCE PLACE, SUITE 1400 W.
1TASCA, IL 60143
ATTN: MS. DENISE STORY

PAGE NUMBER: 2
REPORT DATE: 05-04-93
DATE RECEIVED: 04-16-93
PROJECT NUMBER: 592-5841
P.O. MUMBER: 010487-2000-100

-	CLIENT PROJECT NAME: COM	HONWEALTH	EDISON	13			
<i>r</i> -	ESE SAMPLE SAMPLE DATE		11995*1 04/15/93	11995*2 04/15/93			
7	DESCRIPTION	UNITS	MUNICIPAL W. WATER	TRIP BLANK WATER	METHOD HO.	DATE Analyzed	ANALYST
^.	*VOLATILE ORGANIC COMPOUNDS	(Cont'd)					
_	1,2-DICHLOROPROPANE	UG/L	< 1	< 1	8240	04-27-93	NEB
-	CIS-1.3-DICHLOROPROPENE	UG/L	¿ i	ξi	8240	04-27-93	NEB
70	TRICHLOROETHENE	UG/L	< 0.5	< 0.5	8240	04-27-93	NEB
•	DIBROMOCHLOROMETHANE	UG/L	2	< 1	8240	04-27-93	NEB
	1,1,2-TRICHLOROETHANE	UG/L	< 1	< i	8240	04-27-93	NEB
	BENZENE	UG/I.	< 0.5	< 0.5	8240	04-27-93	NEB
	TRANS-1,3-DICHLOROPROPENE	UG/L	< 1	< 1	8240	04-27-93	NEB
	BROHOFORM	UG/L	κi	< i	8240	04-27-93	NEB
	4-METHYL-2-PENTANONE	UG/L	< 2	< 2	8240	04-27-93	NEB
	2-HEXANONE	UG/L	< 2	< 2	8240	04-27-93	NEB
	TETRACHLOROETHENE	UG/L	< 1	< 1	8240	04-27-93	NEB
	1,1,2,2-TETRACHLOROETHANE	UG/L	< 1	< 1	8240	04-27-93	NEB
	TÓLÚENE	UG/L	< 1	< 1	8240	04-27-93	NEB
	CHLOROBENZENE	UG/L	< 1	< 1	B240	04-27-93	NEB
	ETHYLBENZENE	UG/L	< 1	< 1	8240	04-27-93	NEB
	STYRENE	UG/L	< 1	< 1	8240	04-27-93	NEB
	XYLENES, TOTAL	UG/L	< 2	< 2	8240	04-27-93	NEB
	C1S-1.2-DICHLOROETHENE	ÜĞ/L	< 1	< 1	B240	04-27-93	NEB

manufacture and the same of the state of the state of the same of

*Samples run using 25 ml aliquot.

Report Approved by:

Ja 1. Hoquellen troject Manager

890) North Industrial Rose Phone (109) 442-4422 Powsa, IL 61615-1569 Lab Fas (2001 642-5232

An IEPA Contract Laboratory

PAGE HUMBER: REPORT DATE: IO: METCALF & EDDY
1 PIERCE PLACE, SUITE 1400 W.
1TASCA, IL 60143
ATTN: MS. DENISE STORY 05-04-93 04-16-93 592-5841 DATE RECEIVED: PROJECT NUMBER: P.O. NUMBER: 010487-2000-100 CLIENT PROJECT NAME: COMMONWEALTH EDISON ESE SAMPLE SAMPLE DATE EXTRACTION DATE 04/15/93 04/20/93 DESCRIPTION UNITS MUNICIPAL W. **DOHT3H** DATE **ANALYST** WATER NO. AKALYZED **BASE-HEUTRALS** BIS(2-CHLOROETHYL) ETHER 1,3-DICHLOROBENZENE UG/L < 10 8270 04-26-93 04-26-93 04-26-93 DAH DAH UG/L < 10 8270 1,4-DICHLOROBENZENE UG/L < 10 8270 DAH BENZYL ALCOHOL 1,2-DICHLOROBENZENE UG/L < 10 8270 04-26-93 DAH UG/L < 10 8270 04-25-93 DAH BIS(2-CHLOROISOPROPYL) ETHER UG/L < 10 8270 04-26-93 DAH N-NITROSODI-N-PROPYLAMINE HEXACHLOROETHANE NITROBENZENE UG/L < 10 8270 04-25-93 DAH UG/L < 10 8270 04-26-93 DAH UG/L < 10 8270 04-26-93 DAH ISOPHORONE UG/L < 10 8270 04-26-93 DAH BIS(2-CHLOROETHOXY) METHANE 1,2,4-TRICHLOROBENZENE UG/L < 10 8270 04-26-93 04-26-93 DAH UG/L < 10 8270 DAH DAH NAPHTHALENE 4-CHLOROANILINE UG/L < 10 8270 04-26-93 UG/L < 10 8270 04-26-93 DAH HEXACHLOROBUTADIENE 2-METHYLNAPHTHALENE UG/L < 10 04-26-93 8270 DAH UG/L < 10 8270 04-26-93 DAH

Report Approved by

Jim Nequellon's Project Manager

tH01 North Industrial Road Thone (201) 672-4422

Prome, IL 61615-1589 Lab Fac (309) 642-5232

An IEPA Contract Laborators

1 P	CALF & EDDY IERCE PLACE, SUITE 1400 W. SCA, IL 60143 DENISE STORY		. a u u u a w u u u u u u u u u u u u u u	RESDUNATO:	REP DAT PRO	E NUMBER: ORT DATE: E RECEIVED: JECT NUMBER: . NUMBER:		
_	CLIENT PROJECT NAME: COM	ONWEALTH	EDISON					
© 	ESE SAMPLE SAMPLE DATE EXTRACTION DATE		11995*1 04/15/93 04/20/93					9
, 7	DESCRIPTION	URITS	HUNICIPAL W. WATER		METHOD NO.	DATE ANALYZED	AHALYST	
_	BASE-NEUTRALS (Cont'd)							
~	HEXACHLOROCYCLOPENTADIENE	UG/L	< 10		8270	04-26-93		
_	2-CHLORONAPHTHALENE	UG/L	< 10		8270	04-26-93	DAH	
-	2-HITROANILINE	UG/L	< 50		8270	04-26-93	DAH	
	DIMETHYL PHTHALATE	UG/L	< 10		8270	04-26-93	DAH	
	ACENAPHTHYLENE	UG/L	< 10		8270 8270	04-26-93 04-26-93	DAH	
	2,6-DINITROTOLUENE	UG/L	< 10		8270	04-26-93	DAH	
	3-NITROANILINE	UG/L	< 50 < 10		8270	04-26-93	DAH	
	ACENAPHTHENE	UG/L	< 10		8270	04-26-93	DAH	
	DIBENZOFURAN 2.4-DINITROTOLUENE	UG/L UG/L	< 10		A270	04-26-93	DAH	
	DIETHYL PHTHALATE	UG/L	< 10		8270	04-26-93	DAH	
	4-CHLOROPHENYLPHENYL ETHER	UG/L	< 10	20	8270	04-26-93	DAH	•
	FLUORENE	UG/L	< 10		8270	04-26-93	DAH	
	4-NITROANILINE	UG/L	< 50		8270	04-26-93	DAH	
	N-NITROSODIPHENYLAMINE	UG/L	< 10		8270	04-26-93	DAH	
	4-BROHOPHENYLPHENYL ETHER	US/L	< 10		8270	04-26-93	DAH	
	HEXACHLOROBENZENE	UG/L	< 10		8270	04-26-93	DAH	

Report Approved by:

Project Hanager

\$10) North Industrial Bunil Phone (309) 692-4422

Froms, IL etal5-1509 Lab Fax (2004-047-5222)

An IEPA Contract Laboratory

PAGE NUMBER: 5 REPORT DATE: 05-04-93 DATE RECEIVED: 04-16-93 PROJECT NUMBER: 592-5841

Im McQue Son Project Manager

TO: ATTN:	METCALF & EDDY 1 PIERCE PLACE, SUITE 1400 W. 1TASCA, IL 60143 MS. DENISE STORY	Ħ.		REP DAT: PRO	E NUMBER: ORT DATE: E RECEIVED: JECT NUMBER: . NUMBER:	5 05-04-93 04-16-93 592-5841 010487-2000-100	
_	CLIENT PROJECT NAME: COM	ONWEALTH	EDISON				
ຕ ເກ	ESE SAMPLE SAMPLE DATE EXTRACTION DATE		11995*1 04/15/93 04/20/93		, , , , , , , , , , , , , , , , , , , 		
7	DESCRIPTION	UNITS	MUNICIPAL W. WATER	METHOD NO.	DATE ANALYZED	ANALYST	
	BASE-NEUTRALS (Cont'd)			*****			
_	PHENANTHRENE ANTHRACENE	UG/L UG/L	< 10 < 10	8270 8270	04-26-93 04-26-93	DAH DAH	:
7	DI-N-BUTYL PHTHALATE FLUORANTHENE PYRENE	UG/L UG/L UG/L	< 10 < 10 < 10	8270 8270 8270	04-26-93 04-26-93 04-26-93	DAH DAH DAH	i
	BUTYL BENZYL PHTHALATE 3,3'-DICHLOROBENZIDINE BENZO(A)ANTHRACENE	UG/L UG/L UG/L	< 10 < 20 < 10	8270 8270 8270	04-26-93 04-26-93 04-26-93	DAH DAH DAH	-
	CHRYSÈNÉ BIS(2-ETHYLHEXYL) PHTHALATE DI-N-OCTYL PHTHALATE	UG/L UG/L UG/L	< 10 < 10 < 10	8270 8270 8270	04-26-93 04-26-93 04-26-93	DAH DAH DAH	
	BENZO(B) FLUORANTHENE BENZO(K) FLUORANTHENE BENZO(A) PYRENE	UG/L UG/L UG/L	< 10 < 10 < 10	8270 8270 8270	04-26-93 04-26-93 04-26-93	DAH DAH DAH	
	INDENO(1,2,3-CD)PYRENE DIBENZO(A,H)ANTHRACENE BENZO(GHI)PERYLENE	UG/L UG/L UG/L	< 10 < 10 < 10 < 10	8270 8270 8270 8270	04-26-93 04-26-93 04-26-93	DAH DAH	
	printed and bearing	Ju/L	< 10	9610	U4-20-33	DAH	

Report Approved by:

8901 North Industrial Roof Thora: (209) 692-4422

15cma 32 61615-1589 Lab Fax (309) 692-5232

An IEPA Contract Laboratory

TO: METCALF & EDDY
1 PIERCE PLACE, SUITE 1400 W.
1TASCA, IL 60143
ATTN: MS. DENISE STORY

PAGE NUMBER: 6
REPORT DATE: 05-04-93
DATE RECEIVED: 04-16-93
PROJECT NUMBER: 592-5841
P.O. NUMBER: 010487-2000-100

<u></u>				
CLIENT	PROJECT	NAME:	COMMONNEALTH	ED I SON

5	ESE SAMPLE SAMPLE DATE	11995*1 04/15/93
	*EXTRACTION DATE	04/20/93, - 04/22/93

	DESCRIPTION	UNITS	WATER	NO.	ANALYZED	ANALTSI
	ACIDS					

•	PHENOL	UG/Ł	< 10	8270	04-26-93	DAH
	2-CHLOROPHENOL	UG/L	< 10	8270	04-26-93	DAH
	2-METHYL PHENOL	UG/L	< 10	8270	04-26-93	DAH
	4-METHYL PHENOL	UG/L	< 10	8270	04-26-93	DAH
	2-HITROPHENOL	UG/L	< 10	8270	04-26-93	DAH
	2.4-DINETHYLPHENOL	UG/L	< 10	8270	04-26-93	DAH
		UG/L	< 50	8270	04-26-93	DAH
	BÉNZOIC ACID			8270	04-26-93	DAH
	2,4-DICHLOROPHENOL	UG/L	< 10			
	4-CHLORO-3-METHYL PHENOL	UG/L	< 10	8270	04-26-93	DAH
	2.4.6-TRICHLOROPHENOL	UG/L	< 10	8270	04-26-93	DAH
	2.4.5-TRICHLOROPHENOL	UG/L	< 10	8270	04-26-93	DAH
	2,4-DINITROPHENOL	UG/L	< 50	8270	04-26-93	DAH
	4-NITROPHENOL	UG/L	< 50	8270	04-26-93	DAH
			< 50	8270	04-26-93	DAH
	2-METHYL-4,6-DINITROPHENOL	UG/L		8270	04-26-93	DAH
	PENTACHLOROPHENOL	UG/L	< 50	02/0	UT-20-33	UNI

^{*}Sample was reextracted for acid argets due to low recoveries in initial analysis.

Report Approved by:

ecoject Manager

MWG13-15_47208

Adr d

P40 North Industrial Res-1 Phone (309) 442-4422

UG/L

UG/L

UG/L

UG/L

< 0.10

< 0.05

< 0.05

< 5.0

Perma, II, ptp15-1549 Lab Fax (304) p42-5232

PAGE NUMBER: REPORT DATE: TO: METCALF & EDDY

1 PIERCE PLACE, SUITE 1400 W.

1 TASCA, 1L 60143

ATTN: MS. DENISE STORY 05-04-93 DATE RECEIVED: 04-16-93 PROJECT NUMBER: 592-5841 P.O. NUMBER: 010487-2000-100 CLIENT PROJECT NAME: COMMONWEALTH EDISON ESE SAMPLE 11995*1 SAMPLE DATE EXTRACTION DATE 04/15/93 04/21/93 Ç DESCRIPTION UNITS MUNICIPAL W. METHOD DATE ANALYST ~ WATER NO. **ANALYZED** PESTICIDES BHC, ALPHA BHC, BETA BHC, GAMMA(LINDANE) UG/L UG/L UG/L < 0.05 < 0.05 05-04-93 05-04-93 608 608 608 RDU < 0.05 05-04-93 RDU UG/L < 0.05 608 05-04-93 RDU HEPTACHLOR UG/L < 0.05 608 05-04-93 RDU ALDRIN UG/L UG/L UG/L 05-04-93 05-04-93 < 0.05 608 RDU HEPTACHLOR EPOXIDE 608 < 0.05 RDU ENDOSULFAN I < 0.05 608 05-04-93 ROU DIELDRIN 4,4'-DOE UG/L < 0.10 608 05-04-93 RDU ŬĜ/L < 0.10 **608** 05-04-93 RDU ENDRIN UG/L < 0.10 608 05-04-93 RDU ENDOSULFAN II UG/L < 0.10 608 05-04-93 RDU 4.4'-DOD UG/L < 0.10 60B 05-04-93 RDU ENDOSULFAN SULFATE UG/L < 0.10 608 05-04-93 RDU ENDOSULFAN SULFI 4,4'-DDT METHOXYCHLOR ENDRIN ALDEHYDE ALPHA-CHLORDANE GAMMA-CHLORDANE TOXAPHENE UG/L < 0.10 60B 05-04-93 ROU UG/L < 0.50 60B 05-04-93 RDU

Report Approved by:

60B

608

60B

608

05-04-93

05-04-93 05-04-93

05-04-93

Jim h McQuerton Project Manager Acquerton

RDU

RDU

ROU

RDU

#901 North Industrial Road | Postus, IL 61615-1509 | Lab Fax (200) 6/2-5232

An IEPA Contract Laborators

PAGE NUMBER: 8
REPORT DATE: 05-04-93
DATE RECEIVED: 04-16-93
PROJECT NUMBER: 592-5841
P.O. MUMBER: 010487-20

	METCALF & EDDY 1 PIERCE PLACE, SUITE 1400 W. ITASCA, IL 60143 MS. DENISE STORY			 REPO DATI PRO	ORT DATE: E RECEIVED: JECT NUMBER: . NUMBER:	05-04-93 04-16-93 592-5841 010487-2	000-100	244222
Q 10	CLIENT PROJECT NAME:	COMMONWEALTH	EDISON					
	ESE SAMPLE SAMPLE DATE		11995*1 04/15/93					
, /	DESCRIPTION	UNITS	MUNICIPAL W. WATER	METHOD NO.	DATE ANALYZED	ANALYST		
	PCB'S							
_	AROCLOR-1016	UG/L	< 1.0	608	05-04-93	RDU		
_	AROCLOR-1221 AROCLOR-1232	US/L UG/L	< 2.0	608 608	05-04-93 05-04-93	rdu Rdu		
er.	AROCLOR-1242 AROCLOR-1248 AROCLOR-1254 AROCLOR-1260	UG/L UG/L UG/L UG/L	< 1.0 < 1.0 < 1.0 < 1.0	608 608 608 608	05-04-93 05-04-93 05-04-93 05-04-93	rdu Rdu Rdu Rdu		
	, OTHER PARAMETERS	UNITS	7.54	150.1	04-20-93	FTJ		

Report Approved by:

Jim J. HcQuellon Project Manager

Dein was not a

9909 North Industrial Road | Poorta, (Libin 15-1569 | Phone (209) 692-4422 | Lab Fax (209) 692-5232

An IEPA Contract Laboratory

TO: HETCALF & EDDY
1 PIERCE PLACE, SUITE 1400 W.
TASCA, IL 60143
ATTN: MS. DENISE STORY

PAGE HUMBER: 9
REPORT DATE: 05-04-93
DATE RECEIVED: 04-16-93
PROJECT HUMBER: 592-5841
P.O. NUMBER: 010487-2000-100

**********	*************		**********************	444444
	CLIENT PROJECT NAME:	COMMONWEALTH EDISON		
<u>ب</u>	ESE SAMPLE SAMPLE DATE	11995 * 1 04/15/93		
^	DESCRIPTION	UNITS MUNICIPAL W. WATER	NETHOD DATE NO. ANALYZED	ANALYST
	METALS			
_	ALUMINUM	MG/L 0.085	200.7 04-21-93	ELZ
-	ANTIMONY	MG/L < 0.050	200.7 04-21-93	ELZ
~	ARSENIC BARIUM BERYLLIUM CADMIUM CALCIUM CHROMIUM COBALT COPPER IRON LEAD MAGNESIUM MANGANESE MERCURY	HG/L	206.2 04-20-93 200.7 04-21-93 200.7 04-21-93	GRS ELZ

Report Approved by: Jim . HcQuel Lan Regiect Manager

Tiller wood . El MWG13-15_47211

PhO1 North Industrial R Phone (209) 672-4422

15cm2 12.61615-1589 Lab Fax (200) 692-5232

An IEPA Contract Laboratory

TO: METCALF & EDDY

1 PIERCE PLACE, SUITE 1400 W.

1 ITASCA, IL 50143

ATTN: MS. DENISE STORY

PAGE NUMBER: 10
REPORT DATE: 05-04-93
DATE RECEIVEO: 04-16-93
PROJECT NUMBER: 592-5841
P.O. HUMBER: 010487-2000-100

_	CLIENT PROJECT NAME:	COMMONNEALTH	EDISON			
ra Ca	ESE SAMPLE SAMPLE DATE		11995*1 04/15/93			
· .	DESCRIPTION	UNITS	MUNICIPAL W. WATER	HETHOD NO.	DATE ANALYZED	AHALYST
.	METALS (Cont'd)					
	HICKEL	HG/L	< 0.020	200.7	04-21-93	ELZ
~	POTASSIUM SELENIUM	MG/L MG/L	1.46 < 0.005	200.7 270.2	04-21-93 04-20-93	ELZ GRS
-	SILVER SODIUM THALLIUM VANADIUM ZINC	HG/L HG/L HG/L HG/L HG/L	< 0.010 8.01 < 0.01 < 0.010 0.204	200.7 200.7 279.2 200.7 200.7	04-21-93 04-21-93 04-20-93 04-21-93 04-21-93	ELZ ELZ GRS ELZ ELZ

Jim T. McQuerion Project Manager Report Approved by:

...ing, Inc.

PRIAB USE ONLY
PRO 23 1 1 2 5 1 1 4 - 25 - 13 5

Chain of Custon, Record

Nº 3109

Phone #: (20) 225 - 10	FINE SUITE () / C ECTY 3 LELA FOX ((CE) RE-15C	1 Wc 2 Soi 3 Su 3 Su 4 Oil 5 Test Other Prese 1 No	G Glass age V VOC	Andly	1 Section of Section 1
Sample f D Sample (10 Characters ONLY) Type	Size Type Thu	Sompling Preser	1001D /N/14/W		Comments
11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	40 ~ C S	# # # # # # # # # # # # # # # # # # #	/!5 <u>!</u> 5-! X X X X X X X X	X	Out & land &
Relinquished By: Relinquished By:	Date: 1. 15 . 43 Ime: 4:20 Date:	Received By Received For Lab By:	Date: 4 - 16 - 13 lime: 1 35 - 14	TURNAROUND TIME: RUSH: day tumaround IX ROUTINE	FOR LAB USE ONLY Samples Received Chilled

9903 North Industrial Reso Phone (209) 692-6422

ad , Pearla, IL 61415-1599 Lab Fox (2019-642-5222

An IEPA Contra ...ab

_aboratory

Environmental Science and Engineering, Inc. Table of Definitions for QC Reports Columnar Terms

Item	. Title	Definition
FOUND F1 FOUND #1 FOUND #2	Sample Concentration Concentration of UNSPIKED Sample Concentration of Replicate Sample	SPIKE SAMPLE CONC - LESS THE UNSPIKED SAMPLE CONC.
RECY	Percent Recovery:	100°(FOUND/TARGET) displayed in appropriate significant figures.
RECY CRIT UNSPIKED	Recovery Criteria Unspiked Sample Concentration	Criteria for Percent Recovery set in the parameter record. Concentration of the DA or UN sample.
R-BLK R.P.D.	Concentration of Method Blank Relative Percent Difference (Matrix Spikes)	100*(ABS (XRECV SPMn - XRECV SPMn-1)/(XRECV SPMn + XRECV SPMn-1)/2).
R.P.D. R. * * *	Replicate Percent Difference (Control Spikes) Replicate Percent Difference (Replicate Samples)	100*(ABS (%RECV SPn - %RECV SP1)/(%RECV SPn + %RECV SP1)/2). 100*(ABS (Conc Rep #2 - Conc Rep #1)/(Conc Rep #2 + Conc Rep #1)/2).
REPL DIFF CTD.L. NA N/A	Maximum value of Replicate Difference Calibration Curve Detection Limit Not Analyzed Not Available	
UNSPIKED = 0		If the parameter is reported as a "LESS THAN", the data is converted to 0 for calculation purposes.
HIM.REC MAX.REC DA	Minimum Recovery Limit Maximum Recovery Limit	Average Recovery - Recovery Limit. Average Recovery + Recovery Limit. Refers to sample.
UN SP SPN1,SPH2 SPN		Refers to second analysis of sample for QC purposes. Spike of reagent (plank) water or soil. Duplicate Matrix Spikes of a sample. Matrix Spike of a sample.
HB		Refers to Method Blank.

05/04/93 Environmental Science & Engineering, Inc. Page 1 METCALF & EDDY 11995 Method Blank (MB) Sample Summary

NAME	UNITS	STORPHETH	BATCH SAMPLE	DATE	FOLID
CHLOROMETHANE	UG/L	34410°PEH	P12753 HE*NOME*1	04/27/93	42
BROWCHETHAXE	UG/L	34413°P8H	MO "MINE" 1		42
ABIAT CHTOTICE	UG/L	39175*P#H	PER PRODUCE * 1		<0.5
CHLDROETHANE	UG/L	34311°P8H	ME*NONE*1		<2
METHYLENE CHLORIDE ACETOWE	UG/L	34423°P8H	HE*NOME*1		1
	19G/L	97020°P8H	ME*NCHE*1		5
CARBON DISULFIDE	DG/L	77041°P8H	ME*HONE*1		<2
T-DICHLORDETKENE	UG/L	34501*P9H	PEP*ICHE*)		<0.5
1,1-DICHLORGETHANE	UG/L	34496°P#H	148*14CHE*1		<1
PRINTS-1,2-DICHLORGETHENE	UG/L	34549*PBH	748*14CHE*1		41
IIL OROFORM	UG/L	32106*P#N	78°906C*1		<1
LE DICHLOROETHUNE	UG/L	34531*PBN	ME*NOME*1		40.5
- ILITAHONE	UG/L	75072°FBN	148.*HCHE*1		42
,1,1-TRICHLORDETHANE	UG/L	34506°PBH	ME-MONE - 1		<0.5
ARBON TETRACHLORIDE	UG/L	32102*PBH	FETHOLE*1		<0.5
INTL ACETATE	UG/L	77057*PBH	PR*NOWE*1		42
ACTION OF THANK	UG/L	32101*P8H	POPHINE*1		41
,2-01CHLOROPEOPANE	UG/L	34541°PAH	M0*M0mE*1		ci .
19-1,3-DICHLOROPROPENE	UG/L	34704°РВН	148*MCME*1		41
RICHLORGETHENE	UG/L	39180*P\$H	#6*MCME*1		40.5
I BRONOCHLOROPETHANE	UG/L	32105°PBH	ME*NOME*1		41
T.2-TRICKLDROETHANE	UG/L	34511*28#	148*910ME*1		41
ENZENE	UG/L	34030°PEH	PRO*NUME*1		<0.5
MARS-1,3-DICKLOROPROPENE	UG/L	34699*PEH	99*NONE*1		41
ROMOFORM	UG/L	32104*PEH	ME"NONE"1		41
-PETHYL-2-PENTANCHE	UG/L	9669АФРЯН	ME*HOHE*1		₹Ž
- HEXANONE	UG/L	77103*PBH	PE*HONE*1		42
ETRACHLOROETHENE	UG/L	34475°PBH	PRPHORE")		41
,1,2,2-TETRACHLURGETHAVE	UG/L	34516°PeH	PRYNOMEY)		41
OLUENE	UG/L	З4010°РВН	MI*HORE*1		41
MLOROBENZENE	UG/L	54301°PBH	ME*ACHE*1		41
THYLBENZENE	UG/L	34371°PBH	MR*NOME*1		41
TYREME	UG/L	99210*PBH	ME*MONE*1		ii .
TLEMES, TOTAL	UG/L	81551*PEN	Manuel 1		ä
18-1,2-DICHLORGETKENE	UQ/L	77093°PBH	PROPERTY.		न
IT(2-CALORGETHYL) ETHER	UG/L	34273°PAH	P12700 PB*WOME*1	04/26/93	<10
,3-DICHLOROBENZENE	UG/L	34566*PAH	PR THOME " 1	041 527 73	<10
,4-81CHLOROBENZENE	UG/L	34571°PAH	MR*WOME*1		<10
ENZYL ALCOHOL	UG/L	77147*PAH	MA PROMET		¢10
, 2-0 I CIR.CIRCILENZENE	UG/L	34536*PAH	146.*MCME * 1		<10
15(2-CHLOROISOPROPYL) ETHER	UG/L	34283*PAH	PR*MONE*1		<10
- WITROSCOI - N-PROPYLANINE	UG/L	34428*PAH	PROPRESE *1		<10
EXACHLORGETHANE	UG/L	34396*PAH	ME*MONE* 1		<10
J TRONENZENE	UG/L	34447°PAH	MINIME*1		€10
SOPHORONE	UG/L	34406*PAH	PE-WANE - 1		<10
19(2-CHLOROETHONY) METHANE	UG/L	34278*PAN	ME*NOME*1		<10
,2,4-TRICHLOROBERZENE	UG/L	34551PPAN	ME*HOME*1		410
APRIMALENE	UG/L	34696*PAN	PROPERTY 1		<10
- CHLOROAVILINE	UE/L	99073*PAN	MENIORE 1		<10
EXACULOROBUTADIENE	UG/L	34391*PAN	MACHINE 1		
- METETLINAPITUAL ENE	UG/L	77416*PAH	PROMINE 1		<10
EXACULORDETCL OPENTAD I ENE	US/L	34384*PAH	MITTERS 1		<10
-CIR CHOMAPHTRAL ENE	UE/L	34581*PAN	MACHE !		<18 <10

		01	5/04/93	Environmental Science PETCALF & ED Nethod Blank (MB) S	OT 11995
KANE	UNITS	STORPHETM	BATCH SAMPLE	DATE	found
2-KITROANILINE	UG/L	99077*PAN	P12700 PETHONE		<50
DIMETRYL PHINALATE	UG/L	34341°PAN	ME-HOME:		<10
ACENAPHTHYLENE	UG/L	34200°PAN	HE MONE		<10
2.6-DINITROTOLUERE	UG/L	34626*PAN	PR*BONE*	i	<10
3-WITHCAMILINE	UG/L	99078°PAH	146*HCME*	ri 💮 💮	<50
ACENAPHTHENE	UG/L	34205*PAH	ME*HOME*	1	<10
DAREKZOFURAN	UG/L	81302*PAH	HE "NOME"		410
2,4-BINITROTOLUENE	UG/L	34611°PAH	HE*NOME*		410
DIETHTL PHTHALATE	UG/L	34336°PAH	90\$ *MCME *		410
4-CHLOROPHENYLPHENYL ETHER	UG/L	34641*PAH	HE THOME		*10
FLUORENE	UG/L	34381°PAH	HE THOME "		410
4-WITECANILINE	UG/L	99079*PAN	internation		<50
M-MITROSODIPHENYLANINE	UG/L	34433°P#4	HE THOME		<10 <10
4 CARCHOPHENYLPHENTL ETHER	UG/L	34636°PAH	HE HOME		<10
HEXACHLOROBENZENE	UG/L	39700°PAN 34461°PAN	HE MORE!		<10
PHEMANTHREKE	UG/L UG/L	34220*PAN	AR THURS		<10
ANTRACENE DI-N-BUTYL PHTHALATE	UG/L	39110*PAN	ME THOME		<10
FLUCKANTHENS	UG/L	34376°PAH	MA ANDREA		<10
PYREME	UG/L	34469°PAH	MB -HCHE		<10
BUILD BENZYL PHINALATE	UG/L	34292*PAN	METHODE!		<10
3,31-01CHLCROBENZIDINE	UG/L	34631*PAH	ME "HOME"	*	420
SHEDARHTHA(A)OSHESB	UG/L	34526*PAN	ME-HOME		410
YSENE	UG/L	34320°PAN	NO PHONE !	•1	<10
(2-ETHYLREKTL) PHINALATE	UG/L	39100*PAN	HE MONE!	1	410
- I-OCTTL PHTHALATE	UG/L	34594°PAN	ME "NONE"		+10
SENZO(B)FLUORANTHERE	UQ/L	34230°PAN	ME NOWE		410
BENZO(K)FLUORANTHENE	UG/L	34545.byH	MB "MONE"		4 <u>10</u>
BENZO(A)PTRENE	UG/L	34247°PAH	MP . NOME.	· ·	+10
INDENO(1,2,3-CD)PYRENE	UG/L	34403°PAH	HO . HOME.		410
O (BENZO (A, H) ANTHRACENE	UG/L	34556°PAH	MINCHE		<10
BEN20(GHI)PERYLENE	UG/L	34521°PAH	NE MONE		<10
PHENOL	UG/L	34694°PAH	POS * NOME		<10 <10
2-CKLOROPHENOL	UG/L	34586*PAN	HE SHOWE		<10
2-METHYL PHENOL	UG/L	99073°PAN 99074°PAN	ME*NOME		<10
4-METATIL PHENOL 2-WITROPHENOL	UG/L UG/L	34591°PAH	MI THOME		<10
2.4-DIMETHYLPHEHOL	UG/L	34606*PAN	MA*WONE	•	<10
BENZOIC ACID	UG/L	77247*PAH	MACHE		<50
2.4-DICHLOROPHEROL	UG/L	34601*PAN	MINUME		410
4-CHLORO-3-NETHYL PHENOL	UG/L	34452°PAN	HR*HONE		<10
2,4,6-TRICHLOROPHENOL	UG/L	34621°PAN	HETHONE		410
2,4,5-TRICHLOROPHENOL	UG/L	77667°PAN	HETHORE		<10
2.4-01H1TROPHENOL	UG/L	34616°PAH	MR*MCME	•1	-50
4-NITROPHENOL	UG/L	3L6L6°PAH	METHORE	•1	<50
2-METHTL-4,6-DINITROPHENOL	UG/L	34657*PAN	780 THOME	*1	-50
PERTACHLOROPHENOL	UG/L	39032*PAH	NO THE NAME OF		<50
BHC_ALPNA	UG/L	39337°PCII	P12915 100*HOME	*1 05/04/93	49.05
BHC, BETA	UG/L	39338*PCH	METHONE		40.05
BHC, DELTA	UG/L	34259*PCH	100 *NOME		<0.05
BHC, GARGA (1. TRIDANE)	UG/L	39340°PCH	PIG * THOME	:-1	<0.05
WEPTACHLOR	UG/L	39410*PC#	MINISHE		4.05
ALDRIN	UE/L	39330°PCH	PAR * NUME	•1	49.05

05/04/93

Environmental Science & Engineering, Inc. METCALF & Exor 11995 Method Blank (MB) Sample Suzmary

Page 3

HAVE	UNITS	STORMETH	BATCH SAMPLE	PATE	FOLKO
HEPTACHLOR EPOXIDE	UG/L	3942D*PCH	P12915 HE*HCME*1	05/04/93	40.05
EIDOSULFAN 1	UG/L	34361°PCH	MB*MCME*1		40.05
OTELORIN	UE/L	39380*PC#	348 *HCHE* 1		<0.10
4,41-DOE	UG/L	99911°PCH	HE*HONE*1		40.10
CHORIN	UG/L	39390*PCH	im.mme.i		<0.10
ENDOSULFAN 11	UG/L	34354°PCH	MB * MCME * 1		<0.10
4-41-000	UG/L	99913°PCH	ME-MONE-1		+0.10
ENDOSARFAN SULVATE	UG/L	34331°PCH	HS*HCHE*1		<0.10
4.41-001	UG/L	99909°PCH	M0 * MCME * 1		<0.10
NETHORYCKLOR	UG/L	39480°PCN	MB + MONE o 1		<0.50
ENDERN KETONE	UG/L	78008*PCH	MP*MONE*1		<0.10
ALPIKA-CHLORDANE	UG/L	39350°PCH	PER PROPERTY		<0.05
GAIGHA - EINLORDANE	UG/L	39351°PCH	100°MCHE*1		40.05
TORAPHENE	110/L	35400°PCH	248*94CHE*1		6.0
ARDCLOR-1016	UG/L	34671°PCH	ME*NOME*1		<1.0
AlgoLox-1221	UG/L	39488*PCH	MR*MOME*1		42.0
Akotust-1232	UG/L	39492*PCH	168 * MCME * 1		<1.0
ARDCLOR-1242	UG/L	39496°PCH	146*WCME*1		41.0
ARDOLOR-1248	UG/L	39500°PCR	ME*ME*1		41.0
AROCLOR - 1254	UC/L	39504°PCH	ME*MONE*1		41.0
ARCCLOR-1260	UG/L	39508*PCH	HE PHONE OF		<1.0
ALLINGUALIN	HG/L	1105°PJH	P12601 MS-NOME+1	04/21/93	<0.050
ASSEMBLY .	NG/L	1097*728	PES*MONE*1	0-721773	<0.050
ARSERIC	HQ/L	1002*PHH	P12633 300*MATER*1	04/20/93	<0.01
BARLUN	HG/L	1007°PJH	P12601 ME*NOME*1	04/21/93	40.010
DESTILLIUM	MG/L	1012°PJH	MI *MONE*1	04/21/12	<0.005
CADRILIN	MG/L	1027"PJH	NE PHONE PT		<0.005
CALCIUM	MG/L	916°PJH	ME*NOME*1		<0.500
CHRONILIN	HG/L	1034°PJH	MENICHEN1		<0.010
CORALT	HG/L	1037*PJH	MR*MONE*1	5.4	<0.010
COPPER	MG/L	1042°PJR	ME-MONE-1		40.010
I RCIN	HG/L	1018*PJH	ME SECRET		<0.010
LEAD	HG/L	1051°PHR	P12633 HE-WATER-1	06/20/93	<0.005
MACINES ILIM	HG/L	927°PJH	212601 HB*HONE*1	04/21/93	<0.500
MANCAMERS	MG/L	1055°PJH	ME-MONE+1	04/21/73	40.500 40.010
HERCLINY	NG/L	71900*PEH	212539 MA*NOME*1	04/19/93	49.0002
NI CROEL	HG/L	1067*PJH	P12601 ME-MCME-1	04/21/93	<0.020
POTASSTUR	NG/L	937*PJH	HE-MONE»]	W1/E1/13	40.500
SELENIUM	HG/L	1147°PHN	P12633 PM*WATER*1	04/20/93	<0.005
SILVER	HG/L	1077*PJH	P12601 #8*HONE*1	04/21/93	4.010
SCDILLY	MG/L	929°PJN	PERMINET.	O-151143	<0.010 <0.500
THALLIGH	HG/L	1059*PHH	P12633 PROMATER 1	G4/20/93	
VAILAD IL'Y	MG/L	1087*PJH	P12601 MAPROMEPT		48.01
ZINC	MG/L	1092*PJH		04/21/93	<0.010
	HOLE	INSE-PAR	HE"NONE" 1		<0.010

05/04/93

Environmental Science & Engineering, Inc. METCALF & EDST 11975 Replicate Analysis (RP) Sample Summery

NAME	CHITS	STORMETH.	BATCH	SAPLE	DATE	FOLED #1			MAX & BEPL DIFF
ALLMINEN	HC/L	1105°PJ#		20"11995"1	04/21/93	0.065	<0.050	51.9	20 2.
ANT I HORY	NG/L	1097°PJB		RP*11995*1		40.050	49.050	0.0	20
ANTINONY ARSENIC	NG/L	1002*PHH	P12633	RP#11995*1	04/20/93	◆.01	4.01	0.0	20
MARIUM	NG/L	1007°PJ#	P12601		04/21/93	0.017	0.018	5.7	20
BEBTLLIUM	NG/L	1012°PJN		RP=11995=1		<0.005	41.045	0.0	20
CADMIUN	NG/L	1027°PJN		RP*11995*1		40.005	<0.005	9.0	20
CALCIUM	NG/L	916°PJN		R##11995*1		34.2	37.7	4.1	20
EMPORTUM	MG/L	1034°PJH		RP+11995+1		4.010	40.010	0.0	20
COMALT	NG/L	1037**JH		B**11995*1		4.010	4.010	0.0	20
COPPER	MG/L	1042°PJN		89-11995-1		0.012	<0.010	18.2	20
ERON	MG/L	1818*PJH		RP=11995=1		D.216	0.791	114.2	20 2.
100	HG/L	1051°2NN	012433	8P*11995*1	04/20/93	<0.005	<0.005	0.0	20
MACHESTUM	NG/L	927°PJH		RP-11995*1	04/21/93	11.7	12.2	4.2	20
	MG/L	1055°PJN	* 15001	R9=11995=1		0.027	0.027	0.0	20
MANGAMESE NÉÁCURY	HG/L	71900°PKH	012570	89*11995*1	04/19/93	<0.0002	<0.0002	0.0	20
		1067°РЈИ		RP+11995+1	04/21/93	<0.020	40.020	0.0	20
NI CEEL POTASSEUM	NG/L	937-938	P 12001	RP*11995*1	4-12-1-13	1.46	1.53	4.7	20
	HG/L	1147°PXN	-13475	RP*11995*1	04/20/93	<0.005	40.005	0.0	20
SELENIUM	MG/L	1077-944		89*11995*1	04/21/93	40.010	40.010	0.0	20
PLEAER	MG/L		PIZENII		04/21/73	8.51	8.37	4.4	20
SOLIM	NG/L	8584b7M	*****	RP*11995*1	04/20/93	<0.01	€0.01	0.0	50
THALLIUM	MG/L	1059°P##		2P*11995*1			40.518	2.0	20
VANADILM	MG/L	1067*PJH	P12601	EP*11995*1	04/21/93	<0.010		19.4	20
SIMC	NG/L	1092°PJN		RP*11995*1	A4 470 em	0.204	0.168		20
	UN17S	403°PD	P12575	RF*12050*1	04/20/93	6.45	6.67	D.6	24

METCALF & EDOY 11995 Standard Matrix Spike (SP) Recovery and Replicate Summery

MARE	UNITS	STORMETH	BATCH SAMPLE	DATE	TARGET	/ DUMP	TRECY		E.P.D.	R.P.D. CRIT.
BHC, GANGA (LINDAMÉ)	UG/L	39340°PCH	P12915 321°NON	E*1 05/04/93	0.50	0.48	96.0	56-123		20
BHC, GAMMA (LINDAME)	UG/L		\$22°101	E*1	0.50	0.47	94 0	56-123	2.1	20
MEPTACHLOR	UG/L	39410°PCH	\$21*101	E*1	0.50	0.44	88.0	49-131		20
MEPTACKLOR	UG/L	4,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	5P2*NON		0.50	0.40	80.0	40-151	9.5	20
ALDRIN	UG/L	39330°PCK	SP1°NON		0.50	0.49	96.0	40-120		20
ALDRIN	UG/L		SPZ*NON		0.50	0.44	88.0	49-120	11.0	20
DIELDRIN	UG/L	39380*PCH	571*101		1.0	0.96	96.0	52-126		20
DIELDRIN	UG/L	•••	SP2*HOH	E*1	1.0	0.92	92.0	52-126	4.3	20
ENDRIN	UG/L	39390*PCH	SP1*NO	E°1	1.0	1.1	110.0	56-121		20
ENDRIN	UG/L		SP2*NON		1.0	1.0	100.0	56-121	9.5	20
4,41-DDT	UG/L	99909°PCH	521*1101		1.0	0.99	97.0	38-127		20
4 At-DDT	1150		\$97*HFB		1.0	0.09	9.0	35-127	170.0	20 3.

3. No corrective action required by CLP.

· Marietta All .

05/04/93

Environmental Science & Engineering, Inc. METCALF & EDDY 11995 Sample Matrix Spike (SPM) Recovery Summary

Page 5

AME	UHITA	STORMETH		SAMPLE	DATE	TARGET	FOUND	MECV	RECY CAT	LIMSPIKED	R.P.D.	A.2.D. CRI
1-DICKLORGETHENE	UG/L	34501°PEN	P12753	SPH1"11995"1	04/27/93	10	10	100	61-145	0.0		16
. DICHLOROETHEKE	UG/L			SP42*11995*1		10	11	110	61-145	0.0	10.0	14
I CHLOROETHENS	UG/L	39180°PEN		SPM1*11995*1		10	11	110	71-120	0.0		14
I J CHLORGET HENE	UG/L			SPH2*11995*1		10	12	120	71-120	0.0	9.0	14
HNZEME	UG/L	34030°78H		SPR1#11995#1		10	11	110	76-127	0.0	,,,	ii
MZEWE	UG/L			SPR2*11995*1		10	11	110	76-127	0.0	0.0	ii
N. I.E.ME	UG/L	34910*P#H		SPH1*11995*1		10	11	110	76-125	0.0	4.4	13
LUENE	UG/L			SPIC2*11995*1		10	ii	110	76-125	0.0	0.0	13
N.COPCRENZENE	UC/L	343J1*P8H		SPH1*11995*1		10	12	120	75-130	0.0	0.0	13
ILOROBENZENE	UG/L			SPH2*11995*1		10	13	130	75-130			
CONTRACTOR	NG/L	1105*PJN	012401	SPH*11995*1	04/21/93	1.00	0.955			0.0	8.0	13
FRONY	NG/L	1097*PJH	716001	SPH*11995*1	04/21/73			95.5	75-125	0.085		20
SENIC	HG/L	1002°PHH	912477	SPN*11995*1	81 438 407	1.00	0.904	90.6	75-125	0.0		20
WHILE	MG/L	1007°PJH		SPH*11995*1	04/20/93	0.04	0.04	99.8	75-125	0.00008		20
STELLIUM	MG/L	1012°PJN	PIESGI	SPH*11995*1	04/21/93	1.00	0.977	97.7	75-125	0.017		20
Dillin		1027*PJN				1.00	0.975	97.5	75-125	0.0		20
LEIUN	NG/L NG/L			SPR*11995*1		1.00	1.01	101	75-125	0.0		20
ROILUM		916°PJH		SPR*11995*1		1.00	2.60	260	75-125	36.2		20 1.
ENT.	NG/L	1034°PJH		SPH*11995*1		1.00	0.999	99.9	75-125	0.001		20
PPEN	NG/L	1037*PJH		\$7K*11995*1		1.00	0.996	99.6	75-125	0.0		20
CH	MG/L	1042°PJH		SPH*11995*1		1.00	0.978	97.B	75-125	0.012		20 20
	MG/L	1018*PJR		SPH*11995*1		1.00	0.814	81.4	75 - 125	0.216		20
AD .	NG/L	1051°PHN		SPN*11995*1	04/20/93	0.04	0.04	99.5	75-125	0.0002		20
anes (un	NG/L	927°PJH	P12601	SPH*11995*1	04/21/93	1.00	1.60	160	75-125	11.7		20 20
MCAMESE	MG/L	1055*PJH		\$P#(*11995*1		1.00	0.993	99.3	73-125	0.027		20
<u>Z</u> CIRT	NG/L	71900°PKH	P12539	SPN*11995*1	04/19/93	0.0010	0.0011	109	73-125	0.00001		20
GEL	NG/L	1067°PJH	P12601	SPR*11995*1	04/21/93	1.00	0.998	99.8	75-125	0.0		20
TASSEUM	MG/L	037°PIN		SPH*11995*1		10.00	9.94	99.4	75-125	1.46		20
LERIUM	MG/L	1147°PHR	P12633	SPH*11995*1	04/20/93	0.04	0.03	77.5	75-125	0.001		20
LVER	MG/L	1077*PJH		SPN*11995*1	04/21/93	1.00	0.978	97.0	75-125	0.0		20 20
DILM	NG/L	929°PJH		SPN*11995*1		1.00	1.38	138	73-125	0.01		20
ALLIUM	NG/L	1059*PHH	P12433	SPH*11995*1	04/20/93	0.04	8.04	98.0	75-125			20
MADILIN	HG/L	1087°PJH		SPH*11995*1	04/21/93	1.00	0.994			8000.0		20
n¢	NG/1	1002*P.11		90001100001	O-161113	1.00	0.770	99.6	75-125	0.0		20

^{1.} Sample amount greater than 4 times apike amount.

05/04/93

Environmental Science & Engineering, Inc. NETCALF & EDOY 11995 Surrogate (SUR) Spike Recovery Summery

Page 6

NATE .	UNITS	STORPHETH	BATCH.	SAMPLE	OATE .	TARGET	FOLAD	XRECV	RECV CRIT
TOLUENE-D(8)	UG/L	98810***LIB	P12753	HE-HORE-1	04/27/93	10.0	10.0	100,6	81-117
TOLUENE-U(B)	UG/L			DA*11995*1		10.0	9.7	97.0	01-117
TOLUENE-D(B)	UG/L			DA+11995*2		10.D	11	110.0	81-117
TOLUENE-D(8)	UG/L			SPH1*11995*1		10.0	10.0	100.D	81-117
POCLEME-D(B)	UG/L			\$PHZ*11995*1		10.0	10.0	100.0	81-117
BROMOFILIOROBENZENE	UG/L	98402"FUR		HE*HONE*1		10.0	9.3	93.0	74-121
NACIONAL LUCINOS EN ZENE	UG/L			DA*11995*1		10.0	8.8	85.0	74-121
BECHOFLUCKOBENZENE	DG/L			DA*11995*2		10.D	8.6	86.0	74-121
BRONOF LUCKOBENZENE	UG/L			SPH1*11995*1		10.0	8.9	89.0	74-121
BROWDFLUOROBENZENE	UG/L			SPN2*11995*1		10.0	8.7	87.0	74-121
1.2-DICHLOROETHANE-D4	UG/L	96812°5LR		ME-HOME-1		10.0	9.0	90.0	70-121
T.3-DICHLDROETHAME-DA	UG/L			DA+11995*1		10.0	7.6	96.0	70-121
1.2-BICHLORGETHANE-D4	UG/L			DA*11995*2		10.0	8.8	88.0	70-121
1c2-BICHLORGETRANE-D4	UG/L			SPH1*11995*1		10.0	12	120.0	70-121
1.2-DICHLORGETHANE-DA	UG/L			SPH2*11995*1		10.0	10.0	100.0	70-121
NATROBEKZENE-05	UG/L	91012*SUR	P12700) MB+NCME+1	04/26/93	\$0	36	72.0	35-114
NT TROBERZENE-DS	UG/L			DA*11995*1		50	38	76.0	35-114
2-FLUOROS LPHENYL	UG/L	96330° SLM		MENCHENT		50	34	68.0	43-116
2-TLUCKOB (PHENTL	UG/L			DA*11995*1		50	37	74.0	43-116
TERPHENTL-D14	UG/L	97449*SLE		MB*HOLE*1		50	43	86.0	33-141
TERMENTL-D14	UG/L			BA*11995*1		50	42	84.0	33-141
PREMIOL-D5	UG/L	96395*SLM		HB*MOKE*1		75	58	77.3	10-110
PHENOL-05	UG/L			DA=11995=1		75	57	76.0	10-110
IOPHEMOL	UG/L	97024*SUR	10.20	ME-HONE-1		75	48	64.0	21-110
IOPHENOL	UG/L			DA*11995*1		75	48	64.0	21-110
TREBRONOPHENOL	UG/L	91020*SUR		MB*NORE*1		75	60	80.0	10-123
2,-,6-TRIBRONOPHENOL	UG/L			DA*11995*1		75	67	57.3	10-123
2- ENLOROPHENOL-D4	UG/L	98755°SLR		MB*NONE"1		75	66	68.0	33-110
2-CHLOROPHENOL-04	UG/L			DA*11995*1		75	68	90.7	33-110
1.2-DICHLORGRENZENz-D4	UG/L	21996911*51	増	HE-NOKE-1		50	29	\$8.0	16-110
1,2-DECKLONOMENZENE-D4	UG/L			DA*11995*1		50	32	64.0	16-110

MWG13-15_47220

ละจรมให้รับกรรมสังวาง เกา

05/04/93 Environmental Science & Engineering, Inc. METCALF & EDOT 11995 Laboratory Control Sample (LCS) Schmary EATCH SAMPLE

P12603 LCS*MOME*1

P12613 LCS*MOME*1

P12613 LCS*MOME*1

LCS*MOME*1 101.0 75-125
100.0 75-125
100.0 75-125
100.0 75-125
100.0 75-125
100.0 75-125
100.0 75-125
100.0 75-125
100.0 75-125
100.0 75-125
100.0 75-125
100.0 75-125
100.0 75-125
100.0 75-125
100.0 75-125
100.0 75-125
100.0 75-125
100.0 75-125
100.0 75-125
100.0 75-125
100.0 75-125
100.0 75-125
100.0 75-125
100.0 75-125
100.0 75-125
100.0 75-125
100.0 75-125
100.0 75-125
100.0 75-125
100.0 75-125
100.0 75-125
100.0 75-125
100.0 75-125 103-PEH 105-PJH 1077-PJH 1077-PJH 1002-PJH 1012-PJH 1012-PJH 1014-PJH 1014-PJH 1015-PJH 1016-PJH 1016-DATE 04/21/93 04/20/93 04/21/93 84/20/93 04/20/93 04/21/93

04/20/93 04/21/93 04/20/93

BANE
ALUMINUM
ANTIMUM
ANTIMUM
ANTIMUM
ANTIMUM
ANTIMUM
ANTIMUM
BERTYLLIUM
BERTYLLIUM
COMMANIUM
CO

1

INITS
PECAL

	MW-1	MW-1D	MM-5	MM-3	MW-4	NW-5	MW-0	MW-7	Gietern	Class 1	-
										Blandards	
VOLATILE ORGANICE											
CHLOROMETHANE	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10		
BROMOMETHME	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10		
VIMIL CHLORIDE	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	.2	
CHLOROETHANE	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10		
METHYLENE CHLORIDE	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10		
ACETONE	11	9.1	11	8.1	< 10	< 10	5.1	< 10	16		
CARBON DISULFIDE	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10		
1,1-DICHLOROETHENE	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	7	
1,1-DICHLOROETHANE	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10		
TRANS-12-DICHLOROETHENE	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	100	
CHLOROFORM	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10		
1.2-DICHLOROETHANE	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	3	
Z-BUTANONE	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10		
1.1.1-TRICHLOROETHANE	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	200	
CARBON TETRACHLORDE	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10		
BROMODICHLOROMETHANE	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10		_
1.2-DICHLOROPROPANE	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	3	
CIS-1.3-DICHLOROPROPENE	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10		
TRICHLOROETHENE	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	5	
DIBROMOCHLOROMETHANE	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10		-
1,1,2-TRICHLOROETHANE	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10		
BENZEHE	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	<u> </u>	
TRANS-1.3-BICHLOROPROPENE	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10		1
BROMOFORM	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	<u> </u>	
4-METHYL-2-PENTANONE	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10		
2-HEXANONE	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10		
TETRACHLOROETHENE	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	8	
1,1,2,2-TETRACHLOROETHANE	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10		
TOLUENE	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	1000	1997
CHLOROSENZENE	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	100	
ETHYLBENZENE	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	700	
BTYPENE	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	100	
XYLENES (TOTAL)	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	10000	525
CIS-12-DICHLOROETHERE	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	4 10	70	

ALL UNITS LIGIT.

J. INDICATES ESTIMATED VALUE

NOTE: IN CERTAIN DISTANCES, THE REPORTED POL 10 HIGHER THAN THE CLASS I STANDARD. WHEN THIS OCCURS, ANY VALUES ABOVE THE REPORTED

POL WILL SE CONSIDERED EXCEEDIANCES OF THE CLASS I STANDARD.

TABLE 6-1 WATER ANALYTICAL RESULTS FORMER GREISS-PFLEGER TANNERY COMMONWEALTH EDISON COMPANY WALKEGAN, ILLINOIS

	FR-EW	FB-1	F8-2	FB-3	FB-4	TOLK-GW	TBLK-A	TOLK-B	TBUK-C	TBLK-D	TBLK-6
POLATILE ORGANICS											
CHLOROMETHANE	< 10	< 10	< 10	< 10	< 10	< 10	< 10				
BROMOMETHANE	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
VINIT CHLORIDE	< 10	< 10	< 10	< 10	< 10	< 10	< 10		≪ 10	< 10	< 10
CHLOROETHANE	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
METHYLENE CHLORIDE	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
ACETONE	< 10	LBB	LSB	88.1	484	< 10	11	< 10	< 10	< 10	< 15
CARBON DISULFIDE	< 10	< 10	< 10	< 10	< 10	< 10	C 10		< 10	< 10	#1
1,1-DICHLORGETHENE	< 10	< 10	< 10	< 10	< 10	< 10		< 10	< 10	< 10	< 10
1,1-DICHLOROETHANE	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
TRIANS-1,2-DICHLOROETHENE	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
CHLOROFORM	< 10	< 10	< 10	< 10	< 10		< 10	< 10	< 10	< 10	< 10
1.2-DICHLOROETHANE	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
-BUTANONE	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
1.1.1-TRICHLOROETHANE	< 10	< 10	₹10	< 10	< 10		< 10	< 10	< 10	< 10	< 10
CARBON TETRACHLORIDE	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
ROMODICHLOROMETHANE	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
1.2-DICHLOROPROPANE	< 19	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
CIS-1,1-DICHLOROPROPENE	< 10	< 10	< 10	< 10	< 10	< 10		< 10	< 10_	< 10	< 10
TRICHLORDETHENE	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
DIBROMOCHLOROMETHANE	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
1.1.2-TRICHLOROETHANE	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
BENZENE	< 10	< 10	< 10	< 10	< 10	< 10		< 10	< 10	< 10	< 10
TRANS-1,3-DICHLOROPROPENE	< 10	< 10	< 10	C 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
PROMOFORM	< 10	< 10	< 10	< 10	< 10		< 10	< 10	< 10	< 10	< 10
-METHYL-2-PENTANONE	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
-HEXANONE	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
TETRACHLOROSTHENS	< 10	< 10	< 10			< 10	< 10	< 10	< 10	< 10	< 10
1.1.2.2-TETRACHLOROETHANE	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
CLUENE	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
HLOROBENZENE	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
THYLBENZENE	< 10	< 10		< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
TYPENE	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
TYLENES (TOTAL)	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
CH-1,2-DICHLOROETHENE	< 10		< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
DATE OF THE PERSON OF THE PERS	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10

ALL UNITS UGAL

TABLE 6-1 WATER ANALYTICAL RESULTS FORMER GREISS-PFLEGER TANNERY COMMONWEALTH EDISON COMPANY WAUKEGAN, ILLINOIS

	MW-1	MW-10	MM-5	14W-5	₩-4	NW-5	MW-e	MW-7	Cistern	
						ļ			1	
SEM-VOLATILE			40						 	$\overline{}$
ORGANIC COMPOUNCS						< 10	< 10	< 10	< 10	
PHENOL	< 10	<u> </u>	≤ 10	< 10	< 10	< 10	< 10	< 10	< 10	<u></u>
BENZ-CHLOROETHYLIETHER	< 10	< 10	4 ID	< 10		< 10	< 10	< 10	< 10	
2-CHLOROPHENOL	< 10	< 10	1 .5 10	< 10	< 10		< 10	< 10	₹ 10	
1,3-DICHLOROBENZENE	< 10	< 10	1 . 4 10	< 10	< 10	<u> < 10</u>	< 10	< 10	₹ 10	
1,4-DICHLOROBENZENE	_ < 10	< 10	₹ 10	< 10	< 10	< 10	< 10	< 10	< 10	
1,2-DICHLOROBENZENE	< 10	< 10	Į ≤ 10	< 10	< 10	< 10		< 10		
2-METHYLPHENOL	< 10	< 10	1 < 10	< 10	< 10	< 10	< 10		<u> ≤ 10</u>	
2.7 - CXYBIS(1-CHLOROPROPANE)	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10 € 10	4 10 4 10	
4-METHYLPHENOL	< 10	< 10	< 10	< 10	< 10	< 10 .	< 10	< 10	× 10	
N-MITROSO-DI-N-PROPYLAMINE	< 10	< 10	1 < 10	J < 10	< 10	< 10	< 10			
HEXACHLOROETHANE	< 10	< 10	1 . < 10	! < 10	< 10	< 10 .	< 10	< 10	< 10	 -
HITROBENZENE	< 10	< 10	1 ≤ 10	< 10	< 10	< 10	< 10	< 10	< 10	
SOPHORONE	< 10	€ 10	< 10	_ < 10	< 10	< 10	< 10	< 10	< 10	
2-NITROPHENOL	< 10	< 10	< 10 .	< 10	< 10	< 10	< 10	< 10	< 10	
Z.4-DIMETHYLPHENOL	< 10	< 10	€ 10	< 10	< 10	< 10	< 10	< 10		
BIS12-CHLOROETHOXY)METHANE	< 10	< 10	₹ 10	< 10	< 10	< 10	< 10	< 10	< 10	\rightarrow
2.4-DICHLOROPHENOL	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	1 . ≤ 10	
1,2,4-TRICHLOROBENZENE	< 10	< 10	T < 10	< 10	< 10	< 10	< 10	< 10	< 10	
HAPHTHALENE	< 10	< 10	_ ≤ 10	< 10	< 10	< 10	< 10	< 10	< 10	\rightarrow
4-CH DROANLINE	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	
HEXACHLOROBUTADIENE	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	
4-CHLORO-3-METHYLPHENOL	< 10	< 10	< 10	< 10	< 10	< 10	1 , < 10	< 10	< 10	
2-METHYLNAPHTHALENE	< 10	< 10	₹ 10	< 10	< 10	< 10	< 10	< 10	< 10	
HEXACHLOROCYCLOPENTADIENE	< 10	< 10	_ < 10	< 10	< 10	< 10	< 10	< 10	< 10	
2,4,6-TRICHLOROPHENOL	< 10	< 10	₹ 16	< 10	< 10	< 10	· < 10	< 10	< 10	
2.4.5-TRICHLOROPHEHOL	< 25	< 25	< 25	< 25	< 25	< 23	< 25	< 25	< 25	
2-CH ORONIPHTHALENE	< 10	< 10		< 10	< 10	< 10	< 10	< 10	< 10	
2-NITROANLINE	< 25	< 25	< 25	< 23	< 25	< 25	< 25	< 25	< 25	
DOMETHICLPHITHALATE	< 10	< 10	< 10	1 < 10	< 10	< 10	< 10	< 10	< 10	
ACENAPHTHYLENE	< 10	< 10	. 19	< 10	< 10	< 10	< 10	< 10	1 < 10	
7.6-DHITHOTOLUENE	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	
3-NITROANGINE	< 25	< 25	< 25	< 25	< 25	< 25	< 25	< 25	< 25	
ACENAPHTHENE	< 10	< 10	< 10	< 10	< 10	< 10	√ 10	< 10	< 10	
ACCIDENTIFICAE	1 10		_L _23E.	.1			*			
	•									
	ALL UNITS UC									
	NET CHILD OF	ue.								
	-									
12										
7.						A				21
17							01991 09			
Maria de la compansión de							7	700	14 . 4 13	S 30 80

TABLE 6-1 WATER ANALYTICAL RESULTS FORMER GREISS-PFLEGER TANNERY COMMONWEALTH EDISON COMPANY WALKEGAN, ILLINOIS

			FORI	WATER AND MER GREIS MONWEAL	NBLE 6-1 NLYTICAL RE S-PFLEGER TH EDISON GAN, KLLING	TANNERY COMPANY					
	MW-1	MW-10	MW-5	MW-3	MW-4	MW-5	MW-a	NW-7	Cistern		
SEM-VOLATRE	2.00	100	******								
ORGANIC COMPOUNDS							+		╬┈╼╼╼		
7.4-DIMETROPHENOL	< 25	< 25	< 25	< 25	< 25	24	< 25	- 35	÷	——————————————————————————————————————	-
DIBENZOFURAN	< 10	< 10	< 10	< 10	< 10	< 25 ·	< 10	< 25	< 25		-
4-MITROPHENOL	< 25	< 25	< 25	< 23	< 25	< 10 < 25	< 25	< 25	1 < 10	****	
2,4-DINITROTOLLIENE	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	- < 25		
FLUORENE	< 10	< 10	4 10	< 10	< 10		< 10	< 10	< 10		
DETHYLPHTHALATE	< 10	< 10	< 10	¥ 10	< 10	< 10	- < 10	< 10	< 10	- 14	-1
14-CHLOROPHENYLPHENYL ETHER	< 10	< 10	< 10	< 10	< 10	110	< 10	< 10	< 10		4
4-NITROANLINE	< 25	< 23	7 < 25	< 25	< 25	< 25	< 25	- < 23	· \$35-1-		
2-METHYL-4.8-DINTROPHENOL	< 25 -	< 25	I < 25	< 23	< 25	₹ 23	< 25	< 25	< 25		,
N-MITROSCOPHENYLAMINE (1)	< 10	< 10	₹ 10	< 10	< 10	< 10	< 10	< 10			
. 4-BROMOPHENYLPHENYL ETHER	< 10	< 10	< 10	< 10	< 10	< 12	< 10		< 10		ē., .
HEXACHLOROBENZENE	< 10	< 10	< 10	< 10	< 10	10	< 10	< 10	4 ≤ 10		** .
PENTACHLOROPHENOL	₹ 25	< 25	< 25	25	< 25	the second second	< 25		< 10		1
- PHENANTHRENE	< 10	< 10	< 10	< 10	< 20	- S 23 -	< 10	< 25	< 25		
ANTHRACENE	< 10	< 16	< 10	< 10	- 10		< 10	< 10	< 10		
DI-N-BUTYLPHTHALATE	< 10	< 10	< 10	< 10	€ 10	< 10 < 10	< 10	< 10	< 10		
FLUORANTHENE	< 10	< 10	< 18	< 10	< 10	< 10	< 10	< 10	< 10		
PYREME	< 10	< 10	< 10	< 10	< 10		< 10	< 10	< 10		**** ****
MUTYLBENZYLPHTHALATE	< 10	< 10	< 10	4 10	< 10	< 10	< 10	< 10	< 10		
3.3'-DICHLOROBENZIONE	₹ 20	< 20	< 20	< 20	< 20		< 20	< 10	< 10		
BENZDIAJANTHRACENE	< 10	< 10	< 10	< 10	< 10	< 20		< 20	< 20		
CHRYSENE	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10		
MED-ETHYLHEXYLIPHTHALATE	1 < 10	< 10	< 10	< 10	< 10			< 10	< 10		
DF-H-OCTYUPHTHALATE	< 10	< 10	+-·≥ 10 ··	< 10	< 10	< 10	< 10	< 10	< 10		
. LIBENZO (B) FLUORANTHENE	< 10	< 10	+ - io ···	< 10	< 10	- × 10 - × 10	< 10	< 10	< 10		
BENZONGFLUORANTHENE	< 10	< 10	< 10	< 10	< 10		1 < 10	< 10	< 10		-
BENZOWYTADIE	< 10	< 10	< 10	< 10		< 10	< 10	< 10	1 < 10		
INDENO(1.2.3-CD)PYRENE	< 10	< 10	< 10	< 10	< 10	≤ 10	< 10	< 10	1 < 10		
DESENDOJA HANTHRACENE	< 10	< 10	1 10	< 10	< 10	≤ 1 <u>0</u> . ≤ 10	< 10	- < 10 ··	< 10		
		< 10									

ALL UNITS UG/L

	FB-GW	FB-1	FB-2	FB-3	FB-4		-				
			: *								
SEM-VOLATILE										-	
ORGANIC COMPOUNDS											
PHENOL.	< 10	< 10	< 10	< 10	<u> </u>		401.000			 -	
BIS(2-CHLOROETHYL)ETHER	< 10	. < 10	. < 10	< 10	< 10						
2-CHLOROPHENOL	. < 10	< 10	< <u>10</u>	< 10	< 10						
1.3-DICHLOROSENZENE	< 10	— < 10	< 10	< 10	The second secon		10.0				
1.4-DICHLOROBENZENE	10	< 10	< 10	< 10	< 10						
1,2-DICHLOROBENZENE	< 10	< 10	≤ 10	< 10	< 10	: ·	1				
2-METHYLPHENOL	< 10	< 10	L < 10	< 10	< 10						
2.2-GYBIS(1-CHLOROPROPANE)	< 10	< 10	< 10	< 10	< 10						
4-METHYLPHENOL	< 10	< 10	< 10	< 10	< 10						
N-NTROSO-DI-N-PROPYLAMINE	< 10	< 10	< 10	< 10	< 10						
HEXACHLORDETHANE	< 10	< 10	< 10	< 10	— < 10						
MITROSEKZENE	< 10	< 10	< 10	< 10	< 10						
ISOPHORONE	< 10	< 10	< 10	< 10	< 10						
Z-MTROPHENOL	< 10	< 10	< 10	< 10	< 10						
2,4-DIMETHOUPHENOL	< 10	< 10	< 10	< 10	< 10	<u> </u>					
BISIZ-CHLOROETHOXY)METHANE	< 10	< 10	< 10	< 10	< 10	<u> </u>					
2,4-DICHLOROPHENOL	< 10	< 10	< 10	< 10	< 10	i					
1,2,4-TRICHLOROBENZENE	. < 10	< 10	< 10	< 10	< 10						
HAPHTHALENE	< 10	< 10	< 10	< 10	< 10	i	L				
4-CHLOROANLINE	< 10	< 10	< 10	< 10	< 10						
HEXACHLOROBUTADIENE	< 10	< 10	< 10	< 10	< 10	I	4				
4-CHLDRO-3-METHYLPHENOL	- · · · · · · · · · · · · · · · · · · ·	< 10	< 10	< 10	< 10						
2-METHYLHAPHTHALENE	. < 10	< 10	< 10	< 10	< 15						
HEXACHLOROCYCLOPENTADIENE	< 10	< 10	< 10	< 10	< 10						
2.4.6-TRICHLOROPHENOL	< 10	< 10	< 10	< 10	< 10			_			
2.4.5-TRICHLOROPHENOL	< 25	< 23	< 25	< 25	< 25						
Z-CHLORONAPHTHALENE	< 10	< 10	< 10	< 10	< 10						
2-MTROAMLPÆ	< 25	€ 25	< 15	< 25	< 25	4					
DMETHYLPHTHALATE	< 10	< 10	< 10	< 10	< 10						
ACEMAPHIHITLENE	< 10	< 10	< 10	< 10	< 10						
25-DISTROTOLLIENE	< 10	< 10	< 10	< 10	< 10						1
3-HIROANLEE	< 25	< 25	< 25	< 25	< 25		_				
ACEMPHINENE	₹ 10	< 10	< 10	< 10	< 1D		-:				

ALL UNITS UGAL

A A STATE OF THE PARTY OF THE P

TABLE 6-1 WATER ANALYTICAL RESULTS FORMER GREISS-PFLEGER TANNERY COMMONWEALTH EDISON COMPANY WAUKEGAN, ILLINOIS

FORMER GREISS — PFLEGER TANNERY COMMONWEALTH EDISON COMPANY WAUKEGAN, ILLINOIS FB-GW FB-1 FB-3 FB-3 FB-4	•									- ' -	·		
SEMI-YOLATILE ORGANIC COMPOUNDS				FOR	WATER ANA MER GREIS IMONWEAL	LYTICAL RE S-PFLEGER THEDISON	TANNERY						•
Definition Compose C		FB-GW	FB-1	F8-2	F8-3	FB-4	T" """	·i ·					1.55
Definition Compose C							1	T					
2_1-DINTROPPENCE				L							_		
Defendation Color Color		L] —	1					
Company Comp				. 5 25	< 25	< 25	L	100					
2.4_DIMPRIDITULIENE		< 10		≤ 10	< 10		L ::		7	• • • • • • • • • • • • • • • • • • • •			
PLUDRENE						< 25	24		¬				
CONTINUENTIALATE C 0				+		< 10		1	o				
C-CH_OROPHENT_PHENT_ETHER					. < 10		<u> </u>	1					· i
4-NITROSADENE 2-METHYTI-43-DITROPHENOL). <u>≤!!!</u>			< 10	< 10	Ι	1.5	¬				100
2-METHYL-4.6-DINTROPHENOL < 25							T	1	1				
N-MIROSOOPHENTLAMINE [1]								1					
## APPOINDPPENTUPPENTUPPENT C 10									-				-1
HEXACHLOROGENZENE							ļ					_	
PENTACH COROPHENOL	HEXACHI ORGAFNITENE												
PHENANTHRENE				- 510				i		1			
ANTIFRACENE								l	1				
DI-N-BUTYPHTHALATE										i			100
FLIOGRAPTIVENE < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 1							 -						
PTREME													
BETTURENTY PITTHULATE < 10								ļ					
2,7 - DICHLOROSERZIONE	BUTYLBENZYLPHTHALATE							 	-				1
BENZONANTHRACENE < 10								1					
CHITTENE								 					
BESQUESTIMENTALATE < 10 < 10 < 10 < 10 < 10								 			_		
DIOCTYLPHTHALATE	BISIZ-ETHTLHEXYLIPHTHALATE							1					
BENZOR/FLUORANTIENE < 10								-					. "
RENZONSTUDRANTIENE < 10								ļ]
BENZOLAPTYRENE <10 <10 <10 <10 <10 <10 <10								1 .	-				
ROENQ12,3-CDIPYRENE < 10								-					
DBENZON JANTIFRACENE < 10 < 10 < 10 < 10 < 10 BENZONG MAPPAYLENE < 10 < 10 < 10 < 10 < 10 < 10									-				
BENZOIG ANPENYLENE < 10 < 10 < 10 < 10								-					
							- · · ·	1		_‡			
CAMERICOE	CARBAZOLE	< 10	< 10	< 10		< 10		<u> </u>	- 				

ALL UNITS UGAL

TABLE 6-1 WATER ANALYTICAL RESULTS FORMER GREISS-PFLEGER TANNERY COMMONWEALTH EDISON COMPANY WALKEGAN, ILLINOIS

					TABLE 6-1						Ŭ.
				FORMER GR	ANALYTICAL IEISS-PFLE(EALTH EDIS(LIKEGAN, ILL	SER TANNER ON COMPAN					1
	MW-1	MW-1D	- WW-2 **	E-WM	MW-4 [MW-5	MW-0	W-7	Cintern	Minole	
										Clean I	
IORGANICS											
LUMPAUM	<52.2	<52.2	<52.2	<52.2	\$5.1	<32.2	<52.2	<52.2	<52.2		
MEMORY	<13.2	10.0	14	<13.2	<13.2	<13.2	<13.2	<13.2	<13.2		
NSENIC	6470	8490	28	\$1.4	4.0	3.4	<1.4	<1.4	<1.4	50	
URIN	122	110	81.0	100	106	91,3	38.6	81	47,2	2000	
EMMLUH	<1	<1	c1	<1	<1	<1	<1	<1	<1		
ADMINI	<29	<2.8	<2.9	<2.0	<2.5	<2.9	<2.0	<2.9	<21	3	
ALCUM	344000	371000	282000	330000	271000	291000	245000	381000	33300		
HOMUM	23.7	22.4	23.2	<4.2	12.5	6.6	<4.2	<4.2	<4.2	100	
CORALT	12.6	13.8	4.2	23.8	11,7	28.9	<2.8	21.0	<2.8	1000	
OPPER		7.5	9	4.5	7,3	0	0.4	10.8	4	650	
OH	208	183	249	10400	34500	8340	15.4	6080	150	3000	
EAD	40.7	<2.4	<2.4	<2.4	<2.4	<24	<2.4	2.8	4.5	7.5	
MGNESTAL	150000	152000	83000	94500	102000	49500	42900	32000	6660		
ANGANESE	1840	1620	204	4140	2950	2430	1780	3140	133	150	
ERCURY	0,1	<0.1	0.00	0 17	9.57	0.16	<0.10	0.50	0.18	2	
ACKEL .	80	83.6	19.3	28.8	29	29	13.1	20.3	< 0.0	100	
OTASSAM	4050	3490	1830	4350	8250	4950	6370	37600	5370		
ELEMEN	<14	<1.4	<1.4	<1.4	<1.4	<1.4	€1.4	9.0	1.6	50	
AVER	<2.1	<2.1	<2.1	<2.1	<2.1	<2.1	<2.1	<2.1	<2.1	50	
IODIUM	120000	112000	17400	94400	83400	74400	121000	142000	28000		
HALLIN	<1	<1	<1	1.5	<10	<10	<1	<1	<1		
ANADIUM	4.3	0.0	3.1	2.2	7.8	2.0	2	3,0	<1.9		11,225
DAC .	30,7	33.0	23.3	118	20.7	19.2	- 37.7	43.2	9.8	5000	
YANEDE	<10	<10	<10	< 10	<16	<10	<10	<10	<10	200	
TOS	2524000	2702000	1878000	1780000	1,870000	174200D	1490000	1612000	263000	1,200,000	

ALL UNITS UGT.
- WOICATES EXCEEDANCE OF CLASS I STANDAROS

TABLE 6-1 WATER ANALYTICAL RESULTS FORMER GREISS-PFLEGER TANNERY COMMONWEALTH EDISON COMPANY WAUKEGAN, ILLINOIS

	0.57				•					Tr . 1197 111	2725 10 5 00 200
	•				TABLE 6-	1					1
				WATED	ANALYTICAL						
				FORMER GR	PIESS-DELE	TEOULIS SED TANKE	-nv				
				COMMONW	EALTH EDIS	JEU LVMME	arv Arv				•
				WA	UKEGAN, ILL	INOIS	441				·
					orcent, ice	HOIS					
	FB-GW	FB-1	FB-2	FB-3	FB-4						
ANICS	i										
MUM	<92.2	<52.2	<52,2	<52.2	≤52.2						,
ONY	<13.2	<13.2	<13.2	₹13.2	<13.2						
	<1.4	<1.4	< 1.4	≤1,4			- :				
Lium .	<1	<u> </u>	<1	. <1	<1,4 <1		7				
ŰΨ.	<2.9	<1 <2.0	<u><1</u> <2.9	<1	. <1 . 1	1					
M	250	104	244	105	150	!		+			
NUM .	<4.2	<4.2	<4.2	< 4.2	€4.2			·			
T and the second	<2,8	<2.8	<2,8	<2.8	<2.8			-			
	7.3	8.4	8,1	10	3.0		****			*****	-
	3	2.4	10.4	101	10,4						
ESIVM	<\$4,3	< 54.3	<54.3	<2,4 <54,3	<2,4			-	+		
AMESE	<2,3	<2.3	<2.3	<2.3	<3.3						
JAY	0.12	<0.1	0.13	0.11	0.10			7	-		
SIUM	<0.0	<8.6	<6.6	<8,8	<0,0						 -
NIN NIN	1,4	<1.4	<101	<101	<101						
	<2.1	<2.1	<1.4	<1,4 <2,1	<1.4						
M	702	201	845	1310	263						
UM	<1	<1	<1	<1	<1						
ILIM	<1.9	<1.9	<1.0	<1.9	< 1.9						
DE	40.8 <10	7.9	\$2.5 10	20.5	40,4						
	6000	N/A	N/A	<10 N/A	<10 N/A			+			
						-					
	ALL UNITS US	L									
		- 6								*	
											ij

TABLE 6-2 ANALYTICAL RESULTS FOR SOIL/SEDIMENT SAMPLES COLLECTED IN AREA! FORMER GREISS-PFLEGER TANNERY COMMONWEALTH EDISON COMPANY WALKEGAN, ILLINOIS

	28-30A	SB-305	85-328	22-224	48-330	4B-34B	88-358	88-34A	SE-34B	28-378	28-34
	(0-1)	12-6)	(2-3)	(0-11)	(2-5)	(2-3)	(5-2)	10-13	(2-3)	(3-3)	(5-2)
	(0-1)	[2-4]	(5-3)	N-11	100	12-41					
POLATILE ORGANICS											
HLOROMETHANE	< 14	< 12	< 12	< 11	< 14	< 11	< 13	< 10	< 11	< 11	< 12
RONOMETHANE	< 14	< 13	< 18	< 11	< 14	< 11	< 13	< 10	< 11	< 11	< 12
INTL CHLORIDE	< 14	< 12	< 12	< 11	< 14	< 11	< 13	< 10	< 11	< 11	< 12
HLOROETHANE	< 14	< 12	< 12	<.11	< 14	< 11	< 13	< 10	< 11	< 11	< 12
METHYLENE CHLORIDE	< 14	< 12	< 12	< 11	< 14	< 13	12,3	< 10	< 11	18	< 12
ACETONE	< 14	< 12	< 12	< 11	< 25	< 1	< 13	< t0_	< 11	< 11	< 12
CARBON DISULFIDE	< 14	< 12	< 17	< 11	< 14	< 11	< 13	< 10	< 11	< 11	< 12
1-DICHLOROETHENE	< 14	< 12	< 12	< 11	< 14	< 11	< 13	< 10	< 11	< 11	< 12
1-DICHLOROETHANE	< 14	< 12	< 12	< 11	< 14	< 11	< 13	< 10	< 11	< 11	< 12
TRANS-1,2-DICHLOROGTHENE	< 14	< 12	< 12	< 11	< 14	< 11	< 13	< 10	< 11	< 11	< 12
CHLDROFORM	< 14	< 12	< 12	< 11	< 14	< 11	< 13	< 10	< 11	< 11	< 12
2-DICHLOROETHANE	< 14	< 12	< 12	< 11	< 14	< 11	< 13	< 10	< 11	< 11	< 12
- BUTANONE	< 14	< 12	< 12	< 11	< 14	< 11	c 13	< 10	< 11	< 11	< 12
1,1-TRICHLORDETHANE	< 14	< 12	< 12	< 11	C 14	< 11	< 13	< 10	< 11	< 11	< 12
CARBON TETRACHLORDE	< 14	< 12	< 12	< 15	< 14	< 11	< 13	< 10	< 11	< 11	< 12
ROMODICHLOROMETHANE	< 14	< 12	< 12	< 11	< 14	< 11	< 13	< 10	< 11	< 11	< 12
1.2-DICHLOROPROPANE	< 14	< 12	< 12	< 11	< 14	< 11	< 13	< 10	< 11	< 15	< 12
CIS-1.3-DICHLOROPROPENE	< 14	< 12	< 12	< 11	< 14	< 11	< (3	< 10	< 11	< 11	< 12
TRICHLOROETHENE	< 14	< 12	< 12	< 11	7J	< 11	< 13	< 10	< 11	< 11	< 12
DERDMOCHLOROMETHANE	< 14	< 12	< 12	< 11	< 14	< 11	< 13	< 10	< 11	< 11	< 12
1.1.2-TRICHLORDETHANE	< 14	< 12	< 12	< 11	< 14	< 11	< 13	< 10	< 13	< 11	< 12
LENZENE	< 14	< 12	< 12	< 11	< 14	< 11	< 13	< 10	< 11	< 11	< 12
TRANS-1.3-DICHLOROPROPENE	< 14	< 12	< 12	< 11	< 14	< 11	< 13	< 10	< 11 -	< 11	< 12
BROMOFORM	< 14	< 12	< 12	< 11	< 14	< 11	< 13	< 10	< 11	< 11	< 13
4-METHYL-2-PENTANONE	< 14	< 12	< 12	< 11	< 14	< 11	< 13	< 10	< 11	< 11	< 12
2-HEXANONE	< 14	< 12	< 12	< 11	< 14	< 11	< 13	< 10	< 11	< 11	< 12
TETRACHLORDETHENE	216	< 12	< 12	< 11	< 14	< 11	< 13	< 10	< 11	< 11	< 12
1.1.2.2 - TETRACHLORDETHANE	< 14	< 12	< 12	< 11	< 14	< 11	< 13	< 10	< 11	< 11	< 12
TOLUENE	< 14	< 12	< 12	< 11	< 14	< 11	< 13	< 10	< 31	< 11	< 12
CHLOROBENZENE	< 14	< 12	< 12	< 11	< 14	< 11	< 13	< 10	< 11	< 11	< 12
	4 14	< 12	< 12	Z 11	< 14	< 11	< 13	< 10	< 11	< 11	< 12
ETHYLBENZENE	< 14	< 12	< 12	< 11	< 14	< 11	< 13	< 10	< 11	< 11	< 1
STYPENE	C 14	< 12	< 12	< 11	< 14	< 11	< 13	< 10	< 11	< 11	< 12
XYLENES (TOTAL) CIS-1.2-DICHLOROETHENE	< 14 < 14	< 12	< 12	< 11	6 14	< 11	< 13	< 10	< 11	< 11	< 12

all units using J = indicates estimated value quantitation limits for acetone have been adjusted to reflect Laboratory, field, and trip blanks.

____ MWG13-15_47230

TABLE 6-2 ANALYTICAL RESULTS FOR SOIL/SEDIMENT SAMPLES COLLECTED IN AREA I FORMER GREISS-PFLEGER TANNERY COMMONWEALTH EDISON COMPANY WALKEGAN, ILLINOIS

	88-36A	88~306	88-40B	22-41A	88-42A	23-420	424-424	88-12			
	(0-17	(5-4)	(2-3)	2-0	(0-1)	12-67	(0-Z)				
VOLATILE OFFICANICS										_	
CHLOROUETHANE	< 13	< 14	< 17	< 14	< 12	< 12	< 14	< 17			
BROMONETHANE	< 13	< 14	< 17	< 14	< 12	< 12	< 14	₹ 17			
VIMIL CHLORIDE	< 13	< 14	< 17	< 14	< 12	< 12	< 14	< 17		_	
CHLOROETHANE	< 13	< 14	< 17	< 14	< 12	< 12	< 14	< 17			
METHYLENE CHLORIDE	< 13	< 14	< 17	< 14	< 12	< 12	< 14	< 17			
ACETONE	< 13	< 14	< 17	< 14	< 12	< 12	< 14	< 17			
CAMBONDISLICEDE	< 13	< 14	5.17	< 14	< 12	< 12	< 14	€ 17			
1,1-DICHLOROETHENE	< 13	< 14	< 17	< 14	< 12	< 12	< 14	< 17			
1,1-DICH OF OFTHANE	< 13	< 14	< 17	< 14	< 12	< 12	< 14	< 17	 	-	
TRANS-12-DICHLOROETHENE	< 13	< 14	< 17	< 14	< 12	< 12	< 14	< 17			
CHLOROFORM	< 13	< 14	< 17	< 14	< 18	< 12	< 10	< 17			
1.2-DICHLORIGETHANE	< 13	< 14	< 17	< 14	< 12	< 12	< 14	< 17			
Z-BUTAHONE	< 15	< 14	< 17	< 14	< 12	< 12	< 14	< 17			
1,1,1-TRICHLOROETHANE	< 13	< 14	< 17	< 14	< 12	< 12	< 14	< 17			
CAMBON TETTACHLORIDE	< 13	< 14	< 17	< 14	< 12	< 12	< 14	< 17	<u> </u>		
BROMODEHLOROMETHANE	< 13	< 14	< 17	< 14	< 12	< 12	< 14	< 17	<u> </u>		
1,2-DICHLOROPROPANE	< 13	< 14	< 17	< 14	< 12	< 12	< 14	< 17	1		
CB-1,3-DICHLOROPROPENE	< 13	< 14	< 17	< 14	< 12	< 12	< 14	< 17			
TREHLORDETHENE	< 13	< 14	< 17	< 14	< 12	< 12	< 14	< 17		-	
DBROMOCHLOROMETHANE	< 13	< 14	< 17	< 16	< 12	< 12	₹ 14	< 17			
1.1.2-TRICHLOROETHANE	< 13	< 14	€ 17	< 14	< 12	< 12	C 14	< 17	l———		
BEKZENE	< 13	< 14	< 17	< 14	< 12	€ 12	< 14	< 17			
TRANS-13-DICHLOROPROPENE	< 13	< 14	< 17	< 14	< 12	< 12	< 14	< 17			
BROMOFDEM	< 13	< 14	< 17	< 14	< 12	€ 12	< 14		I		
4-METHYL-2-PENTANONE	< 13	< 14	< 17	< 14	< 12	< 12	< 14	< 17	ľ		
2-HEXANDNE	< 13	< 14	< 17	< 14	< 12	< 12	< 14				
TETRACHLORGETHENE	< 13	< 14	< 17	< 14	< 12	< 12	< 14	< 17	<u> </u>		
1,1,2,2-TETRACHLOROETHANE	< 13	< 14	< 17	< 14	< 12	< 12		< 17			
TOLLIENE	< 13	< 14	< 17	< 14	< 12		< 14	< 17	<u> </u>		
CHLOROBENIZENE	< 13	< 14	< 17	< 14	< 12	< 12	< 14	< 17	1		
ETHYLBENZENE	< 13	< 14	< 17	< 14		< 12	< 14	< 17			
STYPENE	< 13	< 14	< 17	< 14	< 12	< 12	< 14	< 17			
MILENES (TOTAL)	< 13	< 14	< 17	< 14		< 12	< 14	< 17	<u></u>		
CIS-1,2-DICHLOROETHENE	< 13	< 14	< 17	< 14	< 12	< 12	< 14	< 17			

ALL UNITS UDING

J. - PIDICATES ESTIMATED VALUE

OUAVITITATION LIMITS FOR ACSTONE HAVE SEEN ADJUSTED TO REFLECT LABORATORY, FIELD, AND TRIP SLANKS.

Control of the later of the lat

TABLE 6-2 ANALYTICAL RESULTS FOR SOIL/SEDIMENT SAMPLES COLLECTED IN AREA I FORMER GREISS-PFLEGER TANNERY COMMONWEALTH EDISON COMPANY WALKEGAN, ILLINOIS

	MW-4A	MW-48	MW-7A	MW-78	
	(2-4)	(4-67)	[2-4]	(4-6)	
VOLATILE ORGANICS					
CHLOROMETHANE	< 12	< 14	< 13	< 12	
BROMOMETHANE	< 12	< 14	< 13	< 12	
VINTL CHLORIDE	< 12	< 14	< 13	< 12	
CHLOROETHANE	< 12	< 14	< 13	< 12	
METHYLENE CHLORDE	< 12	< 14	< 13	< 12	
ACETONE	< 12	< 14	< 13	< 12	
CAMBON DISULFIDE	< 12	< 14	< 13	< 12	
1,1-DICHLOROETHENE	< 12	< 14	< 13	< 12	
1,1-DICHLOROETHANE	< 12	< 14	< 13	< 12	
TRANS-1,2-DICHLOROETHENE	< 12	< 14	< 13	< 12	
CHLOROFORM	< 12	< 14	< 13	< 12	
1.7-DICHLOROETHANE	< 12	< 14	< 13	< 12	
2-BUTANONE	< 12	< 14	< 13	< 12	
1.1.1-TRICHLOROETHANE	< 12	< 14	< 13	< 12	
CARBON TETRACHLORDE	< 12	< 14	< 13	< 12	البراق المحاربين التحاربي الأناسي وينصب ويسمون والرا
BROMODEHLOROMETHANE	< 12	< 14	< 13	< 12	
1.2-DICHLOROPROPANE	< 12	< 14	< 13	< 12	التنا يحددا الألايدا الأسالي والرام ودارا
CIS-1,3-DICHLOROPROPENE	< 12	< 14	< 13	< 12	
TRICHLOROETHENE	< 12	< 14	< 13	< 12	
DIBROMOCHLOROMETHANE	< 12	< 14	< 13	< 12	
1,1,2-TRICHLOROETHANE	< 12	< 14	< 13	< 12	
BENZENE	< 12	< 14	< 13	< 12	
TRANS-1,1-DICHLOROPROPENE	< 12	< 14	< 13	< 12	المراجعة والمتاريخ والمتاريخ والمتاريخ والمتاريخ
BROMOFORM	< 12	< 14	< 13	< 12	
4-METHYL-2-PENTANONE	< 12	< 14	< 13	< 12	
2-HEXANONE	< 12	< 14	< 13	< 12	وبور والنائد كالمناه المنازل ويوامه وعادل بدو
TETRACHLOROETHENE	< 12	< 14	< 13	< 12	
1,1,2,2-TETRACHLOROETHANE	< 12	< 14	< 13	< 12	ووالوالية التوالي والنوا والنوا
TOLUENE	< 12	< 14	< 13	< 12	
CHLOROSENZENE	< 12	< 14	< 13	< 12	
ETHYLBENGENE	< 12	< 14	< 13	< 12	
STYRENE	< 12	< 14	< 13	< 12	
INLENES (TOTAL)	< 12	< 14	< 13	< 12	
CIE-12-DICHLORDETHENE	< 12	< 14	< 13	< 12	

ALL UNITE UDING

J - BIOYCATE'S ESTIMATED VALUE

GUANTITATION LIMITS FOR ACETORE HAVE BEEN ADJUSTED TO REFLECT LABORATORY, FIELD, AND TRIP BLANKS.

TABLE 6-2 ANALYTICAL RESULTS FOR SOIL/SEDIMENT SAMPLES COLLECTED IN AREA I FORMER GREISS-PFLEGER TANNERY COMMONWEALTH EDISON COMPANY WAUREGAN, ILLINOIS

	28-30A	\$41-308	88-829	28-23A	88-338	88-34B	88-358	28-34A	88-368	88-378	84-34
	(0-1)	(2-4)	(2-3)	(0-1)	(2-3)	(2-3)	(2-37)	65-17	(2-3)	(2-3)	[2-3]
SEM-VOLATLE											
ORGANIC COMPOUNDS										1	
PHENOL	< 820	< 740	< 780	< 700	< 850	< 300	< 430	< 340	< 680	< 700	< 400
BISIZ-CHLONOETHYLIETHER	< 825	< 740	< 790	< 700	< 850	< 300	< 420	< 340	< 880	< 700	< 400
2-CHLOROPHENOL	< 820	< 740	< 790	< 700	< 850	< 340	< 420	< 340	< 500	< 700	< 400
1,3-DICHLOROBENZENE	< 820	< 740	< 790	< 700	< 850	< 300	< 420	< 340	< 880	< 700	< 400
1,4-DICHLOROBENZENE	< 820	< 740	< 700	< 700	< 860	< 360	< 420	< 340	< 680	< 700	< 400
1,2-DICHLOROBENZENE	< 820	< 740	< 790	< 790	< 850	< 360	< 420	< 340	< 440	< 700	< 400
2-METHYLPHENOL	< 820	< 740	< 780	< 700	< 850	< 300	< 420	< 340	< 440	< 700	< 400
2.7-OXYEIS(1-CHLOROPROPANE)	< 820	< 740	< 700	< 700	< 860	< 360	< 420	< 340	< 880	< 700	< 400
4-METHYLPHENOL	< 820	< 740	< 700	< 700	< 850	< 360	< 420	< 340	< 680 ⋅	< 700	< 400
N-NTROSG-DI-N-PROPYLAMINE	< 820	< 740	< 700	< 700	< 850	< 360	< 420	< 340	< 680	< 700	< 400
HEXACHLOROETHANE	< 820	< 740	< 790	< 700	< 860	< 300	< 420	< 340	< 600	< 700	< 400
NITHOBENZENE	< 820	< 740	< 780	< 700	< 860	< 300	< 420	< 340	< 400	< 700	< 400
SOPHORONE	< 820	< 740	< 780	< 700	< 830	< 300	< 420	< 340	< 650	< 700	< 400
Z-NITROPHENOL	< 820	< 740	< 790	< 700	< 850	< 380	< 420	< 340	< 600	< 700	< 400
2.4-DIMETHYLPHENOL	< 820	< 740	< 790	< 700	< 850	< 300	< 420	< 340	< 640	< 700	< 400
BIBIZ-CHLOROETHOXYMETHANE	< 620	< 740	< 790	< 700	< 650	< 360	< 420	< 340	< 640	< 700	< 400
2.4-DICHLOROPHENOL	< 820	< 740	< 780	< 700	< 830	< 300	< 420			< 700	
1.2.4-TRICHLOROBENZENE	< 820	< 740	< 700	< 700	< 850	< 360		< 340	- 6 840 -	< 700	< 400
NAPHTHALENE	1300	< 740	1704	< 700	220.1	< 300	< 420	< 340	63.3	1804	< 400
4-CHLOROANILNE	< 820	< 740	< 780	< 700	< 850	< 300	< 420	170J	< 680	< 700	< 400
HEXACHLOROBUTADIENE	< 820	< 740	< 780	< 700			< 420	< 340			< 400
4-CHLORO-3-METHYLPHENOL	< 820	< 740	< 780	< 700	< 850	< 300	< 420	< 340	< 600	< 700	< 400
2-METHYLNAPHTHALENE	3500	< 740	210.1	< 700	< 850 120J	< 380	< 420	< 340	< 880	< 700	< 400
HEXACHLOROCYCLOPENTADIENE	< 820	< 740	< 790	< 700		< 380	< 420	50J			< 400
2.4.6-TRICHLOROPHENOL	< 820	< 740	< 780	< 700	< 850	< 380	< 420	< 340	< 440	< 700	< 400
2,4,8-TRICHLOROPHENOL	< 2100	< 1800	< 2000	< 1700	< 850	< 340	< 420	< 340	€ 1700	< 700	< 400
2-CHLORONAPHTHALENE	< 820	< 740	< 700	< 700	< 2100	< 800	< 1100	< 840		< 1800	< 000
2-NTROANLINE	< 2100	< 1800	< 2000	< 1700	< 2100	< 340	< 420	< 340	< 840	< 700	< 400
DIMETHYLPHTHALATE	< 820	< 740	< 700			< 890	< 1100	< 840	< 1700	< 1800	< 890
ACENAPHTHYLENE	< 830	< 740		< 700	< 850	< 340	< 420	< 340	< 640	< 700	< 400
2.0- DNITROTOLUENE	< 820	< 740	< 790	< 700	310.1	< 380	< 420	55J	130J	< 700	< 400
3-NITROANE.INE			< 790	< 700	< 850	< 380	< 420	< 340	< \$80	< 700	< 400
ACENAPHTHENE	< 2100	< 1800	< 2000	< 1700	< 2100	< 890	< 1100	< 840	< 1700	< 1800	< 900
WEINT HINENE	< 820	< 740	< 790	73J —	800J	< 360	< 420	3001	270J	350J	< 400

. Der Stätt auch all MWG13-15_47233

TABLE 6-2 ANALYTICAL RESULTS FOR SOIL/SEDIMENT SAMPLES COLLECTED IN AREA I FORMER GREISS-PFLEGER TANNERY COMMONWEALTH EDISON COMPANY WALKEGAN, ILLINOIS

	88-30A	88-808	88-325	28-22A	10-110	28-348	88-348	86-36A	98-34B	88-378	88-30
	(0-17)	(2-47)	(2-37	(0-1)	(5-2)	(t-3)	(5-3)	(0-1)	(2-3)	(2-3)	(2-3)
EMI-VOLATILE											
ORGANIC COMPOUNDS											
2.4 DINITROPHENOL	< 2100	< 1800	< 2000	< 1700	< \$100	< 800	< 1100	< 840	< 1700	< 1800	< 996
DIBENZOFURAN	1800	< 740	< 790	< 700	450.3	< 300	< 420	170J	140J	840J	< 400
4-NITROPHENOL	< 2100	< 1800	< 2000	< 1700	< 2100	< 800	< 1100	< 840	< 1700	< 1800	< 990
8,4-DINTROTOLUENE	< 820	< 740	< 700	< 700	< 860	< 380	< 420	< 340	< 890	< 700	< 400
FLUGRENE	< 820	< 740	< 700	89J	730J	< 300	< 420	340	3103	480J	< 400
DETHYLPHTHALATE	< 820	< 740	< 780	< 700	< 850	< 300	< 420	< 340	< 680	< 700	< 400
4-CHLOROPHENTLPHENTLETHER	< 820	< 740	< 790	< 700	< 850	< 200	< 420	< 340	< 680	< 700	< 400
4-MTROANLINE	< 2100	< 1800	< 2000	< 1700	< 3100	< 800	< 1100	< 840	< 1700	< 1800	< 990
2-METHYL-4,8-DINITROPHENOL	< 2100	< 1800	< 2000	< 1700	< 2100	< 800	< 1100	< 840	< 1700	< 1800	< 900
N-NTROSODPHENYLAMINE (I)	< 620	< 740	< 790	< 700	< 865	< 300	< 420	< 340	< 880	< 700	< 400
4-BROMOPHENYLPHENYL ETHER	< 820	< 740	< 790	< 700	< 850	< 300	< 420	< 340	< 960	< 700	< 400
HEXACHLOROBENZENE	< 820	< 740	< 790	< 700	< 960	< 300	< 420	< 340	< 880	< 700	< 400
PENTACHLOROPHENOL	< 2100	< 1000	< 2000	< 1700	< 2100	< 000	< 1100	< 640	< 1700	< 1800	< 990
PHENANTHRENE	2400	< 740	1100	780	3800	< 360	1403	3500	4200	8300	< 400
ANTHRACENE	3400	< 740	110J	140J	890	< 300	< 420	740	840	870	< 400
DI-N-BUTYLPHTHALATE	< 820	< 740	< 790	< 700	190J	< 300	< 429	< 340	< 680	< 700	< 400
FLUORANTHENE	< 820	< 740	210J	2000	24000	< 385	< 420	\$700	7800	17000	< 400
PYRENE	< 820	< 740	220J	1400	18000	< 300	< 420	2100	5000	4700	< 400
BUTYLBENZYLPHTHALATE	< 826	< 740	< 790	< 700	< 850	< 380	< 420	< 340	< 840	< 700	< 400
3.Y-DICHLOROBENZIONE	< 1800	< 1500	< 1800	< 1400	< 1700	< 710	< 840	< 670	< 1400	< 1400	< 790
BENZDIAIANTHRACENE	< 820	< 740	< 700	1200	< 650	< 300	< 420	2800	3000	3000	< 400
CHRYSENE	< 820	< 740	< 790	1900	< 850	< 360	< 420	2500	3400	3000	< 400
BIBIZ-ETHYLHEXYLIPHTHALATE	< 820	< 740	< 790	< 780	< 830	< 300	< 420	< 340	< 680	< 780	< 400
DI-N-OCTYLPHTNALATE	< \$20	< 740	< 790	< 700	< 850	< 300	< 420	< 340	< 680	< 700	< 400
BENZORIFLUORANTHENE	< 820	< 740	< 790	2400	27000	< 380	< 420	2400	5300	4500	< 400
BENZORGFLUORANTHENE	< 820	< 740	< 790	780	8400	< 380	< 420	920	1400	1300	< 400
BENZOWIPYRENE	< 829	< 740	< 790	1200	9000	< 380	< 420	1300	1700	230J	< 400
INDENO(1,2,3-CD)FYRENE	< 820	< 740	< 790	730	8300	< 380	< 420	1103	1000	8401	< 400
DEENZO(A.HANTHRACENE	< 820	< 740	< 790	130J	1000	< 380	< 420	200J	136J	120J	< 400
BENZO/G,H, NPERYLENE	< 820	< 740	< 780	500J	3400	< 300	< 420	2503	220J	200J	< 400
CARBAZOLE	< \$29	< 740	< 780	< 700	910	< 380	< 420	520	490J	820.1	< 400

ALL UNITS UGING J - INDICATES ESTIMATED VALUE

TABLE 6-2 ANALYTICAL RESULTS FOR SOILSEDIMENT SAMPLES COLLECTED IN AREA 1 FORMER GREISS-PFLEGER TANNERY COMMONWEALTH EDISON COMPANY WAUKEGAN, ILLINOIS

	58-38A	88-306	35-488	68-41A	88-42A	28-428	88-434	88-12			T
	(0-17)	(2-4)	(3- 2)	(2-4)	_(P-13	(2-4)	(0-2)				
KEMI-VOLATILE									0.00		
ORGANIC COMPOUNDS			1000							1	
PHENOL	< 430	< 800	< 1100	< 440	< 720	< 780	< 430	< 1300			
IIS(2-CHLOROETHYLETHER	< 430	< 880	< 1100	< 440	< 720	< 750	< 430	< 1300			
2-CHLOROPHENOL	< 430	< 800	< 1100	< 440	< 730	< 750	< 430	< 1300			
1,3-DICHLOROBERZENE	< 430	< 800	< 1100	< 640	< 720	< 780	< 430	< 1300			
1,4-DICHLOROBENZENE	< 430	< 860	< 1100	< 440	< 720	< 750	< 430	< 1300			-
1,2-DICHLOROBENZENE	< 430	< 800	< 1100	< 440	< 720	< 710	< 430	< 1300			-
1-METHYLPHENOL	< 430	< 800	< 1100	< 440	< 7.45	< 710	< 430	< 1300			
S,F-OXYBIS(1-CHLOROPROPANE)	< 430	< 800	< 1100	< 440	< 726	< 730	< 430	< 1300			
4-METHYLPHENOL	< 450	< 100	< 1100	< 440	< 730	< 730	< 430	< 1300			
H-NITROSO-DI-H-PROPYLAMINE	< 430	< 800	< 1"00	< 440	< 730	< 780	< 420	< 1300	-		
HEXACHLOROETHANE	< 450	< 860	< 1100	< 440	< 726	< 730	< 430	< 1300			
HITROBENZENE	< 430	< 800	< 1100	< 440	< 720	< 780	< 430	< 1300			
SOPHORONE	< 450	< 800	< 1100	< 440	< 720	< 790	< 430	< 1300			
2-NITROPHENOL	< 430	< 800	< 1100	< 440	< 729	< 750	< 430	< 1300			
2,4-DIMETHYLPHENOL	< 450	< 800	< 1100	< 440	< 720	< 750	< 430	< 1300			
BISCI-CHLOROETHOXYMETHANE	< 430	< 800	< 1100	< 440	< 720	< 780	< 430	< 1300			
2.4-DICHLOROPHENOL	< 430	< 800	< 1100	< 640	< 720	< 750	< 430	< 1300			
1,2,4-TRICHLOROBENZENE	< 430	< 800	< 1100	< 440	< 720	< 780	< 430	< 1300			
HAPITHALENE	580	480.1	< 1100	< 440	220.1	< 750	< 430	< 1300			-
I-CHLOROANLINE	< 430	< 800	< 1100	< 440	< 720	< 710	< 430	< 1300			
HEXACHLOROBUTADENE	< 430	< 800	< 1100	< 440	< 720	< 750	< 430	< 1300			
4-CHLORG-3-METHYLPHENOL	< 430	< 800	< 1100	< 440	< 720	< 730	< 430	< 1300			
2-METHYLNAPHTHALENE	296J	2703	< 1100	< 440	240.3	< 750	< 430	< 1300			
HEXACHLOROCYCLOPENTADIENE	< 430	< 800	< 1100	< 440	< 720	< 750	< 430	< 1300		-	-
2,4,6-TRICHLOROPHENOL	< 430	< 860	< 1100	< 440	< 729	< 750	< 430	< 1300			
2.4.5-TRICHLOROPHENOL	< 1100	< 2200	< 2700	< 1100	< 1800	< 1900	< 1100	< 3200			
Z-CHLORONAPHTHALENE	< 430	< 880	< 1100	< 440	< 720	< 750	< 430	< 1300			
Z-NITROANILINE	< 1100	< 2200	< 2700	< 1100	< 1800	< 1800	< 1100	< 3200			1
DEMETHYLPHTHALATE	< 430	< 800	< 1100	< 440	< 720	< 750	< 430	< 1300			
ACENAPHITHYLENE	480	340.2	< 1100	< 440	< 720	< 750	< 430	< 1306		-	
2,8-DNITROTOLUENE	< 430	< 800	< 1100	< 440	< 720	< 750	< 430	< 1306			-
3-NITROANILINE	< 1100	< \$200	< 2700	< 1100	< 1800	< 1900	< 1100	< 3200			
ACENAPHTHENE	820	900	< 1100	< 440	< 720	< 780	BAL	< 1300			-

ALL UNITS UG/KG

c

c

2 4 MWG13-15_47235

TABLE 6-2 ANALYTICAL RESULTS FOR SOILSEDIMENT SAMPLES COLLECTED IN AREA I FORMER GREISS-PFLEGER TANNERY COMMONWEALTH EDISON COMPANY WALKEGAN, ILLINOIS

	\$4~38A	28-303	38-408	18-41A	28-42A	E9-426	23-43A	68-12			
	P-17	12-61	(2-3)	(1-6)	(D-13	(2-4)	10-27			•	
EW-VOLATRE	10-11	10-41	15-51-	1							
MEANIC COMPOUNDS											
4-DINTROPHENOL	< 1100	< 2200	< 2700	< 1100	< 1800	< 1800_	< 1100	< 3200			
BENZOFURAN	810	650.3	< 1100	< 440	< 730	< 730	< 430	< 1300			
-NTROPHENOL	< 1100	< 2200	< 2700	< 1100	< 1800	< 1900	< 1100	< 2200			
4-DINTROTOLUENE	< 430	< 300	< 1100	< 440	< 720	< 750	< 430	< 1300			
LUGRENE	820	1100	< 1100	< 440	< 720	< 750	73J	< 1300			
ETHOLPHTHALATE	< 430	< 800	< 1100	< 440	< 720	< 700	48.1	< 1300			
-CHLOROPHENYLPHENYL ETHER	< 430	< 800	< 1100	< 440	< 720	< 750	< 430	< 1300			
-NTROANLINE	< 1100	< 2200	< 2700	< 1100	< 1800	< 1800	< 1100	< 1200			
-METHYL-4.4-DINTROPHENOL	< 1100	< 2200	₹ 2700	< 1100	< 1800	< 1900	< 1100	< 3200			
-NTROSCOPHENYLAMINE (1)	< 430	< 200	< 1100	< 440	< 720	< 730	< 430	< 1300			
	< 430	< 800	€ 1100	c 440	< 729	< 750	< 430	< 1300		1	
-BROMOPIEMLPIEMLETIER	\$ 430	< 800	< 1100	< 440	< 729	< 750	< 430	< 1300			
EXACHLOROBENZENE	< 1100	< 2200	< 2700	< 1100	< 1800	< 1900	< 1100	< 3200			p
ENTACHLOROPHENOL	12000	1700	780J	< 440	180J	< 730	610	8400			1
HEHANT) FIENE	7500	2100	130J	< 440	< 720	250J	764	< 1300	- 0-		
UNTHRACENE				< 440	< 720	< 750	43.1	< 1300			
N-N-BUTYLPHTHALATE	< 430	< 800	< 1100	₹ 440	1103	< 790	1800	7000			
LUCRANTHENE	10000	960	1100	< 440	120.1	200J	1300	8300		-	
PYRENE	2500	1400	1100.3		< 729	< 760	< 430	< 1300			
UTYLBEKZYLPHTHALATE	< 430	< 800	< 1100	< 440	< 1400	< 1500	< 870	< 2500		_	
J-DICHLOROBENZOINE	< 000	< 1800	< 2100	< 680			960	3400		-[
BENZO(A)ANTHRACENE	1000	4700	620.1	< 440	< 720	< 750		2000			
HALSENE	\$100	4100	480J	< 440	180J	2001	1000	< 1300			·
PRES-ELHATHEDATAHIHMTVIE	< -30	< 800	< 1100	< 440	< 720	< 750	< 430	< 1300	·		
H-N-OCTYLPHTHALATE	< 430	< 890	< 1100	< 440	< 720	< 750	< 430			1	
SNZOGNELLIORANTHENE	14000	7003	1100	< 440	140J	170J	< 430	1300			
BENZOOGFLUORANTHENE	5000	2300	390J	< 440	58.1	< 780	< 430			 	-
BENZO(A)PYRENE	Logs	2100	< 1100	< 440	80.1	< 750	480	2100	_		
NDENO(1,2,3-CD)PYRENE	1000	810_	< 1100	< 440	94.1	< 750	92J	< 1300			-
DESENTO(A,HANTHRACENE	850	220J	< 1100	< 440	< 720	< 750	< 430	< 1300		_	-
BENZOIG, HAPERYLENE	830	800J	< 1100	< 440	80.1	< 750	< 430	< 1300			
CARBAZOLE	_1900	240J	< 1100	≥ 440	< 720	< 750	< 430	< 1300	·		

ALL UNITS UG/KG J - POICATES ESTIMATED VALUE

TABLE 6-2 ANALYTICAL RESULTS FOR SOIL/SEDIMENT SAMPLES COLLECTED IN AREA I FORMER GREISS-PFLEGER TANNERY COMMONWEALTH EDISON COMPANY WAUKEGAN, ILLINOIS

	MW-4A	WW-48	MW-7A	MW-78	- 1		Т			T	
	(2-4)	(467)	(2-47)	[4-6]							
SEMI-VOLATILE											
DREAMS COMPOUNDS							1			1	
2,4-DINTROPHENOL	< 930	< 2300	< 2000	< 860			 				
DIBENZOFURAN	< 370	230J	< 780	< 300							
4-NITROPHENOL	< 830	< 2300	< 2000	< 900						-	+
2.4-DINITROTOLUENE	< 370	< 830	< 780	< 300						 -	
FLUORENE	< 370	470J	< 780	< 300				_			-
PETHYLPHTHALATE	< 370	< 930	< 780	< 300						+	
-CHLOROPHENTLPHENTLETHER	< 370	< 830	< 780	< 300							
4-NITROANLINE	< 930	< 2300	≤ 2000	< 800							
2-METHYL-4,8-DINITROPHENOL	< 930	< 2300	< 2000	< 900			 			-	+
N-HITROSCOPHENYLAMINE (1)	< 370	< 930	< 790	< 300							
-BROMOPHENYLPHENYL ETHER	< 370	< 830	< 780	< 300							
MEXACHLOROSENZENE	< 370	< 830	< 780	< 300							 -
PENTACHLOROPHENOL	< 930	< 2300	< 2000	< 800							
PHENARTHRENE	< 370	4000	< 700	580						+	
ANTHRACENE	< 370	750J	< 780	< 300				_		+	
N-N-BUTYLPHITHALATE	< 370	< 830	< 780	< 300						 -	
FLUORANTHENE	< 370	1400	< 700	820							+
PYRENE	< 370	1700	< 780	530							
BUTYLBENZYLPHTHALATE	< 370	< 930	< 780	< 300		-					
3.5-DICHLOROGENZONE	< 750	< 1900	< 1000	< 790							
DENZO(A)ANTHRACENE	< 370	940	< 790	350.1	-			_		-	
CHRYSENE	< 370	740J	< 780	310J			 				
BB12-ETHYLHEXYLIPHTHALATE	< 370	< 830	< 780	< 300			 			 -	-
DI-N-OCTYLPHTHALATE	< 370	< 930	< 780	< 380							
DENZO@SFLUORANTHENE	< 370	740J	< 780	270J						-	-
ENZOPOFILIORANTHENE	< 370	< 930	< 780	1004			-				
ENZOMPYRENE	< 370	< 930	< 780	< 380	-					-	
NDENO(1,2,3-CD)PYRENE	< 370	< 930	< 780	< 380						-	-
DENZO/A, HANTHRACENE	< 370	< 830	< 780	< 300				-		-	
MENTOIG H MPERVLENE	< 370	< 930	< 780	< 390			 				
CARBAZOLE	< 370	< 830	< 730	< 390			-			-	
				- 400			 			+	-
				-							

ALL UNITS UGIKG J - SIDICATES ESTIMATED VALUE

TABLE 6-2 ANALYTICAL RESULTS FOR SOIL/SEDIMENT SAMPLES COLLECTED IN AREA I FORMER GREISS-PFLEGER TANNERY COMMONWEALTH EDISON COMPANY WAUKEGAN, ILLINOIS

	MW-4A	MW-48	MW-7A	MW-78							
	(2-4)	[4-47]	(2-4)	(4-87)						ļ	·
SEM-VOLATRE											
ORGANIC COMPOUNDS						1					
PHENOL	< 370	< \$30	< 780	< 300						<u> </u>	ļ
BISCZ-CHLOROETHYLJETHER	< 370	< 830	< 780	< 300							
2-CHLOROPHENOL	< 370	< 830	E < 780	< 300							
1.3-DICHLOROBENZENE	< 370	< 830	< 780	< 360				1			
1.4-DICHLOROSENZENE	< 370	< 830	< 780	< 300						 	
1.3-DICHLOROSENZENE	< 370	< 830	< 780	< 300							
2-METHYLPHENOL	< 370	< 930	< 780	< 380					_		
2.7-CXYBMI1-CHLOROPROPANE)	< 370	< 830_	< 780	< 300							
4-METHYLPHENOL	< 370	< 830	< 780	< 300							
N-MITROSO-DI-N-PROPYLAMINE	< 370	< 830	< 780	< 300						<u> </u>	
HEXACHLOROETHANE	< 370	< 830	< 780	< 360							
MTROBENZENE	< 370	< 830	< 780	< 300					_		
BOPHORONE	< 370	< 930	< 780	< 300							10
2 - NITROPHENOL	< 370	< 830	< 780	< 300						.	
2.4-DIMETHYLPHENOL	€ 370	< 930	< 780	< 300	_		-l	.4		l	
BISIT-CHLOROETHOXY METHANE	< 370	< 830	< 780	< 300		0.133					
2.4-DICHLOROPHENOL	< 370	< 830	< 780	< 360							
1,2,4-TRICHLOROSENZENE	< 370	< 830	< 780	< 300							L
NAPHTHALENE	< 370	8003	< 780	< 300							1
4-CHLOROANILINE	< 370	< 830	< 780	< 300			1			1	
HEXACHLOROBUTADENE	< 370	< 830	< 780	< 300							
4-CHLORD-3-METHYLPHENOL	< 370	< 830	< 780	< 300			1.				1
3-METHYLNAPHTHALENE	< 370	1400	< 780	< 300							
HEXACHLOROCYCLOPENTADENE	< 370	< 930	< 780	< 390							
2.4.8-TRICHLOROPHENOL	< 370	< 830	< 780	< 390							
2.4.5-TRICHLOROPHENOL	< 830	< 2300	< 2000	< 900							
2-CHLORONAPHTHALENE	< 379	< 830	< 780	< 300							
2-HETROANILINE	< 930	< 2300	< 2000	< 980							
DIMETHYLPHTHALATE	< 370	< 850	< 780	< 300							
ACENAPHTHYLENE	< 370	< 030	< 780	< 300						J	1
2.0-DNITROTOLUENE	< 370	< 030	< 780	< 390							
1-NTROANLINE	< 835	< 2300	< 2000	< 980		1					
ACENAPHTHENE	< 370	480J	< 780	< 390	 						<u> </u>

ALL UNITS UG/KG

TABLE 6-2 ANALYTICAL RESULTS FOR SOIL/SEDIMENT SAMPLES COLLECTED IN AREA! FORMER GREISS-PFLEGER TANNERY COMMONWEALTH EDISON COMPANY WALKEGAN, ILLINOIS

	88-30A	68+308	58-325	88-33A	88-236	23-24k	22-356	49-344	EB-308	88-378	60-340
		(2-4)	(5-3)	40-17	G-31	(2-3)	(3-2)	(9-17	(2-5)	(2-3)	
						- 10-01	10-01	10-11	[2-3]	[5-2]	6-3
PESTICIOES											
ALPHA-BHC	< 2.3	< 2.1	< 2.1	< 1.0	< 2.3	< 1.0	< 23	<18	< 1.0		
SETA-BHC	< 2.3	< 2.1	< 2.1	< 1.9	< 2.3	< 1.0	< 2.3	< 1.8	< 1.0	< 1.0	< 21
DELTA-BHC	< 2.3	< 2.1	+ < 2.1	< 1.3	< 23	< 1.0	< 23	< 1.0		< 1.0	< 2.1
GAMMA-RHC (LINDANE)	< 2.3	< 2.1	< 2.1	< 1.9	< 2.3	< 1.0	< 23	< 1.0	< 1.8	< 1.0	< 2.1
HEPTACHLOR	22	< 2.1	13	< 1.9	< 2.3	< 1.0	1 7	< 1.0	< 1.0	< 1.0	< 2.1
ALDRIN	< 2.3	< 2.1	< 2.1	< 1.9	< 2.3	< 1.9	< 2.3		< 1.8	< 1.9	< 2.1
HEPTACHLOR EPOXIDE	23	< 2.1		15	110	< 1.9		€ 1.8	< 1.0	< 1.0	< 2.1
ENDOSULFAN I	< 2.3	< 2.1	< 2.1	< 1.9	< 2.3		<23	7.0	30	< 1.0	< 2.1
DELDRIN	< 4.5	< 4	< 4.1	18	180	< 1.0	< 23	< 1.8	< 1.8	< 1.8	< 2.1
4.4-DOE	< 4.5	< 4	< 4.1	15		< 3.8	< 4.4	< 3.5	< 3.6	10	< 4.1
ENDAM	<45	- 24	< 4.1		100	< 3.8	<44	5.1	< 3.6	35	< 41
ENDOSULFAN II	< 4.5	<4	< 4.1	< 37	<45	< 3.8	< 4.4	< 3.5	< 3.0	< 3.7	< 4.1
4.€-DD0	< 4.5	< 4	< 4.1		< 4.8	< 3.8	< 4.4	< 3.5	< 3.0	< 3.7	< 4.1
ENDOSULFAN SULFATE	< 4.5	<4	< 4.1	4.0	92	< 3.0	< 4.4	< 3.5	< 3.4	28	< 4.1
4.4°-DOT	< 4.5	33		< 37	< 48	<38	< 44	< 3.5	< 3.6	< 3.7	< 41
METHOXYCHLOR	78	< 21	< 4.1	44	140	<38	< 4.4	23	64	400	< 41
ENDAN KETONE	< 4.5		< 21	< 19	< 23	< 18	< 23	< 18	< 18	< 13	€ 21
ENDAM ALDERYDE	< 4.5	< 4	< 4.1	< 3.7	< 4.5	< 3.0	< 4.4	< 3.5	< 3.6	< 3.7	< 4.1
ALPHA-CHLORDANE	< 2.3	<u>c4</u>	< 4.1	< 3.7	< 4.5	< 38	< 44	< 3.5	< 3.8	< 3.7	< 4.1
GAMMA-CHLORDANE	18	< 2.1	< 2.1	< 18	< 2.3	< 1.0	< 23	< 1.0	< 1.8	< 1.1	< 2.1
TOXAPHENE		<21	< 2.1	< 1.9	< 2.3	< 1.0	< 23	< 1.0	< 1.8	< 1.5	< 2.1
ARCCLOR-1014	< 230	< 210	< 210	< 180	< 230	< 190	< 250	< 180	< 100	< 190	< 210
AROCLOR-1221	< 45	< 40	< 41	< 37	< 45	< 32	< 44	< 35	< 36	< 37	< 41
	< 91	< 82	< 84	< 75	< 81	< 77	< 89	< 75	< 73	< 74	< 62
UROCLOR-1232	< 45	< 40	< 41	< 37	< 45	< 38	< 44	< 33	< 30	< 37	< 41
MOCLOR-1242	< 45	< 40	< 41	< 37	< 45	< 38	< 44	< 35	< 36	< 37	< 41
AROCLOR-1248	< 45	< 40	< 41	< 37	3200	< 38	< 44	< 35	< 38	< 37	
AROCLOR-1254	< 45	< 40	< 41	< 57	1900	< 38	< 44	< 35	< 30		< 41
VROCLOR-1260	< 45	< 40	< 41	< 37	< 45	< 38	< 44	< 35	< 36	< 37	< 41

ALL UNITS UG/KG

TABLE 6-2 ANALYTICAL RESULTS FOR SOIL/SEDMENT SAMPLES COLLECTED IN AREA I FORMER GREISS-PFLEGER TANNERY COMMONWEALTH EDISON COMPANY WALKEGAN, ILLINOIS

	88-30A	88-30B	88-329	88-32A	88-236	38-34B	28-350	23-36A	## - 34B	88-378	SB - 361
	(0-1)	(2-4)	[5-3]	[0-1]	(2-3)	(2-3)	(5-2)	(7-D)	(5-2)	(5-3)	(5-3)
MORGANICS									 		
ALUMINUM	600	630	1750	3110	2200	731	4000	979	1820	2290	703
MUMON	<3.6	<3.2	<3.3	<2.0	<2.9	<3	<3.8	<2.8	<2.9	<2.9	<32
URSENIC	12.1	1.4	8.7	4.4	3.0	0.4	40.6	0.77	1.0	2.0	0.63
LARLINA	18.3	1.0	41.9	95.1	220	3.4	41.1	10.4	21.0	41.8	34
ERVILLUM	1.2	<0.24	0.6	0.27	<0.22	< 0.23	1.7	< 0.21	<0.22	0.30	< 9.25
ADMIN	<0.78	<0.71	<0.72	1.2	1.4	<0.00	1.5	<0.81	<0.65	2	<0.71
CALCRIM	1250	18800	10000	91400	27400	20300	10100	22400	31100	84806	20100
CHRONIUM	14.2	5.3	22.7	104	704	3.2	19.1	73.1	303	291	4.3
CORALT	1	4.3	3.1	0.3	3.1	1.3	5.7	1.0	2.8	1.0	<0.89
COPPER	20	3.7		20	42.4	2.7	31	5.3	12.4	21.2	4
RON	18400	3720	8500	14600	8,000	2740	71000	2750	4180	D000	2000
'AD	27	3,1	17.4	45.7	133	1.7	29	10.2	24.2	22	2.5
MINERULI	340	9730	5080	49300	12200	10500	1820	11800	14900	38200	10500
UNGANESE	13.3	88.6	37.4	540	185	97.3	135	111	152	216	94
MERCURY	<0.07	<0.00	0.07	0.04	0.30	<0.04	0.12	0.14	0.33	0.24	<0.04
NICKEL .	3.6	11.3	7.8	18.7	9.0	<1.5	15.5	3.5	4.0	9.1	<1.5
POTASSIUM	238	90.2	180	534	339	92.5	1010	145	205	298	84.2
BELENGIN	2	<0.83	0.71	<0.31	<0.78	<0.32	0.54	<0.28	<0.3	<0.21	< 0.34
SAVER	< 0.57	<0.51	< 0.52	<0.47	< 0.47	<0.48	< 0.50	<0,44	<0.48	<0.47	< 0.52
SODEJM	208	197	232	220	227	149	723	130	181	190	228
THALLIN	< 0.35	<0.32	< 0.23	0.28	< 0.29	<0.23	0.56	< 0.21	< 0.22	< 0.22	<0.25
MUIGANAY	14.9	14.8	0.0	13.7	10.0	9.1	40.8	4.0	0.5	21.3	4.0
ZHC	61.2	160	152	123	268	15.8	1.3	35.4	49	290	19.4
CYANIDE	< 0.34	<0.3	0.67	<0.28	<0.34	<0.28	0.41	< 0.28	<0.27	0.28	<0.31

ALL UNITS SH MG/KG

TABLE 6-2 ANALYTICAL RESULTS FOR SOIL/SEDIMENT SAMPLES COLLECTED IN AREA I FORMER GREISS-PFLEGER TAMERY COMMONWEALTH EDISON COMPANY WALKEGAN, ILLINOIS

	88-36A	88-300	58-408	88-41A	88-42A	88-416	38-43A	22-12	
	(0~1)	R-4)	(2-3)	(3-4)	[0-1]	(1-4)	(0-2)		
MORGANICS									
ALLIMBALIN	2430	1430	849	7550	4000	4000			
ANTHAONY	<2.4	<3.6	7.5	<3.7		8080	7010	2000	
ARSENC	18.0	37.0	45.0	29 4	<3.1	<3.1	47	<4.4	
BARLIN	43.1	3/	220		22	122	19.1	0.4	
MULLIVIGA	0,57	0.26		73.7	00.2	167	311	30.0	
CADMUM	1.2	<0.20	<0.54	2.5	13	0.00	13	<0.34	
CALCEUM			15.8	2	14	2.8	23	<0.87	
CHROMEN	23300	7380	127000	25400	17000	31900	33000	34300	
COBALT	831	270	816	34.8	18 0	24.0	213	2000	
	1.0	1.7	9.2	7.7	8.3	4.6	7	1.7	
COPPER	73.8	36	151	30 B	32,1	47.4	135	33.4	
RON	28100	8820	188006	15100	15000	23500	29000	7830	
EAO	212	47.0	290	17 1	57.7	181	399	90.0	
MAGNESIUM	2890	1710	4000	1300	7480	12900	13000	19700	
MANGANESE	104	34.2	795	167	151	160	271	100	
MERCURY	1,6	2.7	25.6	<0.07	0.33	0.00	0.33	1.7	
WCKEL	12.5	6.0	29.1	227	16.3	18.3	27	8.1	
POTABBUIL	254	122	187	854	514	492	004	294	
BELENKIM	<0.39	0.63	<0.43	32	0.83		12	0.62	
SLVER	<0.57	<06	<0.71	<0.58	<0.49	<0.49	<0.57	<0.7	
SCOUM	273	217	887	341	381	730	434	421	
HALLUM	< 0.27	< 0.28	<0.34	32	0.51	<0.24	04		
/ANADIUM	10.4	8.4	14.3	63 6	30.0			0 61	
DNC	257	106	254	111	127	33.2	314	13.6	
CYANDE	0,67	0.73	0.49			343	526	324	
	0.07	11.53	0,43	<0.33	<0.29	<0.20	< 0.34	<0.42	

ALL UNITS IN MG/KG

TABLE 6-2 ANALYTICAL RESULTS FOR SOIL/SEDIMENT SAMPLES COLLECTED IN AREA I FORMER GREISS-PFLEGER TANNERY COMMONWEALTH EDISON COMPANY WALNEGAN, ILLINOIS

	MW-4A	MM-4B	MW-7A	MW-78		
	(2-4)	(4-67)	(2-47)	(4-67)		
	100	<u> </u>				
HORGANICS						
ALIMANAJA	1020	4830	6330	8280		
ANTIMONY_	<3.1	<3.8	<3.5	<3.3		
ARSENC	0.84	9,4	26.0	23.7		
MARAM	4.6	61.6	218	61 0		
BERYLLIUM	<0.24	1.7	2.4	1,6		
CADMUM	<0.49	<0.02	3.3	2.3		
CALCIUM	13700	23300	18200	34600		
CHROMIUM	45.7	65.2	49.1	34 6		
COBALT	<0.84	10.6	9.7	77		
COPPER	6.3	54.2	84.8	69.7		
RON	3100	19400	2:200	19000		
LEAD	8.1	15.5	313	80.7		
MAGNESUM	8030	7310	1400	6170		
MANGANESE	67	222	210	187		
MERCURY	<0.06	0.14	0,18	<0.06		
MCKEL	24	17.8	23.0	18 5		
POTASSILL	120	487	D85	800		
SELENLIM	0.61	< 0.4	4,1	2.0		
SLVER	<0.48	<0.6	<0.58	< 0.52		
SOONE	147	3.37	401	303		
THALLIUM	< 0.24	0.94	5.1	4.1		
VANADIUM	0.1	17.4	73.9	5.0		
ZNC	228	681	383	205	المستحد	
CYANDE	<0.29	<0.38	0.35	<0.31		

ALL UNITS IN MIGKIG

TABLE 8-3 ANALYTICAL RESULTS FOR SOIL-SEDIMENT SAMPLES COLLECTED IN AREA II FORMER GREISS-PFLEGER TANNERY COMMONWEALTH EDISON COMPANY WAUKEGAN, ILLINOIS

	8B-018	68-02A	58-028	88-638	48-648	28-068	\$8-04A	E2-06E	88-679	28-04A	Sh-OLE
	(1-2)	(0-17	(4-5)	(0-17	(0-13	(0-67)	(0-87	(35-45)	D-40	(0-67	[4-5]
										10-01	[4
VOLATILE ORGANICS											
CHLOROMETHANE	< 28	< 20	< 23	< 28	< 27	< 28	< 22	< 24	< 25	< 16	< 15
BROMOMETHANE	< 28	< 20	< 23	< 20	< 27	< 26	< 22	< 24	< 25	< 18	< 15
VIMIL CHLORIDE	< 28	< 20	< 23	< 29	< 27	< 26	< 22	< 24	< 25	< 16	< 15
CHLOROETHANE	< 28	< 20	< 23	< 29	< 27	< 28	< 22	< 24	< 25	< 13	< 15
METHYLENE CHLORIDE	< 28	21	25	< 28	< 27	< 28	< 22	< 24	< 25	46	< 15
ACETONE	< 28	< 20	< 23	< 20	< 27	< 28	< 22	< 24	< 140	<10	<15
CARBON DISULFIDE	< 29	< 20	< 23	< 28	< 27	< 25	< 22	< 24	< 25	< 10	< 15
1,1-DICHLOROETHENE	< 28	< 20	< 23	< 28	< 27	< 20	< 22	< 24	< 25	< 10	< 19
1,1-DICHLOROETHANE	< 28	< 20	< 23	< 29	< 27	< 20	< 22	< 24	< 25	< 16	
TRANS-1,2-DICHLOROETHENE	< 28	< 20	< 23	< 29	< 27	< 20	< 22	€ 24	< 25	< 16	< 15
CHLOROFORM	< 28	< 20	< 23	< 23	< 27	< 20	₹ 22	< 24	< 23	< 16	< 19
1,2-DICHLOROETHANE	< 28	< 20	< 23	< 28	< 27	< 26	< 22	S 24	< 29		< 18
2-BUTANONE	< 28	< 20	< 23	< 29	20.1	< 28	< 22	< 24	< 25	< 18	< 12
1,1,1-TAICHLORDETHANE	< 28	< 20	< 23	< 29	< 27	< 29		< 24	< 25	< 10	< 15
CARBON TETRACHLORIDE	< 28	< 20	< 23	< 29	< 27	< 28	< 22	< 24	< 25	< 18	< 15
BROMODICHLOROMETHANE	< 29	< 20	< 23	< 29	< 27	< 26	< 22	< 24	< 25	< 18	< 15
1,2-DICHLOROPROPANE	< 28	< 20	< 23	- 29	< 27	< 20	< 22	< 24	< 23	< 18	< 15
CIS-1,3-DICHLOROPROPENE	< 28	< 20	< 23	< 22	< 27	< 28		₹ 24		< 18	< 15
TRICHLOROETHENE	< 28	< 20	< 23	< 23	< 27	< 26	<u>< 22</u>	< 24	< 25	< 10	< 15
DISROMOCHILOROMETHANE	< 29	< 20	< 23	< 29	< 27	< 26			< 23	< 18	< 15
1,1,2-TRICHLORDETHANE	< 21	< 20	< 23	< 29	< 27		< 22	< 24	< 23	< 16	< 15
BENZENE	< 20	< 20	< 23	< 29	< 27	< 28	< 22	< 24	< 25	< 18	< 15
TRANS-1,3-DICHLOROPROPENE	< 28	< 20	< 23	< 20	< 27	< 28	< 22	< 24	< 25	< 16	< 15
BROMOFORM	< 28	< 20	< 23	< 29		< 20	< 22	< 24	< 25	< 18	< 13
4-METHYL-2-PENTAHONE	< 28	< 20	< 23	< 29	< 27	< 26	< 22	< 24	< 25	< 16	< 15
2-MEXANONE	< 28	< 20	< 23		< 27	< 26	< 22	< 24	< 25	< 16	< 15
TETRACHLOROETHENE	< 28	< 20		< 50	< 27	< 29	< 22	< 24	< 23	< 10	< 15
1,1,2,2-TETRACHLOROETHANE	< 28		< 23	< 28	< 27	< 26	< 22	< 24	< 25	< 10	< 15
TOLIENE	< 28	< 50	< 23	< 29	< 27	< 28	< 22	< 24	< 25	< 16	< 12
CHLOROBENZENE		< 20	< 23	< 29	< 27	< 26	< 22	< 24	< 25	< 16	< 15
ETHYLBENZENE	< 28	< 20	< 23	< 29	< 27	< 28	< 22	< 24	< 25	< 18	< 15
	< 28	< 20	< 53	< 29	< 27	< 29	< 22	< 24	< 25	< 16	< 15
TYPENE	< 28	< 20	< 23	< 29	< 27	< 28	< 22	< 24	< 25	< 16	< 13
MLENES (TOTAL)	< 21	< 20	< 23	< 28	< 27	< 20	< 22	< 24	< 25	< 18	< 15
CIS-1,2-DICHLORGETHENE	< 28	< 20	< 23	< 29	< 27	< 28	< 22	< 24	< 25	< 18	< 13

all units uq/kg J — moicates estimated value Quantitation limits for acetone have been adjusted to reflect laboratory, field and trip blanks.

TABLE 6-3 ANALYTICAL RESULTS FOR SOIL/SEDIMENT SAMPLES COLLECTED IN AREA II FORMER GREISS-PFLEGER TANNERY COMMONWEALTH EDISON COMPANY WALKEGAN, ILLINOIS

	32-00B	58-210	58-295C	48-418	85-81	85-02	35-03	88-04	88-05	85-04	\$3-0
	(4-57)	0-17	(9-17	(2-3)	-						
	16-31	10-01	19-11								
OLATRE ORGANICS											
HOROMETHANE	< 25	< 14	< 18	< 27	< 38	< 25	< 31	< 3.9	< 33	< 38	< 37
ROMOMETHANE	< 25	< 14	< 16	< 27	< 38	< 25	< 31	< 30	< 38	< 50	< 37
WAY CHLORIDE	< 25	< 14	< 16	< 27	< 38	< 25	< 31	< 30	< 38	< 30	< 37
HLOROETHUNE	< 25	< 14	< 18	< 27	< 38	< 25	< 31	< 30	< 38	< 30	< 37
METHYLENE CHLORICE	< 25	< 14	< 18	< 27	< 38	< 25	< 31	< 36	< 3.0	< 38	< 37
CETONE	< 99	< 14	< 18	< 27	< 38	< 25	< 31	< 3.0	< 38	< 160	< 180
ARBON DISULFIDE	22J	< 14	< 18	< 27	< 38	< 23	< 31	< 38	< 38	< 38	< 37
.1-DICHLOROETHENE	< 25	c 14	< 18	< 27	< 38	< 25	< 31	< 38	< 38	< 38	< 37
1-DICHLORGETHANE	< 29	< 14	< 18	< 27	< 38	< 25	< 31	< 39	< 38	< 36	< 37
RANS-1,2-DICHLORGETHENE	< 23	< 14	< 18	< 27	< 38	< 25	< 31	< 39_	< 38	< 36	< 37
HLOROFORM	< 23	< 14	< 18	< 27	< 38	< 25	< 31	< 38	< 38	< 36	< 37
2-DICHLOROETHANE	< 23	< 14	< 18	< 27	< 38	< 25	< 31	< 39	< 38	< 30	< 37
BUTANONE	< 25	< 14	< 10	< 27	< 38	< 25	< 31	< 39	< 38	< 38	47
1.1-TRICHLOROETHANE	< 25	< 14	< 18	< 27	< 30	< 23	< 31	< 38	< 38	< 38	< 37
ARBON YETRACHLORIDE	< 25	< 14	< 16	< 27	< 50	< 25	< 31	< 30	< 38	< 38	< 37
ROMODICHLOROMETHANE	< 25	< 14	< 18	< 27	< 38	< 25	< 31	< 39	< 38	< 36	< 37
1.2-DICHLOROPROPANE	< 25	< 14	< 18	< 27	< 38	< 25	< 31	< 39	< 38	< 36	< 27
CIS-1,3-DICHLOROPROPENE	< 25	< 14	< 16	< 27	< 33	< 25	< 31	< 30	< 58	< 36	< 37
TRICHLOROETHENE	< 25	< 14	< 18	< 27	< 38	< 23	< 31	< 39	< 38	< 38	< 37
DEROMOCHLOROMETHANE	< 23	< 14	< 18	< 27	< 30	< 23	< 31	< 38	< 38	< 38	< 37
1,1,2-TRICHLOROETHANE	< 25	< 14	< 18	< 27	< 38	< 25	< 31	< 33	< 38	< 30	< 37
BENZENE	< 25	< 14	< 16	< 27	ii < 38	< 23	< 31_	< 39	< 38	< 34	< 37
TRANS-1,3-DICHLOROPROPENE	< 25	< 14	< 18	< 27	< 38	< 25	< 31	< 39	< 38	< 38	< 37
BROMOFORM	< 25	< 14	< 18	< 27	< 38	< 25	< 51	< 36	< 38	< 36	< 37
-METHYL-2-PENTANONE	< 23	< 14	< 18	< 27	< 50	< 25	< 31	< 30	< 58	< 34	< 37
Z-HEXANONE	< 25	< 14	< 10	< 27	< 38	< 25	< 31	< 30	< 33	< 38	< 37
TETRACHLOROETHENE	< 25	< 14	< 18	< 27	< 30	< 25	< 31	< 39	< 38	< 36	< 37
1.1.2.2-TETRACHLORDETHANE	< 25	< 14	< 18	< 27	< 38	< 25	< 31	< 39	< 38	< 38	< 37
TOLUENE	< 25	< 14	< 18	< 27	< 38	< 25	< 31	< 39	< 38	< 36	< 37
CHLOROBENZENE	< 25	< 14	< 18	< 27	< 34	< 25	< 31	< 30	< 38	< 38	< 3
ETHYLBENZENE	< 25	< 14	< 18	< 27	< 38	< 23	< 31	< 39	< 38	< 38	< 3
STYRENE	< 25	< 14	< 18	< 27	< 38	< 25	< 31	< 30	< 50	< 30	< 3
XYLENES (TOTAL)	< 25	< 14	< 18	< 27	< 38	< 25	< 31	< 38	< 30	< 34	< 3
GIS-1.2-DICHLOROETHENE	< 25	< 14	< 18	< 27	< 33	< 25	< 31	< 39	< 38	< 34	< 3

ALL UNITS UDING

J- NOICATES ESTIMATED VALUE

DUANTITATION LIMITS FOR ACETONE HAVE BEEN ADJUSTED TO REFLECT LABORATORY, FELD AND TRIP SLANKS.

TABLE 6-3 ANALYTICAL RESULTS FOR SOIL/SEDIMENT SAMPLES COLLECTED IN AREA II FORMER GREISS-PFLEGER TANNERY COMMONWEALTH EDISON COMPANY WALKEGAN, ILLINOIS

	88-00	88-040	88-00	\$8-00D	88-10	MW-26	MW-EC	MW-Sh	MW-ac	MW-aco
						(4-87)	(8-8)	(2-43	(4-0)	(4-6)
VOLATILE ORGANICS										
CHLOROMETHANE										
BROMOMETHANE	< 35	< 34	< 13	< 13	< 21	< 18	< 23	< 12	< 12	< 17
VINYL CHLORIDE	< 25	< 34	< 13	< 13	< 21	< 10	< 22	< 12	C 12	< 17
CHLOROETHANE	< 23	< 34	< 13	< 13	< 21	< 10	< 23	< 12	< 12	< 17
METHYLENE CHLORIDE	< 35	< 34	< 13	< 13	< 21	< 10	< 23	< 12	< 12	< 17
ACETONE	< 33	< 34	< 13	< 13	< 21	< 10	< 23	< 12	< 12	< 17
CARBON DISULFIDE	< 61	< 37	< 13	< 13	< 21	< 29	< 20	< 12	< 12	< 17
	< 35	< 34	< 13	< 13	< 21	< 18	< 23	< 12	< 12	< 17
1,1-DICHLOROETHENE	< 35	< 34	< 13	< 13	< 31	< 18	< 23	< 12	< 12	< 17
1,1-DICHLOROETHANE	< 35	< 34	< 13	< 13	< \$1	< 18	< 23	< 12	< 12	< 17
TRANS-1,1-DICHLOROETHENE	< 35	< 34	< 13	< 13	< 21	< 18	< 23	< 12	< 12	< 17
CHLOROFORM	< 35	< 34	< 13	< 13	< 21	< 10	< 23	< 12	< 12	
1.2-DICHLOROETHANE	< 35	< 34	< 13	< 13	< 21	< 19	< 23	< 12	< 12	< 17
2-BUTANONE	< 25	< 34	< 13	< 13	< 21	< 10	< 23	< 12	< 12	< 17
1,1,1-TRICHLOROETHANE	< 33	< 34	< 13	< 13	< 21	< 19	< 23	< 12	< 12	< 17
CARBON TETRACHLORIDE	< 33	< 34	< 13	< 13	< 21	< 19	< 23	< 12	< 12	< 17
BROMODICHLOROMETHANE	< 33	< 34	< 13	< 13	< 21	S 10	< 23	< 12	< 12	< 17
1,2-DICHLORDPROPANE	< 35	< 36	< 13	< 13	< 21	< 19	< 23	< 12	< 12	< 17
CIS-1,3-DICHLOROPROPENE	< 33	< 34	< 13	< 13	< 21	< 19	< 23	< 12	< 12	< 17
TRICHLORGETHENE	< 35	< 34	< 13	< 13	< 21	< 18	< 23	< 12	< 12	
DIBROMOCHLOROMETHANE	< 35	< 34	< 13	< 13	< 21	< 19	< 23	< 12		< 17
1,1,2-TRICHLOROETHANE	< 35	< 34	< 13	< 13	< 21	< 18	< 23	< 12	< 12	< 17
BENZENE	< 33	< 34	< 13	< 13	< 21	< 19	< 23		< 12	< 17
TRANS-1,3-DICHLOROPROPENE	< 35	< 34	< 13	< 13	< 21	< 19	< 23	< 12	< 12	< 17
BROMOFORM	< 35	< 34	< 13	< 13	₹21	< 18	< 23	< 12	< 12	< 17
4-METHYL-2-PENTANONE	< 33	< 34	< 13	< 13	< 21	< 18		< 12	< 12	< 17
S-HEXANONE	< 35	< 34	< 13	< 13	< 21	< 18	< 23	< 12	< 12	< 17
TETRACHLORDETHENE	< 39	< 34	< 13	< 13	< 21	< 10		< 12	< 12	< 17
1,1.2,2-TETRACHLORGETHANE	< 35	< 34	< 13	< 13	< 21		< 23	< 12	< 12	< 17
TOLLENE	< 35	< 34	< 13	< 13	< 21	C 18	< 23	< 12	< 12	< 17
CHLOROBENZENE	< 33	< 34	< 13	< 13		< 10	< 23	< 12	< 12	< 17
ETHYLBENZENE	< 35	< 34	< 13	< 13	< 21	< 10	< 23	< 12	< 12	< 17
TYPENE	< 35	< 34	< 13	< 13	< 21	< 10	< 23	< 12	< 12	< 17
KYLENEB (TOTAL)	< 35	< 34	< 13		< 21	< 18	< 23	< 12	< 12	< 17
CIS-1,2-DICHLOROETHENE	< 35	< 34	< 13	< 13	< 21	< 10	< 23	< 12	< 12	< 17
	- 23	< 34	< 13	< 13	< 21	< 18	< 23	< 12	< 12	< 17

ALL UNITS LIQUID.

J. PROJUCTES ESTIMATED VALUE

QUANTITATION LIMITS FOR ACETONE HAVE SEEN ADJUSTED TO REFLECT LABORATORY, FIELD, AND TRIP BLANKS.

TABLE 6-3 ANALYTICAL RESULTS FOR SOIL/SEDIMENT SAMPLES COLLECTED IN AREA II FORMER GREISS-PFLEGER TANNERY COMMONWEALTH EDISON COMPANY WAUKEGAN, ILLINOIS

	88-018	88-02A	88-028	23-63E	28-048	\$8-050	88-86A_	88-908	88-07B	58-08A	<u> 88 – 90</u>
	(1-2)	(0-13	(4-5)	10-17	D-17	(0-87)	(0-67)	(9.5-4.57)	(3-4)	(0-87	(4-5)
SEM-VOLATEE		12.11									
DRIGANIC COMPOUNDS											
PHENOL	< 1800	< 440	< 1800	< 800	< 1780	< 1800	< 800	< 1500	< 15000	< 990	< 400
BIS(2-CHLOROETHYL)ETHER	< 1800	< 840	< 1500	< 800	< 1700	< 1000	< 880	< 1500	< 15000	< 990	< 480
2-CHLOROPHENOL	< 1800	< 840	< 1500	< 800	< 1700	< 1800	< 600	< 1500	< 15000	< 990	< 480
13-DICHLOROSENZENE	< 1800	< 840	< 1500	< 800	< 1700	< 1900	< 800	< 1500	< 19000	< 980	< 480
1.4-DICHLOROBENZENE	< 1800	< 840	< 1500	< 800	< 1700	< 1900	< 800	< 1500	< 15000	< 900	< 480
1.2-DICHLOROBENZENE	< 1800	< 640	< 1800	< 200	< 1700	< 1800	< 800	< 1500	< 15000	< 800	< 480
2-METHYLPHENOL	< 1800	< 640	< 1800	< 800	< 1780	< 1000	< 800	< 1500	< 15000	< 990	< 480
ZZ-OXYDIS(1-CHLOROPROPANE)	< 1800	< 640	< 1500	< 860	< 1700	< 1800	< 800	< 1500	< 18000	< 990	< 460
4-METHYLPHENOL	< 1800	< 840	< 1500	< 800	< 1700	< 1800	< 600	< 1500	< 15000	< 900	< 480
N-NETROSO-DI-N-PROPYLAMINE	€ 1800	< 640	< 1800	< 800	< 1700	< 1000	< 600	< 1500	< 15000	< 960	< 480
HEXACHLORDETHANE	< 1800	< 840	< 1500	< 690	< 1700	< 1800	< 800	< 1500	< 15000	< 900	< 440
NTROBENZENE	< 1800	< 640	< 1500	< 800	< 1700	< 1800	< 600	< 1500	< 15000	< 995	< 480
SOPHORONE	< 1800	< 640	< 1500	< 880	< 1700	< 1800	< 800	< 1500	< 15000	< 890	< 480
2-NITROPHENOL	< 1800	< 640	< 1500	< 800	< 1700	< 1800	< 800	< 1500	< 15000	< 990	< 460
2.4-DIMETIMAPHENOL	< 1800	< 840	< 1500	< 800	< 1700	< 1000	< 800	< 1900	< 18000	< 900	< 480
BISIZ-CHLOROETHOXYIMETHANE	< 1800	< 640	< 1500	< 800	< 1700	< 1000	< 800	< 1500	< 15000	< 990	< 480
2.4-DICHLOROPHENOL	< 1800	< 840	< 1500	< 890	< 1700	< 1800	< 600	< 1500	< 15000	< 990	< 440
1,2,4-TRICHLOROBENZENE	< 1800	< 640	< 1500	< 800	< 1700	< 1800	< 800	< 1500	< 18000	< 890	< 480
HAPHTHALENE	< 1800	< 640	< 1500	< 820	< 1700	< 1600	< 090	< 1500	< 15000	< 190	[10J
4-CH OROANINE	< 1800	< 640	< 1500	< 0.00	< 1790	< 1800	< 890	< 1500	< 15000	< 890	< 440
HEXACHLOROBUTADIENE	< 1800	< 640	< 150€	< 880	< 1700	< 1600	< 800	< 1500	< 15000	< 890	< 480
4-CHLORO-3-METHYLPHENOL	< 1800	< 840	< 1500	< 890	< 1700	< 1800	< 800	< 1500	< 15000	< 990	< 440
2-METHYLHAPHTHALENE	< 1500	< 640	< 1500	< 890	< 1700	< 1600	< 880	< 1800	< 15000	< 990	150J
	< 1800	< 640	< 1500	< 8.00	< 1700	< 1600	4, 890	< 1500	< 15000	< 990	< 480
HEXACHLOROCYCLOPENTADIENE_		< 640	< 1500	< 880	< 1700	< 1600	< 890	< 1500	< 15000	< 990	< 460
2,4,5-TRICHLOROPHENOL	< 1800	< 1600	< 3700	< 2200	< 4200	< 4100	< 1700	< 3800	< 39000	< 2500	< 120
2,4,5-TRICHLOROPHENOL	< 4400	< 640	< 1500	< 800	< 1700	< 1600	< 800	< 1500	< 15000	< 990	< 480
E-CHLORONAPHTHALENE		< 1800	< 3700	< 2200	< 4200	< 4100	< 1700	< 2000	< 30000	< 2500	< 120
Z-NITROANLINE	< 4400		< 1500	< 2200	< 1700	< 1600	< 890	< 1500	< 18000	< 990	< 400
DMETHYLPHTHALATE	< 1800	< 640	< 1500	< 890	< 1700	< 1800	< 890	< 1500	< 15000	< 990	< 480
ACENAPHTHYLENE	< 1800	< 540		< 890	< 1700	< 1800	< 600	< 1500	< 15000	< 900	< 46
2.6-DHITROTOLUENE	< 1800	< 840	< 1500			< 4100	< 1700	< 3800	< 38000	< 2500	< 120
3-MITROANILINE	< 4400	< 1900_	< 3700	< 2200	< 4200		المستخدم المراجع المراجع	< 1500	< 15000	< 990	< 40
ACENAPHTHENE	< 1800	< 640	< 1500	< 890	< 1700	< 1500	< 690	1 < 1900	1 13000	1 480	7.35

ALL UNITS UG/KQ

MWG13-15_47246

TABLE 6-3 ANALYTICAL RESULTS FOR SOIL/SEDIMENT SAMPLES COLLECTED IN AREA II FORMER GREISS-PFLEGER TANNERY COMMONWEALTH EDISON COMPANY WAUKEGAN, ILLINOIS

	88-018	58-02A	\$8-028	88-938	\$5-64D	68-038	88-88A	88-D48	5B-07B	50-06A	
	(1-2)	(0-1)	(4-5)	(0-17	(9-13	10-43	(P-E)	(3.5-4.5)			88-68
SEMI-VOLATILE					10	- 1	,0-01	[(3-4)	(0-87	(4-5)
DREANC COMPOUNDS											
Z.4-DIMITROPHENOL	< 4400	< 1000	< 3700	< 2200	< 4200	< 4100	< 1700	< 3800			
DIBENZOFURAN	< 1800	< 840	< 1500	< 800	< 1700	< 1800	< 890	< 1500	< 38000	< 2500	< 1200
4-NITROPHENOL	< 4400	< 1800	< 3700	< 2200	< 4200	< 4100	< 1700	< 3800	< 15000	< 900	< 480
2.4-DINITROTOLUENE	< 1800	< 840	< 1500	< 800	< 1700	< 1800	< 800		< 39000	< 2500	< 1200
FLUORENE	< 1900	< 840	< 1500	< 800	< 1700	< 1800	< 800	< 1500	< 15000	< 900	< 480
DETHILPHTHALATE	< 1800	< 840	< 1500	< 890	< 1700	< 1800		< 1500	< 15000	< 890	< 480
-CHLOROPHENYLPHENYLETHER	< 1800	< 840	< 1500	< 800	< 1700		< 000	< 1500	< 15000	< 800	< 480
I-NITROANILINE	< 4400	€ 1900	< 3700	< 2200	< 4200	< 1800	< 800	< 1800	< 15000	< 800	< 480
2-METHYL-4,8-DINTROPHENOL	< 4400	< 1000	< 3700	< 2200		< 4100	< 1700	< 3800	< 39000	< 2500	< 1200
N-NIROSOOPHENYLAMINE (1)	< 1800	< 840	< 1500	< 800	< 4200	< 4100	< 1700	< 3800	< 39000	< 2500	< 1200
-BROMOPHENYLPHENYLETHER	< 1800	< 640	< 1500	< 880	< 1700	< 1800	< 690	< 1500	< 15000	< 990	< 440
EXACHLOROBENZENE	< 1800	< 640	< 1500	> Des >	< 1700	< 1809	< 600	< 1500	< 15000	< \$90	< 400
ENTACHLOROPHENOL	< 4400	< 1000	< 3700	< 2200	< 1700	< 1000	< 886	< 1500	< 15000	< 980	< 480
HENANTHRENE	< 1800	280.1	< 1500	< 2200	< 4200 880J	1200	< 1700	< 3800	< 38000	< 990	< 1200
NTHRACENE	390J	< 840	< 1500	< 880		< 1800	< 600	< 1500	< 15000	< 990	410J
H-H-BUTYLPHTHALATE	< 1500	< 640	< 1500	< 800	< 1700	< 1800	< 860	< 1500	< 15000	530J	310
LUCRANTHENE	380J	230.1	300J	< 890	< 1700	< 1000	< 000	< 1500	< 15000	< 800	< 480
YPENE	1103	2301	2603		2100	< 1000	< 890	< 1500	< 15000	300J	400J
SUTYLBENZYLPHTHALATE	< 1800	< 640	< 1500	< 800	1400J	< 1800	< 600	< 1500	< 15000	200J	1903
J. T- DICHLOROBENZIONE	< 3300	< 1300		< 890	< 1700	< 1900	< 800	< 1800	< 15000	< 990	< 460
MENZOMANTHRACENE	< 1800	< 840	< 1500	< 1800	< 3400	< 3300	< 1400	< 2900	< 31000	< 2008	< 920
HEYSENE	270-1	< 640		< 890	1300J	< 1800	< 690	< 1800	< 15000	< 990	560
18/2-ETHYLHEXYLIPHTHALATE	5300	560.1	140J	< 890	870J	< 1800	< 690	< 1500	< 15000	3803	450.1
N-N-OCTYLPHTHALATE	< 1800		< 1500	< 880	< 1700	< 1000	<9000	< 1500	< 160000	220J	< 460
ENZO(B)FLUORANTHENE		< 840	< 1500	< 890	< 1700	< 1600	< 890	< 1500	< 15000	< 990	< 480
SENZOPOFLUDRANTHENE	260.	470J	410J	< 890	2100	< 1606	< 890	< 1500	< 15000	420J	< 480
ENZOLAPYNENE	820-1	< 640	< 1500	< 880	1006	< 1800	< 890	< 1500	< 15000	190J	430.
MDENO(1,2,1-CO)PYRENE	220J	160J	200J	< 880	8803	< 1600	< 890	< 1500	< 15000	2107	340.1
	< 1800	< 640	< 1500	< 890	220J	< 1500	< 650	< 1500	< 15000	< 890	140J
HENZOLA MANTHRACENE	< 1800	< 640	< 1500	< 8.00	< 1700	< 1800	< 690	< 1300	< 15000	< 890	
ENZOIG,H, APERYLENE	< 1800	< 640	< 1500	< 400	220J	< 1000	< 890	< 1300	< 15000		< 480
ARBAZOLE	< 1800	< 640	< 1500	< 480	< 1700	< 1600	< 690	< 1300	< 15000	< 990	72J < 480

ALL UNITS UG/KG J - INDICATES ESTIMATED VALUE

٠.

=

TABLE 6-3 ANALYTICAL RESULTS FOR SOR/SEDIMENT SAMPLES COLLECTED IN AREA II FORMER GREISS-PFLEGER TANNERY COMMONWEALTH EDISON COMPANY WALKEGAN, ILLINOIS

	58-068	\$8-298	28-2960	23-218	88-81	88-82	88-03	83-04	88-06	88-06	10-07
	(4-51	(0-1)	(0-1)	(2-3)							
EM-VOLATRE	10-01		1 1								
ORGANIC COMPOUNDS											
PHENOL	< 1800	< 900	< 11000	< 1700	< 2300	< 2000	< 1900	< 3400	< 3000	< 2700	< 1100
BIST2-CHLOROETHMLETHER	< 1800	< 900	< 11000	< 1700	< 2300	< 2000	< 1800	< 5800	< 3000	< 2700	< 1100
2-CHLOROPHENOL	< 1800	< 800	< 11000	< 1700	< 2300	< 2000	< 1800	< 8800	< 3000	< 2790	< 1100
1.3-DICHLOROBENZENE	< 1800	< 900	< 11000	< 1700	< 2300	< 2000	< 1900	< \$800	< 3000	< 2790	< 1100
1,4-DICHLOROSENZENE	< 1800	< 800	< 11000	< 1700	< 2300	< 2000	< 1800	< 5800	< 3000	< 2700	< 1100
2-DICHLOROBENZENE	< 1900	< 900	< 11000	< 1700	< 2300	< 2000	< 1800	< 5800	< 3000	< 2700	< 1100
2-METHYLPHENOL	< 1500	< 900	< 11000	< 1700	< 2300	< 2000	< 1800	< \$800	< 3000	< 2700	< 1100
ZZ-DIYBIS(1-CHLORDPROPANE)	< 1600	< 800	< 11000	< 1706	< 2300	< 2000	< 1900	< \$800	< 3000	< 2700	< 1100
4-METHYLPHENOL	< 1800	< 900	< 11000	< 1700	< 2300	< 2000	< 1800	< 5800	< 3000	< 2700	< 1100
N-NITROSO-DI-N-PROPYLAMINE	< 1800	< 900	< 11000	< 1700	< 2300	< 2000	< 1900	< \$800	< 3000	< 2700	< 1100
HEXACHLOROETHANE	< 1800	< 900	< 11000	< 1700	< 2300	< 2000	< 1800	< 9800	< 3000	< 2700	< 110
HTROSENZENE	< 1800	< 800	< 11000	< 1700	< 2300	< 2000	< 1900	< 3800	< 3000	< 2700	< 110
SOPHORONE	< 1600	< 800	< 11000	< 1700	< 2300	< 2000	< 1900	< 5800	< 3000	< 2700	< 110
Z-NITROPHENOL	< 1800	< 900	< 11000	< 1700	< 2300	< 2000	< 1800	< \$800	< 3000	< 2700	< 110
2.4-DIMETHYLPHENOL	< 1800	< 900	< 11000	< 1700	< 2300	< 2900	< 1900	< 5800	< 3000	< 2700	< 118
MISIZ-CHLOROETHOXY)METHANE	< 1600	< 900	< 11000	< 1700	< 2300	< 2000	< 1800	< 5800	< 3000	< 2700	< 110
2.4-DICHLOROPHENOL	< 1600	< 800	< 11000	< 1700	< 2300	< 2000	< 1800	< 5800	< 3000	< 2700	< 110
1,2,4-TRICHLOROSENZENE	< 1600	< 900	< 11000	< 1700	< 2300	< 2000	< 1900	< 1800	< 3000	< 2700	< 110
NAPHTHALENE	< 1800	240.1	< 11000	< 1700	< 2300	< 2000	< 1800	< 5800	< 3000	< 2700	< 110
4-CHLOROANLINE	< 1800	< 900	< 11000	< 1700	< 2300	< 2000	< 1800	< 5800	< 3000	< 2700	< 110
HEXACHLOROSUTADIENE	< 1800	< 900	< 11000	< 1700	< 2300	< 2000	< 1900_	< 8800	< 3000	< 2700	< 110
4-CHLORO-3-METHYLPHENOL	< 1600	< 900	< 11000	< 1700	< 2300	< 2000	< 1900	< 5800	< 2000	< 2700	< 110
2-METHYLNAPHTHALENE	< 1600	1104	< 11000	< 1700	< 2300	< 2000	< 1900	< 5800	< 3000	< 2700	< 110
HEXACHLORDCYCL OPENTADIENE	< 1800	< 600	< 11000	< 1700	< 2300	< 2000	< 1900	< 8800	< 3000	< 2700	< 110
2.4.6-TRICHLOROPHENDL	< 1600	< 900	< 11000	< 1700	< 2300	< 2000	< 1900	< 5800	< 3000	< 2700	< 110
	< 3900	< 2300	< 27000	< 4200	< 5400	< 5000	< 4700	< 14000	< 7600	< 6800	< 280
Z,4,5-TRICHLOROPHENOL	< 1900	< 900	< 11000	< 1700	< 2300	< 2000	< 1900	< 5800	< 3000	< 2700	< 110
2-CHLOROHAPHTHALENE			< 27000	< 4200	< 5800	< 5000	< 4700	< 14000	< 7600	< 6800	< 284
2-NTROANLINE	< 3900	< 2300		< 1700	< 2300	< 2000	< 1900	< 5800	< 3000	< 2700	< 110
DIMETHYLPHTHALATE	< 1800	< 900	< 11000		< 2300	< 2000	< 1900	< 5800	< 3000	< 2700	< 110
ACENAPHTHYLENE	< 1800	< 900	< 11000	< 1700	< 2300	< 2000	< 1900	< 3800	< 3000	< 2700	< 110
Z,B-DNITROTOLUENE	< 1600	< 900	< 11000	< 1700		< 5000	< 4700	< 14000	< 7800	< 6800	< 284
3-NITROANLINE	< 3000	< 2300	< 27000	< 4200	< 5800		< 1900	< 5800	< 3000	< 2700	₹110
ACENAPHTHENE	< 1800	550J	< 11900	< 1700	< 2300	< 2000	€ 1900	< 2600	, < 3000	1 2100	- 5115

ALL UNITS UG/KG

TABLE 6-3 ANALYTICAL RESULTS FOR SOIL/SEDIMENT SAMPLES COLLECTED IN AREA II FORMER GREISS-PFLEGER TANNERY COMMONWEALTH EDISON COMPANY WALKEGAN, ILLINOIS

	28 - 00B	28-298	\$8-298D	48-318	28-61	88-82	22-02	88-04	33-05	88-06	85-97
	(4-5)	(0-17	(0-17	(2-3)					J		
SEM-VOLATILE								-			-1-44
ORGANIC COMPOUNDS											
2,4-DINTTROPHENOL	< 3800	< 2300	< 27000	÷: 4200	< 5400	< 5000	< 4700	< 14000	< 7000	< 6400	
DIRENZOFURAN	< 1000	336J	< 11000	< 1700	< 2300	< 2000	< 1000	< 5800	< 3000		< 2000
4-NITROPHENOL	< 3800	< 2300	< 27000	< 4200	< 5000	< 5000	< 4700	< 14000	< 7620	< 2700	< 1100
2,4-DINTROTOLLENE	< 1800	< 900	< 11000	< 1700	< 2300	< 3000	< 1800	< 5800		< \$200	< 2000
FLUORENE	< 1800	770J	< 11000	< 1700	< 2300	< 2000	< 1800	< 5000	< 3000	< 2700	< 1100
DETRILIPHTHALATE	< 1800	< 900	< 11000	< 1700	< 2300	< 2000	< 1800	< 5400	< 3000	< 2700	< 1100
-CHLOROPHENYLPHENYLETHER	< 1800	< 900	< 11000	< 1700	< 2200	< 2000	< 1800	< 5800	< 3000	< 2700	< 1100
- MTROANLINE	< 3000	< 2300	< 27000	< 4200	< 5400	< 8000	< 4700		< 3000	< 3700	< 1100
-METHYL-4.6-DINTROPHENOL	< 3000	< 2300	< 27000	< 4200	< 6400	< 8000	< 4700	< 14000	< 7000	< 8000	< 2800
H-HITROSODPHENYLAMINE (1)	< 1000	< 900	< 11000	< 1700	< 2300	< 2000	< 1900	< 14000	< 7000	< 6800	< 2900
-BROMOFFENYLPHENYL ETHER	< 1900	< 900	< 11000	< 1700	< 2300	< 2000	< 1900	< 6000	< 2000	< 2700	< 1100
EXACHLOROBERZENE	< 1800	< 900	< 11000	< 1700	C 2300	< 2000		< 5000	< 3000	< 2700	< 1100
ENTACHLOROPHENOL	< 3000	< 2300	< 27000	< 4200	< 5000		< 1900	< 5800	< 3000	< 2700	< 1100
HENANTHRENE	220J	7100	18000	< 1706	< 2300	< 5000	< 4700	< 14000	< 7800	< 6800	< 2000
UNTHRUCENE	370J	1300	< 11000	< 1700	< 2300	< 2000 < 2000		< 5800	< 3000	< 2700	< 1100
O-N-BUTYLPHTHALATE	< 1000	830J	< 11000	< 1700	< 2300		< 1900	< 3400	< 3000	< 2700	< 1100
LUCKANTHERE	180.1	4500	30000	< 1700		< 2000	< 1800	< 5800	< 3000	< 2706	< 1100
PYRENE	< 1800	2000	23000		< 2300	< 2000	< 1000	< 3800	< 3000	< 2700	< 1100
BUTYLBENZYLPHTHALATE	< 1800	< 800		< 1700	< 2300	< 2000	< 1800	< 6400	< 3000	< 2700	< 1100
3-DICHLOROBENZIONE			< 11000	< 1700	< 2300	< 2000	< 1900	< 5800	< 3000	< 2700	< 1100
BENZOMIANTHRACENE	< 1800	< 1800	< 22000	< 3400	< 4400	< 4000	< 4000	< 12200	< 8000	< \$400	< 2200
CHTYSENE		7000	11000	< 1700	< 2300	< 2000	< 1000	< 5800	< 3000	< 2700	< 1100
ANG-ETHYLHEXYLPHTHALATE	370J 9300	8300	11000	< 1700	< 2300	< 2000	< 1900	< 5800	< 2000	< 2700	< 1100
N-N-OCTYLPHINALATE	< 1800	< 900	< 11000	2800	< 2300	<2000	1800	< 5800	< 3000	< 2700	< 1100
ENZO(B) FLUORANTI ENE	< 1800	< 800	< 11000	< 1700	< 2300	< 2000	< 1908	< 5800	< 1000	< 2700	< 1100
ENZORGELUGRANTHENE		< 800	11000	< 1700	< 2300	< 2000	< 1200	< 5800	< 3000	< 2700	< 1100
ENZOMPTHENE	< 1900	< 800	< 11000	< 1700	< 2300	< 2000	< 1000	< 5800	< 3000	< 2700	< 1100
MDENO(1,2,3-CD)PYRENE	< 1800	350.1	< 11000	< 1700	< 5300	< 2000	< 1900	< 5800	< 3000	< 2700	< 1100
MENZO(A, HANTHMACENE	< 1800	200J	< 11000	< 1700	< 2300	< 2000	< 1900	< 5400	< 3000	< 2700	< 1100
	< 1600	< 900	< 11000	< 1700	< 2300	< 2000	< 1800	< 5400	< 3000	< 2700	< 1100
ENZOIG.H. OPERYLENE	< 1800	< 800	< 11000	< 1700	< 2300	< 2000	< 1900	< 5800	< 3000	< 2700	< 1100
CARBAZOLE	< 1800	MJ	< 11000	< 1700	< 2300	< 2000	< 1900	< 5800	< 3000	< 2700	< 1100

ALL UNITS UG/KG J- NOICATES ESTIMATED VALUE

MWG13-15_47249

A 18 38

TABLE 6-3 ANALYTICAL RESULTS FOR SOIL/SEDIMENT SAMPLES COLLECTED IN AREA II FORMER GREISS-PFLEGER TANNERY COMMONWEALTH EDISON COMPANY WAUKEGAN, ILLINOIS

	\$\$-08	E3-050	83-00	55-000	38-10	MW-25	MW-8G	MW-38	MIN-3C	MW-SCD	
						(4-6)	(6-8)	[2-4]	[4-6]	(4-8)	
EEMI-VOLATILE											
ORGANIC COMPOUNDS				4.5							
PHENOL	< 2200	< 1100	< 1000	< 940	< 1800	< \$800	< 12000	< 770	< 370	< 830	
NB/2-CHLOROETHYLETHER	< 2200	< 1100	< 1000	< 980	< 1800	< 5800	< 12000	< 770	< 370	< 950	
Z-CH DROPIENOL	< 2200	< 1100	< 1000	< 900	< 1800	< 5800	< 12000	< 770	< 378	< 950	
1.3-DICHLOROBENZENE	< 2200	< 1100	< 1200	< 860	< 1900	< 5800	< 12000	< 770	< 370	< 950	
1 4-DICHLOROBENZENE	< 2200	< 1100	< 1000	< 940	< 1800	< \$800	< 12000	< 770	< 370	< 850	
1.2-DICHLOROBENZENE	< 2200	< 1100	< 1800	< 980	< 1800	< 5800	< 12000	< 770	< 370	< 950	
- METHYLPHENOL	< 2200	< 1100	< 1000	< 940	< 1800	< 5800	< 12000	< 770	< 370	< 950	
2.Z-OXYBISH -CHLOROPROPANE)	< 2200	< 1100	< 1000	< 980	< 1000	< 5800	< 12000	< 770	< 370	< 850	
4-METHYLPHENOL	< 2200	< 1100	< 1000	< 860	< 1800	< 5800	< 12000	< 770	< 270	< 950	
N-MTROSO-DI-N-PROPYLAMINE	< 2200	< 1100	< 1000	< 940	< 1800	< 5800	< 12000	< 770	< 370	< 950	
HEXACHLOMOETHANE	< 2200	< 1100	< 1000	< 880	< 1900	< 5800	< 12000	< 770	< 370	< 950	
MTROBENZENE	< 2200	< 1100	< 1000	< 980	< 1800	< 5800	< 12000	< 770	< 370	< 850	
SOPHORONE	< 2200	< 1100	< 1000	< 840	< 1800	< 5800	< 12000	< 770	< 370	< 950	
Z-NITROPHENOL	< 2200	< 1100	< 1000	< 883	< 1800	< 5800	< 12000	< 770	< 970	< 950	
2.4-DIMETHYLPHENOL	< 2200	< 1100	< 1000	< 980	< 1800	< 5800	< 12000	< 770	< 370	< 850 □	
BISC-CHLOROETHOXYMETHANE	< 2200	< 1100	< 1000	< 860	< 1900	< 5800	< 12000	< 770	< 370	< 850	
2.4-DICHLOROPHENOL	< 2200	< 1100	< 1000	< 880	< 1808	< 5400	< 12000	< 770	< 370	< 850	
1,2,4-TRICHLOROBENZENE	< 1200	< 1100	< 1000	< 980	< 1800	< 5800	< 12000	< 770	< 370	< 950	
NAPHTHALENE	< 2200	< 1100	< 1000	< 880	< 1800	< 5800	< 12000	< 770	< 370	< 950	100
4-CHLOROANILNE	< 2200	< 1100	< 1000	< 860	< 1800	< 5800	< 12900	< 770	< 370	< 950	
HEXACHLOROGUTADENE	< 2290	< 1100	< 1000	< 540	< 1800	< 5800	< 12000	< 770	< 370	< 950	
4-CHLORO-3-METHYLPHENOL	< 2200	< 1100	< 1000	< 880	< 1800	< 5800	< 12000	< 770	< 370	< 950	
2-METHYLNAPHTHALENE	< 2200	< 1100	< 1000	< 960	< 1800	< 5800	< 12000	< 770	< 370	< B50	1
HEXACHLOROCYCLOPENTADIENE	< 2200	< 1100	< 1000	< 980	< 1600	< 5800	< 12000	< 770	< 370	< 950	
2.4.6-TRICHLOROPHENDL	< 2200	< 1100	< 1000	< 980	< 1800	< 5800	< 12000	< 770	< 370	< 950	
2.4.5-TRICHLOROPHENOL	< 5800	< 2700	< 2500	< 2400	< 4100	< 14000	< 30000	< 1900	< 930	< 2400	
3-CHLORONAPHTHALENE	< 2200	< 1100	< 1000	< 880	< 1600	< 5800	< 12000	< 770	< 370	< 950	
2 - NITROANILINE	< 3800	< 2700	< 2500	< 2400	< 4100	< 14000	< 30000	< 1900	< 830	< 2400	
DMETHYLPHTHALATE	< 2200	< 1100	< 1000	< 980	< 1800	< 5800	< 12000	< 770	< 370	< 950	
ACENAPHTHYLENE	< 2200	< 1100	< 1000	< 980	< 1600	< 5800	< 12000	< 770	< 370	< 950	
2.6-DHITROTOLUENE	< 2200	< 1100	< 1000	< 980	< 1800	< 5800	< 12000	< 770	< 370	< 850	
1-NITROANILINE	< 5400	< 2700	< 2500	< 2400	< 4100	< 14000	< 30000	< 1900	< 830	< 2400	
ACENAPHTHENE	< 2200	< 1109	< 1000	< 980	< 1800	< 5800	< 12000	< 770	< 370	< 950	#1-

ALL UNITS UG/KG

TABLE 8-3 ANALYTICAL RESULTS FOR SOIL/SEDIMENT SAMPLES COLLECTED IN AREA II FORMER GREISS-PFLEGER TANNERY COMMONWEALTH EDISON COMPANY WAUKEGAN, ILLINOIS

7/1000 NOVEYEVY.	85-00	88-860	88-06	88-000	_ 88-10	MW-28	MW-2C	W-18	MW-3C	MW-aco	-
						(4-8)	(8-87)	12-47	(4-47)		
SEMI-VOLATRE								184)	4-91	[4-87]	 _
ORGANIC COMPOUNDS										 	
2,4-DINITROPHENOL	< 5800	< 2700	< 2500	< 2400	< 4100	< 14000	< 30000	- 4000			90,3
DIBENZOFURAN	< 2200	< 1100	< 1000	< 900	< 1400	< 5800	< 12000	< 1900	< 930	< 2400	
4-NITROPHENOL	< 5800	< 2700	< 2500	< 2400	< 4100	< 14000		< 770	< 370	< 950	100
2,4-DINTROTOLUENE	< 2200	< 1100	< 1000	< 860	< 1000	< 5800	< 30000	< 1900	< 830	< 2400	200
FLUORENE	< 2200	< 1100	< 1000	< 860			< 12000	< 770	< 370	< 050	
DETHILPHIHALATE	< 2200	< 1100	< 1000	< 840	< 1800	< 5800	< 12000	< 770	< 370	< 950	
-CHLOROPHENTLPHENTLETHER	< 2200	< 1100	< 1000	< 960	< 1800	< 5800	< 12000	< 770	< 370	< 950	
I-NTROANLINE	< 5000	< 2700	< 2500		< 1800	< 5800	< 12000	< 770	< 370	< 850	
Z-LETHYL-4,6-DINITROPHENOL	< 5000	< 2700		< 2400	< 4100	< 14000	< 30000	< 1900	< 830	< 2400	
N-HITROSODPHENYLAMNE (1)	< 2200	< 1100	< 2500	< 2400	< 4100	< 14000	< 30000	< 1800	< 830	< 2400	
-BROMOPHENYLPHENYL ETHER	< 2200		< 1000	< 990	< 1800	< 5800	< 12000	< 770	< 370	< 950	
EXACHLOROBENZENE	< 2200	< 1100	< 1000	< 980	< 1900	< 5800	< 12000	< 770	< 370	< 950	
ENTACHLOROPHENOL	< 5000	< 1100	< 1000	< 988	< 1900	< 5000	< 12000	< 770	< 370	< 950	
HEHANTHRENE	< 2200		< 2500	< 2400	< 4100	< 14000	< 30000	< 1900	< 930	< 2400	
WITHFRACENE	< 2200	< 1100	8400	3700	14000	8100	< 12000	< 770	< 370	< 830	
N-N-BUTYLPHTHALATE		< 1100	< 1000	< 980	2300	< 5000	< 12000	< 770	< 370	< 930	
LUORANTHENE	< 2200	< 1100	< 1000	< 140	< 1000	< 5800	< 12000	< 770	< 370	< 950	
YNENE	< 2200	< 1100	7500	5800	18000	12000	< 12000	< 770	< 370	< 950	
SUTYLBENZYLPHTHALATE	< 2200	< 1100	4800	8500	12000	9200	< 12000	< 770	< 370	< 850	
	< 2200	< 1100	< 1000	< 840	< 1000	< 5400	< 12000	< 770	< 370	< 050	
S-DICHLOROBENZIDINE	< 4500	< 2200	< 2000	< 2000	< 3300	< 12000	< 24800	< 1500	< 740		
EHZO(A) ANTHRACENE	< 2290	< 1100	3100	2900	8400	5800	< 12000	< 770	< 370	< 1900	
HRYSENE	< 2200	< 1100	3000	2100	4800	< 5800	< 12000	< 770	< 370	< 850	
HS(2-ETHYLHEXYL)PHTHALATE	< 2200	< 1100	< 1000	2400	11000	< 5800	< 12000	< 770		< 850	
H-N-OCTYLPHTHALATE	< 2200	< 1100	< 1000	< 880	< 1800	< 5800	< 12000	< 770	< 370	< 950	
ENZO(B) FLUORANTHENE	< 2200	< 1100	3200	2100	4400	5800	< 12000		< 370	< 950	100000
ENZORGELUORANTHENE	< 2200	< 1100	1400	790J	1800	< 5800	< 12000	< 770	< 370	< 950	400
ENZOMAPYRENE	< 2200	< 1100	1800	1500	3000	6000		< 770	< 370	< 150	200
NDENO(1,2,3-CD)PYRENE	< 2200	< 1100	< 1900	< 880	1400	< 5800	< 12000	< 770	< 370	< 950	
BENZOJA,HANTHRACENE	< 2200	< 1100	< 1000	< 990	< 1800		< 12000	< 770	< 370	< 950	
ENZO/G,H, IPERYLENE	< 2200	< 1100	< 1000	< 340	1100	< 5800	< 12000	< 770	< 370	< 850	-
ARBAZOLE	< 2200	< 1100	< 1000	< 980		< 6000	< 12000	< 770	< 370	< 850	
		100	_,2,000		1900	< 5800	< 12000	< 770	< 370	< 950	

ALL UNITS UG/KG J - INDICATES ESTIMATED VALUE

TABLE 6-3 ANALYTICAL RESULTS FOR SOIL/SEDIMENT SAMPLES COLLECTED IN AREA II FORMER GREISS-PFLEGER TANNERY COMMONWEALTH EDISON COMPANY WALKEGAN, ILLINOIS

	22-013	88-02A	58-025	5B-03B	\$8-043	88-058	88-D6A_	58-048	88-078	58-66A	880-82
	(1-27	(0-17	[4-5]	10-17	(0-17	(9-87	(0-61	(3.5-4.5)	(3-4)	(0-E)	(4-57)
	11-21	(0-1)	14-81								
NORGANICS										2122	2910
ALUMHUM	14 (90	\$290	3450	17400	11000	14700	14000	3130	14000	5420	
ANTIMONY	<7.4	<5.3	< 8.2	<7.5	<7.1	<0.8	<5.7	< 5.4	< 8.5	<4.1	<3.9
ARSENC	32.8	14.8	4.0	5.6	17.1	9.3	16.8	\$150	14.3	121	12.4
BANUM	413	54.4	360	663	327	367	123	492	95.9	#3.5	1.00
DERYLLIUM	<0.50	0.83	< 0.47	< 0.57	<0.54	<0.51	<0.43	<0.48	<0.49	0.34	<0.30
CADMUM	<1.6	2.2	<1.4	<1.7	21	1.5	22.6	<1.4	<1.4	18	1.9
CALCUM	147000	137000	183000	156000	123000	166000	182000	263000	150000	50000	38600
CHROMUM	47400	51600	33100	65100	45100	87700	69300	37400	49200	17300	15300
COBALT	4.4	2.7	<1.3	3.9	2.0	3,3	4.9	0,0	<1.4	<0.87	1.3
COPPER	64.0	50.4	68.3	49.0	74.0	45.9	83.7	40.7	53,4	47.7	44.5
	13400	6420	8450	18900	13300	12900	12700	4880	7880	9490	2100
RON LEAD	1520	1150	481	802	2250	1820	1960	253	22.4	578	281
	2240	2900	3910	2560	5550	3280	3850	6570	4720	3420	2430
MAGNESUM		178	165	274	206	239	280	334	148	131	111
MANGANESE	320		0.83	6.1	10.1	<0.13	30	0.84	29.8	4.8	0.27
MERCURY	7.4	3,8	4.2	8.9	10.5	9.7	13	<3.2	11	8.4	104
CICEL	11.3	0.0	110	140	250	102	215	132	288	398	256
TASSAM	163	201		1.0	<0.75	<1.7	<0.61	2.4	<0.69	<1.1	<1.9
ELENKA	<0.78	0.89	₹0 85		6.0	<1.1	<0.91	<1.0	<1.0	<d 65<="" td=""><td><0.62</td></d>	<0.62
SLYER	<1.2	<0.85	<0.98	<1.2		845	738	800	848	754	287
SODIUM	757	489	437	786	581		<0.43	<0.48	· <0.49	< 5.40	<0.38
THALLOM	<0.58	<0.4	<0.47	<0.57	<0.54	0.72	148	51.7	99.4	45.0	44.1
VANADIUM	71	111	55.7	70.1	84.2	09.3		641	230	168	214
ZINC	431	202	424	374	343	391	314		< 0.82	<0.39	0.45
CYANGE	0.73	< 0.51	<0.50	<0.71	0.67	< 0.64	<d.54< td=""><td>< 0.60</td><td>< 0.02</td><td>< 0.39</td><td>0.48</td></d.54<>	< 0.60	< 0.02	< 0.39	0.48

ALL UNITS IN MG/KG

TABLE 6-3 ANALYTICAL RESULTS FOR SOILSEDIMENT SAMPLES COLLECTED IN AREA II FORMER GREISS-PFLEGER TANNERY COMMONWEALTH EDISON COMPANY WALKEGAN, ILLINOIS

	88-908	88-298	88-298D	58-318	88-61	11-42	43-03	22-04	\$5-05		
	[4-3]	[0-1]	(0-1)	(5-2)					80-03	\$8-00	83-67
HORGANICS											
ALLBANAM	11000	1750	1810	10600	10200	#230	10200	13800	44400		
ANTEMONY	<0.7	<3.8	<4.0	<7.3	<10	<0.8	<8.2		11800	12900	5900
ARSENC	21.7	4.3	1.3	31	7.3	153		<18.3	<10	<9.4	<9.7
BARUM	82.6	135	148	185	413		7.8	0,3	8.1	4.2	6.7
DERYLLAM	<0.51	<0.29	<0.35	100	<8.7€	388	372	151	339	594	218
CADMUM	<1.5	1.7	<1	2.7	<2.2	<0.5	<0.63	<0.78	<0.78	<0.73	<0.73
CALCIUM	167000	153000	153000	61400		<1.5	<1.8	<2.3	<2.2	<2.t	<2.1
CHROHUM	81900	1200	891		107000	87900	141000	150000	127000	134000	64900
COBALT	3.3	5.3	2	59620	40300	30400	47800	48400	43600	48400	21500
OPPEA	13	164	175	5.3	<2.1	<1,4	3.1	<2.3	<2.1	3.0	2.1
ROH	8390	8880		133	70.5	524	59 8	80.1	67.5	68 2	37.4
LEAD	1200		5780	11500	12900	8600	13700	12800	17600	14700	6770
MAGNESSIM		188	105	670	1050	1460	868	1410	1780	1320	334
MANGANESE	3040	30000	32500	3740	3390	1400	2620	4380	2890	4220	2250
	216	121	76,6	137	184	151	225	107	214	211	113
MERCURY	23.4	0.43	0.12	3.7	5.8		4.5	24.0	10.1	4.6	3.1
HICP EI	11,5	13,6	11.2	10.0	10	5,0	8.0	13.9	0.6	7.7	5
POT- LINIM	198	243	234	534	299	178	114	204	218	166	160
SELENIUM	<1,7	0.5	<0.48	<1.0	<1.1	<0.7	<0.88	<1.1	<1.1		<1
HLVER	<1.1	<0.6	<0.74	2.4	<1.8	<1.1	<13	<1.0	<10	<1.5	
SOOLIM	678	2320	2680	415	1070	435	900	1280	728		<15
LHALLINI	<0.08	< 0.29	<0.35	0.99	<0.76	<0.5	<0.02	<0.78	<0.78	1010	478
/AHADIDH	119	8.0	0.1	103	55	<40.4	61.1	74.1		< 0.73	< 0.73
DHC	245	278	221	483	442	297	315	411	83	#2.2	27.5
TYANDE	<0.63	<0.58	<0.44	<0.09	1,52	D 90	<0.78	<0.88	<0.05	453 <0.01	<0.02

ALL UNITS IN MG/KG

TABLE 6-3 ANALYTICAL RESULTS FOR SOIL/SEDIMENT SAMPLES COLLECTED IN AREA! FORMER GREISS-PFLEGER TANNERY COMMONWEALTH EDISON COMPANY WALKEGAN, ILLINOIS

-4*	12-00	25-04D	22-00	88-000	88-10	M-58	MW-2C	MM-38	MW-SC	MW-3CD	100
						(4-87)	(4-6)	(2-4)	(4-6)	(4-6)	_
MORGANICS											
ALLIMINAM	12900	12900	5820	E170	13700	6480	913	2040	617	1200	_
NUMBER	<\$3	<9.1	<3.3	<3.3	< 9.4	<5	< 6.1	<3.1	<3.3	<4.4	
URSENIC .	9.2	0.5	12.1	8.9	72.7	1210	604	5.7	0.07	5.2	
LANGE	347	389	215	218	88.5	\$57	155	13.6	2.3	14.2	
DERYLLIUM	<0.70	<0.68	<0.25	< 0.25	< 0.41	<0.38	<0,48	< 0.25	<0.25	<0.33	
CADMIUM	<2	<2	1.9	2	1.7	2.9	<1.3	<0.72	< 0.72	<0.97	
CALCIUM	140000	135000	84800	84000	123000	175000	125000	18300	12800	19000	
CHROMUM	44900	44800	19900	20400	60000	20400	20800	263	28.6	590	
COBALT	<2	<1.9	4.5	4.3	3.9	<1.1	<1,3	2,4	0,02	1.8	
COPPER	69.7	74.4	161	157	89.1	54,1	92	4.8	2.2	5.0	_
RON	13800	14100	33300	33100	17000	8540	5570	5370	2200.	8420	_
LEAD	1460	1430	1170	1100	1900	595	187	10.5	1.9	19.7	
MAGNESIUM	3830	3930	4390	4200	3460	4400	4160	10600	4570	6750	
MANGANESE	201	261	270	275	210	107	232	119	77.8	105	
MERCURY	8.2	6	3.6	5.3	31.8	3.6	111	0.13	<0.06	0,16	
NICKEL	0.1	7.6	21.0	21	18,7	5.5	4.8	3.2	<1.8	2.4	
POTASSIUM	244	280	201	299	185	231	142	177	83.7	173	_
SELENIUM	<0.98	<0.96	0.38	< 0.35	<0.58	<0.53	< 0.65	< 0.35	<0,35	<0.47	
SLVER	<1.5	<1.4	<0.53	<0.53	< 0.87	<0.78	<0.97	< 0.52	<0.52	<0.70	_
SCORUM	852	1040	628	554	1120_	605	708	211	135	252	_
THALLUM	1	<0.69	0.25	< 0.25	9.7	<0.38	1.3	< 0.25	0.88	<0.33	_
VANADIJM	57.6	58.0	34.0	36.2	109	48.7	23.7	0.0	4,3	6.0	
ZNC	336	351	472	520	319	329	175	35	17.5	39,4	
CYANDE	<0.88	<0.88	<0.31	<0.32	<0.57	0.53	0.74	< 0.31	< 0.31	<0.42	

ALL UNITS MG/KG

TABLE 6-4 SOIL ANALYTICAL RESULTS COLLECTED IN AREA III FORMER GREISS-PFLEGER TANNERY COMMONWEALTH EDISON COMPANY WAUKEGAN, ILLINOIS

	#8-18A	58-10E	29-11A	88-118	88-1180	88-12A	88-138	48-148	80-15A	89-150	48-14
	(0-1)	(2-4)	(9-1)	(2-4)	(2-4)	(0-3)	(2-4)	(2-4)	(0-17	(2-4)	(2-4)
MOREANICS					-						13 1
ALUMINUM	1026	4160	11100	2510	1020	6000					
WITHONY	<2.8	<3.1	<3.8	<3.7			2450	5130	7350	2790	3950
VISENC	3.0	5.8	4.0	1.0	<3.6	<3.9	<3.7	15.8	14.2	<3.2	<4.5
LAPAJM	75	40.5	431	24.7	1,3	6.4	5.3	7.0	13.4	3.6	9.7
MERYLLIUM	<c.21< td=""><td>< 0.24</td><td>56</td><td></td><td></td><td>1570</td><td>45,5</td><td>161</td><td>371</td><td>48,1</td><td>170</td></c.21<>	< 0.24	56			1570	45,5	161	371	48,1	170
CADMAUM	<0.01	<0.63	- 30	0.20	<0.29	0.33	0,47	0.34	< 0.29	0.34	0.34
ALCUM	30200	64500	20200	<0.82	<0.84	29.9	1.0	37,3	17.1	< 0.71	2.6
HUMONE	34.6	58.0	838	14400	10600	44500	19200	75000	164000	18900	27900
COBALT	1,6	8.3	67.7	57.9	15.7	7190	293	1000	4010	80.0	1330
OFFER	8.7	25.3		3.5	4.2	325	4.3	332	37.9	2.8	3.2
NON	3500	9710	437	21.0	0.2	100	114	1840	3490	270	103
EAD	4.1		20600	5340	3310	31800	6430	105000	13800	7290	12100
MGNESUM	18000	23.8	277	26.2	39.5	4230	24.0	220	4120	1510	80.4
ANGANESE		40300	6450	8900	5920	6730	8410	4710	7580	8380	12500
ÆRCURY	183	376	484	14.5	83.4	340	116	880	243	110	138
MOKEL	<0.05	<0.06	10	4.5	<0.07	0.4	1,2	28.6	2	0.1	4
OTASSAM	4.8	€.6	29.5	14	2.9	43.7	15.4	43	34.3	5.9	11
ELENIUM	173	622	1670	338	110	481	296	585	345	343	348
ALVER	<0.30	<0.23	<0.40	<0.90	<0.41	0.72	<0.39	5.5	3.9	<0.34	<0.48
	< 0.44	<0.50	473	<0.59	<0.81	120	<0.58	129	62.3	<0.52	<0.72
MUNO	124	263	425	25.0	153	347	249	1120	936	239	415
HALLUM	<0.21	<024	<0.29	< 0.37	< 0.29	<0.30	<0.28	<0.29	0.7	<0.23	
AHADIUM	4.3	13 6	30.3	10,2		34	10.2	29.6	31,3	11.2	<0.34
INC .	27.9	88.3	813	127	41.6	952	119	740	2320	173	15.4
YANDE	< 0.28	<0.30	<0.30	<0.32	<0.38	<0.37	0.44	1.06	0.44	<0.31	184 0.80

ALL UNITS MG/KG

	28-178	4B-16B	26-10A	68-100	28-20B	88-21A	68-218	EB-228	88-258	88-24A	88-248
			10-17	(3-3)	(2-4)	10-17	(2-4)	(2-4)	(1-10)	(0-47)	(3-4)
	[2-4]	(1,5-3.57)	(0-1)	[2-3]	12-47						
MORGANIES						100000	790	10400	3780	3950	16900
	4150	11900	7940	801	88300	120000	<3.1	<3.6	<5.0	<3.4	<3.6
ANTIMONY	<4,2	<4.1	9.1	<4.1	<3.0	<4,3	<0.20	20.6	12.6	132	164
ARSENC	13.6	20.5	5.0	3.5	32.7	20.3	2.0	167	392	198	323
AJUJU	2140	104	897	14	189	203	<0.24	<0.27	<0.36	0.0	1.2
MERYLLIUM	0.96	3	0.51	<0.31	0.65	0.71		12.0	3.4	21.7	11
CADMUM	2,1	3.1	42.9	<0.9	1	54.0	<0.68		157000	40400	23400
CALCRIM	11000	30100	141000	17000	50900	13800	14400	79206	25500	8570	3430
CHROMUM	1950	181	1490	158	11900	6900	30.2	12400		7.6	8.8
COBALT	50.9	0.7	93	<0.87	2.5	3.0	0.8	1.4	<1,1		464
COPPER	134	146	1130	12.9	1630	1530	0.7	203	63.5	120	
FICH _	20600	22400	78100	4290	9050	11100	2340	11200	7350	20200	17600
LEAD	394	30.9	884	4.5	399	589	3.7	425	400	538	333
MAGNESAJN	1170	1900	5010	9330	3750	2713	8200	6240	7470	2450	1530
MANDANESE	171	342	736	100	680	1100	72.4	226	188	152	397
MERCURY	3.3	0.33	4.3	<0.00	2	5.1	0.01	0.0 11+	7.2	1.1	13
NICKEL	47	32.4	113	<2	30.1	52.1	2.2	15.3	8.1	18.8	33.0
POTASSUM	449	1086	053	100	-303	225	65,2	290	238	836	920
RELEMBA	1.7	0.53	<0.51	< 0.43	1.4	4.0	<0.8	0.96	0.54	1.8	1.4
	4.3	<0.65	95.0	< 0.03	<0.02	<0.68	<0.49	< 0.57	<0.79	<0.54	<0.58
SLVER	404	736	1830	160	417	342	214	507	848	780	527
SOONE		<0.31	<0.37	<0.31	<0.59	<0.42	< 0.31	< 0,34	<0.30	0,35	93
THALLIUM	<0.32	29.9	38.4	10.4	51.3	43.1	3.0	42.6	63.6	34.7	25
VANADIUM	23 8		1500	35.7	509	757	92.5	322	4.59	625	840
ZNC	522	758		<0.39	0.59	1,23	< 0.29	<0.34	< 0.47	<0.32	<0.5
CYANDE	0.48	< 0.39	<0.48	1 -0.38	9,09						

ALL UNITS IN MG/KG

MWG13-15_47256

والتلام المال المناسب الرام

	18-250	\$B-26B	58-27A	88-578	58-298	68-2980 T	2W-1	PW-2	PW-3	-	
	(3.5-4.67	(3-4)	(0-17	(5-2)	(1-2)	(1-4)	7.01-1		FW-3	PW-4	PW-
NORGANICS											
ALUMPUM	29700	1880	2410	5129	3000						
ANTEMONY	<4	<3	633			3200	1230	2030	37.2	6850	3680
ARSENIC	7.5	2.7	3,4	<3,8	<4.3	<52	< 3.8	< 3.0	< 0.8	4340	< 7:
BARUM	114	19.4	990	12	17.2	15,7	1.2	1.0	< 0.72	0.0	2.4
BERYLLUM	8.0	<0.23		88.3	103	145	101	361	11.1	3320	12
CADMUM	1.9	< 0.87	0.37	1.1	0.88	0.99	< 0.20	< 0.29	< 0.31	< 0.3	< 0.5
CALCEUM	37100	16100	<0.72	0.0	1.5	1.7	1,8	11.7	< 1.5	< 8.8	2
CHROMEUM	919	21.6	4980	4520	7370	7130	18800	245000	842	14400	1710
COBALT	9.2	2.1	121	19.7	829	817	107	1010	15.2	63100	22100
COPPER	148	18	2.7	2.3	3	3.2	33.5	235	2.6	8,00	< 1.0
HON	27700	\$740	17300	21.2	32.7	40.4	81,6	208	D.1	250	55.4
EAD	50.2	13.2		42800	11900	14300	11900	7800	17700	18100	5250
MAGNESUM	943	8430	945	11.7	193	208	81.5	235	787	75800	72
MANCIANESE	249	118		413	1000	1140	#230	8110	146	280	242
MERCURY	0,6	0.07	113	85.7	90.0	126	71.3	215	85.0	1370	53.7
MCKEL	26.2	2.9	<0.08	6.5	0.3	<0.1	8.74	1.6	< 0.13	3	1.1
POTASSUM	2200	267	10.0		11.1	14.0	3.1	17.0	3.0	18.3	< 3.7
SELENDM	0.79	<0.78	370	1050	374	427	8180	162	2170	763	80.7
BLVER	<0.53	<0.48	<0.15	1.0	3	4.0	0.84	8.2	< 0.72	2.7	< 0.71
SOORIN	2700	170	<0.52	<0.61	<0.88	<9.83	0,5	40.7	1.7	51.3	2.3
THALLSUIS	<0.3		308	015	618	478	32000	321	340000	367	418
/ANADIUM	\$3.3	<0.3	<0.32	<0.38	< 0.42	<0.51	< 0.29	< 0.29	< 0.51	< 1.5	< 0.5
DNC	214	11.1	10.0	47.4	23.3	30	3.7	7	< 0.07	33.7	35 2
CYANDE		44.7	74.7	76,4	236	177	482	1360	18.7	354	57,1
ALMINE .	0.63	<0.29	<0.21	<0.38	0.75	0.05	1.12	< 0.36	0.87	0.13	< 0 m

ALL UNITS IN MORKS

	PW-8	PW-7	PW-8	PW-9	MW-BA	MW-68	
	7				(2-4)	(4-6)	
HORGANICS							
ALL DAMPS (ALL	474	1110	2050	108	84300	2330	
AMTIMONY	< 3.0	< 3.3	< 3	< 3.2	<4.7	<4.1	<u> </u>
ARSENIC	1.7	1.3	23.7	< 0.34	6.8	6.1	
MANUE	4840	14.2	64,4	0.74	182	13.0	<u></u>
MERMALIAN	< 0.29	< 0.25	< 0.23	< 0.25	0.71	<0.31	
CADALUM	< 0.85	< 0.73		< 0.71	8.3	<0.00	
EALCUM	3100	1650	34400	10400	62700	28300	<u></u>
CHRONIUM	49.5	29.1	84.6	10900	11500	78.0	
CORALT	2.2	1.0	9.4	< 0.88	10.7	< 0.14	
COPPER	12.6	3	335	24.3	1340	34.7	<u> </u>
RON	15000	2040	89200	2710	12100	\$110	<u> </u>
LEAD	27.8	4.5	848	37.4	792	23.7	
MAGNESIUM	255	185	18400	21.7	9010	15000	
MANGANESE	\$9.7	40	916	4	984	138	<u> </u>
MERCURY	0.09	< 0.08	0.09	0 23	2.0	0.91	
NICKEL	2	503	103	< 1.8	45.3	4.3	<u> </u>
POTASSUM	158	280	418	32.2	1300	141	
SELENUM	0.44	0.33	< 0.32	< 0.34	1,0	< 0.43	
SAVER	< 0.01	< 0.53	< 0.48	< 0.52	< 0.75	< 0.83	<u></u>
SODILM	104	211	352	204	1940	200	
THALLUM	< 0.29	< 0.25	< 0.23	< 0.25	< D.36	< 0.31	<u> </u>
VAHADINA	2.6	6.3	10.8	17.0	48.1	0.2	
ZINC	777	63	1390	0.1	534	34.7	<u> </u>
CYANDE	< 0.38	0.37	< 0.29	< 0.31	<0.44	< 0.38	والمراجع والمساول المساول المساول

ALL UNITS IN MG/KG

	88 10A	88-108	38-11A	98-71E	38-1180	88-12A	88-138	SB-14B	48-15A	58-15E	89-16
	(9-17	(2-4)	(0-1)	(3-4)	(2-4)	(0-2)	[2-6]	(2-4)	(D-17	(2-47)	(2-47
VOLATILE ORGANICS											
CHLOROMETHANE	< 11	< 12	€ 14	< 13							
BROMOMETHAME	< 11	< 12	< 14		< 15	< 15	< 14	< 14	< 14	< 12	< 17
VINYL CHLORIDE	< 11	< 12	< 14	< 13	< 15	< 15	< 14	< 14	< 14	< 12	< 17
CHLOROETHANE	< 11	< 12	< 14	< 13	< 18	< 15	< 14	< 14	< 14	< 12	< 17
METHYLENE CHLORIDE	< 11	< 12	< 14	< 13	< 18	< 18	< 14	< 14	< 14	< 12	< 17
ACETONE	< 11	C 12	< 14	< 13	< 15	< 15	20	< 14	< 14	V 12	< 17
CARBON DISULFIDE	< 11	< 12		< 13	< 15	< 15	< 14	< 58	< 14	< 12	< 17
1,1-DICHLOROETHENE	< 11	< 12	< 14	< 13	< 15	< 15	< 14	< 14	< 14	< 12	< 17
1.1-DICHLOROETHANE	< 11		< 14	< 13	< 15	< 15	< 14	< 14	< 14	< 12	< 17
TRANS-1,2-DICHLOROETHENE		< 12	< 14	< 13	< 15	< 15	< 14	< 14	< 14	< 12	< 17
CHLOROFORM	< 11	< 12	< 14	< 13	< 18	< 15	< 14	< 14	< 14	< 12	< 17
1,2-DICHLOROETHANE	< 11	< 12	< 14	< 13	< 13	< 15	< 14	< 14	< 14	< 12	€ 17
2-BUTANONE	< 11	< 12	< 14	< 13	< 15	< 15	< 16	< 14	< 14	< 12	S 17
	< 11	< 12	< 14	< 13	< 15	< 15	< 14	12J	< 14	< 12	< 17
1.1-TRICHLOROETHANE	< 11	< 12	€ 14	< 13	< 15	< 13	< 14	< 14	< 14	< 12	< 17
ARBON TETRACHLORIDE	< 11	<u>< 12</u>	< 14	< 13	< 15	< 15	< 14	< 14	< 14	< 12	< 17
PROMODICHLOROMETHANE	< 11	< 12	< 14	< 13	< 15	< 16	< 14	< 14	< 14	< 12	
,2-DICHLOROPROPANE	< 11	< 12	< 14	< 13	< 15	< 15	< 14	< 14	< 14	< 12	< 17
CIS-1,3-DICHLOROPROPENE	< 11	< 12	< 14	< 13	< 15	< 15	< 14	< 14	< 14		< 17
TRICHLOROETHENE	< 11	< 12	< 14	< 13	< 18	< 15	< 14	< 14	< 14	< 12	< 17
BROMOCHLOROMETHANE	< 11	< 12	<14	< 13	< 15	< 15	< 14	< 14	< 14		< 17
1,1,2-TRICHLOROETHANE	< 11	< 12 —	< 14	< 13	< 15	< 15	< 14	< 14	< 14	< 12	< 17
SENZENE	< 11	< 12	< 14	< 13	< 15	< 15	< 14	< 14		< 12	< 17
TANS-1,3-DICHLOROPROPENE	< 11	< 12	< 14	< 13	< 15	< 15	< 14	< 14	< 14	< 12	< 17
HOMOFORM	< 11	< 12	< 14	< 13	< 18	< 15	< 14	< 14	< 14	< 12	< 17
-METHYL+2-PENTANONE	< 11	< 12	< 14	< 13	< 15	< 15			< 14	< 12	< 17
-HEXANONE	S 11	< 12	< 14	< 13	< 15	< 15	< 14	< 14	< 14	< 12	< 17
ETRACHLOROETHENE	< 11	< 12	< 14	< 13			< 14	< 14	< 14	< 12	< 17
1,1,2,2-TETRACHLOROETHANE	< 11	< 12	< 14	< 13	< 18	< 15	< 14	< 14	< 14	< 12	< 17
CLUENE	< 11	< 12	- 214		< 15	< 15	< 14	< 14	< 14	< 12	< 17
HLOROBENZEHE	< 11	< 12		< 13	< 15	< 15	< 14	< 14	< 14	< 12	< 17
THYLDENZENE	- - 211	< 12	< 14	< 13	< 15	< 15	< 14	< 14	< 14	< 12	< 17
TYPENE	< 11		< 14	< 13 ·	< 15	< 18	< 14	< 14	< 14	< 12	< 17
CYLENES (TOTAL)		C 12	< 14	< 13	< 15	< 15	< 14	< 14	< 14	< 12	< 17
38-1,2-OICHLOROETHENE	< 11	< 12	< 14	< 13	< 18	< 15	< 14	< 14	< 14	< 12	< 17
M-12-OICHLUNGE INENE	< 11	< 12	< 14	< 13	< 15	< 15	< 14	< 14	< 14	< 12	< 17

ALL UNITS UGAQ

J - PEDICATES ESTIMATED VALUE

QUANTITATION LIMITS FOR ACCTONE HAVE BEEN ADJUSTED TO REFLECT LABORATORY, FELD, AND TRIP SLANKS.

	88-17B	88-149	28-18A	58-106	88-208	88-21A	88-218	83-825	88-238	88-24A	58-24 8
	(2-47	(1.5-3.5)	67-17	(3-3)	(2-4)	(0-1)	(2-47)	[2-4]	(9-10)	(0-87	(3-4)
	[4-6]	11,0-0.07	100	12.41							
OLATILE ORGANICS								- 11	< 19	< 13	< 14
CHLOROMETHANE	< 16	< 13	< 18	< 16	< 15	- 16	< 12	< 14		< 13	< 14
ROMOMETNAME	< 18	< 18	< 18	< 18	< 18	< 16	< 12	< 14	< 19	< 13	< 14
VIMIL CHLORIDE	< 10	< 15	< 18	< 16	< 15	< 18	< 12	< 14	< 10	< 13	6 14
CHLOROETHANE	< 10	< 15	< 18	< 16	< 15	< 18	< 12		< 19	< 13	< 14
METHYLENE CHLORIDE	< 15	< 15	< 18	< 18	< 13	< 17	< 12	< 14	< 19	< 13	< 14
ACETONE	< 16	< 17	310	< 54	< 16	< 64	< 47	< 14	< 19	< 13	< 14
CARBON DISULFIDE	< 10	< 15	< 18	< 18	< 15	< 10	< 12	< 14	< 19	< 13	< 16
1,1-DICHLOROETHENE	< 18	< 15	< 18	< 18	< 15	< 18	< 12	< 14	< 10	< 13	< 16
1,1-DICHLOROETHANE	< 10	< 15	< 18	< 16	< 1.5	< 18	< 12	< 14	< 19	< 13	< 14
TRANS-1,2-DICHLOROETHENE	< 16	< 15	< 18	< 18	< 15	< 16	€ 12	< 14	< 19	< 13	< 14
CHLOROFORM	< 18	< 15	< 18	< 18	< 15	< 16	< 12	< 14	< 18	< 13	< 14
1,2-DICHLOROETHANE	< 10	< 15	< 10	< 16	< 15	< 10	< 12	< 14	< 10	< 13	< 14
2-BUTANONE	< 10	< 15	< 18	< 16	< 18	< 10	< 12	< 14	< 19	< 13	₹ 14
1,1,1-TRICHLOROETHANE	< 16	< 15	< 18	< 18	< 15	< 18	< 12	< 14	< 10	< 13	< 14
CARBON TETRACHLORIDE	< 18	< 15	< 16	< 16	< 15	< 10	< 12	< 14	< 10	4: 13	< 14
BROMODICHLOROMETHANE	< 10	< 15	< 18	< 10	< 15	< 18	< 12	< 14	< 10	< 13	< 14
1.2-DICHLOROPROPANE	< 10	< 15	< 15	< 18	< 15	< 10	< 13	< 14	< 10	< 13	< 14
CIS-1.3-DICHLOROPROPENE	< 10	< 15	< 18	< 16	< 15	< 18	< 12	< 14	< 19	< 13	< 14
TRICHLOROETHENE	< 18	< 15	< 18	< 16	< 15	< 16	< 12		< 19	< 13	< 14
DIBROMOCHLOROMETHANE	< 16	< 15	< 18	< 16	< 15	< 10	< 12	< 14	< 18	< 13	< 14
1,1,2-TRICHLOROETHANE	< 10	< 15	< 18	< 18	< 15	< 18	< 12	< 14	< 18	< 13	< 14
BENZENE	< 16	< 15	< 18	< 16	< 15	< 18	< 12	< 14	< 10	< 13	< 14
TRANS-1,3-DICHLOROPROPENE	< 10	< 15	< 18	< 16	< 15	< 18	< 12 < 12	1 < 14	< 10	< 13	< 14
BROMOFORM	< 18	< 15	< 18	< 16	< 15	< 18		< 14	< 19	< 13	< 14
4-METHYL-2-PENTANONE	< 18	< 15	< 18	< 10	< 15	< 18	< 12	< 14	< 10	< 13	< 14
2-HEXANONE	< 18	< 15	< 18	< 10	< 15	< 18	< 12	< 14	< 10	< 13	< 14
TETRACHLORGE: HENE	< 16	< 15	< 18	< 18	< 15	< 16	< 12	< 14	< 10	< 13	< 14
1,1,2,2-TETRACHLOROETHANE	< 10	< 18	< 18	< 16	< 15	< 16	< 12		< 10	< 13	< 14
TOLUENE	< 16	< 15	< 10	< 10	< 15	< 18	< 12	< 16	< 10	< 13	< 14
CHLOROSENZENE	< 18	< 13	< 18	< 16	< 15	< 16	< 12	< 14		< 13	< 14
ETHYLBENZENE	< 18	< 15	< 18	< 18	< 15	< 18	< 12	< 14	< 10		< 14
STYREME	< 10	< 18	< 10	< 10	< 15	< 18	< 12	< 14	< 18	< 13	< 14
XYLENES (TOTAL)	< 18	< 18	< 18	< 18	< 15	< 16	< 12	< 14	< 10	< 13	< 14
CIS-1,2-DICHLOROETHENE	< 18	< 15	< 18	< 10	< 15	< 18	< 12	< 14	< 19	< 13	< 14

ALL UNITS UD/KG J - INDICATES ESTIMATED VALUE QUANTITATION LIMITS FOR ACETONE HAVE SEEN ADJUSTED TO REFLECT LASORATORY, FELD, AND TRIP SLAIMS.

	88-258	53-200	88-27A	58-278	48-205	88-268D	FW-1-	PW-2	PW-3	PW-4	
	(3.5-4.5)	B-47	(0-17	(5-2)	(1-2)	(1-2)			100-3	PH-4	PW-5
						1					
VOLATILE ORGANICS											
CHLOROMETHANE	< 15	< 11	< 12	< 15	< 18	< 20	< 14	< 15			
BROMOMETHANE	< 19	< 11	< 12	< 13	< 10	< 20	< 14	< 15	< 26	< 1000	< 28
VINYL CHLORIDE	< 15	< 11	< 12	< 15	< 16	< 20	< 14		< 28	< 1000	< 28
CHLOROETHANE	< 15	< 11	< 12	< 15	< 16	< 20	< 14	< 15	< 26	< 1000	< 23
METHYLENE CHLORIDE	< 15	< 11	< 12	< 15	< 10	< 20	< 14	< 15	< 28	< 1000	< 28
ACETONE	< 13	< 11	< 12	< 21	< 23	< 20		< 15	< 26	LOBS	< 28
CARBON DISULFIDE	< 15	< 11	< 12	< 15	< 10	< 20	< 14	< 19	< 33	2000	< 28
T, I - DICHLOROETHENE	< 13	< 11	< 12	< 15	< 18		< 14	< 15	< 26	< 1000	< 28
1,1-DICHLORGETHANE	< 15	511	< 12	< 13	< 10	< 20	< 14	< 15	< 28	< 1000	< 28
TRANS-1,2-DICHLOROETHENE	< 15	< 11	< 12	< 13	< 10		< 14	< 15	< 28	< 1000	< 28
CHLOROFORM	< 15	< 11	< 12	< 13		< 30	< 14	< 15	< 20	< 1000	< 28
1,2-DICHLOROETHANE	< 13	< 11	< 12	< 13	< 18	< 20	< 14	< 18	< 26	< 1000	< 28
2-BUTANONE	< 18	< 11	< 12	< 13	< 16	< 20	< 14	< 15	< 26	< 1000	< 28
1,1,1-TRICHLOROETHANE	< 15	< 11			< 10	< 30	< 14	< 15	< 26	< 1000	< 28
CARBON TETRACHLORIDE	< 13	< 11	< 12	< 18	< 16	< 20	< 14	< 15	< 26	< 1000	< 28
BROMODICHLOROMETHANE	< 15	< 11	< 12	< 15	< 18	< 20	< 14	< 15	< 26	< 1000	< 28
1.2-DICHLOROPROPANE	< 15	< 11	< 12	< 15	< 10	< 20	< 14	< 15	< 28	< 1000	< 26
CIS-1,3-DICHLOROPROPENE	< 15	< 11	< 12	< 15	< 10	< 20	< 14	< 15	< 26	< 1000	< 21
TRICHLOROETHENE	< 13		< 12	< 15	< 16	< 20	< 14	< 15	< 28	< 1000	< 24
DEROMOCHLOROMETHANS		< 11	< 12	< 15	< 10	144	< 14	< 15	< 26	< 1000	< 28
1,1,2-TRICHLORDETHANE	< 18	< 11	< 12	< 15	< 16	< 20	< 14	< 15	< 20	< 1000	< 28
BENZENE	< 18	< 11	< 12	< 15	< 18	< 20	< 14	< 13	< 26	< 1000	< 28
TRANS-1,3-DICHLOROPROPENE	< 15	< 11	< 12	< 15	< 18	< 20	< 14	< 15	< 26	< 1000	< 26
BROMOFORM	< 15	< 11	< 12	< 15	< 16	< 20	< 14	< 15	< 26	< 1000	< 24
4-METHYL-2-PENTANONE	< 15	< 11	< 12	< 15	< 16	< 20	< 14	< 15	< 26	< 1000	< 28
2-HEXANDNE	< 15	< 11	< 12	< 15	< 10	< 20	< 14	< 15	< 26	< 1900	< 28
	< 15	< 11	< 12	< 15	< 18	< 20	< 14	< 15	< 26	< 1000	< 28
TETRACHLOROETHENE	< 15	< 11	< 12	< 15	< 10	< 20	< 14	< 15	< 28	< 1000	
122-TETRACHLOROETHANE	< 13	< 1E	< 12	< 18	< 10	< 20	< 14	< 15	< 28	< 1000	< 28
OLUENE	< 15	< 11	< 12	8.1	< 18	< 20	< 14	< 15	< 28	< 1000	< 28
HLOROBENZENE	< 15	< 11	< 12	< 18	< 16	< 20	< 14	< 15	< 28		< 28
THYLBENZENE	< 15	< 11	< 12	< 13	< 16	< 20	< 14	< 15		< 1000	< 28
TYRENE	< 15	< 11	< 12	< 15	< 18	< 20	< 14	< 15	< 28	< 1000	< 28
TYLENES (TOTAL)	< 15	< 11	< 12	< 15	< 18	₹ 20	< 14	< 15	< 26	< 1000	< 28
16-1,2-DICHLOROETHENE	< 15	< 11	< 12	< 15	< 16	< 20	< 14		< 20	< 1000	< 21
				7 10	7.10	و دی په	< 14	< 15	< 28	< 1000	< 28

ALL UNITS UDING

J - PEDICATES ESTIMATED VALUE
QUANTITATION LIMITS FOR AGETONE HAVE BEEN ADJUSTED TO REFLECT LABORATORY, FIELD, AND TRIP BLANKS.

	PW-8	PW-7	PW-L	PW-9	MW-GA	MW-d8				2007-05905
	7.50				G-6)	(4-6)			-	
	-									
OLATILE ORGANICS										
HLOROMETHANE	< 15	< 13	< 11	< 12	< 18	< 15				1
PROMOMETHANE	< 15	< 13	< 11	< 12	< 18	< 15				
/INYL CHLORIDE	< 18	< 13	< 11	< 12	< 18	< 15				
HLOROETHANE	< 15	< 13	< 11	< 12	< 18	< 15				
METHYLENE CHLORIDE	< 15	18	6J	< 12	< 18	< 15_				
CETONE	< 150	< 13	< 11	< 68	< 18	<17				
CARBON DISULFIDE	< 15	< 13	< 11	< 12	< 18	< 15				
.1-DICHLOROETHENE	< 15	< 13	< 11	< 12	< 10	< 15				
1.1-DICHLOROETHANE	< 15	< 13	< 11	< 12	< 18	< 15				
TRANS-12-DICHLOROETHENE	< 13	< 13	< 11	< 12	< 18	< 15				
CHLOROFORM	< 15	< 13	< 11	≤ 12	< 18 =	< 15				_
1.2-DICHLORDETHANE	< 15	< 13	< 11	< 12	< 18	< 15		-		
- BUTANONE	< 15	< 13	< 11	< 12	< 18	< 15				
.1.1-TRICHLOROETHANE	< 15	< 13	< 11	4 12	< 18	< 15	1	_		
CARBON TETRACHLORIDE	< 15	< 13	< 11	< 12	< 18	< 19		- 1		
BROMODICHLOROMETHANE	< 15	< 13	< 11	< 12	< 18	< 15				
1.Z-DICHLOROPROPANE	< 15	< 13	< 11	< 12	< 18	< 15				
CIS-1,3-DICHLOROPROPENE	< 15	< 13	< 11	< 12	< 18	< 18				11
TRICHLORGETHENE	< 15	< 13	< 11	< 12	< 18	< 15				
DIBROMOCHLOROMETHANE	< 15	< 13	< 11	< 12	< 18	< 15				
1.1.2 - TRICHLOROETHANE	< 15	< 13	< 11	< 12	< 10	< 15				
BENZENE	< 15	< 13	< 11	< 12	< 10	< 15		_		
TRANS-1,3-DICHLOROPROPENE	< 13	< 13	< 11	< 12	< 18	< 15				
BROMOFORM	< 15	< 13	< 11	< 12	< 18	< 15				
4-METHYL-2-PENTANONE	< 15	< 13	< 11	< 12	< 18	< 15				
2-HEXANDNE	< 15	< 13	< 11	< 12	< 18	< 15				
TETRACHLOROETHENE	< 15	< 13	< 11	< 12	< 18	< 15				
1.122-TETRACHLOROETHANE	< 15	< 13	< 11	< 12	< 10	< 15				1
TOLLENE	< 15	< 13	< 11	< 12	< 18	< 18				
CHLOROSENZENE	< 15	< 13	< 11	< 12	< 18	< 18				
ETHYLBENZENE	< 15	< 13	< 13	< 12	< 18	< 13				
STYNENE	< 15	< 13	< 11	< 12	< 18	< 15				
XYLENES (TOTAL)	< 18	< 13	< 11	< 12	< 18	< 15				
CM-12-DICHLOROETHENE	< 15	< 13	< 11	< 12	< 10	< 15				

ALL UNITS UQAGG

J. - BIOICATES RETIMATED VALUE

QUARTITATION LIMITS FOR ACETORS: HAVE BEEN ADJUSTED TO REPLECT LABORATORY, FELD, AND TRP SLANKS.

MWG13-15_47262

The in the warren

	88-10A	88-108	88-11A	88-118	88-11RD	88-12A	65-138	88-148		T"	
	(0-1)	(2-4)	(0-17	(2-47	(2-4)	10-21	G-47		88-16A	88-158	88-16
REMI-VOLATRE						10-01-	12-41	(2-4)	(0-1)	(2-4)	(2-4)
ORGANIC COMPOUNDS											
PHENOL.	< 830	< 720	< 900	< 800	< 680	< 430	< 420				
812(S-CHLOROETHYLIETHER	< 630	< 720	< 900	< 800	< 680	< 450	< 420	< 450	< 8900	< 390	< 530
2-CHLOROPHENOL	< 830	< 720	< 900	< 800	< 800	< 450		< 450	< 8900	< 390	< 530
1.3-DICHLOROBENZENE	< 630	< 720	< 800	< 800	< 880	< 450	< 420	< 450	< 8900	< 390	< 530
1,4-DICHLOROBENZENE	< 630	< 729	< 900	< 800	< 640	< 450	< 420	< 450	< 8900	< 390	< 530
1,2-DICHLOROSENZENE	< 630	< 720	< 900	< 600	< 840		< 420	< 450	< 8900	< 390	< 530
2-METHYLPHENOL	< 630	< 720	< 900	< 800	< 840	< 450	< 420	< 450	< 8900	< 300	< 530
2.7-OXYBIS(1-CHLOROPROPANE)	< 630	< 720	< 800	< 800	< 880	< 450	< 420	< 450	< 8900	< 390	< 530
4-METHYLPHENOL	< 630	< 720	< 900	< 600	< 880	< 450	< 420	< 450	< 8900	< 390	< 530
N-NTROSO-DI-N-PROPYLAMINE	< 630	< 720	< 800	< 5.30		< 450	< 420	< 450	< 8900	< 390	< 530
HEMCHLOROETHANE	< 630	< 720	< 800	< 800	< 880	< 450	< 420	< 450	< 8900	< 390	< 530
MTROBENZENE	< 430	< 720	< 900		< 680	< 450	< 429	< 450	< 4800	< 300	< \$30
SOPHORONE	< 630	< 720	< 800	< 800	< 880	< 450	< 420	< 450	< 8900	< 390	< \$30
2-NTROPHENOL	< 830	< 720	احصتقته وا	< 800	< 840	< 450	< 429	< 450	< 8900	< 390	< 530
2,4-DIMETHYLPHENOL	< 630	< 720	< 900	< 800	< 880	< 450	< 420	< 450	< 8900	< 390	< 530
BISIZ-CHLOROETHOXYMETHANE	< 630	< 720		< 800	< 880	< 450	< 420	< 480	< 6900	< 390	< 530
2,4-DICHLOROPHENOL	< 630	< 720	< 900	< 800	< 860	< 450	< 4~	< 450	< 8000	< 390	< 530
1.7.4-TRICHLOROSENZENE	< 630	< 720	< 000	< 600	< 880	< 450	< 420	< 450	< 8900	< 390	< 530
MAPHTHALENE	< 630		< 000	< 600	< 880	< 450	< 420	< 450	< 8900	< 390	
4-CHLOROANILINE		< 720	< 800	< 500	< 880	240J	85J	< 450	< 8900	< 390	< 530
HEXACHLOROBUTADIENE	< 630	< 720	< 900	< 800	< 840	< 450	< 420	< 450	< 8000	< 380	< 830
4-CHLORO-3-METHYLPHENOL		< 720	< 900	< \$00	< 880	< 460	< 420	< 450	< 8900	< 390	< 530
2-METHYLNAPHTHALENE	< 930	< 720	< 900	< 800	< 890	< 450	< 420	< 480	< 8000	< 390	< 530
HEXACHLOROCYCLOPENTADIENE	< #30	< 720	< 900	< 100	< 880	84.3	120J	< 450	< 4000	< 390	< 530
2.4.9-TRICHLOROPHENOL	< 830	< 720	< 900	< 400	< 800	< 450	< 420	< 450	< 8900	< 390	< 530
	< 830	< 720	< 900	< 800	< 810	< 450	< 420	< 450	< 8900		< \$30
2,4,5-TRICHLOROPHENOL	< 1800	< 1800	< 2200	< 2000	< 2200	< 1100	< 1000	< 1100	< 22000	< 390	< \$30
2-CHLORONAPHTHALENE	< 430	< 720	< 900	< 100	< 880	< 450	< 420	< 450	< 8900	< 970	< 1300
- NITROANLINE	< 1800	< 1800	< 2200	< 2000	< 2200	< 1100	< 1000	< 1100	< 22000	< 200	< \$30
PARETHYLPHTHALATE	< 630	< 720	< 900	< 800	< 880	< 450	< 420	< 450		< 970	< 1300
ACE HAPHTHYLENE	< 630	< 720	< 900	< 800	< 880	< 450	< 420	< 450	< 8800	< 590	< \$30°
.0-DN/TROTOLUENE	< #30	< 720	< 900	< 800	< 880	< 450	< 420		< 8900	< 190	< 630
-NTROANGINE	< 1800	< 1800	< 2200	< 2000	< 2200	< 1100	< 1000	< 450	< 8800	< 300	< 530
CENAPHTHENE	< 630	< 720	< 900	< 800	< 640	600	82J	< 1100	< 22000	< 970	< 1300
							444	< 430	< 4900	< 300	< 530

ALL UNITS UGIKG J - PICICATES ESTIMATED VALUE

A 88-108 [2-4] (1800) (720) (1800) (720) (1800) (720) (1800) (720) (1800) (720) (1800) (720) (1800) (720) (1800) (1800) (1800) (1800) (1800) (1800) (1800) (1800) (1800) (1800) (1800) (1800) (1800) (1800) (1800) (1800) (1800) (1800) (1800) (1800)	(0-17)	(3-4) 4 2000 4 2000 4 2000 4 2000 4 800 4 800 4 800 4 800 4 800 4 800	(2-4) < 2200 < 880 < 2200 < 880 < 880 < 880 < 2200 < 2300 < 880 < 2200 < 880 < 2400 < 880 < 2400 < 880 < 2800 < 880 < 2800 < 880 < 880	(9-2) < 1100 \$10 < 1100 < 150 < 450 < 450 < 450 < 450 < 1100 < 1100 < 450	[2-4] < 1000 &1 < 1000 < 420 130J < 420 < 1000 < 1000 < 1000 < 420	(2-6) < 1100 < 450 < 1100 < 450 < 450 < 450 < 450 < 1100 < 1100	(6-1) < 22000 < 8000 < 22000 < 8000 < 8000 < 8000 < 8000 < 8000 < 8000 < 22000 < 22000	<pre>< 970 < 390 < 397 < 397</pre>	(2-4°) < 1300 < 536 < 1300 < 530 < 530 < 530 < 1300 < 1300
< 1800 < 720 < 1800 < 720 < 1800 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 <	< 300 < 2200 < 800 < 800 < 800 < 900 < 2200 < 2200 < 900 < 800 < 900 < 900 < 900 < 900	< 800 < 2000 < 800 < 800 < 800 < 2000 < 2000 < 800 < 800	< 880 < 2200 < 880 < 880 < 880 < 820 < 2200 < 2200 < 880	810 < 1100 < 450 870 < 450 < 450 < 1100 < 1100 < 450	&1 < 1000 < 420 130J < 420 < 420 < 1000 < 1000	< 450 < 1100 < 450 < 450 < 450 < 450 < 1100 < 1100	< 8000 < 22000 < 8000 < 8000 · < 8000 · < 8000 < 22000	< 390 < 970 < 390 < 390 < 380 < 300 < 970	< 830 < 1300 < 830 < 830 < 830 < 830 < 1300
<pre>< 720 < 1800 < 720 3 < 1800 3 < 1800 4 720 < 1800 < 720 < 720</pre>	< 300 < 2200 < 800 < 800 < 800 < 900 < 2200 < 2200 < 900 < 800 < 900 < 900 < 900 < 900	< 800 < 2000 < 800 < 800 < 800 < 2000 < 2000 < 800 < 800	< 880 < 2200 < 880 < 880 < 880 < 820 < 2200 < 2200 < 880	810 < 1100 < 450 870 < 450 < 450 < 1100 < 1100 < 450	&1 < 1000 < 420 130J < 420 < 420 < 1000 < 1000	< 450 < 1100 < 450 < 450 < 450 < 450 < 1100 < 1100	< 8000 < 22000 < 8000 < 8000 · < 8000 · < 8000 < 22000	< 390 < 970 < 390 < 390 < 380 < 300 < 970	< 830 < 1300 < 830 < 830 < 830 < 1300
<pre>< 720 < 1800 < 720 3 < 1800 3 < 1800 4 720 < 1800 < 720 < 720</pre>	< 300 < 2200 < 800 < 800 < 800 < 900 < 2200 < 2200 < 900 < 800 < 900 < 900 < 900 < 900	< 800 < 2000 < 800 < 800 < 800 < 2000 < 2000 < 800 < 800	< 880 < 2200 < 880 < 880 < 880 < 820 < 2200 < 2200 < 880	810 < 1100 < 450 870 < 450 < 450 < 1100 < 1100 < 450	&1 < 1000 < 420 130J < 420 < 420 < 1000 < 1000	< 450 < 1100 < 450 < 450 < 450 < 450 < 1100 < 1100	< 8000 < 22000 < 8000 < 8000 · < 8000 · < 8000 < 22000	< 390 < 970 < 390 < 390 < 380 < 300 < 970	< 830 < 1300 < 830 < 830 < 830 < 1300
< 1800 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 7	< 2200 < 800 < 800 < 900 < 200 < 2200 < 2200 < 200 < 900 < 900 < 900 < 900	< 2000 < 800 < 800 < 600 < 600 < 2000 < 2000 < 800 < 800	< 2200 < 880 < 880 < 880 < 880 < 2200 < 2200 < 880	< 1100 < 450 670 < 450 < 450 < 1100 < 1100 < 450	< 1000 < 420 130J < 420 < 420 < 1000 < 1000	< 1100 < 450 < 450 < 450 < 450 < 1100 < 1100	< 22000 < 8000 < 8000 · < 8000 < 8000 < 22000	< 970 < 390 < 390 < 380 < 390 < 970	< 1300 < 830 < 830 < 830 < 830 < 1300
< 1800 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 720 < 7	< 800 < 800 < 900 < 900 < 2200 < 2200 < 900 < 900 < 900 < 900	< 800 < 800 < 800 < 800 < 2000 < 2000 < 800 < 800	< 880 < 880 < 880 < 880 < 2200 < 2200 < 880	< 450 870 < 450 < 450 < 1100 < 1500 < 450	< 420 130J < 420 < 420 < 1000 < 1000	< 450 < 450 < 450 < 450 < 1100 < 1100	< 8800 < 8800 · < 8800 < 8900 < 22000	< 190 < 390 < 380 < 390 < 970	< 830 < 830 < 830 < 830
< 720 < 725 < 725 < 726 < 726 < 726 0 < 1800 0 < 1800 0 < 720 < 720 < 720 < 720 < 720 < 720 < 780 0 < 1800	< 800 < 900 < 900 < 200 < 2200 < 2200 < 900 < 800 < 900	< 800 < 800 < 800 < 2000 < 800 < 800	< 880 < 880 < 880 < 2200 < 2200 < 880	670 < 450 < 450 < 1100 < 1100 < 450	130J < 420 < 420 < 1000 < 1000	< 450 < 450 < 450 < 1100 < 1100	< \$800 < \$800 < \$900 < 22000	< 390 < 390 < 390 < 970	< 830 < 830 < 830 < 1300
< 720 < 729 < 1800 3 < 1800 < 720 < 720 < 720 < 730 < 1800	< 900 < 900 < 2200 < 2200 < 2200 < 900 < 900 < 900	< 800 < 2000 < 2000 < 800 < 800	< 880 < 880 < 2200 < 2200 < 880	< 450 < 450 < 1100 < 1100 < 450	< 420 < 420 < 1000 < 1000	< 450 < 450 < 1100 < 1100	< \$800 < \$900 < 22000	< 390 < 390 < 970	< 830 < 830 < 1300
< 729 3 < 1900 5 < 1800 6 < 720 7 < 720 7 < 720 7 < 720 7 < 720 7 < 720 7 < 720 7 < 720	< 900 < 2200 < 2200 < 2200 < 900 < 900 < 900	< 800 < 2000 < 2000 < 800 < 800	< 880 < 2200 < 2200 < 880	< 450 < 1100 < 1100 < 450	< 420 < 1000 < 1000	< 450 < 1100 < 1100	< 8900 < 22000	< 970 < 970	< 830 < 1300
< 729 3 < 1900 5 < 1800 6 < 720 7 < 720 7 < 720 7 < 720 7 < 720 7 < 720 7 < 720 7 < 720	< 2200 < 2209 < 900 < 900 < 900	< 2000 < 2000 < 800 < 800	< 2200 < 2200 < 880	< 1100 < 1100 < 450	< 1000 < 1000	< 1100 < 1100	< 22000	< 970	< 1300
<pre></pre>	< 2200 < 900 < 800 < 900	< 2000 < 800 < 600	< 2200 < 880	< 1100 < 450	< 1000	< 1100			
< 720 < 720 < 720 < 730 < 1800	< 900 < 900 < 900	< 800	< 880	< 450			< 22000	- 670	مممو ہے ا
< 720 < 720 < 720	< 900	< 600	7		< 420	4 466			
< 720 < 720 < 720	< 900		< 890		- 469	< 450	< \$800	< 390	< 530
< 720 < 1800	< 900	e 800		< 450	< 420	< 450	< 8900	< 390	< 530
< 1800	e 2200		< 880	< 450	< 426	< 480	< 8800	< 390	< 830
		< 2000	< 2200	< 1100	< 1000	< 1100	< 22000	< 970	< 1300
1300	1300	< 800	BOOJ	11000	1700	150J	67000	590	260J
3304	5004	250.1	140J	2000	380J	< 450	13000	< 390	390J
< 720	< 900	< 800	< 880	< 450	< 420	< 450	< 8900	< 390	< 530
170C	1900	< 800	915	12000	1900	220J	71000	820	670
1100	1400	1201	840.1	6900	1300	140J	45000	780	820
< 720	< 900	< 800	< 880	< 450	< 420	< 450	< 1900	< 390	< 530
	< 1800	< 1900	< 1800	< 830	< 830	< 900	< 19000	< 780	< 110
				4900	1000	110.	28000	430	280J
				2900	920	873	30000	390	3301
			< 540	< 450	< 420	< 450	< 8900	< 390	< 530
			< 880	< 450	< 420	< 450	< 8900	< 390	< 530
					1800	210J	37000	300	290J
			340.1	2200	< 70J	< 450	10000	< 396	110.
			44.55		610	50.3	9300	< 390	130.
						< 450	< 8900	< 390	< 53
							< 8900	< 390	< 53
									< 53
									< 53
	00 < 14000 0 1100 0 570 0 < 720 0 < 720 0 < 720 0 1200 0 510J 0 420J 0 < 720 0 < 720 0 470J 0 470J 0 470J 0 470J 0 470J 0 4720J 0 4720J 0 4720J 0 4720J	0 1100 890J 0 870 970 0 < 720 < 800 0 < 725 < 800 0 < 725 < 900 0 1200 1300 0 810J 300J 0 420J < 900 0 < 720 < 800 0 < 720 < 800 0 < 720 < 800	0 1100 890J < 800 0 870 870 < 800 2 < 720 < 800 210J 0 < 720 < 900 < 800 0 1200 1300 < 800 0 1200 1300 < 800 0 1500 300J < 800 0 420J < 900 < 800 0 < 720 < 800 < 800	0 1100 850J < 800 846J 0 870 970 < 800 8775J 0 < 720 < 800 210J < 800 0 < 725 < 800 < 800 878J 0 < 725 < 800 < 800 878J 0 < 800 < 800 < 800 < 800 0 < 800 < 800 < 800 0 1200 1200 < 800 840J 0 810J 300J < 800 840J 0 420J < 800 < 800 < 880 0 < 720 < 800 < 800 < 880 0 < 720 < 800 < 800 < 880	0 1100 330J < 800 546J 4800 0 970 970 < 800 876J 2800 0 < 720 < 800 210J < 840 < 450 0 < 725 < 800 < 800 < 860 < 450 0 < 725 < 800 < 800 < 880 < 450 0 1200 1300 < 800 840J 800 0 510J 300J < 800 840J 800 0 510J 300J < 800 < 840 1300 0 420J < 900 < 800 < 840 1300 0 < 720 < 800 < 800 < 840 1300 0 < 720 < 800 < 800 < 840 110J 0 < 720 < 800 < 800 < 840 110J 0 < 720 < 800 < 800 < 840 110J	0	1100 2504 < 800 5404 4800 1000 1104	0 1100 890J < 800 840J 4800 1000 110J 28000 0 870 970 < 800 870J 2800 820 87J 30000 0 < 720 < 800 210J < 880 < 450 < 420 < 450 < 8800 0 < 725 < 900 < 800 < 800 < 800 < 450 < 420 < 450 < 8800 0 1200 1300 < 800 800 1800 210J 57000 0 1200 1300 < 800 840J 8900 1800 210J 57000 0 100 100 100 1000 1000 210J 57000 0 100 100 1000 < 800 840J 8900 1800 210J 57000 0 100 100 100 1000 1000 1000 210J 57000 0 100 100 100 1000 1000 1000 1000 1	1100 3904 < 800 5403 4800 1000 1104 28000 430

ALL UNITS UGIKG J - NOICATES ESTIMATED VALUE

	88 <u>-258</u>	28-200	88-27A	98-27E	33-25B	88-2880 I	PW-1	PW-2	PW-3	PW-4	-
	(3.8-4.5)	(3-4)	(0-13	12-37	(1-2)	(1-2)			FM-4	PH-4	PW-S
SEMI-VOLATILE					122	 					
ORBANIC COMPOUNDS						-					
PHENOL	< 860	< 3000	< 800	< 430	< 1000	< 1300	< 920	< 460		1000	
BISIZ-CHLOROETHYLIETHER	< 900	< 3000	< 800	< 430	< 1000	< 1300	< 920	< 480	< 830	< 1200	< 840
2-CHLOROPHENOL	< 900	< 3800	< 600	< 430	< 1000	< 1300	< 820		< 830	< 930	< \$40
1,3-DICHLOROSENZENE	< 800	< 3800	< 800	< 430	< 1000	< 1300		< 480	< 430	< 830	< 880
1,4-DICHLOROBENZENE	< 800	< 3800	< 800	< 430	< 1000		< 820	< 480	< 830	< 930	< 880
1.2-DICHLOROBENZENE	< 900	< 3600	< 800	< 430	< 1000	< 1300	< 920	< 400	< 630	< 930	< 880
2-METHYLPHENOL	< 900	< 3400	< 800	< 430	< 1000	< 1200	< 920	< 480	< \$30	< 830	< 840
2.Z-GXYBIS(1-CHLOROPROPANE)	< 000	< 3800	< 800	< 430	< 1000	< 1300	< 920	< 480	< 830	< 830	< 840
4-METHYLPHENOL	< 960	< 3000	< 800	< 430	< 1000	< 1300	< 829	< 480	< 830	< 930	< 880
N-HTROSO-DI-N-PROPYLAMINE	< 900	< 3600	< 800	< 430	< 1000	< 1300	< 820	< 400	< 830	< 8300	< 680
HEXACHLOROETHANE	< 900	< 3800	< 800	< 430	< 1000	< 1300	< 920	< 480	< 830	< 830	< 680
NITROBENZENE	< 990	< 3400	< 800	< 430		< 1300	< 920	< 480	< 830	< 830	< 690
BOPHCRONE	< 860	< 3800	< 800	< 430	< 1000	< 1300	< 850	< 480	< 830	< 830	< 880
2-NITROPHENOL	< 900	< 3800	< 800		< 1000	< 1300	< 920	< 480	< 830	< 830	< 690
2.4-DIMETHYLPHENOL	< 960	< 3800	< 800	< 430	< 1000	< 1300	< 920	< 440	< 830	< 830	< 880
BM(2-CHLOROETHOXY)METHANE	< 800	< 3800	< 800	< 430	< 1000	< 1300	< 920	< 480	< 830	€ 3400	< 800
2.4-DICHLOROPHENOL	< 940	< 3800		< 430	< 1000	< 1300	< 920	< 483	< 830	< 830	< 880
1,2,4-TRICHLOROBENZENE			< 800	< 430	< 1000	< 1300	< 920	< 400	< 830	< 830	< 880
HAPHTHALENE	< 960	< 3400	< 800	< 430	< 1000	< 1300	< 920	< 480	< 830	< 800	< 880
4-CHLOROANILINE	< 900	1800J	< 900	< 430	370J	250J	< 920	< 480	< 830	< 000	< 880
	< 980	< 3800	< 800	< 430	< 10%	< 1300	< 920	< 480	< 830	< 830	< 880
HEVACHLOROBUTADENE	< 960	< 3000	< 800	< 430	< 1000	< 1300	< 920	< 480	< 830	< 830	< 880
4-CHLORO-3-METHYLPHENOL	< 900	< 3000	< 800	< 430	< 1000	< 1300	< 120	< 480	< 830	< 830	< 880
2-METHYLNAPHTHALENE	< 900	900J	< 800	540	140J	230.1	< 920	< 440	< 430	< 830	< 840
HEXACHLOROGYCLOPENTADIENE	< 980	< 3800	< 800	< 430	< 1000	< 1300	< 920	< 480	< 430	< 830	< 880
2,4,6-TRICHLOROPIENOL	< 980	< 3800	< 800	< 430	< 1000	< 1300	< 920	< 480	< 830	< 830	< 880
Z,4,5-TRICHLOROPHENOL	< 2400	< 8100	< 2000	< 1100	< 2800	< 3100	< 2300	< 1200	< 2100	< 2300	< 2200
Z-CHLOROHAPHTHALENE	< 960	< 3800	< 800	< 430	< 1000	< 1300	< 320	< 460	< 830	< 830	< 880
2-NTROANILINE	< 2400	< 9100	< 2000	< 1100	< 2000	< 3100	< 2300	< 1200	< 2100	< 2300	< 2200
DIMETHYLPHTHALATE	< 980	< 3800	< 800	< 430	< 1000	< 1300	< 6100	< 440	< 830	< 830	< 840
ACENAPHTHYLENE	< 980	< 3400	< 800	≤ 430	< 1000	< 1300	< 920	< 480	< 830	< 930	
2,0-DN/TROTOLUENE	< 860	< 3800	< 800	< 430	< 1000	< 1300	< 920	< 480	< 830	< 830	< 880
I-NITROANLINE	< 2400	< 9100	< 2000	< 1100	< 2000	< 3100	< 2300	< 1200	< 2100	< 2300	< 840
ACEHAPHT) ENE	< 900	1400J	< 800	< 430	410J	250.1	< 920	< 480	< 830	< 830	< 2200

ALL UNITS UG/KQ J- INDICATES ESTIMATED VALUE

	25-258	58-248	58-27A	58-278	#8-28B	\$30-28RD	PW-1	PW-2	PW-3	PW-4	PW-5
	(3.5-4.5)	(3-47)	(0-1)	(2-37)	(1-8)	(1-2)					
EM-VOLATRE	,310 -10 1	1 1									
ORGANIC COMPOUNDS											
L4-DINITROPHENOL	< 2400	< 9100	< 2000	< 1100	< 2900	< 3100	< 2300	< 1200	< 2100	< 2300	< 2200
DIBENZOFURAN	< 900	LSOOJ	< 800	< 430	290.	310J	< 920	< 480	< 830	< 830	< 880
- NTROPHENOL	< 2400	< 8100	< 2000	< 1100	< 2000	< 3100	< 2300	< 1200	< 2100	< 2300	< 2200
2.4-DINTROTOLUENE	< 800	< 3800	< 800	< 430	< 1000	< 1300	< 920	< 460	< 830	< 930	< 880
PLUGRENE	< 800	2100J	< 800	< 430	480J	380.)	< 920	< 480	< 830	< 930	< 880
DETHYLPHIHALATE	< 900	< 3000	< 800	< 430	< 1000	< 1300	< 920	< 460	< 630	< 930	< 880
-CHLOROPHENYLPHENYLETHER	< 900	< 3800	< 800	< 430	< 1000	< 1300	< 820	< 480	< 830	< 830	< 840
-NTROWILINE	< 2400	< 8100	< 2000	< 430	< 2900	< 3100	< 2300	< 1200	< 2100	< 2300	< 2200
-METHYL-4,4-DINITROPHENOL	< 2400	< 9100	< 2000	< 1100	< 2900	< 3100	< 2300	< 1200	< 2100	< 2300	< 3300
N-NTROSCOPHENYLAMME (1)	< 940	< 3800	< 800	< 430	< 1000	< 1300	< 820	< 480	< 830	< 930	< 800
-BROMOPHENTLPHENTLETHER	< 860	< 3000	< 800	< 430	< 1000	< 1300	< 850	< 480	< 830	< 830	< 880
HEXACHLOROBENZENE	< 880	< 3800	< 800	< 430	< 1000	< 1300	< 920	< 460	< 830	< 930	< 880
PENTACHLOROPHENOL	< 2400	< 9100	< 2000	< 1100	< 2600	< 3100	< 2300	< 1200	< 2100	< 2300	< 2200
HENANTHRENE	< 860	18000	< 800	1100	7900	5100	< 920	< 460	< 430	< 930	< 880
ANTHRACENE	< 960	3300J	< 800	< 430	1100	690J	< 920	< 440	< 830	< 930	< 840
M-N-BUTYLPHTHALATE	< 900	< 3800	< 800	< 430	< 1000	< 1300	< 920	< 486	< 830	< 930	< 880
FLUORANTHENE	< 960	20000	< 800	< 430	8400	5300	< 920	< 460	< 830	< 830	< 840
PYNEHE	< 900	11000	< 800	< 430	3300	4200	< 926	< 460	< 830	< 930	< \$40
BUTYLBENZYLPHTHALATE	< P80	< 3800	< 600	< 430	< 1000	< 1300	< 920	< 400	< 830	< 830	< 880
3.3"-DICHLOROSENZIONE	< 1900	< 7300	< 1000	< 430	< 2100	< 2500	< 1800	< 930	< 1700	< 1900	< 1800
BENZOVALANTI-PLACENE	< 900	8200	< 800	< 430	3600	1900	< 820	< 480	< 830	< 830	< 880
CHIVEENE	< 980	6400	< 800	< 430	3100	250.1	< 920	< 460	< 830	< 830	< 880
BIBIZ-ETHYLHEXYLIPHTHALATE	< 960	< 3600	< 800	< 430	< 1000	130J	< 920	< 460	< 830	< 930	< 680
DI-N-OCTYLPHTHALATE	< 960	< 3800	< 800	< 430	< 1000	< 1500	< 920	< 480	< 830	€ 930	< 880
BENZO(B) FLUORANTHENE	< 900	8800	< 800	< 430	3300	2200	< 920	< 400	< 830	< 930	< 880
	< 960	5200	< 800	< 430	1700	< 1800	< 920	< 400	< 830	< 830	< 680
BENZONGFLUORANTHENE		4500	< 800	< 430	1300	310.1	< 920	< 480	< 630	< 830	< 880
BENZOWYNENE	< 900	5000	< 800	< 430	< 1000	1100.3	< 820	< 480	< 830	< 930	< 880
PADENO(1,2,3-CD)FYRENE		< 3400	< 800	< 430	3501	250.1	< 920	< 480	< 830	< 830	< 880
DIBENZO(A, HANTHRACENE	< 960	4800	< 600	< 430	450J	560.)	< 820	< 460	< 830	< 830	< 880
BENZOIG, H. NPERYLENE	< 940	2000J	< 800	< 430	420J	440.	< 920	< 400	< 830	< 630	< 880

ALL UNITS UG/KG J - INDICATES ESTIMATED VALUE

	88-178	88-169	88-19A	E8-196	89-208	88-21A	SB-210	\$8-228	68-238	8B-24A	58 - 241
	(8-4)	(1.5~3.5)	(0-17)	(2-3)	(2-4)	(0-1)	(2-47)	(2-4)	(9-10)	(0-27	(2-4)
SEMI-VOLATRE ORGANIC COMPOUNDS											
PHENOL	< 1900	< 930	< 580	< 480	< 840	< 1000	< 370	< 400	< 1200		
934-CHLOROETHOLIETHER	< 1000	< 930	< 680	< 480	< 840	< 1000	< 370	< 400		< 800	< 800
2-CHLOROPHENOL	< 1000	< 830	< 500	< 480	< 840	< 1000	< 370	< 400	< 1200	< 800	< 800
1.3-DICHLOROBENZENE	< 1000	< 830	< 580	< 480	< 840	< 1000	< 370	< 400	< 1200	< 800	< 890
1.4-DICHLOROBENZENE	< 1000	< 830	< 500	< 480	< 840	< 1000	< 370	< 400	< 1200	< 800	< 800
1,2-DICHLOROBENZENE	< 1000	< 930	< 540	< 480	< 840	< 1000	< 370	< 400	< 1200	< 800	< 800
2-METHYLPHENOL	< 1900	< 830	< 580	< 480	< 840	< 1000			< 1200	< 600	< 800
2.2 - COYBIS() - CHLOROPROPANE)	< 1000	< 830	< 540	< 480	< 840	< 1000	< 570	< 400	< 1200	< 800	< 800
4-METIMUPHENOL	< 1000	< 830	< 580	< 480	< 840		< 370	< 400	< 1200	< 800	< 800
H-HITROSO-DI-N-PROPYLAMINE	< 1000	< 930	< 580	< 480		< 1000	< 370	< 400	< 1200	< 800	< 890
HEXACHLOROETHANE	< 1000				< 840	< 1000	< 370	< 400	< 1200	< 000	< 800
MITHORENZENE	< 1000	< 830	< 580	< 420	< 940	< 1000	< 370	< 400	< 1200	< 800	< 890
SOPHORONE	< 1000	< 830		< 480	< 840	< 1000	< 370	< 400	< 1200	< 800	< 850
2-MITROPHENOL	< 1000	< 830	< 980	< 480	< 840	< 1000	< 376	< 400	< 1200	< 800	< 880
2.4-DIMETHYLPHENOL	< 1000	< 830	< 580	< 480	< 840	< 1000	< 370	< 400	< 1200	< 800	< 890
HISTO-CHLOROETHOXYMETHUNE	< 1000	< 830	< 580	< 480	< 845	< 1000	< 370	< 400	< 1200	< 900	< 800
2,4-DICHLOROPHENOL	< 1000	< 830	< 880	< 480	< 940	< 1000	< 370	< 400	< 1200	< 800	< 800
1.2.4-TRICHLOROBENZENE	< 1000	< 830		< 480	< 940	< 1000	< 370	< 400	< 1200	< 800	< 800
NAPHTHALENE	< 1000		< 580	< 490	< 940	< 1000	< 370	< 400	< 1200	< 800	< 800
4-CHLORGANIENE		< \$30	< 580	< 400	< 840	< 1000	< 378	< 400	< 1200	< 800	< 800
HEXACHLOROBUTADIENE	< 1000	< 830	< 580	< 480	< 840	< 1000	< 370	< 400	< 1200	< 800	< 800
	< 1000	< 830	< 580	< 480	< 840	< 1000	< 370	< 400	< 1200	< 800	< 890
4-CHLORO-3-METHYLPHENOL	< 1000	< 830	< 580	< 490	< 840	< 1000	< 370	< 400	< 1200	< 800	< 880
2-METHYLNAPHTHALENE	< 1000	< \$30	< 580	< 480	< 840	< 1000	59J	< 400	< 1200	< 800	< 890
HEXACHLOROGYCLOPENTADIENE	< 1800	< 930	< 580	< 480	< 840	< 1000	< 370	< 400	< 1200	< 800	< 860
2,4,5-TRICHLOROPHENOL	< 1000	< 830	< 580	< 480	< 840	< 1000	< 370	< 400	< 1200	< 800	< 890
2,4,5-TRICHLOROPHENOL	< 2500	< 2300	< 1400	< 1200	< 2300	< 2500	< 929	< 1000	< 2300	< 2000	< 2200
2-CHLOROHAPHTHALENE	< 1000	< 930	< 580	< 480	< 640	< 1000	< 370	< 400	< 1200	< 100	< 800
2-NTROANLINE	< 2500	< 2300	< 1400	< 1200	< 2300	< 2500	< 920	< 1000	< 2900	< 2000	< 2200
DESTHIUNTHALATE	< 1000	< 830	< 980	< 480	< 840	< 1000	< 370	< 400	< 1200	< 100	< 800
ACENAPHTHYLEHE	< 1000	< 930	< 580	< 440	< 940	< 1000	< 370	< 400	< 1200	< 800	< 880
2,4-OHITROTOLUENE	< 1000	< 200	< 580	< 480	< 940	< 1000	< 370	< 400	< 1200	< 600	< 890
-HITTOANILINE	< 2500	< 2200	< 1400	< 1200	< 2300	< 2500	< 920	< 1000	< 2000	< 2000	
ACENAPHTHENE	< 1000	< 930	< 580	< 480	120.1	< 1000	< 370	< 400	< 1200	< 800	< 2200 < 2300

ALL UNITS UG/KG J - INDICATES ESTIMATED VALUE

	85-170	88-108	48-16A	88-19B	58-208	48-21A	\$8-218	38-228	58~218	SB-24A	28-24
	(2-47)	(1.5-3.57	(9-17	(5-2)	(2-47)	(0-1)	(2-4)	(2-4)	(9-10)	(0-4)	(3-4)
EM-VOLATILE	10.001	17.220.07	 	- 12 71				77/11			
											
ORBANIC COMPOUNDS	< 2500	< 2300	< 1400	< 1200	< 2300	< 2500	< 820	< 1000	< 2900	< 2000	< 2200
4-DINTROPHENOL	< 1000	< 130	< 580	< 486	< 940	< 1000	< 370	< 400	< 1200	< 800	< 890
DIBENZOFURAN	< 2500	< 2300	< 1400	< 1200	< 2300	< 2500	< 020	< 1000	< 2900	< 2000	< 2200
-NTROPHENOL	< 1000	< 830	< 880	< 480	< 940	< 1000	< 370	< 400	< 1200	< 800	< 890
2,4-DIMTROTOLUEILE FLUORENE	< 1000	< 830	< 580	< 480	140J	< 1000	< 370	< 400	< 1200_	< 600	< 800
DETHYLPHTHALATE	< 1000	< 930	< 500	< 480	< 940	< 1000	< 370	< 400	< 1200	< 800	< 800
-CHLOROPHENYLPHENYLETHER	< 1000	< 930	< 880	< 480	< 940	< 1000	< 370	< 400	< 1200	< 800	< 890
	< 2600	< 2300	< 1400	< 1200	< 2300	< 2500	< 920	< 1000	< 2900	< 2900	< 2200
-NITROANLINE	< 2500	< 2300	< 1400	< 1200	< 2300	< 2500	< 920	< 1000	< 2900	< 2008	< 2200
-METHYL-4.4-DINTROPHENOL	< 1000	< 830	< 580	< 480	< 940	< 1000	< 370	< 400	< 1200	< 800	< BB0
H-NITROSOGPHENYLALINE (1)	< 1000	< 830	< 580	< 480	< 940	< 1000	< 370	< 400	< 1200	< 800	< 890
-BROMOPHENYLPHENYL ETHER		< 830	< 550	< 480	< 840	< 1000	< 370	< 400	< 1200	< 800	< \$90
HEICHLOROBENZENE	< 1000		< 1400	< 1200	< 2300	< 2500	< 920	< 1000	< 2900	< 2000	< 2200
PENTACHLOROPIENOL	< 2500	< 2300	< 500	< 480	1200	480J	178J	< 400	1200	< 600	2300
PHENANTHRENE	0103	< 830	< 580	< 480	140J	470.1	230J	< 400	< 1200	< 800	< 890
ANTHRUCENE	< 1000	< 930	< 540	< 440	< 840	< 1000	< 570	< 400	< 1200	< 800	< 800
DI-N-BUTYLPHTHALATE	< 1000	< 930		< 480	2200	780J	637	180J	1200	1000	3800
FLUORANTHENE	540.J	< 830	< 580	< 480	< 940	340.1	99.1	1103	< 1200	< 800	1700
PIRELE	530.1	< 830			< 940	< 1000	< 370	< 400	< 1200	< 800	< 800
BUTYLBEKZYLPHTHALATE	< 1000	< 630	< 500	< 480	< 1100	< 2000	< 730	< 800	< 2300	< 1900	< 100
3,Y-DICHLOROBENZONE	< 2000	< 1900	< 1200	< 880	670J	< 1000	1003	< 400	< 1200	< 800	1200
BENZOJAJANTHRACENE	3703	< 930	< \$40	< 480	< 940	< 1000	170J	837	< 1200	< 800	1200
CHRYSENE	300.1	< 830	< 580	< 480	< 940	1003	< 370	1301	< 1200	< 800	2400
RIB(Z-ETHYLHEXYL)PHTHALATE	< 1000	< 830	< 840	< 480	< 940	< 1000	< 370	< 400	< 1200	< 800	< 80
DI-N-DCTYLPHTHALATE	< 1000	< 950	< 580	< 480		850J	160.3	120,1	< 1200	< 800	1700
BENZO(B)FLUORANTHENE	450J	< 930	< 500	< 480	< 940	570J	83.1	72J	< 1200	< 800	490.
BENZONGFLUORANTHENE	240J	< 930	< 580	< 480	< 940	190.1	78.3	713	< 1200	< 800	770.
BENZOWAPYRENE	140J	< 930	< 580	< 480	< 946	< 1000	< 370	99.1	< 1200	< 800	< 89
INDENO(1,2,3-CD)PYRENE	< 1000	< 830	< 580	< 480	< 840		< 370	< 400	< 1200	< 800	- 2 ES
DIBENZO(A,H) ANTHRACENE	< 1000	< 630	< 580	< 480	< 840	< 1000		1,000	< 1200	< 500	< 89
BENZO(G,H,)PERYLENE	< 1000	< 830	< 580	< 480	< 940	< 1000	< 370	< 400	< 1200	< 800	< 89
CARBAZOLE	< 1000	< 930	< 540	< 480	< \$40	< 1000	< 370	< 400	< 1200	< 900	1 5 60

ALL UNITS UQIKG J - INDICATEB ESTIMATED VALUE

2-DICHLONGÉRIZENE -METHYLPHENOL 2-DXYBRÍS I - GILOROPROPANE) -METHYLPHENOL - NITROSO - DI- N- PROPYLAINE EXACHLOROCTHANE TROSERZENE	< 2900 < 2900	< 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400	< 340 < 300 < 300 < 300 < 300 < 300 < 340 < 340 < 360 < 360 < 360 < 360 < 360 < 360 < 360 < 360 < 360 < 360 < 360 < 360 < 360 < 300 < 300 < 300 < 300 < 300 < 300 < 300 < 300 < 300 < 300 < 300 < 300 < 300 < 300 < 300 < 300 < 300 < 300 < 300 < 300 < 300 < 300	< 4800 < 4800 < 4400 < 4400 < 4400 < 4400 < 4800 < 4800 < 4400 < 4400 < 4400	MW-GA (2-4)	(4-6) (4-6) (4-6) (4-6) (540 (540 (540 (540 (540 (540 (540 (540					
PREAMIC GOMPOUNDS THENOL 1982—CHLOROSTPHILISTHER 1-CHLOROSTPHILISTHER 1-CHLOROSTPHILISTHER 1-CHLOROSTPHILISTHER 2-DICHLOROSENZEME 2-DICHLOROSENZEME 2-DICHLOROSENZEME 1-METHYLPHENOL 1-METHYLPHENOL 1-MITTOGO-DI-N-PROPYLAMINE EXACHLOROSTHAME THOSENZEME	< 2900 < 2900	< 400 < 400	< 360 < 360 < 360 < 360 < 360 < 360 < 360 < 360 < 360	< 4400 < 4400 < 4400 < 4400 < 4400 < 4400 < 4400 < 4400 < 4400 < 4400	< 1100 < 1100 < 1100 < 1100 < 1100 < 1100 < 1100 < 1100 < 1100 < 1100	< 940 < 940 < 940 < 840 < 840 < 940 < 940 < 940 < 940 < 940					
HENOL 15/2-CHLOROSTHYLISTHER 15/2-CHLOROSTHYLISTHER 15/2-CHLOROSENZEME 4-DICHLOROSENZEME 4-DICHLOROSENZEME 2-DICHLOROSENZEME -METHYLPHENOL -METHYLPHENOL -NTROSO-DI-N-PROPYLAMINE EXCHLOROSTHAME ITHOSENZEME	< 2900 < 2900	< 400 < 400	< 360 < 360 < 360 < 360 < 360 < 360 < 360 < 360 < 360	< 4400 < 4400 < 4400 < 4400 < 4400 < 4400 < 4400 < 4400 < 4400 < 4400	< 1100 < 1100 < 1100 < 1100 < 1100 < 1100 < 1100 < 1100	< 940 < 940 < 940 < 940 < 940 < 940 < 940					
ISIZ-CHLOROETHYLJETHER -CHLOROPHENOL 3-DICHLOROBENZENE 4-DICHLOROBENZENE 2-DICHLOROBENZENE -METHYLPHENOL 2-OXYBISI - CHLOROPROPANE) -METHYLPHENOL -NITROGO-DIN-PROPYLAINNE EXACHLOROETHANE ITROSENZENE	< 2900 < 2900	< 400 < 400	< 360 < 360 < 360 < 360 < 360 < 360 < 360 < 360 < 360	< 4400 < 4400 < 4400 < 4400 < 4400 < 4400 < 4400 < 4400 < 4400 < 4400	< 1100 < 1100 < 1100 < 1100 < 1100 < 1100 < 1100 < 1100	< 940 < 940 < 940 < 940 < 940 < 940 < 940					
-CHLOROPHENCI, 3-DICHLOROBENZENE 4-DICHLOROBENZENE 2-DICHLOROBENZENE -METHYLPHENOL, 2-DICTERS (1-CHLOROPROPANE) -METHYLPHENOL -NITROSO-DI-N-PROPYLAINNE EXACHLOROCHANE ITROSENZENE	< 2900 < 2900	< 400 < 400	< 360 < 360 < 360 < 360 < 360 < 360 < 360 < 360 < 360	< 4400 < 4400 < 4400 < 4400 < 4400 < 4400 < 4400 < 4400 < 4400 < 4400	< 1100 < 1100 < 1100 < 1100 < 1100 < 1100 < 1100 < 1100	< 940 < 940 < 940 < 940 < 940 < 940 < 940					
3-DICHLOROBENZENE 4-DICHLOROBENZENE 2-DICHLOROBENZENE -METHYLPHENOL 2-DIXTRIS(1-GHLOROPROPANE) -METHYLPHENOL -NTROGO-DI-N-PROPYLAMINE EXACHLOROETHANE ITROBENZENE	< 2900 < 2900 < 2900 < 2900 < 2900 < 2900 < 2900 < 2900 < 2900	< 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400	< 300 < 300 < 300 < 300 < 360 < 360 < 360 < 360	< 4400 < 4400 < 4400 < 4400 < 4400 < 4400 < 4400 < 4400	< 1100 < 1100 < 1100 < 1100 < 1100 < 1100 < 1100	< 840 < 840 < 840 < 840 < 840 < 840					
A-DICHLOROBENZENE 2-DICHLOROBENZENE -METHYPHENG. 2-DXYZIĞI I-GIRLOROPROPANE) -METHYPHENG. I-NTROĞO-DI-N-PROPYLANINE EXACIRLOROETHANE ITROBENZENE	< 2900 < 2900 < 2900 < 2900 < 2900 < 2900 < 2900 < 2900	< 400 < 400 < 400 < 400 < 400 < 400 < 400 < 400	< 300 < 300 < 300 < 300 < 300 < 300 < 300 < 300	< 4800 < 4800 < 4800 < 4800 < 4800 < 4800 < 4800	< 1100 < 1100 < 1100 < 1100 < 1100 < 1100	< 940 < 940 < 940 < 940					
2-DICHLOROGENZENE -METHYLPHENOL Z-OXYBBI(I-CHLOROPROPANE) -METHYLPHENOL -NITROGO-DI-N-PROPYLAINE EXACHLOROCTHANE ITROSENZENE	< 2900 < 2900 < 2900 < 2900 < 2900 < 2900 < 2900 < 2900	< 400 < 400 < 400 < 400 < 400 < 400 < 400	< 340 < 340 < 340 < 340 < 340 < 340	< 4800 < 4800 < 4800 < 4800 < 4800 < 4800	< 1100 < 1100 < 1100 < 1100 < 1100	< 940 < 940 < 940 < 940					
-METHYLPHENOL Z-OXYRIGH-CHLOROPROPANE) -METHYLPHENOL -NITHOGO-DI-N-PROPYLAMINE EZACHLOROETHANE ITROBENZENE	< 2900 < 2900 < 2900 < 2900 < 2900 < 2900	< 400 < 400 < 400 < 400 < 400 < 400	< 360 < 360 < 360 < 360 < 300	< 4800 < 4800 < 4800 < 4800 < 4800	< 1100 < 1100 < 1100 < 1100	< 940 < 940 < 940					
-METHYLPHENOL 2-OXYRB(1-CHLOROPROPANS) -METHYLPHENOL -NITHOGO, OH-N-PROPYLAMINE EXACHLOROETHANS ITROSENZENE	< 2900 < 2900 < 2900 < 2900 < 2900 < 2900	< 400 < 400 < 400 < 400 < 400	< 360 < 360 < 360 < 360	< 4800 < 4800 < 4800 < 4800	< 1100 < 1100 < 1100	< 940 < 940					
2 - OXYEIS(1 - CHLOROPROPANE) - METHYLPHENOL - NITHOGO-DI-N-PROPYLAMINE EXACHLORIOETHANE ITROSENZENE	< 2900 < 2900 < 2900 < 2900 < 2900	< 400 < 400 < 400 < 400	< 360 < 360 < 360	< 4800 < 4800 < 4800	< 1100 < 1100	< 940					
- METHYLPHENOL - NITROBO - DI - N - PROPYLAMINE EXACHLOROETHANE ITROBENZENE	< 2900 < 2900 < 2900 < 2900	< 400 < 400 < 400	< 380 < 380	< 4800 < 4800	< 1100						
- MITTOSO - DI - N - PROPYLAMINE EXACHLOROETHANE ITTOSENZENE	< 2900 < 2900 < 2900	< 400 < 400	< 340	< 4800		< 840					
EXACHLOROETHANE ITROSENZENE	< 2900 < 2900	< 400									
TTROBENZENE	< 2900		4 240			< 840					
******				< 4800	< 1100	< 840					
		< 400	< 380	< 4800	< 1100	< 840					1
	< 2000		< 360	< 4800	< 1100	< 840			7		+
	< 2900	< 400	< 360	< 4800	< 1100	< 840					
	< 2900	< 400	< 380	< 4800	< 1100	< 840	1				
	< 2900	< 400	< 360	< 4800	< 1100	< 840			1		
		< 400	< 360	< 4800	< 1100	< 840					
	< 2900	< 400	< 360	< 4800	< 1100	< 940					
41 - 42 - 43 - 43 - 43 - 43 - 43 - 43 - 43	< 2900	< 400	< 380	< 4800	< 1100	< 940					+
	< 2900	< 400	< 380	< 4800	< 1100	< 948					-
	< 2900	< 480	< 380	< 4400	< 1100	< 840					
	< 2900	< 400	< 360	< 4800	< 1100	< 840					
	< 2900	< 400	< 360	< 4800	< 1100	< 940		_	 		
EXACHLOROGYGLOPENTADIENE	< 2900	< 400	< 340	< 4800	< 1100	< 840					-
	< 2900	< 408	< 300	< 4800	< 1100	< 940					-
4,5-TRICHLOROPHENOL	< 7500	< 1000	< 800	240000	< 2100	< 2300					
	< 2000	< 400	< 380	< 4800	< 1100	< 940			-		-
	< 7500	< 1000	< 900	< 12000	< 2000	< 2300					1
	< 2900	< 400	< 380	< 4800	< 1100	< 840			-		
	< 2900	< 400	< 380	< 4400	< 1100	< 840			-		0-12-15-15-11
	< 2900	< 400	< 380	< 4400	< 1100	< 840			-		
NTROANLINE	< 7500	< 1000	< 900	< 12000	< 2900				 	0.005	
ENAPHTHENE	< 2900	< 400	< 380	< 4800	< 1100	< 2300					200

J - INDICATES ESTIMATED VALUE

	PW-6	PW-7	PW-B	PW-0	MW-BA	MW-88		 _	
					(3-4)	{4-67		 	
SEMI-VOLATLE								 	
ORGANIC COMPOUNDS									
2.4-DINITROPHENOL	< 7500	< 1000	< 800	< 12000	< 2900	< 2300			
DIBENZOFURAN	< 2900	< 400	< 380	< 4800	< 1100	< 940		 	
4-NITROPHENOL	< 7500	< 1000	< 900	< 12000	< 2800	< 2300			
2.4-DINITROTOLUENE	< 2900	< 400	< 340	< 4800	< 1100	< 940		 	
PLUGRENE	< 2900	< 400	< 380	< 4800	< 1100	< 840	 	 _	
DIETHYLPHTHALATE	< 2900	< 400	< 360	< 4800	< 1100	< 940	 	 	
4-CH OROPHENYLPHENYL ETHER	< 2900	< 400	< 360	< 4800	< 1100	< 940			
4-HITROANILINE	< 7500	< 1000	< 800	< 12000	< 2900	< 2300			
2-METHYL-4.E-DINTROPHENOL	< 7500	< 1000	< 800	< 12000	< 2800	< 2300	 		
N-NITROSCOPHENYLAMINE (1)	< 2800	< 400	< 360	< 4800	< 1100	< 840	 		
4-BROMOPHENYLPHENYL ETHER	< 2900	< 400	< 340	< 4800	< 1100	< 840			
HEXACHLOROBENZENE	< 2000	< 400	< 360	< 4800	< 1100	< 840			
PENTACHLOROPHENOL	< 7500	< 1000	< 900	279000	< 2800	< 2300			
PHENANTHENE	< 2900	< 400	< 300	< 4800	< 1100	< 840			
AMTHRACENE	< 2900	< 400	< 380	< 4900	< 1100	< 840		 	
DI-K-BUTYLPHTHALATE	< 2900	< 400	< 380	< 4800	< 1100	< 940		 	
PLUGRANTHENE	< 2900	< 400	< 380	< 4800	< 1100	< 940		 	
PYTHENE	< 2900	< 400	< 360	< 4400	< 1100	< 940		 	
BUTYL BENZYLPHTHALATE	< 2900	< 400	< 360	< 4800	< 1100	< 840		 	
3.T-DICHLOROBENZOINE	< 5800	< 800	< 720	< 8400	< 2200	< 1900		 	
BENZHAJANTHRACENE	< 2000	< 400	< 360	< 4800	< 1100	< 940		 	
CHRYSENE	< 2800	< 400	< 360	< 4800	< 1100	< 840			
BARZ-ETHYLHEXYLIPHTHALATE	< 3100	< 400	< 300	5300	1100J	< 940		 	
DI-N-OCTYLPHTHALATE	< 2000	< 400	< 380	< 4800	< 1100	< 940			
BENZORDFLLIORANTHENE	< 2900	< 400	< 380	< 4800	< 1100	< 840	 		
BENZOSOFLUGRANTHENE	< 2900	< 400	< 580	< 4800	< 1100	< 840		 <u> </u>	
BENZOWAYRENE	< 2900	< 400	< 380	< 4800	< 1100	< 940	 	 <u> </u>	<u> </u>
MOENOH 23-COPYRENE	< 2900	< 400	< 380	< 4800	< 1100	< 940	 		
DISENZOIA, HANTHRACENE	< 2900	< 400	< 360	< 4900	< 1100	< 940	 	 	
BENZOIG, H. APERYLENE	< 2900	< 400	< 360	< 4900	< 1100	< 840			L
CARGAZOLE	< 2900	< 400	< 360	< 4800	< 1100	< 840		1	

ALL UNITS UQIKO J - BIOGRATES ESTIMATED VALUE

	68-178	88-168	28-19A	\$8~100	BB-208	58-21A	85-218	28-276	88-238	88-24A	68-24
	(5-4)	(1.5-5.5)	(0-17)	(3-3)	(2-4)	[0-1]	(2-4)	13-47	(9-10)	(0-87	13-47
PERTICIPES									,	12 07	[3-4]
ALPHA-BHE	< 2.7										
BETA-BHC		< 2.6	< 3.1	8.8 >	< 2.3	< 2.0	< 2	< 8.8	< 3.2	< 2.2	< 23
DELTA-BHC	< 2.7	< 2.8	< 3.1	< 2.0	< 2.5	< 2.8	< 2	4.3.3	14	< 2.2	< 23
GAMMA-BHC (LINDANE)	< 2.7	< 2.8	< 3.1	< 2.6	< 2.5	< 2.0	< 2	< 5.8	< 3.2	< 2.2	< 2.3
HEPTACHLOR	< 2.7	8.5 >	< 3.1	< 2.6	< 2.5	< 2.8	< 2	< 5.8	< 3.2	< 2.2	
ALDRIN	< 2.7	< 2.6	< 3.1	< 2.6	< 2.5	< 2.8	< 2	< 5.8	< 3.2	< 22	< 2.3
	< 2.7	< 2.0	< 3.1	< 2.8	< 2.5	< 2.8	<2	< 5.8	< 3.2		< 2.3
HEPTACHLOR EPOXIDE	32	2.5.1	0.0	< 2.0	< 2.5	21	3.4	< 5.8	< 3.2	< 2.2	< 23
ENDOSULFAN I	< 2.7	< 2.8	< 3.1	< 2.6	< 2.5	< 28	< 2	< 8.6		11	- 44
DIELDRIN	140	21	< 0	< 9.1	< 4.0	47	9.4	< 11	< 3.2	< 2.2	< 2,3
4,4-D0E	72	0.8	34	< 0.1	< 4.9	21	< 3.9		23	30	100
ENDRIN	< 52	< 1	< 4	< 5.1	4.74	< 3.3		< 11	4.83	11	54
ENDOSULFAN II	< 8.2	< 5	<4	< 5.1	< 4.9	< 3.3	< 3.0	< 11	< 8.2	< 4.2	< 4.5
4,4°-000	< 8.2	< 5	< 8	< 5.1	< 4.9		< 3,0	< 11	< 8.2	< 4.2	< 4 5
ENDOSULFAN SULFATE	< 5.2	< 5	<u> </u>	< 5.1	54.0	< 3.3	<30	< 11	45	3.2J	< 4.5
4,4'-DOT	< 5.2	< 8	16	< 5.1		< 3.3	< 3.9	< 11	< 6.2	< 4.2	< 4,5
METHOXYCHLOR	< 27	< 28	< 31	< 20	< 4.0	26	< 3.9	0.5J	0.2	27	28
ENDRIN KETONE	< 5.2	< 5	< 4		< 23	< 20	< 20	< 58	< 32	< 22	< 23
ENDAM ALDEHYDE	< 5.2	- 25	- 30	< 5.1	< 4.9	< 5.3	< 3.8	< 11	< 6.2	< 4.2	< 4.5
ALPHA-CHLORDANE	< 2.7	< 2.0	7.5	< 5.1	< 4.9	< 8.3	< 3.0	< 11	< 0.2	< 4.2	< 4.5
GAMMA-CHLORDANE	< 2.7	< 2.0		< 2.0	< 2.3	< 2.8	< 2	< 5.8	< 3.2	< 2.2	< 2.3
TOXAPHENE	< 270	< 200	< 3.1	< 2.8	< 2.5	< 2.8	< 2	< 8.8	22	< 2.2	< 23
ARCCLOR-1016	< 52		< 310	< 260	< 250	< 580	< 200	< 680	< 320	< 220	< 230
AAOCLOR-1221	< 110	< 50	< 80	< 51	< 48	< 53	< 39	< 110	< 82	< 42	< 45
VACCLOR-1232	< 110	< 100	< 120	< 100	< 88	< 110	< 79	< 230	< 130	< 88	< 82
VNOCLOR-1242		< 50	< 60	< 51	< 49	< 53	< 39	< 110	< 62	< 42	< 45
UNOCLOR-1248	< 52	< 80	< 60	< 51	< 40	< \$3_	< 39	< 110	< 82	< 42	< 45
	< 82	< 50	< 60	< 31	< 40	500	240	< 110	< 82	< 42	
AROCLOR-1254	2400	< 50	1300	< 81	< 49	< 53	< 39	< 110	< 62		1800
AMOCLORI-1280	< 82	< 50	< 60	< 31	< 48	< 53	< 39	< 110	< 62	380 < 42	1200 < 45

ALL UNITS UG/KG J - PIDICATES ESTIMATED VALUE

	48-253	22-262	69-27A	28-278	88-298	88-2680	PW-1	PW-2	PW-3	PW-4	PW-5
	(3.5-4.5)	19-43	(0-1)	(3-3)	(1-2)	(1-2)					
	13.5-4.51	13,241	10-11								
ESTICIDES								< 2.5	< 4.4	< 2.5	< 4.7
ALPHA-BHC	< 2.5	< 4.9	< 2.1	< 2.5	< 2.8	< 3.4	< 24	< 2.5	< 4.4	< 2.3	13
RETA-BHC	19	< 4.8	9,4	38	< 28	34	< 24	< 2.5	< 4.4	< 2.5	< 4.7
SELTA-BHC	< 2.5	< 4.9	< 2.1	< 2.5	< 2.8	< 3.4	< 24	< 2.5	< 4.4	< 2.5	< 4.7
GAMMA-BHC (LINDANE)	< 2.5	< 4.8	< 2.1	< 2.5	< 2.8	< 3,4	< 24	< 2.5	< 4.4	< 2.5	€ 4.7
HEPTACHLOR	20	43	< 2.1	34	< 28	8,7	< 24	< 2.5	< 4.4	< 2.5	< 4.7
ALDRIN	36	< 4.9	< 2.1	< 25	< 2.8	< 3.4	< 24	< 2.5	< 4.4	< 2.5	14
HEPTACHLOR EPOXIDE	84	< 4.9	4.0	< 2.8	8.9	< 7.9	< 24	< 2.5	< 4.4	< 2.5	£ 4.7
ENDOSULFAN I	< 2.8	< 4.8	< 2.1	< 2.5	< 2.8	< 3.4	< 24	< 4.8	< 0.5	4.8J	< 9.1
DELDRIN	< 4.0	< 9.5	8.3	< 4.8	20	21	< 47		< 1.5	< 4	8.6
4.F-DOE	< 57	< 9.5	< 4.1	< 4.8	< 7.4	8.5	< 47	< 4.5	< 6.5	<4.9	< 9.1
ENDRUN	< 4.9	< 9.5	< 4,1	< 4.8	< 8.4	< 8.5	< 47	< 4.0	< 6.8	< 4.9	< 9.1
ENDOSULFAN I	< 4.8	< 9.5	< 4.1	< 4.8	< 8.4	< 6.3	< 47	< 4.8	< 8.5	<4.0	8.0
4.C-DOD	< 4.9	< 9.5	< 4.1	< 4.8	< 5,4	< 0.5	< 47	< 4.8	< 8.5	< 11	< 0.1
ENDOSLILFAN SULFATE	< 4.8	< 9.5	< 4.1	< 4.8	< 5.4	< 0.5	€ 47		< 4.5	< 4.9	17
4.4-DOT	< 4.9	< 0.5	0.0	< 4.8	32	< 6.5	< 47	< 4.8		153	< 47
METHONICHLOR	< 25	< 49	< 21	< 29	< 58	< 34	< 240	< 25	< 44	< 4.9	< 9.1
ENDRIN KETONE	< 4.9	< 9.5	< 4.1	< 4.8	< 5.4	< 8.5	< 47	< 4.8		< 4.9	< 9.1
ENDRIN ALDEHYDE	< 4.9	< 9.5	< 4.1	< 4.5	< 8.4	< 0.5	< 47	< 4.8	< 0.5	× 4,8	< 4.7
ALPHA-CHLORDANE	< 2.5	< 0.5	< 2.1	< 2.5	< 2.8	< 3.4	< 24	< 2.5	< 4.4		12
BAMMA-CHLORDANE	60	< 4.8	< 2.1_	< 2.5	< 2.8	< 3.4	< 24	< 2.5	< 4.4	< 2.5	
TOXAPHENE	< 250	< 480	< 210	< 250	< 280	< 340	< 2400	< 250	< 440	< 250	< 471
AROCLOR-1018	< 49	< 95	< 41	< 48	< 54	< 83	< 476	< 44	< 15	< 49	
AROCLOR-1221	< 100	< 180	< 13	< 98	< 110	< 130	< 860	< 98	< 170	< 100	< 19
ARCCL OR - 1232	< 40	< 25	< 41	< 48	< 54	< 63	< 470	< 48	< 83	< 49	
ARGCL OR - 1242	< 49	< 85	< 41	< 48	< 84	< 63	< 470	< 48	< 85	< 49	< 81
ARGCLOR-1248	4 2800	< 95	< 41	< 40	< 54	< 85	< 470	< 48	< 85	< 49	
AROCLOR-1254	< 40	< 65	< 41	< 48	< 54	< 65	< 470	< 48	< 88	< 49	< 9
AROCLOR-1250	< 49	< 95	< 41	< 40	< 54	< 65	< 470	< 48	< 85	< 49	< 81

ALL UNITS UBJRG J - BIDICATES ESTIMATED VALUE

	58-10A	85-106	68-11A	58-118	\$8-t180	58-12A	48-138	\$8-14B	58-15A		
	[0-1]	5-6	(0-1)	(2-47	(3-4)	(0-27)	(2-4)	(3-4)	(0-17	88-158	8B-168
PESTICIDES								10-7/	10-11	(2-4)	(2-4)
AUPHA-BHC											
META-BHC	< 18	< 2	< 2.4	< 2.2	< 2.0	< 2.5	< 2.4	< 24	< 12		
DELTA-BHC	< 16	20	< 2.4	< 2.2	< 11	< 2.5	< 2.4	20	< 12	< 2.1	< 7.3
	< 18	< 2	< 2.4	< 2.2	< 2.5	< 2.5	< 2.4	< 2.4		< 2.1	< 7.3
ZAMMA-BHC (LINDANE)	< 18	< 2	< 2.4	< 2.2	< 2.5	< 2.5	< 2.4	< 2.4	< 12	< 2.1	< 7.3
EPTACHLOR	< 18	< 2	< 2.4	<22	< 2.5	< 2.5	< 2.4		< 12	< 2.1	< 7.3
UDRIN	< 10	< 2	< 2.4	<22	< 2.5	< 2.5	< 2.4	< 2.4	< 12	< 2.1	< 7.3
EPTACHLOR EPOXIDE	< 18	42	< 2.4	<22	< 2.5	83	14	8.4	350	< 2.1	73
NDOSULFAN I	< 18	< 2	< 2.4	< 2.2	< 2.5	< 2.5		14	880	160	< 7.3
DELDRIN	1900	110	42	34	40	280	<24	< 24	< 12	< 2.1	< 7.3
.€-DOE	<35	44	400	130	180		67	< 4.7	< 23	120	64
HORIN	< 25	< 16	< 4.7	< 4.3	< 4.0	81	83	75	710	95	< 170
NDOSULFAN II	< 35	<	< 4.7	< 43		< 4.0	< 48	< 4.7	< 25	< 4.1	< 14
-DOD	< 35	< 3.8	410	120	< 4.0	< 4.8	< 4.8	< 4.7	< 25	< 4,1	< 14
NDOSULFAN BULFATE	< 35	< 3.6	< 4.7	<43	220	1.9J	140	< 4.7	120	< 4.1	430
F-DOT	< 35	< 3.6	2000	800	< 4.8	< 4.9	< 4.6	< 4.7	< 25	< 4.1	< 14
METHOXYCHLOR	< 180	< 20	< 24	< 22	2000	28	31	< 4.7	280	< 4.1	< 14
NDAN KETONE	< 25	<3.6	< 4.7		< 25	< 23	< 24	< 24	< 12U	< 21	< 73
NORIN ALDEHYDE	< 35	< 3.0		< 4.3	< 4.8	< 4.0	< 4.8	< 4.7	< 23	< 4.1	< 14
LPHA-CHLORDANE	< 18	< 2	< 4.7	<43	< 4.8	< 4.5	< 4.6	< 4.7	< 25	< 4.1	< 14
AMMA-CHLORDANE	< 18		< 2.4	< 2.2	< 2.5	< 2,5	< 2.4	< 2.4	< 25	<21	< 7.3
DXAPIENE	S 1800	< 2	< 2.4	< 2.2	< 2.8	< 2.5	< 2,4	< 2.4	< 25	< 2.1	22
ROCLOR-1016		< 200	< 240	< 220	< 250	< 250	< 240	< 240	< 1200	< 210	
ACCLOR-1221	< 330	< 36	< 47	< 43	< 48	< 49	< 46	< 67	< 250		< 730
ROCLOR-1232	< 710	< 78	< 96	< 68	< 88	< 100	< 83	< 86	< 50	<41	< 140
ROCLOR-1242	< 350	< 36	< 47	< 43	< 44	< 49	< 48	< 47	< 250	< 82	< 210
ROCLOR-1242	< 350	< 38	< 47	< 43	< 48	< 48	< 48	< 47	< 250	< 41	< 140
AOCLOR-1254	50000	2100	< 47	< 43	< 48	< 49	< 40	370	30000	< 41	< 140
	< 350	< 38	< 47	< 43	< 48	< 49	1000	840		7400	2200
FOCLOR-1260	< 350	< 38	< 47	< 43	< 48	< 49	< 48	< 47	< 250	< 41	1200

ALL UNITS LIGING J - INDICATES ESTIMATED VALUE

	PW-E	PW-7	PW-8	PW-9	MW-GA	MW-68					
					[2-6]	(4-6)			-		
											
PESTICIDES				< 52	<3	< 2.8					
ALPHA-BHC	< 18	< 2.1	< 1.0	< 52	<3	< 2.8				سيبا أنبر	
BETA-BHC	< 10	30	84	< 32	<3	< 2.8					
DELTA-BHC	< 10	< 2.1	< 1.9		<3	< 2.8					
SAMMA-BHC (LINDANE)	< 16	< 2.1	< 1.8	< 52	<3	< 2.8					
HEPTACHLOR	< 18	20	< 1.9	< 52		25					
ALDRIN	< 18 —	< 2.1	< 1.3	< 52	120	18					
HEPTACHLOR EPOXIDE	< 18	< 2.1	0,5	< 52	84	17					
ENDOSULFAN I	< 16	< 2.1	< 1.8	< 82	< 3			 	_		
DELDRIN	< 30	< 4.2	< 3.8	< 100	< 8.9	< 5.1		-			-
4.4-DOE	< 30	< 4.2	4.1	240	- 110	24					
ENDRUN	< 30	< 4.2	< 3.0	< 100	18	< 8.1			-		
ENDOSULFAN II	< 50	< 4.2	< 3.0	< 100	< 5.9	< 8.1		——			
4.4°-DDD	< 30	< 4.2	< 3.8	< 100	78	< 5.1		⊢			
ENDOSULFAN SULFATE	< 30	< 4.2	< 3.8	< 100	< 5.0	< 5.1		.			
4.4°-DDT	< 30	12	20	< 100	< 5.9	4 8.1			_		
METHOXYCHLOR	< 160	< 21	< 10	< 520	< 30	< 26		 	_		
ENDRUN KETONE	< 30	4.8	< 3.0	< 100	< 0.0	< 5.1					
ENDRIN ALDEHYDE	< 30	< 4.2	< 3.8	< 100	32	< 5,1					
ALPHA-CHLORDANE	< 10	< 2.1	< 1.9	< 52	370	< 2.8					
GANNA-CHLORDANE	< 18	< 2.1	8.8	< 52	250	< 2.0		-			
TOXAPIENE	< 1800	< 210	< 190	< 5200	< 300	< 260		-			-
AROCLOR-1010	< 300	< 42	< 38	< 1000	< 80	< 51			_		
AROCLOR-1221	< 610	< 45	< 77	< 2000	< 120	< 100	<u></u>				
AROCLOR-1232	< 300	< 42	< 38	< 1000	< 58	< 51			_		
ARCCLOR-1232	< 300	< 42	< 38	< 1000	< 50	< 51					
	< 300	< 42	< 38	< 1000	4900	770	Ī				
ARCCLOR-1248	< 300	< 42	< 38	< 1000	< 59	< 51					
ARCCLOR-1254 ARCCLOR-1260	< 300	< 42	< 30	< 1000	< 50	< 51					

ALL UNITS UGIKG J - INDICATES ESTIMATED VALUE

TABLE 6-5 PRODUCTION WASTE TCLP RESULTS FORMER GREISS-PFLEGER TANNERY COMMONWEALTH EDISON COMPANY WALREGAN, ILLINOIS

	FW-1	PW-2	PW-3	PW-4	PW-8	PW-E	PW-7	PW-8	PW-1	Regulatory
TOLP METALS							0.070			Limits
ARSENIC	<0.050	<0.050	<0.050	<0.050	<0.050					
BARUM	0.647	0.272	0.229	0.731	2.03	< 0.050	<0.050	<0.030	<0 050	50
CADMUNI	< 0.005	0.178	<0.005	0.046		13.1	0 325	1 16	0 145	190,0
CHROMENI	0.017	0.075	<0.010		<0.005	<0.003	< 0.003	0 314	< 0.005	1.0
LEAD	<0.050			0.260	3.00	<0.010	<0.010	0.071	24.2	3.0
MEACURY*		< 0.050	<0.050	86.9	D.054	<0.030	<0.050	0.738	<0.030	30
	0.0003	0.0002	<0.0002	0.004	<0.0002	< 0.0002	<0.0002	<0.0002	<0.0002	0.2
BELENUM	< 0.075	< 0.375	<0.075	< 0.075	<0.075	<0.079	< 0.075	< 0.075	<0.075	
SLVER	<0.010	< 0.050	<0.010	<0.010	9.D1B	<0.010	<0.010	<0.010	<0.010	1.0 5.0
			- 1000							

Mercury value reported from analysis outside of methods holding time.
 All units right.

Indicates exceedence of regulatory limits.

Commonwealth Edison
One First National Plaza, Chicago, Illinois
Address Reply to: Post Office Box 767
Chicago, Illinois 80690 - 9767

94-760

July 27, 1994

14 SFHTEh Replaced Pages Colloce

CERTIFIED MAIL

Mr. Timothy J. Murphy
Pre-Notice Sub Unit
Remedial Project Management Section
Bureau of Land
Illinois Environmental Protection Agency
P.O. Box 19276
Springfield, Illinois 62794-9276

Re: 0971900004 -- Lake County Former Griess - Pfleger Tannery Finalization of Remedial Investigation Report - Phase One

Dear Mr. Murphy:

Per your July 12, 1994 comment letter, and July 20, 1994 meeting with Pete McCauley of my staff, enclosed are three packets containing revised replacement pages to finalize the Remedial Investigation Report - Phase One for the former Griess-Pfleger Tannery site. The following changes have been made to the report:

- IEPA Comment 1, Page 4-6 The text "...collected with a hand auger were composited." has been changed to "... collected with a hand auger."
- IEPA Comment 2, Page 6-3 The text "...however, arsenic trioxide may have been used as a rat poison" has been added.
- IEPA Comment 3, Page 6-12 "Whit" has been changed to "White".
- IEPA Comment 4, Page 6-13 The following paragraph has been added to discern that all the hide material may not be TCLP hazardous.

"The exceedance of TCLP regulatory limits does not imply that all production waste material is hazardous. An additional study of chromium's valance states ($Cr^{\circ 3}$, $Cr^{\circ 6}$) will determine the pursuance of the chromium waste exclusion, as stated in 35 IAC 721.104(b)(6), as it pertains to tannery waste streams".

• IBPA Comment 5, Page 7-3 - The following paragraphs have been added with regard to installing deeper monitoring wells and to discern that all hide material may not be TCLP hazardous.

RECEIVED

ORIGINAL

AUG 01 1994

IEPA/DLPC

SCREENED BE

"Install several deeper monitoring wells to determine if deeper stratigraphic units or groundwater bearing zones have been impacted from past tannery operations."

"Speciation of the valence states during the Phase II study parameters will assist in the pursuance of the chromium waste exclusion, as stated in 35 IAC 721.104(b)(6), as it pertains to tannery waste streams".

IBPA Comment 6 - Table 6-1 units have been changed to ug/1.

Please note that with finalization of the report, we will be submitting copies to the site repository at the Waukegan Public Library, and the Waukegan Harbor Citizen Advisory Group. In addition, we are now proceeding with the development of a Work Plan to address Phase Two investigative activities.

Should you have any questions regarding the project, please contact Pete McCauley at 312/394-4470.

Sincerely,

Sin m mc cam

Brian M. McCann Supervisor of Land Quality

PBM:BMM:et finphs1.let

cc.

Greg Michaud (IEPA) w/att. Denise Story (Metcalf & Eddy) P. B. McCauley

> RECEIVED AUG 01 1994 IEPNDLPC

Mary A. Gade, Director (217) 782-6760 2200 Churchill Road, Springfield, 1L 62794-9276

July 12, 1994

Brian McCann Commonwealth Edison One First National Plaza P.O. Box 767 Chicago, IL 60690-0767

Re: 0971900004 -- Lake County Waukegan/Former Griess-Pfleger Tannery Superfund/Technical Reports Remedial Investigation Report - Phase I

Dear Mr. McCann,

The Agency has reviewed the RI report. The report does well in documenting the impact of the past chrome tanning operation. Please address a few corrections and/or comments prior to finalizing the report.

- 1. The top of page 4-6 states that hand auger samples were composite samples for VOC's. Composite samples are collections of a waste, sediment or soil from various depths or locations that are mixed together prior to being transferred to the sample container. This should not have been done for VOC's as aeration would occur. If the samples were pushed or knocked out of the hand auger and onto a tray to catch the sample and then transferred to the sample container (without being mixed) then you might paraphrase the top of page 4-6 leaving out the word composite.
- 2. Page 6-3, the source of arsenic is unknown, however, arsenic trioxide was a rat poison that may have been used.
- 3. Page 6-12 spell check: PW-2: Whit (White), clay-like material .
- 4. Could the waste samples PW-5 and PW-9 indicate that all the hide material is TCLP hazardous?
- 5. Page 7-3, add several deeper monitor wells to the Phase II study.
- 6. Table 6-1, units at the bottom of several pages should be in ug/l.

SCREENED BF

Printed on Recycled Paper

Griess-Pflager Phase I RI July 12, 1994

This concludes the review comments and corrections, if there are any questions, please call.

Sincerely,

Timothy J. Murphy
Project Manager, Remedial Project Management Section, Bureau of

TJM:tjm grspflrI.rev

collected with a hand auger were composited. A stainless steel spoon was used to transfer the soil into the sample container. Soil collected for VOC samples was packed into the sample container and headspace was minimized. All samples were capped as quickly as feasible.

4.3.2.4 Surface and Subsurface Soil Quality Control Samples

During this sampling event, quality control (QC) samples were collected and submitted for laboratory analysis. Equipment blank and field duplicate samples were collected as part of the QC protocol.

Equipment blanks were collected for each piece of sampling equipment used in the collection of samples. For soil sampling, the samples were collected form a stainless steel hand auger and split spoon to verify the adequacy of the decontamination procedures.

Duplicate samples were collected in accordance with the QAPP to provide statistical information relating to the sample variability and serve as a check on the precision of the sample collection method.

4.4 MONITORING WELL INSTALLATION/CLOSURE

4.4.* Purpose

0

Seven monitoring wells (MW-1 through MW-7) were installed during field activities as a means of assessing groundwater quality, horizontal groundwater flow direction, groundwater flow rate, and site stratigraphy. One 14-foot deep stainless steel monitoring well (installed by others) was abandoned to remove this potential conduit from the subsurface.

4.4.1.1 Locations and Rationale

Seven water-table monitoring wells (screens intersecting the water table) were installed as part of the field activities. The monitoring well locations (installed and abandoned) are shown on Figure 4-6. Two monitoring wells (MW-1 and MW-2) were installed adjacent to the former tannery process ponds. These monitoring wells were located in areas believed to be downgradient from the former tannery process ponds, and were used to determine if groundwater had been impacted by the process ponds.

Four monitoring wells were installed around the periphery of the site. These four wells are used to evaluate the horizontal extent of the impact on the groundwater by the tannery activities. Monitoring wells MW-3, MW-5, and MW-6 were located along the eastern edge of the property boundary, in the assumed downgradient direction, to determine the horizontal extent of environmental impact and to determine whether

Lead was identified in MW-1 at a concentration of 40.7 ug/l, above the Class I: Standard of 7.5 ug/l. The presence of lead is questionable at this location because the concentration of lead in the duplicate sample was reported as less than 2.4 ug/l.

Arsenic was also detected in MW-1 above the Class I Standard of 50 ug/l. The arsenic concentration in MW-1 was reported to be 6470 ug/l while the duplicate sample reported 6,490 ug/l. The source of the arsenic is unknown as this analyte was not historically used during normal tannery operations.

All monitoring wells exceeded the Class I Standard of 1,200 mg/l for total dissolved solids.

Overall, it appears that the constituents present in the surficial and subsurficial soil have not significantly impacted the groundwater in and around the site. Additionally, many of the constituents detected above the Class I Water Quality Standards may be naturally occurring in the groundwater as is evidenced by their presence in the upgradient monitoring well.

Analytical results for all groundwater, cistern, field blank, and trip blank samples are found in Table 6-1.

6.2 AREA I

This section summarizes the data collected from surficial and sub-surficial soil samples collected within the boundaries of this area as well as the sediment sample collected from the open sewer located near the cistern. Initially, a sediment sample was scheduled to be collected from the cistern. However, this sample was not collected because the bottom and sides of the cistern were solid and contained no sediment.

A total of 23 soil samples were collected within Area 1; 6 surficial, 16 subsurficial, and one sediment.

6.2.1 Volatile Organic Compounds

A total of three samples were found to contain one VOC each; SB-33B, SB-35B, and SB-37B. Both SB-35B and SB-37B contained methylene chloride at an estimated concentration of 12 ug/kg and 18 ug/kg respectively. Methylene chloride is a commonly used laboratory solvent and, as such, is often found as a laboratory contaminant. This, coupled with the historic non-use of this solvent during the tanning process, raises question as to the presence of this compound in the anvironmental samples collected.

Trichloroethene (TCE) was the only other VOC detected in this area. Trichloroethene was found in SB-33B at an estimated concentration of 7 ug/kg. The source of the

provides a surficial distribution of lead concentrations in excess of 1,000 mg/kg. A subsurficial map was not prepared for lead because there were three locations found to contain lead above the 1,000 mg/kg limit: SB-01B - 1,520 mg/kg; SB-09B - 1,260 mg/kg; and SB-15B - 1,610 mg/kg.

Chromium was detected at a maximum concentration of 25,500 mg/kg in S8-238. Chromium concentrations within this area tended to drop significantly with increasing sampling depth. The average chromium concentration throughout this area is 3,700 mg/kg and is concentrated mainly in the area of, and adjacent to, the production waste samples. Overall, the highest chromium value was found in PW-4 at 63,100 mg/kg. Figures 6-10 and 6-11 provide a surficial and subsurficial distribution of chromium.

Analytical results for the TAL analytes identified in this area can be found in Table 6-

6.5 PRODUCTION WASTE TCLP SAMPLES

In an effort to characterize the production wastes (PW), nine samples were collected from both partially contained (deteriorating drums) and non-contained sources. The samples were collected from various location in Areas IV and V. The following depicts the physical descriptions of the production waste samples when collected in the field.

- PW-1: Red beads approximately the size of medium sand. This material was located under a pile of fiberglass.
- PW-2: Whit, clay-like material.
- PW-3: Red sandy-like material collected from a corroded 55-gallon drum in a pile of other drums.
 - PW-4: Orange colored solid material collected from a 5-gallon rusted pail.
 - PW-5: Tan fibrous material (remnants of hide material) located just north of the southern fence-line of Area V.
 - PW-6: Black material located inside of a 1.5 foot long by 7 inches wide steel canister.
 - PW-7: Grey-black cinder like material in appearance.
 - PW-8: A very corroded 55-gallon drum with lacinerated waste materials.

 PW-9 - Grey, white, and pink hide material with a slight odor from an almost completely corroded drum.

The nine production waste samples were collected within the boundaries of Area III. These samples were analyzed to determine if any of the constituent concentrations exceeded the Toxicity Characteristic Leaching Procedure (TCLP) regulatory limits found in 40 CFR 261.24.

Of the nine samples collected, three of the samples exceeded the regulatory limits. The extract for PW-4 was found to contain 66.9 mg/l lead, in excess of the 5.0 mg/l limit. The regulatory limit for chromium, 5.0 mg/l, was exceeded in samples PW-5 and PW-9 with concentrations of 8.06 mg/l and 24.2 mg/l, respectively. There were no other concentrations reported above the regulatory limits.

Analytical results for all TCLP parameters are presented in Table 6-5.

Il activities are recommended to determine if off-site areas have been impacted by former tannery operations.

- Collect a second round of groundwater samples from all seven monitoring wells. This additional groundwater data will help to confirm the presence or absence of constituents of concern in the groundwater.
- Reduce the investigation analyte list for both soil and groundwater in Phase II
 (e.g. only sample those parameters which were detected in elevated levels
 during the first phase of the RI).
- Collect soil samples and analyze for select inorganic TCLP parameters, specifically chromium, lead, mercury, and arsenic. These analyses will aid in the determination of whether the material should be treated as a hazardous waste. This will also help in the selection of remedial alternatives.
- Analyze for hexavalent chromium to differentiate the speciation of the valence states during Phase II activities of the RI. Chromium, can be present in the surface and subsurface in two valence states with different toxicities; trivalent chromium (Cr⁺³) and hexavalent chromium (Cr⁺⁴).
- As determined during the Remedial Investigation, three production waster samples exceeded TCLP regulatory levels; two samples exceeded the limit for chromium and one sample exceeded the limit for lead.

The samples which exceeded the TCLP chromium level, PW-5, and PW-9, represent partially decomposed hide material, much of which is buried. Prior to addressing removal, these materials should be characterized in terms of the valence state of the chromium, and the extent to which the buried hide wastes exist on site.

The sample which exceeded the TCLP for lead, PW-4, represents a small quantity of a solid orange material which appears to have once been containerized in now deteriorated five gallon cans. This waste, which appears to be localized to a small surface location, should be removed from the site in an appropriate manner.

Reseilne Risk Assessment

Conduct a Baseline Risk Assessment. By definition, a baseline Risk Assessment is an analysis of the potential adverse effects (current or future use) caused by hazardous substance releases from the site in absence of any actions to control or mitigate these releases (reference). The result of the risk assessment for the former tannery will be used to document the magnitude of

risk at the site, determine what actions are necessary, and aid in developing remediation goals. The scope of the risk assessment will be directed at potential risks to human health and the environment posed by exposure to impacted soil and groundwater. Chemicals of potential concern will consist of a detailed evaluation of the analytical data, analysis of sources of environmental impacts and site characteristics, and a review of potential migration pathways. The Risk Assessment should be conducted in accordance with soplicable Risk Assessment guidelines. An ecological Risk Assessment should also be conducted as part of the Baseline Risk Assessment because the site is located within sensitive areas (wetlands). An Ecologic Risk Assessment is a process which evaluates the likelihood of adverse ecological effects that may occur as a result of exposure. The Ecological Risk Assessment is designed to detect existing risks or forecast the risk of stress.

	2004	MW-1D	MW-2	MW-S	MW-4	MM-S	MW-6	WW-7	Clatern	<u></u>
	MW-1	- 1U								
EM-VOLATLE									- 12	
ORGANIC COMPOUNDS	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	
PHENOL	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	<10	
BIS(2-CHLOROETHYLIETHER	< 10	< 10	₹ 10	< 10	< 10	< 10	< 10	< 10	€ 10	
2-CHLOROPHENOL	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	<u> </u>	
1,3-DICHLOROBENZENS	< 10	< 10	₹ 10	< 10	< 10	< 18	< 10	< 10	< 10	
1,4-DICHLOROGENZENE	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	
1,2-DICHLOROSENZENE	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	
2-METHYLPHENOL	< 10	< 10	< 10	< 10	< 10	< 18	< 10	< 10	< 10	
2.7 - OXYBIB(1-CHLOROPROPANE)	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	
4-METHYLPHENOL		< 10	< 10	< 10	< 10	< 10	< 10	< 10	< t0	
N-NTROSO-DI-N-PROPYLAMINE	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	
HEXACHLORGETHANE	< 10		< 10	< 10	< 18	< 10	< 10	< 10	< 10	
NETROBENZENE	< 10	< 10	< 10	₹ 10	< 18	< 10	< 10	< 10	< 10	
ISOPHORONE	< 10	< 10	استقررت والمساب	< 10	< 10	< 10	- < 10	< 10	< 10	
2-NITROPHENOL	< 10	< 10	< 10		< 10	< 10	< 10	< 10	< 10	
2.4-DIMETHALPHENOL	< 10	< 10	< 18	< 10	< 10	< 10	< 10	< 10	< 10	
BIBCZ-CHLOROETHOXYIMETHANE	< 10	< 10	< 10	< 18	< 10	< 10	< 10	< 10	< 10	
2.4-DYCHLOROPHENOL	< 10	< 10	< 10	< 10		< 10	₹ 10	< 10	< 10	
1.2.4-TRUCHLOROBENZENE	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	
NAPHTHALENE	< 10	< 10	< 10	< 10			< 10	< 10	< 10	
4-CHLDROANLINE	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	
HEXACHLOROBUTADENE	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	Val 93/8/95
4-CHLORO-3-METHYLPHENOL	< 10	< 10	< 10	< 10	< 10	< 10	₹ 10	< 10	< 10	
3-METHYLNAPHTHALENE	< 10	< 10	< 10	< 10	< 10	< 10	1	< 10	< 10	
HEXACHLOROCYCLOPENTADIENE	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	
2.4.8-TRICHLOROPHEHOL	< 10	< 10	< 10	< 10	< 10	< 19	< 10	< 25	< 25	
2.4.5-TRUCHLOROPHENOL	< 25	< 25	< 25	< 23	< 25	< 25	< 25	< 10	< 10	
2-CHLORONAPHTHALENE	< 10	< 10	< 10	< 10	< 10	< 10	< 10		₹ 25 T	
2-HTROANLAE	< 25	< 25	< 25	< 25	< 25	< 25	< 25	< 25	< 10	
DIMETROLPHITMALATE	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10		
ACENAPHTHYLENE	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	
	< 10	< 10	< 10	< 10	< 10	< 10	< 13	< 10	< 10	
2,9-ONSTROTOLLENE	< 25	< 25	< 25	< 25	< 25	< 25	< 25	< 25	< 25	
3-NTROANLINE ACENAPHTHEME	₹ 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	

ALL UNITS UCIKA

	MW-1	MW-10	MW-2	MW-3	MW-a	MW-8	WW-0	MW-7	Cirtora		
SEM-VOLATILE									CONTRA		
ORGANIC COMPOUNDS											
2,4-DINTROPHENOL	< 23								-		
DBENZOFURAN	< 10	< 25	< 25	< 25	< 2	< 25	< 23	< 25	< 23		
4-NITROPHENOL	< 25	< 25	< 10	< 10	< 18	< 10	< 10	< 10	< 10 -		
2.4-DINTROTOLLIENE	< 10	< 10	< 29	< 25	< 25	< 25	< 25	< 25	< 25		
FLUORENE	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10		
DETHILPHIHALATE	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10		
4-CHLOROPHENYLPHENYLETHER	< 10		< 10	< 10	< 10	< 10	< 10	< 10	< 10		
4-NTROANLINE	< 25	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10		
2-METHYL-4,8-DINTROPHENOL	< 25	< 25	< 25	< 25	< 23	< 25	< 25	< 25	< 26		
N-NTROSCOPHENYLAMBE (1)		< 25	< 25	< 25	< 25	< 25	< 25	< 25	< 25		
-BROMOPHENTLPHENTLETHER	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10		
HEXACHLOROBENZENE	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10		
PENTACHLOROPHENOL	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10		200	
PHENANTHENE	< 25	< 25	< 23	< 25	< 23	< 23	< 25	< 23	< 10	100	
ANTHUACENE	< 10	< 10	< 10	< 10	< 10	< 10	₹ 10	< 10	< 25		
	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10		
H-N-BUTYLPHTHALATE	< 10	< 10	< 10	< 10	< 10	< 10	< 10		< 10		
FLUORANTHENE	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10		
PIRENE	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10		
BUTYLBENZYLPHTHALATE	< 10	< 10	< 10	< 10	< 10	< 10		< 10	< 10		
3-DICHLOROBENZIONE	< 20	< 20	< 20	< 20	< 20	< 20	< 10	< 10	c 10		
ENZOVAJANTHRACENE	< 10	< 10	< 10	< 10	< 10	< 10	< 20	< 20	< 20		
CHRYBENE	< 10	< 10	< 10	< 10	< 10		< 10	< 10	< 10		
18/2-ETHYLHEXYLIPHTHALATE	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10		
H-N-OCTYLPHTHALATE	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10		
MENZON FLUORANTHENE	< 10	< 10	< 10 .	< 10	< 10	< 10	< 10	< 10	< 10		
MENZOPOFLUORANTHEME	< 10	< 10	< 10	< 10		< 10	< 10	< 10	< 10		
ENDOLANTREME	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10		
HOENO(1,2,3-CD)PYNENE	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10		
HENZOIA, HANTHRACENE	< 10	< 10	< 10		< 10	< 10	< 10	< 10	< 10		
ENZOIG, HUPERYLENE	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 16		
AMEAZOLE	< 10	< 10		< 10	< 10	< 10	< 10	< 18	< 10		
	- 10	~ 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10		

ALL UNITS UG/KG

MWG13-15_47287

the Boundary of the same in the constant of the same and the same of the same

	FB-GW	FB-1	FB-2	FB-3	FR-4						
	re-um	70-1		-							
							2012/4				3,000,000
SEMI-VOLATILE										32 (0.8)	
ORGANIC COMPOUNDS	< 10	< 10	< 10	< 10	< 10						
PHENOL		< 10	< 10	< 10	< 10						
BISES-CHLOROETHYLIETHER	< 10		< 10	< 10	< 18						
2-CHLOROPHENOL	< 10	< 10	< 10	< 10	< 10						
1,3-DICHLOROSENZENE	< 10			< 10	< 10		,				والمستقلة الأسا
1,4-DICHLOROSENZENE	< 10	< 10	< 10	< 10	< 10						
1,2-DICHLOROBENZENE	< 10	< 10	< 10	< 10	< 10			-			
3-METHYLPHENOL	< 10	< 10	< 10		< 10		1				
2,2-DXYBIE(1-CHLOROPROPAHE)	< 10	< 10	< 19	< 10	< 10					1	
4-METHYLPHENOL	< 10	< 10	< 10	< 10							
N-NETROSO-DI-N-PROFYLAMINE	< 10	< 10	< 10	< 10	< 10			_			
HEXACHLOROETHANE	< 10	< 10	< 10	< 10	< 10						
NITROBERCIENE	< 10	< 10	< 10	< 10	< 10		-	_			
ISOPHORONE	< 10	< 10	< 10	< 10	< 10						
2-HITROPHENOL	< 10	< 10	< 10	< 10	< 10						
2.4-DIMETHYLPHENOL	< 10	< 16	< 10	< 10	< 10						
BIBIZ-CHLOROETHOXY)METHANE	< 10	< 10	< 10	< 10	< 10						
2,4-DICHLOROPHENOL	< 10	< 10	< 10	< 10	< 10						
1.2.4-TRICHLOROBENZENE	< 10	< 10	< 10	< 10	< 10						
NAPHTHALENE	< 10	< 10	< 10	< 10	< 10						
4-CH ORGANILNE	< 10	< 10	< 10	< 10	< 10						
HEXACHLOROBUTADENE	< 10	< 10	< 10	< 10	< 10						
	< 10	< 10	< 10	< 10	< 10						
4-CHLORO-3-METHYLPHENOL	< 10	< 10	< 10	< 10	< 10						
S-METHYLKAPHTHALENE	< 10	< 10	< 10	< 10	< 10						- NINA
HEXACHLOROCYCLOPENTADEN:		< 10	< 10	< 10	< 10		1				
2,4,9-TRICHLOROPHENOL	< 10		< 25	< 25	< 25						
2,4,5-TRICHLOROPHENOL	< 25	< 28		< 10	< 10						
2-CHLORONAPHTHALENE	< 10	< 10	< 10		< 23			_			
2-HTROANLINE	< 25	< 25	< 25	< 25	< 10		-				
PRIETHYLPHTHALATE	< 10	< 10	< 10	< 10						— - 	
ACENAPHTHYLENE	< 10	< 10	< 10	< 10	< 10		 		_		****
2.8-DHITROTOLUENE	< 10	< 10_	< 10	< 10	< 10		+	_		 -	
3-NITROANILINE	< 25	< 25	< 25	< 29	< 25				-		 -
ACENAPHTHENE	< 10	< 10	< 10	< 10	< 10	<u> </u>	-				

ALL UNITS UGAG

	FR-GW	FR-1	FB-2	F8-3	FB-4	-					
SEM-VOLATEE							 				J
											
ORGANIC COMPOUNDS									 ···		
2,4-DINTROPHENOL DESENZOFURAN	< 25	< 25	< 25	< 25	< 25			_			
	< 10	< 10	< 10	< 10	< 10						
4-NITROPHENOL	< 23	< 25	< 25	< 25	< 25		 				
2,4-DIMIROTOLUEIE	< 10	< 10	< 10	< 10	< 10						
FLUORENE	< 10	< 10	< 10	< 10	< 10						
DETHYLPHINALATE	< 10	< 10	< 10	< 10	< 10		 				1000000
-CHLOROPHENMUHENMLETHER	< 10	< 10	< 10	< 10	< 10						
4-NITROANLINE	< 25	< 25	< 25	€ 25	< 25						
2-METHYL-4,0-DINTROPHENOL	< 25	< 23	< 23	< 25	< 25						1
N-NITROSCOPHENYLAMINE (1)	< 10	< 10	< 10	< 10	< 10						
- BROMOPHENYLPHENYL STHER	< 10	< 10	< 10	< 10	< 10						
EXACHLOROSENZENE	< 10	< 10	< 10	< 10	< 10		+				7
ENTACHLOROPHENOL	< 25	< 25	< 25	< 25	< 25		 				1
HENANTHRENE	< 10	< 10	< 10	< 10	< 10						7
ANTHRACENE	< 10	< 10	< 10	< 10	< 10						
N-N-BUTYLPHTHALATE	< 10	< 10	< 10	< 10	C 10						1
LUCKANTHENE	< 10	< 10	× 10	< 10	< 10						
YNENE	< 10	< 10	< 10	< 10							T
SUTYLBENZYLPHTHALATE	< 10	< 10	< 10	< 10	< 10						
J'-DICHLOROSENZONE	< 20	< 20	< 20	< 20	< 10						
ENZOJAJANTHRACENE	< 10	< 10	< 10	< 10	< 20						†··
HYVEHE	< 10	< 10	< 10		< 10						
18/2-ETHYLHEXYLIPHTHALATE	< 10	< 10	< 10	< 10 150	< 10						
N-N-OCTYLPHTHALATE	< 10	< 10	< 10		< 10						1
SENZO(B)FLUORANTHENE	< 10	< 10	< 10	< 10	< 10						
ENZOAGFLLIORANTHENE	< 10	< 10	< 10	< 10	< 10						-
ENZOWNENE	< 10	< 10	< 10	< 10	< 10				- 22		1
EDENO(1,2,3-CO)PYREAE	< 10	< 10		< 10	< 10			ر_حبالا			
MENZO/A, MANTHRACENE	< 10	< 10	< 10	< 10	< 10						_
ENZO/G.H. PERYLENE	< 10		< 10	< 10	< 10		1				-
ARBAZOLE	< 10	< 10	< 10	< 10	< 10 €						-
	~ 10	< 10	< 10	< 10	< 10						

ALL UNITS UG/KG

	MW-1	MW-1D	MW-2	MW-3	MW-4	MW-B	MW-6	MW-7	Clutern	Marek	
										Class I	
	- 									Standards	
HORGANICS	-						<52.2	<52.2	<52.2		
LUMBAUL	<52.2	<52.2	<52.2	<52.2	86.1	<52.2		<13.2	<13.2		
UNTIMONY	<13.2	19.6	14	<13.2	<13.2	<13.2	<13.2	<1.4	<1.4	50	
JUSENIC	6470	6490	20	<1.4	4.9	34	<1.4	31	47.2	2000	
LARLUSE	122	110	81,0	100	108	91.3	39.6	<1	41		
LERYLLLIM	<1	<1	<1	<1	<1	<1	<1	<2.8	<2.9	3	
CADMEN	<2.8	<2.0	<2.3	<28	<2.0	<2.0	42.0	301000	33300		_
CALCUM	388000	371000	282000	330000	271000	291000	285000	<4.2	<4.2	100	
CHROMUM	23.7	22.4	23,2	<4.2	12.5	6.0	<4.2		<2.0	1000	_
COBALT	12.0	13.9	4.2	23.8	11.7	26.9	<2.0	21,6	4	850	
COPPER		7.8		4.8	7.3		8.4	10.8	150	5000	
RON	208	183	249	10400	84500	6340	15.4	6040	4.5	75	
LEAD	40.7	<2.4	<2.4	<2.4	<2.4	<2.4	<2.4	2.0	6480		
MAGHESTIM	150000	152000	63000	84800	102000	48500	42900	32000		150	
MANGANESE	1540	1420	294	4140	2000	2430	1760	3140	133	130	
MERCURY	0.1	<0.1	0.84	0.17	0.87	0.18	<0.10	0.60	0.10		
NOEL.	44	63.6	18.3	26.8	29	20	13,1	20.8	<0.0	100	
POTASSIUM	4050	3690	1630	4350	8250	0050	6370	37800	8370	50	
SELENIUM	<14	<1.4	<1.4	<1.4	<1.4	<1.4	€1.4	3.0	1.0		
SLVER	<2.1	<2.1	<2.1	<2.1	<2.1	<2.1	<2.1	<2.1	<2.1	80	
\$00mm	120000	112000	17400	86400	83400	74400	121000	142000	29000		_
THALLEUM	<1	<1	<1	1.5	<10	<10	<1	<1	<1		
VANADIUM	4.3	6.8	3.1	2.2	7.8	2.8	2	3.4	<1.8		
ZINC	30.7	23.0	23.3	118	20.7	19.2	37.7	49.2	4.8	5000	
CYANDE	<10	<10	<10	<10	<10	<10	<10	<10	<10	200	
TOS	2524000	2702000	1678000	1790000	1670000	1742000	1480000	1612000	258000	1,200,000	

ALL UNITS MGAG.

- INDICATES EXCEEDANCE OF CLASS | STANDARDS

	F4-6W	/B-1	FB-2	F3-1	FB-4	 		
					78-4	 	 	
MORGANICS								
ALDMININ	<52.2	<52.2		44.5				
ANTERONY	<13.2	<13.2	<82.2	<82,2	<\$2.2			
ARSENC	<1.4	<1.4	<13.2	<12.2	<13.2			
BAILUM	<1	<1	<1.4	<1.4	<1.4			
BERYLLAUR	<1	<1	<1	<1	<1			
CADIMIN	<2.0	<2.9	<1	<1	<1			
CALCUM	258	104	<2.0	<2.9	<20			
CHROMEIM	<4.2	<4.2	244	195	180			
COBALT	<3.0	<2.0	<4.2	<4.2	<4.2			
COPPER	7.3	8.4	<2.8	<2.8	<2.8			
FION	11.8	14,0	0.1	10	3.6			
LEAD	3	2.4	18.4	101	10 4	- (0)		
MAGNESUM	<54.3		<7.4	<2.4	<2.4			
MANGANEGE	<57.3	<84.3	<54.5	<54.3	<84.3			
MERCURY	0.12	<5.3	<2.5	<2.3	<2.3			
NICKEL	<8.0	<0.1	0.13	0.11	0,16			
POTABBAM	157	<8.8	<0.6	<6.8	<6.0			
SELENIA		<101	<101	<101	<101			
SEVER	1.4	<1.4	<1.4	<1.4	<1.4			
SCOUM	<2.1	<2.1	<2.1	<2.1	<2.1			
THALLUM	702	281	645	1310	203			
VANADIJA	<1	<1	<1	<1	<1			
ZINC	<1.8	<1.8	<1.0	<1.0	<1.0			
CYANDE	40.9	7.0	52.0	29.5	40.4			
TOS	<10	<10	10	<10	<10	1		
103	8000	N/A	N/A	N/A	NVA	 		

ATTA PATE NAME OF THE

ALL UNITS MORG